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SUMMARY 

The subsynoptic-scale kinetic energy balance during the 

Red River Valley tornado outbreak is presented in order to diag- 

nose storm-environment interactions. Rawinsonde data from the 

first AVE-SESAME period, having a station spacing of about 250 km, 

provide meso-a scale resolution of the storm environment. Several 

data handling techinques are used which normally are not performed 

on synoptic-scale data; these include time,interpolation to ad- 

just for non-simultaneous sonde release and to partially generate 

missing data, and adjustments for balloon drift downwind. 

Area-time averaged energetics indicate that horizontal flux 

convergence provides the major energy source to the region while 

cross-contour flow provides the greatest sink. Maximum energy 

variability is found in the upper levels in association with jet 

stream activity. Area averaged energetics at individual observa- 

tion times show that the energy balance near times of maximum 

storm activity differs considerably from that of the remaining 

periods. 
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The local kinetic energy balance over Oklahoma during the 

formation of a limited jet streak receives special attention. 

Cross-contour production of energy is the dominant local source 

for jet development. Intense convection producing the Red River 

Valley tornadoes may have contributed to this local development 

by modifying the surrounding environment. 

The energetics associated with areas of convective storms 

is found to differ greatly from that of areas without storms. 

Current results using subsynoptic-scale data are compared 

with those from a concurrent study using only NWS rawinsonde 

data. A random error analysis is presented to assess confi- 

dence limits in the energy parameters. 
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1. INTRODUCTION 

a. Motivation for investigation 

In recent years many meteorologists have sought a better 

understanding of the complex structure of synoptic- and meso- 

scale weather phenomena. Results of their efforts are begin- 

ning to shed light on the role that smaller scale weather 

events play in the synoptic weather patterns and general cir- 

culation of the atmosphere. A lack of data which adequately 

capture these subsynoptic-scale phenomena has been an obstacle 

to testing current theories about scale interactions. In most 

cases the meteorologist has been limited to upper air observa- 

tions with 12 h time intervals and station spacings near 400 

km. This resolution is too coarse in both time and space to 

capture subsynoptic- and mesoscale phenomena such as short 

wave troughs, convective complexes, and limited jet streaks. 

Rawinsonde data from the recent Atmospheric Variability Exper- 

ments- Severe Environmental Storm and Mesoscale Experiments 

(AVE-SESAME'S) (see Alberty et al., 1979; Hill et al., 1979) 

provide better resolution than routine observations, thereby 

making a description of subsynoptic-scale events possible for 

those limited periods. 

Continuous subsynoptic-scale observation of the atmosphere 

with rawinsondes currently is not feasible because of high 

operating expense. Indirect atmospheric soundings from the 



VISSR Atmospheric Sounder (VAS) geostationary satellites will 

help alleviate this problem by providing meso-B scale time 

and space resolution over limited areas. The first VAS sat- 

ellite was launched on 9 September 1980. During the next sev- 

eral years, the VAS data will be tested against current obser- 

vational techniques to verify the quality and usefulness of 

this new mesoscale data source. Until the new system is per- 

fected, meteorologists must rely on the limited amount of 

special subsynoptic-scale rawinsonde data, such as AVE-SESAME, 

for their investigations of the smaller-scale features. 

Areas of intense convection are subsynoptic-scale phenom- 

ena whose formation is influenced by meteorological conditions 

on both larger and smaller scales of motion. After formation, 

large areas of storms are thought to modify their synoptic- 

scale environments through "feedback" mechanisms which, pre- 

sently are not completely understood. One way of diagnosing 

interactions between severe storms and their surrounding wind 

fields is through an examination of the time and space varia- 

bility of environmental kinematic parameters and the environ- 

mental kinetic energy balance. Through such studies, it is 

hoped that the interplays between intense convection and the 

synoptic-scale wind field can be better understood. 
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b. Past studies 

It is difficult to determine cause and effect relation- 

ships in most diagnostic studies of the atmosphere because of 

the interaction of the given phenomenon with motions on other 

scales. This interaction is often non-linear and undetectable 

with routine atmospheric observations. There is increasing 

evidence, however, that large areas of intense convection pro- 

duce effects on their surrounding atmospheric volumes that can 

be detected using synoptic-scale data. 

Aubert (1957) used numerical simulation models to show 

that latent heat release associated with thunderstorms pro- 

duced increased large-scale, low-level convergence and enhanced 

upper-level divergence. The synoptic-scale storm environment 

experienced low-level height falls and upper-level height 

rises which were detected in 12 h forecast fields. Ninomiya 

(1971a and b) used conventional rawinsonde data and satellite 

pictures to observe mid-tropospheric warming, strong low- 

level convergence, and strong upper-level divergence near 

areas of severe storms. He proposed that warming was a result 

of latent heat release, which then intensified the horizontal 

temperature gradient thereby producing a jet streak to the 

northwest of the warm core. Downward convective transport of 

horizontal momentum was shown to strengthen the low-level jet. 

Maddox (1980), Fritsch and Maddox (1980), and Maddox et al. 

(1980) recently investigated large, nearly circular, areas of 



intense convection using satellite imagery and conventional 

rawinsonde data. They concluded that height rises in the 

upper troposphere , greatly enhanced upper-level divergence, 

and the formation of jet streaks occurred as a result of mid- 

tropospheric warming produced by the convection. Maddox (1980) 

emphasized the difficulty of detecting such influences be- 

cause of the "chicken and egg" type questions which arise. 

Most diagnostic kinetic energy studies have focused on 

large-scale extratropical cyclones over North America (e.g., 

Vincent and Chang, 1975; Smith, 1973). The few studies that 

have examined energetics of the convective environment suggest 

that large areas of storms can modify the surrounding synoptic- 

scale kinetic energy balance. Danard (1964, 1966) used numer- 

ical methods with and without the inclusion of latent heat to 

compute the effects of large areas of precipitation on certain 

kinetic energy budget terms. Horizontal ageostrophic flow 

near the precipitation region was directed toward decreasing 

pressure in both the upper and lower levels, resulting in a 

production of kinetic energy. The induced ageostrophic motion 

was attributed to the release of latent heat which amplified 

convergence and divergence within the storm environment. 

Fuelberg and Scoggins (1978) investigated the synoptic- 

scale kinetic energy budget surrounding the mesoscale convec- 

tive complex described by Maddox (1980). They found the 

upper-tropospheric storm environment to be characterized by 

strong generation of kinetic energy due to cross-contour flow, 
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horizontal flux divergence of kinetic energy, upward trans- 

port of kinetic energy, and the transfer of energy from the 

resolvable to subgrid scales of motion. They suggested that 

observed systematic changes in certain kinetic energy 

terms were due in part to the convection. Vincent and 

Schlatter (1979) proposed that the conversion of potential 

energy on the cumulus scale to kinetic energy on the synop- 

tic scale could explain regions of mid-tropospheric positive 

dissipation near tropical storm Candy (1968). Positive 

dissipation in this sense is a source of energy from the 

subsynoptic scales of motion. Robertson and Smith (1980) 

used synoptic-scale data to study storm-environment inter- 

actions during the Jumbo (3-5 April 1974) and Palm Sunday 

(lo-12 April 1965) tornado outbreaks. The kinetic energy 

budgets of the storm environments were different during the 

two outbreaks, but horizontal flux convergence of energy 

was dominant during the Palm Sunday outbreak which contrasts 

with the results from Fuelberg and Scoggins (1978). Although 

the storm area of the Jumbo outbreak had a source of kinetic 

energy due to cross-contour flow, the process was small in 

comparison to horizontal flux convergence of energy. They 

noted that subgrid-scale sources of kinetic energy often were 

associated with intense convection. 

Very few kinetic energy studies have been conducted on 

the subsynoptic scale, mainly due to the lack of appropriate 

data. McInnis and Kung (1972), Kung and Tsui (1975), and 
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Tsui and Kung (1977) used meso+ scale rawinsonde data (sta- 

tion spacing of 80 km) from the National Severe Storms Labor- 

atory (NSSL) in their studies. The energy transformations on 

this scale were comparable to those observed in major synop- 

tic-scale cyclones. Areas of intense convection were charac- 

terized by large cross-contour generation of kinetic energy 

and a large dissipational loss in the upper levels, but the 

import of kinetic energy from the surroundings was rather 

small. Magnitudes of mesoscale energy transformations were 

found to vary greatly, depending on the strength of the meso- 

convective systems in the area. Time variations in the terms 

seemed related to the growth and decay of the nearby storms. 

Fuelberg et al. (1980) recently completed a synoptic- 

scale kinetic energy study of the Red River Valley tornado 

outbreak. They used only the twenty-three National Weather 

Service (NWS) rawinsonde stations (400 km spacing) although 

the data were at 3 h intervals. The energetics of the convec- 

tive environment were found to be distinctively different from 

that of the non-storm environment. The storm environment was 

an area of intense generation of kinetic energy by cross-con- 

tour flow and of energy losses due to transfers from the re- 

solvable (synoptic) scales to subgrid scales of motion. A 

detectable feedback mechanism, by which the storms modified 

their environment, was not readily apparent at the synoptic 

scale. Theoretically speaking, feedback mechanisms from the 

convective scale to the larger scales should be present. Such 
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cooperative effects are believed to be the dominate physical 

mechanism to promote intense convective outbreaks. Fuelberg 

et al. (1980) hypothesized that strong synoptic-scale forcing 

prevented adequate resolution of these interactions. They 

suggested that subsynoptic-scale data may be necessary to de- 

tect these processes when jet intrusion and baroclinic wave 

intensification occur. 

C. Purpose 

The purpose of this research is to investigate subsynop- 

tic scale storm-environment interactions of the Red River 

Valley tornado outbreak (RRVTO). The combination of the NWS 

and special site soundings that are available from the AVE- 

SESAME I period are used in the present study. These data, 

having a station spacing of 250 km and a time interval of 3 h, 

provide a superior resolution of subsynoptic-scale (meso-a 

scale) features than was obtained by Fuelberg et al. (1980). 

As in their study, special attention will be focused on vari- 

ations in the kinetic energy balance. First, a kinematic anal- 

ysis will be presented to show that the data handling tech- 

niques and computational procedures have produced a superior 

subsynoptic-scale data set. Second, the area-time averaged 

energetics will be discussed for the AVE-SESAME I region. The 

time variability of the area-averaged budget will be demon- 

strated. Third, spatial maps of energy budget parameters will 
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be used to relate certain terms to subsynoptic-scale features. 

Fourth, the energy budgets of limited sub-volumes enclos+ng 

features of special interest will be examined. The results 

of this research will provide additional information on energy 

transfers between the synoptic- and subsynoptic-scales of mo- 

tion that hopefully will prove useful for incorporating sub- 

synoptic-scale features in numerical prediction models. 
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2. THEORETICAL CONSIDERATIONS 

The kinetic energy budget equation for a fixed, limited 

volume in isobaric coordinates is given by Smith (1969) as 

aK 
at 

where 

rr = srrr dx dy dp, 
-+ 
V is the horizontal wind velocity, 

w is the vertical motion in isobaric coordinates, 

k = b2y2' is the horizontal kinetic energy 

per unit mass, 

K = rrk, 

$I = gz is the geopotential height, 

F is the frictional force, 

A is the computational area, and 

0 
is a subscript denoting surface values. 

Local changes of kinetic energy in the limited volume, 

aK 
at, are due to five processes. The term -$*?# represents 

the generation of kinetic energy, or the conversion of poten- 

ial to kinetic energy, by cross-contour flow. Term $=k$ re- 

presents horizontal flux divergence of kinetic energy while 

tik - is the vertical flux divergence of kinetic energy. 
ap 
Term ko% represents variations in kinetic energy due to 

changes in the mass of the volume being studied. Since it is 
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several orders of magnitude smaller than the other terms in 

Cl), it will not be considered further. 

