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Abstract

Energy spectra of precipitating electrons are fitted to the sum of three

distributions, a power law, a Maxwellian and a Gaussian. This fitting pro-

cedure determines seven parameters which characterize the essential features

of each spectrum. These characteristic parameters are used to carry-out

various studies involving precipitating electrons. It is shown that the absence

of the power-law population from a particular spectrum is related to the soft-

ness of the precipitating primary flux, that the Maxwellian temperature and the

Gaus:=ian peak energy have a posit ive correlation the strength of which varies

with local tine, that the upward moving Gaussian population has a loss cone

distribution, and that the one-dimensiona l- velocity distribution parallel to the

magnetic - ield occasiolai ly dis pl ays a plateau or a hunp on the tail.
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The precipitation of charged particles at high latitudes represents one

of the most interesting phenomena occurring in the ionosphere, because of the

many interactions which these particles have undergone and which influence the

shape of their spectra. A careful study of the characteristic features of their

spectra is of special importance because those features represent the signRture

;.4 their region of origin and of their acceleration mechanism and therefore

contain info.-ration about physical processes occurring large distances away from

the point of observation, frequently even deep in the magnetosphere. In addition,

the precipitation spectrum determines the effect of the particles on the local

ionosphere, such as ionization, P.=-ission of light, heating and the excitation

of plasma instabilities.

Since the advent of in.-situ measurements 1,y instruments onboard space

vei:cles probabl y hundreds of millions of prec_pitating electron spectra have

been obtained and duly stored on tape. Mich valuable information contained in

those spectra ruins to be extracted. One practical way to deal with such

a large data base is to associate with each spectrum a limited number of charac-

teristic parameters and to base the study of the physics of precipitating elec-

trons on those parameters. Obviously the choice of such characteristic parameters

is critical for the; must contain the important physical information carried by

each spectrum. The parameterization of the electron fluxes leads itself not only

to the interpre.ation of already eyisting data but can also be usefully included

in the reduction of data currently being collected. The parameters of the various

populations tell the investigator immediatel;: the characteristic features of the

observed spectra.



The basis for this method is the recognition that the observed fluxes

generally represent the superposition of severe! different populations and

that eacii of these populations can be described in terms of certain character-

istic parameters of an analytic function which is fitted to the observed fluxes.

This has been done before by other investigators (e.g. Frank and Ackerson,

1971; Such er al., 1976; Lin and Hoffman, 1979). To our knowledge, however,

no s=ystematic effort has so far been made to parameterize large numbers of

spectra or. a production basis by means of a com:.:terized fitting procedure

end to use the parameters for investigations of the physical processes under-

gone b.- the fluxes.

Ir. Section II the anal ytic expression severed by us is discussed. The

charac:eris::c parameters of each, flu,: spectra= are Bete =fined by the fit of

said anal,tic function to the measured spectra_. The computerized fitting

procedure is brief:. described is A-opendix i. :m Sectio-. III some cf the

present studies are briefly described. Section IV contains a summary of

the results.

a
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II. Analytic Representation of Electron Energy Spectra

It has been pointed out in Section I that in order for a parametric repre-

sentation of precipitation fluxes to be useful it is necessary that the selected

parameters contain the important physical inforration carried by each spectrum.

Based partly on earlier work by other authors and after extensive trials involving

various different models we came to the conclusion that the electron spectra

investigated by us so far can best be represented as a superposition of three

populations given by the following expression:

2

G`(E) aE-0` + Cn^ ^(
R 3/2 

e	 + EA a	 (I)

W 4 '^^ (E) + 
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T. 
-3/2 

is a known constant and a, a, n, T , A, E0 , and 4 are

the parameters determined by the particular shape of each spectrum.. The first term

represents the well-known power -lase spectra= wh ch generally describes the combined

backscattered and secondary electrons. Most of the electrons in the energy

range from 200eV (the lowest energy measured by the Low Energy Electron Analyzer

onboard the A=-D satellite) to lkeV frequently fall into this category. The

second term is a Y.axwellian .,ith temperature Z, while the third teas

represents a non Haxwellian peak of Gaussian s}.,ape. Such peaks are characteristic

of inverted-V spectra. The Gaussian distribution which has not been used in

earlier works was introduced because the Maxwellian distribution gave only poor

agreement with spectra containing near-monoenergetic peaks. If a haxwellian fit

were used for such spectra, the error was consistently large: than for spectra

without such peaks. The details of the fitt:sg procedure are presented in

Appendix I. The analytic expression given by e quation (1) is not necessarily



The three populations which make up the resultant energy spectrum are believed
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to represent different physical processes undergone by the respective electrons.

For example, the Gaussian term may be the result of a magnet ic-f ield-aligned

electric field accelerating the electrons into a near monoenergetic beam. It is

therefore logical to investigate the properties of such fields in terms of the

parameters associated with the Gaussian rather than in terms of the total flux.

