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ABSTRACT

A low speed wing tunnel equipped wich an axial gust generator to
simulate the aerodynamic environment of a helicopter rotor was used to
study the dynamic stall of a pitching blade. The objlective of this
investigation was to find out to what extent harmonic velocity pertur-
bations in the freestream affect dynamic stall. The study involved
making measurements of the aerodynamic moment on a two-dimensional,
pitching blade model in both constant and pulsating airstreams. Using
an operationai analog computer to perform on-line data reduction, plots
of moment - :rsus angle of attack and work done by the moment were
obtained. The data taken in the varying freestream were then compared to
constant freestream data and to che rcsults of two analytical methods.
These comparisons showed that the velocity perturbations had a signifi-
cant effect ca the pitching moment which could not be consistently
predicted by the analytical methods, but had no drastic effect on the
blade stability,
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THY-DIMENSIONAL DYNAMIC STALL AS SIMULATED
IN A VARYING FREESTREAM

by
G. Alvin Pierce, Donald L. Kunz, and John B. Malone
Georgia Institute of Technology
Atlaata, Georgta

INTRODUCTION

The dynamic or trausient stall of lifting surfaces has long been
recognized as a very complex non-lineur aerodynamic phenomenon. It has
been experienced by fixed-wing aircraft during abrupt maneuvers and gust
impingement, by compressor rotors during off-design conditions, and by
helicopter rotors on the retreating blade. The importance of transicnt
stall to the structural designer appears as an aerodynamic loading in
excess of that predicted under static conditions. In the case of dynamic
stall when the surface is oscillating, it has been observed that for
certain conditions a hysteret!. load reaction is developed which can be
destabilizing., This is of great importance to the aeroelustician since
it may cause a structural dynamic instability known as stall flutter.

The primary concern of thi{s report {s the nature of the oscillatory
dynamic stall as experienced by a retreating helicopter blade. Numerous
experimental investigations have been conducted (References 1-12) to
determine both the detailed nature of the stall phenomenon and the result-
ing aerodynamic reactions on the lifting surface, These studies have
incorporated flow visualization techniques, pressure-plotting time
historics, normal-force and pitching-moment measurements, and structural-
dynamic transient-response recordings., Most of these efforts have been
very comprehensive and quite informative, but they were all performed
in a uniform airstream, which does not similate the true rotor environment.

Stall flutter as experienced by a retreating blade of a helicopter

rotor occurs while the local airspeed is rapidly changing. Since it has




been thoroughly csetablished (Referencee 5, 13, 14) that dynamic stall is
characterized by discrete vortex shedding, the net loads on the airfoil
must be strongly influenced by thc proximity of the shed vortices. The
propagation of these vortices into the wake is in part determined by the
local airspced. Therefore it can be concluded that the rapidly chauging
local airspeed of the retreating blade could have ¢ signiricant effect on
the unstead, aerodynamic louds. As a consequence of this observation it
was felt that theve is a definite need for an experimental investigation
to establish the influence of a non-uniform airstream on the aerodynamic
reactions during dynamic stall,

1t may be noted that in addition to the experimental invest!gations
previously cited there have been numerous paralle]l efforts (References 10,
15-20) to either empirically or analytically predict the air loads during
dynamic stall, These studies in <1l cases have restricted their atten-
tion to the condition of a uniform airstream. Although such predictions
may satisfactorily agree with the experimental measurements, they most
certainly do not incorporate the effects of the locally varying airspeed,

