@ https://ntrs.nasa.gov/search.jsp?R=19810024343 2020-03-21T11:20:56+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

DIGITAL SYSTEMS DESIGN TANGUAGE

(NASA-CR-161332) DIGITAL SYSTENS DESIGN —a
LANGUAGE Annual Report, 1 Oct. 1978 - 30

Sep. 1979 -

Awpmet (Alabama Univ. in Huntsville.) 131 p OUnclas

G4/61 TR
Prepared by

SAJJAN G. SHIVA
Computer Science Department
The University of Alabama in Huntsville
HBuntsville, Alabama 35807

First Annual Technical Report

October 1979
T _1 < 2 -
(Jn‘.f“ Gt L1332 Vivdial SXolello DeolGh vol1-3 Covu
LANDUALL allidds Techlical weport (ALdidud o
sEOL L Aididu
VLhiVe 14 AA‘J.Ar.JVlA.A,.) 151 t uC avly L AJul

Cal Ll (V> DY))AAJL;

G3/u1 317452

OfAH:am'
in Huntsville

e <

DIGITAL SYSTEMS DESIGN LANGUAGE

Prepared by

SAJJAN G. SHIVA
Computer Science Department
The Jniversity of Alabama in Huntsville
Huntsville, Alabama 35807

First Annual Technical Report
October 1979

for

NAS 8 - 33096
DESIGN SYNTHESES OF DIGITAL SYSTEMS
George C. Marshall Space Flight Center
Alabama, 35812

i

FOREWORD

This is a technical summary of the research work conducted during
October 1, 1978 to September 30, 1979 by The University of Alabama in
Huntsville towards the fulfillment of the Contract NAS8-33096 from the
George C. Marshall Space Flight Center, Alabama. The NASA technical
officer for this contract is Mr. Robert E. Jones.

The author greatfully acknowledges the numerous discussions with
and helpful comments of Mr. John M. Gould during this research work,
and thanks Professor Donald Dietmeyer of the University of Wisconsin-

Madison for providing the DDL Software.

11

DIGITAL SYSTEMS DESIGN LANGUAGE

Sajjan G. “hiva

ABSTRACT

Digital Systems Design Language (DDL) has neen
implemented on the SEL-32 Computer Systems of the Electronics
and Controls Laboratory. This document provides the details
of the language; the translator and the simulator programs.
Several example descriptions and a tutorial on hardware de-

scription languages are provided, to guide the user.

IIl

TABLE OF CONTENTS

LIST OF TABLES - VI
LIST OF FIGURES-- V1
1. INTRODUCTION - 1
2., THE LANGUAGE (DDL) ——— 2
2.1 Syntax Rules - 5
2.2 Declaration Statements-——===—=—=eeecec—saccm—c—cc—ecocn~ 5
2.3 Operations o
2.4 1f-Value Clause - 10
2.5 Identifier-- - 11
2.6 Operator Declarationsg--- 11
2.7 State Declaration- 13
2.8 Automaton and System Declarations 14
3. THE TRANSLATOR (DDLTRN)-==-— o—— - -~19
3.1 The Translation Procegsgs—--—e===-emcee—me—ccecocccsanw—- 20
3.2 An Example —-— - 23
4. THE SIMULATOR (DDLSIM)--- - =31
4.1 Simulation Models===—- —— 32
4.2 Simul .tor Command Language-=-=—===~==-e—e—e—m——c—c—o—o——- 37
4.3 Simuiation Algorithm e e e e —— e m e 61
4.4 Errors——---—-- - - ————————————————— 64

5. EXAMPLES

Example l: A Serial Twos Complementer----—=--=~=-—---===-c-66
Example 2: The Serial Twos Complementer (variation l)------ 77
Example 3: Twos Complementer (variation 2) 84
Example 4: Multiplier--—---cve—ce-c— -— - 94
Example 5: Minicomputer—--—--=—-c-c cocemcmmmmmoeroeooooo— 99

Iv

6. CONCLUSIONS==eom=—cmae—n= - 102

APPENDIX

2.1

3.1

2.1
5.1
5.2
5.3
5.4
5.5

LIST OF TABLES

OPERATORS

FLAG INTECERS

18

LIST OF FIGURES

Local and Global Facilities

20

A Serial Twos Complementer

&

The Serial Twos Complementer (variation 1)
The Serial Twos Complementer (variation 2)
Multiplier - -—

70
78

85

Minicomputer--- -

Vi

96
-101

1. INTRODUCTION

Hardware Description Languages (HDL) provide a convenient medium of
inputting the design details into a design automation system. This re-
port gives the details of one such language, Digital Systems Design
Language (DDL), selected for integration into the Computer Aided Design
and Test System (CADAT) of the Electronics and Controls Laboratory.

Chapter 2 provides the language details, Chapter 3 discusses the
translator program and Chapter 4 discusses the Simulator Program. Some
example descriptions are provided in Chapter 5. A tutorial on Hardware
Description Languages is provided in the Appendix. An exhaustive »ibli-
ography for some of the literature in this area is also provided in the
Appendix. Readers not fariliar with any HDL are referred to the Appendix
before reading the rest of the report.

The Simulator and Translator Programs are currently being tested on
SEL-32 Computer System and hence, the complete deck set up details for

the use of these programs is not included in this manual.

2. THE LANGUAGE [31]*

DDL was introduced in 1967 by Duley and Dietmeyer [33]. A trans-
lator and a simulator are written for a subset of this language in IFTRAN,
an extended version of FORTRAN [35,36]. These programs are implemen'ed
in FORTRAN on SEL 32 Computer System. The translator (DDLTRN) translates
a DDL description into a set of Boolean equations and register-transfer
statements. The simulator (DDLSIM) enables the system designer to verify
his design. The output of the translator is an input to the simulator.
Simulation parameters are to be input by the designer. In DDL the struc-
tural elements are explicitly declared. At the lower level of descriptioa,
functional and structural elements correspond directly to the actual
elements of the system. DDL is highly suitable for describing the system
at the gate, register transfer and major combinational block level.

The logical statements can be formed using the available primitive
operators. The functional specification of the system consists of these
logical statements, in blocks. The statements describe the state tran-
sitions of a fiaite state msirhine controlling the processes of the in-
tended algorithm. The block then appears as an automaton.

Parallel operations are permitted. Synchronous behavior is described
by either identifying the pulses or by including delay elements described
in terms of multiples of clock pulses. Asyncluronous behavior is modelled
by using conditional statements. Data paths can be explicitly declared

by using terminal declarationms.

*The numbers in brackets point to the references listed in the Appendix.

DDL is a "block-oriented" language; the blocks of a DDL description
usually correspond to natural divisions (blocks) of the hardware being
described. Thus a computer may have a major block called an "ALU,"
which contains a block called "adder," which consicts of interconnected
logic blocks called "full-adders." This nested view of the hardware can
be directly reflected in the DDL description of the computer.

Both facility declarations and operations can appear within the body
of the more complex declarations that have a heading part. Identifiers
declared within such complex declarations are said to be local facilities
of that declaration, and are global facilities of complex declarations
that appear in the body of the encompassing declaration. Other complex
declarations that parallel the encompassing declaration cannot control
or sense such facilities. Operacions can reference only facilities that
are local or global to the block in which they appear. Thus the same
identifier may be declared in more than one parallel block without
ambiguity.

Figure 2-1 illustrates some of the possibilities. Facilities A, B,
and C are declared facilities of the overall block named SYSTEM. These
facilities are global to all blocks within SYSTEM; any or all of these
blocks may control or sense the states of facilities A, B, and C. Hence
A, B, and C are said to be public facilities. Facilities D and E are
local to SUBSYSTEM 1, global to PART 1 and PART 2. SUBSYSTEM 2 and its
inner blocks are uot aware that facilities D and E exist; no reference
to D and E may appear in the description of SUBSYSTEM 2.

Facilities H and I are local to PART 1; no other block of Fig. 2-1
may control or sense these facilities. PART 2 has its own facility I

which may be of a very different hardware nature than facility T of

SYSTEM
Focihhes A, 8,C
SUBSYSTEM | SUBSYSTEM 2
Facihhes D,E Faciihes F,G
PART | PART 2 ASSEMBLY
Facihities| [Facilities Facilities
H, | I,J J, K
CARD
——
Facilites
K, L
L

Fig. 2-1. 1 ocal and giobal facilities,

PART 1. PART 1 and PART 2 each control and sense their own facility I.

Similarly, PART 2 controls and senses its local facility J as does
ASSEMBLY for its local facility J, vhich is global to CARD and hence can
be controlled and sensed by CARD. References to K within CARD pertain to
the most locally declared facility K, e.g., the one declared within CARD.

Permitting the same identifier to be used in parallel blocks allows
designers working in parallel on the blocks to select without restrictioa
names that appeal to them. If parallel blocks must communicate, facilities
global to them must be estatlished and assigned unique names. The de-~
signers of the parallel blocks must know and use these global names. Thus
in Fig. 2~1 SUBSYSTEM 1 and SUBSYSTZM 2 may communicate via A, B, or C.

PART . and PART 2 may communicate via D or E, or via A, B, or C.

2.1 SYNTAX RULES
VARIABLES:
Variable name may contain X to 8§ characters, the first of which must
be alphabetic. The remaining characters must be letters cr digits.
Examples: MULT

SYSl

COMPLMNT
CONSTANTS :
Constants take the general form nRk. n 1is the number in base R (R=D for
decimal, O for octal). k is the number of bits required for che repre-

sentation k < 32. k is decimal.

Examples:
Representation Binary equivalant

1D2 01
5D4 0101

20D5 10160
203 010

2006 010000
0 0
1 1

2.2 DECLARATION STATEMENTS
The general format of a declaration statement is <DT> body.
The declaration type (device) is enclosed in angle brackets and the period
terminates the declaration. Body consists of a list of items separated by

commas. Following devices are allowed:

TErminal Sets of wires

REgisters Sets of synchronized flip-flops
MEmory Sets of synchronized flip-flops
LAtches Sets of asynchronous latches
TIma Clock

DElay Delay elements

BOolean Combinational logic

ELement Of f-the-shelf compcnents

The device type can be abbreviated to the first two characters.
Examples:
<TE> X, Y(4), Z(0:2), W(3,4:1), A(12) = B £ C(0:10) identifies

a single wire I, four wires Yl, YZ’ Y3. Y“ with Y. on the left, 3

1
wires Z_, Zl, Z, and 12 wires corresponding to W, placed in 3 rows, ith

0 2
row of wires numbered wia, wi3, wiZ’ wil' The srbscrip:.s always have a
left to right interpretation. A single subscript n indicates the range
1l to n while a range .a:m indicates n to m left to right. 1In the abcve
declaration, Al {s also named B, 2(2:.2) are named C(0:10). £ is the
concatenation operator. The concatenation of B and C is a 12 bit
terminal A with the nost significant tit same as that of B and the

least significant 11 bir-: same as those of C.

REgister and LAtch DECLARATIONS

<RE> IR(16) = OP(0:3) € IX(1.3) ¢ ADRS(9), X(12). declares
a 16 bit register IR and a 12 bit cegister X.
IR is identified with 3 subregisters OP, IX and ADRS.

<LA> BUF(4).

declares a set of 4 latches BUF.

<RE> A(8).
declares an 8 bit register, bits numbered from 1 to 8, left to right.

MEmory DECLARATION

<ME> M(X:Y).
declares X words (numbered from 0 to X-1) of Y bits each (numbered 1
through Y).

<ME> MP(256:8).
declares a 256 word memory, 8 bits/word.

References to the memory must be of the form M(MAR) where MaR is

the same register in all references to M. MAR is declared in a RE
declaration. Only full words may be accessed from memories.

TIme DECLARATION

<TI> A(lE-6), Q(20E-9) $2%.
declares a single chase clock A with a 1 microsecond period and a two-
phase clock Q with 20 nanosecond period.

<TI> P.
declares a single phase clock with an arbitrary time period (unit).

DElay DECLARATION

<DZ> P(l0E-9), Q(5E-7).
declares two delays P with 10 nanoseconds and Q with .5 microsecond.
The context in which the DElay element is referenced determines whether
its input or output terminal is used.

BOolean DECLARATION

<B0> Identifier = Boolean expression.
Examp! °s:
<TE> A, B(5), C(0:4), D(6, 5:1).

<BO> D(4) = B+C, D(5) = A*B.

-8-

declares that che fourth row of D is formed by ORing terminals B and C
i.e. (l:)‘g.5 - Bl + CG etc.) bit by bit; the fifth row of D is a bit by bit
AND of A and B. Since A is 1 wire and B is a set of 5 wires, A is fanned
out to combine with each bit of B.

ELement DECLARATION

Enables the description of an element in the system whose logical
specifications are unknown or impertinent.
For example,

<EL> JKFF (Ql,NQl: C, J1, K1), COUNT (K(5:1), ZERO:
UPDWN, CILK).
declares an element JKFF with J inpuats C,J1,Kl and two output Ql and
NQl; and an element COUNT with two inputs and 6 outputs. The only
information available on these black boxes is the input/output terminals.
2.3 OPERATIONS
Table 2.1(a) shows the operations allowed and their hierarchy;

"-"

Table 2.1(b) shows three special operators. is used to show the
connections while <- indicates a data transfer from one facility to the
other -> is equivalent to a "GOTO', used to show a state transition.

The extension operator "$'" creates k copies of the terminal or
terminal set offered as its left operand.

The selection operator '

, selectively complements, or not comple-
ments the bits of the facility (left hand operand) depending on the

value of the corresponding bit in kDn is a 0 or 1.

For example A' 10D5 is equivalent to

1 e

A3 g A'01010

5 e

The operator preceding the reduction operator (/) determines the
nature of the reduction on the right hand operand of /. Six types of
reductions are possible. For example, given a signal A,

*/A implies

If A is a 3 bit signal,

x/A' 2D3 implies

Selection

i

/

Reducticn

-10-

+/A'3D5 implies

Boolean expressions (Be, can be formed bv using the operators and

variables in the usual manner. Paranthesis could be used where there is
an ambiguity. The expressions are evaluated from left to right follow-
ing the operator hierarchy.

Conditional operations have th. format

'BE! OPl. or

'BE! OP ;OP,.

4

The first form implies: If the value of BE is 1, perform OPl; the

second form implies: If BE is 1, perform OP else perform OP "I1f ...

1 2°

then" operations can be nested:

PALIBIOP L C : 0P,..

2.4 IF - VALUE CLAUSE
":" is used for "IF' and "#va" is used for the value in an IF-value

clause. For example;

B ="' C #0 DO #1 Dl #2 D2,
implies that DO is connacted to B if the value of C is 0, Dl is connected
to B if the value of C is 1, etc.
As another example,

| X #0D2 A<-B #1D2 A<=C #2D2 A<-AB #3D2 A<-AC.

/1,

describes a 4 wav conditional transfer operation into A depending on the

-11-

value of X,
2.5 IDENTIFIER
IDentifi.r declaration enables the naming of a group of operations

so that they do not have to be written repeatedly (equivalent to MACROs).
The general format of IDentifier declaration is,

<ID> 1ist.
where list takes the form

id = compound facility

id = (CSOP)
For example, <ID> X = C(2:10) £1. names the compound facilitv £(2:10)¢1
to be X. Then, anv reference to X is expanded into C(2:10)¢.
For example, S = R ® X. is equivalent to S = R @& C (2:10) ¢1.

(A compatible set of operations (CSOP) is a set of operations

separated by commas. It must be possible for the hardware to perform
all these operations simultaneouslv.)
The order in which the operations are listed is of no consequence.
For example,
<ID> A = (Y <= X, Z <= 2(2:5) ¢AzZ(1D)),
B = (Y <= X, Z<= Y).
names two CSOPS. Note that the operations Y <~ X and Z <- Y in B are
simultaneous and are compatible.
2.6 OPERATOR DECLARATION
Blocks of combinational circuitrv can be defined with the OPerator
declaration. The bodv of the OPerator declaration consists of a BQolean
declaration and perhaps a TErminal declaration. Boolean equations in

the bodv of the BOolean declaration include Boolean expressions which

=12~

may involve conditions and be relatively complex. References in these
Boolean equations may be made to (1) facilities global to the OPerator
declaration. (2) local terminals declared within the OPerator declara-
tion by a TErminal delcaration, and (3) terminals delcared and dimension-
ed in the head of the OPerator declaration. The TErminal declaration
may be used to define local terminals of the operator, and must be used
to dimension "dummv" identifiers listed in the heading, if any.

The head of the Operator declaration consists of one or a list
(separated by commas) of identifiers with or without an argument list
enclosed in $s, with or without parenthetic subscript ranges. Permitted
syntactic forms for heads are:

1d), 1d,(1,), 1d; $ X}, X5. XS, 1d, (18

Xl, XZ"' st
where subscript ranges can also be placed within the parenthesis. The
identifiers name the combinational logic blocks and their output termi-
nals. Parenthetic integers dimension the output terminal sets with the
same syntax and semantics as in TErminal declarations. The arguments
are local dummy identifiers of input terminals of the combinational
blocks. Such dummy identifiers must be dimensioned via a local terminal
declaration within the OPerator body.

As an example of a time-shared operator block, ALU is declared
below. This combinational block is able to add two 16-bit binary
sequences presented to it on lines X and Y or form their bit-bv-bit
EXCLUSIVE-OR. Input signal F determines which task is performed. The
carry into rightmost full-adder must also be presented to the unit.

<OP> ALU(16) $ X,Y, CIN, F$

<TE> X(16), Y(16), CIN, F, C(16) = CXZCC(15).

-13-

<BO> C=X*Y + CCE CIN* (X+Y),

ALU = (!F! X@YQ CCECIN$ X@Y9..(end of BO, end of OP)
Note the inline comment capability of DDL (end of BO, end of OP).
Suppose the following declaration is global to ALU,

<RE> ACC(16), MBR(16), COUNT (12).
we can define several operations using ALU as following:

!LDA! ACC <- ALUSO,MBR,0,0$

+ADD! ACC <- ALUSACC,MBR,0,1$

:SUB! ACC <- ALUSACC,AMBR,1,1$

'KNT! COUNT<-ALU(5:16) $SOD4£COUNT,0,1,1$

*XOR! ACC <-ALUSACC,MBR,0,0$

2.7 STATE DECLARATION

DDL views the operation sequencing (control) circuitry as a finite
state machine. Each state (step) of the control circuitry is described
bv a STate declaration:

<ST>State List.

State list consists of a list of state statements (without separa-

ting commas). Each state statement has one of the following forms:
Sid (n): csop.
Sid (n): Be: csop.

Sid is a simple unsubscripted identifier. n is the decimal state
assignment.csops include the state change operations using the state
transition operator ->.

In the first form, csop is performea whenever the automaton is in
the state sid.

In the second form, csop is perf-rmed when the automaton is in $id

and also Be {s satisfied. The automaton waits in the state till Be is

14~

satisfied.

A 15 bit multiplier control can be described as following:
<ST> S0(0) :MPY:ACC<-0, CNT<-15D4,->Sl.
S1(1):->S2, DECR$ CNTS !Q(15) ' ACC<=-ACC+R..
$2(2) :SHRSACCLQS, !+/CNT! ->S1;S0 ...
(end of conditional, end of S2, end of ST)
SHR is shift right (zero fill) operator and DECR is a decrement
operator assumed to be defined using <OP> declaration.
2.8, AUTOMATON and SYSTEM DECLARATIONS
Relatively independent disjoint portions of a digital system are
identified as automata in DDL with svntax.
<AU> head body.
The AUtomaton declaration is the most complex type of declaration
of DDL. Its head may take anv of four forms, for example;
auid:
auid:csop
auid:Be:
auid:Be:csop
First, an automaton identifier, auid, mav be subscripted, but may
not include parenthetical arguments; it names the block onlv. A compat-
ible set of operations may be included in the head of :n automaton.
These operations are to be performed whenever the Be of the heading, if
any, is satisfied. Conditional as well as unconditional operations mav
be included in this heading csop, so whether a specific operation is
performed or not may depend on conditions throughout the automaton or
system.

Be in the heading of the AUtomaton declaration is a condition on

“15a

all operations declared throughout the body of the declaration except
connection operations. Usually Be is the clock signal that synchronizes
the automaton, It is generally unnecessary and undesirable to include
such global conditions as clock signals in combinational circuits; in
fact, signal propagation in combinational networks usually precedes
clock pulses. If a clock with n phases is used to synchronize an autom-
aton, then a dimensional Be or a concatenation of n Bes appears in place
of the single Be in the AUtomaton declaration head.