Similarly, other investigations are best carried out by studying the properties

of the individual populations, including of course any correlations between them.

Figures la and lb show two examples both of which have Gaussian peaks.

Yet, as these examples indicate, each of the three populations of equation (1)

is not necessarily represented in every spectruz. Tae reason for the presence

(or absence) of any of thle three populations may shed light on the origin of

the precipitating electrons and also on the interactions they have undergone.

Figure Is =s a typical auroral: spectrum, while the s-ectzum of : i :u:e lb almost

looks like z magnetosheath spectrum, both as regards its shape as well as the

value of the peak energy. Since the altitude of the spacecraf : was at 610 1m,

the spacecraft was obviously not in the magnetosheat:,. However, Fester and

Burrows [1S-77) have recently proposed that magnetosheath plasm., after pene-

trating to low altitudes inside the cleft, could diffuse to adjacent field litres,

thereby contributing to the polar rain. Figure lc shows the case of a spectrum

wl-.:Lch consists of a power-law and a Maxwellian population, but no Gaussian con-

tr ibut ion .

The expression for the error, given in Appendix 1, gives an upper bound of

the mean square error of the logarithmic flux. in the vast majority of cases,

this is of the order of 10 or even less. The highest values encountered by

us so tar in a fey: examples are of the order of 3x10 1. :onseering this worst
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case, the upper bound of the root mean square error is then 5 . 5 x 10-1 a This

quantity would have to be compared with the smallest values of the logarithmic

duxes which are of the order of 4. Hence, we conclude that our analytical fit

is remarkably good.



.
I21. Applications of the Characteristic Parameters

The examples reported in this section are based on data from the inverted-V

events observed by the Low Energy Electron Analyzer (LEE) onboard the AE-D

satellite. We have included 10s of data on either side of each inverted-V event.

The list of inverted-V events was compiled by C. S. Lin (private commpnication)

based on an analysis of the electron spectrograms.

There were two LEE detectors on the AE-D satellite, one at an angle of 7•

with respect to the satellite axis and the other at an angle of 60°. The angler,

of the two detectors with respect to the geomagnetic field varied cf course over

an orbit. The flux component parallel to the geomagnetic field, however, was

always the dominant one of the 7° detector, w'h::e the perpendicular. component

remained dominant for the flux measured by the 60 0 detector. Therefore, for

purposes of identification, quantities relatir:g to the 7` detector .ill be

designated by the subscriptil and those relating to the 60 ` detector by the

subscriptl.

a) Some Properties of the Power-Law Population

One characteristic feature of the polar ca-) spectra is that i-- general

they do not contain the power-law population at energies measured by the LE`

f
instrument, i.e., above 2O0eV 1c.f., Foster and Burrows, 19771. The reason

is evidently the softness of the precipitating primary flux. Based on a simple

model of a constant field-aligned upward directed electric field above the

satellite Evans 119741 has shown that the loci energy down-s treaming power-law

population represents degraded backscattered p::mary electrons and secondary

electrons which have been reflected downward by this electric field. This

interpretation has been confirmed by the more rigorous treat=ent of Stamnes

11978, 1981) . The latter has shown that fcr a ; reci: hating primary beam with

Gaussian energy spectrum peaked at 500 eT the D..wer-law spectr-= lies below
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about 120 eV which would make it invisible to the LEE instrument. Bence, the

absence of the power -law population from the LE spectrum can be considered a

signature of sof t primary precipitation characteristic of the polar Tait. This

Is confirmed by Figures 2 and 3 in which the average peak energy of the Gaussian

population and the average temperature of the Maxwellian with and without a

power-law component are compared as functions of latitude at several local time

sectors. The figures clearly show two interesting properties. The average peak

energies and the average temperatures of the fluxes with power -law components

are cctsistently higher than those without power-law • components. Secondly, both

the peak energy and the temperature has -ye a m;r.imum in the latitude range between

80° and 85° wit:: the exception cf the temperatures in the noon (10.3 13.5 hrs)

and afternoon ( 13.5 - 16.5 hrs) sectors. The slight increase in the mean value

of T" toward the top latitude range in those two time sectors is as yet unexplained.

Table 1 lists the average and mxmimuc values of the Gaussian peak energies

and of the temperatures separately fcr the _flues with and without power-law

populations. Both the average and maxim"- values of the peak energies and of the

temperatures of the '_°luxes without power-la:' populations are significantly lower

than those of the fluxes with power-law populations. This is true of both the

parallel and perpendicular components.