This report discusses an experimental investigation (References
21-22) which was conducted in a low speed wing tunnei., The tunnel had
been modified to generate simple hdarmonic perturbations in the freestrcam
airspeed, A two-dimensional airfoil model was oscillated in pitch about
verious mean angles of attack near the static stall condition. The
resulting unsteady pitching moment is correlated with the instantaneous
angle of attack and integrated to establish its influence on dynamic

stability,



WIND TUNNEL FACILITY

This investigation was zarried out in the Georgia Tech Low Tur-
bulernce Wind Tunnel (Figure l). The wind tunnel which i8 of the closed-
jet open-circuit type has a maximum airspeed of 80 fect per second in
the test section. Downstream of the fan and upstrezin of the converging
nozzle is a honeycomb screen which serves to straighten the flow and to
limit the size of the turbulent eddies. One sidewall of the test-section
is fitted with screw-jacks so that the test-section contour can be
varied., For this investigation the sidewalls were parallel, which pro-

vided a square test-section, 42 inches on a side,

Gust Generator

The gust generator (Figure 2) is located at the downstream exit of
the wind tunnel. This mechanism consists of four component systems:
the drive motor and controls, the drive-side gear box, the idle-side
assembly, and the vanes. The power source for the gust generator is a
Wood's, one horsepower, SCR motor. A Wood's Model U-100 II.TRACON drive
control regulates the motor torque and speed. A pulley and belt drive
transfers the rotational motion of the motor shaft to the drive-gide
gear box.

Power is transmitted fro- the motor to the vanes through this
drive-side gear box which contains a worm gear, a vertical shaft, and
a series of bevel gears and slotted shafts set in pillow blocks.
Wnrizontal rotation from che motor is geared down and changed to vertical
rotation through the worm gear. The vertical shaft transfers the rota-
tion to the vanes through the bevel gears, which change the vertical
rotation back to horizontal rotation. §Six slotted shafts serve as points
of attachment for the vanes.

On the other side of the wind tunnel is the idle-side assembly.
The main components of this assembly are six slotted shafts, each set in
a pair of pillow blocks. Mounted on the second shaft from the bottom
are the vane RPM geavr and timing disk. The vane RPM gear is a 60-tooth

gear which was used in cenjunction with a magnetic pickup, filter, and
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electronic counter, to determine the rotationali r.-.@ of the vanes. The
timing disk, vhich is an aluminum disk with a stecl stud set into the edge,
was used together with a magnetic pickup to give a voltage pulse at a
specific point in the vane rotation.

The vanes of the gust generator are made from 1/4 inch thick
aluminum, 42 inches long, and of different widths, depending on the
percent blockage desired. A! each end, along the centerline, are holes
through which the vanes are boited to the slotted shafts which protrude
into the wind tunnel. Vane widths are designated by how much of the
wind tunnel exit areca is blocked off when the vanes are in a vertical
positicn, For example, the set of 70 percent vanes blocks off 70 per-
cent of the tunnel exit area. In order to minimize flow angularity in
the test section, adjacent vanes rotate in opposite directions.

A description of the gust generator calibration and resulting
data are presented in Reference 21. Figure 3 shows the operational limits
of the gust generator for the 30, 50, and 70 percent vanes between 0.67
and 2 Hertz. It should be pointed out that as the gust frequency increases,
for 8 constant mean velocity, the gust amplitude decreases. Thus, the
uppe:r limit gust amplitude curve for each set of vanes r.presents a
frequency ot 0.67 Hertz, while the lower limit represents a frequency of
2 Hertz, The upper and lower limits on mean velocity were determined by
where the waveform began to appreciably deviate from being simple harmonic.

Since there is no point where any cf the operational limits
overlap, it is impossible to vary one parameter (gust frequency, amplitude,
or mean velocity) and hold the other two constant. With this in mind,
and wanting to retain only a few significant variables, it was decided to
select one mean velccity and one set of vanes for all the tests. Using
the 50 percent vanes and a mean velocity of 42,50 feet per second, gust
amplitudes of 7.53 and 3.04 feet per second were obtained at 1 and 2
Hertz respectively (Table 1),



Hot-wire Anemomcter

Velocity measurcments in the wind tunnel were made with a hot-wire
anemometer, This means of measurement was selected for its accuracy,
ease of vse, and voltage output. The model used was a Flow Corporation
Model 900-A constant-temperature hot-wire anemometer, The probe, also
made by Flow Corporation, was 14 inches long and 1/4 inch in diameter,

A piece of 0.00035 inch diameter tungsten wire, welded to the probe tip,
served as the sensing element. With this arrangement, it wveas possible
to measure velocities of less than one foot per second.