The body of an AUtomaton declaration consists of other declarationms.
Each of these declarations is terminated with its own period; punctuation
is not placed between them. The following declaration tvpes mayv appear:

<ME>, <RE>,<LA>, <TE>
<TI>, <DE>, <OP>,<EL>,<ID>,<B0O>,<ST>

ME, RE, LA, TE, TI, DE, AND EL declarations are used to declare the
existence of local facilities of the automaton. The OPerator and BOolean
declarations specify combinational blocks and interconnections of facil-
ities. The IDentifier declaration mav be used to simplify or clarify the
overall AUtomaton declaration. The STate declaration is usually used to
specifv the operations of the automaton. If the STate declaration is not
used, then all operations appear in the csop of the AlUtomaton declaration
head.

The SYstem declaration has syntax identical to the AUtomaton decla-

ration. The svstem is identified in the head. Global conditions and
csop may be specified also. The bodvy of a SYstem declaration may contain
AUtomaton declarations as well as all cther types of declarations, but
STate declarations must appear within AUtomaton declarations. Public

facilities are declared with ME, RE, TE, etc., declarations outside of all

-16-

AUtomaton or OPerator declaratioms.
Example:

A multiplier controller is described below to illustrate
the SYstem and AUtomaton facilities. The counter is
treated as a separate automaton. Perhaps other unspec-
ified automaton of SYSTEM 1 can use the counter when
automaton MC is not.
<SY> SYSTEM 1:

<RE> ACC(15), Q(15), R(15).

<TE> SET, DEC, DONE, MPY.

<TI> P(lE-7).

<AU> CPU: P:

<ST> .

Q17: DONE: Q <~ Multiplier,

R <= Multiplicand, MPY = 1,

.. (end CPU)
<AU> MC: P:
<ST> SO: MPY: ACC <- O, SET =],-> SI.
Sl: -> S2, DEC = 1,!'Q (13)% ACC <- ACC+R..
$2: ACCEQ <- SHRSACCEQS !DONE! -> SI1 ...
<Al> K: P:
<ST> [i=1:15}) T(i): DEC: ->T(i-l)..
T(0): DONE = |, :SET! => T(15); -> T(0)...

(end SY)

«l7-

Automaton CPU is shown only as placing the multiplier and multipli-
cand in public registers and issuing command MPY to multiplier control
MC. 1f the counter automaton K is idle, it will be issuing DONE = 1.
CPU waits in its state Q17 until this condition is satisfied (perhaps K
is still doing a job for some other automaton). MC clears ACC, but the
counter is initialized by SET = 1. Specifically SET =] will cause K to
go from izs state T(0) to T(15) where it will remain until it is told to
decrement via public terminal DEC, MC tests the multiplier, adds or not
and shilis repeatedly until it is informed by K via public terminal DONE
that all multiplier bits have been examined. In the example above inter-
acting automata MC and K operate in parallel.

NOTE: The "For clause” shown in the Automaton K for the decrement
operation [i=1;15] T(i):DEC: -> T(i-1) is not allowed in the present
version of the DDL software. This statement has to be broken up into;

T(1): DEC: =->T(0)

T(2): DEC: =->T(1)

T(15):DEC:=->T(14)
SHR is a single argument operator (assumed to be declared earlier)

that shifts the argument one bit right, and fills zero on the left,

OPERATOR SYMBOL TYPICAL SYNTAX
Extension $ ASk
Concatenation 4 ACB
Complementation A AA
Selection ' A'kDn
Reduction / p/A
AND * A*B
NAND Ax AA*B
NOR A+ AA+B
XNOR A@ AQB
XOR @ A@B
OR + A+B
TABLE 2.1(b) : SPECIAL OPERATORS

CONNECTION =

TRANSFER <=

GO TO ->
NOTE:

~18-

TABLE 2.1(a) : OPERATORS

COMMENTS
k copies of A
Bit by bit
Bit by bit complement
Selective comple-
mentation
AlpAzp...pAn, where p
is one of thesel!*, A%,
A+,0Q,Q,+.
Bit by bit

Operations

Refer to Chapter 3 (The Translator)for variations of these

Operators.

3. THE TRANSLATOR (DDLTRN) [36]

DDLTRN is a program that translates a DDUL description of a digital
s,8tem to 1) a DDL description that consists of Boolean equations and
register trannfer statements in the heading of a system declaration only,
and 2)a tablation of facilities and subfacilities declared in the DDL
description and/or defined in the translation process. Some modifica-
tions of DDL recognized by DDLTRN are listed below. The translation
process is briefly discussed and illustrated in Sectiocn 3.1.

1) The following operators are changed to accomodate the SEL-32 periph-

erals:

DDL Operator Key Punch CRT Terminal Printer
Concatenation ¢ ¢ { (
Complement A r A +

IF - THEN : !]]
IF - VALUE | ‘ ! !

The other operators of DDL are compatible with the peripherals of SEL-32
and remain the same.

2) COmment declarations end with a left angle bracket<,

3) Values in "If-value" clauses are limited to a single integer values.
Ranges, lists and else (;) values are not permitted.

4) Concatenation operands must be simple facilities with or without sub-
scripts, or binary strings.

5) State assignments are specified in decimal following the state iden-
tifier of each state statement, e.g., "S1(2):..."

6) Automata names are used as state sequencing register names and thus
should be dimensioned in the <AU> declaration bead, e.g., "<AU>» CrU (5):

Peo.."

-1~

-20-

7) DDLTRN accepts FLag declarations with syntax: <FLag> list, List
consists of integers, and/or integers preceded by the complement symbol
(A), separated by commas, Each integer specifies the setting of a flag.
Each complenented integer specifies that the corresponding flag is to be
resat, Table 3.1 summarizes the siguificance of set flags and the de-
fault states of the flags.

8) Identifiers defined in IDentifier declarations rust not be subscript-

ed,
TABLE 3.1 FLAG INTEGERS
Flag Significance Default
1 Print Source Card Images Set

1"

2 Print Declared Facilities and Operations

3 Print DDL string after Pass 2 Reset
4 " 1 " 11} " 3 "

5 " ” 1" " " “ A1)

6 " " 1" " ” 5 "

7 " " " 7" " 6 Se t
8 Print F Table after Last Pass Reset

9 Print Sncoded string after Last Pass

10 Execute through Pass 2 only

1 " " "3 "
12 " " "ol "
13 " " "5 "
14 " " "6 " Set

3.1. THE TRANSLATION PROCESS
DDLTRN is the result of a research effort tn develop efficient

language translation algorithms. As a result it emphasizes translation

~21-

efficiency rather than error detection and control. Neither the syntax
of supplied DDL descriptions nor the translation process itself are
checked in detail.

A DDL description is stored as a single string in a singly linked
list in memory. Operator and punctuation symbols are represented by
codes, As processing proceeds facility names and subscript ranges are
also encoded to shorten the string and hence the time required to pass
over it.

Facts about declared facilities such as name, subscript range, type,
etc. are recorded in a facility table F. Translation comsists of passing
over the DDL string a number of times, With each pass the DDL string and
F table are modified according to unique rules. Six main passes may be
identified by the user: The DDL string and F table may be printed after
ary of these main passes.

Pass 1 == Facilitiss "dentified

Data cards bearing a DDL description are read and echo printed. All
blank columns are ignored; all card columns 1 - 80 are examined. Declared
facilities are entered in the F table. TIme, REgister, MEmory, LAtch,
TErminal and DElay declarations are removed from the DDL description, as
are all COmment declarations and parenthesized comments. Identical pri-
mary names declared in nested or parallel blocks are made unique by
appending a double quote (#) and integer. Identical names declared in
the same block are reiected, of course.

Pass 2 -- Syntax Reduced

Names and binary strings in connection and register transfer opera-
tions are encoded. Secondary names (names appearing on the right of an

equal sign in a TErminal, REgister, etc., declaration) are replaced with

-22-

their subscripted primary name equivalents. Identifiers from IDentifier
declarations are replaced in operations and expressions serving as con-
ditions on operations with the symbol string they represent. The syntax
of OPerator, BOolean and STate declarations is removed, the connection
operations being transferred to the head of the enclosing Alitomaton or
SYstem declaration. STate statement syntax i:c replaced with "if-then'
conditions on operations. OPerator call arguments are transformed to
connection statements. Compound Boolean expressions serving as condi-
tions on operations are replaced with terminals of unit dimension. These
new terminals are connected to the Boolean expressions via connection
operations inserted in the head of the enclosing AUtomaton or SYstem
declaration.

Pass 3 -- Conditions Distributed

"If-then" and "if-value'" conditions on sets of operations are com
bined and distributed over the members of the set so that each operation
appears as the bodv of a simple "if-then" clause. "Go-to" operations
are converted to conditional transfers of a constant (the state assign-
ment) to the state sequencing register (the enclesing automaton). Autom-
aton syntax is eliminated bv recognizing the global condition, if any,
and distributing it as a clocking condition on all register transfer and
memorv operations within the AUtomaton declaration.

Pass 4 -- Concatenation Removed

All concatenation operations except those that form operands for
reduction cperators are eliminated by breaking operations into operations
on su-facilities formed by pairtitioning operand facilities according to

the dimensions of the concatenation operands.

Pass 5 -- Operations Ga*thered

All connection and transfer operations with the same data sink (left
operand) are gathered into one compound operation.

Pass 6 ~- Subfacilities Disjoined

Facilities with subfacilities serving as dota sinks of connection
and transfer operations are broken into disjoint subfacilities and a
right-hand side of a connection or transfer operation is formed for each
new subfacility.

3.2 AN EXAMPLE

Svstem EX] illustrates the use of secondarv names and IDentifier
declarations. Registers A and D of automaton Al are each broken into sub-
registers via secondarv names in the REgister declaration., Ascending and
descending subscripts are illustrated. Identifiers X, Y and Z name a new
concatenation of the subregisters of D, a portion of one of these sub-
registers, and a NOR reduction, respectivelv. A register A is declared in
automaton A2 also. The operations of A2 all appear in the head portion
of its AUtomaton declaraticn.

The listing obtained after Pass 1 summarizes the declared facilities
and their relations., Since two A registers are declared in parallel
blocks, the name of one is changed to A"l so that the two may be distin-
guished. The declared operations are listed with indentation used to
indicate the nested relations of blocks. Block structure errors would be
easilv identified.

Pass 2 replaces secondary names and identifiers with tneir primary
equivalents., A careful examination of the results after Pass 2 indicates

that operation A+X in state S5 becomes A+FYE when X is replaced. Then

-24-

secondary names are removed giving A«D(4:1)¢D(8:5). The operations of
state T raquire that secondary names F, B, C and E be replaced with their
primary equivalents. Then Z within "if-then" punctuation is replaced with
<+/Y is replaced with =++/F(3:2) is replaced with ~+/D(2:1). Note that
state statement syntax is also converted to "if-then" syntax in Pass 2.
A state decoder network on automaton register Al is prescribed by equa-
tions in the head of the SYstem declaration at this point.
Pass 3 distributes conditions over sets of operations and removes
AUtomaton declaration syntax. Th: results listed indicate that five
internal signals named "double-quote-integer' have been formed in order
to simplify the expression of conditions on operations. Each of the
conditioned operations can be traced back to the source DDL description.
"Go to" operations are converted to conditioned transfers to the automa-
ton register.
Pass 4 eliminates the concatenation operations. As a first example
observe that
'P*S! A<-S*D(4:1)E¢D(8:5).

is broken to
tPAS! A(1:4)<-S*D(4:1).,
IP*S! A(5:8)<-S*D(8:5).

Pass 5 gathers operations with the same left operand. The operations

IP*S! A(1:4)<-S*D(4:1).,
PA"S! A(1:4)<-"5%D(4:1).

are gathered to
PXS+P"5] A(1:4)<-S*D(4:1) + "S*D(4:1).

No logic minimization or even simplification is performed as part of the

gathering process.

~25-

In Pass 6 the A and D registers of automaton Al are partitioned and
transfer -tatements are developed for each subfacility. Pass 5 proviaes
the following transfers to the A register or some part of it.

IP%S + P*"S] A(1:4)<-S*D(4:1) + "S5*D(4:1).,

‘P*S + P*"SI A(5:8)<-S*D(8:5) + "5*D(8:5).,

IPR"3] A<-"3%D,

The last of these operations invoives the entire A register; the others
involve a part of it. Pass 6 partitions the A register to A(l:4) and
A(5:8), and forms the correct transfers to each of these subfacilities.

The F table as it appears after Pass 6 is listed as the final result
of this example. Facility names are followed by left and right subscripts
and facilitv dimensions. The next column indicates the type of the facil-
ity with negative entries (-1 for SYstem, -6 for REgister, -9 for TErminal,
etc.). Positive entries point to the row of the parent facility. The
final colums point to the beginning and ending points of facility opera-

tion statements in the DDL string.

wlfa

(- 1518 40

oﬁnC-ﬂs3-¢AaLV

YTt r2NGi(n2)< IAD>

Hed 1l ladsy 24229 1n>

cettyad 212N

nadrt JATh f1edy 2)0u kT *Cgas (/)

"N !CC-

710 *nante>»

VAR

(/)1 Ha-

>

‘<= ‘ya>

7¢(7:94

-

42(01) 1
12 rn)yn <) I>

L) d=vell>

C(eIC)AN M)A (LY L2810V (N2 A= (d)vecd >

~

S

1w

A 30V) 4Q

CI71QSyk4aT

A2 Irchiv>
*Helt> $1YAcAS>
PLAAT 4L 0T nuy

L7HL 431948 104wy 1 59)>

<1

21

1t

nt

-27=

PASS1==FuCILITIES QuknTirjel

CeClamby P&CILITIES

<SY> cal
<T1> P(1s1)
<aL> al
<hgd> (122
JLHel)
<IU> x(l:1)
Yilsi)
L(1%1)
<S> S
T
b
<AU> A¢

clesu)ICLs7)
ttlsedirinee)

A w3 a"|
<nt> A"1(12cw)
r(l:d4)

cECLAmE L GFERATICAS

)
<€SY> pxl:
CdL> al: #F2
<5T>
s: A(-Ap '>T.

T: <o (C(7), EC=100L G,
JL) *>87 =>L,,.

Ue =28
iy
s)irddcsl
Jlugtic=k
'2:‘8“‘-lo-oo

CaU> 323 r3 A<es, n<ea ,,

-28-

PaSsle=Syjax wevLltn

<SY> Xl S3w/ul'0ud o I32/ul'lle o LZ2/nl'éue o
<ayd> «jl P
13) A<= tdl) (L(HES)y ®21,0
bl dtesl)e=a(133)(ale)y n(z2n)c=iuLe
1T4/U0231)) =335 *>u..0

Iul =38,
IDITVERY
g0, ALe)|)
gly¢é U<=4
aoue Ao (L) (PSS)aar o

<Al> L2: re A"]lcge=nn, =c=a"] ., |,

rFeSSeeeUNLATE AT LUN wEitLVEL
i35 3eaCONSTITIONS OISINI2LTES

<SY> bX1: sSzxzal'ivue o

<SY> kEaj: s=3*/81'GLe =x/altlle o
T2x/701%10e us*/ul's0e o
se/e) 2072 "isixtes/LLELL)
"121etesilesl), wosi Rt (tesNLL21))
"ezTrT(Te/C(221)) "Izoa(esoledt) ' Cue Do
"lius(rsu(221) 002)y “azuele/i(eil)'lie Do
"azxw/ii(221s%10¢) "szyurivsi(esl)lewe
"Sue(asL(gsl)'cue) jPas) a(led)<conrLfuil)en

JreSy a(Sgk)coesr, (329) .

JPe3) wc=yaC{esl)(0(0e3S)ay JFPeS) alc=8r1ic o
Jrxd] Li<=S=1ii2 L., Jrei)l Lluse)<olnalis)a,
Jred) (tagl)e=Tra(123)[AL).r Jraell i (1)<=lna(2),,
JPeT) LLriS)k=T41004 L, grel] o (msS)Ee xS oy
jFe"]) A<= 1ryLl 4. JPe®1] alc="1*0iz2 oo
Jre"2) slc=Tgalile o Jra"e] Sic=¥2ad(2 .
jPeys ajceyue(le ,, 1PaU)] 31<=i*lid o
Jra"l] Ac="3a(,, JPe"E] AceTary .,
1Pe"u) UgeMurau,, JrFe®e) 1 ce™ina,,
Jre®S] A<="Sa0 (Uil)[0(BES) .y JFe"S) a(liu)<="Se(ul)e
Iv) &®1c=n,, JREa"S] s (Sseic="ov (£iv),
IF] de=2%),, Ikl a"lc==y,,
’ e jrP] Hg=a"y1,,

M‘...pp“’ 'Y
u‘m Q'\..\'

2 ——.y

o

P =

<S>

-29-

PASSSem P ENATIUwd LATNERED

Bxls Sasezagtule o
I1snz81'1u2
vexs/allese
“12T1xte/si(ddl),
nosTat(te/0(221))
“ezlinywyutl2el)tule)
Rasyr (/02210108).
"uaue(n/si(esl)rene o

JPeS ¢ FPe"S] A(1iu)<eS2L(usl) ¢ "OaT(Wll)ay
1Fe8 ¢ Pa%s; a(S5:8)<c=Sxpless) ¢ "Srtirizgey

1P25 ¢ Pa"] ¢ Pe%2 ¢ Pry] Al<=3=*lL¢
Jrel) Cl4se)<eina{1i3)er

JPal) C(1)c=F2a(%),,

Jeal) Ccinio)cefeldCd o

JFams] ace"3wg,,

JRe¥y] <e®uva,,

]Pl a”l“'ﬁ-cl

1Y)} ep<=a"l,,

*

PaSSec=eSLHFACILITIES LIdJLTnet

teals Ssa/a)'vue
isezaltlle o
“=r*/a)'cil ’
"1zietes(etl),

"ol et(te/ulSil))y
"saLrirs0L2sl) e),
W I NG RS E DL NAF- N
"Ssuw(xzo(281)'2ue).

IPe"3 ¢ Fuy e Fafy) a(ltd)ceMyei(a2y)
JFPa™s ¢ Pag ¢ Faty) A(S23)€o"ye (62
IreS ¢ ra®| ¢ Pa%g ¢ Pey) Blce=rn]ic

*

*
*
+

JrePa ¢ Feg] Cleld)ceodna((3d) ¢ Tl d
Jre®o o vl C(€22)m®ura(C27) ¢ Tei(12y) .,

Jree e =2l JLl)ce®dra(n) ¢ lwi(r),,

Jrj "lcen,, 1),
- .:." -4 \" .
TEY oc=2Tla, Gr v |
. J%‘{ ;""!l:’

“laung

Se{wil)
Swi(439)
“l'u_;c

L

IS

*

*

*

terci ¢

-1 SV 5 B R

L AVRNEE &

.'e.C'-:

*+

*

L AVEDFY

[t

*

)

P

<S>

-29-

PLSSSmm FERATIUVI GATHERED

Exl: sawzaltudé o
sr/z8 102 o
uEx/ul'elé o
“ls1=Te/iL(221),
noaTat(te/0(221))

wezun wsut2sl) ' ote Do
nazyn(rsn2l)tloe).
"haue(n/n(esl)'ene o

JP*S ¢ Fe"S) A(liu)<eSali(us]) ¢
1Fes ¢ Fa®s; a(Si8)c=Srpylezs) ¢
JFP25 ¢ Pe"] ¢ Pa"2 ¢ Pay] al<=>*
Jrxi) L(ese)<=i®za(133)ar

JPal) C(1)c=Tra(%] 4,

Jeai) cineS)e=(elUCd .