Figure 4 shows the average value of the power-law exponent a for eight

local time sectors, for .both the parallel and perpendicular fluxes. In most

cases the magnitude of a has a maximum in the 80-85° latitude interval,

indicating that the rate at which the power-law spectrum falls off generally

increases toward higher latitudes. if the power-law population is made up of

secondary and backscattered electrons, this be:.avior of a is consistent with the

increasing softness of the primary flux peles:ard of the auroral zone.
r

t
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b) Loss Cone Distribution of the Gaussian Beams

llt,^e atmosphere Explorer satellites have the capability eitber to spin about

an axis which is mostly perpendicular to the geomagnetic field or to fly despun

as determined by ground command [Spencer at al., 19731. The spinning orbits

provide an opportunity for an investigation of- the pitch angle variation of the

various parameters. Figures 5 and 6 show a few examples of the pitch angle

variations of the energy E  and the temperature T. These f igures show

some interesting features. Because of the invariance of the magnetic moment all

the dowtward bemispheres (0• < e < 90') are filled with Gaussian fluxes at those

relatively low altitudes. The upward streaming fluxes Nave Gaussian popul^tions

In the pitch angle range from 90 ° to about 110 ° ( in some cases even to larger

values) and no Gaussian fluxes be.-ond, i:sich is typical of loss cc *ae distributions.

Most of the downward streaming Gaussian fluxes are very nearly isotropic.

Because of the loss cone distribution of the upward streaming Gaussian beams they

can be assumed to consist of mirrored particles. It would therefore be of special

interest to know the apex angle of the less cone at the satellite altitude (and

thus at all other altitudes) . Umfortunately, this angle is difficult to determine

from the data because the LEE spectrometer measures one spectrum per second, i.e.,

one spectrum only about every 25° of pitch angle. Bence, the data merely provide

upper bounds of the apex angle (obtained from the largest pitch angle at which a

Gaussian population has been observed) and lower bounds (obtained from the next

r larger pitch angle). Table 2 lists the mirror altitudes corresponding to both of

these angles from data of AE-D orbit 635:' The mirror points of most of the lower

bounds lie below the surface of the Bartz and therefore provide no useful infoxma-

tion: :;7be los :Fa•t upptr bound occurs at 127 1=. Since ..he beam energy for this

particular case is 2.35 keV, this altitude is close to where electrons of that

energy are collisionally absorbed by the atmosphere jsee e . g., Banks at al., 1974].
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Hence, the apex angle of the loss cone of a 2 .35 keV beam is indeed close to

115' at the altitude of 567 I= (for an apex angle of 114 0 the mirroring altitude

Is 162 fan - too high for collisional absorption of 2.35 keV electrons).

Figure 6 shows that the temperatures over the downward hemisphere (9 < 90')

and outside the loss cone of , the upward hemisphere (90 < 6 < 110 apps.) are

either isotropic or vary only slightly with pitch angle. Inside the loss cone

the temperatures of the Maxwellian populations decrease (thus becoaing highly

anisotropic) with the minimum occurring parallel to the f ield line. The ratio

of T11 dO/2j^ up can be as large as 2 (and sometimes wen larger).

C) Correlation Beteeen the Gaussian Peak Energy Ep and the Temperature T

The energy at the maximum of the Gaussian distribution appearing in equation

(1) is given by

E1/2 (Eo + +'Eo2 + 2C 2 )
p

A correlation analysis of T and Ep has been perfv	 drmen, and the results are

summarized in Tables 3a and 3b. The correlation coefficients listed in Table

3a have been calculated separately for each cell in magnetic local time and

invariant latitude, while the coefficients listed in Table 3b have been cal-

culated for each magnetic local time sector for all latitudes above 60°. This

breakdown is presented to study whether the correlation depends in some sig-

nificant way on the magnetospheric region of origin of the fluxes. As the

tables indicate, the correlation has a maximum during daytime and falls off

toward the night. The fluxes carried by .the Gaussian populations behave in a

very similar way, i . e., the average Gaussian fluxes (averaged over the lifetime

of AE-D) have a maximum during daytime and decrease toward the r igbt in all

latitude intervals. Therefore, as the intensity of the Gaussian fluxes de-

creases, their influence on the temperature declines compared with other mecha-

nisms.

5

....^
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The linear relation between T and. the peak energy .E p for 'all :local tia m

and latitudos has %ago*obtained by a regression analysis which, yields

•	 T II	 0.604 + 0.400 Ep
i!

Tl	 0.563 + 0.452 E .p

1

The standard error of the regression coefficient is 0.0086 for the parallel

component and 0.0072 for the perpendicular one. 452 of the variance of TAI

is explained by Er,,,
	 1 and 592 of the variance c: T L is explained by Ep .

Burch et al. 119761 have anticipated the correlation between Z  
and T based

on an examination of a small sacrl a of spectra. ? in a- : Rof frsa 11979;

performed regression analyses separately for each inverted-C event. They

obtained a set of values for the slope ce tere: around a value of 0.2 ik.ich

is half of our value. She reason for this ciscrepancy is believed to be due

to the dif•f eren t definitions of T used by the two groups.