The term 3-3 conceptually represents thermodynamical 

and mechanical frictional processes, but since it is computed 

as a residual in order to balance the other terms of the equa- 

tion, it also represents a transfer of energy between the re- 

solvable and unresolvable scales of motion (Smith and Adhikary, 

1974) and possible errors in all of the other terms. It is 

also called the dissipation term. 
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3. DATA AM, COMPUTATIONAL PROCEDURES 

a. Data 

The first AVE-SESAME period ran from 1200 GMT 10 April 

through 1200 GMT 11 April 1979 and included rawinsonde releases 

at 3 h intervals for twenty-three National Weather Service 

(NWS) stations plus an additional sixteen special sites (Fig. 1). 

By including the special site stations an average station 

spacing of 250 km, instead of the usual 400 km, was achieved. 

Thus, subsynoptic-scale (meso-a scale) resolution was provided. 

Further details about the AVE-SESAME program are given by 

Alberty et al. (1979), Barnes (1979), and Hill et al. (1979). 

Reduction procedures used to process the rawinsonde data are 

described by Fuelberg (1974) while the data at 25 mb intervals 

are given by Gerhard et al. (1979). 

b. Data handling procedures 

In spite of the care that was taken during the data col- 

lection phase of AVE-SESAME, several problems remained in the 

final tabulated product. First, although the NWS sondes gen- 

erally were released within 15 minutes of each other, the 

special sites were much less punctual. In several cases, re- 

leases were delayed by as much as one hour. Second, special 

site soundings were either missing altogether (16 occurrences), 
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Figure 1. Rawinsonde stations participating in AVE-SESAME I. Outlines 
indicate the 15 x 13 analysis region (outer) and the energy 
budget averaging region (inner). 



terminated early, or contained data gaps at various levels be- 

cause of sonde failure or other difficulties. These problem 

soundings, along with sixteen others that were declared ques- 

tionable during the data reduction process (Gerhard et al., 

1979), created a need for special computational techniques. 

Furthermore, the use of subsynoptic-scale data may violate 

several assumptions normally made as part of synoptic-scale 

computational procedures. Since the uniqueness of the AVE- 

SESAME I data lies in its subsynoptic-scale time and space 

resolution, computational procedures must optimize this aspect. 

The specific problems and their solutions are presented next. 

When using data with a temporal spacing of three hours, 

sondes from the various sites should reach given pressure 

levels at nearly the same times. This often did not occur 

during AVE-SESAME I because of the non-simultaneous releases, 

variations in sonde ascent rate, and the different heights of 

the stations above sea level. The following scenario illus- 

trates the consequences of these factors. The average time 

for a sonde to reach 100 mb is 50 minutes after release. By 

itself this problem would not be critical even with three 

hour data; however, if a sonde also were released an hour late, 

the data at 100 mb would be more representative of the later 

three hour release instead of the one to which it is assigned. 

Therefore, when sondes are released at many different times, 

the data must be adjusted so they all describe the atmo- 

sphere at a given level at the same time. 
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The adjustment was accomplished in this study by using 

a linear scheme similar to that described by Fankhauser (1969). 

The observation before and after the sounding in question 

was used to perform the calculations. Sondes generally are 

released 45 min before the standard observation hour (e.g., 

1115 GMT for 1200 GMT), and during AVE-SESAME I the NWS sondes 

were released as much as 55 min before the hour. The earliest 

portion of the sounding represents the lower layer of the at- 

mosphere where changes are probably more rapid than in the up- 

per levels. This portion is also more representative of the 

prior hour than the scheduled hour. Therefore, all data were 

adjusted to the prior hour although they will be denoted as 

1200 GMT, 1500 GMT, etc. soundings. Although it is understood 

that the atmosphere is non-linear and that a linear scheme 

will not completely recover the "true" atmospheric values, the 

linear scheme should be a good approximation to the actual 

conditions. 

As previously mentioned, some of the NWS and special site 

data were missing. Since the desired subsynoptic-scale reso- 

lution depends on having as much data as possible, it would 

be desirable to generate the missing values. There are at 

least two methods for producing the data. In several previous 

synoptic-scale studies, when only 12 h data were available, 

missing values have been interpolated vertically from available 

data above and below (Chien and Smith, 1973) and also inter- 

polated in space from surrounding observations (e.g., Chien 
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and Smith, 1973; Kung, 1977). There are several disadvantages 

to this approach. First, vertical interpolation over depths 

of several hundred millibars may not fully capture thin layers 

containing inversions or jet maxima. Second, while the spatial 

interpolation uses the surrounding observations, the interpo- 

lated value can only represent the gross features of the sur- 

roundings. 

Because 3 h data were available during the AVE-SESAME I 

period, it was felt that linear time interpolation at individ- 

ual stations would produce more consistent and more represent- 

ative values for missing data. The method is a natural exten- 

sion of Fankhauser's time adjustment scheme previously men- 

tioned. Several restrictions were placed on the technique. 

First, the interpolation was limited to 6 h periods; i.e., if 

data for a given level were missing at two consecutive times, 

no values were generated. Second, extrapolation was avoided 

by not using the procedure at the first and last times. Al- 

though the scheme takes advantage of the 3 h data interval, 

it and any other scheme for generating missing values is not 

without potential problems. Therefore to insure that reason- 

able time and space continuity were maintained, the adjusted 

and interpolated data were manually checked using time-series 

and constant pressure analyses. Any data, whether interpolated 

or original, which did not appear valid, were removed and not 

used in further computations. 

In atmospheric studies using synoptic-scale rawinsonde 
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data, the sounding is usually treated as a vertical probe. 

However, with subsynoptic-scale spatial resolution where the 

distance between observations is about 250 km, this assump- 

tion is questionable. Strong winds during AVE-SESAME I, pro- 

duced an average downwind sonde drift of 90 km at 100 mb with 

a maximum drift of 153 km. Because of these large displace- 

ments, sonde location at release (station location) was not 

used as the location at all levels. Instead, sonde location 

was determined at every level in the vertical, as part of the 

objective analysis procedure. This procedure is similar to 

that used by Fankhauser (1969) and McInnis and Kung (1972). 

After obtaining the time and space consistent data set 

using the above techniques, the data were objectively analyzed 

onto a 15 x 13 grid (see Fig. 1) using the Barnes (1964) scheme. 

The grid length and scan radius were 127 km and 381 km (.3 grid 

lengths), respectively. Four iterations of the scheme pro- 

duced the desired accuracy and resolution in the gridded fields 

of height, temperature, winds, and dew point. Grids were ob- 

tained at the surface and at 50 mb intervals between 900 and 

100 mb. To reduce the effects of errors, the original wind 

data at 25 mb increments were averaged over 50 mb layers. Be- 

cause the Barnes scheme is only mildly sensitive to data er- 

rors and because the above mentioned techniques reduce errors 

by inherent smoothing, only a gentle explicit filter was 

applied to the gridded fields (Shuman, 1957). This nine point 

filter changes neither the wavelength nor the phase, but only 
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the amplitude of each feature. Figure 2 compares current re- 

solutions with those of Fuelberg et-al. (.1980) who used only 

NWS data. The subsynoptic-scale gridded fields retain 15-20% 

more of the original amplitudes than did the synoptic-scale 

study. Features with wavelengths smaller than 500 km (twice 

the station spacing) are greatly suppressed. This is desirable 

since "noise" generated from data errors, although held to a 

minimum, is contained at these smaller and not fully resolvable 

wavelengths. 

C. Computational procedures 

Computation of the kinetic energy budget not only depends 

on the basic input parameters, but also on divergence and vert- 

ical motion. Divergence and all other calculations in this 

study were made using conventional finite differencing tech- 

niques. Kinematic vertical motions were obtained using values 

of divergence in the integration of the continuity equation 

in isobaric coordinates. The integration requires a lower 

boundary condition which, on the synoptic scale,, generally is 

taken to be zero. For this study, the assumed lower boundary 

condition was the sum of three processes given by 

w apsfc =- 
sfc at + WPsfc + Psfcg(~sfc+-d, (2) 

where h is terrain height (Holton, 1972, p.132). The first 

term, aP sfc 9 is the local change of surface pressure. It was 
at 
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Figure 2. Resolution profiles for synoptic- and subsynoptic- 
scale studies. The smallest feature resolvable 
for the synoptic-scale study (solid line) (Fuel- 
berg et al., 1980) and the subsynoptic-scale 
study (dashed line) is 800 km and 500 km in 
length, respectively. 
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computed using 6 h centered differences when possible, but 

3 h uncentered differences were used at the first and last 

times. -1 The largest magnitudes of this term, about 0.3 ub s , 

were somewhat smaller than expected, probably due to the 

smoothing effect of the 6 h differencing. Although hourly 

surface data would produce somewhat larger values for this 

term, they were not incorporated into the AVE-SESAME data set. 

Therefore consistent surface and upper air resolution was 

maintained. Term ~sfc*hsfc represents cross-isobaric flow 

which may be due to various types of force imbalances. This 

term was the smallest of the three and contributed little to 

the surface vertical motions. The third term, -psfcg$sfc=dh, 

denotes terrain induced vertical motion. This component dom- 

inated the surface vertical motion fields over the western half 

of the region (see Fig. 1) because the low-level flow tended 

to be perpendicular to the large terrain gradient along the 

eastern slopes of the Rocky Mountains. Values in the region 

averaged -1 
+l to +2 pb s . 

A disadvantage of the kinematic method is that divergence 

errors accumulate by the end of the integration process there- 

by producing unrealistic values of w near 100 mb. These 

problems occur in spite of good data and computational pro- 

cedures. The accurate calculation of divergence is especially 

difficult in the upper levels where input data errors are 

largest. To circumvent this problem, the values of w were 

modified using the adjustment scheme suggested by O'Brien 
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(1970). The procedure forces the vertical motion profile to 

a predetermined value at the top of the model (100 mb), which 

in this study was taken to be zero. The values of divergence 

then were adjusted by the amount necessary to achieve w=O at 

100 mb. 

Terms of the kinetic energy budget equation were computed 

using centered finite differences at 18 levels from the surface 

to 100 mb. These values were then integrated over 50 mb layers 

by means of the trapezoidal rule. The dissipation term was 

calculated as a residual from the other terms in (1). 

d. Error analysis 

Rawinsonde data contain systematic and randomerrors 

which affect energy budget calculations despite the use of 

objective analysis schemes and horizontal and vertical filter- 

ing procedures. In order to obtain quantitative values for 

confidence limits associated with the derived energy parameters, 

additional computations were performed using randomly perturbed 

rawinsonde data. Results of these calculations, described 

in the Appendix, yield the following conclusions: 

1) Area averaged energy parameters are, for the most part, 

rather insensitive to assumed errors in the input data. 

Greatest uncertainties are found at the highest altitudes 

where rawinsonde data are assumed to have the greatest 

errors. The dissipation term, which is computed as a 
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residual, generally is the most sensitive term at all 

levels. Some caution in interpretation should be exercised 

when original values of any term are near zero. 

2) Area averaged budgets obtained for the entire com- 

putational area are somewhat more reliable than those 

describing subsets of the region and consisting of fewer 

grid points. 

3) Spatial fields of energy parameters derived from per- 

turbed data show the major centers of energy conversion 

and transport despite the presence of assumed data errors. 

Although space patterns are reliable, values at individual 

grid points may be altered more significantly. 

