## NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

##  OF A

FAST RECONERY, High volTAGE PONER dIODE

# Power Transistor Company 800 Hest Carson Street 

Torrance, CA 90502


## 17 Prepared for

# National Aeronautics and Space Administration 

másA Lewis fiesearch Center
Contract NäS3-22539

# DEVELOPMENT \& FABRICATIDN OF A FAST RECOVERY, HIGH VOLTAGE POWER DIODE 

Power Transistor Company<br>800 West Carson Streit<br>Torrance, CA 90502

Prepared for<br>National Aeronautics and Space Aoministration hasa lewis Research Center Contract NAS3-22539



[^0]Page
List of Figures ..... ii
List of Tables ..... $v$
List of Drawings ..... vi
i. Surmary ..... 1
2. Introduction ..... 2
3. Device Design ..... 4
3.1 Structure ..... 4
3.2 Voltoge Design ..... 7
3.3 Reverse Recovery Time ..... 18
3.4 Forward Voltage Drop ..... 23
3.5 Trade-offs ..... 2.9
4. Wafer Processing ..... 30
4.1 Diffusion and Lap es Polish ..... 30
4.2 Positive Bevel Moat ..... 30
4.3 Glass Passivation ..... 31
4.4 Metallization ..... 31
4.5 Wafer Test and Dicing ..... 32
5. Encapsulation ..... 34
5.1 Package ..... 34
5.2 Assembly ..... 34
5.3 Polarity Trade-c,ifs ..... 37
5.4 High Voltage Cap ..... 41
5.5 Thermal Ratings ..... 42
6. Test ..... 44
6.1 Test Plan ..... 44
6.2 Non-Repetitive Peak Surge Currents, IFSM ..... 45
6.3 Reverse Recovery Time, $t_{p r}$ ..... 46
6. 4 Forward Voltage, VFM ..... 54
6.5 DC Blocking Voltage, $V_{R}$ ..... 54
6.6 Reverse Current, IR ..... 54
7. Electrical Performance ..... 56
7.1 Characteristic Curves ..... 56
Page
8. Conclusion ..... 74
9. Acknowledgements ..... 76
10. References ..... 77
11. Appendix ..... 78
11.1 Specifications for Fast Recovery, High Voltage Power Diode ..... 78

## list of figures

Page
Figure 1 Diode surface geometry ..... 6
Figure 2 Ionization constants ..... 8
Figure 3 Breakdown voltage curves ..... 11
Figure 4 Depletion layer thickness curves ..... 12
Figure 5 lepletion layer diagram ..... 13
Figure $6{ }^{+}-N_{i}-N^{+}$junction with a positive bevel ..... 14
Figure 7 Planar structure junction ..... 15
Figure 8 Charge density profile ..... 16
Figure 9 Electric ficld diagram 1 ..... 16
Figure 10 Electric field diagran II ..... 17
Figure il Reverse recovery time ..... 18
Figure 12 Forward voltage drop ..... 24
Figure 13 Intrinsic region ..... 26
Figure 14 Process sequence cutline ..... 33
Figure 15 Solder reflow assembly, reverse polarity diode ..... 36
Figure 16 Solder reflow assembly, initial proposal ..... 38
Figure 17 Close-up cross section of Figure 16 ..... 39
Figure 18 Normal polarity assembly, modified version ..... 40
Figure 19 Thermal resistance, equivalent diagram ..... 43
Figure 20 Test eircuit block diagram ..... 45
Figure 21 Diode testing fixture ..... 47
Figure 22 Peak surge current pulse ..... 48
Figure 23 Reverse recovery waveform ..... 50
Figure 24 Typical $t_{r r}$ waveforms ..... 51

## Page

Figure 25 Forward voltage, VFM ..... 55
Figure 26 Device $\$ 031$-Forward characteristie curve ..... 58
Figure 27 Device 038 Forward characteristic curve ..... 59
Figure 28 Devicn $\$ 039$-Forward characteristic curve ..... 60
Figure 29 Device $\mathbf{N} 046$ Forward characteristic curve ..... 61
Figure 30 Device $\# 080$-Forward characteristic curve ..... 62
Figure 31 Device 031 Reverse leakage ..... 63
Figure 32 Device *038-Reverse leakage ..... 64
Figure 33 Device \#039-Reverse leakage ..... 65
Figure 34 Device 046 Reverse leakage ..... 66
Figure 35 Device H060-Reverse leakage ..... $6 ?$
Figure 36 Leakage versus temperature ..... 68
Figure 37 Device $: 031$ Gapacitanse versus reverse voltage ..... 69
Figure 38 Device 7038 -Capacitance versus reverse voltage ..... 70
Figure 39 Device $\# 039$-Capacitance versus neverse voltage ..... 71
Figure 40 Device : 046 -Capacitance versus reverse voltage ..... 72
Figure 41 Device 060 -Capacitonce versus reverse voltage ..... 73

## LIST OF TABLES

Page
Table i $V_{B f}$ versus intrinsic thickness ..... 10
Table 2 Forward valtage drop, blocking voltage and reverse recovery time of lot NASA-007 devices rodiated with 12 megarads, $R$ radiation (after packaging) ..... 21
Table 3 Forward voltage drop, blocking voltage and reverse rccovery time of lot NA:A OOD devices radiated with 16 magarads $\beta$ radiation (after packaging) ..... 22
Table 4 Desivered diode tert data ..... 52

## DRAWINGS

1. D0-5 stud - IMPEX,1404
2. D0-5 cap - 50-0016
3. Moly tab, cathode - 50-0003-4
4. Moly tab, anode - 50-0003-3
5. Incernal lead = 50-0011
6. Solder preform, cathode - 50-0004-7
7. Solder preform, anode - 50-0004-6
8. Fixture, soldering - 50-0010
9. Stud base - Nipert Co. P/N 068-8903
10. $00-5$ rock top - 50-0017

## 1. SUMMARY

The objective of this program is to develop a fast recovery 1200 volt, 50 ampere, silicon diode as specified by NASA Contract Number NA53-22539, doted September 18, 1980.

In order to meet the specifications of this contract a PIN diffused structure was proposed. A positive bevel mesa structure was used to reduce surface fields in order to utilize a lower starting silicon resistivity in order to achieve the specified forward voltage with a minimum silicon area.

A positive bevel was etched into the $p=n$ junction, which was later glass passivated.

Metallization used for contacting the cathode and anode areas was a TRI-METAL composition, which permitted solder reflow assembly.

The device was encapsulated in a $00-5$ diode package. Solderm reflow techniques were used to assemble the device. The characterization data presented is in agreement with the design concepts presented in this report.

All devices delivered to NASA under this contract met or exceeded the required specifications. A full characterization of the diode is included in this final report.

## 2. IATRODUCTIEA

The NASA requirement in avionic syshems for electrical poitep beyond the ter kilowatt ievel requires the use of a fast switching, high voltage, high current transistor.

The use of a fast switch, high voitage, high current power transistor necessitates a fast switching, high voltage diode with equivalent power capability of the transistor.