Several years ago rnalen and McDiar1 d :-1 .721 suggested that there may be

a distributed source of cold electrons throughout . -the acceleration region.

T:ze beat which has fallen through the entire potential drop would then act as

a beat source of the lower energy population through collective effects [see

for example, Shapiro, 1963;, thus resulting in a correlation between the

peak energy and the temperature of the Mrixwe_lian population travelling parallel

to the beam. Those Y.axwellian particles travelling upward inside the loss cone,
•	 r

on the other band, have probably been scattered up by the ambient electrons or

ions and have thereby been cooled. 	 Since the a . :at transfer rate due to this

K mecha: ism is proportional to the flux intensity of the beam, it is therefore

6 also consistent with the reduces correlation between. T and Zobserved during
r

night tuna as discussed above. '



d) Some Properties of the One-Dimensional Velocity Distribution
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The shape of the one-dimensional electron velocity distribution is of

special interest for plasma physical reasons. In particular, if there is

a hump on its tail, the plasma may be unstable. If the hump is being steadily

supplied with new particles, then the instability can saturate at a nbn-

equilibrium quasi-steady state of plasma turbulence which leads to anomalous

transport effects.

'rhe existence of such effects has recently been deduced from stortatime

data in the auroral zone IFontheim et al., 1976). Another interesting consequence

of plasma turbulence: is the emission of a characteristic spectrum of electrostatic

and electromagnet:. caves. The one -dimensional distribution is defined as

i	 a
F (vZ )	 d ^: ^ dv^ f (vx , v y , vz) .

where f (vx , vy , v Z ) is the three-dimmensional velocity distribution. For many

applications the distribution of interest is the one-dimensional velocity distr.i-

I
bution parallel to the geomagnetic field Bo 

which is given by

2r, Cr

F(v ll )	 1 dyj dvl vl, f (vll ' vl^ ^')
o	 c,

I
where V is the azimuth in : the plane perpendicular to $ O . The formal dependence

of f (v, l , vj , T) on the azimuth L" is included for generality. in most real

Isituations the distribution is expected 'to be cylindrically symmetric about Bo.

Kaufmann and collaborators Mau_fmann at al., 1976, 1978a,b: Kaiftar=, 19601 nave

.discussed the significance of. the one-dimensional distribution function in treat

detail and here also examined the compatibilit y of their observed distributions

a	 with various acceleration mechanisms.

's

(2)
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Unfortunately, most instruments do not measure the three-dimensional velocity

distribution. The usually observed quantity is the flux as a function of energy

E in a solid angle element about a given direction, i.e.,

O(E, 6, T) dE sitkOdOdY

where 0(E, e, T) has the dimensions (length) 2 (time) -i (energy ) -1 ( solid angle)-1

and mere 9 is the pitch angle. The desired three-dimensional velocity distri-

bution f (v,, , vl , 'Y) is related to the flux C (E, 6, `) by the expression

my

f (vtl , v1, ^,') =ydvIIdvld='	 Z+
 1

	 dv dv1drofV
	'/V el	

.

^.^

mvj
d vi	 ^i &,j d	 (3)

VI 2 + vl`

Vhere f N , vi , ^j has the dimensions {leagt^Z-- (yelocityl- . Ia using this.

expression for f (v ,, , V1 , v) in the calcula. ier. of the one-dimensional distribution

Vv I d the flux t a, e, u') has to b y understood in the sense that the parameters

entering into t- (E, e, u') , as given by equation (1) , must be considered to be

functions of the pitch angle 6.

The integration appearing in e quation (2) is carried out numerically. 	 krnile
a

the lower limit of the integration over v1 can be taken as zero as required (since
5

the integrand vanishes at vj = 0 according to ecaation 3), the upper limit of p
3

the nu=erical integration is restricted to the largest value of v1 for which a
a

F flux measurement exists for a fixed v ,, which is given by
^f

t
c

(vl)m
ax

	MIN jv 	 tan 9u, (2:.max/m - 
v

7
2). 

 )'

F

F f
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where 8u is the closest pitch angle to 90' at which a spectrum was measured

and max is the maximum energy the instrument detects (20 keV in the case of

the LEE).

If (fin/2) v,, 2 < MAX (Eo , Tb) , then most of the contributions to the

integral in equation (2) , with the integrand given by (3) and (1) , come from

the energy range in the neighborhood of E  and T. Since the integrand

decreases exponentially with E for E > MAT► (Eo , Tb) , the error introduced in

the integral by leaving out the interval above (vl)m
,.
 is negligible provided

2 [(vJ..)2	
+ v ii 2 ] >> MAX (Eo , T).

