NASA CONTRACTOR REPORT

DO NOT DESTROY RETUMA TO LBRAR.

NASA CR-161291

STANDARD TRANSISTOR ARRAY (STAR)
 Addendum 1 to Volume l: CAPSTAR User's Guide

By G. W. Cox and B. D. Carroll

Electrical Engineering Department
Auburn University
Auburn, Alabama 36830
July 26, 1979
Final Report

19 MAY 1983
RESEARCHE: W. . MRG LPBKARY
ST QOUIS

FOR EARLY DOMESTIC DISSEMINATION

Because of its significant early commercial potential, this information, which has been developed under a U. S. Government program, is being disseminated within the United States in advance of general publication. This information may be duplicated and used by the recipient with the express limitation that it not be published. Release of this information to other domestic parties by the recipient shall be made only with prior NASA approval and appropriate export licenses. This legend shall be marked on any reproduction of this information in whole or in part. Data for general release is July 26, 1981.

Prepared for
NASA - George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

TECHNICAL REPORT STANDARD TITLE PAGE

1 REPORT NO. 161291	2. GOVERNMENT ACCESSION NO,	3 RECIPIENT'S CATALOG NO.
4. title and subtitle Standard Transistor Array (STAR) - Addendum 1 to Volume 1: CAPSTAR User's Guide		($5 \begin{aligned} & \text { REPORT DATE } \\ & \text { July } 26,1979\end{aligned}$
7 AUThoris) G. W. Cox and B. D. Carroll		B PERFORMING ORGANIZATION REPORT \#
9 performing organization name and address Electrical Engineering Department Auburn University Auburn, Alabama 36830		
12 SPONSORING AGENCY NAME AND ADDRESS National Aeronautics and Space Administration Washington, D. C. 20546		Contractor Report Final
		14 SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES This work was done under the technical supervision of Mr. Jack Matheney, George C. Marshall Space Flight Center, Alabama.		
16. ABSTRACT The cell placement techniques developed for use with the Standard Transistor Array (STAR) have been incorporated in a placement program, the Cell Arrangement Program for STAR (CAPSTAR). Instructions for use of this program are given in this document. Placement techniques are described in NASA CR-161289. 17. KEY WORDS Placement techniques Standard Transistor Array (STAR) Custom logic design 18. DISTRIBUTION STATEMENT For Early Domestic Dissemination		
19. SECURITY CLASSIF. (of thie ropart) Unclassified	20 SECURITY CLASSIF. (of this pego) Unclassified	$\left\|\begin{array}{cc\|cc}21 & \text { NO. OF PAGES } \\ & 26\end{array}\right\|$22 PRICE NTIS

Page intentionally left blank

Page intentionally left blank

TABLE OF CONTENTS

List of Figures and Tables iv
Program Description 1
Input Data Format 2
Control Records 3
C
debug
FIND,
gates to patterns
IMPROVE,LINEAR ORDERNAME,NEIGHBORHOOD,NETSSTAR SIZE,STEP,
Circuit Definition Records 6
Cell Type List
Net List Linear Order
Example Input File 9
CAPSTAR Output 9
Narrative Output 9Data Entry StepClustering StepLinear Ordering StepWirecross StepPlacement Step
Output File 21
Execution of CAPSTAR on
The XDS SIGMA/5 21
LIST OF FIGURES AND TABLES
Figure 1. Example Input File 10
Figure 2. Data Entry Step Output 12
Figure 3. Output Shown for Single Cluster Formation 13
Figure 4. Clustering Step Summary Output 14
Figure 5. Linear Ordering Step Output 16
Figure 6. Wirecross Output 16
Figure 7. Folding Summary and Result Rating Output 17
Figure 8. Pictorial Placement Output 19
Figure 9. Pad Placement, Grid Coor- dinate Translation, and Barrier Construction Output 20
Figure 10. CAPSTAR Output File 22
Table 1. CAPSTAR Channel Assignments 23

This document contains user information for CAPSTAR (Cell Arrangement Program for STAR) as implemented on the XDS SIGMA/5. A general description of the program is given first. Input data formats and output information are then discussed. Instructions for program execution are shown at the end of this guide.

Program Description

CAPSTAR is designed to provide two-dimensional placements of digital logic circuits on the Standard Transistor Array (STAR). The placements generated are near-optimum with respect to horizontal and vertical channel usage and the number of nets which can be routed in a linear fashion.