JFa"3] Ace"3w .,

| Re"U] (<e"uri,,

JP) An1<=8,,

I¥)] m<=a"1,,

PASSC==SLHFALILITIES LISJLLEL

tAld Ssa/d)1'vue o
Ise/zal'lCe o
-3‘/¢I'EC? ’
"1sietesu(cil)
"esIet (/021)y

T e

"oxC(wd))er
“Sel \FId)er

1ue ¢« "lrung ctcl ¢ + J®Uc Ve

"szuwir/L21)dee)
"usux(w/0(221)"' 1002)
"Ssuw(mzo201)'due)
JPE"S e Pwy e Fal9) a(lid)ceMyrl (o) ¢ Seu(uwlil) v "o (el)
JFe®" 8 ¢ Pad ¢ Fe"S)] A(Ysd)<€o™ae, (&2]) ¢ S (4:29) ¢ “ssp(r2S)y
lraS ¢ ra®] ¢ Palg ¢ Pey) djcerr]ic ¢ "lryue * “deegn? * ut, ¢ ..
Jre®a ¢ Feg] UloiD)ceo"und(1iu) ¢ T2l 4 o,
Jre®e ¢ ral)] C(<i2)<=®ura(€:7) ¢ I2alL23)as
Jre"e e =2l Utl)ce®dru(r) ¢ Txi(>),,
]*‘ ;‘lﬁ.~00 U
o Y ¢)
JF1 acea™i,, OI V4 X
. JL)UA, LA,

£33 N7 0L LN —

'\’\.'\"\.'\’\f\,{\)'_b—--a—l——o——.—.-._
wwau'ru-r\v--:.c-x-aa\rtu.n-o:

FaciolTyY TapLe

Exl 1

L 1

al 1

a l

= 1

"e 1

U .}

"3 1

.“ l

IOS l

C 1

() “

s 21

I ee

L 23

ne 1

v

a%] 1

c 1
lvud
DINPS
Ieé
eLe

0

v

4 S

& 1

el i e T I VI P

n N

-30-

L S < 4

[S S S A U VI

=]
)
*o
=5
-y
-5
e
-y
-9

-l

=0

st -
ol <]
=17
=17
=7
-17

~ £ ¢ -

= C S C Qo Ce QG oot

[

<

Yuy
19y

cld
233
Jeo
2nn
Sl
S51¢e
Ve
ion
195
1/7¢

32y
353

T2

453

v]

Sea

oy

ced

ccc
cwd
civ
[i
deu
vle
d<¢
10
17¢
L7/

\'|
A5¢
y3e

4. THE SIMULATOR (DDLSIM) [35]

DDLSIM is a program for simulating digital systems described using
DDL. The simulator has a simple, powerful and completely free-format
command language that provides the user with complete control over the
simulation process without requiring that the DDL system description be
modified. DDLSIM does very extensive error-checking of described
systems, simulation control cards, and the simulation process itself.
Self-explanatory messages that pin-point errors are issued.

Digital systems to be simulated are first described in DDL. This
description is translated by DDLTRN into a set of Boolean equations and
Register Transfer expressions. These can be used for implementation or
simulation of the digital system. They, together with other data
structures and tables established by DDLTRN constitu’e the system de-
scription required by DDLSIM. This description is pre-prccessea by the
simulator to establish data structures and tables that permit more
efficient and controlled simulation.

The original and translated DDL descriptions of a system neither
contain any information for controlling simulation nor do they supply
any input data for simulation. These items are supplied by a second
source to DDLSIM, a simulation deck. This deck consists of simulator
control declarations described using a siwlator command language that
is not unlike DDL. Twelve different declaration types are available for
selecting options and supplying control information, parameters, and
data for simulation. Every simulation job consists of:

1. processing the system description,

2, processing the simulation deck, and

3. simulation of the system.

-31-

=32=

The following notational conventions are used in subsequent sections
to describe the syntax cf translated DDL and to define control language
8y ‘Tax.

Script characters - an item of the language. Item a will be defined

in terms of items B8 and Y with notation

a: B, Y
which is read "an a is a B or a v."
[] - appearance of the enclosed syntatic structure is
optional
[]n - the enclosed syntatic structure may be repeated

an arbitrary number of times or not at all.
Blanks have no significance in syntax descriptions just as they have no
significance in DDL or the DDLSIM control language.
4.1 SIMULATION MODELS

As mentioned earlier, Boolean equations (BE) and Register Transfer
Expressions (RTE) generated by DDLTRN constitute the system description
required by DDLSIM. The models of combinational networks and registars
used by DDLSIM is the subject of this section.

4.1.1 Terminals, Element Inputs, and State Terminals

The terminals, element inputs, and state terminals declared in a
system are described using BEs. In addition, DDLTRN generates BEs for
a number of intermediate signals. All such BEs constitute the
combinational portion of a system. They are first sorted into an
ordered list according to the level of their operands, i.e., if a terminal
A is used in the BE for another terminal B, A will appear before B in
the sorted list. However, if the system contains loop(s) in it's

combinational portion, it is not possible to sort the equations in this

3%

manner. In such cases the BEs consticuting the loop(s) (or loop
equations) are separated from other BEs. The remainder of the BEs

are then sorted into an ordered list as described Loop equations are
then added to the sorted list at an appropriate point.

During simulation the combinationa. portion of a system is
simulated at rhe BE level. BEs can vary from a simple sum-of-pcoducts
fora to the most complex and compound of forms. The BEs are evaluated
in the order established by sorting with the loop equations being
simulated repeatedly until their cutput values stabilize. Failure of
a loop to stabilize after a fixed number (determined by the character-
istics of the loop equations) simulations, indicates instability in the
loop. In such a case a warning is issued to the user and the simulation
is continued with the last computed values for the loop equations taken
as their final values. Thus DDLSIM also permits the simulation of
systens having loops in their combinationei portion.

4.1.2 Delays

The delays declared in a system(using <DE> declarations of DDL or
DDLSIM) are also described using BEs. These delays are assigned their
delay time periods (As) using <DElay> declaration of DDLSIM (see Sec.

4.2.4). All the delay facilities are assumed to be inertial delays,

i.e., an output signal(s) will assume a new value(s) A time units after
it's input prescribes that change, if and only if the input signal
prescribes that value for at least A consecutive time units. Unlike the
BEs discussed above, the BEs for delays are not sorted in any perticular
order.

During simulation each delay is simulated at the BE level with

specified inertial delay assigned to it's output. The new computed

«3he

value(s) for each delay is compared with its present output value(s).

If they are different, a future event at A time units from present
simulation time T is scheduled to carry out the change(s) in the output
vaiue(s). However, if the BE does not continue to prescribe the change
for at least the next A time units, the schedulea event is cancelled and

t.e output(s) of the delay remains unchanged.

It is possible to assign the same delay time Ltd/ZJ (see Sec. 4.2.2,
4.2.5) to all the BEs for the combinvtional portion (see Sec.4.2.1) of the
system by setting flag number 13 (see Sec. 4.2.14) In such a case ail
these facilities become equivalent to delays. It is important to note
that the delay time assigned to these Bfs is the same for all of them,
irrespective of their complexity.

4.1.3 Registers
The registers declared in a system are described using RTEs.
RTE consists of a Condition Expression (CE) followed by a Transfer

Expression (TE). RTEs generated by DDLTRN have the following general

syntax:
RTE : | CE | TE.
CE:C [+«]"
Condition term C: Cc * C£ - CL

Clock condition C_ : global condition in the heading of an <AU>
declaration of DDL, a clock dzclared in a
<TT> declaration of DDL.
Load condition Cé : § with 6w = 1. (see Sec. 4.2.1)
TE : § « E

Load expression E:e [+e]n

-35~

Expression term ¢: CZ * Ve

Load value Vc: an expression

Example: | P*LDX + P*ORXY + P*LDY | ACC <« LDX*X + ORXY* (X+Y) + LDY*Y.
In the example P is a clock; ACC, X, and Y are all registers having
dimensions of 24; LDX, ORXY, and LDY are term’nals declared u.ing
appropriate jeclarations. The CE in this example has three condition
terms specifying the conditions for performing different register
transfers on ACC. All the register transfers in this case are carried
out under the control of the same clock P. In the RTE for registers
declared as global facilities and used in different automata, each
having a separate clock or global condition, the CEs may have different
clock conditions Cc' For each condition term C in the CE, there is a
corresponding expression term 2 in the TE. When a load condition CC
becomes true (logic 1) and the corresponding clock condition C performs
a 0-to-l transition, the next-output value for the register is computed
using the load value Ve from corresponding expression term ¢. On the
next O-to-l transition of the Cc, this next-output value becomes the
present-output value.

During simulation CEs for all the registers are evaluated only at
certain event-times (see Sec. 4.3). On a 0O-to-l1l transition in the value
for a CE, the corresponding E is evaluated and the computed value is
stored as tYe next-output value for the register. On a l-to-0 transition
of the same CE at some future evaluation, the next-output value for the
register becomes it's present-output value. In order to make simulation
fast and efficient, CEs are evaluated only at event-times at which O-to-1
or 1-to-0 transi:tions of clock conditions take place. It is not possible

to have a 1-to-0 and O-to-l1 transitions for the same CE at the same

36

simulation time T. It is possible to simulate asynchronous sequential
systems using DDLSIM.

The simulation model used for a register is very similar to a GL
(gate and latch) fiip-flop. A logical OR of load conditioms CZ from
CE constitutes the Boolean equation for the GATE of the flip-flop, E
from RE constitutes the LATCH equation for the flip-flop, and a logical
OR of the clock conditions CC from CE constitute the CLOCK of the flip-
flop. (See the figure below)
4.1.4 Memories

The memories declared in a system are also described using RTEs.
A RTE for a memory is similar to that for a register with an address
specified for the facility §, i.e.,

memory 4§ : g(a)

address expression @ : an expression

The simulation model used for memories is also similar to that used
for registers. For memory-write operations the address expression 1 is
evaluated on a 0-to-l transition of the associated CE and the computed
value is stored as the address of the memory location. On the next
1-to-0 transition of the condition expression CE, the contents of the
addressed location are changed to the supplied value. Memory-read
operations are instantaneous, i.e., contents of the referenced memory
location are fetched immediately.

Gated Latch

A m — — — =1 A,
—_ - / : A P S
— R e e
—— oate J L
A |, PE——
— o) Ay

-

4.2 SIMULATOR COMMAND LANGUAGE AND DECLARATIONS
The DDLSIM command language consists of twelve different types of
declarations for supplying parameters, input data, options and other

control information necessary for simulation. The language is largely

free of format restrictions. Card images are scanned in turn from left
to right. Any declaration w:y start at any point and end at any later
point in the card deck. A declaration can be continued on as many cards
as necessary; more than one declaration can be supplied on the same
card. The start of a dcclaration automatically ends the previous
declaration. The last declaration ii. a simulation deck is ended by an
End-Of-File (normally a card having '$' in the first column). In general,
the order in which the declarations are specified is not important. It
is possible to have more than one declaration of the same type. Every-
thing following the vertical line character (;) on a card is treated as
a comment, and is not processed as a part of a declaration. Scanning
continues on the next card. This provides the capability of having in-
line comments in a simulation deck.

Each card from a simulation deck is processed sequentially by the
simulator. First it is printed together with it's sequence number. It
is possible to suppress echo printing of the simulation deck by turning
the list option off, i.e., resetting Flag 1.

Each simulator declaration has the general syntax

<Declaration-id> Body

Each declaration begins with a left angle (<) followed by a Declaration-
id that identifies the type of the declaration. Only the first two char-
acters of the Declaration-id are examined by the simulator. The Declaration-

id is terminated by a right angle (>). All declarations except the

-38-

<SImulate> declaration have a Body foilowing the heading.
4.2.1 Facilities
Facilities are defined here a« in DDL to be any piece of hardware
declared in a digital system including terminals, registers, memories,
and assemblage of hardware, clocks, delays, etc. If a facility name 6n
exceeds 8 characters, only the last 8 characters are retained. If a
facility has dizmension greater Lha» one, individual elements are identi-
fied by appending a non-negotive iiteger subscript S1 enclosed in
parentheses to 6n' A range of eiegents of a facility is identified by
using a DDL subscript range 1i.e., 6n(S1 : 52). A script letter § will
be used to represent a fici .ity or a part of it.
§ @ 6n(31 s 3?). 6n($1). 6n where
6n(31) = ﬁn(S1 : Sl)
§ = £,(Sp S
Si = subscript for leftmost element of én'
= subscript for rightmost element of Sn.
Facility width éw of a facility § is defined as the total number of
elements in it, i.e.,
hw = max(Sl - SZ) - min(_Sl -~ 82) +1
During simulation one machine word is used to store the values of
facility 4. The SEL 32 machine has 32 bits per word. Hence it is
necessary that the facility width 6w for any facility 6w in the system
not exceed 32, i.e., 5w < 32. However, S£ and St may have larger values;
only their difference is restricted.
A facility list Zﬁ is defined as a list of facilities f{ separated by
commas, i.e.,

5L, 41"

L, :
h]

=39«

Whether a specific facility can be used in a facility list for a specific
type of declaration is determined by both the type St of the facility and
the type of the declaration. The following facility types exist for
DDLSIM.
6(: System clock, Register, Memory, Terminal, System delay,
Element input, Element output, State terminals, Trigger,
Simulation delay, Simulation clock, List name.
Every facility § used in a DDLSIM declaration must satisfy exactly one
of the following conditions:
1. 4 is declared in the DDL description of the system.
2. § is declared during the present simulation run using a
<CLock>, <DElay>, <TRigger>, or <LIst> declaration. The
type of declaration in which 4§ appears determines its type
6t which cannot be changed for the remainder of the simulation
job.
3. { is declared during any previous simulation run as discussed
in 2 above.

4.2.2 Numbers and Data Lists

Tqu - a decimal integer having the value (231 -1).
P 16
Wx " @ decimal integer having the value (27 -1).

n. . - a decimal integer n in the range < £ n < j§ where { and §
are each non-negative decimal integers. Whenever § is not
specified § = TMAX is assumed; whenever < is not specified
{ = 0 is assumed.

nP .= n. . enclosed in parentheses

kO

P
Rs » 2 Ne &
4y4 (L.J)
R - Repeat factor, a positive decimal integer

R : n

A repeat factor R can be used before a data value or parareter
value, i.e.,
R*value,
to indicate that the same value is to be repeated R times
in the list.
T - Simulation time
T : n

td - Default time period

d° nl' pMAx
Data is described with the following syntatic structures.
dB - a binary digit
dB : 0,1
do - an octal digit

da ¢ 0,1,2,3,4,5,6,7

dv - a decimal digit

dv ¢ 0,1,2,3,4,5,6,7,8,9

dH - a hexadecimal digit
dH : 0,1,2,3,4,5,6,7,8,9,A,8,C,D,E,F
dG - a general digit excluding the hexadecimal digits B and D.
dG : 0,1,2,3,4,5,6,7,8,9,A,C,E,F
B - a binary number

8 [+'_]Bd8 [dB]n. ([+o‘]BdB [BdB (dB]n)

-41- i

0 - an octal number
n n
0 . [+0-]0d0 [dol ’ ([+o"10d0 [dOJ)
D - a decimal number
D : [+,-Iody[dy]", ([+,-Iod, [dp]")
H - a hexadecimal number
Ho: [+-Iady(d,]", ([+,-Iud, [d,1%
N - a binary, octal, decimal or hexadecimal number.
N o [4-1dg [d)", ([+,-1 dg Ld,TD
Optional leading minus signs (-) before any of above five types of
numbers specifies the 2's complement of the number. 1's complement !

encoded negative numbers are obtained by setting Flag 10 (see Sec. 4.2.13).

N2 - Data value

N, : B, 0, D, H, N,

2
Nl - Data spec
N1 : [Re] N2

Cd - a data list consisting of data specs separated by commas.
Cd : Nl [,Nl]n

Whenever a data value is specified as a number N without leading radix
specification, the default radix is used for computing the value of
number. The default radix of 8 (octal) can be changed to 2 (binary),
8 (octal), 10 (decimal), or 16 (hexadecimal) by setting flag numbers
2 thru 5 (see Sec. 4.2.14 respectively. Resetting these flags returns
the radix to the default value of 8 (octal).

4.2.3 <CLock> Declarations

This declaration provides a means for specifying or changing the
time period, pulse width and phase of clock facilities. It also permits

users to declare new clocks to be used to control simulation input and

<42~

output activities. Syntax for this declaration is as follows:

<CLock> Body
Body o [,1" el]
List L : chlt
Clock list Zc s L‘ where
Facility type St H system clock, simulation clock
Time list Lt : t[,t]n
Time spec t : [Re] P [w[e]]
Time period P : n 9
2, \AX
Pulse width w nz P-1
L]
Phase e n? P-w

Example: <CL> CLOCK1(1l:5), CLOCK2/2*100(30) (50)/,
CLOCK1(6:10), CLOCK3/100,100(30)/
Time period P - the P field specifies the time period of a clock. In the

above example each clock has a time period of 100 in some arbitrary units.

Pulse width W - This is an optional field specifying the time W for which
a clock remains at logic 1 during any clock period P. For the remaining
time (P-W) the clock remains at logic 0. When the pulse width is not
specified along with the time period, the following default value W is
used.
W= P/2]

In the example a pulse width of 30 units is supplied for both
CLOCK(1:5) and CLOCK2. CLOCK3 is assigned a pulse width of 30 units.
No pulse width is explicitly specified for CLOCK1(6:10), hence a default

value of [100/2) = 50 units is used as the pulse width.

Phase 0 - At the start of a simulation run, i.e., T = 0 a clock with a

=43=

period P and the pulse width W is set to start at logic 0. It remains

at logic 0 for the next (P-W) time units; then a O-to-l transition takes

place. For the next W time units, it stays at logic 1; then a 1l-to-0

transition takes place and the cycle is repeated. The occurrence of the
first and every subsequent O-to-1 traznsition can be advanced relative

to the starting of simulation by specifying the phase 6.

1. For jhase § < P - W a clock starts at logic O and has it's first
0-to-1 transition at (P-W-8)time units after the start of
simulation.

2. For phase § = P - W, a 0O-to-1 transition takes place at T = (.

The default value for € is zero. In the example a phase of 50 units
is specified for CLOCK1(1l:5) and CLOCK2. Since no phase specification is
given for CLOCK1(6:10) and CLOCK3, € = 0 is assumed for them. Waveforms
for these clocks are shown below. Note that it is necessary to specify
pulse width W, if it is desired to specify phase 6.

During a simulation run, none of the parameters, P, W, and @ can be
respecified for a clock facility. These parameters remain effective in

all subsequent runs until r-especified.

CLOCK1 (1:5)
CLOCK2 ~ -
. P =100, W=130, 6 = 50
[
CLOCK1 (6:10) o P=100, W=50,0=0 i
| -
CLOCK P - 100, UJ = 30, 6_:“0 o o
| . >time
0 20 50 70 100 120

ke

As mentioned earlier this declaration allows new facilities to be
declared as simulation clocks. Since these clocks cannot affect the
activity within the system itself, they are a source of periodic signals
which can b. used to control input, reinitialization, output, etc., :
during simulation. They can be used in realizing signals with complex 1
waveforms that are needed to control various activities during simulation.
Simulation clocks may also be used as sources of input signals to the
networks being simulated.

Each facility § from clock list Ztis assigned parameters { from
associated time list Zt. Insufficient or excess data in time list lt
will result in a non-fatal error (see Sec. 4.4 for errors). In the case
of insufficient data, default parameters are assigned to facilities
remaining in Zc.

4.2.4 <DElay> Declarations

This declaration provides a means for specifying delay time A for
delay facilities. Syntax for this declaration is very similar to that of

the <CLock> declaration.

<DElay> Body

Body [¢/,1" 2 [/]

list L : Kdllt

Delay list ld : 26 where

Facility type ét : system delay, simulation delay
Time list L, e[L,t]"

Time spec t : [Re]2

Delay time A : n1

Example: <DElay> DELAY1(1l:2), DELAY2, DELAY1(3:5)/2*100,5u.

il 3=

DELAY1(1l:2) and DELAY2 are each assigned a delay time of 100 units.
DELAY1(3:5) is assigned a delay time of 50 units.

All the delay facilities are assumed to be inertial delays, 1i.e.,

an output signal(s) will assume a new value(s) A time units after its
input signal prescribes that change, if and only if the input signal
prescribes that new value for at least A consecutive time units. As an
example of inertial delay assume that waveform A below serves as the
input signral to both DELAY1(l) and DELAY1(3). Waveforms B and C

represent the actual output of DELAY1(l) and DELAY(3) respectively.

r B —1 ™
A _ |
A =100
B —
’ { A =50
c] = —
b S T S ST S . > time
0 100 200 300

Delay time period A can not be respecified within a simulation run.
Once specified, A remains effective in all subsequent simulation runs
until respecified.

Like the <CLock> declaration, this declaration also allous a user
to declare new delay facilities that may also be used for controlling

various activitic, during simulation.

b=

Every delay facility from td is assigned, in turn, delay times from
the associated time list lt. Insufficient or excess data in lt will
result in a non-fatal error. In the case of insufficient data, the de-
fault delay time (4.2.5) is used for remaining facilities in Zd.

4.2.5 Default Values for Clock Parameters and Delay Times

Before any simulation can be performed, it is necessary to assign
clock parameters to every clock facility and delay time to every delay
facility. Values specified through <CLock> and <DElay> declarations are
used for specified facilities. For the remaining clock and delay
facilities, default values are used. A default time period td is used
in determining the default values.

1% Default clock parameters
Default time period P= ty
lefault pulse width W LtdIZJ
Default Phase =0

2. Default delay time period = Ltd/ZJ

At the start of a simulation job td is set to a value of 2. If
any <CLock> or <DElay> declaration is encountered in the simulation
deck, the value td is changed fo

td = min(P, 24) where

P is any clock period specified, if none P = 2, and A is any delay

time specified, if none A = 1.

