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Abstract 

The MOSTAS computer code for wind turbine analysis 

is reviewed, and the techniques and methods used in its 

analyses are described in some detail. Some impressions 

of its strengths and weakness, and some recommendations 

for its application, modification, and further develop­

ment are made. Additionally, some basic techniques used 

in wind turbine stability and response analyses for systems 

with constant and periodic coefficients are reviewed in the 

Appendices. 
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1. Introduction 

The purpose of this memorandum is to briefly review the 

MOSTAS Code models and solution methods; to outline some im-

pressions of its strengths and weaknesses; and to suggest 

some modifications and tests of the models and analysis methods 

employed. Also, this memorandum reviews some basic techniques 

usediri wind' turbine stabiii ty 'and response analyses. 

r10S.TAS is a general computer analysis code for ca1cl.llat-

ing the dynamic loads, and for investigating the aeroe1astic 

and mechanical stability of horizontal axis wind turbines and 

helicopters. 1,2 It was originally developed for helicopters 

and later adapted to wind turbines. This review will be con-

cerned with its application to wind turbines. 

2. Typical Horizontal Axis Wind Turbine Analysis 

To begin to evaluate MOSTAS, it is useful to imagine the 

steps one might take to perform a typical dynamic analysis of 

3 horizontal axis wind turbine. 

1. Derive equations of motion (partial differential 

equations or finite element models) for blades, 

tower, pod, and other system components. Also, 

formulate aerodynamic, inertial, and gravity loads. 

2. Use equations of motion to calculate coupled normal 

modes ¢ , and natural frequencies, w , for the blades. 
r r 
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These would preferably be rotating modes, although 

non-rotating modes could also be used. Calculate 

also normal modes and frequencies for the tower 

and other components. 

3. Choose a sufficient number of modal coordinates q. 
~ 

to adequately describe the motions of the system. 

Then derive modal equations for the qi's from the 

equations of motion for the blades, tower, pod and 

other system components. 

4. Couple entire system together. 

5. Solve for the quiescent (static) blade response and 

corresponding static loads, bending moments, etc. 

6. Solve for the dynamic blade response to the time-

varying aerodynamic, inertial, and gravity loads. 

Calculate the dynamic loads to be added to the static 

loads. Investigate for any dynamic instabilities, 

both aeroelastic and mechanical in origin. 

In attempting to carry out step 6, one often finds that the mass, 

stiffness, and damping terms for the blade ~quations con.tain 

periodic components in addition to the usual constant coefficients. 

For three or more bladed rotors, one can reduce most of these 

periodic components by introducing multiblade coordinates. 3 

The equations can then be solved using standard, constant coef-

ficient system response techniques. For a two or one bladed 

rotor, additi?nal multiblade coordinates and harmonic balance 

methods need to be introduced to approximately eliminate the 
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, d' ff" 4 per~o ~c coe ~c~ents. A crude method that has occasionally 

been used to deal with small periodic coefficients is to simply 

time-average the periodic variations over one blade revolution, 

thereby obtaining constant coefficient equations. However, un-

less the periodic coefficients are small, this may result in 

some errors and may miss some potential areas of instability. 

As a practical alternative to introducing multiblade coordinate 

and harmonic balance methods, one may directly integrate the 

periodic coefficient equations numerically and introduce Floquet 

techniques to examine the system for instability.5,6 

The aerodynamic, inertial and gravity loadings on a wind 

turbine tend to occur periodically in multiples of the rotation 

frequency n. For constant coefficient equations, it is easiest 

to obtain the steady-state dynamic response to such loadings 

using frequency response techniques. These involve finding the 

iw t harmonic response qj(t) = qje In to each forcing frequency 

(;.\ = inn, then summing up all the harmonic responses. See Appen­m 

dix A. To investigate for instability, one recasts the dynamic 

equations in state-space form, determines the eigenvalues of the 

system, and notes if any eigenvalues are positive real, or have 

positive real parts. See Appendix A. For the direct numerical 

integration of the periodic coefficient equations, one picks a 

convenient integration scheme (Runge-Kutta, Newmark, Central 

Difference, etc.) and integrates from some initial condition. 

By proper choice of the initial condition, one can eliminate all 
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transients from the response and thereby show the desired steady-

state dynamic response by integrating through only one blade re­

volution, instead of the very large number usually needed to 

reach steady-state for lightly damped systems. See Appendix B. 

To investigate these periodic coefficient equations for insta­

bility, one uses Floquet techniques, which implies finding the 

eigenvalues of the Transition Matrix. See Appendix B. The use 

of multiblade coordinate and harmonic balance techniques is de­

scribed in Appendix c. 

Having found the dynamic response by any of the methods 

outlined above, one may proceed to obtain the dynamic loads to 

be added to the static blade loads by summing all the additional 

applied aerodynamic, inertial, and gravity loads acting on the 

blade. This force summation method is preferable to the simpler 

mode deflection method since it represents the static loads 

~ore accurately, and it handles discontinuities better. still, 

one should be careful to use a sufficient number of blade elastic 

modes to insure reasonable convergence in blade bending moments 

and shear. 7 

The typical analysis of horizontal axis wind turbines out­

lined here has several variations, depending on the authors. 

See for example, spera,8 Kottapalli and Friedmann,S Warmbrodt 

and Friedmann,6 and Miller, et al. 9 A good general review and 

bibliography for dynamic analysis of such horizontal axis wind 

turbines has recently been given by Friedmann. IO The specific 

steps and procedures used in MOSTAS will be descrired next. 
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3. Description of MOSTAS Code 

3.1 General Layout 

The MOSTAS Code is a very general computer formulation 

which attempts to include a wide variety of structural, inertial, 

aerodynamic, and generator system effects to obtain the dynamic 

loads on a wind turbine. The rotor may have one, two, or more 

blades which may be tapered, twisted, and pre coned out of the 

plane of rotation. They may have cantilevered, hinged, or 

teetering attachments to the hub. The dynamics of the tower, 

pod, power train, and control system are considered in the analysis. 

Basically, the MOSTAS Code can be divided into 3 sub-systems. 

See Fig. 1. First, there is the MOSTAB-HFW system which calcu-

lates the basic loads and bending moments fb on an isolated 

single blade assuming a fixed shaft (i.e., no pod or tower 

motion), rotating at constant rotation speed n. Also, all the 

blades are combined to give total loads and moments fo acting 

at the fixed shaft. Additionally, time varying, linear math 

models for the isolated single blade are generated in MOSTAB-HFW. 

Second, there is the ROLIM system, which is used to assemble 

a linearized model of the rotor from the isolated single 

blade models generated in MOSTAB-HFW. This linear rotor model 

includes multiblade coordinate transformations and is used in 

subsequent coupled analyses of the wind turbine. Finally, 

there is the WINDLASS system which couples the ROLIM produced 

linear rotor model with linear models of the pod, the tower, 

the control system, and the power train. This WINDLASS system 
,.J 

produces small perturbation loads f, which are to be added on to 
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the basic MOSTAB-HFW fixed shaft loads fb' to produce the 
JW 

final loads on the blades. The perturbation loads f contain 

all the effects of the shaft ~otions and the rotor interactions 

with other components of the system. The input to this linear 

WINDLASS system are the fixed shaft, constant rotation speed rotor 

loads fo' previously found by MOSTAB-HFW. Thus, the overall 

logic of the MOSTAS code is to concentrate mainly on the fixed 

shaft loads, which probably comprise the greater part of the 

blade load, then to add on the generally small corrections due 

to shaft motions and subsequent pod,tower, control system, 

and power train system interactions. 

The above MOSTAS scheme here can be contrasted with some 

of the other analyses quoted earlier. spera,8 and Kottapalli 

and Friedmann 5 essentially analyze the fixed shaft system and 

hence are comparable to the MOSTAB-HFW portion of MOSTAS. See 

Fig. 1. Warmbrodt and Friedmann 6 include the effects of tower 

and pod motions, and hence would be similar to the WINDLASS 

portion of MOSTAS, but with the steady wind, wind shear, tower 

shadow, gravity, etc., input going directly into the rotor, 

rather than coming indirectly through the fixed shaft rotor 1oa~s 

f onto the pod. Miller et al. 9 consider the fixed shaft 
o 

loads by harmonic decomposition into static loads, and using 

approximate dynamic magnification factors to obtain the dynamic 

loads. The effects of the tower motions are found by analyzing 
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simple tower-pod-rotor models. 