The recovery ime af the diode would have to be shorter than thit of the trangistor by a factor of two in order to protect the transiftor.

Diodes with these characteristics are used in s,nubber networks. as freewheeling diodes in inverter circuits and as rectifiars in high frequency power conversion equipment.

The combination of fast switeh speed and high voltage reguired by the NASA specification is in the realm of therstatemofothemat of power semiconductor device fabrication.

The NASA requirement for such a high voltage, fast switching diode is also a requirement for the indusirial electronics market.

Specific opplications are in electric vehicle motor drives AC and DC motor controllers. The 1000 volt capability of the dinde will have an application in industrial motor controllers where the bus line
voltages, are 480 velts. At the present time, two fast witch low voltage parts must be used in serier, to achieve the 1000 volt requirement and rpeed requirenent at the expense of swithing efficiency.

Dioder, fabricated under this contract have been utilized in AC motor controller inverter cipgits therating from 480 volt lines.

## 3. DEVICE DFSIGN

### 3.1 Structure

The device is fabricated from 35 nem thermal neutron, trans. matation N-type doped, float zone silicon. Float zone fillicon exhibits high minority carrier lifetime and low oxygen and carbon content. Neutron transmutation doping involves the nuclear conversion of silicon atoms into phosphorus dopant atoms by exposing (intrinsic) silicon to a flux of thermal neutrons in a nuclear reactor core. The nuclear reaction is $\mathrm{Si}_{14}^{30}+n+\mathrm{p}_{15}^{3!}+\mathrm{e}^{-}$. The silicon isotope $5 i{ }_{14}^{30}$ absorbs a thermal neutron and becomes $\mathrm{Si}_{14}^{31}$, $\mathrm{Si}_{14}^{31}$ is unstable and emits an electron to become $\mathrm{p}_{15}^{31}$. This technique allows the fabrication of N -doped float zone silicon of extreme homagenity, i.e., small radial vaplations and reduced striations (resistivity microvariations); a result impossible by any of the other growing and doping methods. Low resistivity variations across the wafer minmizes the wafer thickness required as function of the resistivity and the intrinsig layer minority carrier lifetime.

Terminating the p-n junction with a glass passivated positive bevel moat allows the use of material with a relatively low resistivity lovel. The use of this material improves the trade-offs between blocking voltage, forward voltage drop and switch sime.

The bisic iripurity concentration profile consists of a deep diffused $p^{+}$anode 125 to 140 microns deep, an intrinsic material layer and a shallow ( 15 microns), low resistivity $\mathrm{N}^{+}$cathode cap. The diffused anode and low resistivity catnode aid in reducing the cicde's double injection forward blas voltage drop. The thick int,insic layer is required to sustain high voltage reverse biases.

A hexagonal geometry is employed in order to reduce the forward voltage drop by reducing the current density. This geometry maximizes the use of the circular area of the $00-5$ package while allowing the wafer to be diced easily and by conventional means. See figure 1.


ar PNar OLALITY
fidian 1

$$
44+\sqrt{5}
$$

### 3.2 Voltage Design

The requirement that the device endure a peak non-repetitive reverse voltage of 1.25 times the blocking voltage of 1000 volts or 1250 volts without undergoing bulk breakdown will be met by using 35 ohm-cm starting (intrinsic) material. Figure 2, taken from Reference 1 , indicates 35 ohm-cm silicon, with a donor concentration of $1.5 \times 10^{14}$ atoms/cc, will allow a reverse voltage of between 1600 and 1700 volts when the junction is 140 microns deep, which is the case with this device.

For a diffused (graded) junction, the required depletion region thickness is given by the following formula:

$$
\begin{equation*}
d=\left(12 K_{\varepsilon_{0}} V_{B D} / q a\right)^{1 / 3} \tag{1}
\end{equation*}
$$

```
where \(\quad a=\) the grade constant of a diffused junction
    \(=\frac{N_{0}}{x_{J}} \ln \left(\frac{P_{0}}{N_{D}}\right)=12.88 / \mu^{4}\)
        \(X_{J}=\) the junction depth \(=140\) microns
        \(P_{0}=\) the diffused surface concentration \(=2.5 \times 10^{19}\) atoms/cc
        \(\alpha=\) total depletion layer thickness
                        \(\varepsilon_{2}=\) permittivity of free space \(=55.4 \frac{\text { electron charges }}{\text { volt-micron }}\)
        \(K=\) dielectric constant of silicon \(=12\)
        \(q=\) electron charge \(=1.6 \times 10^{19}\) coulombs
        \(N_{D}=\) density of donor atoms in 35 ohm-cm \(N\)-type silicon
        \(=1.5 \times 10^{14}\) atoms/cc
    and
    \(V_{B D}=\) the bieakdown voltage \(=1250\) volts
```



The calculation of the depletion layer yields a thickness of 92 microns. The region depleted of carriers lles partly in the $\mathrm{p}^{+}$ layer and partly in the intrinsic layer.

Our initial estimate of 106 mic rons was found from the expression for the required width of a step (non-graded) junction:
(2)

$$
d=\left(2 K_{\varepsilon_{O}} V_{B D} \cdot \exists N_{D}\right)^{1 / 2}
$$

This provided a good estimate, later revised as data (Table 1) indicated that this width was too large.

Table 1
VBD Versus Intrinsic Thickness

| Lot No. | Intrinsic Thickness (microns) | VBD (volts) |
| :--- | :---: | :---: |
| 001 | $43-56$ | 1000 |
| 002 | $56-58$ | 1100 |
| 006 | $74-86$ | 1140 |
| 007 | $74-86$ | 1090 |
| 008 | $76-81$ | 1175 |
| 009 | $81-89$ | 1290 |




Figure 3 Breakdown voltage curves


Figures 3 and 4, from reference 2, Indicate that for a juri:tion depth of 140 mic rons and surface concentration of $2.5 \times 10^{19}$ atoms $/ \mathrm{cc}$, 158 of the depletion region lles in the $\mathrm{p}^{+}$layer and the intrinsic layer should be at least $85 \%$ of 92 microns or 78 microns thick te block 1250 volts.

Table 1 shows the average breakdown voltage and intrinsic layer thickness for several diffusion lots produced for phis ennirart


Figure 5 Cupletion layer diagram

Equation (1) assumes device failure will occur due to avalanche breakdown within the bulk of the device. However, the use of a standard straight wall mesa would limit the voltage breakdown to 800 to 900 voits as the device will fail at the edge of the junction due to the higher field there. Therefore, the positive beveled mesa sitructure in Figure 6 is mandatory for our high voltage requirement. A olanar device in Figure 7, produced by P diffusion in an N -

$\alpha=$ bevel angle
$P^{+}-N_{i}-N^{+}$Junction with a Positive Bevel

Figure 6
'FIIINAL PAGEIS IF PONR OUJAIITY


Figure 7 Planar structure junction
starting material has such concentration of the electric field (during reverse bias) at the corners that typically $30 \%$ of the blocking voltage is lost at 1000 volts. The structure in figure 6 has a positive bevel on the edge as measured from $N$ - to $\mathrm{P}^{+}$. This is produred by groove etching from the intrinsic side. This positive vel assures that the avalanche breakdown voltcge will be the maximum allowed by the stirting resistivity and diffusion profile, i.e., it will occur inside the device and not on the edge. This is shown by the following brief analysis. See Reference 3 .