4) Results of the error analysis, together with quali- 

tative assessments of time and space continuity, suggest 

that errors in rawinsonde data should not seri0usl.y 

affect the interpretations of results that follow. Dis- 

cretion should be exercised in assigning significance 

to minor term fluctuations, especially dissipation, in 

the upper levels. 
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4. WEATHER CONDITIONS 

a. Introduction 

The Red River Valley tornado outbreak (RRVTO) occurred 

on lo-11 April 1979 in the area separating Texas from Oklahoma. 

The outbreak began near 2100 GMT 10 April and continued through 

0200 GMT 11 April. Major tornadoes at Vernon (Texas), Lawton 

(Oklahoma), and Wichita Falls (Texas) as well as many less 

damaging tornadic, hail, and wind storms occurred during the 

period. The Wichita Falls tornado, which began around 2355 

GMT on the outskirts of the city, was the most severe of the 

outbreak, lasting over 60 min with a path length of nearly 47 

miles. By the end of the outbreak, 56 people had been killed, 

1916 injured, and damage estimates totalled several hundred 

million dollars. The following discussion highlights weather 

conditions leading up to and associated with the RRVTO. More 

detailed analyses have been given by Moore and Fuelberg (1981), 

Moller (1980), and Carlson et al. (1980). 

b. Pre-outbreak conditions 

The RRVTO coincided with the first AVE-SESAME '79 exper- 

iment. Synoptic conditions at the beginning of the period 

(1200 GMT 10 April) are shown in Fig. 3. At the surface, a 

high pressure area over the Great Lakes carried cool, dry air 
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Figure 3. Synoptic conditions at 1200 GMT 10 April 1979. 
At the surface, presure is in millibars (04 means 
1004 mb). At 300 mb, height lines are in tens of 
meters and isotachs are in knots. 
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over the eastern half of the country. A deep cyclone (988 mb), 

located over the Colorado-Wyoming border, was the anchor point 

for a cold front extending southward into New Mexico and a 

stationary front extending into Nebraska and Kansas. A station- 

ary front also was positioned along the Gulf Coast. 

An amplifying baroclinic wave was the dominant feature 

in the upper troposphere (Fig. 3). The system exhibited a 

negative horizontal tilt, stretching from Washington into New 

Mexico. A weaking short wave extended through the Midwest 

while a ridge, associated with the surface high pressure area, 

was located from the middle Mississippi River Valley into the 

Dakotas. A low-level southerly wind maximum, extending from 

the middle Texas coast into Kansas contained speeds as great 

-1 as20ms , while a middle-level jet stretched from southern 

New Mexico into Oklahoma with wind speeds up to 30 m s -1 . The 

jet axis at 300 mb was parallel to the mid-tropospheric jet 

over the AVE-SESAME I region. Within the experiment area, 

maximum winds at 300 mb were along the Gulf Coast; however, 

the main jet core was located at the base of the trough over 

Mexico. 

The GOES visible satellite image for 1331 GMT (Fig. 4) 

reveals the cloud cover near the beginning of the AVE-SESAME I 

period. Scattered showers and thunderstorms were occurring in 

Arkansas, southwestern Missouri, and parts of Kansas, but no 

severe activity or well organized convection was present. 

During the next 6 h weather conditions gradually became 
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Figure 4. GOES visible satellite image at 1331 GMT 10 
April 1979. 
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more conducive to severe storms. Surface and 300 mb subsynop- 

tic-scale charts for 1800 GMT 10 April are shown in Fig. 5. 

The surface low over Colorado deepened 3 mb to 985 mb but re- 

mained relatively stationary. An occluded front extended 

southward from the low to the triple point over northern New 

Mexico. From this point, a cold front stretched through east- 

ern New Mexico and extreme west Texas while a warm front ex- 

tended from the triple point into northcentral Texas and 

Louisiana. A dry line had formed in western Texas separating 

dew points of 19OF at Morton and lOoF at Marfa from values in 

the sixties over central Texas. The combination of warm, moist 

air in the low levels with cool, dry air aloft created poten- 

tial instability in an area from Victoria, Texas to Oklahoma 

City and westward into New Mexico. Values of the Total Totals 

index were greater than 50 in this region. 

In the upper levels at 1800 GMT (Fig. 5), the major trough 

had intensified over the mountains, tightening the 300 mb height 

gradient. A small perturbation in the height field appeared 

over Amarillo, Morton, and Midland, Texas and is best seen in 

the 3 h height change fields (not shown). Another major fea- 

ture at 300 mb was jet intrusion into the southwest portion 

of the AVE-SESAME I region. Winds in excess of 50 m s -1 now 

extended into west Texas. The continued intrusion of this jet 

and the propagation of the height perturbation into northcen- 

tral Texas helped release the instability and produce the se- 

vere storm outbreak. 
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Figure 5. Surface and 300 mb charts at 1800 GMT 10 April 
1979. Surface contours are in millibars. 
Height lines at 300 mb are in tens of meters and 
isotachs are in tens of knots. 
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Convection at 1800 GMT (.3 h before the first major tor- 

nado occurrence) was confined to two regions. The radar summary 

(Fig. 6) indicates a relatively small storm area over north- 

central Texas with echo tops reaching 50,000 ft (15.3 km). 

The second area of developing storms was over eastern New Mex- 

ico where echo tops were 33,000 ft (10.1 km). This latter area, 

although not yet intense or well organized, was located near 

the upper-level height perturbation and underwent major devel- 

opment as it moved eastward. 

c. Outbreak conditions 

Shortly after 2100 GMT 10 April the first major tornado 

was reported near the Red River, 70 km west of Wichita Falls. 

Surface and 300 mb maps for this time are shown in Fig. 7. At 

the surface, only minor changes occurred during the last 3 h. 

The warm front advanced to a position just south of the Red 

River Valley, bringing warm, moist air further northward. The 

cold front moved to a position near the Texas-New Mexico border 

with strong westerly winds behind it. The dry line moved east- 

ward, remaining several hundred kilometers ahead of the cold 

front. The low pressure center (985 mb) remained stationary 

over Colorado; however, the horizontal pressure gradient tight- 

ened considerably over Oklahoma and Kansas due to strengthening 

of the high pressure center over the Great Lakes. A low-level 

jet centered near 850 mb had developed over northcentral Texas 
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1735 GMT 

Figure 6. Radar summary at 1735 GMT 10 April 1979. Echo 
tops are in thousands of feet. 
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Figure 7. Surface and 300 mb charts at 2100 GMT 10 April 
1979. Surface contours are in millibars. 
Height lines at 300 mb are tens of meters and 
isotachs are in tens of knots. 
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during the afternoon with speeds in excess of 20 m s -' (not 

shown). This feature was an efficient transporter of heat 

and moisture into the Red River Valley. This low-level jet 

was located in the exit region of the upper-level jet advan- 

cing from the southwest. The development of low-level jets has 

been linked to mass and momentum adjustments within the exit 

region of upper-tropospheric jet streaks (Uccellini and 

Johnson, 1979). 

At 300 mb (Fig. 7), the height perturbation was not as 

apparent as 3 h earlier. However, at 500 mb (not shown) there 

were 30 m height falls at Oklahoma City, Childress, and Morton 

and 50 m falls at Amarillo. A major change occurred in the 

wind field at 300 mb as the jet streak advanced into west Texas 

and a new isotach maximum formed over Oklahoma and southern 

Kansas. Winds at Oklahoma City increased from 37 m s -1 to 63 

-1 ms in 3 h while slightly smaller increases occurred at Gage 

and Bartlesville, Oklahoma. The appearance of this secondary 

jet streak is quite intriguing. Horizontal maps alone do not 

suggest its advection from the major streak located to the south- 

west. 

Convection at 2100 GMT (Fig. 8) was more widespread than 

3 h earlier (Fig. 6). The storm area in northcentral Texas 

moved rapidly northward into Oklahoma in advance of the warm 

front located south of the Red River Valley. The convection 

along the Texas-New Mexico border at 1800 GMT had moved into 

the eastern portion of the Texas panhandle with echo tops reach- 
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Figure 8. Radar surmnary at 2035 GMT 10 April 1979. Echo 
tops are in thousands of feet. 
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i"g 48,000 ft.Cl4.6 km). The cold front which was moving 

thrqugh western Texas undoubtedly provided a lifting mechanism 

through which potential instability was released producing the 

convection. The satellite photo for 2300 GMT and the radar 

summary for 2335 GMT (Rig. 9) show the convective areas near 

the height of the outbreak. A large area of storms covered 

extreme northcentral Texas, Oklahoma, Kansas, southwestern 

Missouri, and eastern Colorado. Flow over the warm front and 

terrain effects were contributing factors producing this area. 

A small but intense area of convection continued over the Red 

River Valley with echo tops reaching 58,000 ft (17.7 km). 

This area spawned tornadoes at Wichita Falls and other nearby 

locations. 

Figure 10 shows the surface and 300 mb subsynoptic-scale 

maps for 0000 GMT 11 April, five minutes after the sighting of 

the Wichita Falls tornado. Changes in surface conditions were 

small during the 3 h period. One notable feature was a north- 

eastward bulge in the dry line toward the Red River Valley. 

The low-level jet, now positioned over Oklahoma, had increased 

in size and strength with speeds greater than 25 m s -l (not 

shown). Uccellini and Johnson (1979) have shown that the in- 

tensification of the low-level jet and its angle to the upper- 

level jet are related to the isallobaric wind. At 300 mb, a 

perturbation in the height field was apparent again, this time 

over the Red River Valley. The 3 h height tendencies (not 

shown) indicate falls of 50 m over Amarillo and Childress, Texas 
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Figure 9. GOES visible satellite image at 2300 GMT and 
radar summary at 2335 GMT 10 April 1979. Echo 
tops are in thousands of feet. 
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Figure 10. Surface and 300 mb charts at 0000 GMT 11 April 
1979. Surface contours are in millibars. 
Height lines at 300 mb are in tens of meters 
and isotachs are in tens of knots. 
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and 30 m over Oklahoma City. These falls were in the left 

exit region of the upper-level jet over western Texas. The 

secondary jet streak noted at 2100 GMT over Oklahoma (Fig. 7) 

had expanded to include most of Kansas. Its space-time cor- 

respondence suggests a link to the convection. 

The radar summary for 0235 GMT (Fig. 11) shows intense 

convection in three separate areas. The storms encompassing 

the Red River Valley at 0000 GMT (Fig. 9) moved into Oklahoma 

producing heavy rains but no additional tornado activity. A 

larger area of less intense convection covered most of Kansas 

and Missouri. A new area of convection formed in westcentral 

Texas with echo tops reaching 53,000 ft (17.2 km). 

Surface conditions at 0300 GMT (Fig. 12) showed little 

movement of the warm front from its position 3 h earlier. The 

dry line in the warm sector became diffuse. A closed low (991 

mb) formed at the southern end of the cold front over the Big 

Bend region of Texas while the major low (985 mb) remained over 

southeastern Colorado. The low-level jet strengthened and 

moved eastward into Arkansas. 

At 300 mb (Fig. 12), the height perturbation now was posi- 

tioned over central Oklahoma where 3 h height tendencies (not 

shown) indicated falls of 40 m over Oklahoma City and Durant, 

and 30 m over Childress. This perturbation corresponds with 

the area of convection over Oklahoma. No significant height 

perturbations in the upper levels were associated with the west 

Texas storms at this time. However, the isotach field at 300 mb 
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Figure 11. Radar summary for 0235 GMT 11 April 1979. Echo 
tops are in thousands of feet. 
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Figure 12. Surface and 300 mb charts at 0300 GMT 11 April 
1979. Surface contours are in millibars. 
Height lines at 300 mb are in tens of meters 
and isotachs are in tens of knots. 
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indicates the advance of the major jet streak from the south- 

west. Winds in excess of 50 m s -1 extended in a narrow band 

from the base of the upper-level trough into Oklahoma. The 

secondary jet streak previously located over Oklahoma and Kansas 

(Fig. 10) moved northward into Kansas and Nebraska by 0300 GMT. 