The MOSTAS treatment of teetering rotors should also be 

mentioned. In order to calculate the fixed shaft loads fb 

for such a teetering rotor, the teetering angle y of the rotor 

must be known. Since this y depends on the interactive motion 

of all the blades, a separate linearized analysis of the rotor 

blades is required. This is done as an additional small sub­

loop in the MOSTAB-HFW system shown in Fig. 1. A linearized 

model of the rotor blades with teeter is constructed within 

MOSTAB-HFW; these are solved by a coupled linear analysis for 

the linear blade deflections and teetering angle; then this 

teetering angle is used to modify the total rotor load f o 

feeding into the WINDLASS portion of the analysis, Fig. 1. 

This procedure seems a complex way to include the additional 

teetering degree of freedom y, but it does adapt to the frame­

work of the isolated blade model scheme of MOSTAB-HFW. 

More specific details of the various MOSTAS component sys­

tems are described next. 

3.2 MOSTAB-HFW System 

The MOSTAB-HFW system deals with obtaining the dynamic 

loads and response of an isolated blade assuming a fixed shaft 

(i.e., no pod or tower motion), rotating at constant rotation 

speed n. It is essentially a modal analysis, and the blade 

motion is described by a superposition of blade natural vibration 
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modes added to a quiescent (static) blade position. 

MOSTAB-HFW uses as input one to four blade natural modes 

and frequencies, the blade mass characteristics, the aerodynamic 

section characteristics, and the quiescent shape of the blade 

(the static shape before dynamic vibrations occur). It first 

proceeds to characterize the quiescent shape of a blade reference 

line (BRL) and a set of blade axes in terms of 3 translations and 

3 Euler rotations from a set of rotor reference 600rdinates which 

rotate with the rotor. This is carried along numerically by a 

6 x I column vector woes) for every point s on the BRL. Then 

it considers the blade vibration modes as small perturbations 

6 j (s) Sj(t) about the quiescent position Wo(s). Each mode shape 

6.(s) is again carried along as a 6 x I column vector, and by 
J 

_assuming the orthogonality properties of the given modes, the 

modal equations of motion can be expressed in the standard form, 

2- -I 
( r {3, + 0. ~i - M. b.. p- eLs ( 1) 

l- I. (. 
0 

where, Q. T 
1:1. ds M· r. 6· vn I. o (. J 

W. 
L - Blade natural frequency 

In the above procedure, all geometric nonlinearities are retained 

in characterizing the quiescent position of the blade w (5), but 
o 

small perturbation deflections are assumed for the subsequent 

vibrations. The given mode shape data 6.(s) and natural fre-
~ J 

quencies w. are usually taken as rotating blade modes (centrifu­
J 

gal force effects included). The external perturbation force p 
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consists of all external perturbation loads except for the 

inertia loads and centrifugal stiffening loads (these have 

already been accounted for on the left-hand-side of Eq. (1) ). 

Rather than evaluating the generalized mass and generali-

zed force integrals in Eq. (1) directly, the MOSTAB-HFW pro-

gram prefers to mechanize all computations around repeated 

evaluations of the following integral, 

£ 

S A;(S) P ( ~ J ~ ) ~) 5 J t) cI s 
o 

(2) 

where S is a desired integral and P is the total load on the 

blade from all sources (aerodynamic, inertial, centrifugal, 

gravity, etc.), and includes both linear and nonlinear effects. 

The external perturbation load p. in Eq. (1) is related to the 

total load P by the relation, 

•• p /20 + Vh ~j ~j + ( 3) 

where Po is the quiescent (static) load on the blade, while 

m~.S. and k!~.S. are the inertia and centrifugal stiffening 
J J . J J 

loads that must be added in order to cancel out the corres-

ponding loads -mAo ii. and -~ /j.. R. already present in the 
J YJ 1: J" J 

total load P. 

The generalized mass term Mi in Eq. (1) is obtained from 

the general integral formula Eq. (2) by numerical differentiation. 
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. 
First Eq. (2) is evaluated with all motions S = 6 = 8 = 0 

and all external perturbation loads p = 0 in order 

to obtain the value, ;'0:::' S ~~ Fo ds (See Eq. (3) 

rearranged to solve for P). A subsequent evaluation with 

(3 j = E (where E is a small posi ti ve 

all other ~ == ~ = (3 :::. 0 will yield 

Then, 

value). and 
9. .-1-

~ S bot h1 D.j ds 
o 

( 4 ) 

A similar numerical differentiation-procedure with ~j = f 

and all other ~ - ~ = (3::: 0 will yield the linear stiffen-

ing terms Finally, the generalized force in the 

basic Eq. (1) is evaluated by placing the f given by Eq. (3) 

into the integral formula Eq. (2) to obtain the right-hand-side 

of Eq. ( 1) as, 

_I 2. T 

M r nl f' 
o 

ds (5 ) 

In the above, all matrix expressions M, S, So' KI have been 

obtained by using repeated evaluations of the general integral 

formula Eq. (2). The 6 term appearing in Eq. (5) is present in 

order to cancel the corresponding inertia forces present in 

the total load term S. 

The aerodynamic loads in the total load P are calculated 

assuming quasi-steady strip theory, and static stall effects are 

included by using curve-fit functions,CL and CD versus angle 
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of attack. Geometric nonlinearities are retained since angles 

of attack are found numerically. The inflow of air may vary 

over the disk in accordance with simple momentum theory which 

treats independent annular volumes of air. Also, inflow cor-

rections can be made for wind shear, tower shadow, and rotor tip 

losses. 

'-he equations of motion, Eq. (l) with the right-hand-side 

expressed by Eq. (5) are of the general form, 

•• 2-

~i. + W ~i (6 ) 

These equations are integrated numerically around one rotor 

revol ution, from t.::: S2. i; -= 0 to ~ =- 2.lT, for a given . 
set of initial conditions on ~ and ~ . The correct initial 

conditions that will result in steady-state·, periodic solutions, 

are found using the procedure described in Appendix B. The 

numerical integration method used in MOSTAB-HFW consists of 

assuming g. to be constant over some small azimuth interval 
1. 

b,. t == 5L l1t. The equations are then uncoupled, and a conven-

tional solution over that interval is given as, 

+ 

• 
~~+I -

•• 

e. 

?>~ ~ t.UAt + 
w 

e 

(7) 
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Care must be taken that the time interval ~:t = ~'f'/5t is suf­

ficiently short for the highest natural frequency Wh involved, 

otherwise numerical instability results 

Some schemes for suppressing the numerical instability are dis-

cussed, so that excessively small azimuth intervals (and hence 

excessive computer time) need not always be used. . .. 
Having obtained the required time histories ~)~) ~ over 

one rotor revolution, the desired shears and bending moments fb 

for an isolated blade are found from the relation, 

( 7) 

where fb is a 6 x 1 column vector representing the 3 total 

shears and 3 total bending moments at any point s on the blade, 

and P is the total load on the blade from all sources (aerody-

namic, inertial, centrifugal, gravity, etc.). The above rela-

tion Eq. (7) is essentially a "force summation" method instead 

of a "mode displacement" method for the loads, and it is evalu-

ated using the familiar set-up for the general integral formula 

Eq.(2), only now .6~(s) is replaced by some other function 

R (SJ~) , and the lower limit 0 is replaced by the more general 

value s. 

The isolated blade load time histories fb computed above 

are additionally fourier-analyzed to obtain the amplitudes and 

phase angles of the lowest few harmonics involved. The loads 
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froIT'. each individual blade can then be combined together to 

form the fixed shaft load input fo to the WINDLASS system as 

described in Section 3.1. 

Additionally, time varying, linear math models for the 

isolated single blade are generated in MOSTAB-HFW. This is 

accomplished apparently by combining the modal equations of 

motion Eq. (1), with numerical differentiation of the general 

integral formula Eq.(2), to obtain S, S, and B coefficients 

similar to the manner described in Section 3.2 for obtaining 

the generalized mass term M... This is done at many azimuthal 
1J 

locations of the blade. Because of the numerical differentiation, 

all nonlinear effects are included in the derivative calculations. 

Finally, it should be mentioned that for the case of a 

teetering rotor, the calculation of the fixed shaft loads fb 

is considerably more complicated since the interactive motion 

of all the blades must be considered. This involves doing, 

(in the HOSTAB-HFW system), a coupled linear analysis of the 

teetering degree of freedom y with the given modes of all the 

blades, as was described briefly at the end of the previous 

Section 3.1. 

3.3 ROLIM System 

From details inferred in Refs. I and 2, the ROLIM system 

basically assembles a linear (perturbation) math model of the 

entire rotor about the trim operating condition, from the linear 

math models of the isolated single blades generated in the 

MC:STAB-~IFW analysis. 
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The isolated single blade model is expanded to 

represent the full N-bladed rotor by assembling each set 

of modal coordinates in a stacked fashion, 

where S~k) are the M modal coordinates of the kth blade, 
1 

and the coordinates of each blade are assumed to be shifted 

in azimuthal phase an amount ~W = 2~/N from its neighbor. 