Avalanche breakdown ocrurs in a diffused junction when the applied voltage raises the in arnal electric field in the davice to the critical field $\left[E_{c}\right.$; the maximum value that $c a n$ be sustained in silicon (approximately 30 volts/micron) befort eleasing electrons from the next lowest valenre level. The field arises due to carrier migration in the $N$ and $P$ regions towards the + and - electrodes respectively, which leaves a charged region behind to block conduction across the junction. The charged region
will follow the doping profiles away from the junction until $E_{c}$ is reached.


Figure 8 Charge density peofile

The tetal charge on either slite of the Junction is the same, however, since the highest charge density occurs on the $P$ side due to the steepness of the diffusion profile (figure 8) this region will predominate at $E_{i:}$. The local field is determined by integrating the charge density divided by the distance squared. See Figure 9.


Figure 9 Electric field diagram 1

Considering a point $Y$ far from the edge, by lateral symmetry the normal field $\left\{E_{n} \mid\right.$ is composed of equal contributions from both regions $A$ and 8 . If the point $Y$ is moved to the edge, or region $B$ removed, the normal field should be half of the applied fleld $\mid E_{0}$ ). $E_{n}=E_{o} / 2$. See Figure 10.


Figure 10 Electric field diagram 11

Since region $B$ is gone, there exists a laterally unbalanced parallel field $\{E\|\|$ at the point $Y$ also. (We are considering only the $P$ region since the field gradient is much higher there.) Make two assumptions for simplicity; 1) the width of the field in the Pregion is sma:' compared to the depletion layer width, and 2 ) the charge density in the $P$ region is uniform in both the parallel and normal directions. Then by symme: $y, E_{1 I}=E_{0}$ and $E_{11}=2 E_{n}$. The vector sum is in a direction $60^{\circ}$ to the normal and of magnitude $11 \times E_{o}$. Actually, since the charged $P$ region is not uniform, the highest field sum will exceed this value and the angle will be somewha: greater. To assure a minimum field on the edge, the bevel, or edge angle of the moat, should be $60^{\circ}$ to the junction, i.e.,

## perpendicular to the fleld slince edge passivation material (glass) will prevent current flowing through the air.

## 3.) Reveise Recovery Time

The relations between the specified rate of decay of the current, dif/dt, the reverse recovery time, trr, and the carrier lifetime, i, are given by solving

$$
Q_{R}=t\left(\tau^{2} d l_{f} / d t\right)
$$

where
QR $=\int_{0}^{\mathrm{t}} \mathrm{rr} \mathrm{I}_{\mathrm{l}}(\mathrm{t}) \mathrm{dt}$ is the recovery charge and the JEDEC test requires that dif/dt $=25 \times 106$ amps/second wh le tir is specified to be $200 \times 10^{-9}$ seconds. See Figure 11 .


Figure 11 Reverse recovery time

$$
\begin{align*}
Q_{R} & =\int_{0}^{t_{R R}}(d / F / d t) t d t=\frac{\left(t_{r r}\right)^{2}}{2}(d \mid F / d t  \tag{4}\\
& =5 \times 10^{-7} \text { coulombs }
\end{align*}
$$

by (3)

$$
T=\left(? Q_{R} / d \mid F / d t\right)^{\frac{1}{2}}=2 \times 10^{-7} \text { seconds }
$$

is the required carrier lifetime.
It has been shown that high-energy radiation of silicon de,ices displaces silicon atoms from their normal lattice positions forming vacancies and interstitial defects. These defects act as recombination centers for electrons and holes with an energy within the forbidden range (gap) of silicon, which effect the lifetime of carriers in silicon.

The effect of electron radiation on the recombination of carriers is given by the following formula:

$$
\begin{equation*}
R=R_{O}+K_{T} \varnothing \tag{5}
\end{equation*}
$$

where $\quad R=$ the post-irradiation recombination rate, $\sec ^{-1}$

$$
R_{0}=\text { the pre-irradiation recombination rate, } \sec ^{-1}
$$

$$
K_{T}=\text { the carrier lifetime damage factor, } \mathrm{cm}^{2} / \mathrm{sec}
$$

and

$$
\emptyset=\text { the radiation dose, electrons } / \mathrm{cm}^{2}
$$

Sirce the recombination rate is the inverse of the carrier lifetime,
(5) may be stated as

$$
\begin{equation*}
1 / \tau=1 / \tau_{0}+k_{t} \emptyset \tag{6}
\end{equation*}
$$

where

$$
\tau=\text { post-irradiation lifetime }
$$

and $\quad \tau_{0}=$ initial lifetime
As the radiation dose, $\theta$, is increased, the initial lifetime, to. becomes less important.

The follaving are the advantages of the high-energy radiation technique in controlling the lifetime of silicon diodes: i) irradiation may be performed on dice alone, 2) there is approximately 80\% less reverse leakage at $150^{\circ} \mathrm{C}$ than for gold diffused diode with the same $t_{r r}$ and 3) radistion provides e spatially homogeneous distribution of Ilfetimes throughout the diode. Radiation has proven to be the most controllsble process for lifetime reduction.

Two sets of sixteen dice, each from lot MASA-00\% were sent out for beta radiation. One set received 12 megarads and the other 16 megarads to provide data points from which to interpolate the correct radiation dose. (Tables 2 and 3) The results indicate that a radiation dose of 14 megarads may be routinely used. This dose produces devices with a high $V_{F}$ and low trr. Adjusting the time and temperature of the rerlow furnace used during the assembly in the D0-5 package allows the correct $V_{F}$ to be achieved while retaining a satisfactory $t_{r r}$.

| Device | $V_{F} 50 \mathrm{~A}$ <br> Number | $V_{R}$ <br> (Volts) | (Volts) |
| :--- | :--- | :--- | :--- |$\quad$| (Nanoseconds) |
| :--- |
| 168 |

[^1]| Device Numbar | $V_{F} \Leftarrow 50 \mathrm{~A}$ <br> (Volts) | $V_{R}=500 u A$ <br> (Voles) | $t_{r r}$ <br> (Nanoseconds) |
| :---: | :---: | :---: | :---: |
| 174 | 1.42 | 1260 | 175 |
| 175 | 1.38 | 1000 | 175 |
| 176 | 1.60 | 750 | 175 |
| $1: 7$ | 1.31 | 1240 | 175 |
| 178 | 1.25 | 1100 | 200 |

> Table 3 Forward voitage drop, blocking voltage and reverse recovery time of lot NASA-007 devices radiated with 16 megarads $B$ radiation. (After packaging)

### 3.4 Forward Voltage Drop

The voltage drop across the diode in the forward mode consists of five components: $N^{+}-N$ junction, $V_{O}, P^{+}-N_{i}$ junction, $V_{1}$, and the three regions $\left(N^{+}, N_{i}, P^{+}\right) V_{N}, V_{i}, V_{p}$. See Figure 12.