Calibration of the hot-wire was accomplished in the wind tunnel
using tlie anemometer and probe, a mancmeter, and a pitot-static probe.
The hot-wire probe was placed !n the position where it was to be during
the tests, while the pitot-static probe was located in a downstream
position. TIn (hese locations, neither probe appeared to interfere with
the other., With the wind off, the manomecter and pitot probe were connected,
and the manomerer adjusted to read a column height of zero, After turn-
ing the wind tunnel on the hot-wire probe element was oriented perpendi-
cular to the flow direction by rotating the probe until the maximum ovt-
put was obtained. For constant wind tunnel velocities between 5 and 70
feet per second, the manometer height =2ad hot-wire voltage were recorded,
Ir addition, the average stagnation temperature and stagnation pressure
were determined over the duration of the calibration run.

Reduction and curve fitting for this data was done on a digital
computer. The program converted manometer column height to velocity
using the incompressible Bernoulli equation, then fit both linear and
quadratic curves to the data by a least squares approximat.on. Using
the standard deviation of each curve, the better fit wss selected as
the caiibration curve. The curve fit used thtoughtout this part of the

investigation is illustrated in Figure 4.




MOD:EL _AND DRIVE MECHANISM

Airfoil Model and Support

The model used in these tests was constructed from balsa blocks,
which were laminated together and bonded to a 7/8 inch diameter steel
spar. The blocks were shaped into a 9 inch chord, NACA 0012 contour that
had a 42 inch span, The spar was located at the quarter-chord. After
the shaping was complete, ti.e model surface was sealed and painted. To
mass belance the model, two :ectangular, brass bars were attached to the
spar. The locations for the bars were such that when the model was
installed in the wind tunnel, the bars were outside the test-section
walls, Thus, the airflow inside the tunnel was not disturbed,

An accelerometer to detect transverse motion was installed at a
point 2,5 inches aft of the axis of rotation. 1t was located near the
edge of the model, next to the wall of the test-section. In this loca-
tion, the aerodynamic disturbances created by the accelerometer would
have a minimum eifect on the overall flow pattern.

Due to the requirement that all supports be free of the test-
section walls, both supports for the model suspension system were attached
to the external wind tunnel structure., On the side where the oscillating
mechanism was installed, the support structure consisted of a base plate
bolted to the tunnel with steel angles, On the other side, the support
was a trapezoidal frame constructed of steel angles.

The model suspension system which consisted of two main bearing
assemblies (Figure 5), were located outside and on either side of the
test section. The center arm on each assembly was pinned to the base at
cne end and fixed at the other. Strain gage bridges were bonded to the
center arm at the points where the arm had been milled down to facilitate

the measurement of lift.

Oscillating Mechanism

The oscillating mechanism for the model (Figures 6 and 7) was
designed so that mean angl~ of attack, amplitude of oscillation, and
frequency could all be varied. The driving element for this system was

an interchangeable eccentric drive which was powered by a Minarik, 1/2
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horsepower, shunt motor. A Model WTF-73, Minarik Tachometer Generator
regulated the motor speed, The oscillatory frequency was measured in the
same manner as the vane frequency, using a 60-tooth gear, magnetic pickup,
low-pass filter, and electronic counter.

The eccentric drive transformed the rotational motion of the motor
shaft into the oscillatory motion of the model. 7Tt was fixed to the motor
shaft, and had an off-center crank pin to which the drive rod was connected.
The distance that the crank pin was away from the center determined the
amplitude of oscillation. Although four different eccentrics were
available (* 2°, + 4°, £ 6°, + 8°), only the * 4° drive was used.

The drive arm and drive rod assembly (Figure 8) transferred the
motion of the eccentric to the model spar. As the drive arm oscillated
the linkage shaft, the motion was transmitted to the model spar through
the angle-of-attack adjustment disks. By changing the relative positions

of the disks, the mean angle of attack of the model could be varied.