In addition to the above blade coordinates 6~k), one has 6 
1 

additional rotor shaft coordinates x., representing possible 
1 

displacements of the rotor hub in three directions, and pos-

sible rotations of the rotor hub about three axes due to 

motion of the tower and pod • The equations of motion are ex-

panded to include these additional hub translation and rotation 

effects. Because the rotor hub motions are described in a 

fixed reference frame while the blade motions are described 

relative to a rotating reference frame, the resulting equations 

of motion will generally have mass, damping, and stiffness co-

efficients which are now periodic functions of azimuth position 

of the kth blade, Wk' 
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For rotors with 3 or more blades, it is known that the 

periodic coefficients in the above equations can be largely 

cut down and reduced to constant coefficients by introdu-

cing multiblade coordinates br " bl " b " b " 
1 Sl lC1 2S1 .... such that, 

(8) 

where W
k 

= nt + (k-l) 21T/N represents the azimuthal position 

of the koch blade and the number of coordinates taken equals 

the number of blades, N. See Appendix C. The ROLIM system 

introduces such multiblade coordinates and resulting equations 

of the entire rotor are recast in th e matri:>: form, 

Mit+- PLo + (9) 

where M, P, Q, are constant coefficient square matrices, 

and y is a column matrix of the unknown coordinates, 

'X. 
L.. 

bT~ 
b,si. (10) 

bid . . 
.. J 

The first 6 coordinates xi in Y above represent the rotor shaft 

motions while the remaining b, 's, etc. are the multiblade 
1 
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coordinates. The right-hand-side R represents the effects 

of forces and moments acting on the rotor and is considered 

a function of, 

f forces and moments from nacelle pod to rotor hub. 

c control inputs to the blade angles. 

~ speed of rotation. 

9 wind velocity vector. 

The above linear model of the rotor system Eq. (9), is then 

used in the subsequent rotor-tower interaction system 

WINDLASS described in the next section. 

The second order Eqs. (9) can also be rewritten in the 

state-space form as twice as many first order equations, 

p. 
~ 

(11) 

where the matrices P, Q, R, and y now have different defi-

nitions and dimensions. See Appendix A. ROLIM assembles some 

of its analyses in the form of Egs. (11) as well as Eqs. (9). 

Some comments should be made about the use of multi-

blade coordinates when the number of blades N < 3. For 

2-bladed rotors, N = 2, the multiblade coordinates Eq. (8) 

will not eliminate the periodic terms. Rather, it will 

introduce the two coordinates b Ti (t) and bAi (t) which together 

wi.th can then be expanded in a harmonic series, 
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x· - 'X ot. + "X'5i. ~ 5"l..t of /tIel- ~5Ct + 'X Z5L ~ 252.t" ;- _.-
~ 

bTL, - bTO~ + bT/5 1.. ~5lt + bTl(..~ ($.~t + 
(12 ) 

bAt. - b"oL. + bA1Si.. ~Q.t. + bT - ~ S2.t + -I c: (, 

where xoi' 1si' b TOi ' bTlSi ' ••• are all functions of time. 

The harmonic balance methoC can then be applied to obtain 

approximate solutions as discussed in Appendix C. The re-

suIting response will then consist of a fundamental frequency 

plus various harmonics of frequency mn, where m is an integer. 

The ROLIM system introduces a special form for the multi-

blade coordinates for a two-bladed rotor, namely, 

e/fit.) bo~ + bs~ ~f~ + bci UI'Q.. \}'k 
(13 ) . (~) • 

~~ bo~ + S1. b~~ ~t~ - 5'2.. bc.~ ,~ f ~ 

\vhere for N = 2, one has 1jJk = nt + (k-l) IT. In mC':.trix form 

this appears as, (') l ~~ C6Q..'f, ~o 1 f3- 1 0 

• (I) 
S2. C(7Q. 't', -SL~~ 

~ r- 0 1 

~; I I 

(2.) -
-~t, ~ c.tJQ.. 1f, 

(14) 

:(~) 1 0 

0 1- -R CA.'¥. 5l~f, be. 

This is placed into Eqs. (6) written in state-space form (i.e., 

as first order equations), and after adding the hub motion 

coordinates x. and multiplying by the transpose of the above 
~ 

transfornation, one obtains equations of the form of Eq. (11) 

where y now represents the variables Xi' Xi' b o ' bo ' b s ' b c ' 
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The transformation Eq. (14) is a mathematically valid one, and 

it appears efficient since it represents the 4 unknowns 6(1), 

Q(l) S(2), ~(2) in terms of 4 new unknowns b , b ,b band 
f.j, p 0 0 s' c' 

also, it tends to change the sin ~l variations i~to sin 2~1 

varj.~ticns. However, Kaza, Janetzke and Sullivan2 pointed out 

by :);:'·)~_ir:ation to a simple example, that if one subsequently 

time-averages out the resulting sin 2~1 and cos 2~1 variations 

to zero, it gives poor results for the frequencies and instability 

regions. 

A somewhat better transformation to use for these 2-bladed 

rotcrs is the following, 

+ 

or in matrix form, this ap~ears as, 

1 o ~~ 0 c,cg.~ 0 

o 1 5L~\fJ ~r, -SL~tf, ~~ 

o -~t, 0 -~lf, 0 

o 1 -5l~I}, -~lJ', 52.~'t, -($.~ 

bo 

bo 

15 
b S 

b(. 

be.. 

(15) 

(16 ) 

(1) • (1) (2) 
This trunsformation represents the 4 unknowns 6 ,6 , 6 , 

• (2) 
S 

. 
in terms of 6 new unknowns b , b , b , b , b , b , o 0 s s c c and 

upon sUbstitution into the equations of motion and multiplying 

by its transpose, it will lead to 6 blade equations instead of 

the 4 obtained by the previous transformation, Eq. (14). Although 

this does not appear as efficient as the previous transformation, 
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it allows more flexibility among the coordinates and gives much 

better results if one subsequently time-averages the resulting 

sin 2W l and cos 2W l variations to zero. It gives reasonable 

frequencies and it will preserve the instability regions 

(slightly shifted). See Refs. 4 and 14. 

It would appear then, that ROLIM would do better using 

the transformation Eq. (16) with time-averaging to obtain constant 

coefficient equations rather than using the special form, Eq. (14) 

with time-averaging. Otherwise, if the special transformation 

Eq. (14) is used, one should solve the resulting equations and 

check their stability using Floquet techniques, as discussed 

in Appendix B, or by some other scheme which includes the 

periodic coefficients in the equations. This was also suggested 

in Ref. 2. 
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3.4 WINDLASS System 

The WINDLASS system couples together linear models of 

the rotor, the nacelle pod, the tower, the control system, 

and the power train, to give the dynamic response of the 

overall system. The main input to the WINDLASS system is 

the fixed shaft, constant rotation speed loads f o ' previous­

ly found by MOSTAB-HFW and applied to the nacelle pod. This 

sets up small perturbation responses everywhere in the over-

all coupled dynamic system. The total loads on the blades 

are then taken as th~ sum of the fixed shaft loads fb and 
~ 

the additional perturbation loads f due to the nacelle pod 

motions. Figure 2, taken from Ref. 1, shows a block diagram 

of the overall WINDLASS system, its five subcomponents, its 

variables, and the general form of its equations. A brief 

description of the various subcomponents follows. 

The linear rotor model is developed by the ROLIM system 

from the MOSTAB-HFW analysis and was described in the previous 

section. The governing equations are given by Eq& (9) or (11) 

and the variables yare given by Eq.(lO). The first six of 

the variables y represent the six absolute rotor ~haft motions 

x, while the remaining variables represent the multihLade co-

ordinates b~., b ., •.. for the rotor blades. The various 
,~ s~ 

inputs to the equations, f, c, n, g are also described in the 

previous section on ROLIM. 
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The nacelle pod acts as an interfacing device that con-

nects the rotor, tower, control system, and power train sys-

terns together. The pod itself is modeled as a massless elas-

tic spring superimposed with an infinitely rigid mass, so that 

the pod model has no relative structural vibration modes, but 

it does contribute its mass properties to the overall system 

dynamics. The yaw drive spring stiffness plays an important 

role in the nacelle pod representation. The form of the govern-

ing equations for the pod can be seen in Fig. 2. The fixed shaft 

rotor loads f are the primary forcing function on the pod, while 
o 

f is the perturbation load from the pod to the rotor. The fT 

are loads from the pod to the tower top, xT is the absolute 

position of the tower top, fM are the loads applied to the pod 

rigid body mass, xM is the absolute position of the pod rigid 

mass, and YR is the torque from the rotor to the power train. 