$$
\begin{equation*}
v_{F}=v_{0}+v_{1}+v_{N}+v_{i}+v_{p} \tag{7}
\end{equation*}
$$



Figure 12 Forward voltage drop

The following analysis is similar to the one founc in Reference (4).
The symbols are defined as follows:
$\mathrm{d}=$ the width of the $\mathrm{N}^{+}$region $=25$ microns
$g=$ the width of the $\mathrm{p}^{+}$region $=137$ microns
$w=$ the width of the intrinsic region $=90$ microns
$q=$ the electron charge $=1.6 \times 10^{-19}$ coulombs
$D=$ the diffusion coefficient for holes and electrons at high carrier concentration, assumed equal $=$
$6.5 / \mathrm{cm}^{2} \mathrm{sec}$
$J=$ the forward current density $=125 \mathrm{amps} / \mathrm{cm}^{2} 0 \mathrm{amps}$
$N_{i O}=$ the intrinsic carrier density $=1.5 \times 10^{14}$ atoms $/ \mathrm{cc}$
$N_{o}^{+}=$the thermal equilibrium carrier concentration
of the $\mathrm{N}^{+}$region $=6.5 \times 10^{19} \mathrm{atoms} / \mathrm{cc}$

```
P+ = the thermal equilibrium carrier concentration
        of the \mp@subsup{P}{}{+}}\mathrm{ region = 1.44 }\times1\mp@subsup{0}{}{19}\mathrm{ atoms/cc
    0=q/kT = 38.6 volts -1
    T= the carrier lifetime = 2 x 10-7 seconds
    H= the mobility of electrons and holes, assumed equal
        = 250/\mp@subsup{\textrm{cm}}{}{2}\textrm{sec}\mathrm{ volt}
```

At the $N^{+}-N$; region, the valtage drop is given by

$$
\begin{equation*}
V_{0}=\frac{1}{2 \theta} \ln \left(J d N_{0}^{+} / 2 N_{i o}^{+} q D\right) \tag{8}
\end{equation*}
$$

where (9) $\quad J_{p}=$ the hole current $=q D N_{0}{ }_{0}{ }_{o}^{2} / d=J / 2$
and (10)

$$
\begin{aligned}
\psi_{O}^{2}= & \frac{N_{i} o^{2} e^{2 \theta v_{o}}}{N \delta^{2}} \text { is the concentration imbalance } \\
& \text { coefficient for this region. }
\end{aligned}
$$

At the $N_{i}-\mathrm{P}^{+}$junction, the voltage is given by

$$
\begin{equation*}
v_{1}=\frac{1}{2 \theta} \ln \left(J g P_{o}^{+} / 2 q D N_{i o}^{2}\right) \tag{11}
\end{equation*}
$$

$$
\text { where (12) } \quad J_{n}=\text { the electron current }=q D P J_{0}{ }_{1}^{2} / g=J / 2
$$

$$
\begin{align*}
\psi_{1}^{2}= & \frac{\mathrm{Nio}_{0}^{4} e^{2 \theta V},}{\overline{P_{o}^{+2} N_{o}^{+2}}} \text { is the concentration imbalance }  \tag{13}\\
& \text { coefficient for the junction. }
\end{align*}
$$

$V_{0}$ and $V_{1}$ from (1) and (4) may be summed to give the total drop across the 2 regions, $\mathrm{V}_{\mathrm{j}}$ :

$$
\begin{equation*}
\left.v_{j}=v_{o}+v_{1}=\frac{1}{\theta} \ln \left(J\left(g d P_{o}^{+} N_{o}^{+}\right)^{\frac{1}{2}} / 2 q D N_{i o}\right)^{2}\right) \tag{14}
\end{equation*}
$$

In our case the voltage across both junctions, $v_{j}=0.542$ volts.
The current through the $\mathrm{N}^{+}$region is

$$
\begin{equation*}
J=2 q u N(x) E(x) \tag{15}
\end{equation*}
$$

Integrating the electric field, $E(x)$ yields $V_{N}$
(16) $\quad V_{N}=\int_{0}^{d} E(x) d x=\int_{0}^{d} \frac{J d x}{2 q u N_{0}^{+}}=3.2 \times 10^{-5}$ volts.

Similarly, the voltage drop through the $\mathrm{p}^{+}$region is

$$
\text { (17) } v_{p}=\int_{0}^{\frac{g}{g}} \frac{2 q u P_{0}^{+}}{}=7.01 \times 10^{-3} \text { volts. }
$$

The voltage drop through the intrinsic region is again the integral of the electric field, which is a function of the carrier concentration, which varies through the region.
(18) $\quad v_{i}=\frac{J}{2 a \mu} \int_{0}^{w} \frac{d x}{N(x)}$

There are 2 functions giving the concentration for each of the two sides of the intrinsic region. See Figure 13.


Figure 13 Intrinsic region

At point $A$, the concentrations given by the two functions are equal and so point $A$ is the transition between the 2 functions. In region 1 ,

$$
\begin{align*}
N_{1}(t)= & N_{0}^{+} e^{-t} / T  \tag{19}\\
& \text { carriers on the concentration of } N^{+} \text {side of the intrinsic } \\
& \text { region as a function of the carrier's } \\
& \text { time in the region, } t, \text { and the carrier } \\
& \text { lifetime, } t .
\end{align*}
$$

in region 2,

$$
\begin{align*}
N_{2}(x)= & P_{o}^{+} e^{-t} 2 / \tau \text { is the concentration of }  \tag{20}\\
& \text { carriers on the } p^{+} \text {side of the intrinsic } \\
& \text { region as a function of the carrier's } \\
& \text { time in the region, } t_{2} \text {, and the carrier } \\
& \text { lifetime, } T .
\end{align*}
$$

which represent exponential decay of carriers from both sides.
The concentrations of holes and electrons are assumed equal in the intrinsic region. The time in the region, $t$, is given by the distance traveled, $x$, divided by the average velocity of the carriers, $\bar{v}, t_{1}=x_{1} / \bar{v}$. The average velocity is the current divided by the concentration and carrier charge, $\bar{v}=\mathrm{J} / \mathrm{g} \mathrm{N}_{\mathrm{I}}(\mathrm{x})$. Therefore, in region 1. $t_{1}=q x_{1} N_{1}(x) / J$ and by the same reasoning in region $2, t_{2}=q x_{2} N_{2}(x) / J$. $x$, is the distance from the $N^{+}$boundary and so is just $x, x_{2}$ is the distance from the $p^{+}$boundary given oy $(w-x)$. We have $t_{1}=q \times N_{1}(x) / J$ and $t_{2}=q(w-x) N_{2}(x) / J$.