If m v
11

2 /2 > MAY. (Eo , T), then the error is negligible provided

2 
[ ( V )2

 max + 
V . 23] » 2 VI: .

The numerical integration of equation. (2) has to be carried out for each

value of 
%,i I 

. The largest value of v ') for w ich F(v, 1 ) has been computed is

6 x 109 cm/s which corresponds to an electron energy of 10 keV 	 The range

0 < i<	 )
maz 

is divided into 100 equidistant intervals resulting in a set

of v1k. For any fixed value of v,, the pitch angles corresponding to the set

of ` are given by 6 =tan 1 vU, and the values of the seven parameters
k	 °II

entering into the flux expression (1) are obtained by linear interpolation

between, their fitted values at the pitch angles at which the flux has been mea-

su+ ed. The value of the integrand is thet calculated at each ^k with the

anergc given by (a/2)(v112 + v^ k2 ). Thus the numerical integration appearing
.-

in equation (2) can be carried out with t:^e integrand given by equation (3).

This integration must of course be repeated fo: a series of values of v" to

obtain F(v, 1 ) in the desired range of its arg=ent.

r
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In order to get good coverage from a range of values of vl for the
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integral in equation (2) the one-dimensional distribution function F(vj,)

must be calculated from spinning orbits by using data from both LEE

instruments. Since there were only relatively few spinning orbits of AE-D,

it was only possible to obtain a limited number of one-dimensional distri-

bution functions. Some examples of different cases are presented in Figures

7 through 10. Figure 7 shows a big! velocity tail of a completely stable

distributing . Figures 8 and 9 are two examples of plateau formation indicating

the existence of an instability at a prior time, and Figure 10 shows a hump.

An important special case exists when the three-dimensional velocity distri-

bution f(v,, , v , v) is spherically symmetric, i.e., if it depends on the velocity

components vi, and vl only through v 2 - v 2 + v12 . It is well known that if a

three-dimensional velocity distribution is spherically symmetric (or isotropic),

then the one-dimensional distribution as defined above can have at most one

maximum and this is located at v - 0, i,:respective of the shape of the three-

dimensional distribution. Thus a hump or. the tail of the one-dimensional

velocity distribution is automatically excluded if the three-dimensional distri-

bution is spherically symmetric, even if the t hree-dimensional distribution has

a hump as a function of energy. Although this is a well known property of

distribution functions, a brief proof of this theorem will be presented in

Appendix II because of the importance of this property for electron precipitation

fluxes.

As is indicated in Figure 5, the hump in the energy distribution may be

isotropic over the downward hemisphere. The above mentioned property of

spherically symmetric three-dimensional distributions' applies separately to

v = , > 0 and v,, < 0, and therefore the one-d4mensional velocity distribution has

no peak on the down. and tail. Since all spectra examined by us have pinch angle

distributions similar to that shown in Figure 5, it may be generally true that

LI a3 :,.
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at low altitudes the one-dimensional velocis; distributions of precipitating
,t

electrons generally do not have a hump on the high velocity tail. This is
't

expected to be the case at altitudes below some critical altitude z c at which

the beam particles with the largest pitch angles first start to mirror.

Hemispherical isotropy is also the reason zny Kaufmann et al. 11978a;b) did

not detect any secondary peaks, aside from a few exceptions. 	 j

As has been mentioned above, the existence of a hump on the tail of the

one-dimensional distribution function may give rise to a plasma instability which,

according to quasilinear plasma theory, has the effect of flattening the peak

into a plateau on the tail of tine distribution. Papadopoulos and Coffey 119741,

howev-.:, :have shown that under certain conditionE a parametric instability

is excited, the so-called oscillating two-str eax instability . This instability

has the effect of transferring wave energy out of the wave regime of phase

velocities near the beam velocity (corresponding to -frequencies near. the plasma

frequency) into the regime of much lower -
f
requency ion fluctuations. This limits

the grow,h of wave amplitudes of those waves with prase velocities near the beam

velocity w tick strongly inter.ect with the bEa-. As a result the bet: is stabilized

against quasill inear diffusion. Eccording to Papadopoulos and Coffey 119J4a] the

condition for stability against quasi-linear diffusion of the beam is

2/3	 7/3	 2/3	 1/3	 1/3
(nb/ne)	 (vb /dvb)	 (ve/vb}	 ('_4/m)	 < 10-2 (m`'3.02 )	 (4)

Where 
'b 

and vb are the beam density and velocity respectively, n e is the ambient

electron deasit;• , L,vb the velocity spread of the beam, v  the ther mal velocity of

the ambient electrons, M and m the ion and electron masses resp:?ctively, 
b 

the

wavenu_3er with the =aximum growth rate for the parametric instability, and I

the Debye length. In none of the cases e--.a 	 by us was this condition satisfied.

As a result, the humped distribution function shown in Figure 10 is not expected



is

to stabilize into a quasi-steady state of plasma turbulence.