This feature had weakened during the past 3 h and no longer 

corresponded to major convective regions. 

d. Post-outbreak conditions 

The last tornado of the RRVTO occurred near 0200 GMT 11 

April. The storms producing the outbreak moved into central 

Oklahoma, Arkansas, and southern Missouri during the later 

hours of the AVE-SESAME I experiment but did not produce fur- 

ther severe activity. Storms which developed in western Texas 

near 0300 GMT produced several tornadoes that did not cause 

major damage or injury. This area underwent various stages of 

growth and decay as it moved eastward through central Texas 

during the night. 

Synoptic conditions at the end of the AVE-SESAME I period 

(1200 GMT 11 April), are shown in Fig. 13. The surface low 

(984 mb) was positioned over southeastern Colorado with an 

occluded front extending just south of Oklahoma City. From 

this point the cold front extended southward through San Antonio, 

bringing cool, dry Pacific air into central Texas. The warm 

front extended from Oklahoma through southern Arkansas, and 
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Figure 13. Synoptic conditions at 1200 GMT 11 April 1979. 
At the surface, pressure is in millibars (04 
means 1004 mb). At 300 mb, height lines are in 
tens of meters and isotachs are in knots. 
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then along the Gulf Coast. The major upper-level trqugh over 

the mountains deepened and moved eastward throughout the period. 

The upper-level jet streak located at the base of the tro.ugh 

24 h ago (Fig. 3) had rotated around the low and into the Mid- 

-1 west with winds in excess of 55 m s . Another region of 

strong winds remained over the Pacific coast. 

The remaining convection (Fig. 14) was concentrated in 

Illinois, Missouri, Arkansas, and northeastern Texas. Radar 

echo tops reached 48,000 ft (14.6 km) in Texas and Arkansas 

with more shallow convection to the north. No severe weather 

activity occurred with these storms. 

The formation of the Wichita Falls tornado and other se-- 

vere storms in the area seem related to subsynoptic-scale fea- 

tures evident in the AVE-SESAME I data. Some of these features 

have been described above; however, more discussion is given by 

Moore and Fuelberg (1981) and Carlson et al. (1980). The aim 

of the current research is to study these features and their 

relation to the convection by examining the kinetic energy bal- 

ance during the outbreak. 
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Figure 14. Radar summary at 1135 GMT 11 April 1979. Echo 
tops are in thousands of feet. 
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5. RESULTS 

a. Kinematic analysis 

Calculation of the kinetic energy budget necessitates 

the computation of divergence and vertical motion (see 

Section 3~). These derived parameters also describe the 

conditions under which convection occurs during AVE-SESAME I. 

In the paragraphs below, spatial fields of kinematic para- 

meters are evaluated for time and space continuity and are 

compared to areas of convection in order to assess the 

"goodness" of the input data and computational procedures. 

Values of horizontal divergence used in this study have 

been adjusted (see Section 3c) to produce consistency with 

the adjusted w values. This procedure may increase or 

decrease values of divergence at a given level depending on 

the unadjusted w value at 100 mb. Previous studies have 

indicated that fields of adjusted horizontal divergence 

correspond better to convection areas than do the unadjusted 

fields (e.g., O'Brien, 1970; Fankhauser, 1969; Chien and 

Smith, 1973). As an example of the adjustment procedure, 

Fig. 15 shows patterns of adjusted and unadjusted divergence 

for 300 mb at 1800 GMT 10 April. The corresponding radar 

summary is shown in Fig. 6. Although both fields exhibit 

the same general patterns, the adjusted field contains 

weaker upper-level divergence over those areas where convec- 
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Figure 15. Adjusted and unadjusted 300 mb divergence at 
1800 GMT-~Os$jyil 1979. Values in each case 
are x 10 . 
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tion is less intense (Kentucky, Tennessee, and Nebraska). 

For instance, divergence near Concordia, Kansas is reduced 

from 5.4 x 10D5 s-l to 2.9 x 10 -5 s-l . Centers of divergence 

from either scheme are located near r,egions of convection. Un- 

less otherwise noted, adjusted divergence will be used through- 

out this study although the word "adjusted" will be omitted. 

Fields of vertical motion and advection of relative vor- 

ticity at 500 mb for 1800 GMT are shown in Fig. 16. Most of 

the area exhibits gentle upward motion (U < 0); however, the 

two major centers of strongest values over New Mexico and 

northcentral Texas correspond to the developing convective 

areas in Fig. 6. Vorticity advection supports these vertical 

motions since the most pronounced maximum (11.1 x 10W1' sD2) 

corresponds to the areas of ascent in Texas and New Mexico. 

Time and space continuity of the kinematic parameters 

is an important consideration in evaluating the success of 

the computational procedures. Fields of vertical motion at 

500 mb and divergence at 300 mb for 2100 GMT are shown in 

Fig. 17. The dramatic increase in upward motion over Texas 

and Oklahoma (from -6.2 to -18.1 vb s-l) results from in- 

creased low-level convergence (Fig. 18) and upper-level 

divergence (Fig. 17). The two centers of ascent at 1800 GMT 

(Fig. 15) apparently merged over the Red River Valley while 

increasing in magnitude. Upper-level divergence nearly 

triples during the 3 h period with values at 2100 GMT reach- 

ing10.7xlO -5 -1 s . The most intense convection at 
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Figure 16. Vertical motion and advection of relative 
vorticity at 5001mb for 1800 GMT 10 April 1979. 
Units are ut, s-- for verticailmotfon and 
values of advection are x 10 s . 
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Figure 17. Vertical motion at 500 mb and adjusted diver- 
gence at 300 mb for 2100 GMT 
Values of divergence are x 10 

'g Apfil 1979. 

s-l and the 
units of vertical motion are ub s . 
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Figure 18. 



2035 GMI (Fig. 8) is located southwest of the supporting 

centers of rising air and divergence. Kinematic fields at 

0000 GMT are shown in Fig. 19. Again there is good contin- 

uity with the previous fields (Fig. 17) and also with the 

observed convection (Fig. 9). The area of upward motion 

shifts northeastward, as does the convection, obtaining a 

maximum value of -19.7 Ub s -1 near Oklahoma City. Ascending 

motion over Missouri increases from -2.4 to -11.8 ub s-1 

during the 3 h period as convection moves into the area. 

Centers of upper-level divergence over Missouri and Oklahoma 

are associated with the ascent and convection. Magnitudes 

of divergence over Oklahoma decrease during the 3 h period, 

but the area1 coverage greatly increases. Maps for 0300 GMT 

(Fig. 20) show a continuation of developments over the last 

6 h. The area of upward motion expands, forming a center over 

Kansas (-15.1 ub s-l) and another over the Texas-Oklahoma 

border (-12.9 pb s-l). Similarly, areas of upper-level diver- 

gence expand, although magnitudes are comparable to those of 

3 h earlier. 

In order to evaluate the effects of adding the special 

site data and of the more sophisticated computational pro- 

cedures, synoptic-scale patterns of vertical motion at 500 mb 

and divergence at 300 mb (Fuelberg et al., 1980) are shown 

in Figs. 21-23 for 1800, 2100, and 0000 GMT. As expected 

there are numerous differences between the synoptic- and 

subsynoptic-scale fields. Vertical motions in the present 
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Figure 19. Adjusted divergence at 300 mb and vertical 
motion at 500 mb for 0000 GMT 11 April 1979. 
Values of divergence are x 10D5 se1 and the 
units of vertical motion are ub s . 
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Figure 20. Adjusted divergence at 300 mb and vertical 
motion at 500 mb for 0300 GMT-41 
Values of divergence are x 10 s 

$yi.ild1979. 

-1 the units of vertical motion are pb s . 
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Figure 21. Synoptic-scale adjusted divergence at 300 mb and 
vertical motion at 500 mb for 1800 GT l_OIApril 
1979. Values of diverg:yce are x 10 s and 
vertical motion is pb s (Fuelberg et al., 1980). 
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Figure 22. Synoptic-scale adjusted divergence at 300 mb and 
vertical motion at 500 mb for 2100 G 
1979. 

9 lGIApril 
Values of diverg_efce are x lo- s and 

vertical motion is pb s (Fuelberg et al., 1980). 
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Figure 23. Synoptic-scale adjusted divergence at 300 mb and 
vertical motion at 500 mb for 0000 G 
1979. 

M'$ lilApril 
Values of divergen e are x lo- s 

-f and 
vertical motion are ub s (Fuelberg et al., 1980). 
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study (Figs. 16,17, and 19) tend to be 20-40% larger than 

those of Fuelberg et al. (1980). Although partly due to non- 

zero surface vertical motions included in the current study, 

the larger magnitudes primarily result from enhanced resolu- 

tion of smaller scale features within the region. A similar 

enhancement occurs in magnitudes of upper-level divergence 

which tend to be 20-30% larger in the current study. Major 

differences in the patterns are seen at 0000 GMT when centers 

of maximum vertical motion and divergence have considerably 

different locations (Figs. 19, 23). This occurs because a 

significant amount of data is missing at this time, partic- 

ularly in the upper levels. Current procedures linearly 

interpolate missing values (see Section 3) retrieving approx- 

imately 50% of the missing data. Because the synoptic-scale 

procedures of Fuelberg et al. (1980) did not contain the in- 

terpolation feature, they were left with data gaps over 

northcentral Texas and Oklahoma. The present patterns based 

on the combination of observed and interpolated data show bet- 

ter time and space continuity and better agreement with the 

observed convection (see Fig. 9) than those of the previous 

study. 

The preceding results indicate that the computational 

procedures described in Section 3 have produced an accurate 

and consistent data set. In addition, results document the 

rapid changes in kinematic parameters that occur between 

1800 and 2100 GMT, coinciding with the beginning of the RRVTO. 
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Armed with this information, time and space variability of 

the kinetic energy balance now will be described for the 

AVE-SESAME I period. 

b. Area-time averaged energetics -- 

The kinetic energy budget equation, (l), was evaluated 

at individual grid points for each of the nine observation 

times comprising AVE-SESAME I. In order to describe the 

major energy characteristics at each time, grid point values 

then were averaged over an interior section of the total 

analysis region shown in Fig. 1. This particular area was 

chosen for two reasons. First results along the periphery, 

which were derived from grid points having comparatively 

few nearby rawinsonde reports, should not be included. 

Second, the selected region corresponds closely to the area 

used by Fuelberg et al. (1980) in their synoptic-scale study. 

A comparison of the two areas, shown in Fig. 24, reveals 

that both are approximately 1.6 x lo6 km2. Although the 

current area (solid line) is shifted northeastward by about 

100 km, due to the spacing and orientation of the grid, this 

should have little effect on differences between the two 

sets of results. The nine area-averaged kinetic energy 

budgets then were combined to produce the area-time averaged 

budget given in Table 1. Synoptic-scale vertical totals 

from Fuelberg et al. (1980) also are shown. Meanings of the 
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Figure 24. Energy budget averaging areas for the current and synoptic- 
scale studies. The current area (solid) is shifted to the 
northeast by about 100 km from the previous area (dashed) 
(Fuelberg et al., 1980). 