4.2.6 <INitialize> Declaration

This declaration provides a means for initializing the output
value(s) of delays, registers, memories, element outputs, primary input
signals, terminals and triggers with delays. Syntax for this declaration

is as follows:

)=

<INitialize> Body

Body [, 1" el/]

List L : eilld

Initialize List li : lé where

Facility type ‘t : system delays, simulaction delays, registers,

memories, element outputs, primary inputs,
terminals, and triggers with delays.
td : Data list (see Sec. 4.2.2.)

Every facility § from £6 is initialized to a specified value
obtained from the associated Cd. Insufficient or excess data in Zd
will result in a non-fatal error. If data in ld is insufficient,
remaining facilities from ti are initialized to default values.
EXAMPLE: <IN> INPUT, MEM(0:1023)/B1011,1024*0/
INPUT (declared as register having width 4) is initialized to the binary
value 1011 and the first 1024 locations of MEM are all initialized to 0.

Before any simulation can be performed during a run, it is necessary
to define output values or initialize all the facilities. Fcr all the
facilities initialized through an <INitialize> declaration(s), specified
values are used. For remaining facilities initial values are determined
as follows:
1. Delays, Registers, Element outputs, Primary inputs, Terminals, or

Triggers with delays are all initialized to zero.
2. Memory locations are not initialized at all. They will have the

same contents as at the ftermination of previous simulation run.

For the first simulation run their contents are unpredictable.
3o Initial values for Terminal, Triggers, and Element inputs without

Jdelays are determined by using intitial values for other facilities

~48-

and simulating the system at T = 0.

4.2.7 <REad> Declarations

This decleration provides a means for establishing input data values

for various facilities. Cwntax for this declaration is as follows:

<REad> Body

Body : [£/,]" 2[/]
List L M/Lultd
Mode m: X, VY, 1

Triggered or Mode, X : {§ where 6w =1

P[e]

Period P :nf p
' MAX
Phase # :nO,P

<

Periodic or Mode,

Specific Time or Mode Z : n

Read List 16 where

Facility type 6t' registers, system delays, simulation delzys,
memory locations, element outputs, terminal

or triggers or element inputs with delays

Data List Zd: same as in <INitialize>
Example: <TR> TR/EXINP+EXBIN1/ (see Sec. 4.2.15)
<CL> P/100(30)/
<RE> TR/INPUT/1,2,3,4,-5/

As shown in the syntax, the READ operation may be carried out in
three different modes:
1. Mode X -- Triggered Mode

In this mode a 0-to-l transition of the triggering signal establishes

a new set of input values, obtained sequentially from the associated data

-49-

list Zd, for the facilities specified in the associated read list 21.
At any simulation time input values are established before any other
simulation activity except for updating of clocks and delay outputs.
Hence, if the triggering signal itself is not a clock or delay facility,
input values will be established at a time later than the actual 0O-to-1
transition time of the triggering signal. In fact they are established
at the next event time.
2. Mode Y -- Periodic Mode

This mode provides an easy means for establishing input values
periodically. P specifies the time period for performing the READ
operation. The first READ operation is performed at T = P, the next
at T = 2P, and so on. However, the first and all subsequent READ
operations may be advanced relative to the beginning of simulation
i.e., T = 0, by optionally specifying the phase #. Thus, in the case
of P =100, and #= 30, the first READ oparation will be performed at
T = 70 (advanced by 30), the the next at T = 170, and so on. When 6 = P,
the first READ operation is performed at T = 0. This is equivalent to
initializing the associated facilities using an <INitialize> declarationm.

In all cases except for P = 1, an identical periodic READ operation
can be obtained using a clock with period P, any valid pulse-width W
and appropriate phase § as a triggering signal in mode X.
3. Mode Z -- Specific Time Mode:

In this mode the READ operation is performed only once at the
specified time.

In Mode X and Mode Y READ operations, data values are supplied in

sets. The first set of values are used for the first READ operation,

-50-

and the next set is used for the second READ operation. These sets are
not separated by any special delimiter. Instead they are grouped in the
form of a single data list ld. In Mode Z only one set of data values

are necessary.

4.2.8 <LOad> Declaraticas

This declaration provides a means for establishing the same input
values repeatedly on specified facilities. Syntax for this declaration
is as follows:

<LOad> Body
Body : same as in the <REad> except that the Load list ﬂ(is used in

place of the Read list ln.

Three modes of LOAD operation function in the same way as the three
modes of READ operation. The only difference between LOAD and READ
operations is the input data values used during successive operations.
In the case of READ operations, a new set of data values is used for
each successive operation. The LOAD operation uses the same data set

repeatedly, requiring only one set of data values. This peculiar

property of the LOAD operation provides an easy means for establishing

identical conditions in the system at desired times. If the READ opera-
tion were used to achieve the same results, the same data set would have
to be repeated for every occurrence of READ operation. The Mode Z or
specific time LOAD operation is identical in all respects to the Mode I
READ operation.

The three modes available for READ and LOAD operations give a high
degree of freedom ir setting up data sets in an efficient manner. Each
of these modes may be used more than once. More than one mode may be

used in a simulation. All the data lists Cd specified in <REad> and

-

<LOad> declarations are transferred to an incore buffer (if necessary

to a disk data file) and retrieved from there whenever needed. This
facility of having muptiple input streams for simulation is very helpful
to the user.

More than one READ and/or LOAD operation may take place at the same
simulation time. Simultaneous operations may attempt to establish input
values on the same facilities. As long as they do not attempt to es-
tablish conflicting values, simulation will proceed, otherwise a fatal
errcr condition results in an immediate termination of the current simu-
lation run. A similar situation may arise with <INitialize>
declarations. In this case remaining declarations for the simulation
run ar2 processed before terminating that simulation run. This fatal
error condition may be avoided by setting Flag 12 (see Sec. 4.2.14).

The following order is used in performing various input operations
during simulation:

1. Periodic REad

2. Specific Time READ

3. Periodic LOAD

4. Specific Time LOAD

5. Triggered READ

6. Triggered LOAD
If more than one operations of the same type and same mode take place at
the same time, they are performed according to their order in the simu-
lation deck. This is one case in which the order of declarations may be
important.

Insufficient data to complete a READ or LOAD operation during

simulation will result in an immediate termination of the run. This

PR ——

T—_

P | =

-—nq‘

-52-

provides a means to terminate a simulate run without using the <STop>

(see Sec. 4.2.11) declaration.

4.2.9 <0Utput> Declarations

This declaration provides a means for printing the values of various
facilities at various instants during simulation. Syntax for this de-
claration is as follows:

<QUtput> Body
Body : [¢/,1" 2[/]

List L: m/£0
Mode m: X,VY,12
Triggered or Mode X : ¢ where 6w =1
Periodic or Mode Y . P[8]
Period P: n

* T1L,P

P MAX

Phase 0 : n, p
specific Time or Mode Z ton
Output List Co: Zé where 6{ 4 memory

Like <REad> and <LOad> declarations, this declaration has three
modes of operation. Values are printed when a specific output operation
takes place. It is important to note that in the case of triggered or
Mode X output, O-to-1 transition of the triggering cignal causes the
output values to be printed at the same time rather than the next event
time as in case of READ or LOAD operations. This is due to the fact that
output operations are performed af*er all other operations in a simulation
step. More than one <CUtput> declarations may be specified. Any
combination of the three <QOUtput> modes may be used.

Values are normally printed in an octal format. They may be printed

=S¥

in binary, octal, decimal or hexadecimal by setting the appropriate flag
number from 5 to 9 (see Sec. 4.2.14). All values are printed in the sdame
format.

Output formatting is done by the simulator with the objective of
maximizing the total no. of facilities than can be printed. If one or
more output operations occur at a simulation time only a single line of
output is printed. The first entry in each line printed is the simula-
tion time in decimal. Values for each facility specified in any output
lists £ are printed in fixed columns. Facilities are allocated columns
from left to right in the following way:

1. Triggered or Mode X OUTPUT lists
2. Periodic or Mode Y OUTPUT lists
3. Specific time or Mode Z OUTPUT lists

If more than one lists of a mode are specified, they are allocated
columns in the order of their specification in the simulation deck. If
output values for all specified facilities cannot be printed due to lack
of room, excess facilities are ignored and a message listing them is
printed. Output values for two neighboring facilities are always printed.
OQutput values for two neighboring facilities are always separated by at
least one blank columm. A heading of the names of the facilities along
with the subscript(s), if necessary, whose values appear below is printed
on alternate pages of the simulation report. If a complete facility is
included in to’ no subscripts are printed in the heading. When the value
of a partial facility is to be printed, a subscript range is included in
the heading. The name of a facility is normally printed in a horizontal

format in the heading. A vertical format (in a column) is used if doing

=Sk

S0 saves room on output line. A subscript range is indicated by two suc-:
scripts separated by a colon (:).

Whenever an output operation occurs, only the output values for
facilities from the associated output list ibaro printed. Other columns
in the line are left blank. This tends to increase the readability of
results. This feature of multiple output lists with each list having it's
own output control may be used to make simulation reports look more in-
formative. If the output values for one group of facilities change less
frequently than those of another group, both groups can be printed with
different periods. Such an output will clearly illustrate the actual
activity within the system.

4.2.10 <DUmp> Declarations

This declaration provides a means for dumping the contents of
specified memory locations at various instants during simulation. Syntax
for this declaration is given below:

<DUmp> Body

Body : same as for <OUtput> except ét : memory

A DUMP operation functions in a manner identical to the OUTPUT
operation. The print format is different, however. First, values for
each specified memory facility are printed separately. For each facility,
the first line printed indicates the facility name, locations dumped and
simulation time. Following this line a heading that separates addresses
and contents of locations is printed. One or more lin¢s of DUMP output
follows. In each line the first entry represents the octal address of
the first location in the line. The rest of the line contains the octal
contents of the next eight locations. Various DUMP cperations are carried

out in the following order:

\—— i a4

- -

W5l

1. Triggered or Mode X DUMPS
2. Periodic or Mode ¥ DUMPS
3. Specific time or Mode Z DUMPS

DUMP operations are performed before any OUTPUT operations within a

simulation step.

4.2.11 <STop> Declarations

This declaration provides a means for stopping or terminating a
simulation run at a specified simulation time or on a 0O-to-l tramsition
of a triggering signal. Syntax for this declaration is as follows:

<STop> Body

8ody : m[,m]"
Mode m: X, I
Triggered or Mode X : 4§ where hw =]
Specific Time or Mode Z : n

It is clear from the syntax that more than one triggering signal
or specific time may be specified to stop the simulation. More than one
<STop> declarations may be specified. In any case the occurrence of a
first stop event will cause the simulat: -, for that run to be terminated.
At a given simulation time stop events are simulated after all other
events have been simulated. If no <STop> declaration is supplied for
the current simulation run stop events, if any, from a previous simulation
run are used for the current run.

Insufficient data to complete a READ or LOAD operation will result
in an immediate termination of the simulation run. This condition is
described as "END-OF-FILE ON INPUT." 1If one is sure of EOF terminations,

<STop> declarations may be omitted altogether. Whenever simulation is

-56=

stopped or terminated a message describing the reason for termination
(a stop event or EOF on input) is printed and the simulator moves to the

next simulation run. At the end of all simulation runs an "END OF

SIMULATION" message is printed.

4.2.12 <LIst> Declarations

When a list of same facilities 26 is used in a number of different

declarations, it is convenient to identify the entire list with a single
name. This name can then replace the list of facilities in all of the
declarations. This is achieved by using a <LIst> declaration. This
declaration provides a means for assigning a unique name to a list of

facilities. Syntax for this declaration is as follows:

<LIst> Body

Body : [¢/,1" 2[/]
List e Le
List Name L : § where §, = 1

A list-name can be included in the facility list 86 for a declaration
only if the list of facilities identified by it can be directly used
there. It is also possible to use list-names in defining new list-names.
Nesting of list-names can be done up to any desired level. List recursion,
i.e., using a list-name in defining itself, is not permitted. Once de-

clared for a simulation run, list-name cannot be redefined in the same

run.

For large systems, use of list-names will result in reduction of data
structure storagc space. List-names are most commonly used in <REad> and
<LOad> declarations since it is necessary to respecify these declarations

for each simulation run, if a <REad> or <LOad> declaration requires a

vt

SRR ——— T

BT

long facility list, it is very worthwhile to assign a list-name to these
facilities and use the list-name in their place.

4.2.13 <SImulate> Declarations

As discussed earlier this declaration is used to separate different
simulation runs in a simulation job. Syntax for this declaration is
very simple?

<SImulate>

On encountering a <SImulate> declaration, simulation is performed
for current run. If this simulaticn is terminated normally i.e., through
a <STop> command or EOF on input condition, processing for the next run
is initiated. If the termination is abnormal, tle entire simulation job
is terminated. Declaratio~- ind parameters effective during one run are
carried over to the next run as dezcribed below. Modifications and
additions are easily made with ippropriate declarationms.

L Parameters for clock and delay facilities remain effective from one
simulation run to the next; any parameter may be changed by using
the appropriate declaration. New clocks and delays may also be

declared.

2. Trigger expressions remain unchanged from run tc¢ run unless they
are respecified. New trigger facilities may be declared for a
simulation run.

3 <REad> or <LOad> declarations do not carry from one run to the next.
<REad> and <LOad> declarations must be respecified for each rum or

replaced with new declarations.
4. <OUTPUT>, <DUmp>, and <STop> declarations are carried from run to
run. However, supplying one of these declaration with a specified

mode (X, Y, or I) will nullify all declarations from previous run

-58-

of that type and mode.

S. All flags are carried from run to run. Flags can be changed in dny
way by including a new <FLag> declaration.

6. Lists are carried from run to run. If it is necessary to redefine
a list the new definition must be declared before the list is used
directly or indirectly in any declaration for the current run.

4.2.14 <FLag> Declarations

This declaration provides a means for selecting various options for
simulation runs by setting or resetting associated flags. A flag number
!s associated with each option. Syntax for this declaration is as follows:
<FLag> Body
n
Body : v, [,Vo]
Option Value V, : [~]F
Flag Number F nl.lé
If the flag number F is not preceded by a complement sign (—), the
associated option is set, otherwise it is reset. An option may be set

or reset as many times as desired. The Flag table provides a description

of the option controlled by each flag number and the default value for the

option. As shown in the table flag numbers 2 thru 5 are used to select
the radix for input data. This option applies only to data values not
having any explicit radix specification (see Sec. 4.2.2). Data values
having explicit radix specifications are interpreted accordingly. If

more than one of these options is set, only the last set option is used,
i.e., <FL> 2, 4 is equi.slent to <FL> 4. Moreover, resetting any of these
opcions brings the default radix specification to it's default value of 8

(octal). Similar action is taken for output format selection flags 6

thru 9.

=80=

FLAG TABLE

Flag Significance Default
1 Print source card irmages Set

2 Binary data input Reset
3 Octal data input Set

4 Decimal data input Reset
5 Hexadecimal data input Reset
6 Binary output format Reset
7 Octal output format Set

8 Decimal output format Reset
9 Hexadecimal output format Reset
10 Use 1's complement notation Reset
11 Write processed system to file Reset
12 Do not abort on "coaflicting inputs' error Reset
13 Simulate comb. portion of the system with delay Reset

14 Not used

4.2.15 <TRigger> Declaratiors

As discussed earlier, a triggering signal is used to control
triggered or mode X READ, LOAD, OUTPUT, DUMP, and STOP operations. Any
element of a declared facility, except a list-name, may be used as the
triggering signal for these operations. Appropriate triggering signals
to control the simulation may not be available in tue DDL description of
a system. The <TRigger> declaration provides a means for dec.aring new

facilities that can be used as triggering signals to control simulation

-60-

without requiring that the DDL system descripiion be modified. The
syntax for this declaration is as follows:
<TRigger> Body
Body : [2g/,1" 2 [/]
Trigger expression tE : t6/E
Trigger facility té : § whera 6w =1
Expression E ¢ au expression
Example: <TR> TR/EXINP+EXBIN1
The expression E in the above syntax is a logical expression which
can vary from simple sum-of-products form to the most complex and com-
pound of forms. It defines the associated trigger facility £6. A
trigger facility may be used in defining other trigger facilities.
Looping or trigger facilities, i.e., using a trigger facility directly or
indirectly to define itself, is not permitted, however. In the example
trigger TR is defined as the logical OR of EXINP and EXBINl. Both EXINP
and EXBIN1 have been declared to be states of an automaton. The auto-
maton waits in each of these states for data from an input device. The

input device can be simulated using a triggered <REad> operation with TR

as the triggering signal as shown in the example in Sec. 4.2.7.

A trigger facility cannot be redefined during a simulation run.
The definition of a trigger facility remains effective in all subsequent
runs until respecified. A trigger facility may be assigred a delay time
A using a <DElay> declaration. Similarly a delay declared during simu-
lation may also be defined using a <TRigger> declaration. For such
facilities, both the delay time A and the expression £ remain effective

in subsequent runs until respecified.

fl=

4.3 SIMULATION ALGORITHM

DDLSIM is a table-driven, event-oriented simulator. Time is treated
as a discrete quantity and advanced from event time to event time where
the following actions arve considered by the simulator to be events:

1. Zero-to-one transitions of clocks. During these events data input
signals to registers and memories are sampled, and next values of
register and memory contents are computed and saved.

2. One-to-zero transitions of clocks. During these events register and
memory ccntents are updated to new values.

3. Delay lines takirng new values.

4. Simulator input, output and contro) =vents.

The simulator maintains a list of events to be executed in the
future. Simulation is performed only .* event-times. The simulation
clock is always stepped from cne event-time to the next event-time, no
simulation being performed for the intermediate time interval. The
absence of any event during these intermediate time intervals implies
that no chinge 1is taking place in thc system. For each event-time tests
are performed to establish the need for simulation. Simulation is per-
formed at event-time only if needed. A periodic event causes a future
event to be scheduled.

Event time simulation makes the units used for time specificatien
unimportant. Any arbitrary units can be used. The number of events
simulated and not the number of time units elapsed determine the computer
time consumed by a simulation run. Since the largest integer handled by
the SEL 32 machine is (212-1). it is necessary to keep the simu-

lation termination time within this limit. It is suggested that smaller

G A A < - i B i e

-62-

time periods be used for long simulation runs to avoid overflow of the

simulation clock.

the

10.

11.

12.

At a given event-time various events, if present, are processed in

following

order:

Zero-to-one transitions of clocks

One-to-zero transitions of clocks

Change of output values for delays

Periodic
Specific
Periodic
Specific
Periodic
Specific
Periodic
Specific

Specific

or Mode Y READ operations

time or Mode Z READ operations
or Mode Y LOAD operations

time or Mode I LOAD operations
or Mode Y DUMP operations

time or Mode I DUMP operations
or Mode Y OUTPUT operations

time or MODE Z OUTPUT operations

time STOP operation

After processing thecse events different simulations steps, if necessary,

are performed in the following order:

1.

2.

Triggered or Mode A <REad> operations are completed

Triggered or Mode A <LOad> operations are completed

If there

were any new one-to-zero transitions of clocks declared in

the DDL description or ccubinational clocks, i.e., signals generated

using combinatioral logic and used as clocks for registers, output

values for affected Registers or memory locations are changed to

their new values.

9.

=63~

If necessary, the combinational portion of the system is simulated.
If any new one-to-zero transitions of combinational clocks are
detected, Step 3 and 4 are repeated until no more one-to-zero
transitions occur.

If any one-to-zero transitions of system clocks o. combinational
clocks were registered, new output values are computed and saved
for affected registers and memory locations.

If necessary, delays are simulated to compute new future output
values.

Triggered or Mode X DUMP operations are completed

Triggered or Mode X OUTPUT operations are completed

Triggered or Mode X STOP operations are completed

This procedure is repeated until the simulation is terminated.

-64-

4.4 ERRORS

DDLSIM performs very extensive error checking. On detection of an

error, an error message is printed. Whenever possible an attempt is

made to pin-point the error. Error messages are printed in one of the

two formats discussed below.

1.

ro
.