Its those cases where the above condition is satisfied the growing ion

density fluctuations give rise to an enhancement of the parallel resistivity

of the plasma. Papadoupoulos and Coffey (1974b] have shown that in this case

the anomalous resistivity ria can be expressed in terms of an effective

collision frequency veff'

'1a	
4r
w 2 veff	 (S)

p

where w,p is the electron plasma frequency of the ambient plasma. The effective

collision frequency is giver. by Papadopoulos and Coffey [1574b]

2 ^v

veff ` 0.376 a (nb y) (vb) ( v b) Lp
e e	 b

where 
Z  

is the density of the beam, n  the densit y of the ambient electrons,

vb the beam velocity, ve the thermal velocity of the ambient electrons, @v b the

velocity spread of the beam, and a is a factor of order unity.

Once the one-dimensional distribution r(vI d is known, one car. determine

%nether it has a maximum (i.e.. a hump) on the tail, and, if so, fit another

function of V, I to this hump, designated by 7 (v JI ), representing the one-

dimensional distribution of near mono-energetic beam particles. The density of

the beam electrons is then given by n 	 j Pb(v11
) dv

I 
	 the bean velocity v 

is the velocity value at the maximum, and the velocity spread L;v b is simply the

standard deviation of the distribution Tb (v i ,). The ambient density n  and the

arsbient temperature T  (which determines the thermal velocity* v e ) are being

measured by other instruments. Hence, all para=Eters entering in equation (6)

can either be measured or calculated, and the anomalous resistivity can thus be

(6)
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IV. Summary

A uethod for the computerized paramettrization cf electron energy spectra

has been outlined together with a few examples of studies based on these derived

parameters. It was shown that the presence of the power-law population is linked

to the energy of the precipitating primary team. This is consistent with the

view that the power-law population is couposed'of secondaries and backscattered

primaries. A detailed correlation study between E p and T showed that these two

parameters are positively correlated and that the correlation is significantly

stronger during local daytime than at nighttime. This effect may be related to

the fact that the Gaussian fluxes also are larger during daytime and fall off

toward the night. The one-dimensional veloc itr distributions parallel to the

geomagnetic field are decreasing with v `l in the great majority of cases, i.e.,

they represent stable configurations. In sore case:, however, they show a

plateau on the tail, indicating an instability at an ear_ier time. A few hump-

on-the-tail distributions were also detected.
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TABLE 1:	 COMPARISON OF TEMPERATURES AND PEMC ENERGIES IN TAE

PRESENCE AND ABSENCE OF POWER-LAW FLUXES.

Temperature ("V) Peak energy (keV)

Average Maximum Average Maximum

¢8(3 ) • 0 0.571 11.978 1.035 3.637

Qu( I )	 0 2.224 19.990 2.645 11.950

ĵ( 1 ) • 0 0.581 4,705 0.996 3.653

0 2.344 19.782 2.753 14.353

a
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TABLE 2

Upper and Lower Bounds of Mirror Heigh-.s of

Electrons on the Surface of the Loss Cone

V: Pitch * Spacecraft Mirror ** Beam *** Upper (U) or
Anstle Altitude NO Altitude (km) Enemy NO) Lower (L) Bound

13126 110' 529 249 4.58 U

127 134' 530 0 0 L

131 128• 534 0 0 L

132 1040 536 399 4.98 U

140 920 544 541 5.68 U

141 116° 545 71 0 L

146 121` 550 0 0 L

147 970 552 518 4.82 L

155 99` 560 503 1.7 3 U

156 123` 561 0 0 L

16. 1396 566 0 0 L

161 1-15r, 567 127 2.35 L

170 105` .577 419 4.61 U

171 1300 578 0 0 L

175 1320 582 0 0 L

176 1086 583 355 4.72 U

185 112° 593 251 4.77 U

186 1370 594 0 0 L

* she pitch angle is taken with respect to the doe,-award direction.

** if the mirror point would have fallen below the surface of the earth,
it was recorded as 0 }= altitude.

*** if no beam feature was present in the spectrum, the energy was recorded
as 0 key'.



C

D

G

cr:

Z
L
L
L
C
Ij

C
C

I

.•d

L
A;
u
t

c^
E
y

..r

C
V
O

C
O
d

y
•.1v
C:

O

1

N
N

111

N
N

h

C^

1

LM

r

11'!

ar

C

C

1
Y'S

h

ti
h	 C,4	 C

QM1	 i	 1	 1	 •k •%	 C N
v	 CC cC

C O	 O C	 ;,
...; ^ ar

47	 C	 63
V 1	 G

cc C14	 C%l Of	 G

1	 I	 •k •k	 N "o	 %0 %Z	 V3 p,	 y
CT v	 CA C►	 1.. CC	 v

0 0	 C C	 C C	 r	 L3
V.
G
a	 G	 C4

1n

N

F u-

%C Ln
9-1 v
N N:

C O

^ n
cv 

cc

C C

!r

V	 - .
	

i

	

24

-so .pp w %D ec o
O♦e s O n h0

0
0,

00 1
!^ 	 n .0 h 1. ^o a^ o

0 0 0 0 0 0 .•1

*	 JN	 cCA	 AC-	 1110
O	 00	 00	 00 00

C+ O^ 0.1 OPY *Q	 N
1	 1	 CC C+	 N %C	 n	 4c p^

CL h	 CA 0%	 C` CT	 C^

C C	 C C	 O O	 O

h Q+	 fr1 CJ	 .•^ O	 1""11	 I	
P v	 C3^ R:+	 h 1^	 0% CT
C; c	 cc	 cc	 oc

%09-. h CN
1	 1	 1	 I	 1	 1 e%, N `^

o^ C x c
cc cc

C C+ C .a

1 1	 1 1	 ^ •k	 G C J OC+v'	 CO h

O CC CC

O O

10H N

O O

01 0.;
^^ v
C% C%
C C

.r c

k n
O	 6^ CT

v ^ c
O
W

OE
.r•ty
.y %C N
eC ^T C
w Cr Cr

r0-t C C

A

e•1 1.1

h al!
Lfi N

O C

C
V	 ..	 N ^.

r	
V V	 1^^..	 n	 ^	 cc	 coM	 ICr

2 =-r^
C	 v1	 C	 Loll	 p	 ..	 ^ G G

iCn G	
^:	 h	 h	 co	 ! 1 .X , , 	 aw

^ 4

•



25

F

	

Figure Captions
k

Figure 1. a) Example of an analytical fit of a spectrum consisting

of the sum of a power-law, a Maxwellian, and a Gaussian

distribution.

b) Example of an analytical fit of • a spectrum consisting•

of the sum of a Maxwellian and a Gaussian distribution.

c) Example of an analytical fit of a spectrum consisting

of the sum of a power -law and a Maxwellian distribution.

Figure 2. Variation of Gaussian peak energy with invariant latitude

in eight local time sectors.

Figure 3. Variation of temperature with invariant latitude in eight

local time sectors.

Figure k. 'Variation of power-law exponent with invariant latitude in

eight local time sectors.

Figure 5. Pitch angle variation of the Gaussian peak energy (r o). If a

spectrum does not contain a near-monoenergetic peak (i.e., a

Gaussian population), E o is listed as zero. The left-hand

ordinate scales refer to the solid curves and the right-hand

ones to the dashed curves. The data were taken from A:- -D orbit

no. 635 in the altitude range from 556 km to 605 km, invariant

latitude range from 76 ° to 73 ° and at MT 20 hrs.

Figure E. Pitch angle variation of the temperature M. The left-

hard a din ate scales refer to the solid curves and the right-hand

ones to the dahsed curves. The data were taken `tom A:--D orbit

no. 635 and the same altitude, latitude and *= as the data of

Figure 2.

r
	

{

f

z

ve
	 . e 	"... '.. .-	 x^t ,._.. ,..^^ .. ..LY!_,n..._. .a ._ r..-+c_-..."^::.te.^3......v..._..ncvY 9'L• t.. ;: ^a .m.....'..4



26

Figure 7. Plasm pbysieally stable one-dimensional velocity distribution

parallel to the geomagnatic field derived from observed electron

energy spectra of AE-D orbit 635.

Figure S. One-dimensional velocity distribution parallel to the geomagnetic

field derived from observed electron energy spectra of AE-D orbit

647. The distribution presents a good example of plateau formation.

Figure 9. One-dimensional velocity distribution parallel to the geomagnetic

field derived from observed electron energy spectra of A`-D orbit

647. The distribution presents a good example of plateau formation.

Figure 10. One-dimensional velocity distribution parallel to the geomagnetic

field derived from observed electron energy spectra of A r_-D orbit

635. The distribution shows a clear example o_° a hump-ow-the-tail.
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Appendix I. Curve Fitting Procedure

The curve fitting procedure involves a linear least squares fitting to

the electron flux spectrum using a superposition of three functions.

Fc(E) cl(E) + F
c2(E) + Fc3(E)

where Fc is the electron flux and E the energy. The forms of the functions

used are:

Power

Fcl(E) s P1 
E (1 + P2)

Maxwell ian

Fc2(E) = Cna	
E 
3/2 'P(-kT )

(kTb)	 b

urbere C is a constant, n is the density acc T is the temperature.