Table 1. Area-time averaged subsynoptic-scale kinetic energy budget for 

AVK-SESAME I. Vertical totals for the synoptic-scale AVE-SESAME I 

(Fuelberg et al., 1980) are given at the bottom, All units are 

w In-2 except for K which is lo5 Jm -2 . 

Pressure 
Layer (mb) K ak/at ;f-$~ q*k$ (b*k;)adj k(-6.;)adj i;*?k +$ dlsp (disp)ad, 

200-100 
3OG-200 

400-300 

500-400 

600-500 

700-600 

800-700 

900-800 

Sfc-900 

Vertical 
Total 

Vertical 
Total 

(Fuelberg 
et al., 1980) 

8.0 1.3 -6.2 1.7 -1.2 5.1 -6.3. -5.2 3.9 1.0 

8.4 2.1 -8.8 -1;4 -3.7 6.5 -10.2 -3.8 5.6 3.4 

6.0 3.9 -5.8 -10.3 -11.4 1.7 -13.1 0.6 -0.1 -1.1 

4.4 3.3 --1.5 -6.2 -6.7 0.8 -7.5 0.7 -0.6 -1.1 

3.1 2.3 1.4 -2.1 -2.5 0.0 -2.6 1.9 0.7 0.2 

2.1 1.2 2.2 -0.8 -1.1 -0.6 -0.4 2.2 0.3 0.1 

1.6 1.4 3.0 -1.1 -1.2 -1.0 -0.3 1.5 -1.3 -1.4 

1.3 1.1 5.7 -0.9 -1.0 -0.8 -0.2 1.2 -4.3 -4.4 

0.5 0.4 4.2 -0.2 -0.3 -0.2 -0.1 0.8 -3.2 -3.3 

35.4 17.0 -5.7 -21.5 -29.2 11.5 -40.7 0.0 1.1 -6.6 

35.3 13.3 -30.9 -38.6 -33.6 ---mm 0.0 5.6 10.6 



various energy terms were given in Section 2 with the excep- 

tion of (?*k?)adj,(kTf=?)adj,?*?k, and (disp) adj which will be 

explained below. 

Kinetic energy content of the surface to 100 mb column is 

35.4 x 105J mW2, with maximum contributions from the upper 

troposphere near the level of the jet stream. This total is 

very similar to that of the synoptic-scale study indicating 

that comparable amounts of energy are resolved on both scales 

of resolution when all observations are grouped together. In 

each study the area experiences a local increase in energy 

during the 24 h period. The greater subsynoptic-scale value 

(17.0 W ms2) is due mostly to differing contributions from the 

middle and upper levels. Larger local increases can occur 

without a corresponding difference in time averaged energy 

content because contents at the individual times differ even 

though the average for the entire period is similar. Time 

variability of the energetics will be described in a later 

section. 

Local changes in kinetic energy content are due to vari- 

ous sources, sinks, and external transports. Destruction of 

kinetic energy by cross-contour flow <-qg$+ ~0) produces a 

vertical total of -5.7 W mV2 when subsynoptic-scale data are 

used. Significant generation of energy below 500 mb is 

outweighed by destruction in the upper atmosphere producing 

the overall negative value. This result is substantially 

different from that of the synoptic-scale study where cross- 
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contour flow produced a much larger sink (-30.9 W mm2). Al- 

though the area-time averaged totals of the two resolutions 

are considerably different, this is not to say that the 

better resolved motions at particular locations and times are 

less ageostrophic. Instead, the overall effect of the higher 

resolution is to produce an area-time average revealing small- 

er destruction at the finer scale. Horizontal flux conver- 

gence (v*k$ CO) is the major source of kinetic energy to the 

region. The largest contribution to the vertical total of 

-21.5 W me2 is found in the upper levels where jet intrusion 

from the southwest occurs. A secondary maximum is located in 

the 800-700 mb layer due to the lowlevel jet. The magni- 

tude of the vertical total is less than that at the synoptic 

scale (-38.6 W mV2). Although import of kinetic energy is 

smaller for the overall average when subsynoptic-scale data 

are employed, transport is not necessarily less important 

at individual locations. 

The horizontal flux term can be separated into two compo- 

nents as shown in (3) 

The first term on the right represents horizontal advection 

of kinetic energy while the second term is horizontal di- 

vergence weighted by kinetic energy. As mentioned in Section 

3c, horizontal velocity divergence can be adjusted to pro- 

duce consistency with adjusted vertical motions. These adjust- 

ed values then can be used in computing the horizontal flux 
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term as shown below (see Fuelberg et al., 1980) 

($*k?)adj = &?k + k(?*;;)adj . (4) 

Values of the new quantity on the left, called "adjusted 

horizontal flux" and the contributions from each term on the 

right are given in Table 1. Although the adjusted flux indi- 

cates a greater import of energy than does the unadjusted 

value, this external source still is smaller than when 

synoptic-scale data are employed. It is noteworthy that the 

major contribution to adjusted flux results from advection 

of kinetic energy rather than the divergence effect. The 

divergence term dominates only in the lower layers where 

velocity convergence is quite strong and significant advection 

is confined to the vicinity of the low-level jet. 

Several points about the adjusted horizontal flux should 

be made. First, the two terms which comprise it usually have 

opposite signs particularly in the upper levels. At some 

times and/or locations the adjusted flux might be a very 

small difference between two larger quantities and thus be 

influenced by error in either term. This is not an important 

consideration in the vertical totals of Table 1, but should 

be considered for individual layers. Second, differences 

between the two flux terms indicate the nature of the di- 

vergence adjustment. At the finer resolution, the adjustment 

of velocity divergence produces an increase in horizontal 

flux convergence in the area-time averaged vertical total. 

At the synoptic scale, however, the adjustment reduces the 
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flux convergence. Horizontal flux convergence can decrease 

only if the adjustment increases the upper-level velocity 

divergence. In the current study, however, upper-level velo- 

city divergence is decreased thereby producing larger values 

of flux convergence. This suggests that the upper-level 

unadjusted divergence patterns resolved by the subsynoptic- 

scale data must differ considerably from the unadjusted synop- 

tic-scale fields. 

Individual layer values of the vertical flux divergence 

tik term show an export of energy \a~ ~0) in the lower and middle 

layers and a large vertical import in the 300-100 mb layer. 

This result is consistent with the widespread ascending motion 

during much of the AVE-SESAME I period. Vertical transport 

of energy is a greater source to many layers than is the 

contribution due to adjusted horizontal flux. Even though 

vertical flux divergence in the total column integrates to 

zero during the time and space averaging, this need not be 

the case at individual locations, since only vertical motion 

at 100 mb was prescribed to be zero. 

The vertical total of dissipation (disp) (1.1 W m -2 ) in- 

dicates a small source of energy from the subgrid scales to 

the resolvable (subsynoptic) scales of motion. Traditional 

mechanical and thermodynamical frictional effects produce a 

sink of energy (disp <0) in the lowest layers. Individual 

layer values are small in the middle troposphere but increase 

to become a significant source of energy (disp <O) above 
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300 mb. This profile is similar to that of the synoptic- 

scale study, except that the previous vertical total is 

slightly larger (5.6 W ma2). An "adjusted dissipation" 

term, (disp) adj' arises from using adjusted horizontal flux 

in (1) to compute this residual term. The vertical profile 

of adjusted dissipation is similar to that of the unadjusted 

values; however, the upper-level source from subgrid scales 

of motion has been reduced, making the vertical total negative 

(a sink of energy). 

Caution must be exercised in physically interpreting the 

dissipation terms. Since they are computed as residuals, 

they contain the traditional frictional influences, upwelling 

effects from subgrid-scale processes, as well as any data and 

computational errors contained in all other terms. However, 

the adjusted dissipation term may be slightly more reliable 

because of the errors that are reduced in the adjustment pro- 

cess. Previous studies (e.g., Robertson and Smith, 1980; 

Vincent and Chang, 1975; Fuelberg and Scoggins, 1980) have used 

error analysis techniques to establish confidence limits in 

energy budget calculations. Results of error simulation using 

the current subsynoptic-scale data are described in Section 3d 

and the Appendix. 

To the author's knowledge, no other studies have investi- 

gated energetics using input data with a spacing near 250 km. 

Therefore, a direct comparison of current results with those 

using similar data is not possible. Table 2 gives the area-time 
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Table 2. Vertically integrated area-time averaged kinetic energy budgets 

for various studies. All units are Wm -2 except for K which is 

lo5 J m . -2 

Study Scale K akiat +vo %k$ (?*k+) awk disp (disp)ad, 
adj ap 

Current study 
RRVTO meso-a 35.4 17.0 -5.7 -21.5 -29.5 0.0 1.1 -6.6 

3h 

Fuelberg et al. (1980) synoptic 
RRVTO 3h 35.3 13.3 -30.9 -38.6 -33.6 0.0 5.6 10.6 

Robertson and Smith synoptic (1980) Palm Sunday 1965 12 h 28.7 6.7 -27.6 -25.6 ----- --- 8.7 ---- 

Fuelberg and Scoggins synoptic (1978) AVS 4 3 and 6 h 19.9 -3.7 -4.0 1.6 ----- 0.0 1.6 ---- 

Tsui and Kung (1977) meso- f3 Convective cases 1% h 21.0 4.6 89.5 -11.0 ----- -0.2 -96.0 ---- 

Tsui and Kung (1977) meso- Non-convective cases 14 h 9.5 0.2 -34.9 4.6 ----- -0.1 39.7 ---- 



averaged kinetic energy budget for the current study along 

with others using different scales of input data. All 

studies encompassed periods of major convective activity. 

Although the current results have already been compared with 

the concurrent synoptic-scale study of Fuelberg et al. (1980), 

these values also are included for easy reference. Robertson 

and Smith (1980) investigated synoptic-scale energetics associ- 

ated with the Palm Sunday 1965 tornado outbreak which was char- 

acterized by the propagation of a short wave through a long 

wave trough in the western portion of the region. Generally, 

the energetics of the Palm Sunday outbreak are similar to those 

of the RRVTO. Kinetic energy content is somewhat smaller, as 

is the local change of kinetic energy. The latter may be due to 

their longer period of investigation (36 h). Cross-contour 

destruction of kinetic energy is similar to that of the synoptic- 

scale study but is considerably larger than that of the present 

subsynoptic-scale investigation. Values of horizontal flux con- 

vergence are similar in both cases. Like the RRVTO, the Palm 

Sunday outbreak is characterized by a small subgrid-scale source 

of energy. Fuelberg and Scoggins (1978) conducted a synoptic- 

scale study during a period containing two mesoscale convective 

complexes (AVE4) which formed during a period of basically zonal 

flow. Their energy budget values tend to be smaller than current 

results because jet intrusion into the region did not occur. 

Horizontal flux divergence and generation were sinks of energy 

with the only source arising from subgrid scales of motion. 
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Results from data having a mes0-B scale resolution (%170 km) 

now will be compared with the current study. Tsui and Kung 

(1977) used NSSL observations to perform an energy study of con- 

vective, non-convective, and frontal situations. Kinetic energy 

content and the local change of energy for their composite con- 

vective case are comparable to values of the current study; how- 

ever, source and sink terms are quite different. Cross-contour 

flow is a major source of energy and is nearly balanced by a 

dissipational loss to smaller scales of motion (disp< 0). Al- 

though horizontal flux convergence is an external source of 

energy, its magnitude is relatively small. The energetics of 

their non-convective composite case are radically different from 

those of the composite convective case with cross-contour des- 

truction and positive dissipation being the dominant processes. 