Error messages which can be associated with a card in the simulation
deck resulting from syntax errors are printed in the following
format. The card containing the error is printed (if not already
printed) with a vertical bar (,) placed under the column containing
the error or the column next to the item containing error. A dotted
iine starting from the column next to vertical bar (,) and termina-
ting with the error message on right end of the page is printed.
Example: <CL> CLOCK1(185) CLOCK (6:10)/2*100/
{+.ee.00sssseessssssss INVALID DELIMITER
Processing of the remainder of the declaration and the simulation
deck is continued by skipping to an appropriate position in the
declaration.
Errors which cannot be easily associated with a particular card in
the simulation deck are printed in this format. The error message
preceded by three asterisks, i.e., '"***' jis printed on the left end
of the line. Error messages printed in this format normally contain
an error description with associated parameters, i.e., facility
name with appropriate subscripts, simulation time, etc., to help in
locating the error. Some of the error messages require more tnan
one line.
Example: ***RESPECIFICATION OF DATA FOR INPUT(1:5)

***AT TIME = 200

| L] o iy st

- —

“

[

e sy <maneg s e —

-65-

Errors are generally classified as fatal or non-fatal depending
upon the nature, position and stage of simulation during which they
occur. Fatal errors normally result in an immediate termination or
abort of the simulation job. However, up to 10 .atal errors are allowed
during the processing of the simulation deck for a simulation run. If
any fatal errors were detected during the processing of the simulation
deck, the entire simulation job is aborted. Whenever a simulation job
is terminated due to fatal error(s) a message identifyirg the action is
printed, i.e.,

***TO MANY FATAL ERRORS - SIMULATION TERMINATED.

Non-fatal errors do not cause the termination of the simulation job. 1In
this regard they are warnings rather than errors.

DDLSIM performs comvlete syntax checking on the BEs and RTEs
describing a digital system. Any errors detected during the processing
of system description are treated as fatal errors. However, the simu-
lation job is not terminated immediately. Since the errors detected
during this stage cannot be easily associated with the DDL deck, they
are printed using the second format described above. During the simula-
tion stage complete error-checking is performed on the simulation
process itself looking for errors such as:

1. invalid memcry addressing,
2 instability in networks containing loops, and

3. actempts to input conflicting data on a facility.

5. EXAMPLES
This chapter provides some example DDL descriptions. The examples
range from small synchronous circuits to a simple, but complete computer.
These examples do not illustrate all the capabilities of DDL, but provide
a good introduction to the user unfamiliar with DDL.

Example 1: A Serial Twos Complementer

The serial twos complementer uses the familiar copy/complement
algorithm: starting from the least significant end of the number, copy
the bits as they are till and including the first non-zero bit; complement

the remaining bits till the most significant end. As an example,

001010100 Number
110101100 Twos complement
complement . copy

This algorithm is implemented using a shift register and right
circulating its contents while copying or complementing as required. The
number of shifts is equivalent to the number of bits in the register. A
flip-flop can be used to store the copy or complement state.

Figure 5-1(a) shows the description of the serial twos complementer
in DDL. The content of the six bit register R 1is to be replaced by its
twos complement. Register C (3 bits) counts the number of shifts. S
is a state flip-flop to indicace the copy or complement state. T 1is a
control flip-flop to indicate RUN/STOP state for the complementer. The
complementer waits for SW to be ON, to start complementing. There is
a clock P. An OPerator ADD is described in lines 5-8. This is a 3 bit
adder to increment the contents of the argument register by 1. The

AUtomaton COMP has two states: a waiting state I, and a processing

-66-

-67-

state S1. Setting of SW is required for the transition to S1 state. In
S1, the register R 1is circulated right 1 bit with the least signi-
ficant bit copied or complemented, depending on the state of S being
0 or 1l. 1If register C has reached a value of 5, the complementation
is stopped by setting T to 0 and returning to state I. If C ¥ 5,
COMP stays in Sl state and increments C. The FLag statement (line 13)
sets the flags of the translator to provide the outputs at each of its
six phases. Figure 5.1(b) shows these outputs. A detailed description
of Figure 5.1(a) follows:

Line 1: The name of the system is COMPLEMENTER. Only the iast 8
characters of this name are retained by DDLTRN. There is no period at
the end of this line, since the system description is not complete yet.
Line 2: REgister R has 6 bits numbered 1 through 6, left to right;

C has 3 bits numbered 2 through 0; S and T are single bit registers.

C counts the shifts; S is the copy (0)/COMPLEMENT (1) state flip-flop.

T is a flip-flop indicating that the complementing process is underway.
It is not really required, but included to illustrate some DDL features.
Period terminates the REgister description.

Line 3: A LAtch by name SW

Line 4: A single phase CLock (Time) P.

Line 5: A special OPerator by name ADD. The output of the operator is
a 3 bit number. The input is through the argument X (X is a formal
parameter). No period to terminate, since the operator description is
not complete yet.

Line 6: Declares the TErminal X to be of 3 bits and a new 3 bit

register C. DDLTRN changes this name to C"l.

-68-

Line 7: Declares a new IDentifier for the concatenation of the last two
bits of C and a 1.

Line 8: Declares the CARRY and SUM bits of an adder consisting of 3
half adders. C has the carry bits from each half adder, CC consists of
carry bits from previous stages along with a 1 for the least significant
bit. ADD consists of the SUM bits output. Note that ADD is the name of

the operator, which is simply an ADD 1 circuit. The circuit implied

(modelled) by lines 5-8 is:

X(1) X(2) 3)
il O e B
HA | HA HA
! L X I ‘ I Carry Sum
CY Yap (1)
ADD (2) ADD (3)

Note the periods at the end of line 8. The first terminates <BO> and
the second terminates <OP>.

Lire 9: AUtomaton COMP is contrclled by the clock P. Since COMP is not
subscripted (by parenthesis) it is assumed to be having only two states
(1 bit). (If there are more than 2 states, then the number of bits re-
quired for state identification must be shown)

Line 10: STate (Step) I with identification 0. AUtomaton COMP waits in I
till SW is 1. When SW is 1, T is set to 1, C and S are set to 0, and a

transition is made to state S 1 fall in parallel). The period terminates

L.

-69-

Line 11: State S1 with the designation 1. waits for T to be 1. If S is
1, R is circulated right one bit with the bit R(6) complemented; other-
wise R is simply circulated. S receives R(6) if S = 0. Also in this
state, the value of C is checnal be equivalent to S(-lOlz). If C=5,

T is set to 0 and a transitiov :- . i1s made; if not, C is incremented and
S 1 state continues. T ¢ ‘iods at the end of line 12 terminate the

If THENon C, S 1, §° .U and SY declarations respectively.

Line 13: Sets the FLags of DDLTRN to output results of each of the six
passes.

Figure 5.1(c) shows the input commands for DDLSIM. FLags for DDLSIM
are set for decimal data input (4) and binary output (6) in Line 1. SW
is initialized to 1 in line 2. Two values are read into R one each time
state I is reached (line 3). An output trigger OUTTR is declared to be
ON at the falling edge of clock P (line 4). The values of COMP, R, S, C,
T are to be OUtput when OUTTR is ON and that of R when in I state (line 5).
The simulation is started with <SI> in line 6. Figure 5.1(d) shows the
simulation output. The TIME starts with the raising edge of clock. Each
edge is a time event. At time 0, all registers are zeroed and the circuit
is in state I. At 1 SW is set to 1. At 2, R receives 5. 12 more time
slots (6 clock pulses) are required for R to have its twos complement
(time 14). At time 16, the new value for R (20) is received and its twos
complement is ready at time 28. Since all the inputs are exhausted, the

simalator stops at time 29.

B

LOANT NYL1aa :(B)1°S J4n914

fwtgIGInty <l 4>
St tIYUT= Tt = [(D) 1l L) Ve (2) I
CP(GQIL)A) (I N=PH P (Y)He>Q ! (G2 VHad (2 2)M (YY) HL=>(1)+4 (s3(s120C1)1S
CISCe’Ne>dS?J=>) |=> 1S3 (0)[CIN>
sAANTICYD>
Stgvx=aget) ez) <>
(L) (es2)))=) <>

(E)) (s) < ij>

-70-

Tvi(e)uay <di>

*4<T 1>

*r3<v 1>
CLYSP(0IC))Y L) e3>

HICIR N IR R I RPN IS R W

4Lz ICE N) 4 gniaue)

.

ol

1S 1)

EAR R

=¥ l=

andang NyI1ag (D 1°Saanfry

Sttt IULNUDed>) flce fha>| [(MV))e(L)abel 2l
(G 1IM)(Y9)HedmM () medC (G STV Hed () 22V 4 () ar=>(1) N

L T SN

*ISCe NadC 4 ha>) ‘le>) v 3]

Jin =y))exz) <)->
XY < 4)>
sS4l tANd) <CAS>

sl LIR440 1449 1) 401

Is
I <1S>
A~l)) <>
(L:1))) <>
(2s1)1w)
luw) <=)
(§s1) <41>
(esl)uativ <4)>
(1s0)g <l1>
(131)vS <n 1>
(rse)
(L) s
(h"32))
(921)~ <€44>
M4l 44l <AN>
SH41L1V D% 4 3%)40
NALAIL 490 SH4TLTVJv4=={SS1a
SV ASarNl 40enNa9Ng) NS4 el)
- 3 ke a =

= -

v R ——

(penuyiuon)(Q)1°Saandyy

e g .l.lU"' '] u:d-V— “—A.l c.u-'— ﬁFCv.—.——v.dﬁlA\-Un
(G IN) (9)HedH (9)H=>F f(GQil)H=>(922)H (9 i=>(1)a (€1 L
st
1% |Cce 'Neady ‘Ha>) ¢ [0le>] L1
(rt

T4 S Hv) <>

. ol (gs2)1dox=aure * TA1D (% 2)Twdex=14) ! LNL A9)/8= 1S 0, 4800/%=[ix4ddad) <AE>

40y (VL vAS==258Y 4

PR ISEE T B EY ZEE BVE 2 IEAY R XTI I O B

-73-

(PanuFau0)); (q)1°S 21n314

fleyu=x
IR =>) [J.#dl
CROGu=2d) [(Surdal

¢ Y gy,
NS =2 (¢ ,eal TGV EIL=2) [ae i
TN avtge3 {93200 Ingsdl “toeSu=rd) LSur il
FTUINNER =2 (1)1 (hgndl CrosS L1 lSurd’
(I y=>3 [haedl Qi) AN () Hen =>4 [Pl
TSI NNT e (932) (ruedl S Ty NN ks Pkl
CT9)Ad et =2 (1) (2 uvdl to (Gl HES g=n(952) 4 (Suel
T TN le=2dV0) (LyeAl (Vs =201 raxcl
ra Lem¥S Klykul °® Tdlely=>4~0) (luval
uo:.—llvg Hlusdd so.—.—l-VU. ——!.‘—
‘T M0Isle=>1 (lasdl telu=>) (luwdl
ROl gt b s o olelu=>t [luedl
@) ludv(est)=d=(esl) Jay el LI (532) bu dor)=hug
o Tole(e)e=(r)l,) ' tul)l (8 2e)ludex=1,2
L)L Ds (i) r=(il) L CLin) s (1) I8 P) IV 820"
CCO) s (1) Ibe(2)) balu=9, 210) 0ot 1) 3ewia) Juda 6,
0D De (1) e () 1e2u=6, ’ ‘S ilv? 0=l e
‘St ..=n, ISP 02%
‘Se 2,0 Clelscca
‘lelSssde b e 15w
Q\LQ—M—S o (1421378245
2 —.—.&-:.\0"—% .;.‘-..-\c"—

LA 4D/ ek) Al 14 <ASD

SMAL AN CALD>

Oy
. \ 1) Il N S Il Tav J==y 5y
JAN D~ 4A4 [y 1419)t))eartyy g 11 I~

ANV IS Vvl At ey b S b

TN) wwr,, 4

i, -

P Y LR TN TTISSETTReT R T
- ———

pPanuilIuo) :(q)1°cC 2an8y gy

‘eI, =X

T Y =Y

(G2U)Avg u=>(Q22)H [Pue4 ¢ yav4(5 ECs . .
‘ (SS1)4en,, + (Ql)Ney y=>(Vi2)n [Pusdt ¢ S,vAl
T IAvn. ¢ (I)HLsSa=>(L)n [Pusd ¢ Saedl CCT(Q))NEN, ¢ (N HLBs =D ()M [MewA ¢ Suenl
: LU Ll elu=>d400) (Susa ¢ lyval
SRS s TEERSEAARA RSN LR At T adunin b GaleerE Iasa v lowa)
‘T deny ¢ Oulg=>s (Nesd ¢ Taeql AR R ¢ Ula=>) [Gu%A + L, v+
ST0UYSQy & Osla=2) [Jged & (aedl ©C08Sw 4 Tdlale=>] (Savd 4 lusdl
ftoeS, ¢ 1Nl e=>] [Suvd & [54| . (Latw(s)ad=(s)n 1y
LSRRI 2L hin Y2 1IR3 1))2 (23 1)y
(S 2) T Do (s rO=(221)uily Y LOTs(e)v2(S) Ty
. e S ECRINRLE) had C(532)1ude (221X (i) Tul
($2211ade(231)¥=(E38)0a) CCEM DR (1)IIv(2r) iw2 2y,
CC0)I=(1)Idw(e)INiw2y= CCO) V(L) Dbe(e) s 7, TG,
saau\u.ﬁ—-uh.ﬁ\-u.\l“r-l slhcvlﬂﬂ\t
‘Siecuz=n. *SeluzFu
‘Sl u=%u tlwinzc.
‘lels=2, *Cyf=1.,
ISR N = . LOL A)78
¢ Ol gA4u)/e=|§ o AN Ve

PO AN)/ = S) g LS
SHALIINAY <S>
D4 MLV SN LTM A== S5 7 A
NINMarsT SATNTINTN)o 4405 ==9GQS7 A
SN VIICST) A9V Y IS A g

=78=

Wlm
PSS
IS
Lor
lgs
61S

LAY
wig
Lae
nQ2

e
102
uht
ChT4

L1 ¥4
rsi

ey
El-T4
9%

Inr
fun

9l/e
E3 X4
122
[

6% %

(penuyiuod’ (4)[°S

~

- L 3 '\

0
e
he
"=
he
Ll
L1
1)
13}
e
ne
a-
o=
H=
A=
Qe
-
Ve
=
Ve
e
|=

infyy
I |
« 4
‘ /
1 b
¢ 4
I]
4 Lt]
(U v
| |
| |
| 1
1 |
| o
1 1
| I
| 0
| |
| I
$ §
| I
% $
Y 3
| l
1 |
| l
| 1
-]
v 9
[1

CID N Sl AR R |

| -
c N
| (]
5 LR
ﬂ —‘-
Y lwld
0
g
| <
| Su
1 Mu
| Su
)

1l
<9 B
l |
1 AN)
1 Cu
| lw)
I |
1 [
— ,..._4
| -
1 'S
{ |
| S
4)
| ~
| IS I NIPRR O I |
A0~ ALl Vo7 4
A0y 4y S 4

e
-’
l7
</
s7
ne
S~
20
[2
Oe

=A™ 3 JF L™~ a2
— e e - e - - - -

J

-~ 3 g L~

v 9!

i o ———

-76=

NN~

anding WIs1ad (P)1°§ 2an3ry

o2 = 4ol v

(AR BRI I T -2

2Rl o0 1ol
P 1ol
i a0l
I 110
Ponta
I 1
[oo
(1ot o 1ol
I Inl
1 ool
I 1ty
1 ol
I 1o
I oany
noeenag g gy

o 1)

anduy QisTan () 1°¢AINTY

AT BFA TR LA R PRl VAJENUTURE
FAd/NLLINDEN]L D>

NG/ M €A

17 'vc']>

9irc) 4>

NoltLy 1 ials Blhl Jdsa N SHAA 411 henls

ARTEAT EX EF IV N E BT
Ml4 4
RN B IR v o
ondtilo 22
Ladoll 1 ne
aenantl 1 2P
Ilorang | ae
A0l ap) N |
natote 1 ol
Ttottt 9 nl
AU S S
IO I T B)1
awoatte o ot
loooll 1 Q
LN VDK S S
1aotngy | P
.u_..-.-o.' 0 ")
" d 4«11
A
"
)
<|<> HE
S
in
Sy
".~
sl
I ue) walsS 4

——t e bomms bwwd e o e e pem e -

S

L I Il R

e

i

v

T WY

S e S g T FET Y 0 Y

R S T T T PP

=

L

L | (S5] —— pannsy

 —

77 =

Example 2: The Serial Twos Complementer (variation 1)

Figure 5.2(a) illustrates anoéhet version of the twos complementer.
Two operators are used. The six bit COM operator circulates register X.
The bit fed into X(1) during circulation is either X(6) or X(6) depending
on the value of Y is 0 or 1. respectively. The CNTUP operator is the
same as the ADD operator in example 1. This version just illustrates
the use of operators. Figures 5.2(b) shows the DDLTRN output, 5.2(C)

shows DDLSIM input and 5.2(d) sihows the DDLSIM output.

LNdNI Nd11ad (®)T°S D914

PR NS AR X S R T |
cecce LNl D=2 it

$1<c=0=>]) _Acau.n—.upc.mgu...axuanvm (Sel *ss244 H)=>melsCl)1S HETAY

1=’ n=d>3tne>) ler| 03 (0)1CIS> vl
TaasAdn) <> Y |

ce yywezANL D)) yexE <> sl
cCEItN(EsC)I=)) sl

C(9) 1V (g)n <HL> in

% S (9)AL HEY]
.-AJn—u-unxuxv:;u...a¢~‘univ-p~>_gn__.::uaz;v HY]

*Af(y)XCHL> HE]

FACRY ()))<y 1> HEN

‘ac<l > HEY)

R S b 4 H

._.L._,_n_\.;.gru_-:A..."v s.?

P N T I PR R T4 i

TR TR e I L LI L R

Wleningen oty i o G el

-79-

O3 TR O SR U SN CRRRTRY S RN LI

- Ssjeerd LI 0IFS i TiRLRL

SRCLA e BACILITIES

<Sy> LFVYE TES

<c~t> F(12m)
C(ez:n)
S(121)
T01+1)

<t +> S+(1:1)

<> 8(1:21)
<t > Ci«tlsm)
«THF> x(12n)

it yie)

«<iP> T 1B (i:)

<i&E> «¥"1(1:3)

=2 ")
C"1(1:3)

<> CC(trz1)

<ut->» CvF

<%i>]
|

-
- -

<S> Fr¥r T
€ =y 0
<

¢ e

£, Y1
~.> Cov(1 =S
Y)Y tx(s)s frR)), Lo

V]
..

~Y=c(Y1e S‘..

¢ &> (“.-“l“
Csxa(C, ¢ T P3arll,.

A
1
v

e S+ Vcol, L<=(, S<ey, =>:1 .,

FY2 1y moely - 80y Sy
]?‘“1 i""((‘).'
Ju 2yt (om0)) lem, @37 i Ce it =T N e e e

FIGURE 5.2(b): DDLTRN OUTPUT

badh i e der R o Lopeuch dn Malhs © 1 Ae el o ank

{

[

[

[

i

1

|

|

|

|

i

I

N

|

| Poog,
[

(penutiuo)) (4)z°S Junu 4

- e
Cre Sl . = ¢
CTgNL i)t g=> g (e el ENY R TL) lv“cﬂuswﬂ_
‘0BG u=>d 0 1G4 ..o?cf..lvﬂz._.. —ch\w_
t Usageel Haseal “0ebu=>1 Loue il
“TUY) 1ol =>y nygecl P (Y)H¥N=>y [P,eqal
ST uSA ey =1 .Lcu:h» -
"t dey=2d 1§oeval ...:wcmnlvz _m:”»_
- LUl u=>0 U 1Z,ed] o llsdu=>d4viv) 12,09
o0eeumas (dusal HIeaisls tenv
*Thade¥ | frewnt| ..L.m;av; .w“.a.
*f Bibede=>l [dusdl o Ui Pumrl (Puvl
C 1ulr(e)lex)=(2rant) 0 I (L5#) 1udPbaX)SAlIL-1)
CO(E3) 1 I* (31D Lun)=(2i1)4111) . . -
- Il (ge)luleluc=ta)
O Ols () lgx=(8) 1yl e(GE1)r=Ld3e))
.-¢“\u_.u.gmm“w“””w”wmh“_n“ ()Xol ¢ (Y)nasAa)=(L)l
. =(Ye L - < e
C((9)rely ¢ (Y)Xx4er)=([)0] ..pwvgo»_.npwmwﬂh”u””:““:
0NN (1)DEw(2)))esS 0=y, b3 Jwt iy moo

‘S LYY WS,

‘relszr s
"

CLo)de(L)Idn(C)Ivru=2
‘Steyuz=ng, ¢ sel=Ce ‘ALS
lels=y, ¢ Ll)7 e=1
CoSelsla ALS g LTI IR WA |
L Talesadze=ly g
‘vt /a3

sk s4.:4 1 <A
sadl .4 41 <AS>

-80-

il =St Sl bl r)==gSsy

NE VA BRI B LR N SRV EPERNE B RN e

e 4e eccegz(un AllNNea>]) fhc= ‘u=xl 1(0) 1w (L) 1awv(2) 0]
40 (94)4=>8 IS
e =zt tuz=x ¢ cnJde>a
—_u-
1 lycm Nady ‘ayer ! tod=>1 eS|
(W
s 4 st <tig>
N R A O R S |

)) - - Yol ak=la) C(GQit)e=(4s7) o)) .
g 101) (£32) Ludelud=dnin)) PR A \-"Mﬂﬂvuv; h LileAat)/e=ls o, aNd/e=t G0l o 30 LGP

o T - B T ——

-81-

1 ——

L

‘Sey =

v)eg y=> 4

oG, + ' ledu=>d~"n) IPTRXL
() 4%h,, 4+ (8l y=>5 [NyuaA

P 4l 1)ey,, ¢ Ol e>) [Qued
NS, ¢ Tlsd,=>1

C((9)Axly ¢ (9)ul¥A)=(

x 124
48y,

1Suv
+ Pae
¢ A,
¢ Par

T)au)

:i
=¥
Al
Al
46
.s—

—f-..\. + NSC&-

‘(LUIY(E)X)=). iLr)
C(Seedl w220l X)L D4l

4 Lol ()T ¢=(5) 14D
C(yl)ladw(il) lyx=(Z21)aW)

UG)= (932)

YD (L)L (P)))avt =",
CCMINe (L)L () Ivr =4
QyeS =0,

-C_ﬂueq..