Input to the program consists of a description of circuit cells and interconnections. The circuit description is used to form a near-optimum one-dimensional placement of the cells. The one-dimensional placement is then 'folded' onto the STAR to form a two-dimensional layout. By use of various folding strategies, a number of different layouts are formed. The best few of these are selected and are improved by use of a simple interchange technique. Pads are placed in the best improved layout which. is the program result.

CAPSTAR results are given in an output file which is in a format suitable for use by other programs (such as a STAR router). For user convenience, intermediate and final results are also given in a hard-copy form.

Due to the limited storage available, certain limits are imposed on the characteristics of input circuits. No more than 999 cells, 500 nets, and 98 pads are allowed. The STAR selected for use cannot exceed 30 cell rows by 100 columns. In addition, while no restrictions are made on the numbers assigned to circuit nets, cell numbers greater than 999 are not allowed.

Input Data Format

The circuit description and CAPSTAR control data should be provided in an input file available for program access. The input file consists of a series of 80 -character records. Only the first 72 characters of each record are significant and positions $73-80$ can be used for record numbering or other user information.

Each record in the input file consists of format-free numeric or character items. The end of a numeric item is sensed whenever a blank, comma, or the end of the record is seen. The end of a character item is indicated by a comma or record end. A record can be continued by leaving the first
four positions of the succeeding record blank. A record-may be continued any number of times.

The input file may consist of CAPSTAR control records, circuit definition records, and passed records. The control records either specify settings for CAPSTAR variables or act as headers for groups of circuit definition records. The passed records are those which are not recognized as control or definition records and are included in the CAPSTAR output file for use by later programs.

Control Records
Each control record consists of a single CAPSTAR control statement beginning in column l. Data pertaining to the statement appears either in the same record or in following records. A list of CAPSTAR control statements, their function, and necessary data is shown below. Where allowed, the shortened form of the control statement is shown in parentheses.

C

```
Function- Denotes a comment to he shown in the narrative output.
Data - Comment in columns 5-72 of the record (no continuation allowed).
Passed - No
```

DEBUG (DEBU)
Function- Turns on CAPSTAR debugging output.
Data - None.
Passed - No

FIND,
Function- Sets the upper limit on number of folding solutions to be found (initially 50). Specifying \emptyset causes all possible folding solutions to be generated.

Data - Upper limit following comma.
Passed - No

GATES TO PATTERNS (GATE)
Function- Header for cell type list.
Data - Cell type list in following records.
Passed - Yes

IMPROVE, (IMPR,)
Function- Specifies number of folding solutions to be improved (initially 3, max=10).

Data - Number of solutions following comma.
Passed - No

LINEAR ORDER (LINE)
Function- Header for user-entered linear order. Causes disabling of CAPSTAR clustering and linear ordering steps.

Data - Linear order in following records.
Passed - No

NAME,
Function- Specifies circuit title for output listing. Data - Circuit title (8 characters) after comma.

Passed - Yes

NEIGHBORHOOD, (NEIG,)
Function- Specifies row and cell neighborhood sizes for placement improvement step (initially l,1).

Data - Row, cell neighborhood sizes following comma.
Passed - No

NETS
Function- Header for circuit net lists.
Data - Net lists in following records.
Passed - Yes

STAR SIZE, (STAR,)
Function- Specifies STAR dimensions.
Data - STAR size (cell rows, transistor columns) following comma.

Passed - Yes

STEP,
Function- Specifies CAPSTAR steps to be performed (initially all).

Data - Step names (CLUSTER, LINEUP, WIRECROSS, FOLD) separated by commas following 'STEP,'.

Passed - No

Circuit Definition Records

The cell type list, net list, and user-defined linear order are entered as a series of numeric records following the appropriate header record. The end of a list is assumed when a non-numeric item or the end of the input file is seen. The format of each of the three lists is shown below.

Cell Type List (Following 'GATES TO PATTERNS')
In this list, each of the circuit cells and pads is associated with a STAR standard cell or pad type number. The format of each record in this list is

For example, if cell number x is type l000+x, a typical cell type list record is

11001210023100341004
Sufficient records to specify each cell or pad in the circuit should be included.

The list is passed to the output file with certain adjustments. These adjustments involve re-assignment of pad type numbers based on the pad position in the final placement. In the input file, input pads are type 9200 and output pads are type 9210. For pads placed at the top or bottom of the STAR, the type numbers are unchanged. For input pads placed at the sides of the STAR, the type number is changed to 9100 . For an output pad placed at the left, the type number is changed to 9110 . For output pads placed at the right, the type number is changed to 9120.