These give

$$
\begin{array}{ll}
N_{1}(x)=N_{0}^{+} \exp \left(-q x N_{1}(x) / J_{t}\right) & \text { for } x<A \\
N_{2}(x)=p_{0}^{+} \exp \left(-q(w-x) N_{2}(x) / J_{T}\right) & \text { for } x \vee A \tag{22}
\end{array}
$$

and
These may be approximated by

$$
\begin{equation*}
N_{1}(x)=N_{0}^{+} /\left(1+q N_{0}^{+} x / J \tau\right) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{2}(x)=p_{0}^{+} /\left(1-q p_{0}^{+}(x-w) / J q\right) \tag{24}
\end{equation*}
$$

which, when placed in (18) and integrated, yield

$$
\begin{align*}
v_{i} & =\frac{J}{2 q u} \int_{0}^{W} \frac{d x}{N(x)}=\frac{J}{2 q u}\left(\int_{0}^{A} \frac{d x}{N_{1}(x)}+\int_{A}^{w} \frac{d x}{N_{2}(x)}\right)  \tag{25}\\
& =\frac{J}{2 q}\left(\frac{w}{2 P_{0}^{+}}+\frac{w}{2 N_{0}^{+}}+\frac{q w^{2}}{4 J \tau}\left(1+\frac{N_{0}^{+}}{P_{0}^{+}}\right)\right)
\end{align*}
$$

since $A=\frac{w}{2}$ to within a percent
therefore $v_{i}=0.836$ volts and

$$
\begin{aligned}
V_{F}= & 0.518+0.00006+.00152+0.836=1.355 \text { volts } \\
& \text { at } I_{F}=50 \mathrm{amps}
\end{aligned}
$$

This voltage is less than that measured across the assembled device at 50 amps which is typically 1.5 volts. The discrepancy may be accounted for by several factors. The ohmic contacts between the chip and the stud, the top contact and chip and the top contact and cap crimp may add 200-300 mv, while the lifetime reducing radiation tends to increase intrinsic resistivity $20-50 \%$ due to latice damage. This increase is in addition to that caused by shortening the carrier lifetime, $\quad$.

### 3.5 Trade-offs

The major electrical characterlstics (forward voltage droo. blocking voltage and reverse recovery time) of this device are interdependent. Both the forward voltage drop and the blocking voltage are functions of the Intrinsic layer thickness. The peak reverse voltage required determines this thickness and so its contribution to the forward voltage. A lower blocking voltage will give a device a lower forward voltage as seen from Table 1.

A critical trade-off exists between the forward voltage drop and the reverse recovery time. They are inversely coupled; as reverse recovery time decreases, forward voltage increases. The radiation that reduces lifetime disrupts the crystal lattice and so raises the forward voltage. Time spent at temperatures above the annealing temperature of silicon reverses this damage, thereby raising $t_{r r}$ and lowering $V_{F}$. This trade-off was advantageous as devices initially too fast and with a $V_{F}$ too large were reannealed to bring both parameters to acceptable levels.

A third trade-off exists between blocking voltage and $t_{r r}$ since $t_{r r}$ is a function of $Q_{R}$, the charge stored in the devicu after the forward current ceases. The thick intrinsic layer of high voltage devices holds much of this charge and therefore a lower voltage device with a thinner intrinsic layer will be faster than a higher voltage device, all else being ihe same.

## 4. WAFER PROCESSING

### 4.1 Diffusion and Lap Pollsh

The $\mathrm{p}^{+} / \mathrm{N}-/ \mathrm{N}^{+}$device profile is formed on $35-40$ ohm $\mathrm{cm} n$-type neutron doped silicon material.

Using spin-on liquid boron souice, $p^{+}$layers are diffused simultaneously on both sides of the wafer. To achieve the required 5.4 mil junction depth, drive-in diffusion is performed at $1250^{\circ} \mathrm{C}$ for 264 hours.

The $\mathrm{P}^{+}$layer is removed from one side of the wafer by mechanical lapping, followed by chemical polishing to provide adequate surface finish for subsequent moat and cathode geometry formations. The intrinsic material thickness target is 4.5 mils, resulting in 9.9 mils thick wafers after lap and polish.

The $\mathrm{N}^{+}$cathode layer is diffused using $\mathrm{FOCl}_{3}$ source during one hour deposition at $1130^{\circ} \mathrm{C}$, followed by drive-in diffusion targeted for $1 \mathrm{mil} \mathrm{N}^{+}$depth on 3.5 mil thick intrinsic $\mathrm{N}^{-}$region. See figure 14 .

### 4.2 Positive Bevel Moat

By standard photoresist and masking techniques the moat geometry (Dgw. No. 100003-11, mask No. 2) is defined on the cathode side of the wafer. Silicon dioxide is removed from that area and approximately 5 mil deep noat is etched to form the positive

## bevel juncilon. Figures 6 and 14 .


#### Abstract

4.3 Glass Passivation

High temperature glass, suspended in a binder, is deposited in the freshly etched and cleaned moat. In a two step furnace processing the binder is tiurned off and the glass is fired at $130^{\circ} \mathrm{C}$ and fused to the walls of the moat. To assure complete and continous glass passivation of the high voltage junction, the glass deposition and firing process is performed twice.


#### Abstract

4.4 Metallization

A metallization process that is compatible with glass passivated junctions and provides solderable contacts to cathode and anode has been developed. These contacts have series voltage drops comparable to the standard aluriinum and gold contact systems.

The rew metallizition is a tri-metal system, consisting of aluminum, titanium and nickel. The metals are evaporated in a high vacuum equipment. Aldminum is deposited ifrst. A thin layer of Litanium is flashed on the aluminum to ac: as a binder between the aluminum and nickel. A layer of nickel provides the solderable contact. The cathode contact areas are defined by standard photoresist and masking (Dwg. No. 100003-11, mask No. 3) techniques and selective e.ching. On the anode side of the wafer a continous metallization of the same system is deposited.


The contacts are sintered in a nonoxidizing amblent to establish Low resistance ohmic contacts between the aluminum and silicon surfaces.
4.5 Wafer Test and Dicing
To complete the wafer processing, 100: wafer probing is performed to test for minimum acceptable blocking voltage.
The wafers are diamond saw cut into the hexaqonal geonetry dice, sorted for electrical and mechanical acceptance and delivered for assembly.

## PROCESS SEQUENCE OUTLINE

1. STARTING MATERIAL WAFER NEUTRON DOPED N-TYDE SILICON
2. BORON DEPIISITION AND DRIVE IN DIFFUSION
3. SINGLE SIDE LAP \& POLISH OXIUATION (ONE SIDE)
4. PHOSPHORUS OEEPOSITION AND DRIVE-IN DIFFUSION
5. PHOTORESIST MASK, OXIDE AND MOAT FORMATION ETCH
6. HARO GLASS PASSIVATION IN THE MOAT
7. CONTACT PHOTORESIST AND OXIDE ETCH
8. ANODE AND CATHODE FOUR LAYER METALLIZATIDN


Figure 14
$\therefore$ ?ITAL PAGE IS
$\therefore F$ POOR QUALITY

## 5. ENCAPSULATION

### 5.1 Package

The device is encapsulated in JEDEC standard DO-5 assambly, utillzing soft solder reflow process and hemetically sealed by resistance welded cap. The diode is assembled in the reversc polarity, i.e., DO-5 stud is the anode and the cap terminal is the cathode.