The remaining subscripted f, x, and Y variables represent various 

intermediate loads, positions, and torq11es. 

The tower model is represented by its natural modes of 

vibration~. These are found from a separate finite element 

analysis of the tower, and are usually performed using a mass 

at the top to approximate the mass properties of the nacelle­

rotor unit. The resulting modes and frequencies therr give a more 

accurate description of what the tower is doing during its 

system coupled motion. However, the effect of this mass has 
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to be subtracted out from the model of the isolated tower used 

in the WINDLASS system. Also, the effect of the elastic tower 

mounted on a flexible base is also included so that one might 

additionally consider a movable soil. Six additional degrees 

of freedom 0, representing rigid body motions of the base, are 

included in the tower model, and appropriate equations are de­

veloped. The form of the governing equations for the tower 

are shown in Fig. 2, one set representing the predominantly 

elastic tower vibration modes ~, the other representing the 

predominantly base vibration modes 0. The fT are the loads 

from the nacelle pod to the tower top, the x
T 

is the absolute 

position of the tower top, and the fET are external applied 

loads to the tower such as due to drag or cables. It would 

seem the tower model could probably be simplified by includ-

ing flexible soil effects as a simple reduction in the tower 

natural frequency, instead of introducing six additional degrees 

of freedom. 

The control system model represents the power machinery, 

power machinery controls, utility network dynamics, rotor speed 

controller, and other servo-systems present to regulate the 

speed of the wind turbine. A simple such model is shown in 

Fig. 2. Here h represents the command inputs to the system; 

i.e., the desired speed or the speed governor, the a represents 

the control system degrees of freedom, and ¢ and ¢ represent 

the angular position and velocity of some gear of the rotor shaft. 
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The controller generates a rotor control input c from the 

control system degrees of freedom a, which is then fed into 

the rotor to control its behavior. The control input c 

usually represents a rotor collective pitch change Go. The 

associated torques on the power train Y and nacelle pod c 

yare also generated from the control system degrees of 
cp 

freedom a.. 

The power train model represents the assembly of gears, 

shafts, and generator that make up rotating parts of the wind 

turbine. The WINDLASS system makes up the power train by 

connecting a series of basic modules, each of which consists 

of a large main gear, a small pinion gear and an interconnect-

ing elastic shaft. The smaller pinion gear is considered mass-

less, and two damping coefficients 'are considered, one for the 

shaft and one for the bearings. Additionally, the torques 

transmitted through the system and to the supporting bearings 

are also considered. The form of the governing equations for 

the power train are shown in Fig. 2. Here ~ represents the 

power train degrees of freedom which relate to the angular 

position of each gear, while YE represents the sum of the torques 

acting on the power train coming from the rotor YR, from the con­

trol system Yc ' and from externally applied torques YEp. The 

rotor speed n is related 'to ~, and the YB represents the base 

torque loads on the pod. 
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The equations of motion for the five subcomponents of the 

WINDLASS system and their interrelationship is shown in Fig.2. 

It remains to assemble all the equations together into a con-

venient form to solve them simultaneously. Since the wind 

turbine system was developed, for the sake of generality, as a 

series of independent blocks linked together, the equations as 

presented include displacements and interface force terms as 

variables. To solve such a large set of equations is unwieldy 

since not only are there .many variables, but also the deflec-

tion and force operators may contain terms of widely varying 

magnitude which may cause numerical problems. To reduce the 

size of these equations, the WINDLASS procedure separates the 

variables into two groups - an "independent" group, usually 

comprising the displacements, and an "eliminative" group, usually 

comprising the interface forces. The equations are then also 

separated into independent and eliminative equations so that 

they can be written as, 

~. 

M~ w + B~ W + 

E " - •• W 
w 

+ v;, V 

(17) 

+ 

where w represents the independent variables, e represents the 

eliminative variables, and v represents the externally applied 
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loads. The e variables can then be eliminated by solving the 

second equation for e and placing into the first equation to 

yield a smaller set of equations, 

M' ~ . I • I I 

W + B w + K'} w V;v (lS) 
'J- ~ 

where, 
I -I 

Mea - M'} E'} Ee E .. 
w 

I -I 

B"i B} - Ec;r Ee E· ..,., 

, etc. 

After solving the smaller set of Eqs. (18) for w, the elimina-

tive variables e are obtained from the second equation Eq.(17) by 

multiplying by E~l • It should be noted that in the above 

reduction procedure, the eliminative variables e never appear 

as time derivatives in the equations of motion. Hence the 

order of the differential equation system in Eqs· (17) is the 

same as that in Eq. {lS} even though Eq. (lS) has fewer vari-

ables. Thus no essential dynamics has been lost. Also, it 

should be noted that this reduction procedure requires the 

matrix E to be nonsingular. Often, because of the choice of 
e 

variables and the existence of constraints, E is singular. In e 
such cases, a speoial processinq technique is used to get around 

this by first using linear. algebra techniques to express the 
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(19) 

where C and Bare nonsingular matrices and D is the ~dentity 

matrix except for zeros in the first n rows corresponding to 

the order of the singularity in E. This form isolates the e 

singularity and allows one to rewrite Eqs. (17) in the same 

form as before, only now w has n additional variables, the 

M , B , K , V , Ew' E., E-, E . g g g g w w v rnatrlces are defined somewhat 

differently, and E becomes the unit matrix. The reduction e 

to the smaller set of Eqs.(18} then follows. 

The WINDLASS system can solve the assembled linear equa­

tions of motion Eqs. (18) by either usin~ frequency response 

methods or by using direct numerical time integration methods. 

Originally, only the frequency response method was available, 

but later, the time integration method was added. 

In the frequency response method, the forcing functions v 

vlhich generally occur periodically over a cycle of turbine 

r8volution, are broken down into theiL harmonic components. 

The harmonic responses ware then found and added together to 

give the total response, as shown in Appendix A. The WINDLASS 

subprogram to obtain the frequency response, Eqs. (A-8) and (A-9) 

is designated DYNAM2, while the subprogr~m to recover the time 

history Eq. (A-lO) is designated RECOV2. The total loads acting 
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on the blades f TOT are then found by su~ming the original 

fixed loads fb and the here.calculated perturbation loads 
~ 

f. Also if desired, the blade response relative to the ro-

tating system S(k) can be obtained from the multiblade co-

ordinate transformation Eq. (8). It should be noted that 

this frequency response method as discussed in Appendix A 

requires that the Eqs. (18) have constant coefficients. If 

the equations have periodic coefficients, the periodic parts 

must be time-averaged over one cycle, and only the constant 

portions used. This may lead to some errors for 2-bladed 

rotors, particularly if the specialized 2-bladed multiblade 

coordinate transformation, Eq. (14) is used. See Ref. 2. 

The overall MOSTAS system using DYNAH2 and RECOV2 is labeled 

as MOSTAS-A in Ref. 2. 

The time integration method of solving Eqs. (lS) is con-

venient for arbitrary time varying loads applied to the struc-

ture (such as wind gusts), and it allows any periodic coef-

ficients in Eqs. (18) to be accounted for. The equations of 

motion Eqs. (18) could be numerically integrated by any of 

the standard numerical techniques such as Runge-Kutta, Newmark, 

Central Differences, Houbolt, etc., to get the response. How-

ever, because of the very general nature of the assembly methods, 

there may be constraints among the various chosen coordinates w 

such that they are not truly independent, and hence the mass 

matrix M may be singular. To get around this singularity, 

WINDLASS makes use of eigenvalue analysis to arrive at the 
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following numerical integration method. First, it rewrites 

Eqs. (18) in first order form, 

p. 
lJ' Rv (20) 

where the matrices P, Q, R, v, y, are defined by comparing 

with Eqs.(A-2) and (A-I) of Appendix A. Then, it separates 

out the time-averaged constant parts Po' Q
o 

from the periodic 

parts P, Q, of the P, Q matrices and rewrites Eqs. (20) as 

Rv +Q1" (21 ) 

where the entire right hand side will be treated as a constant 

forcing function over small time intervals6t in the subsequent 

numerical integration process. - Next, using eigenvalue analysis, 

the program finds the eigenvalues A. and eigenvectors y., z. 
1. 1. 1. 