Net List (Following 'NETS')
The connection points (cell number, pin number) of each net in the circuit are identified in this list. The format of each record is

```
net celll pinl cell2 pin2 . . . .
```

For example, if net 5 is connected to pin 1 of cells 6, 7, and 8, the net list record for net 5 is

$$
\begin{array}{lllllll}
5 & 6 & 1 & 7 & 1 & 8 & 1
\end{array}
$$

For large nets, more than one input file record may be required. Extension of the net may be accomplished either by use of the record continuation feature or by repetition of the net number at the beginning of the next record. Thus, either

$$
\begin{array}{llllll}
5 & 6 & 1 & & & \\
& & 7 & 1 & 8 & 1
\end{array}
$$

or

$$
\begin{array}{lllll}
5 & 6 & 1 & & \\
5 & 7 & 1 & 8 & 1
\end{array}
$$

can be used to enter net 5, above. If the second of these net continuation forms is used, the continuation records must immediately follow the initial record for the net.

Information specified in the net list is passed to the output file after modification of all continuations to the second form, above.

Linear Order (Following 'LINEAR ORDER')
Each cell and pad in the network should be included in this list if the user-entered linear order option is selected. The list format is
celll cell2 cell3 cell4
Record continuation is allowed, but not required in this list. The linear order is not passed to the output file.

Example Input File

Circuit 'EXAMPLE' has 4 nets: net 10 connects pin 4 of cells 1-4, net 20 connects pin 5 of cells $1-20$, net 30 connects pin 1 of cells $2,3,99$ and 101 , and net 40 connects pin 1 of cells 4 and 102. Cells l-19 are type 1640 , cells 20 and 99 are type 1820,101 is an input pad (type 9200), and pad 102 is output (type 9210). The STAR to be used consists of 8 rows and 24 columns. 50 folding solutions are to be formed and the best 5 improved. The row and cell neighborhood sizes are 1 and 3 , respectively. The input file for this job is shown in Figure 1.

CAPSTAR Output

The output information provided by CAPSTAR consists of a file suitable for use by other programs and of user (narrative) output. These outputs are discussed in this section.

Narrative Output

CAPSTAR narrative output is provided in line-printer format on FORTRAN channel 6. Each CAPSTAR step is identified by a header line showing the step and circuit names. An explanation and example of the narrative output provided by each step is shown in the following paragraphs.

```
C
C THIS IS AN EXAMPLE CAPSTAR APPLICATION
C
NAME, EXAMPLE
C
FIND, 50
C
IMPROVE, 5
C
NEIGHBORHOOD, 1,3
C
STAR SIZE, }82
C
gAtES TO PATTERNS
1 1640 2 1640 3 1640 4 1640 5 1640 6 1640 7 1640 8 1640
9 1640 10 164011 1640 12 1640 13 1640 14 1640-15 1640
16 1640 17 1640 18 1640 19 1640 20 1820 99 1820
101 9200 102 9210
C
NETS
10}104424443444
2014 5 2 5 5 3 5 5 4 5 5 5 5 6 6 5 7 5 5 8 5
    9
```



```
30 2 1 3 1 1 99 1 101 1
404 1 102 1.
```

Figure 1. Example Input File

Data Entry Step

Each control and passed record in the input file is echoed on the listing. The cell type definitions are displayed with cell width information as obtained from the STAR cell width library (STARWIDLIB). The cells composing each net in the circuit are also shown. At the end of the section, the result of a cross-check between the various lists is given.

The data entry step output for the cell type and net lists of the example applıcation is shown in Figure 2.

Clustering Step

For each cell (cell number < l 000) or cluster (cell number $>$ log0) to be combined, the cell number, width and number of nets is shown. The statistics for each candidate for combination and the effect of combination on the total chip metal are are calculated and displayed in tabular format. The combined cells and resultant cluster are then shown along with the cluster width and nets absorbed by combination. The information printed for a typical combination is shown in Figure 3.

Following clustering of all cells, a summary of cell combination is printed as shown in Figure 4.