Transducers

A strain gage bridge was bonded onto the drive arm (Figure 8).
This bridge detected a signal proportional to the total moment on the
model, The calibration curve for the bridge is shown in Figure 9.

Since no quantitative measurement of acceleration was required
in this investigation, the B & K Model No. 306 accelerometer that was
attached to the model was not calibrated. 1Its signal was used, however,
in the synthesis of an angle-of-attack scale, and to cancel out the
output of the moment strain bridge as the model oscillated in still air.

These procedures will be explained in a later section.



DATA_ACQUISITION AND REDUCTION

Acceleration and Moment

Both the acceleration signal from the model accelerometer and the
total moment signal from the drive arm strain gage bridge contained an
appreciable amount of high frequency noise. These unwanted disturbances
were eliminated by processing the data (Figure 10) with a low-pass Krohn-
Hite filter which only passed frequencies below 20 Hertz., Although these
filters did not distort the basic signals, they did introduce a phase
shift. A subsequent phase adjustmert was accomplished by passing the
acceleration signal through a Spectral Dynamics narrow bandwidth tracking

filter., These measured data were then inputed to an analog computer.

Aerodynamic Moment

Before the aerodynamic moment data could be identified, all compo-
nents of the measured moment not due to the air loads had to be eliminated.
This was accomplished on an Electronic Associates TR-48 operational analog
computer with a DES-30 parallel logic unit. The process consisted of
minimizing the calibrated total moment signal during wind-off operation
of the tunnel by subtracting signals proportional to inertial moment,
damping moment, and higher-order contributions.

The analog mechanization which converted the total moment signa!
to aerodynamic moment is illustrated in Figure 11. The total moment sigual
on Trunk 3 is modified by the bridge calibration data prior to being fed
into Amplifier A09, where the correction factors are applied. The first
correction is an inertial term which is proportional tu the angular
acceleration of Trunk 2. This signal is mul:ziplied by an appropriate
gain to minimize the output of A09.

The damping correction is proportional to the angular velocity,
which is the integral of the acceleration. Since open-loop integration
on an analog computer is normally an unstable operation, it was necessary
to use an integration stabjilization circuit. The stabilization circuit
is an error feedback system in which the sum of the relative maxima and

minima of the integrated signal are fed back into the integrator. 1In
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this case, the angular velocity of integrator 11l provides the inputs for
track-and~-store units which are controlled by Comparator C21. This cumpara-
tor is driven by the angular acceleration which is 90° out of phase with

the desired angular velocity. Having obtained a stable angular velocity,

an optimum gain was applied to the output of AO7 to again minimize the

A09 output,

An oscilloscope display of the corrected moment versus angular
acceleration indicated that although the & and o corrections had
removed most of the wind-off moment contributions, some still remained.
The most obvious high-order correction needed was an 52 term. The
angular acceleration was squared (Figure 12) and applied to the total
moment in A09. Viewing the moment with three correction terms, versus
angular acceleration on an oscilloscope, indicated the need for an
& & factor. Multiplication of the angular velocity by the anguler
acceleration was accomplished by an electronic multiplier on the computer.
This term was adjusted to yield a minimum output from amplifier A0O9 for
the wind-off condition.

The gains on the correction inputs to A0O9 indicate that the o
and & contributions amounted to the greater part of the moment acting on
the model, while it oscillated in still air. Even though &2 and a o
contributions were approximately an order of magnitude smaller than the
& and & contributions, they were still very important since they were
of the same order of magnitude as the measured aerodynamic moment. These
results are presented es aerodynamic coefficients which are ncndimension-

alized with respect to the mean freestream dynamic pressure, model area

and chord,

Data Recording

The aerodynamic moment coefficient was presented on an oscilloscope
versus a synthesized angle of attack. Since the filtered model accelera~
tion signal was a simple harmonic function of time it was exactly 180°
out of phase with angle of attack. Consequently the synthesized angle of

attack was taken as the filtered acceleration times an appropriate gain.