LARCUNY B

‘ag=

™

¢ Lilgq4andze=ls
g)ses]
HE RN K N |

TAVE St SN

- WYY A

<AS>

(panuy3uo)) (q)z°S NI

L E AR

M L |

T a)Y w=> N2 wenl
Llsly=>n1) [Que«4 ¢ 2, 04|

ey = ¢

T (U)INE, 4 UVl oDy (Das 4 ¢ Pawni|
Tl 1)¥9, & (el u=>) | d,.v4 ¢+ v

lulsdu=>] [Su*d ¢ 2,8

bl Pl v(e)lgx)=y)Ant '
Y2V T v (3) bax)=(Z3)4ty

e 1Nl (§)Lux=(sI1,)

i) lu e (i) Lgn=(231)1,)

ISl IxX=(422) w0

CL(9)Xwly ¢ (9)XL=A)=(L)

Y e (1)Ddwl @))Ly =2y,
L) uslL)Die(P))es y=4,
0QLnt =0,

‘leiIN=y,

¢ S f=Cda ‘ML=,

g LdbeAdh)/=1y

g1)/e]

Sodl 1404

L I O LT B N I T O B I B B N O

<iy>

RIGINAL PAGE IS
~™ PYIR QUALITY

gom
L
lon
QHn

LLn
£9n
9L%
Ong
wlg

6%
el
2yt
06l

-82-
[

uye
q2¢
0S¢

an |
Ly}

Lns
9%
nA4$
Y04
0

ey
ey
Int
e/t
)

vy
She
(3
LT
[§Y
n

nyc
Lt°¢
Sw¢e
r6d
]

nse
cde
100
o

vee
wld
O

L7
vwie
e
It ¢
I sy

(panuj3juo)) (9Q)z°S Lun. .

s
Sl
(U]

i
[
he
he-
o-
L\
L\
)
v
-
o=
-
o-
e
o=
he
e
Nne
Hhe-
e
) it
P
Ye
S,
Yo

S =S -

-

Vem e oem e [L e N e W e N o o o e e o owm oem o= e [\

SCENMAIe

L - A Y

—e L L =" =™ o m- =

- 4

] iy) ‘Y
(< 1) Iy
| bu)d Jy
¥ b)) ~e¢
0 =
0 Iy
| 0L D N
® ANl g 92
1 Y ne
| S r?
| LU c?
1 le
(BN ne
(X4 IS b
I ¢ { 114
| 4 411 L
| I 11
) bu) a2l
} 2w L]
| luY 91
| I |\
{ Al [\
| A ol
1 «)
| i) -
} o /!
| S o
\ I -
| R I
I i Y
{ & ’
l LON B | |
SR EER R T B O B O P 2
'Y . - 3 (. 1

.‘\‘0 ool

1NdINO WIsT1aa :(P)Z°S AANOId

-83-

S dull L DAL Tl Nl LY L)

filg .l

oullol

Lol

NDOvLo

9}

| 4490 4 | MO Nuliyaals alnl)4

M A e B DN S DM s AP 0 0 By S AR e Y00 i

BRI o e e 0

U E L INL A E TR N e T T

O 1ot + oofttol o O

L0l b uoullo | vd

ool | 4990800 ne

I Lo ¥V vlovoul ¢

b 012 o oo e

I [0 O otdld) 1 wli

T 009 0 9012480 | 91

o 1ot © ttalll o ni

L tob v oltotl & ¢

I ool 1 0ulttlol | ol

L Tio L 0volito 1T w

I 00 & tndoil | 9

1 oo L otv9gol n

T vov v Lol)0u + ¢

9 099 Vv 0vouno o "

1 J s 4 1 vl
W)
B

LNdNT WISTIau (2)Z°S MNH14

<S>
/97171)S 4t)z 0t Lnucin>
/AL/ZALLNn<AL>

nwelGrsy/ €442

/7. 5<q41>

G'ne) 4>

s oo
J <&

-~

fornfsYqn S SO N T ST 0 RN RN AR [U B I IO I A

L0k 0 e v - - Wt

R e e = R

™

BEme Bumay Mmay SNy

oy Sy

)) ey PEp sy =y S

-84~

Example 3: Twos Complementer (variation 2)

Figure 5.3(a) shows a version of twos complementer description with
the use of several AUtomata. Automaton CNT adds 1 to C, checks if it is
S and sets DONE to 1 if C = 5. It is activated by COUNT. AUtomaton
CMP is activated by CPT; performs the one bit circulation of R; sets
COUNT to 1 to activate CNT. COMP is the controlling AUtomaton, activated
by SW and in turn activates CMP in state S1 and waits for CCT to be 1
(for CNT completed) in S2. If DONE is 1, goes into wait state.

Figure 5.3(%) shows the DDLTRN output. Figure 5.3(c) and (d) show
the DDLSIM input and output respectively. Note the effect of this version

of description (AUtc—.ata interaction) on simulation time.

!j -85-

i CSIBIRT AL kB TRES

CvFr~({2m),C(2C)0S, 1,

N

s CTE> TR, IPNE,CFT,
(T8 <T‘>C(f.
[G <1139,
-0 <Lo>8s
{ 7 i E> 2N () x~
é - <TF> x(3),0(2),
: [’ G <Ti> (sl les3)r1ey),
?
g 1 <=0'> Czgxe((,ePP2Ya(lC,.
; I € >0 Tew
l 172 «STOC1(MICILr TeleatlMens,=>Cz,
1 <s COCIY ST, 102V (1) *1C(N)) FOrk=3r i Esh,,e3F 1.,
[T
18 LS TN]
[1~ CS 8)02yl
l 17 131 <))c=te(p),r(Ptr)ce=-(135);3cec(n),vCovw(n)lu(]28),,=25],
-2 CS1(1)eCi T2l ,=251 ..
[1¢ -
_ PR €y > CUnkE(2)Y e
‘ 1 €SI (r)2R 3Tcm],FceN,5<=,e>5],
P S101)2TerkTs),=>82,
[I R2(e)e FLle Y FledTied3y .,
[&
PR < P N T A T) '
% ',
r '-‘

Figure 5.3(a):DDLTRN Input

¢

———

-86-

< i8S eek CIL ITIFS TOFS1TRIED

Sl ek FACJLITLES

<Y>
=k >

<le>

<[I>
<L t>

LFNE: Thw
w(]em)
cee:)
S(1e1)
T(131)
CrerT(121)
feECte)
FETLLY)
FeTeYet)
»(121
Saf1e21)

« B> ATDR(123)
«<Tr> Y(]°?)

c"1 (1)
<[> fC(12)
<Al » (a1
esT> > M)

Cr
cu''> (v
<ST> 4

S
€utd (Vv
<si> T

Figure 5.3(b) :

DDLTRN Output

¢

<

> Cll‘

e S1"

Ny

. d————-

3
4

-87=

‘is<-

‘° (s

S1)nl (9, u=>4

panuyjuo) : (qQ)g'§ dandyy

t(9)N=>y (S

Slgca ‘. e>t fe>)

sl)ea=>(v

ere e =407 S1=

Oitclwv.ﬁ-

“¢s5<-

<= (401

sl) (9)ae=>(1)a

goad (o) dieC) as et

c2)c<= ‘sapdiv=>)

s11) 25
epz=140) Stals
tl=>; -4 3!
<+
sd n,.‘..r.—
De<e= *i=pah0 s
(s
[I U
<l|l>>
n.& e« 44)
“1z1J) 7))
ETREE IS B
<|u>
e d o1)
YAy)Xz) < a2
Y As 1)
ﬁ.-d—
. n-——; —A.]

i g ot it

< \v>
i) >
<11 ?>
< +'>
[
' —~<

C A~

penuyauo) : (Q)€°S 2anBri

e e s liv<= <= [q4vuurl
1ot
.\:-
40 035<= ¢ Tul=t1ad (U
(Lulxld
2 lylS<= ‘y=dy)=>) ¢ lal=>1 L5l
1
Tao~r) €1

(1)
-
.

L% HNC=- * tOi=Lty 12 sy
1°c 5= *°(Sil)N)(Yid=>a ‘(9)u=>S 2(Qi1)Y=>(932)~ C(9)me=>(1)N (n
L)l

tas !
420 <1v>

o
<
.

e se[yce *CO= AN ¢ tagasdeiu L)t b)ast?)
e (O T I I I W N |
4)ce 12K * Juv=>)) i)
teal
e 1 ol) €]
a8Vl o xzudy ¢ Ll Y budex=iad 2 1ea JdleSEY

0201, 441)/¢31alS “€Culedndd/Zesl * LUl Aad/ezls “oode D/0308 0 Laha v o/e=2) 01 M/eT) 2l a4 a2

G4y 41 ¥ ol oxm ==L 5 Fa

- . o o AL okl PR —————————— NS ———

o U TATE o v L et

5 1
* - =-89-
: culN ea@r trre T DR
i I v asSiee TITONN CISTRETAOTE
: € 1> Leve Tk
«Lry» LEapn TR Clse,C* V10,
' [CisesCr 00, Ase/n 1y ’
Cese/C TV100Y “oge/r kIR,
: 2. SCee/CrF 0, Stas/C='0 v,
lé Srze/Cab 10, 12e/C0 - P03,
: ‘ t2e/CuvEtnre, e/ RN 2,
¢ QRi"ise/ChVvE)02, SP2a/01r Fleinie,y
Sizes(rnEt2r2, "1eCieCine T,
E “isC1e(C 0], "Pefesi(ef)ef (1)t
"pe(FeC(2)Ve (V) 2t (D), Tasfiet (1 (gV1eC(1)etM0)),
- "lzpewt(r(g)e(1VetC (1)), "usQoe(-T,
["usSue(CET, "hzhaes,
: LI LR I "ez"imts,
E "a.z"yats, "Il ,
£ "Tz1es , fazstyed,
i l. “azsiMiel, nezeoelLl,
§ = W LeQ e " -t Lg " .
: “sSenll(T, 1.2 LR
;§ Wy =N3e T vy, "11z2"en e’ ",
f’ ["lishSetrr N F, LTI Yse s (s (224),
! C"Yzaec ™1 (23 M0t . CRY(s)zatt)ery
! CrRE(aSCRI(PE IO), LTLE122)8(x(122) -0 N i023)),
i Jra®)) Cee™1wiit o ST yza (),
é [' sty e(, 12"y CFe="teonr,,
! lea®i] (“Tee"1a171 o yz1aC,
¢ Fris et | e rreMy1) 0 Tee" e,) o P
} [L ETY R B (CVzCerts 1 o
i ra"sen, riocpe¥ et v
i Vraf2) Taol 2wy, N L
' [J-eMN) =(1)c="Gat<(n),, JEsraf o leof sai us
* fee®n] (Fim)ee™3e<(1:8),, ibeR&l =il)e=®CaT-{nigy
: l-a"e) Ccenvil=),, 10 e"8) ~(Nse)ce"Toal128),,
! V1eMn) cceaw-(2) (S(1:9),, jra®e] icetearled,,
: [Jee®al i cetanltl 4, lra®e) (1) €aMne=(=),,
(.. Tssiet 1, l-ate] <fpin)getmes(jh,,,
- lceny] T st ceften,, e M rce"ae] | od
: l' v e®7) Tea®Tal. 1 ., roooTzstetoy
- Tee® 7] (c=o"Ten,, Isest) (Le=sisei,,
i ’-'"" =<.-7."'.l lb.“7' ".”7'1"- T
Ive"7) Fiiswems™"Teli,c,, |=e*7) (ce¥ 70 'Y
: I Cris®rerl o, Iteh7) Cga® 7o,
- £ jre®r) (P .-receuagdis,, 12071 0 eee®Te) "2,
: & Joem1) Froegemliient g, O P LT Ui B
e l RECLERE BEERTR T LN B IS Ear Jra®el (0 cqeM-e,p 2,
. Joe® 17 (0 @™y e ey,
o™yt et e £,

P00

pany gy

Figure 5.3(b) : Continued

|

penuRIL.) : (q)g°S danByy

m.L

. it

<2

¢ booleamgs| v &=

CCzlelly 4 20080 0. ¢ CMP0wy ¢ Vs q=r 4t 1lLawd ¢ Olawa & dumq v Lawd b

il vLe=dt 1lav =

I TP RN =%

‘el blisthrye>at v) (1 1Gsa ¢ g e BVL

% i ulw ¢ (V)Heegads [Lutd & 2,441 S -

(RN, ¢ (Sl vy =d(3r) (a0 d ¢ Guea| P

LM e, v (V) manG = (1) [(HaeAd ¢ Saed N

Chany g ¢ LJledu=dunn
¢ Naje2)z

*cnw¢) ¢+ Livelg=>1") (dJe+4 & [Lecl
Vel y=1
18l ¢ YT B o>t [Lged ¢ [Lvn]
| Larv(gd)edI=(y) s
ety iéd et (e l)one
e Lils(e)e=0(r)bat
MRS FIEATEN R AN TSN NN)
IREUOTE L1 ™
I Vel
‘L))edS=aH,
‘lelgiIS=w,.
age =l
‘Sienga= i,
‘Senuz=ha
*la)esys=ny,
L)L) N (2)D)an?)=y,
tn)iis(ly)sle))el =2,
fr sl
L L PR I VA -
N EUNVAT N RN
2 104sd iV)/
e lolgAd~)/e=|S
AU BB VAL U TN
o —b--QU\CH\J
Cagtlvi/e=l)
A 44A) €Al

-90-

RN N BEESUEEYE B B B P ERE L N e |

RS S S S e S e S S e L T e R S T — e bmed e el heaed

P3NuUTjuo) : (q)g°g 3inBrg

e lorled =]+

e°201%lla O:N.._CC.-—.. ¢ P28y 4 llvLged4 00) Tl ,vq & Ofgwd & g b [041
o8 —_—c\.llVP .\Sc‘s

L Ldtels=| atb v

)l ¢ Lileu=>d~) (%4 & n,eca|

)8 le ¢ (Y)Me I =2y (Lu¥a & H,sa)|

PRl) My b (S)HeYy = (N3c)N [YWyvr ¢ Huedf

PP (A My ¢ ()Ll G,=>(1)8 (Vesd ¢ GuvA|

Sy ¢ LatleZy=4900
¢ lils2)=t))
Tl)+ F1lef,=>1) (%A ¢ laval

) [=1
Ctnwly 4 Ul g=>) [Lyvr ¢ [yl
* 4 botvly))=yl ve
HECETARTNIATEESE S A TN B IS
-/ lats(e)X=(2) L)
(vl Wde(2s)x=(280 1)
bbbyl
4N ash =00,
‘L))edNz=h,
1wl iS=H.
‘uvgel=/y
I lEy =G,
‘yen =4,
C1AIRYSEN,
Y) (l)av(2)I)as2 =%,
()l (I)De())l)=ry,
CLuiidel)=l o
202 ,AN 1 1/ w22y
Nl aAN) Yozl g S
240 A1/
L [ileA44)/7%=1S
ChyANI/e=nS
4 Lbet)/ze=?n
‘)l 4)/ez=)
HER N EE FEE BEE 3 T

C

T4 L0 g 54TV guq4dngeagy S A4

/| = &=

i

S—

s e T TS

L

Lol

(e

R s -+ i

Rt e Ly bl

Py ey e e S g Sy gy

== =N

POLCTILYTY Tael e

! LEENTEN 1 1) -1 " 492 ¢ ¢
2 v 1 [- -k 1 u b ¢
3 C 2 6 =3 -p) 470 5% Sy
4 S 1 1 1 -~ " 477 S4A “a?
3 1 1 \ 1 -h 2 Stle Re¢e Le=
. Count 1 \ 1 -C b} 152 0] 16
7 CUNE 1 1 1 -G) 11 n 11¢
“ CeT 1 1 \ -y) 24 b} 2ud
a LT 1 1 1 -C) 73 0 3
(KX r 1 1 \ ot) 0" a (
1" N 1 1 1 -r \ (‘ G)
10 LN 1)) -G | J ‘

13 X 1 1 3 -l) Fen 76
‘o vie) é 17 E 4] L
18 L™l 1 3 2 -u g 0 4 %
). 1.2 1 é -17) o " '
17 (ol | 1 1 1 -r 3 Iru 13n Y
1. (i)) \ et} A s 18 b LA
S Ce ox 1 1 -1) 120 L 27
2 Cre \ \ 1 on) «“91 Qe S812
21 Su o F O 1 -1) 3°9 it 3%
lr 3 22 1 1 =13 u ilq A $41
78 rC~» 1 Pl 2 -~) Sdau ne ANe
eu I 14 0 1 =11) dad A : A
- ci ¢ ? ¢ o ' & \ i
o S1%1 1~ | ! “-11 ' 551 9 e
7 £? 28 2 \ 11 387 1 L
PIS 10 1 1 .17 ! R '

o~ ‘ A 1 -17 - | > X
3 "y] 1 1 -G A Se/ 17
R "e ! 1 1 -G Y 49y i
il "3 | 1 i -G ! 413 ’ $
it "y 1 1 1 e) 441 0 d<7
la e 1 1 1 - " (TN ‘ o3
e "n e 1 1 eC N (=3 % -l=
r "7 \ 1 1 - A -1 . Sl
a7 "y ! 1 1 -3 l Sae : e
i LES 1 1 1 -y ' Smy v STS
3 LRI | 1 1 -C) 572 2 Sel
¢ i1 1 4 3 -c ! LD n 597
T L o 1 0) f
- " N 0N b \ b | 3)

iy %y 3 3 1 1€) 7% " Tr
- P"l 1 ¢ Pl 1< 3 7~2 1 e
.S e 3 T 1 1r) 731 " 710
vom ar ' b 2 17 ' Tu o 793
u7 - Z) < P) ~Qs 708 o S
- -] . i ,) (22 TP~ e

Figure 5.3(b) ' Conrinued

i .
ﬂ DAT 4.24
A1ATTAL FPESTIAT 1 ANGUARE SIVHLATCS vEREY A wdpC 1979
‘e CF LUy
2 <l >»%v/1
ﬁ ty PRI VYA
sy PR T LI R ALY
Se <f".|>ﬁ'lYT-U‘(‘.”‘b.-o.‘.f.I.C".l’»"--.l.: FRNSIPN oV S AP N P LV A
[} e <S>
"
I r 3
' | AL T e T GO
- o X B . 8 Figure 5.3(c) :
[TTef - ¢ (¢ T I TR TTF - DDLSIM Input
(Ca DLaneG ¢ Dee & 606 o a0 C0RCAH,
PR K N K BT U B\ BTN B
‘ d4 IR B o AT SCCHNR AT O A B I L I oo
n 1Y 3C6¢10 1 Geg 1ot non N
8 LGeQ10 Y Ly LI LI (R A
l 10 10 116001 1 eng L A L F o0 f
12 10 11l Y Cl0 Ly o d e
1 1 11070 Y G191 w0 Y 0D
1e 1o Q110fue L uw10 1 vl v 0
l 1= 1001120 Y 01t LY G Dy B
Al vl 0)10f7 1 G 1L L v P Yy 6oy
2c) JUA SO0t I Ao L BT U T N O BRI B S
l 2d I WP N TN (- O Y B I BT 1
PSR I IR B T\ B ARSI S SR B IR Figure 5.3(d) :
P N T I B L I B B DDLSIM OQutput
LT RTIN (LRTS I L B RS B VERTHEANS B
' 12 ¢y 11t Y o TeY Yy 9 6O Ay € f
Td Qe VREIENY Y DR L A OF oo A Ay
t PSRN RTENE I N UR I O AN W W O BCR U
l TSRS I I 16 BTN O T TR I B A O ¢ SREAE
("W A T OO B AT A B L o VI Y B CHAN B
0 T R i RO INCANN N VY U B P A
TRTRN IR RAE I I SRS AR B B Y N B
' dm S I N TR IS RN AT U BEREVIRN LENEERS B U
LR 16 Gavyeg 6 0l 1 9 1 o LY
S 1¢ Aot 610110 G e
I &2 ¢l (i1t 0 0y v 00 Loy
(7] 10 18601 Y 210 Y 6 D00
S {1 1eraty 1 oagy v o oe ey ‘irhan“k :
l¥ €A v 10e™M12 L 0 ‘th
XL RCLI I ARCE TRV (R R U S SN J AR B %
I SR X B T N N I)
-~y O I U T AT N R ACUCY B SR YR U BB
l TSI R I SRS B o S U G v
I IR (8 IS0 T (R 1 Y SO (L 1
BRI I A A T ol (R B IR PR B
78 10 161160 1 1el 0 Ay o, 1 *
' L OtR NEFITS Y 118 1) & O P) o
1~ L AU LI B A Co & pRAer
l RERNCRT Y ST UOT SR U S

TRA TEEAMTPAYEL 'Y T]'F 2 1?

abd o oa e haah oa 2 o pal e Bl o JERL L Sailo o o - . o

g2 &0

O Of) CIy AN OI O G e oy um puy PN pem e

Example 4: MULTIPLIER [35]

A MULTIPLIER unit that calcula‘es the product of two 8-bit numbers
is described in Figure 5.4(a). A listing of the deck used for simulating
the MULTIPLIER system along with the simulation report is given in Figure
S.4(b). The <FLag> declaration in the simulation deck specifies that all
data-values specified without radix specification be interpreted in

decimal (Flag 4), and that output values be printed in binary (Flag 6).