A comparison of the energy balances associated with different 

scales of resolution is difficult because there are many variables 

which influence the energetics of each particular area. One can 

only speculate on the observed trends. During the convectively 

active AVE-SESAME I period, destruction of kinetic energy by 

cross-contour flow trends toward generation as the resolution of 

smaller scales increases. In a similar way, the convective cate- 

gory of Tsui and Kung, using data having 85 lan spacings, shows 

much more generation than found during convective periods derived 

from synoptic-scale data. These results suggest that the near 

storm environment may generally be characterized by strong cross- 

contour generation. There also may be a trend towards negative 

dissipation in the convective environment as resolution focuses 
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on progressively smaller scales. Values of horizontal flux 

divergence and convergence seem to become smaller in magni- 

tude with finer resolution. Upward transport of kinetic 

energy has been observed in the convective environments of 

all cases. Much more investigation must be performed to 

verify these tentative hypotheses. 
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C. Time variability of area averaged energetics -- 

One of the advantages of 3 h rawinsonde data is that 

they allow an analysis of short term atmospheric variability. 

The time variability of vertical totals of area averaged kin- 

etic energy parameters is shown in Fig. 25. The region ex- 

periences an increase in kinetic energy at all times except 

0300 GMT as values climb from 26.5 x lo5 J mB2 at the first 

observation to a final value of 41.1 x 105 J m . -2 The in- 

creases are nonlinear, as indicated by the local change term 

which reaches a minimum at 0300 GHT. A slight decrease in 

kinetic energy content occurs between 0000 and 0300 GMT, but 

the change term does not become negative because of the 6 h 

time differencing. Time variability for the synoptic-scale 

study (Fuelberg et al., 1980) is shown in Fig. 26. Magni- 

tudes and trends of kinetic energy content and local change 

generally are similar in both studies, and both indicate two 

general surges of increased kinetic energy content--one during 

the first half of the period, and the second during the latter 

half. 

Values of the generation term (-$o$c$) also exhibit two 

maxima. Although the area-time averaged value indicated 

destruction (Table 2), generation occurs in the vertical 

column near 2100 GMT and 0900 GMT. To further investigate 

this time variability, a pressure-time cross section is 

shown in Fig. 27. In the upper layers between 1200 and 1800 
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Figure 25. Time series of subsynoptic-scale energy budget 
terms integrated between the surface and 100 mb. 
Three-hour time intervals are indicated on the 
horizontal axis. 
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Figure 26. Time series of synoptic-scale energy budget terms 
integrated between the surface and 100 mb. 
Three-hour time intervals are indicated on the 
horizontal axis (Fuelberg et al., 1980). 
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GMT, strong cross-contour destruction accompanies the in- 

crease in winds associated with jet intrusion from the south- 

west. The minimum of destruction near 2100 GElT occurs as the 

major wind perturbation develops over Oklahoma and Kansas. 

Finally, the latter half of the period again is character- 

ized by destruction as the main jet axis becomes superimposed 

over the area. Maximum low-level generation between 2100 and 

0900 GMT is related to the formation and movement of the low- 

level jet stream. The tendency toward greater positive gen- 

eration using subsynoptic-scale data that was noticed earlier 

in Table 1, again is evident by comparing Figs. 25-26. Al- 

though magnitudes indicate that more positive generation 

occurs with the subsynoptic-scale resolution, time varia- 

bility between the two studies is quite similar. 

Horizontal flux convergence of kinetic energy is the 

greatest source to the vertical column at all times, with a 

maximum adjusted value of -44.5 W mD2 at 2100 GMT. A secondary 

maximum of -32.4 W mV2 occurs at 0600 GMT. Time variability 

indicated in this term is similar to that of the synoptic- 

scale study with largest variations occuring in the upper 

levels (Fig. 28). Horizontal flux divergence develops above 

250 mb after 0000 GMT as the jet streak advances from the 

southwest. 

Although adjusted dissipation was found to be a small 

sink of energy in the area time-average (Table l), Fig. 29 

shows that upper-level transfer of energy from subgrid- 
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Figure 28. Pressure-time cross section of area averaged 
adJusted horizontal fl_u3 divergence of kinetic 
energy. Units are W m /lOO mb. 
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scales into the resolvable scales produces positive vertical 

totals near the beginning and end of the Experiment. The 

pressure-time cross sections of dissipation and generation 

(Fig. 27) show similarities; negative generation tends to 

occur with positive dissipation and vice versa. The maximum 

loss of kinetic energy via this term (-34.2 W mD2) occurs near 

the height of the RRVTO (0000 GMT). 

Because vertical flux divergence of kinetic energy is 

near zero in the vertical total, it is not shown in Fig.25. 

Figure 30, however, shows its pressure-time variability aver- 

aged over the area. The lower and middle troposphere are 

regions of vertical flux divergence (export) at all times, 

while the upper layers experience flux convergence from below 

(import). Magnitudes are small until 2100 G&W, when upward 

vertical motion increases dramatically (Fig. 16). Between 

0300 and 0600 GMT, upward transport of kinetic energy is the 

largest source to the 300 to 100 mb layer. 

Results of this section have indicated large time vari- 

ability in the area averaged energetics. The next section 

will focus further on these changes by considering the ener- 

getics of particular areas of interest. 

d. Limited jet streak formation 

The sudden appearance of an upper-level isotach maxi- 

mum over Oklahoma at 2100 GMT (Fig. 7) was associated with 
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Pigure 29. Pressure-time cross section of area averaged 
adjusted2dissipation of kinetic energy. Units 
are W m /lOO mb. 
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Figure 30. Pressure-time cross section of area averaged 
vertical flux-givergence of kinetic energy. 
Units are W m /lOO mb. 
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rapid changes in kinematic parameters and a rapid devel- 

opment of severe convection in the area. This section inves- 

tigates the energetics surrounding the formation of this 

important feature. The presentation evaluates several 

possible mechanisms for its formation and seeks to deter- 

mine the most likely cause. 

Simple advection of kinetic energy into the region is 

one process capable of producing the limited jet streak. 

Figures 31 and 32 show advection of kinetic energy (?*vk) 

integrated over the middle (700-400 mb) and upper (400- 

100 mb) atmosphere for 1800 GMT and 2100 GMT, respectively. 

This component dominates the horizontal flux divergence 

term of kinetic energy in those areas where velocity diver- 

gence is relatively weak (see (3)). At 1800 GMT advection 

acts as a sink of kinetic energy in the Red River Valley and 

southern Oklahoma at both the middle and upper layers 

($.?k >O). Although weak negative advection serves as a 

source of energy north of the Valley, cross sections reveal 

that it is confined to thin layers near 200 mb and below 

600 mb (not shown). Largest magnitudes of advection are 

located over southwest Texas and New Mexico, in advance of 

the major jet streak. At 2100 GMT (Fig. 32), kinetic energy 

is advected into northern Oklahoma and Kansas in both layers; 

however, advection acts as an energy sink over the Red River 

Valley. This couplet pattern is due to the newly formed 

jet streak over central Oklahoma. The large area of nega- 
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Figure 32. Horizontal fields of kinetic energy advection 
integrated over the 700-400 mb layer and the 
400-100 mb layer for-$ 100 GMT 10 April 1979. 
Values are x 10 W m . 
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tive values over southwest Texas continues to indicate jet 

intrusion from the southwest corner of the region. Similar 

maps for later times suggest that significant advection into 

central Oklahoma from the southwest does not occur until 0600 

GMT, well after formation of the smaller streak. If the 

streak over Oklahoma had translated into the area, a forward 

motion of approximately 50 m s -1 would have been required. 

This value is much greater than has been observed with previous 

jet streaks (Palm&n and Newton, 1969). 

Since advection does not appear to be a likely cause, 

the jet streak over Oklahoma must be due to local creation of 

kinetic energy. In order to investigate the possible sources 

of energy responsible for this feature, spatial cross sections 

were produced for each term of the kinetic energy budget 

equation along a line running north-south through the Red 

River Valley (Fig. 33). Selected cross sections for 2100 GMT 

are presented in Fig. 34. The cross section of kinetic 

energy content indicates the newly formed jet streak over 

Oklahoma and Kansas. The wind maximum contains a peak 

energy value of 6.15 J mW2/100 mb near 300 mb and has a 

vertical depth of approximately 400 mb. The separate maxi- 

mum of kinetic energy over southern Texas represents the 

northern extension of the subtropical jet stream. Its 

maximum value within the region is 9.12 J m-"/100 mb near 

the 150 mb level. The cross section of the generation term 

indicates a strong source of kinetic energy through the entire 
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vertical column from northern Oklahoma into Texas. This 

area of generation, having a central value of 43.9 W m-"/100 mb 

at 300 mb, is displaced slightly southward from the kinetic 

energy maximum. The corresponding figure for the dissipation 

term shows a source of energy from subgrid scales of motion 

over only a small portion of the streak's area. In fact, 

major dissipational losses occur over a much larger region 

stretching from northern Oklahoma into Kansas above 500 mb. 

Vertical flux convergence ( tik 
-5 

< 0) is a major energy source 

to the upper levels near the jet streak. Values greater than 

25.0 W mB2/100 mb occur near 300 mb. Upward motion is an 

important transporter of energy contained in the middle 

levels. Rising motions in the area can lift the energy of 

the middle layers by 200 mb in just 3 h. 

In order to quantify the magnitudes of the various source 

and sink terms over Oklahoma and the Red River Valley, grid 

point values of the energy budget were averaged over a fixed 

sub-volume (box) of the total area (Fig. 35). The area so 

studied is approximately 1.3 x lo5 km2. Vertical distribu- 

tions of the energy budget terms averaged over this area 

are presented in a pressure-time series from 1800 GMT through 

0300 GMT (Fig. 36). Although the streak was contained with- 

in the sub-volume at 2100 GMT, it had begun to move northward 

by 0000 GMT. Integrated totals for the 500-100 mb layer 

are tabulated in Table 3. 
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Table 3. Vertically integrated 500 to 100 mb totals for various kinetic 

energy budget terms in a sub-volume at 1800,2100, and 0000 GhR 

lo-11 April 1979. -2 All units are in W m . 

Parameter Layer 1800 GMT 2100 GFfl' 0000 GMT 

akrat 500-100 mb 39.4 23.2 5.0 

500-100 mb 36.5 104.0 53.8 

(disP),dj 500-100 mb -27.7 -13.3 -29.0 

hk 
-F 

500-100 mb -7.2 -52.8 -47.6 

(hc?)adj 500-100 ml, -23.1 119.7 67.3 



Local increases in kinetic energy occur above 650 mb 

at 1800 GMT, include the entire vertical column by 2100 GMT, 

and are confined only to the middle layers at 0000 GMT as 

the jet streak moves northward. Within the 500-100 mb layer, 

greatest increases occur at 1800 GMT when the value reaches 

39.4 W mB2. Production of kinetic energy by cross-contour 

flow is the largest source to the limited region at all times 

presented (Table 3). The maximum value for the 500-100 mb 

layer is 104.0 W mm2 at 2100 GKC. Greatest generation occurs 

in the upper levels between 0000 and 0300 GMT, but significant 

middle-level generation is observed from 2100 GMT through 

0000 GMT. The pressure-time series for adjusted dissipation 

indicates a fairly strong middle-level source of energy 

from the unresolvable scales of motion. However, the 500-100 

mb layer totals indicate a loss of energy at all times due 

to dissipational processes in the uppermost levels. Vertical 

flux convergence is the second greatest source of energy to 

the upper levels at 2100 GMT and 0000 GMT (Table 3). Flux 

divergence provides a major sink of energy for the middle 

and lower troposphere. 