These oscilloscope traces of moment versus angle of attack were thien
photographed with a camera which was equipped with an electronic shutte-,

Since the frequency of the frcestream velocity fluctuations was
significantly lower than the oscillatory frequency of the model, the
recorded moment trace for a given cycle of model pitch oscillation
corresponded to only a fraction of u velocity fluctuation cycle, The
specific regions of the velocity cycle, during which the photographs were
taken, were centered about the: mean increasing velocity (00), maximum
velocity (900), mean decreasing velocity (1800), and minimum velocity
(270°%).

As an example, consider a model frequency 6 times the frequency
of the velocity (Figure 13), Since one model pitching cycle would cover
60" of one velocity cycle, a photograph of the 90° region would start at
60" and end at 120°. Similarly a photograph of the 180° area would start
at 150° and end at 210°. In Figure 13 the solid lines show the areas of
the curve that correspond to each photograph,

With the equipment available, it was not possible to control the
phase relationship between the velccity and model pitch oscillations.

Thus, under otherwise id~ontical conditions, the pitching cycle recorded

for any particular region might begin and end at 0° one time and at 20°

the next. This situation was monitored during the course of the tests, and
was found to have no observable effect on the data.

To obtain these photographs it was necessary to generate a voltage
pulse which was synchronized with the gust, This was accomplished by
installing a timing disk on a vane shatt (Figure 14). Mounted on the edge
of _.he disk was a steel stud which passed close to a magnetic transducer
once every vane rotation (once every ocher velocity cycle). The transducer
provided the pulse which could be synchronized with the desired gust-velocity
phase angle by rotation of the disk., These pulses were processed by the
logic unit of the analog computer (Figures 15 and 16) to provide the

necessary triggering pulses for the camera shutter and oscilloscope sweep,
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Aerodvnamic Work

The work performed on the airfoil by the aerodynamic moment was
determined on the analog computer, Positive values of this work, a
clockwise locus of aerodynamic moment versus angle of attuack, contribhuted
a destabilizing effect on the airfoil motion. This work was determined
by direct integration of the product of aerodynamic moment and angular
velocity. The integrator output was processed by an accumulator circuit
on the analog.

Average values of work per cycle of airfoil oscillation were
determined over several cycles of freestream fluctuation. The analog
computer circuit was used to sum the individual values of work per cycle,
Then, the final accumulator output was divided by the total number of
cycles of airfoil oscillation to obtain a voltage which represented the
average of work per cycle.

When the work over any one cycle of pitching oscillation was
positive, that cycle was considered to be unstable, Strong instabilities
were indicated by large values of positive work. Stable oscillations showed

negative work, and the work for increasingly stable oscillations became

more negative,

11



RESULTS

Static Moment Data

Figure 17 shows the static moment curve for the afrfoil model.
The data wvere taken at «n airspeed of 42,50 ft/sec (Re 2,02 x 105),
which vas the mean velocity for all of the varying freestream conditions,
Also shown in the figure is the static moment curve as prescnted by Carta
et al. in Reference 10, 1t is apparent that although both models had an
NACA 001/ cross-section, the moment curves are markedly different, The
present data show a gradual Increase in nose-down momant after a sharp
dropoff, which indicates that this model undexrwent thin airfoil stall,
Carta's moment curve shows a large increase in nose-down moment which
continues out to an angle of attack of 24°, This behavior is typical of
leading edge stall that would, in most cases, be associated with a 127
thick airfoil section,