of the homogeneous system P y -Q Y = 0 and of its transpose 
o 0 

T. °T 
P z -Q z = 0.: 

o 0 i 
Since the matrices Po and Qo may in general 

be singular, the eigenvalues A. and eigenvectors y. and z. are 
1. 1. 1. 

found using special linear algebra methods described in Ref. 11 

which first take out the singularities in Po and Q
o

• The re­

sulting eigenvectors y. are arranged, column by column, in an 
1. 

array Y called the modal matrix. Similarly, the z. are arranged 
1. 

into another modal matrix Z. Then introducing new coordinates 

g such that y = Yg and multiplying Eg. (21) by ZT, the program 
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obtains the equations of motion as 

H'b-- (22) 

where, 

~ - Z'p-v 
" .L 

H Z"t- QoY 

T Z""P,( I 

,. - -
C- - 'Z R V 7r t- Z QY cr 

Reference 11 shows that G and H are diagonal matrices due to 

the orthogonality properties of the modal matrices Y and Z, 

and they are nonsingular. These matrix equations can then be 

rewritten in the equivalent form, 

where A = G-IH is a diagonal matrix of the eigenvalues A. 
~ 

free of zeros. Since A is diagonal and c can be assumed 

(23) 

cODst~nt over a small time interval 6t, Eqs. (23) are seen to 

be uncoupled, and each equation can be solved independently 

to give 

Ci. (24) --
where A. = H./G. and is generally complex. This numerical 

~ ~ ~ 

integration scheme is the first order complex counterpart of 

that used in MOSTAB-HFW involving second order real equations, 

Eq s . ( 6 ) and (7). 

Finally, after solving for q, the physical coordinates 

are obtained through the transformation y = Yq, and the time 
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histories of the blade loads f TOT are obtained as before by 

summing the original fixed shaft loads fb and the here calculated 
~ 

perturbation loads f. In the above procedure for integrating 

Eqs. (18), it should be mentioned that for practical expediency, 

the number of degrees of freedom is substantially reduced prior 

to the solution. This is done by discarding the very high fre-

quency modes in Eqs. (18). Otherwise, time integrations of these 

equations would be extremely difficult. 

The WINDLASS subprogram that performs the numerical time 

integration method here is designated WINDGUST, and can be used 

to obtain the response to any forcing function v in Eqs. (20) 

subject to any initial conditions. For forcing functions which 

occur periodically over one cycle of turbine revolution, the 

resulting steady-state response can be found by integrating over 

only one cycle rather than many cycles provided the proper initial 

conditions are found. WINDGUST uses the scheme described in 

Appendix B for this purpose. The overall MOSTAS system using 

the time integration WINDGUST subprogram is labeled as MOSTAS-B. 

Summarizing the two methods of solving the linear equations 

of motion, MOSTAS-A uses frequency response methods (DYNAM2 and 

RECOV2) to solve Eqs. (18) with time-averaged coefficients, while 

MOSTAS-B uses time integration methods (WINDGUST) to solve Eqs. 

(21) with the periodic coefficients P and Q. From an investi­

gation by Kaza, Janetzke, and SUllivan2 , MOSTAS-B seems to do 

better for the forced response than MOSTAS-A when applied to 
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2-bladed rotors, since it takes into account the periodic co­

efficients P and Q of Eqs. (21). On the other hand, MOSTAS-A 

seems a simple and efficient method of getting the harmonic 

response when periodic coefficients are small, as in 3-bladed 

turbines. 

For investigating the stability of the rotor systems 

given by the assembled linear Eqs. (18), the WINDLASS system 

sets the forcing functions v = 0, then time-averages the co-

efficients to constant values, then obtains the eigenvalues 

Pk of the system and notes if any are positive or have posi­

tive real parts. See Appendix A. Because the mass matrix M 

is often singular, the methods previously described for the 

WINDGUST analysis, Eqs. (20' to (23) are used to get around 

this singularity. In fact, the eigenvalues A 1.' = G./H. 
1. 1. 

found from Eqs. (22) are exactly the desired eigenvalues Pk 

to be examined for stability. Hence, the previous WINDGUST 

response analysis automatically includes the stability in-

vestigation of the time-averaged constant coefficient system. 

To examine the stability of Eqs. (18) when periodic co-

efficients are present, Floquet methods should be introduceu 

as described in Appendix B. It does not appear in 

Ref. 1 that this has been incorporated into the WINDLASS 

analysis, but in any event, its inclusion is 

simple since it involves merely finding the eigenvalues Ak 

of the "transition matrix" Q defined in Eq. (B-S). This 
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matrix Q has already been formed by WINDGUST to obtain the 

proper initial conditions for steady-state response. Appen­

dix B. If any of its eigenvalues Ak has a magnitude equal 

to or greater than unity, the system is unstable. Alterna-

tively, a root perturbation method is currently being considered 

for investigating the stability of the periodic coefficient 

systems. 

As mentioned earlier, the use of the time-averaged 

constant coefficient method should be used with caution when 
~ 

dealing with 2-bladed rotors. See Kaza, Janetzke, and Sullivan~, 

and the discussion earlier in Section 3.3. This is appareritly 

due to the nature of the 2-bladed transformation, Eq. (14) 

used in ROLIM. 
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4. Strengths and Weaknesses of MOSTAS 

The MOSTAS code for wind turbine analysis seems to be 

a very general code incorporating some interesting features, 

which has been built up over the years to handle a variety 

of helicopter and wind turbine problems. Many additions 

have been made to the original base to make the routine more 

general, and many sophisticated data processing technqiues 

have been added accordingly to handle these. As a result, 

one begins to lose the feel of what is going on in the struc­

ture, and one wonders if numerical accuracy is beginning to 

obscure even simple results. 

The following are some. specific comments about its 

strengths and weaknesses as they appear to the authors of 

this review. 

Strengths 

1. Obtains blade loads by finding basic isolated blade 

loads plus smaller linear perturbation loads due to 

tower motions. 

2. Works with complete loads on blades from all sources, 

(aerodynamic, inertial, centrifugal, gravity, etc.) 

3. Can include stall, variable inflow, and other aero­

dynamic nonlinearities. 
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4. Modular arrangement of components. Can handle all 

kinds of subpieces. 

5. Good coupling and assembly of systems together. 

Uses good data processing methods. Numerical in-

tegration methods seem reasonable. 

6. Includes frequency response methods for harmonic 

loads as well as time integration methods for load 

time histories. 

7. Good procedure for obtaining correct initial condi-

tions for steady-state solution. 

8. Includes effects of periodic coefficients for forced 

response and possibly for stability investig~tions. 

Weaknesses 

* 

1. Seems a reasonable, but somewhat cumbersome program. 

Very long, does everything numerically, most struc-

* tural nonlinearities retained, numerical differen-

tiation may lead to small differences of large num-

bers, difficult to see what is causing what. 

2. Many small couplings and effects are included which 

are probably unnecessary, but numerically complica-

tinge Because allowance is made for so many features, 

Wind turbine blades are generally stiffer than helicopter 
blades. Can neglect many of the nonlinearities retained 
here by order of magnitude assumptions. 
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the program does things very generally and requires 

much data processing and sophisticated techniques 

to get answers. 

3. Method is essentially a modal analysis for the blades. 

Use of at least 4 blade modes may be required for 

finding bending moments and shears on blades. This 

may tax the numerical capability of this program. 

4. Quiescent position not consistently found in the 

analysis. Must get from elsewhere. Seems one is 

using very sophisticated additions to a crude model. 

5. Need separate programs to obtain modes and quies­

cent position for the analysis. It seems the code 

should be able to get these for you, somewhere. 

6. Teetering system seems inefficient in the operation 

of the system. Could perhaps be improved~ 

7. Some problems exist with the use of multiblade coordi­

nates for 2-bladed rotors. The special form used in 

the program may be changed as discussed. 

8. Possibility of flutter instability when there is a low 

torsional flexibility of the blade due to a loose 

pitch-change mechanism. Should be investigated more. 

Some question whether the system can model blade aero­

elastic instabilities properly, since unsteady aero­

dynamic forces and wake interference effects may have 

to be included. 
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5. Recommendations 

This report has attempted to give a review of the MOSTAS 

computer code for wind turbines, and to describe some of the 

techniques and methods used in its analyses. Also, some 

general methods used in wind turbine stability and response 

analyses have been reviewed. Based on this study, the follow­

ing recommendations are suggested. 

1. Make smaller, simpler models involving specific sub­

components, to investigate the main origin of large 

loads and instabilities. Try to understand what 

causes what by these simpler models. 

2 .. Check out MOSTAS versus some simpler models to see 

what can be eliminated and simplified. 