The specifications of the assembly componets are retailed in the following drawings:

DO-5 stud - Impex, 1404
00-5 cap - 50-0016
Moly tab, cathode - 50-0003-4
Moly tab, anore - 50-0003-3
Internal lead - 50-0011
Solder preform, cathode - 50-0004-7
Solder preform, anode - 50-0004-6

### 5.2 Assembly

In one-pass solder reflow process the die is mounted on the nickel plated stud platform and the internal lead attached. For improved coefficient of expansion matching between the silicon material and copper electrodes, melybdenum back-up plates are
utilized. Indalloy preforms from Indium Corporation of America form the metallurgical bond between the nickel plated assembly componets. Figure 15.

The reflow process assembly is performed in a BTU be!t furnace. The graphite assembly fixture (Owg. 50-0010), that serves as the parts carrier through the furnace, is designed for an "tipside-down" positioning of components where the $00-5$ siud serves also as the weight during the reflow process. After the assembly furnace pass, the glass passivated moat region of the die is coated with Dow Corning high voltage junction coating No. 643. Prior to capping, Dow Corning RTV 3140 is applied for additional insulation and protection against possible weld arcing during capping.

The assembly is completed intc a hermetically sealed unit by resistance welding the cap to the $0 J-5$ stud. This operation is performed in dry nitrogen ambient, achieving inert conditions inside the encapsulation cavity. Gross leak test is performed for $100 \%$ of the devices. The cathode terminal extending through the glass to metal seal of the cap is tin plated for good solderability.

SOLDER REFLOW ASSEMBLY

$$
\frac{\text { REVERSE }}{D I O D E L A R I T Y}
$$



$$
F / G .15 \quad \begin{aligned}
& \text { ORUGNAL PAGE IS } \\
& \text { OF POOR QUANT }
\end{aligned}
$$

### 5.3 Polarlty Trade-off

The initial proposal specified a normal polarity assembly, i.e., cathode mounted on the $00-5$ stud and the cap terminal serving as the anode contact. (Figures $16 \& 17$ ) A large number of the assembled 1000-1400 volt units exhibited corona effect between the positive bevel moat region and the moly cathode back-up plate. The use of Dow Corning high voltage semiconductor junction coating No. 643 had only limited success because of the narrow access spacing between the surfaces to be isolated.

This problem could not be reliably eliminated without a major change in the $00-5$ stud design; therefore, it was agreed that the contract be completed on time with the diode assembled in the reverse polarity, as shown in Figure 15 and described in the assembly process.

The 00-5 stud base that is proposed for the normal polarity assembly to be investigated, is available from the Nipert Company as P/N 068-8903-05. The pedestal of the cold formed copper stud with the brazed molybdenum back-up plate provides 0.060 inch clearance between the main body of the stud and the surface area of the silicon die extending over the pedestal. This clearance provides sufficient space for applying high voltage dielectric coating to the exposed surfaces of the silicon die and the cathode stud, thereby eliminating arcing. Figure 18.



NORMAL POLARITY ASSEMBLY
(MODIFIED VERSION)

5.4 High Voltage CapNew 00-5 cap designed to comply with Underwiter's Laboratoriesspecifications for high voltage devices has been designed (Dwg. No.50-0017) and fabrication funded by Power Transistor Company. Thestandard 00-5 glass-to-metal seal is replaced by ceramic-to-metalassembly. This design provides insulation between the anode and thecathode of 0.625 inch minimum surface length in any direction.

### 5.5 Thermal Ratings

Junction temperature is determined by the total power dissapation in the device $\mathrm{P}_{\mathrm{T}}$, the ambient or case temperature ${ }^{{ }^{1}} \mathbf{C}$, and the thermal resistance $Q_{\mathrm{JC}}$ from junction to case.

$$
\begin{equation*}
T_{J}=T_{C}+\theta_{J C} P_{T} \tag{26}
\end{equation*}
$$

The basic equation for the conduction of thermal energy is

$$
\begin{equation*}
Q=\frac{K A}{L} \Delta T=\frac{K A}{L}\left(T_{1}-T_{2}\right) \tag{27}
\end{equation*}
$$

where
$Q=$ heat flow/unit of time
$K=$ thermai conductivity constant, Wicm, ${ }^{\circ} \mathrm{C}$
$A=$ area of thermal path, $\mathrm{cm}^{2}$
$L=$ length of thermal path, cm
$T_{1}=$ temperature of heat source, ${ }^{\circ} \mathrm{C}$
$T_{2}=$ temperature of heat sink, ${ }^{\circ} \mathrm{C}$
rewritten

$$
\begin{equation*}
Q=\frac{T_{1}-T_{2}}{L / K A}=\frac{T_{1}-T_{2}}{0} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
0=\frac{L}{K A} \tag{29}
\end{equation*}
$$

The thermal spreading is taken into consideration by applying the following equation for circular geometry:

$$
\begin{equation*}
{ }^{Q_{c i r c l e}}=\frac{2}{K \cdot\left(r^{2}+r L\right)} \tag{30}
\end{equation*}
$$

$$
r=\text { radius of the circle }
$$

The equivalent diagram in figure 19 shuws the thermal conductive path considered and the calculated theoretical values of each thermal resistance element.


Figure 19 Thermal resistance, equivalent diagram The resulting junction to case thermal resistance. OJC is $0.33^{\circ} \mathrm{C} / \mathrm{W}$

## i. TEST

### 6.1 Test Plan

1. Expose all diodes to 1000 A non-repetitive peak surge current
2. Screen on Mastech 216 automatic tester for
a) $I_{R}=100 \mu \mathrm{~A}$ MAX. e 1000 V
b) $\quad V_{F}=1.51 v \mathrm{MAX} .50 \mathrm{~A}$
3. Serialize and trademark
4. Read and record reverse recovery time at $T_{c}=100^{\circ} \mathrm{C}$
5. Read and record forward voltage at $I_{F}=50 A$
6. Read and record $D C$ blocking voltage at $T_{C}=25^{\circ} \mathrm{C}$ and
$T_{c}=150^{\circ} \mathrm{C}$
7. Read and record maximum reverse current at rated $V_{\text {RRM }}$ and $T_{C}=25^{\circ} \mathrm{C}$ and $T_{C}=150^{\circ} \mathrm{C}$
8. Select deliverable diodes that meet the "specifications"
9. Select samples and generate characteristic curves for
d) capacitance versus reverse voltage
b) forward voltage versus forward current
c) reverse current versus reverse voltage as a
function of temperature
The required specification read and record data of the deliverable diodes is tabulated in Table 4 . The test equipment and procedures of the tests are discussed in the following paragraphs.

## ó. 2 Non-Repetitive Peak Surge Current. IfSM

As a potentially destructive test IFSM has been performed to screen all devices prior to seriallzing and performing any other tests. All devices were exposed to llooA half-cycle surge to insure compliance with the 1000A requirement.