This evaluation cf the two static rurves is verified by the
findings of Gault in Referencc 23, and Ericsson and Reding in Reference
24, They pointed out that the type of stall is strongly dependent on
both Reynolds number and lcading edge curvature, For a Reynolds number
of 1.03 x 106 as Carta had, it would be expected that the airfoil would
normally experience leading edge stall, as indicated in Figure 18 from
Reference 23, Depending on esuch factors as surface roughness and turbu-
lence, there is also the possibility that the stall could be of the mixed
leading and trailing edge type. The findings in Reference 23 indicate that
at a Reynolds number of 2,02 x 105 thin airfoil stall would be expected,
These differences in static behavior suggest that there might also be
differences in dynamic behavior. There was no attempt made to modify the

results of this investigation to account for these effects of Reynolds number,

Varying Freestream Effects

The specific conditions examined in this program to establish
the effect of a varying frzestream on dynamic stall are itemized in
Table 2, All tests were performed at a mean airspeed (V) of 42,50 ft/sec

and an angle-of-attack amplitude (a') of 4°. The conditions were chosen

12



to best {solate the dependence of aerodynamic moment on mean angle of
attack, model frequency, gust frequency, and the ratio of these frequencies.
The notation of Table 2 is defined by the following expressions for angle

of attack and freestresm velocity,

aea+a el¥t
- ' fw ¢t

¢ represents the velocity phase-angle range for one cycle of airfoil
motion as {llustrated in Figure 13,

To isolate the effect of the fluctuating freestream, the aero-
dynamic moment is presented in Figures 19-25 for four mean phase angles
of the varying freestream, Also illustrated on these figures sre
equivalent data as measured in a constant freestream at speeds which
correspond to the relative mean velocities fdentified in Figure 13,

In this manner it is possiblc to compare constant & J varying freestream
data in which only the dynamic effects of the freestream are present.

1t should be noted that all coefficients are based on the¢ same mean
freastream speed,

Holding all of the other parameters constant, the mean angle of
attack was varied so that the model would oscillate about 6°, 100, 14°,
and 18°. Since the amplitude for all cases was 4°, the model was
operating in four different regimes with respect to the static stall
angle of approximately 11°. At a mean angle of 6° (Figure 19) the moment
curves were nearly elliptical and the oscillations were stable, At a
mean angle of attack ot 10° a drastic change orcurred in the moment
curves as illustrated in Fignre 20, A destabilizing moment appeared at
the high and low angle of attack limits. These data are also caaracterized
by a definite nose-down moment at the minimum angle. At 14° the moment
became completely unstable at all angles as shown in Figure 21. There
was also no significant distortion of the moment at the lower angles.

Although the motion at 18° was unstable (Figure 22), it was somewhat

13



less unatable than that witl a 14° meun angle.

An increase in model frequency had a profound effect on the shapes
of the moment curves as scen by comparing Figures 20 and 23, By increasing
the model frequency from 6 to 12 Hertz, while holding the model-to-gust
frequency ratio constant, all traces of dcstabilizing effects were
elimninated and the curves became nearly elliptical. This effect was
ver{fied by making similar comparisons with other cases. The effect of
the model-to-gust frequency ratio is best {llustrated by comparing
Figures 20 and 24. In both cases the model frequency is 6 Hertz. The
distorted moment curves are very similar except for a slight decrease in
the destabilizing effect at the lower ratio in Figure 24,

In many of the moment loci in Figures 19-25, there exist discon-
tinuities between the beginning and end of the cycles. In the varying
freestream, this {8 to be expected because of the velocity fluctuations.
However, in the constant freestream data similar discontinuities, which can
serve as measures of experimental error, also appear. Another indication
of the scatter in the data can be sern by comparing the constant freestream
curves at 42.50 fps ir Figures 20 and 24. For identical conditions, these
curves differ in the size of the loops, but retain the same general
character,

In contrast with the bulk of data in the literature, none of the
curves in Figures 19-25 show a decrease in pitching moment coefficient as
the angle of attack approaches its maximum. The reason for this is unknown,
but the good repeatability of the data would indicate that these are not
isolated anomalies.

The effect of the varying freestream i{s shown most clearly in
Figures 20 and 24, where the moment loci change radically from the constant
airspced condition, 1t appears that the varying freestream causes the
moment locus to lag the equivalent constant freestream data by approximately
90° of the gust cycle, This effect can be seen by rotating the positions
of the four varying freestream plots by 90° in the counterclockwise
direction. In chis new position, nearly every curve matches the constant

freestream data better than when they were in their original positions.