Horizontal flux convergence provides the second greatest 

energy source to the 500-100 mb layer at 1800 GMT, with a 

-2 value of -23.1 W m (Table 3). This term becomes a sink to 

the upper levels after 1800 GMT as the streak develops. The 

pressure-time series for the divergence component (kT.9) 

of the horizontal flux term (see Section 5b) indicates that 
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divergence is the greatest contributor to the magnitude and 

variability of the overall flux term. 

Based on the information just presented, several conclu- 

sions can be made. Although horizontal flux convergence 

transports energy into the region over Oklahoma at 1800 m 

(Fig. 35), local generation of kinetic energy is the major 

source as the limited jet streak begins to form. With 

development of upward vertical motion over the area by 2100 

GMT, vertical flux convergence becomes a major upper-level 

source. It and increased local generation outweigh the out- 

flow created by the developing streak. Generation and 

vertical transport continue to support the jet streak through 

0000 GMT as it exits the limited region. 

The mechanisms responsible for local generation of 

kinetic energy near the jet streak are more uncertain. At 

least two possible factors may have contributed to the 

ageostrophic motion necessary for this generation. First, 

the height perturbation discussed in Section 4 propagates 

toward the Red River Valley at these times. Height falls 

associated with this perturbation may alter the height gradient 

inducing cross-contour flow. These falls, however, are 

located near the observed convection in the eastern portion 

of the Texas panhandle (see Fig. 8), and not in Oklahoma 

where the streak is first detected. 

A second possibility involves storm-environment inter- 

actions. Previous studies have suggested that areas of 
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intense convection can modify their large-scale environments 

by enhancing low-level convergence, upper-level divergence, 

and upward motion, and also by producing upper-level height 

rises and lower-level height falls (e.g., Aubert, 1957; 

Danard, 1964 and 1966; Ninomiya 1971a and b; Fuelberg and 

Scoggins, 1978; Fritsch and Maddox, 1980). These processes 

could induce ageostrophic motions and generation of kinetic 

energy. Unfortunately, it is not a trivial task to isolate 

such feedback effects because some of the environmental 

modifications also can be the mechanisms which initially 

help produce the storms. It is often a "chicken-egg" type 

of question. 

Between 1800-0000 GMT the area near Oklahoma and the Red 

River Valley undergoes kinematic and energy changes which are 

similar to those attributed to storm inducement. This suggests 

that the storms may be a cause for the formation of the nearby 

limited jet streak. An analysis of storm locations at these 

times (Figs. 6, 8, and 9) can be used to discuss this hypo- 

thesis. The small area of storms in northcentral Texas at 

1800 GMT (Fig. 6) moves through Oklahoma near 2100 GMT 

(Fig. 8) and into Kansas by 0000 GMT (Fig. 9). Thunderstorms 

in this area are not especially intense. The more intense 

storms of the RRVTO are at the eastern edge of the Red River 

Valley at 2100 GMT and move into Oklahoma at approximately 

2300 GMT. The jet streak which forms between 1800-2100 GMT 

is downwind of these storms. In previous studies increases 
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in winds were observed north of large storm areas, while 

changes in horizontal divergence and vertical motion, were 

found to be superimposed over the storms (Fritsch and Maddox, 

1980; Maddox et al., 1980; Fuelberg and Scoggins, 1978). 

An additional consideration is that the limited streak and 

the severe storms form nearly simultaneously. Fuelberg and 

Scoggins (1978) found a lag of several hours between storm 

development and maximum changes in the environmental kinetic 

energy balance. The time lag in the current study appears to 

be much shorter, however. 

It should be emphasized that insufficient information 

is known about the time and space phasings between storm 

formation and resulting environmental modifications. Present 

results suggest that the formation of the jet streak between 

1800-2100 GMT cannot be attributed totally to feedback 

mechanisms from the developing storms. It is reasonable to 

conclude, however, that feedback mechanisms were important in 

the intensification and maintainance of the feature. Further 

research will be necessary to determine what other factors, 

if any, are related to initial jet formation. Likewise, 

questions about the time and space phasings between the jet and 

the storms still must be answered. 
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e. Energetics of convective areas - 

The purpose of this section is to describe and contrast 

the energetics and flow characteristics of convective areas 

with those of areas not experiencing storms. Manually 

Digitized Radar (MDR) data (National Weather Service, 1979) 

were used to objectively determine the intensity and position 

of the radar-observed precipitation during the AVE-SESAME I 

period. The MDR data were obtained from radar summary charts 

that are routinely transmitted over the facsimile circuit. 

Values were assigned to each grid point (Fig. 1) at each 

rawinsonde observation time by taking the maximum value 

within % grid distance (~~65 km) of the point. An average 

energy budget then was computed for points having no precip- 

itation (MDR 0) and another for points having moderate to 

intense convection (MDR 3-6). A similar procedure was used 

to obtain averages of certain kinematic parameters. This is 

not a traditional spatial average since grid points com- 

prising a particular MDR category are not necessarily adjacent. 

The procedure is similar to that used by Fuelberg et al. 

(1980), Fuelberg and Scoggins (1978), and Wilson (1976). 

Figure 37 shows vertical profiles of MDR-averaged 

kinematic quantities for the storm (MDR 3-6) and non-storm 

(MDR 0) environments. Compared to the non-storm surroundings, 

the storm environment is characterized by enhanced low-level 

velocity convergence and upper-level divergence, increased 
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Figure 37. Vertical profiles of Manually Digitized Radar 
(MDR) averaged kinematic quantities. The solid 
line indicates moderate to intense storm areas 
(MDR 3-6) while the dashed line indicates the 
non-storm6arefs (MDR 0). ValuEs ofldivergence 
are x 10 s vorticity x 10 s 
advection of rilative vorticity x lo- . 
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low-level positive relative vorticity and reduced upper-level 

positive vorticity, and strong positive vorticity advection 

in the upper levels. These profiles are similar to those 

for the synoptic-scale study (not shown) except in two 

respects. First, the non-storm region of the present study 

experiences negative vorticity advection in the upper levels 

while only reduced positive advection occurred in the previous 

study. Second, magnitudes of divergence in the storm average 

of the present study are much greater than at the synoptic- 

scale investigation. This result is consistent with findings 

presented in Section 5a and reflects the better resolution 

of small-scale features-in the current study. 

Vertical profiles of MTIR-averaged kinetic energy budget 

terms are presented in Fig. 38. Totals for the complete 

vertical column are presented in Table 4. Profiles for the 

various terms indicate distinctive differences between the 

storm and non-storm environments. Upper-level kinetic energy 

content is larger in the non-storm areas while the storm 

environment exhibits enhanced low- and middle-level energy. 

This and previous results suggest that, on the average, storms 

developed downwind from the main upper-level jet core in areas 

where divergence and vertical motion are more conducive to 

intense storm development. Also, increased low-level flow 

apparently provided the necessary mass and moisture convergence 

necessary for the intense storms. The vertical totals of 
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Table 4. Vertically integrated Manually Digitized Radar (MDR) averaged 

subsynoptic-scale kinetic energy budget. -2 Values are in Wm 

except for K which is Jm -2 . 

HDR 
Values 

F!DR 3-6 
Moderate-Intense 37.1 18.8 39.5 -31.6 -30.4 32.2 -62.5 -0.1 -52.4 -51.2 

Storms 

MDR 0 Non-Storm Area 36.7 17.5 -15.8 -14.1 -27.5 5.2 -32.6 0.0 19.3 5.9 



-2 kinetic energy content are 37.1 J m and 36.7 J m -2 for the 

storm and non-storm environments, respectively (Table 4). 

Vertical totals for the local change of kinetic energy also 

are very similar; however, the storm-area profile indicates 

a larger local change in the middle levels than in the non- 

storm environment. 

Generation by cross-contour flow is a source of kinetic 

energy at all levels of the storm environment while destruction 

is prominent in the upper levels of the non-storm area. 

These upper-level contrasts make the vertical totals strik- 

ingly different, with values of 39.5 W m -2 and -15.8 W mD2 for 

the storm and non-storm area, respectively. Horizontal flux 

convergence is a source of energy at all levels in the storm 

environment except the 300-200 mb layer where it provides a 

substantial sink. This outflow of energy is due to the 

dominance of the divergence term of the horizontal flux (see 

Section 5~). In the non-storm environment, flux convergence 

is a large source of energy in the middle and upper tropo- 

sphere as a result of large advection (6*vk < 0) and small 

divergence. Vertical totals show that both areas are large 

importers of kinetic energy, but the relative contributions 

of advection and divergence are considerably different. 

Profiles of vertical flux divergence indicate that energy 

is transported upward in both the storm and non-storm 

environments; however, in the storm environment, the process 
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is a much larger source of energy to the upper levels. 

Dissipation is a very large sink of energy to the storm 

-2 environment as indicated by the vertical total of -52.4 W m . 

This grid- to subgrid-scale transfer is maximized in the 

200-100 mb layer with a secondary maximum near the surface. 

Slight positive dissipation is noted in the 700-500 mb layer. 

In the non-storm environment, upper-level transfers of energy 

from the subgrid scales to resolvable scales of motion 

(positive dissipation) contrast with dissipational losses 

of the storm environment. 

Differences in energetics between the storm and non- 

storm environments presented here are similar to those found 

by Fuelberg et al. (1980) in their synoptic-scale study. 

Certain trends are seen in values of generation and dissipation 

when results of subsynoptic-, synoptic-, and meso- scale 

studies are compared. Fuelberg et al. (1980) reported values 

-2 of 15.5 W m -2 and -23.1 W m for the generation and dissi- 

pation terms of the synoptic-scale storm environment during 

AVE-SESAME I.1 Corresponding values for the composite of 

convective cases using meso- scale data (Tsui and Kung, 1977) 

(Table 2) indicate larger generation of kinetic energy (89.5 

W mD2) and larger dissipational losses (-96.0 W m -2) . 

1 Values presented here differ from those originally 
reported by the authors and result from a more comprehen- 
sive set of MDR data. 
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Results from the current subsynoptic-scale study lie in 

between these values (Table 4). As noted in Section 5c, 

this suggests that increased positive generation and negative 

dissipation are increasingly characteristic of the storm 

environment as resolution focuses on smaller scale features. 

More investigations at the subsynoptic scale are needed to 

verify such relations between the different scales of motion 

and the effects that storms have on their environmental 

kinetic energy balance. 
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6. SUMMARY AND CONCLUSIONS 

The subsynoptic-scale kinetic energy balance during the 

Red River Valley tornado outbreak has been studied in order to 

diagnose storm-environment interactions that take place during 

severe storm occurrences. Subsynoptic-scale data (station 

spacing of ~250 km) from the AVE-SESAME I period provided a 

resolution of the storm environment which has not been pre- 

viously achieved. Results of kinematic analyses indicate that 

special data handling techniques used in the study produced a 

consistent, unbiased data set which served as input for the 

kinetic energy budget calculations. 

Area-time averaged energetics indicated that horizontal 

flux convergence was the major source of kinetic energy to the 

region. Destruction of kinetic energy by cross-contour flow 

was a small sink while vertical transport provided a major 

source to the 300-100 mb layer. Dissipation was the smallest 

of all energy parameters in the vertical total of the area- 

time averaged budget. Vertical profiles of source and sink 

terms indicated primary maxima in the upper levels that were 

associated with jet stream activity. Secondary maxima of some 

terms in the middle and lower levels seemed related to special 

features such as frictional processes and the low-level jet 

stream. 