3. Look more into effects of aeroelastic flutter insta­

bilities and also mechanical instabilities on these 

systems, especially with proposed soft, flexible moun­

tings. 

4. Look more closely at teetering effects and propeller 

whirl type flutter of these systems. This involves 

aeroelastic coupling with the tower yaw and pitch 

mechanisms. 

5. Change the special form of the 2-bladed multiblade 

coordinate transformation used in the analysis, or 

use Floquet methods (or their equivalent) to analyze 

the stability of the response. 
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6. Improve teetering set-up if possible. 

7. Look at drive train and torsional shaft-generator 

coupling problems more closely. These can probably 

be uncoupled "from much of the tower motion dynamics. 

8. Should calculate the quiescent position Wo by the 

computer code, for the given g~ometrical blade shape. 
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Appendix A 

Stability and Response of Constant Coefficient Systems 

Given a system of N linear differential equations with 

constant coefficients, 

M" -jc (A-I) 

where M, ~, and K are the square matrices of order NxN, while ~ 

and F(t) are column matrices of order Nxl. These can be re-

arranged as, 

(A-2) 

Then, multiplying through by the inverse of the mass matrix 

gives 2N first order equations, 

(A-3) 

where A is a square matrix of order 2Nx2N, while y and G are 

column matrices of order 2Nxl given by 

A = lr ~I 
- -M I<. - -

1 ] -I 
-M B 

(A-4 ) 

The ~bove rearrangement, Eq. (A-3) , is valid providing the mass 

M is not singular, which is usually the case with physical 

systems. 

(a) Stability 

To investigate stability, one sets F = 0 (which gives 
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§. = 0.) in Eq.{A-3) to obtain a set of homogeneous equations. 

Then one seeks exponential solutions of the form ~ = ~ e pt • 

Placing these into Eq. (A-3) leads to the standard eigenvalue 

problem, 

(A-5) 

Eigenvalues Pk of the matrix A can be obtained by standard 

numerical eigenvalue routines. If any eigenvalue Pk is positive 

real or has a positive real part, the system represented by 

Eq.(A-3) or equivalently by Eq. (A-I) is unstable. 

(b) Forced Response 

Under steady-state conditions, the forces F(t) on a rotating 

system tend to occur periodically in multiples of the rotation 

freguency n. One can then express the force for a p~rticular 

frequency w = mn, in the form, 
m 

= 10 _ ( F e i. !A)1t\ t ) F (i:) If\.5l.. - fR C-o'"Q... LV"" t - fr ~ Wh1 t 

(A-6) 

The re'sponse st {tl is similarly of the form, 

( 
i. ("Jrn t.) 

$J i ) ~!:f e. = 'l:R Co'O.. 01'>\ -t (A-7) 

~lacing Eqs.(A-6) and (A-7) into the basic Eq.(A-l) and matching 

sine and cosine terms gives a set of 2Nx2N real equations, 

(A-B) 

where one has the matrix elements, 
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) 
H - U)~ B (A-9) 

Given the amount of the mth harmonic force present ~:m) and 

~I(m) , Eq. (A-8) can be solved by simple inversion to find the 

response 9.R(m) and 9.I (m) for each harmonic. Then, one may sum 

up all the harmonics to give the total periodic response as, 

$:. (t.) (A-IO) 

Finding the response g(t) this way rather than by direct numerical 

integration, allows one to assess the effects of a particular 

harmonic on the resulting response of the system. 
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Appendix B 

Floguet Methods for Periodic Coefficient Systems 

Assume the coefficients M, ~, K in Eq.(A-l) or equivalently 

the coefficients A in Eq. (A-3) vary periodically in time, rather 

than being constants. For illustrating Floquet methods, it 

will be convenient to use the first order representation, namely 

2N equations of the form, 

~ - A (t) ~ q(t) (B-1) 

where A(t) and G(t) are periodic over an interval T. 

(a) Stability 

The Floquet stability analysis described here follows that 
. 12 

given by Peters and Hohenemser • To investigate stability, one 

sets G=O in Eq. (B-1) to obtain homogeneous equations. The Floquet 

theorem states the solution of Eg. (B-1) with G=O is of the form 

(B-2) 

P t 
,·.'here X. (t) and {cke k } are 2Nxl column matrices, and !!. (t) is 

~ 2Nx2N square matrix periodic over period T, that is, B(T)=~(O). 

From the above, one can express 

(B-3) 
':!t..( 0) 

~(,.,) - (B-4) 
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Also, one can express y'(T) as, 

~(~) [ Q) (,) ] ''d'i (0) - :t *- .. , 
(B-5 ) 

~ 0'2. (D) 

" , 
• 

[Q] 
, 

where y'(l) is the solution at t=T of Eq. (B-1) with ~=O, for 

the initial conditions Yl=l and all remaining y. (0) =0, 
l. 

Y. (2) 

is the solution for Y2(0)=1 and all remaining Yi(O)=O, etc. 

The square matrix [Q] is called the "Transition Matrix. " 

Equating Eg. (B-S) to (B-4) and introducing Eq. (B-3) gives, 

[Q 1 [i B(O)}, c, 01-

=- f B (o)3, ~ J pl.if 
11$(0) 2. Cz. e. + 

Since Ck are independent, one must have 

. (B-6) 

(B-7 ) 

PkT 
where Ak=e are the eigenvalues of the [Q] matrix. One then 

!1as the relation 

(B-8) 

from which the real and imaginary parts of the stability exponent 

Pk are given as 

(B-9) 
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(B-IO) 

The real part a k is a measure of the growth or decay of the 

response, as can be seen from Eq. (B-2). Values of ak>O (or 

equivalently 1Akl>1) indicate instability. The imaginary part 

wk represents the frequency. However, because tan- l is multi­

valued, one can only obtain wk to within a multiple of 2TI. To 

obtain the actual frequency and motion corresponding to the kth 

root, Pk , one sets Ck=l and all other remaining Ci=O in Eqs. 

B-2) and (B-3). Then, using the kth eigenvector {B(O)}k from 

Eq. (B-7) as an initial condition, one would solve Eq. (B-1) with 

§=O by nllmerical integration techniques for the resultant motion. 

Summarizing: To check for stability of a system of linear 

equations with periodic coefficients, obtain the eigenva~ues Ak 

of the "Transition Matrix" [0]. If IAkl>l, one has instability. 

The traditional stability exponent Pk is related to Ak through 

Eqs. (B-8) to (B-IO). Two remarks on the above procedure should 

be noted. (1) The "Transition Matrix" [0] can be formed by 

solving either the first order equations, Eqs. (B-1) with Q=O, 

or the second order equations, Eqs. (A-l) with F=O and periodic 

coefficients, whichever is more convenient for the integration 

scheme. (2) The above procedure will still apply even if the 

equations have constant coefficients. However, for such cases 

it is usually easier to form the matrix A given by Eq.(A-4) and 

obtain its eigenvalues Pk rather than to form the "Transition 

Matrix" [Q] and obtain its eigenvalues Ak" 
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(b) Forced Response 

Solutions of Eq. (B-1), or equivalently Eq. (A-I) with 

periodic coefficients, can be obtained by direct numerical 

integration using some convenient integration scheme. By 

proper choice of the initial conditions, one can eliminate 

all transients from the response and obtain the desired steady­

state dynamic response by integrating through only one period T, 

instead of the very large number usually required to reach 

steady-state for lightly damped systems. A procedure for 

finding the proper initial conditions is given below. 

Solutions of Eq. (B-1) are of the general form, 

~(t) = ~Ji:) + (B-ll) 

where yH(t) is the homogeneous solution and Yp(t) is the 

particular solution. One can obtain a complete solution 'of 

Eq. (B-1) numerically for any given set of initial conditions. 

Call this solution YE(t). One can add any number of additional 

homogeneous solutions ~YH(t) having different initial conditions, 

to this solution. This would give a new solution to Eq. (B-1) , 

~(t) (B-12) 

which would have different initial conditions than those of 

One can obtain all the homogeneous solutions of Eq. (B-1) 

by solving Eq. (B-1) with G=O a total of 2N times, subject to 

the initial conditions Yl=l and all remaining Yi=O, then Y2=1 

and all remaining y.=O, etc. In fact, this was done earlier 
1. 
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to investigate stability and resulted in the 2N homogeneous 

solutions y(l) (t), y(2) (t), etc., respectively. Thus, one may 

write 

(B-13) 

where [Q(t)] is the transition matrix at any instant of time, 

and e l , C2 , •.• are 2N arbitrary constants. The new solution 

Eq. (B-12) can be rewritten as 

~(t-) (B-14) 

For a periodic solution over period T=2TI/~, one must have 

y(T)=y(O). Placing Eq. (B-14) into this condition and solving 

for the arbitrary constants f gives, 

~t:=(T) t [Q(rr)] c ~£(o) + [Q(D)] C (B-15) 
-I 

C [l - [C~JJ {~E(T) - ~do) } 

where it was noted that [Q(O) ]=!, and [Q(T) ]=[Q] is the 

"Transition Matrix" found earlier for the stability investigation. 