GAtES TO PATTERNS												
	CELL			TYPE	1640			WIDTH		6		
	CELL	2		TYPE	1640			WIDTH		6		
	CELL	3		TYPE	1640			WIDTH		6		
	CELL	4		TYPE	1640			WIDTH		6		
	CELL	5		TYPE	1640			WIDTH		6		
	CELL	6		TYPE	1640			WIDTH		6		
	CELL	7		TYPE	1640			WIDTH		6		
	CELL	8		TYPE	1640			WIDTH		6		
	CELL	9		TYPE	1640			WIDTH		6		
	CELL	10		TYPE	1640			WIDTH		6		
	CELL	11		TYPE	1640			WIDTH		6		
	CELL	12		TYPE	1640			WIDTH		6		
	CELL	13		TYPE	1640			WIDTH		6		
	CELL	14		TYPE	1640			WIDTH		6		
	CELL	15		TYPE	1640			WIDTH		6		
	- CELL	16		TYPE	1640			WIDTH		6		
	CELL	18		TYPE	1640			WIDTH		6		
	CELL	19		TYPE	1640			WIDTH		6		
	CELL	20		TYPE	1820			WIDTH		1		
	CELL	99		TYPE	1820			WIDTH		1		
	PAD	101		TYPE	9200							
	PAD	102		TYPE	9210							
C NETS												
	NET 1			2	3	4						
	NET	20	1	2	3	4	5	6	7		8	9
		.	10	11	12	13	14	15	16		17	18
			19	20								
	NET	30	2	3	99	101.						
	NET	40		102								
END OF INPUT DATA												
DATA CROSS-CHECK INITIATED												
DATA CROSS-CHECK COMPLETED												

Figure 2. Data Entry Step Output

CELL TO BE COMBINED $=1003$ WIDTH $=12$ NETS $=2$ DELTA METAL CAND.WIDTH CAND.NETS NETS IF COMB. CANDIDATE

5.7395	12	4	4	1004
4.3046	12	3	3	1005
3.1311	14	1	2	20
2.8698	12	1	2	1007
2.8698	12	1	2	1008
2.8698	12	1	2	1009
2.8698	12	1	2	1010
2.8698	12	1	2	1011
3.6370	18	1	2	1012

CELL 1013 REPLACES $1003 \& 1007$ WIDTH $=24$

Figure 3. Output Shown for Single Cluster Formation

CELL	COMP	OSED	OF	CELLS							
1001-	101	2									
1002-	102	4									
1003-	1	5									
1004-	101	3	2								
1005-	102	6	4								
1006-	7	8									
1007-	9	10									
1008-	11	12									
1009-	13	14									
1010-	15	16									
1011-	17	18									
1012-	19	7	8								
1013-	1	9	5	10							
1014-	101	11	3	2	12						
1015-	102	13	6	4	14						
1016-	15	17	16	18							
1017-	20	19	7	8							
1018-	99	101	11	3	2	12					
1019-	1	15	9	5	17	16	10	18			
1020-	102	20	13	6	4	19	14	7	8		
1021-	99	1	101	15	9	5	11	3	2	17	16
	10	12	18								
1022-	102	99	20	13	6	4	1	101	19	14	15
	9 18	5	11	3	2	7	17	16	10	12	8.

Figure 4. Clustering Step Summary Output

Linear Ordering Step

The generated linear cell order is shown in l5(14) format. The output of this step for the example application is shown in Figure 5.

Wirecross Step
The linear order is displayed vertically with both forward (FWID) and reverse (RWID) cumulative cell widths shown. Each circuit net is shown to the right of the linear order with connections to a cell indicated by "-".

The wirecross output for the example circuit is shown in Figure 6.

Placement Step
At the beginning of the placement step, CAPSTAR forms the requested number of folding solutions. The highest rated IMPROVE of these are selected and ratings are shown. Start and end of placement improvement are noted and the rating data for the highest rated improved placement is shown. The format of this output is shown in Figure 7.

In this output, "QUALITY" is the estimated fraction of all layouts of the circuit with ratings lower than the placement of interest. Horizontal and vertical ratings reflect the predicted fraction of the available channel area which will be used in placement routing. Pads are not

LINEAR ORDER
$\begin{array}{rrrrrrrrrrrrrrr}20 & 19 & 7 & 8 & 13 & 14 & 6 & 102 & 4 & 99 & 101 & 2 & 3 & 11 & 12 \\ 1 & 5 & 9 & 10 & 15 & 16 & 17 & 18 & & & & & & & \end{array}$

Figure 5. Linear Ordering Step Output

FWID RWID CELL - 142

14	128	20	-20		
20	122	19	-20		
26	116	7	-20		
32	110	8	-20		
38	104	13	-20		
44	98	14	-20		
50	92	6	-20		
50	92	102	20	-40	
56	86	4	-20	-40	-10
70	72	99	20	-30	10
70	72	161	20	-30	10
76	66	2	-20	-30	-10
82	60	3	-20	-30	-10
88	54	11	-20		10
94	48	12	-20		10
100	42	1	-20		-10
106	36	5	-20		
112	30	9	-20		
118	24	10	-20		
124	18	15	-20		
130	12	16	-20		
136	6	17	-20		
142	0	18	-20		