Gaussian

	

	 2
E - P

Fc3(E) = E expj-( P 2)
1	

+ P31

The actual fitti-ig is performed in log e space, using the functions in the

forms:

Power law

log e (Fcl/E) = Xl + X2 logeE



I

k?

where 
W 
	 - 1/X2

(kTb)3/2
U = exp(X1)

Gau^

log e(Fc3/E) = 3 1E2 + 12E + $3

where P1 = =—

- X2
P2 = 2-

2

P3 = - (X2 
kR 

4 p&)
1

The fitting is performed in such a way that it is possible to fit a

particular electron flux spectrum with any ome of the three given functions

separately or with any combination of the thres. The basic procedure is to

compute the least squares fit, compute the error between the observed spectrum

and computed spectrum and select the leas: squares fit with the smallest error..

The error is given- by the formula,

X
	ERROR =	 1	 I (1og14 jFo (Ei); - log10IFc

(Ei),)2h -h -1 1=1
P

where, r is the number of data points used izZ the fitting

hp is the number of non-zero paramete-s in the fit

Fc is the computed flux

F is the observed :lux
o

Ei is the energy corresponding to the _th data point.

The first step in the fitting routine is to fit the entire spectrum to the

power law function and the Maxwellian funct ion separately and choose the best

fit. Next the routine searches for the op t:*Mal fit for a superposition of these

sane two functions. This search is accompl ished by fitting the data points
q..

_
f

.•
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I

corresponding to energies E  through E16 (sE ax) to the Maxweliian function,

subtracting the results from the observed flux values and fitting the remainder

to the power law function. The two fits are then added, the error is computed

and compared to the previous least error and the best fit chosen. This procedure

Is repeated fcr k ranging from k s 3 to k a '13.

To check for the presence of a monoenergetic peak (approximated by a Gaussian

function) the spectrum representing the best fit from the above search is scanned

In the energy range E3 to E13 to locate three consecutive flux values which lie

above the computed spectrum. If three or more such points are found,they are

deleted from the observed spectrum and the procedure outlined above is repeated

for this adjusted spectrum. The points ling above t=e original best f:- which

were deleted are :it to a 'sussian function ane added to the recomputed power law

plus YA"ellian fit. The error is then found and compared to the original best

fit. The fit with the least error is then taken as the overall best fit to the

data and the parameters are stores in the output file.

i+

A
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Appendix II. One-Dimensional Hump of an Isotropic Three -Dimensional Distribution

Let tna one-dimensional distribution function F(4 z) have a maximum at vz.

Let the three-dimensional distribution function be isotropic, f(v 2), where

V2 = vx2 + vy2 + vz2 . F(vz) and f (v2 ) are related by the expression

F(v) j 7 f(v2) dv dv .
z	 mAD	 x y

Theorem: v
= 

has always the value 0 irrespective of

this is the onl y value it can have.

Proof:

A necessary condition for a maximum of F(vz) is

dv F(vZ ) 1	 = r F 	 f(V7)	
ds

2	 V	 —Q 2	 V =
2m	 `Z

Zm

m:	 t

2V	 j f	 d	 f (v2 ) ;	 dv dv,
OR — d(V2)	

:VZ	
X .

V
Z'3

Let us assume that vzm 0 0. Then

1 1 1f (V2) dvxavy
-bc d(v2) 

v
zn

Introduce polar coordinates in the vxvv-plane

v -V
X	

.1. cos:

V =VLSin
,r

V2 = v12 - v^2



f (m) - f (vim) = 0

Since f(m) = 0, this i=plies

f (vim 0.) 

Because of the isotropy of f it follows that I

the function f (v2 ) is by definition non—negativ

Point N-2 = rim only if

d	 f(v2)I	 = 0.
d(v2 )	 IIv2

V2

W'_

Then we obtain (since d = d )

7(v2) d(vl )

•	 2n
^ du f d6u d f ltL + v2= ) = 0

0	 o	 d (c12 )

Id (vy2 ) d f Ni + v22 = 0
o	 dq2)
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•

only if

d	 f (v2)	 0.

	

d(v2)	 111v2.

V2
zm

In order to determine whether F(vz) actually has a maximum at vzM we

have to look at the second derivative.

2	 m

	

d F(v) dv
	

v dvxdvv
dv	

z
z2	 z	 z	 '

= 2W dv v F df d(11z 
z	 o d (vi )

V2 = V 2 + vz2

= 
-2"	

d	 [v	 f(v 2 )]r 	dv	 z	 z
i

z

_ -27 .=(vz2) + 1' z dr	 f(vz2)J
^	 z

r	 -2z (f (vz2 ) + 2vz2	
d	

f (v2)d(v2 )

I

f	 which vanishes at v 2	 v2 ^ according to equations (A.2) and (A.3).	 Fence,

'	 there cannot be a maximum at v
zm
	 0.	 If f(vx , V 	 is spherically

Asymmetric and if F (v ) has a maxim=, it can occur only at v 	 = 0. q.e.d.
z	 z
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