Placing these values of C back into Eq. (B-14), the initial con-

ditions for insuring a periodic solution become 

~(o) 
-I 

!J:~(D) -t- [1: - ~ ] {*c(T) - ~E (0) } (B-16) 
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One can then solve the basic Eq. (B-1) numerically with these 

initial conditions to obtain a periodic solution over one period. 

It should be noted that if one had chosen the initial conditions 

for yE(t) as ~E(O)=O, one would obtain simply, 

-I 

~to) -= [1:. - g] ~c(T) (B-17) 

This is particularly convenient form for finding the initial con-

ditions =or periodic solutions. 

An alternative form for determining the proper initial 

conditions for periodic solutions has been proposed by Friedmann 

and his coworkers 5 ,6 in their work on wind turbines, namely, 

T 

[~ - gf' 9.. J. [G(t)l' F(t) dt 
o 

~(O) (B-18 ) 

This is similar to Eq. (B-17), but does not use YEo It seems 

easier to obtain YE(T) with initial conditions yE(O)=O and use 

Eq. (B-17), rather than obtaining [Q(t)] at every point and per-

forming the indicated operations required by Eq. (B-18) .* 

The general procedure described by Eqs. (B-ll) to (B-17) 

may be extended to deal also with nonlinear equations, 

.~ - A(t) ~ (B-19) 

where the right hand side now contains nonlinear functions of 

the coordinates. An iterative variation of the previous linear 

procedure to obtain the initial conditions for periodic solutions 

* A comparison of these methods as well as a similar general de-
rivation was given by Izadpanah (Ref. 13). This was pointed out 
to the authors by Prof. D. A. Peters of Washington University, 
Saint Louis, Missouri. 
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of nonlinear equations is used by the MOSTAS COde l • The pro-

cedure is as follows. First, a numerical solution yE(t) is 

obtained to the nonlinear Eq. (B-19) for some estimate of the 

initial conditions yE(O). Then each of the 2N elements of yE(O) 

is perturbed a small amount E. and the resulting 2N solutions 
~ 

are obtained. This involves solving the nonlinear Eq. (B-19) 

subject to the initial conditions, 

~e-(O) + t:. ~E:(O) + °1 etc. 
) ) 

0 

;'( 0 

(B-20) 

: ) 

and will result in 2N responses of the form 

(I.) 
!ie;(t) 

Ci) 
~ (t) - + ~*E= (t) (B-2l) 

where 6YE(i)(t) represents the effect of each perturbation E
i

, 

ann is found by subtracting ~E(t) ,from each of the 2N resulting 

responses I(i)(t)~ One can then express the total solution 

approximately as, 

[~I 
Q) l2..) ... ] ~(t-) - ~&" (-e) + 1\ '*~ ) ~211':!tE ) EI (B-22) 

\ 
V" -' E2. 
\\ • 
[Q] 

which is in the same form as Eg. (B-13). Then, again requiring 

the periodicity condition y(T)=y(O) and following through as 

before, will result in the same relation Eq. (B-16) found 
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previously. Because of the nonlinearities now present, the 

elements of [Q] as found from Eqs. (B-22), (B-2l), (B-20) may 

vary with the amplitude of the initial condition used, ~E(O)+~i. 

This is in contrast to the linear case where [Q] remains always 

constant. Hence, an iterative application of Eq. (B-l6) with a 

new corrected gE(O) should be done. If the nonlinearities are 

not too great, convergence to the required ~E(O) should be rapid. 

It should be remarked that the numerical procedure for 

forced response described in this section can also be used for 

the constant coefficient linear case, although it is probably 

easier there to obtain the solution by using Harmonic response 

methods given by Eqs. (A-6) to (A-lO). However, for cases where 

there is some nonlinearity, the present iterative approach 

becomes attractive. 

Summarizing, the Floquet methods described in this Appendix 

are based on a convenient numerical integration scheme and involve 

the computation of the "Transition Matrix," [Q], from which both 

stability and the initial conditions for steady-state response 

solutions can be obtained. These methods seem attractive for 

large systems and can be modified to include nonlinearities in 

the equations. 
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Appendix C 

Multiblade Coordinates and Harmonic Balance Methods 

Given a rotor with N blades rotating with rotation speed ~, 

attached to a flexible tower. Because the tower motions x. 
~ 

are described in a fixed reference frame while the blade motions 

S. are described relative to a rotating frame, the resulting 
~ 

equations may have mass, damping, or stiffness coefficients 

which are functions of the azimuthal position of the kth blade 

~k. A typical such set of equations is given, for example, in 

Refs. 4 and 14 as, 

~ (t) 

(C-l) 

(.tr.) 
~ (t) 

where the azimuthal position ~k is, 

(C-2) 

The first equation above represents force equilibrium for the 

tower motion x, while the remaining N equations represent force 

equilibrium for the motion of each of the N blades S(k). The 

above equations are readily generalized to more tower motions 

and more blade coordinates for each blade S. (k) • 
~ 

x. , 
~ 
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(a) Stability 

To examine Eqs. (C-l) for stability, one sets F =0 and x 

FS (k)=O to obtain homogeneous equations. 

For rotors with 3 or more blades N~3, one may eliminate 

the periodic coefficients in these equations by introducing new 

multiblade coordinates bT(t),. bls(t), blc(t), b 2s (t), .•• such 

that 

where the total number of coordinates b. taken is equal to the 
J. 

number of blades, N. Note, if N = even number, then the 

k-l additional mode (-1) bA is needed to complete the set. The 

above form is an equivalent modal representation of the N blades. 

Substituting these into Eqs. (C-l), then multiplying the last N 

equations by sin ~k' cos ~k' 1, sin 2~k' cos 2~k' 

respectively, then summing these last N equations and noting the 

trigonometric identities, 

(C-4) 
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N 

I ~M't'~ - { N ~~!f1 
...... ,:'-1 

0 
tV 

for- ~ - N 2 N •.. 
) 1 

foY" ~ :!i< N) 2N)--~ 

I ~ Va-\ \f'..ez.. - { N ~ h'\'fi 
..¥t..:1 

0 

for V't'\ = N :z..N ." ) } 
(C-4 ) 

t-or m"!!;:. N) 2N)---

.Ji -ft.-I 

{ L (-1) AAM-~t = N ~M*1 
~=I k.. 

0 

foV" m = N/2..) 3 "VZ) . -. 
+0 V" rn ~ N/2.) ~N/2..) ••• 

N L ~-l (-1) ~~ tt~ 1 N ~ r.-Ifi 
~:I 

0 

foY Vr'\ == NIl.) 3~2) • _. 

foY" m ~ N/2) 3N/2) .. ' 

results in a new set of differential equations ln the variables 

x, b ls ' b lc ' b
T

, b 2s ' b 2c ... b A, which for N >3 blades, now all 

have constant coefficients namely, 

~ [ r b'/5 + C~ biS + (k~ - Isz..')~" - 2SU b,o - 5H.~ b,~] = 0 

~ [;; i + 252.1 b" + Sl..s, h" + I b,o + C.~b'L + (.£..~ - Ist)b,J = 0 

N [ T bT -t c.~ bT + ..2,.~ ~] 0 

-4 [r b~s +- Cp b" + (~- 4Ist) 61 • - 45l.1 b1L - 2SlC~ b10] - 0 

, 

• 
(C-5 ) 
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These equations may then be investigated for stability using 

the standard constant coefficient techniques described earlier. 

It should be noted that because of the form of Eqs. (C-l), the 

equations above uncouple into several smaller groups, and in 

fact only the first three equations above are coupled together 

and involve the tower motion variable x. For additional details 

and applications of multiblade coordinates, see Hohenemser and 

3 15 Yin and Johnson • Multiblade coordinates were originally 

introduced by Coleman and Feingold16 in their studies of heli-

copter ground resonance. 

For rotors with 2 blades, N=2, the analysis is more 

difficult because the rotor disk no longer has polar symmetry. 

For this case, one may use multiblade coordinates together with 

harmonic balance methods to arrive at approximate solutions. 