Figure 6. Wirecross Output
50 SOLUTIONS FOUND IN 59 TRIES
5 BEST SELECTED
NUMBER RATING*10**6 QUALITY*10**612826692995930
$42 \quad 802642929279$
16 801053 918154
$10 \quad 801053 \quad 918154$
$11 \quad 797963 \quad 892825$
PLACEMENT IMPROVEMENT INITIATED
PLACEMENT IMPROVEMENT COMPLETED
PLACEMENT NUMBER 12
NET 10 STRAIGHT
NET 30 STRAIGHT
RATINGS
TOTAL --- 83.92%
HORIZCNTAL --- 4.36 \%
VERTICAL --- 7.81 \%
STRAIGHT NETS --- 66.67 \%
QUALITY --- 0.99565

Figure 7. Folding Summary and Result Rating Output
included in the placement at this step, so statistics do not reflect pad placement.

After printing of result placement rating information, a pictorial representation of the cell layout is shown. This output for the example circuit is shown in Figure 8.

In this output, cell boundaries are shown as "\#" and transistor boundaries as ":". Cell numbers are read vertically and occur to the left of the dashes. Numbers to the right of the dashes indicate nets which are incident to the cell. Transistors completely surrounded by \#'s are transistors which are not used for cell placement.

Following placement depiction, the (row, column) positions assigned to circuit pads are shown. The position of each cell, pad, and group of unused transistors (A group of $X X X$ unused transistors is denoted by 999 XXX) is then shown in actual STAR grid coordinates. Finally, the set of barriers constructed to prevent router usage of unused pad positions is shown. This section of the output is shown in Figure 9.

Figure 9. Pad Placement, Grid Coordinate Translation, and Barrier Construction Output

Output File
The CAPSTAR output file is written on FORTRAN channel 19. This file contains the circuit cell type and net lists, the grid coordinate format of the placement, the locations of all constructed barriers, and any passed data from the input file. The format of this file for the example application is shown in Figure 10.

Execution of CAPSTAR on The XDS SIGMA/5

To run CAPSTAR on the SIGMA/5, the input data file should be constructed and a number of channel assignments made. A summary of channel definitions necessary is shown ín Table 1.

Normally, the necessary assignments may be made by executing the file XEQCAPASGN which makes the device and file assignments shown in parentheses in Table 1.

After input file construction and channel assignment, the first portion of CAPSTAR can be run by
! LMBIGCAPA4.
The second part can then be run by
! LMBIGCAPB4.

TITLE EXAMPLE
STAR SIZE 824
GATES TO PATTERNS

	1640	2	16403	1640	4	1640	5	1640	6	1640
; 7	1640	8	16409	1640	10	1640	11	1640	12	1640
13	1640	14	164015	1640	16	1640	17	1640	18	1640
19	1640	20	182099	1820	101	9200	102	9210		
PLACEM										
25	19		$25 \quad 6$		43	4	61	111		79
-41	7		2514		43	3	61	12		79
41	8		2513		43	2	61	15		79
-57	99		25999003		67	1	76	6999001		94
57	999012		2517		61	9	79	9		
-73 9	999012		2516		61	10	79			
73	999018		2515		79					
-89	20		25999004		67	18	79			
-25	$10]$		39							
-25	102		69							
NETS										
10	1	4	$2 \quad 4$	3	4	4	4			
20	- 1	5	25	3	5	4	5	5	5	
20	11	5	125	13	5	14	5			
20	15	5	165	17	5	18	5	19	5	
20.	20	5								
30	2	1	31	99	1	101	1			
40	4	1	1021							
WIRES										
6	24	24	38	24	BARR					
6	39	90	53	$9 \varnothing$ B	BARR					
6	69	90	83	90 B	BARR			.		
6	84	90	98	90.	BARR					
6	22	26	22	40 -	BARR					
6	22	42	22	56	BARR					
6	22	58	22	72 B	BARR					
6	22	74	22	88 BA	BARR			-		.
6	101	26	101	40 B	BARR					
6	101	42	101	56 B	BARR			1		
6	101	58	101	72 B	BARR					
6	101	74	101	88 B	BARR					

Figure 10. CAPSTAR Output File

TABLE 1
CAPSTAR Channel Assignments

FORTRAN Channel	Assigned
6	Narrative output device (LP)
12	Temporary File \emptyset (IEFILE)
13	STAR Pad Location File (STARPADLOC)
14	Star Cell width Library (STARWIDLIB)
15	Input Data File (INBUF)
16	Temporary File 1 (CAPTMPl)
17	Temporary File 2 (CAPTMP2)
18	Data Passage File (PASSFILE)
19	Output File (PLACEOUT)