No other studies at this scale (meso-a) were available 
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for comparison purposes; however, results were compared with 

those from previous synoptic- and meso- scale investigations 

encompassing storm outbreaks. Results suggested a tendency 

for the atmosphere in the storm environment to become more 

conducive to cross-contour production of kinetic energy as 

data resolution went from synoptic- to meso- scales. Trans- 

fers of energy from resolvable to subgrid scales of motion 

(dissipational losses) appeared more dominant as finer-scale 

resolution was obtained, Similarly, horizontal flux conver- 

gence and divergence became relatively smaller in magnitude. 

Further investigations, especially at the meso and meso-fi 

scales, are necessary to verify these hypotheses. 

Time variability of the current subsynoptic-scale (meso-a) 

energy budget indicated significant fluctuations throughout 

the experiment. Two surges of increased kinetic energy 

content associated with jet intrusion from the southwest were 

evident. The primary and secondary maxima occurred at 0900 

GMT 11 April and 2100 GMT 10 April, respectively. Destruc- 

tion of kinetic energy by cross-contour flow and upwelling of 

energy from subgrid scales of motion (dissipational source) 

were associated with these increases of energy content. 

The kinetic energy balance over Oklahoma during the 

formation of a limited jet streak over the area received 

special attention. Local production of energy by cross- 

contour flow between 1800-0000 GNC was found to be the dom- 

100 



inant source of energy for jet development. Vertical trans- 

port was responsible for concentrating energy in the upper 

levels. An analysis of storm locations near the time of jet 

formation indicated that the intense convection producing 

the Red River Valley tornadoes may have contributed to local 

generation by modifying the surrounding environment. Almost 

simultaneous storm and jet streak development suggested that 

other factors also were responsible for the wind perturbation. 

Even if initial streak formation was not totally due to the 

storms, the convection probably was responsible for the in- 

tensification and maintenance of the feature for at least six 

hours. Further investigations about time and space phasings 

between storm development and the appearance of the jet 

streak are needed. 

The kinematics and energetics associated with areas of 

moderate to intense storms were found to differ greatly from 

those of areas without storms. In contrast to the non-storm 

environment, storm areas contained enhanced low-level con- 

vergence and upper-level divergence, and increased low-level 

positive vorticity and reduced upper-level positive vorticity. 

Strong generation of energy by cross-contour flow and dissipa- 

tional losses to subgrid scales of motion were evident in the 

storm areas; however, non-storm areas exhibited destruction by 

cross-contour flow and a source of energy from the unresolvable 

scales of motion. Horizontal outflow in the 300-200 mb layer 

of the storm area contrasted with upper-level horizontal flux 
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convergence in the non-storm environment. These findings, 

when compared with synoptic- and meso+ scale results, again 

suggested that convective areas become more dominated by 

cross-contour sources and dissipational sinks as data resolu- 

tion focuses on finer scale features. 
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APPENDIX 

Sensitivity Analysis 

Sensitivity of the energy budget parameters to errors 

contained in the input rawinsonde data was evaluated quanti- 

tatively. Although the data possess both systematic and 

random errors, only the effects of random errors were con- 

sidered because no effective procedures for considering the 

systematic type are available. Also, the effects of compu- 

tational inadequacies such as truncation error were not 

considered. 

The sensitivity study consisted of recomputing the 

energy budgets after random perturbations simulating rawin- 

sonde errors had been added to the 25 mb values of wind and 

height at individual stations. Budget values derived from 

the perturbed data were compared with those from the origi- 

nal data. Although the original data were used as the stand- 

ard for comparison, they were not error free. The current 

procedure is similar to that used by Robertson and Smith 

(1980), Vincent and Chang (1975), and Fuelberg and Scoggins 

(1980). 

Computer-generated random perturbations were normally 

distributed about zero with standard deviations varying as 

a function of pressure (Table 5 >. Values for levels not 

shown in the Table can be obtained by linear interpolation. 

These random error estimates are similar to those originally 

proposed by Kurihara (1961). Because of the care taken in 

processing and checking the AVE-SESAME data, the random 
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Table 5. Standard deviations of normally dietributed perturbatione. 

Pressure Wind 
level direction 
(mb) (deg) 

Wind 
speed 

(In s-1) 
Height 

(m) 

100 12.0 5.0 44.0 

200 10.3 5.0 35.0 

300 8.6 4.5 24.0 

500 5.3 3.0 13.0 

700 4.0 2.0 11.0 

900 2.0 1.0 5.5 



I - 

perturbations were restricted to two standard deviations 

from zero which included about 95% of the possible values. 

The 0000 GMT 11 April observation was chosen for study since 

it was near the time of maximum convective activity. Ten 

runs of the 0000 GMT data, each with a different set of 

perturbations at the individual 25 mb levels, were made. 

Because the data fluctuations were allowed to vary and ac- 

cumulate collectively, results of the study probably approach 

the limits to be expected from random errors (Vincent and 

Chang, 1975). The Barnes analysis scheme together with the 

explicit filtering schemes treat perturbations as waves and 

therefore remove portions of the deliberately introduced 

errors. By comparing the perturbed gridded fields of height 

data with the original gridded fields at 0000 GMT 11 April, 

it was found that about 30% of the original error at the 

stations was removed during the objective analysis. Approxi- 

mately 50% of the introduced station errors in wind direction 

and speed were removed. Wind data were subjected to vertical 

filtering in addition to the operations performed on height 

(see Section 3b). This ability of computational procedures 

to reduce errors in the data is desirable. 

Mean absolute differences and mean correlation coefficients 

between the original area averaged energy budget at 0000 GMT 

and the ten budgets derived from the perturbed data are given 

in Table 6 for the entire area of interest (Fig. 24) and in 

Table 7 for the limited area centered over Oklahoma (Fig. 35). 
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Table 6. Area averaged subsynoptic-scale kinetic energy budget for 0000 GEm 11 April 1979. 
Values in parentheses are mean absolute differences between the original and ten 
perturbed budgets. Values in brackets are mean correlation coefficients. The 
budget area (Pig. 24) consists of the entire area of interest. All units of energy 
parameters are W m-2 except for K which is 105 J m-2. 

Pressure 
Layer (mb) 

25.0 
400-100 to. 991 

(0.4) 

700-400 1:: ;91 
(0.0) 

sf c-700 2: i91 
(0.0) 

Vertical 
total 

37.8 
to. 991 
(0.4) 

-4.6 
{O. 91) 
(1.9) 

1:: 9371 
(0.6) 

r:: z91 
(0.2) 

r:: ;41 
(1.7) 

-14.4 
IO.911 
(6.2) 

$;;I . 
17.8 
to.981 
(0.4) 

Es1 
(7.2) 

-10.0 
{O. 93) 
(5.0) 

-14.9 
IO.99) 
(1.1) 

-14.8 

Kf . 

-2.5 -2.9 
to.991 to.991 
(0.1) (0.1) 

-27.3 

-18.8 
(0.94) 
(3.3) 

-36.5 
IO. 951 
(2.8) 

17.2 
iO.91) 
(1.8) 

{E71 
(0.6) 

-3.0 
to.991 
(0.1) 

14.6 
co. 901 
(1.7) 

-36.0 -8.7 -8.6 
(0.95) (0.96) ‘,;A;’ 
(2.3) (1.2) . 

(0.8) (1.0) (2.0) 

0.2 
IO. 99) ii: i9) ii::61 
(0.1) (0.2) (0.5) 

(2.3) (0.0) (7.7) 

-17,7 
IO.871 
(6.5) 

-7.5 
to. 95) 
(2.0) 

-9.0 

I:*? . 

-34.2 



Table 7. Area averaged subsynoptic-scale kinetic energy budget for 0000 GMT 11 April 1979. 
Values in parentheses are mean absolute differences between the original and ten 
perturbed budgets. Values in brackets are mean correlation coefficients. The 
budget area (Fig. 35) lies over Oklahoma and has an area of 1.3 x 1g5 km2, All 
units of energy parameters are W m-2 except for K which is 105 J m- , 

Pressure 
Layer (mb) 

K aktat -&6$ $* ki; (ifk$) adj k@**) ad., ?*vk -+ disp (disp)ad, 

26.9 48.5 88.9 67.1 63.3 
400-100 to.981 ii::31 to.821 10.96) to.981 to. 98) ti:;9i:i:;8] ;% -i::iO~ 

(‘3.8) (4.7) (27.7) (19.1) (16.3) (7.3) (10.2) (3.3) (33.0) (31.4) 

14.8 23.1 25.7 18.8 14.1 14.6 -0.5 13.7 30.0 25.3 
700-400 to. 991 IO. 971 

(3.2) (2.2) 

t::i9) ii:;81 27.5 -26.7 -29.9 -22.3 -7.7 33.5 -9.3 -12.5 
BfC-700 to. 991 to. 991 IO. 991 IO.991 to.991 to.991 to.981 10.98) 

(0.1) (0.4) (1.9) (1.1) (1.4) (0.7) (0.8) (1.3) (2.6) (2.4) 

Vertical 

total 

48.0 34.5 101.7 81.0 51.3 55.7 -4.4 -0.1 13.6 -16.1 
to.991 to.961 10.94) to.981 to.991 to.971 
(1.0) (5.7) (28.8) (18.9) (14.0) (4.9) 



Results indicate that the dissipation term is the most sensi- 

tive to random errors in the input data. On the other hand, 

terms expressing kinetic energy content and vertical flux 

divergence are the most reliable. Sensitivity of all terms 

increases with altitude because the rawinsonde data were 

assumed to become less accurate at the higher levels. At 

any level, one can be more confident of terms with large 

magnitudes than those with near zero values. Mean absolute 

differences for the smaller area (Table 7) are larger than 

those for the entire area (Table 6), but original values 

also are larger. Therefore, ratios of mean difference to 

original value for the two areas are similar. 

To examine the sensitivity of individual grid point values, 

linear correlation coefficients were computed between the 

original and ten perturbed budgets for both the complete 

and limited areas (Tables 6-7). Mean values between the surface 

and 700 mb are never less than 0.96 for either area. 

In the 400-100 mb layer, the generation term has the lowest mean 

correlation for the entire area (0.86) while dissipation exhibits 

the lowest mean value for the limited region (0.82). The lowest 

correlation of any single perturbed run for the entire region 

is 0.79 for dissipation in the 400-100 mb layer. The square 

of the correlation coefficient, which represents the variance 

of the original quantity that is explained by the perturbed 

run, then has a minimum value of 0.62. 
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Pattern similarity between energy fields derived from per- 

turbed data with those from original data is shown in Figs. 

39-41. For each parameter, the perturbed field having the 

lowest correlation of the ten runs is shown together with the 

original field. The perturbed field for dissipation (Fig. 39) 

has the lowest correlation of any parameter of any run (0.79). 

The patterns for these worst cases generally show good agree- 

ment in terms of maximum/minimum centers and overall orientation; 

however, the magnitudes of some central values are altered more 

significantly. 

Overall results suggest that inherent random errors in 

rawinsonde data generally should not affect the interpretation 

of calculations of this study. In addition, good time and 

space continuities of spatial fields provide additional confidence. 
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Figure 39. Integrated values of dissipation for the 400-100 
mb layer of the original and perturbation run 10 
of 0000 GMT 11 April. Units are lo2 W mB2. 

110 



400-100 MB 
:2 -2 

I \ 400-1bU MU 

O-1 00 GMT 11 APR 
COR = 0.88 

Figure 43. Integrated values of cross-contour generation for 
the 400-100 mb layer of the original and perturba- 
tion run 10 of 0000 GMT 11 April. 
lo2 W mB2. 

Units are 
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COR = 0.91 

Figure 41. Integrated values of horizontal flux divergence 
for the 400-100 mb layer of the origiral a;tits 
perturbation run 2 of 0000 GMT 11 April. 
are LO2 W me2. 
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