The major components of the peak surge test equipment are:
high current variac. SCR and SCR pulse firing circult, transformer with a high current secondary, current sensing resistor, and oscilloscope, connected as shown in figure 20.


Figure 20
Test Circuit Block Diagram

The device under test is clamp-held in sefeiv cese fixture, Figure 21, while high current pulse, triggered by the JCR firing circuit, is applied. The amplitude of the current pulse is determined by observing the voltage pulse across the non-Inductive one milliohm resistor in serles with the diode, as displayed on the oscilloscope. Figure 22. The variac is adjusted for the required pulse amplitude.

Following the high current surge test, survivor screening test was performed using Mastech 216 automatic tester. At room temperature the diodes were tested for

$$
\begin{aligned}
& \\
\text { and } \quad & =100 \mu A M A X e 1000 \text { volts } \\
\quad V_{F} & =1.51 v \text { MAX } e 50 A
\end{aligned}
$$

Units that passed the serles of iests were serialized for the subsequent read and record tests.
6. 3 Reverse Recovery Tine, $t_{r r}$

The reverse recovery test was performed in a JEDEC type test circuit.

The current through the diode is reduced at a rate of $25 \mathrm{~A} / \mathrm{sec}$. When the sign of the current through the diode changes, zero reference line is established. The measurement of the reverse recovery tims: is made from that point ( $t_{0}$ ) to its maximum negative value ( $t$ ) and to the approximate point where the reverse current has returned to 10\% of its maximum value, $I_{\text {RM }}$ (REC.). See Figure 23.

The diodes were stabilized at $100^{\circ} \mathrm{C}$ in an oven. Using the reverse recovery test circuit, set at $I_{F M}=50 \mathrm{~A}$ and di/dt=25A/usec.



Figure 22 Peak surge current pulse
:he $t_{r r}$ was read on Tektronix 465 oscilloscope and recorded for each unlt.

The $t_{r r}$ test utilizes Tektronix CTS high current transformer with P6021 current probe. During the performance and the evaluation of the test it was determined that the response limitations of the probe resulted in some loss of accuracy in the oscilloscope reading. Due to some saturation at 50 A and even lower current levels the zero reference line is shifted slightly from the initial setting, causing an error in the reading. The upper limit of the probe frequency response rating $\left(20 \mathrm{MH}_{2}\right)$, reduces the accuracy of the time measurement during the very fast recovery from $t_{1}$ to $t_{2}$, Figure 23. At $20 \mathrm{MH}_{2}$ the period is 50 ns , and the accuracy of reading the time during that segment of recovery is limited to about 100 ns . Figure 24.

To eliminate the inaccuracy of this test, new test equipment is being designed to read the current in terms of a voltage directly across a non"inductive resistor in series with the diode under test.

To indicate the true performance of the device, two data points have been logged:
$t_{1}$ - the time from the sign change of the recovery current at $t_{0}$ to its maximum negative value,
$t_{2}$ - the time from $t_{0}$ to the approximate point where the reverse recovery current has returned to $10 \%$ of its maximum value. See Figures 23 and 24 .


Figure 23 - Reverse recovery waveform


## Device \#031



Device \#038


Device \#060

ORIGINAL PAGE IS
OF POOR QUALITY

Vertical Scale: $4 \mathrm{~A} / \mathrm{div}$<br>Horizontal Scale: $50 \mathrm{nsec} / \mathrm{div}$

Figure 24 Typical Trr waveforms







 $\begin{array}{ll}5 \mathrm{~mA} & I_{R} e 1000 \mathrm{~V} \\ 150^{\circ} \mathrm{C} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\end{array}$ VR
$\mathrm{T}_{\mathrm{C}}$
Volts


| Device No. | $\begin{aligned} & V_{1}: 59 \Lambda \\ & \text { volts } \end{aligned}$ | $\begin{aligned} & V_{R} 500_{11} \Lambda \\ & T_{C}=25^{\circ} \mathrm{C} \\ & \text { Volts } \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{R}} \quad 5 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{C}} \mathrm{e} 150^{\circ} \mathrm{C} \\ & \text { Volts } \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{R}}=1000 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mu \AA \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{R}} \mathrm{q}^{\mathrm{q}} \\ & 8000 \mathrm{l} \end{aligned}$ | $\begin{aligned} & 50^{\circ} \mathrm{C} \\ & 1000 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \text { Try from } 50 \mathrm{~A} \\ & \text { dif }=25 \mathrm{~A} / \mu \mathrm{sec} \\ & \text { Q } 100^{\circ} \mathrm{C}, \mathrm{t}_{1} / \mathrm{t}_{2} \mathrm{nsec} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 069 | 1.39 | 1310 | 1200 | 6 | 2200 | 2500 | 300/400 |
| 070 | 1.50 | 1295 | 1320 | 7 | 1500 | 2000 | 300/400 |
| 071 | 1.48 | 1290 | 1350 | 1.5 | 550 | 650 | 250/300 |
| 072 | 1.49 | 1340 | 1300 | 4 | 1400 | 1700 | 275/325 |
| 074 | 1.43 | 1315 | 1275 | 11 | 1500 | 1800 | 260/325 |
| 075 | 1.49 | 1210 | 1360 | 5 | 1000 | 1250 | 275/325 |
| 077 | 1.45 | 1340 | 1300 | 3 | 800 | 1000 | 275/325 |
| 078 | 1.48 | 1295 | 1320 | 8 | 1600 | 2000 | 275/325 |
| 079 | 1.53 | 1250 | 1370 | 5 | 900 | 1100 | 275/350 |
| 080 | 1.43 | 1330 | 1280 | 4 | 850 | 1100 | 250/310 |
| 081 | 1.48 | 1370 | 1400 | 4 | 600 | 800 | 300/450 |
| 083 | 1.50 | 1340 | 1400 | 7 | 900 | 1100 | 300/400 |
| 086 | 1.49 | 1440 | 1310 | 45 | 1600 | 1900 | 275/350 |
| 087 | 1.46 | 1440 | 1420 | 12 | 1350 | 1600 | 325/450 |
| 088 | 1.47 | 1200 | 1330 | 1.5 | 300 | 400 | 300/400 |
| 089 | 1.43 | 1330 | 1320 | 10 | 1450 | 1800 | 300/400 |
| 092 | 1.46 | 1230 | 1340 | 2.5 | 500 | 600 | 275/400 |
| 094 | 1.50 | 1330 | 1300 | 6.5 | 1400 | 1750 | 250/350 |
| 096 | 1.36 | 1265 | 1360 | 20 | 500 | 600 | 350/500 |

### 6.4 Forward Voltage, VFM

The Mastech 216, using the digital readout option, was employed to read and record the forward voltage drop at $I_{F}=50 A$. A typical VFM characteristic trace is shown In Plgure 25, as displayed on the Tektronix 576 curve tracer.

### 6.5 DC Blocking Voltage, $V_{R}$

The blocking voltage at $25^{\circ} \mathrm{C}$, $5 \mathrm{C}, \mu \mathrm{A}$ and at $150^{\circ} \mathrm{C}, 5 \mathrm{~mA}$ was read on Tektronix 576 curve tracer.