The control unit MPY of the system waits idly in state Sl until it receives

a START command. A <INitialize> declaration is used to initialize the
START signal to 1 and start the MULTIPLIER unit. On receiving the START

command in state S1, the control unit proceeds to load the R register
with the multiplicand obtained from the BUS and proceeds to state S2. In
state S2 the B register is loaded with the multiplier obtained from the
BUS. A triggered READ operation with state terminal Sl as the triggering
signal is used to supply the BUS with the multiplicand. During simulationm,
whenever the control unit reaches state S1, the BUS is supplied with a
new value of the multiplicand. The multiplier is supplied to the BUS in
a similar manner with another triggered READ operation using state
terminal S2 as the triggering signal. After loading the multiplicand and
the multiplier, the control unit proceeds to state S3. In state S3 the
multiplicand is added to the partial product, if the multiplier bit is a
logic 1. The control proceeds to state S4 in any case. The A and B
registers are shifted right together and the multiplication cycle counter
MCOUNT is incremented. If the count has been completed, status line
DONE is set to logic 1 and the control unit returns to its idle state Sl.
If not all bits of the multiplier have been tested, the control unit

returns to state S3.

= e

= = = =

-_———
'

SR En ey N

-95-

A triggering signal OUTTR defined using a <TRigger> declaration

is used in a triggered OUTPUT operation to control the printing of the
values for MPY, MCOUNT, A, and B. These values are yrinted in binary

on every trailing edge of the clock P signal. Another triggered OUTPUT
operation using state terminal Sl as the triggering signal controls the
printing of the values for the multiplicand, multiplier and the final
product. Note that these values are printed only once, i.e., when the
final product is available, during a given multiplication operation. The
two output lists printed with different frequency aake the simula:ion
report more informative and readable. Since no <CLock> declaration is
included in the simulation deck, default values are used for P, W, and

6. Note that for a single simulation run a <SImulate> declaration is not
required. Since an EOF condition is expected no explicit <STop> decla-

ration is included in the simulation deck to terminate the simulation.

DIGII2L CeSILy LANLUAGE lnauSLﬂlLk96
1 <CO>vyuL | [PLIERS
2 «SYOVULTLPLIERSC | [Dkentda(uie)on()pta)edLLLNILE),
LH L2 ¥4 L AVERCIT] 3%
a2 <Te>STamlonuS(8)ovlnt,
5 <led>Suv(B8),Cuvuite)sldur (3)CCLUN LSS,
o <l0>LINsCUUTLE:0) (ZEnu,
7: <judCCIv=CLuuT(esd) (unt,
e <audCuulanrALl s)erellnea(lie)eCliodumsmaatliiedaty -
G CCuul=mCUUNTRLLLINV LOLNMEMCLLAT L] v
102 CAUDMPY(2) sk
112 <Sl>$l(0):stun1:~<-r:a,»Cqu|<-u.¢;~¢<-u,L“;<-1.-:se,
122 Sc(l)ioc=yUS)Acay, =233,

13: Si(&):lctCJl‘l*'CLU‘ll)lbb-‘.o"jd.

158 MCUUNTC=(CSUM,)2/ CLUUNIJOLNES L s®>311®20300cee

162 SPLDS)upDedrne

Figure 5.4(a) : DDLTRN Input

I
l
[
[
[
i
{
|
[
|
|
[
[
|
|
[
[

-97-
ololTal DESIGA LAMNGUAGE STINMULATGHR vErRSIuN MSKFC IS TY
18 <FL>d, 6
e IR IR LANA!
3: <rRE>S1/6US/6,10
“? CRE>S2/78LUS/5.13
Ss <TRQUT IR/ TtP/
0! SQUDL ;T Im/ZMPY pCLUNT sy / 0
7 SiI/npnudsa(128)s0
o <S>

7 A i R DR R
oy o) oEy CuN I N GEy My xy TN N Ny tEm N PN N o e T

o W Py

Figure 5.4(b) : DDLSIM Input

T T ST (AT, T T

GEl SNl GER PND PEg Gum puey e ey pum ey e

4 T T W o R R

- —

[

LIGLIaL veSIGN LanuwUaLe SImuLaTuk

IinrE

10
le
14
in
la
eu
ee
26
')
2o
3V
3
LY}
L1
LY
«(
L4
“ld
40
Y.]
So
Se
Sd
L)
s
6C
ne
o4
ot
o8
v
7¢

eEvp
SimuLallin

7]
Y

-2 CT.OCT

vy VoV
vl Voo
v Quv
11 vuu
10 001
11 0u}
10 v10
11 01y
v V11
11 011
10 10y
11 100
10 1vl
11 101
10 110
11 11V
10 111
11 111
v 000
01 0uv
1V Luu
11 00u
1V Qul
11 0u1
v 010
11 vy
10 v11
11 011
10 100
11 luv
1v 1ul
11 121
v 110
11 11v
10 111
11 111
LV VUV

A

000v0VOV0
voooovuuy
0uvLo0ovLo
00000v110
vuuouvoutl
000000011
v00000ULGY
000000111
vneovuogt
Quoouovll
V0vuC0volL
Vo0eVvV0001L
00v00voLO
000000000
V000V LLY
00000000V
0000V0UV0V
0000000VU
¢00C0UVYVO
Cuo0ouvV0ovY
¢V000vuwUO
voo0volvlL
Juululul
vooovolvl
VeLovo010
oGovvltluve
000000110
VIR RV ATV
(VOB RVVET
Quuu0l00v
(VI IV VXY)
vuuouuloo
LUwLo00vlv
000v0001LVY
Vuooovvol
viovouvoul
(IO

ub FILE wEACPFED ON

-98-

)

vemSlun M3RLC LY/S

M ee - B

" CIVE]

o

00000uVV0 VOLOOUUCO O0VLOOVUO VLDOVLVLY VluVLULULL

VVLVY000yU
vuouilog
0000vivl
IVITIVEVIVE |V
(XTIVVETETR §V)
10000001
100ulvul
f1luvuvuo
11000000
1110000V
1110vuVv0
11110000
11119000
01111000
01111000
vullliog
vulliluy
ovollltly
voolL1Litu
Juvullul
ouoolloy
vuvovlitln
Govovlly
1000UV1LL
Lovlvutt
vivooetul
01l900vV01
VUl0Juvov
VV1l00uow
vouvluuyo
vdvluuuyy
viduivuv
VYUY 10439
Vuludlue
0000V1VvY

VU000L1V CuLOulul vuvCuule

vuulllilv

1U0V0UL0 00vLlLlv Ovuullul GUUVOLUY Juuuuwly

IwvPytT

lexmI~nATED AT Twe =

Figure 5.4(b)

73

: JDLSIM Output

e M &/m /| &

g e P ey R e

«99-

Example 5: MINICOMPUTER |52]

A description of a simple minicomputer is given in Figure 5.5. The
details of the minicomputer are given in the Appendix.’ “ines
2-4 in Figure 5.5 describe the registers. Lines 5 declarvs a memory bus.
Line 6 declares a START latch. Line 7 declares a four phase clock. Lines
8-11 declare a Incrxent (by 1) circuit. Lines 12-16 declare a 12 bit
adder. Lines 18-19 are CPU initialization. Lines 20-23 show the FETCH
cycle. Lines 24-25 show the DEFER state for Indirect Address calculation.
Lines 26-27 show the OFCODE decoding. Lines 28-43 show the microperations

for each instruction.

R

u -100-
AL vESILv (arGLaLe TwAMSLA L™
n 12 <SY>»[nls
¢t <PE>AR(01T),rER(uIl1) PLLOET) ACCIuTLL), X(0211).
‘ 3 <RED[m(UIL)SLPLA) LU IT el (E)pnla,
l H <redm(eSeasle),
S <Te>vousS(lea),
l of «Lad>SlanmT,
/3 <1 [>P(u),
l as <LPOCANTUP(R) 2y
LH] <lTE>x(n),CLE),
' 1ue cllaCCa(C(esm)llvl),
113 <€UdC2arCCoCivivrsrall,..
' > Figure 5.5(a):
le: 2 TOINGFSEY PRE ! Mintcomputar
l 132 <1gdal1e)sllic)eviig)rCuLlinll)e. Description
lus <ludL]vsLuLTietiel iOn),
' IEH <nuduulsxeyera(ireveCln,
' led ALUSASYaClo g
17 CBUICPL(W)3P(1)er(2)er(3)eP(u):
' 1»3 «SI>[v(0)3sSTanTsaLCemy,Pdnceb|)y vnrCoy, A<=,
16 rLhCe | ,=2F¢k,
. cuv? re(l)erLaslr(l)ivancep()))rCe=L i ™irce,
2l: ol SN (rar)punnge it ()] (ncerum,,
l cel JRP W) auP(l)e)Plg)eiP ()) urCoyyed| .
l ' H Jim[i) =2 tPi®drroe0e
cus Ueb(2)3) k(1) avarcmaLng)P (c)) "mudah(vam), mancer §,y
l '+ X JP(3)librmecovpr (Ul)eolrid))=dEa,,
ct ra(3)siurbur dmoda L@l idedan 82 32> |5¢edLd=> Lu
l ¢l ORET P IETEL T LD NELE T ISR LE L4 A I
ér: ahLte)slrl))aceallp)P(E))ramComun,)lr8)it=uo3r L um),
l ev: ACLE L IO VR
[

a0 Duasiheaty casn natBotiiind L gl i e

—_

e

e B —

omg Wy Py e T

LIV
s
32t
332
dus
55
ELTH
37:

et

CLVR

wes

Y

«101-

JPLE))JUP(S))ACLE=NINRAACLCmul Lttt gh o) dFLoe
15¢(9)s)P(1))Irarc=dym,,
Jrte)lrelL3sNvar) v amweenn S,
JPL8))rerCeidyyrransiLlcerer
1P(e))rnudaNeN i (Var)Cova Ey) T/ nn))
FCe=CrTyrarCrep=dre,.
LCa(e)2)P(l)Irvrre=d(C,ep)rFr(2)) dng=ane=,,
1P(3))ALLC=0,7nSBrhwyw(mun)jCovpuS,) lrl&))eare,,
JSmi7)slP(l)irencayle ' PlerlF(2)irancey,,
IRXEIFELUR LT LERICELIE L LTI P
JB(d))PLC=ulr ,p=dFc,
RET(R)2)r(l)Iruncoy,p)P()) YRuUJEN WAk), ‘nmCerldqy
JP(u)jrCe=tipn(dsll)o=dre,.
J2F(G)2)rLl))rCeenn plr(u))=32Connes

CPFL>3pupS90,8,

Figure 5.5(s) : (Continued)

c."NAL P
“""Ww'y

Jl;

. i

N T Tm ewm

6. (ONCLUSIONS
DDLTRN and DDLSIM programs are currently being tested on SEL-32
Computer System. The output of the DDLTRN is suitable for logic genera-
tion. The ottput at PASS 6 and the Facility tabla are now being analysed
to derive the aigorithme for logic synthesis. With the logic synthesis

programs complete, CADAT will be a true automatic design systea.

-102-

This is a preprint of the article to be published {n the

.m N £ &,
9]

December 1979 issue of the "Proceedings of IEEE."

™ N e N e

[-

GER OGN G W G M Pl e T ™M

R P —

D &asn

=

—— ——

Computer Hardware Description
Languages—A Tutorial

SAJJAN G. SHIVA. uempsn 155t

}l!'!ii
i
iit
|y
!l' il
il
i)
fl

fi
f:
)
j

l!'l{
ks
H
[3
)
1

£) switching circuit level where the system structure com-
ssts of an interconnection of gates and flip-flops and the
oehavior 1s given by a st of Boolean eguations.

6) circuit ievel where the gates and flip-flops are replaced
by the circust ciements such as tranmstors, diodes, re-
ustors. etc.

Logc diagrams and Boolean equations have been used as media
of hardware description. Tne complexity of these media in-
creases rapidly as the system complexity increases and they are
not convensent to suppress the details and still provide oc-
curate descnptions as we move into the Ligher levels from the
switching circuit level. Hardware description languages
(HDL's) evoived as a solution. Although the use of computer
onented languages to describe digital system demgn can be
traced back 1o Shannon's work on switching curcusts mn 1939,
Aiken’s work on swiching theory in the 1940's, the logic
diagrams at M.1.T. and NBS in the late 1940's and the flip-flo,
equations in the 1950's [5). Iverson's work (6] on s formal
HDL probably mitiated the contemporary interes: in thus area
of researck. An HDL is similar to any otber high-evel pro-
panmung language (HLL) and provides a means of

Manuscript recesved May 2). 1979 revised August 25, 1979 Thae
wory was by the N aad Space

1) precise yet concuse description of the system:

2) convenisnt docCumentstion 'O JERETSte uUSerS MANUAL.
service manuals, otc.;

3) input of the system description into a computer for
simulation and design verification at various levels of
detadl;

4) software ganeration st the preprototype level. thus bridg-
ing the hardware/software development tin:e gap;

$) incorporation of design changes and corresponding
changes ia documentation. efficiently:

6) designer/wesr (teacher/student) communication interface
at the demred level of complexity.

HDL's are capable of descr:bing the parallelism. nonrecursive
nature, and timing issues in the hardware more naturally, and
thus differ from the pure sequential nature of a general HLL.
(Some existing HLL's provide comcurreacy or amulstsd con-
currency comstructs in thewr language elements, for example,
PFOR oa PEPE [7].) Anm HDL can be clmufied s a pro-
cedural ot 8 nonprocedursi language {4]. Each statement in
a noaprocedural HDL descnption would contain a isbe! which
describes the condition under which the activities described by
the statement are 1o be performed. Thus the sequential order-
ing of the statements does not zupose the ordering of the ac-
tivities. In a procedural HUL description, the activities are
performed following t.e sequential ordering of the statcments.

HDL's are desigrzd to describe both the structural and be-
havioral characteristics of a digital system. The fundamental
properties of hardware systems and the art of hardware design
process diiate the emential features of an HDL. Foran HDL
to be a useful tool, it has to pomess the following properties:

1) It has to have a natural way of describung the paralielism,
nonrecursive nature. and timung isues in digatal hardware.

2) The structure and comtroi parts of the hardware should
be easily described and preferably the descripuon of the two
parts be ssparated (if such a division enhances the description)
nhlu-uw’mmnrdmlymm‘not
concern himself with the structure of the system. Thus division
provides the flexibility to use hardware, software, or firmware
for the coatrol part, whichever is ecomommcal.

3) The language shouid serve as & medium at all levels of
svsiem description.

4) The design changes should sasily be incorporated into the

be useful for the interactive enviroament. (A transiator trans-
Istes the HDL description into an intermediate code from
which the simulator and other programs can be driven (e
Fig. 1)., The intermediste code couid be a set of Booisan and

n:i.-ln equations [31] or 3 computer executable code
like strings (23].)
£) The language should be easy to leamn snd remembes, 10

sccommodate the softwareshy hardware designer. although
the hasdware engineer cannot neglect the software aspects any-
more. due 10 the impact of microprocessors. The design rvs-
tem should be portabie, thus necessitating the transistors and
smulstors of HDL e written in higher level languages.

6) Two approaches to system demgn are often proposed:
the bottom-up spproach where the siementary components
are combined to form more complex ones and the top-down
approach, where the system is decompased into a collection of
subsysiems until the elementary components are reached. In
practice. the designer msy choose a combination of the two
spprosches. The structural detail at any demgn leve! vanes
from designer to designer. The HDL should allow the designer
to coatrol the amount of detail duning esch design phase.

7) The description of the large and medium scale integrated
circuit (LSI and MSI) modules as system components should
be siraightforward, so should be the inclusion of newer mod-
ules. If the system is partitioned by the designer to accommo-
date standard modules, this pastitoning shouid be retained by
the HDL translators and smulators.

e R s BN s B sy

{ == L S

U

Quired and curreat ressarch topics are discussed i Section V1.

Il. HDL's v Svstewm Demon

Fig. | shows the utility of an HDL i a digatal syssem dengn
envyoament. The designer uses the HDL to describe tus de-
sigh. This description is translsted into a computer executable
data base. which serves as the source for vanous other oper-
ations. “he design can be refined by simulating ot the descrip-
tion level Loop 1), before procesding to 8 mon d~talied sime-
lstion (Loop 2) at the logc level. The data-base .iso serves as
a source for logic diagram gemerstion, microcode and test set
generation. The physical comstruction of the system (ollows
the amulation and refllnement at the logc level
Translation and simulation of HDL’S have been well defined
[9)-{76]. Phymeal comstruction aspects have also been auto
mated and are widely umed in industry [77]. Test generation
[78] and hardware [12]. [39] need funber in-
vestigation. The vanety of demgn methodologes. the artistic
nature of the demgn procems. and the ambiguity posed by the
varsty of composents svaable make the hardware compile-
oA & tediows task.

1. ComputEr DESIGN LANGUAGE

A herdware programming language (AHPL), computer de-
ngn language (CDL), digtal systems demgn lamguage (DDL)
and the instruction set processor (ISP) have been the most
popular languages, partly due to thewr early iatroduction as
general purpose HDLY. These languages were developed in
uRiversity eavironments and are used in teachang digital logc
denge. New features are bemg edded to these languages to
make them more versatile. Welltested transiators and simy-
1s0e Table | for refer

i nature, the we of HDL™ 1 not wideiy reported | 79],

This section provides s bnef introduction to CDL. Example
descriptions in CDL are provded. CDL was chosen over the
others due to its mmpie structure and the author's familiarity
with the lenguage.

CDL was proposed ongisally by Chu [20i={22]. A trame-
lator and simuletor were wnitten for 8 subset of this language
[23]. Several modifications were made 10 this tradsiator and
nmulator [26] ={29].