The multiblade transformation Eq. (C-3) for 2 blades can be ex-

pressed in terms of coordinates bT(t) and bA(t) as, 

) 

(2.) 
{3 = b - b T p.. (C-6 ) 

These coordinates are introduced into Eqs.(C-l), then summing 

and subtracting the last two equations of Eqs. (C-l) respectively 

while noting that sin ~2 = -sin ~l and cos ~2 = -cos ~l results 

in a new set of differential equations in the variables x, b
T

, 

bA which still have periodic coefficients. Then, expanding each 

of the coordinates in a harmonic series, 
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?\ - 'Xo + X's ~ S1t + 'X,e.. ~S'2t t- "X 15 ~ 25lt- + --. 

(C-7) 

where xo ' xIs' b TO ' bTIS ' ••• are all functions of time, then 

placing these into the previous equations and balancing out 

each harmonic term in each equation, will yield an infinite set 

of constant coefficient differential equations which can be 

truncated at some point for approximate solutions. These 

truncated equations may again be examined for stability using 

the standard constant coefficient techniques described earlier. 

Often, depending on the form of Eqs. (C-I), the resulting 

constant coefficient differential equations will uncouple into 

several smaller coupled systems of equations which may be examined 

independently of one another. For example, for the case of 

Eqs. (C-I), one smaller coupled system would involve the variables 

XO' x 2S ' x 2C ' bAIS ' bAIC' ••. while another would involve x IC ' 

For such systems, one could use an 

alternate extended form of the multiblade coordinate transformation 

Eq. (C-3) namely, 

(C-8) 
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together with the harmonic balance method to solve the problem. 

This works here, since the form given by Eq. (C-8) exactly 

duplicates the motion of the two blades given by the general 

case Eqs. (C-6) and (C-7), since sin ~2 = -sin ~l' cos ~2 = 

-cos ~l' and only xo' x 2S ' x 2C ' bAlS ' bAlC' •.• would be present. 

See Sheu4 for an application of this alternate extended form of 

the multiblade transformation Eq. (C-8) to a simple two-bladed 

rotor in ground resonance, Eqs. (C-l). Solutions involving as 

little as three terms, x o ' b ls ' b lc ' gave reasonable approximations 

to the primary instability regions. However, in more general 

cases (for example, if the first equation of Eqs. (C-l) had an 

additional terms MlX cos ~l or klx cos ~l present), the resulting 

equations would not split into two smaller groups, and the general 

har~onic balance method Eqs. (C-6) and (C-7) would have to be used. 

Indeed, for the more general case mentioned above, 6ne 

would also investigate the system for direct Mathieu equation 

type instabilities of half integer order ~/2, 3~/2, by in-

troducing additional harmonic terms sin mnt and cos m~t where 

m=l/2, 3/2, 5/2, ••• into Eqs. (C-7), and harmonically balancing 

as before. These terms would not couple in with the previous 

equations and can be solved independently of them. The primary 

instability region would result from the n/2 terms. See Bolotin17 

for further details of the general harmonic balance method. 
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(C-ll) 

+ ( b I C R Cd\1.. 0".. -t- b l C.r ~ W", -t) CIJ"L ~ 

-r (b
25R 

CdQ..v,..,t - bZSI ~0","t.)~2~ + .• # 

The tower thus oscillates at frequency w in the fixed frame m 

whereas the blades may oscillate at frequencies w , w + n, . m m 

w - n 
m ' wm + 2n, wm - 2n, •.. relative to the rotating frame, 

depending on which coordinates b. are excited. For example, 
~ 

in the case of a 3 bladed rotor N=3, the FS1C term of Eq. (C-10) 

leads to a constant term on the right-hand-side which excites 

the x, b ls ' b lc coordinates and results in a constant x and a 

S(k) frequency of n, while the FS2C term leads to a cos 3~ term 

on the right-hand-side which again excites x, b ls ' b lc and 

res~l~s in an x frequency of 30 and S(k) frequencies of 2n, 

For rotors with 2 blades N=2, one can use the harmonic 

balance methods of the previous section. The steady-state 

periodic tower and blade forces given by Eqs. (C-10) are sub-

stituted into the basic equations of motions [Eqs.(C-l)]. 

One then introduces the new coordinates given by Eqs. (C-6) , 

then sums and subtracts the last two blade equations, ~hen 

expands the tower and blade motions as given by Eq.(C-7), only 

now the coordinates x o' x lS ' bTq , bT1S ' bAO ' ••• etc. are taken 
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to be constants rather than functions of time. Harmonically 

balancing the various terms in each equation results in a 

truncated set of algebraic equations which can be solved to 

obtain the coordinates x , xl ' bT ' ••• etc., corresponding o s 0 

to the given forcing excitations Fxo ' Fxls ' FSo' F So ' FSls ' 

etc. The resulting tower and blade motions are then given 

directly by Eqs. (C-7) and (C-6). The resulting set of algebraic 

equations will often uncouple into smaller coupled sets of 

equations which can be examined independently of one another. 

This procedure is similar to that for the constant coefficient 

forced response case Eq. (A-a), except now, the periodic co-

efficients couple the different harmonics together. Thus, the 

solution will consist of many harmonics mn even if only one 

forcing harmonic FSls were present alone. 

Summarizing, the multiblade coordinate and harmonic balance 

methods described in this Appendix involve first the introduction 

of multiblade coordinates in order to take out the periodic co-

efficients from the blades [Eqs. (C-3) for N ~ 3], or to obtain 

a better ordered system of equations [Eqs. (C-6) for N=2]. Then 

harmonic balance methods Eqs. (C-7) are used to deal with any 

remaining periodic coefficients. These methods seem attractive 

for smaller systems and can give considerable insight into the 

origin and nature of instabilities and the various harmonics 

present in the forced response. 
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Appendix 0 

Rotating Coordinates 

As an addendum to the previous multiblade coordinates and 

harmonic balance methods, it should be mentioned that for some 

problems, the use of rotating coordinates is also convenient. 

For example, in the case of a 2-bladed rotor on isotropic tower 

supports (same tower mass, damping, and stiffness in two direc-

tions, xl and x 2), Eqs. (C-l) would read, 

. 
M';<I T e.l( 'X I -t- ~x '):1 + 

1.. -?t. > L '\ rs (Jk) C<JQ- 'f'n _ 
d-C· L r k 

F (t) 
"XI 

$ J;j~ ~(tL~ fx-z. (t) 
(0-1) 

One can then express the tower motions Xl and x 2 in terms of 

rotating coordinates ~l and ~2 which rotate with the rotor, as 

'XI f, Cc-Q. S'lt + ~2... ~.Qt 

~I ~ $lt + ~2- ~ 5(.t (0-2) 

where the rotation ~l = nt is taken from the x 2 axis towards 

the Xl axis. Placing these equations into Eqs. (D-1) , then 
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multiplying the first two equations by cos ~l and sin ~l 

respectively and subtracting, then multiplying the first two 

equations by sin ~l and cos ~l and adding, then subtracting 

the third and fourth equations, then adding the third and 

fourth equations will result in a new set of differential 

equations in the variables ~l' s2' bA, bT which now all have 

constant coefficients, namely, 

(D-3) 

-. 

are the same coordinates introduced earlier in Egs. (C-6). These 

differential equations may then be investigated for stability 



-61-

and forced response using the standard constant coefficient 

techniques described earlier. Such analyses of a 2-bladed 

rotor on isotropic tower supports were also performed by Coleman 

and Feingold16 in their studies of helicopter ground resonance. 

Rotating coordinates are often used in rotating machinery 

shaft critical speed problems, and are useful for dealing with 

problems of rotors with unsymmetrical mass, unsymmetrical damping, 

or unsymmetrical shaft stiffness supported on isotropic bearings. 

See for example, Bolotin18 • For such problems, one can readily 

set up the equations of motion in the rotating frame directions, 

and the fixed supports will introduce no periodic terms because 

of their isotropic nature. For verticai axis wind turbines, 

such rotating coordinates for the blades are useful since the 

tower supports are generally isotropic due to the symmetrically 

arranged guy wires. For horizontal axis wind turbines, the 

tower supports are generally not isotropic, hence periodic co­

efficients will remain in the equations when using rotating 

coordinates. If the support anisotropy is not too large, one 

can again additionally introduce harmonic balance methods to 

eliminate the periodic coefficients, as was done in the previous 

section. 

Summarizing, the rotating coordinates described in this 

Appendix can also be used to effectively eliminate the periodic 

coefficients in problems involving unsymmetrical rotors on 

isotropic tower supports. These can often be used in rotating 
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shaft critical speed problems and for vertical axis wind 

turbines. If the support anisotropy is not too large, harmonic 

balance methods may additionally be used to deal with any 

remaining periodic coefficients. 
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