### 6.6 Reverse Current, Is

Utilizing Tektronix 576 curve tracer in the Leakage Mode, the reverse leakage current was recorded for $V_{R}=100$ volts at $T_{C}=25^{\circ} \mathrm{C}$ and for $V_{R}=800$ volts and 1000 volts at $T_{L}=150^{\circ} \mathrm{C}$.

All high temperature characteristics were read and recorded with the devices heated in an oven and stablized at the required elevated temperature.


Figure 25
Forward Vottage, VFM

## 7. ELECTRICAL PERFORMANCE

## 7.i Characteristic Curves

Five devices, numbers $031,038,039,046$ and 060 were chosen as typical of the lot and three characteristic curves were generated for each device; forward voltage drop versus forward current (Figures 26-30), reverse leakage current versus reverse voltage at six temperatures (Figures 31-35), average leakage current versus temperature of the five units (Figure 36), and capacitance versus reverse voltage (Figures 37-41).
$V_{F}$ versus $I_{F}$ was plotted from 100 mA to 100 A using the Mastech. $V_{F}$ for $I_{F}$ of $100,200,300$ and 500 amps was found by adjusting the surge current tester to deliver a peak current of the correct value and then displaying the voltage across the device on an oscilloscope. The voltage at 100 A was higher when measured with the surge tester than when measured by the Mastech. This implies that the higher current level voltages are offset. The affect was decermined to be caused by ohmic drops through the sense wires of the surge test fixture. Therefore, the high current data points have been normalized based on the offset at 100A. Curves have been drawn through both the normalized and the measured points. The actual curves lies between these curves.

The leakage current versus reverse voltage curves were generated by heating the diodes in an oven, stabilizing and then measuring the leakage at $200,400,600,800$ and 1000 volts on a 576 curve tracer. The curves that result are straight lines on a semi-log graph whose slopes are independent of temperature. By ploting the average leakage current of the devices at 800 volts against temperature on a semi-log graph, a straight line results which indicates the leakage Increases exponentially with temperature (Figure II).

Capacitance wa, plotted against reverse voltage by using a Boonton model 7280 capacitance meter and a Hyland high voltage power supply. The resulting curve is a straight line on logarithmic graph paper. The capacitance plot was teiminated at 600 volts due to the maximum limitations of the test equipment.











Figure 37



Figure 38


Figure 39

$\mathbf{V}_{\mathrm{R}}$ (Volts)
Figure 40


Figure 41

## 8. CONCLUSION

This contract was of particular interest to Power Transistor Company because of the requirement for a high voltage, high current, fast switching diode for use in AC and DC motor drives. PTC supplies the bulk of their power semiconductor devices for energy saving $A C$ motor drives, fabricated in-house for sale on the open market.

The bulk of these motor drives are designed to operate off 240 volt lines in industrial applications. Devices with 600 volt rating: are sufficient for $\mathbf{2 4 0}$ volt operation. However, the majority of the industrial applications requires power semiconductor devices with voltage ratings of 1200 volts.

At the present time, $A C$ motor $5-15 \mathrm{hp}$ drives operating off 480 volt lines utilize 1200 volt transistors or 1200 GTO's in either application a fast switching 1200 volt flyback diode is needed in the inverter circuit to protect the output transistor or GTO from secondary breakdown during circuit faults in the system.

This contract gave PTC the opfortunity to develop a diode which would 1) have immediate application in the commercial market and 2) fill a definite market need in high voltage $A C$ motor controllers.

Currently, there are no dodes zomercially avallable to meet this application. Power Transistor Company is planning to market such a diode upon completion of this contact, in a modified 00-5 package with the following specificatir is:

| Peak inverse voltage | -1200 volts minimum |
| :--- | :--- |
| Forward voltage e 50 amperes | -1.5 volts maximum |
| Reverse recovery time | -400 nanoseconds maximum |
| Surge rating | -600 amperes minimum |

PTC has designated the 1200 voit diode as the PTC 900 saries diode. This diode has been designed into PTI Controls prototype 15 horsepower $A C$ drive systems operating off 480 volt lines.

In the future, higher current ratings of this dinde should be pursued, not only for the space application, but for the commercial markets as well. There is a definite need for a 150 ampere dinde with the same voltage and switch time rotings as the 50 ampere diode in high horsepuwer AC and DC drive systeris.

We envision such a device io be the same structure as the 50 ampere device, positive bevel and glass passivaticn. Since it will be a la or area, the devise would be encapsulated in a D0-9 package outline.
9. ACKNOWLEDGEMENTS

## Editor: Vilnis Balodis

## Contributors:

Albert H. Berman
James J. Duffin
Charles Gaugh
Helen M. Karatnicki

Guin Troutman

1. A. H. Berman, "Avalanche Breakdown in Diffused P-ll Junctions In Siliconi, Private Communication (1980)
2. H. Lawrence and R. M. Warner, "Diffused Junction Depletion Layer Calculations". Bell Systems Tech. J. pg 47 (1959)
3. R. L. Davies and F. E. Gentry, "Control of Electric field at the Surface of $\mathrm{P}-\mathrm{N}$ Junctions", IEEE Transactions on Electron Devices, ED-11, No. 7, pg 313-323 (1964)
4. M. Otsuka, "The Forward Characteristics of Thyristors", Proceedings of the IEEE, Vol. 55, No. $1 \mathrm{pp} .1400-1408$ (1967)
11.1 SPECIFICATIONS FOR FAST RECOVERY, HIGH VOLTAGE POLER DIODE CASE TEMPERATURE $=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE SPECIFIED

-65 to 200
-65 to 200
 Hints
Votes
Volts
wits milline 11 登 5

5. APPENDIX
Type 1 - Fast Recovery Power Diode, 5CA Avg. Current Rating



$I_{F}$
$I_{F S M}$


NOTES Lusess otisamise encirise

| SYM DESCRIPTION | BV | DATE | APPR'D |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |




| DUG NO. | DIM. A | DIM. B | MATERIAL | FINISH |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -1 | .160 | .0101 .012 | 1 | $/ 2$ |  |
| -2 | -300 | .0101 .012 | 1 | $/ 2$ |  |
| -3 | -310 | .0101 .012 |  |  |  |
| -4 | .250 | $.010 / .012$ |  |  |  |

$$
\begin{aligned}
& \text { ORIGINAL PAGE } \\
& \text { POOR QUAUTY }
\end{aligned}
$$



RETVNE Duns.
2. FINISH: NICKEL PLATE

1. MATERIAL: MOLYBDENUM

MOTES: UNLESS OTHERWISE SPECIFIED

| SCALE NOME | ONE MO. | REV |
| :--- | :--- | :--- |
| SHEET 2 OF 2 | $50-0003$ | $N /$ |









[^0]:    - For sate by the Nationat Techmeal Information Setrice Spungteld $V$ B.an 22161

[^1]:    Table 2 Forward voltage drop, blocking voltage and reverse recovery time of lot NASA-007 devices radiated with 12 megarads $\beta$ radiation.
    (After packaqing)