14



Because the other conditions were characterfized by nearly eclliptical
moment curves, this effect i{s more difficult to observe. However, in
every casc tested, this phenomenon could be scen by comparing the areas

inside the curves.

Analytical Comparisons

For both correlation and verification purposes it was desirable to
compare the experimental results with methods offered by prior investigators.
Two such methods are described below,

The first is the empirical scheme of Carta et al, published in
Reference 10, In that presentation, tables of normal force and pitching
moment coefficients are tabulated for an airfoil oscillating in a con-
stant freestream. These tables were {nputed to a computer program that
could interpolate between the data points, This program was set up such
that the stored data could be applied to harmonically varying freestreams,
as well as constant freestreams,

The second is an analytical develupment by Greenberg in Reference
25, which is based on Thcodorsen's treatment of unsteady potential flows
(Reference 26). While Theodorsen treated the problem of an airfoil under-
going simple harmonic oscillations in & constant airstream, Greenberg
expanded the problem to include a harmonically pulsating freestream
velocity., This potential flow analysis was programmed for correlation
with the current data.

The results of these two methods are compared with the measured
data in Figures 26-32. 1In all cases the potential flow analysis of
Greenberg predicts an elliptical mot. ut as a function of angle of attack,
while the Carta scheme provides a distorted curve. For the conditions of
Figure 27 the correlation is only fair between the test results and the
two predictive methods. At the higher mean angle of 18° in Figure 29
the Carta results compare very well with the measured data, At this high
agle the pntential analysisof Greenberg does not compare well as would
be expected. For the high model frequency of Figure 30 it is seen that
the experimental moment curve becomes nearly elliptical as predicted by

the Greenberg analysis and previously observed.

15
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Aerodynamic Work

The average integrated work per cycle which was performed by the
aerodynamic wmoment i{s nondimensionaliged into a work coefficient. This
coefficient is based on the mean freestream dynamic pressure, the model
arca and chord. Work coefficients were measured for mean angles from
0° to 20° and several values of model-to-gust frequency ratio (R). 1he
frequency ratio was varied by keeping the model frequency at a constant
value of 10 Hertz and changing the gust frequency,

Figure 33 is typical of the data obtained. 1t {llustrates the
sensitivity of the destabilizing effect of the aerodynamic moment to
the mean angle of oscillation, It is also quite apparent in the figure
tnat the work coefficient is not very dependent on the frequency ratio.
It can therefore be concluded that the dynamic effects of the varying
freestream have very little influence on the destabilizing effect of the

aerodynamic moment,

16



i CONCLUSIONS

The following conclusions which are based on the results of this

1uvestigation pertain to a Reynolds number of 2,02 x 105. Some engineering

¥
; discretion should be exevcised in extending theose observations to condi-
! tions of higher Reynolds numbers.

|

1. The varying freestream velocity has a significant effect on the
unateady aerodynamic moment for airfoil pitching o-.cillations in
the vicinity of static stall,.

2. For sinusoidal oscillations in angle of attack, the simple
harmonic freestream velocity variations do not significantly
increase the aerodynamic work done on the airfoil by the

freestream.

TSR

T

e
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Table 1,

Gust Generator Operational Curves for the
50% Vanes (0.67 - 2 Hertz)

wv(Hz) Gust Amplitude (fps)

_ 2
0.67 - 2,0180 + ,1900 V + ,0024 V
0.83 - 1.6940 + .1542 V + 0022 Vz
1.00 - 1.3640 + ,1196 V + ,0021 V
1.17 - 0.9690 + .0865 V + .0020 '\72
1.33 - 0.5685 + .0545 V + .0020 Vz
1.50 - 0.1425 + 0238 V + ,0020 Vz
1.67 0.3089 - .0056 V + ,0021 '\72
1.83 0.7858 - .0337 V + .0022 V
2.00 1.2880 - .0606 V + ,0024 Vz
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