CDL describes the structural and functional parts ~f a digital
system. The structural components like memory, registen,
clochs, switches, otc. are declared explicitly at the deginning
of the description. The functional dehavior of the slement is
described by the commonly used operators and user defined
operators. Valid data paths are declared wmplicitly whenever
there is a data transfez. Doth parallel and mquential opeTations
we allowed Synchronous operstions require a conditional
test for an appropnate ugnal The language 13 easy to under-
stand and i lughlv resdabdle

“m

All the vanables in a CDL deseription are global. The sysiem
description can be oaly at one level, and there is no subtoutine
tacility in CDL, thus making it unsuitable for descriding nard-
ware in 3 modular fashion. It is not possible to inciude special
hardware components like tntegrated circuits (1C's) 1 a dessnp-
ton. Mowever, itz mmplicity of structure and its portability
resuiting (rom the FORTRAN implementation. have made
CDL » populer language. The description of CDL syntax and
SEMANtics as accepied by the preseat versioa of tramsiator and
umulator [29] 5 given below. Tabie 11 thows the standand
operators ia CDL. Facilities are declarea at the beginning of
the tvstem decnption with deciersnon sigtemenis of the
format

DEVICE. lst

where DEVICE can be 4 REGISTER, SUBREGISTER. MEM-
ORY., DECODER, SWITCH. TERMINAL. BUS. BLOCK, and
CLOCK. Some example declarstions are shown below

REGISTER. A0~ 2R Fi61)

SUBREGISTER. F:OPWF(3-1), FIORNMF(6-4)

MEMORY, V(R'Af(0-77.0-10) Memory with 76. 11 Mt

words, Address regster
R.

DECODER. L(G~15)eG(2-$) 4 bits of G are decoded
mtoly. ...l

CLOCK. 212) A clock with 3 phases
P(O), P(1), P(2)e

SWITCH. STRT (OFF. ON) A switch with 2 pom-
toms. A matumum of
10 pomtions allowed.

TERMINAL, B4’ Cmqe8l,

Disqaed -
BUS. 2(0~-T) » Allne BUSZ

BLOCK. SERCOM (4=4(1)' -4(%-2)) SERCOM s an a-
mraste name (or the
operations within the
perentheses.

A DO/SERCOM statement is used to wnvoke the set of state-
mants declared by BLOCK, SERCOM
AR wnconditions: microstetement has the form

Vanable ® Expresuon
Example. 4=, B(1.3-5)=CeD « E(2.0-2)
A conditionsi microstatement has the forms
IF (expresmon) THEN « microstatements)
IF (expresmon) THEN (mucrostatements)
ELSE tmicrostatements)

Examples IF (4 £Q°'8) THEN (R=0)
IF (CNE-D) THEN (R=0, 2=!) ELSE (R=])

Conditional statements may be nested (0 any number
A labeied ssarement has the formet

"label/micTostatements
where
label = expresmoneciock
Example. ‘K(Q)eP/4of =y

Speciel operstors can be establshed by the user through a
separate subprogram The (ormat is

*OPERATOR. Parametens Name:
microstatements, RETURN
END

ke QUAL.'.'r

i
g
t

B

.

e |

e

= £ D B

=

[

—

ey

A count operaror s defined Deww

SOPERATOR, X(1-4)COUNT
INF (X(4FEQ-OTHEN(X(1-3% |}
ELSE (IF (X(3»EQ0 THEN (X(1-2)=1-0)
ELSE (IF(X(2)EQ-O)THEN (X (1,~1-0-0)
ELSE (X(1)'-0-0~0)).RETURN

Several commonly used operations (Tabie I1) are included in
the curreat CDL software:

Examples: A*ACNTUP-, (o4-ADD'S

The CDL TRANSLATOR parforms a syntax check of the
dascription and tramalates it into a set of tables and & polish

string program.

The COL SIMULATOR executes the output of the trans-
lator and can sccept simulation parameters through the fol-
lowing command set"

LOAD Used to inttialize registers and memory

OUTPUT Provides a hexadecumal pnatout of the specr-
fied regster and memory contents and switch
positions at the desired clock or label.

SWITCH Enables setting switch positions.

RESET Resets the earber setuags of the sumulation

parameten
SIMULATE Provides the sant and stop conditwons for
nmulation.

CDL can be used to describe simpie to very complex digital
systems. Two example descnptions are provided below to
lustrate this festure.

Exemple | A Serg! Two s Compementer

A circunt to replace the contents of a 6-dit regaster K by its
two's complement will be described. The complementation is
done by the well-knos 1 /complement algorithm (starting
from the least mgnificant ¥it of R, copy the bits as they are
till the first noazero bit. complement the bits after the first
nonzero bit, till the most mgnuficant ead of the register).
Fig. 2 shows the circuit and its CDL descnption. A 3-bit
register C is used to count the number of shifts. Flip-flop §
ndicates the COPY (5»0) and COMPLEMENT (S=1) states. A
switch SW is used to start the complementation process. State-
ments 2.3, and & describe these {acilities. The coatrol circuitry
includes a magle phase clock 7 and a 1-Dit state register T
‘Statements 6 and $). Fig. 3 shows the state diagram for the
coatrol circuitry. The controller waits in =0 state as long as
the SW is off When SW 15 on. the C and S are cleared. and
state change occurs (Statement 8). Asloag as C < 5. the shift
ugnal 8 on. Statement 9 describes the process of copymg or
complementing according to $20 or 1 Note that the curculs-
tion of the register R u described umng the concatenstion
operator. When the count reaches ¢ the controller goes to
=0 state, thus completing the complementation.

CDL. being a noaprocedural language, evaiuates labels and
performs the activities correspoading to the active label. Each
wuch evaluation is 2 label cycle. Duning amulation, the values of
R. C.S. and T are requested to be OUTPUT at “ach label cycle
(Statement 11). The switch 1s turned on i cycls | (Statemmt
12). R is losded with (5)y (subscripts indicate the L.« of the
number; the number is decamal if not subscripted) imitially
(Statements 13.14) and umulation is requested for 20 label
cycies with 6 label cycle evaluation repetitions to seek an ac-
tive label before terminating Fig. 4 shows the simulstion re-
sits. The coatents of R (T3), ar the end of the label cycle 6
are the two's complement of the onginai coatents (0S5)y, thus
indicating the validity of the demgn.

The clock and label cycies are RESET and R was loaded
with (21)y. Fig. &b) shows the corresponding umulation
results.

The CDL descnption in Fig 2 serves as 3 compact and pre-
cue dexcription of the structure and behavior .f the hardware

Laumpie 2 A Mimicomputer

Fig. $ shows the structural details. instruction set. and the
CDL description of a mimcomputer [52]. The muicomputer
has & 256 word 12-bit memory, with an 8-bit memory address
register (MAR) and a 12-bit memory buffer regaster (MBR).
There is an 8-bit program couster (PC) and an accumulator
(ACC) of 12 bits. The anthmetic/logic unit (ALU) receives
the operands (rom MBR and a 12-bit X register, and puis the
results on to the 12dit BUS. The instructions consist of a
3-bit operation code, an indirect address flag bit, and § address
bits. The registerast descr otion is provided by the Statements
1=3 of Fig. 5(b). The BUS s not explicitly described to retain
the high level descnption nature. Fig. S(c) shows the details
of the instruction set. Statement 4 in Fig. 5(b) describes a
START swite*. 8 RUN switch to indicate the RUN/STOP
state, and 4 th ¢ state switch for indicating instruction fetch
(F), indiect sa o33 computation (Defer. D) and Execution
(E) phases. Statements S and ¢ provide the instruction decod-
ing details. There is 8 4-phase clock P (Statement 7) which
activates the synchronous controi unit. Each major cycle con-
usts of 4 minor cycles. The comments in the CDL desctiption
wdentify the Fetch cycie. Defer cycie, and the Execution cycie
for each wnstruction. Fig. S(d) shows a program tc add the
four numbers in memory locations O-3 aad place the sum in
location 7. The program will be located in memory locations
10-16. Location 4 is initislized to -J and incremented by |
each tune through the loop, and tested for 2ero to terminate
the summing operation. The data values are accessed by an in-
direct reference (TADe 6) to location 6 which 1 incremented
from 0 by | each time through the loop. Fig. 5(d) shows the
program i assembly. binary, and decuma! forms. Fig. Sic)
shows the memory map just before the execution of the pro-
gam. This memory map is simulsted by the LOAD command
for the CDL simulstor (Statements 43-45) in Fig. S(b). The
program counter is et to 10 (Statement 46), the switch 1
turnad ON (Statement 42) dnd the nmulstor is requested for
200 label cycies (StatemalR 47), outputting ssveral regster
contents (Statement 41) at sach label cycle. The simulator r>-
suits are mmilar to the two's complementer example and are
not shown for the sake of bravity. It is evident that the CDL
descnption of the municomputer is concise and more precise
than aay ratural language description could be.

IV. Serecion ofF HDL

Due to the large number of HDL's proposed. the selection of
an HDL for a particular desgn environment becomes 3 nom-
tnvial task. Although the structure of the language. the oper-
stors svadable, the capabilities of the language to descride the
design 1n 2 logcal manner are important considerations, the
umplementation 1ssues seem 10 overnde them. One such selec-
ton process is described here along with Lhe system descnption

Fig. © shows the detais ot the computer aidec demgn and
test (CADAT) svstem of the NASA Marshall Space Flight
Center [80|. The designer inputs the details of the IC 10
CADAT as a set of standard calis and thewr interconnecuons
The standard cell selection is done manually from s standard
cell library. Thus descrniption i at the logic diagram leve!. De-
taed logxc mmulation and refinements are carned out on the
design. The finm dzuagn 15 APut to the automatic test-vector
geaeration and placement and routing programs. The IC mask
pattern generation is done nteractively and a mask analyss
and performance mmulation are done before fabncating the
mask. The last two steps in the IC fabnication are the wafer
processing and the final tesung

At present, the peneration of logc diagrams and choomng
the standard cells from the cell library for the design are done
manually Integration of a highdevel desgn language would
belp the demgner to mmulate kis design and refine it at a high
level before entenng hus demgn into the current system. Thus
requires an HDL with » umulator and logc synthesizer (hard-
ware compiler) that generates the logic net wnput required o

| SR | | =

-

¥
n

ADAT System. The breadboard impiementation and
of a compiex large scale integrated circuit (LSIC) de-
mgn is not feasible unce it cannot be properly breadboarded
with anything but the LSIC itse!l. With an HDL. this bread-

1) Acnvity: It is emsential to choose a langusge which is be-
ing weed elsewhere to receive the bemefits of the exteasions to
the language. Most of the HDL's proposed do mot have »
transiator and a simulator that is up-to-date and {mrly versatile,
though the language itself is versatile. The process of improv-
ing the HDL software and capebilities wowid be aided by the
active interest of the other groups 'n the language.

2 Level of Descniption: The ssiected HDL should accom-
modate a descnption at the regster transfer level and/or below
to facilitate the logic generation. A higher than register trams-
fer level description may not be needed for the IC demgn en-
vironment of CADAT.

3/ Softwere Averigbilin and Portability: The development
of 3 HDL is incomplete without a mmulator and a transiator
wnitten {7 it, aace this soliware development process refines
the language structure. The softwa’ * should be portable to
asccommodate the general portability of the CADAT software.

4) Ease of Logic Generanion. Any HDL transiator onented
towards providing information for a nmulator collects and re-
aranges the combinational logc and regster transfers. Thus
wtermediate transiated output should be amemable to iogx

generation.
Moduigriry: The HD jon should be modular enough
to reflect the mod of the hardware. to enable camer

uaderstanding and modular deugn verification.

A comparison of the four prominent HDL's with respect to
the above cntena is shown in Table [II. ISP, although verse-
tile, does not lend itself 10 the logic generauion level very well
CDL i suitable for microprogram geseration. The noamodular
description festure of CDL and the difficuity in using the
polish string output of the transiator to genesate logic diagram
level description make it unsuitable for the CADAT system
environment. AHPL and DDL were the strong contenders.
Both have a fairly portable software package and are suitabie
for the level of descnption needed for CADAT. The modu-
lanity s brought about by the subroutining festure in AHPL.
whereas the block structure of DDL s closer to the hardware
modularity. From a traditional hardware demgner’s powmt of
wview, programmung in either language is equally difficult. Al-
though a hardware compiler 15 available for AHPL [12]. its
SNOBOL impiemertrtion raises newer impiementation wsues
for CADAT, whuch is predomunantly in FORTRAN. The DDL
transistor prowides a set of Boolean squations and register
transfer expressions which can be used for hardware com-
pilation [39], [79] though not very easily. The block struc-
ture and the software of DDL made it 3 better choice over
AHPL for the CADAT system.

Note that the selection of the HDL s oriented more towards
the :mplementation issues, rather than a rigorous analysis of
the capabilities and the characteristics of the HDL, such & the
structure of the languag:. operators available, ease o1 under-
standing. etc. Such a rigorous analysis. although valuable, will
not ad in the selection of th* language since the implemente:
uon ismues override the other characteristics. Also. the selec-
tion creteria ignored the pomibility of developing 2 new
language to exactly fit the CADAT eavircament. The acrmry
chiteria also eliminated several other HDL's like LCD ($9) and
SDL [72] from coasideration.

V. CONCURRENT HARDWARE AND SOFTWARE
DEVELOPMENT

The use of MDL's in hardware development is obvious. The
recent advances ia [C technology heve tremendously increased
the speed of new systemy annvuncements. But the software
development for the new system has mot caught this pace.
With the ability of the HDL to describe and simulate the hard-
ware accurately, it is possible to develop the sofrware for the
digital system concurrently to bridge the software-hardware
development gap. This section coscribes an expenment to
measure the performance of CL!. in software deveiop-
ment [26].

A multiprocesung system. coasisting of a Digital Equipment
Corporation PDP-8 Minicomputer and an INTEL 8080 Micro-
processor was used. The two processors were simulated in-
dividually, followed by the simulation of the shared memory
and the input device for the system. The mput device is an
on-ine inspection station which interrupts the 8080 after each
part 15 examined to enter the measurements of the part iato s
64-word 8-bit memory. (ntel $080 handles the bookkeeping
of these messurements for use by PDP-. Several programs
were wnitten both for 8080 and PDP-S. The programs on
FDP§ sccept the measurement (rom $080. determine if they
are within specifications. and transmit the comdition of the
part to 8080. The 8080 haadie this interrupt and
keep s record of the of parts inspected and their con-
dition. The programs were written in sssembly language of the
particular procemor and were stored 1o the shared memory in
the machane language form. The details of the umulations can
be found in [27].

An imporuant coasdention in developing programs is the
amembly ume required by the host processor running the CDL
amulation of PDP-3 and Intel-8080. Table IV shows the CPU
‘umes required for tvpical programs on an [BM 370/1S8S.
Clearly, the cost of such simulations is prohibitive. However,
amumu.-» that the cross assemblers are svailable on the host
machine, developing an application program usning CDL uumuls-
tion would not be very expeasive, since these programs will
usually be shorter than an assembier or a compuler. A related
wsue would be the performance compans~~ of suci. simuls-
tions unng high level languages for the ¢ zscniption of the hard-
ware. rather than an HDL. Much of ne overhead of the HDL
translstor/aimuiator software could be reduced by uming an
HLL for describing and mmulating the perticuler hardware. A
comparison of such HLL versus HDL descriptions and thewr
run tumes is needed.

V1. Future Work

Although the suitability of an MDL for hardware system
descripion is well recognized. the HDL/: are not used ex-
tensively, pantly to the variety of structures and notations
used in these H . making them harder to understand. Many
structures found in HDL’s are simple for a software pro-
fesmonal to understand and use. But a hardware designer not
familiar with programmung {inds them hard to use. Thus prob-
iem will be partially solved by the popularity of the micro-
procesors as design ciements, requinng the hardware demgner
to understand software.

The differences 1n notations and structures used by HDL/s
make 1t difficult to borrow s language developed elsewhere.
Thus difficulty 5 sugmenied by the nonstandard design meth-

ORIGINAL PAGE 18

OF POOR QUALITY

R , f

fr— | p— p—

—

odologies and nomportabie HDL software. The problem of
nonuaiform notations and structures will be reduced by the
introduction of a coasensus language (CONLAN) (3], [82].
The following gusdelines are used in armving at CONLAN.

1) CONLAN must support demgn, description and sumula-
tion of at lsast the following clames of systems: gats network,
register ROtworks, Processor. MEMONSE. Processor fystems.

2) Asy system mey be displayed via either

2) & metwork structure descnption or

b) » behavior description.

3) CONLAN s to service

8) computer architects and logic designers for purpose of
trade-off explortion and optimizstion, design verification, and
Jdemgn docuMERtaLOn

b) systems, micro-, and ApplICation Programmen

¢) electronics production eRgIResTs.

d) maintensace cngaserns.

4) CONLAN gyntax and semantics must support

error detection

c) compreheasion of complex sysiem structure and
function

d) division of design efforts

¢) costrol over the level of abstraction at which sub-
systems arn described

9 smulstion coatrol.

$) CONLAN is to be evaluated in terms of bemchumarks such
s standard fuaction declarnstions. ume operator declarations.
IC descriptions (including microprocessors), and desga descrip-
boas (Incleding & Bmultiprocessos system).

The basic aim of CONLAN 1 to provide a versatile uniform
best language with the capabllities of sugmenting the basic
syatax with the specific comstructs with ther owa semantc
interpretation, as required dy the enviroament.

The efficiency of the DL software depends on its efficient
wse of the hast computer on which it was developed. Hence,
the software tends to be machine dependent, making it fairly
noaportable. Although the efficiency suffers (28] if the soft-
ware is mede portable, s welldocumented software package
(sloag with a good discusmon of the sigonthms used) is a
necemsity. Several other aress of iavestigstions could be
identified.

Procedures to amalyze the HDL descniptions of digtal sy»-
tems (4] are to be developed in order to avoid umulatioa of
at lesst mamimise simulation costs. HDL/s are to be designed
improved to accommodate easer description of LS| circuits
and mucroprocessors [83]. [84]. Switsbility of HDI%s »s
languages for microprocessor soltware development [85] and
architecture COmPpArison needs iavestigsuon.

Comparson studies of HLL and HDL with respect to eme of
programming. ease of understanding. descripuion length, sumy-
lation cost and efficrency are required.

Logic synthesis from the HDL description a not wel! de-
veloped [12). [39].179]. [86]. Decomposition of the dignal
systom to sccommodate the LS| and MSI components and re-
taming this dscomposition till the (inal stage in the desiga are
of peramount importance. The ability of the procedures to
smerch through & kbrary of available IC's and the capabilitiss
to accommodate newer MOdUIes is RECOmArY .

The svailability of mexpensive procesyors has increased the
populanty of distnibuted processing systems. The HDL/s have
traditionally been designed O 2 HNRGIe ProCEmOr CAVITORMER!
and lock the facilities to descride the iBterprocemor cCommun-
cation. Such sbility will make the HDL more attractive [87]
The acceptability of an HDL for a particular enviroament
depends on its capabilities to accommodate the operations in
the environment Sincs the maonty of HDL’ are demgned
for a partcular envircamen:. thev tend to be less suitable for
other envroaments. For exampie. 8 HDL developed with 2
poal of efficient high-level description and umulstion would
hardly suit a logic synthess environment. A classification of
available MDLA eccording to their underiying models (cr be-
havior 8 nseded.

Vil. ConciLusions

The capabilities of HDL’s were discusssd. A drief introduc:
uon to one such language CDL) along with example descnp-
tions ware given. Case studies for seiection of an HDL and the
use of HDL in hardware/sofliware development we™e given.
The areas for further investigations were identified.

ACKNOWLEDGMENT
The author wishes to thank J. M. Gould and P. Haia for help~
ful discusmons during the preparation of this paper. Mich gan
Techaclopeal U'niversity Computer Center for providing the
CDL Software: and C. Chandler for the assistance in prepers~
tion of the manuscript.

REFERENCES
References [1)-{3] are collections of papers. References
{31].177], and ! 88] also provide extensive bibliogrphues.

1) h-t Int. Swmp. CNDL s Applicanons. 1971

12! a--v vel T a0 12 (Specel lmer on CHDL %). Dec 1974,

)N -l-- vol. 10. 80 & (HDL Applcationa). Jume 197%

4] M R A of rputer for
computers sad dgntal sy sems.” JEEE Tvens Comput .

vol C:24 pp 137-150 Feb. 1978
15! l S. Reed “Symboic syathesss of digital computens.” in Prec
An. M ” 00~O4 l.l'

{e] K. E. iversem, * frw
::‘h-. -h« Ml‘.lhl Cony.. po l.|-l3'
1] K.] Thueder. Lowpe Scale C. A

Fark. NJ: Havden. 19%.ch. 5. pp. 231-291.
wmm 4 Mbhography . Ala-
a M Unn.. Sistes Rep. NSC2087. Normal. AL. Mar.

19 G. M, h‘uut N Mv.'"»mmww
nu. ISEE Tvems Compui. vol C-1). pp 9Mi-

(1ol F 1. u‘nnc. R. Poerson. Dynveal S)srvms. Nordwure Or
pensanon and Domgw rn-v-n Wiler . 1973

(1) F 1. H “Updatmg ANPL." w Proc int. Symp CNDL 1 Apph-
conens. pp 22-19. 1974

112] R E Swanson. 2. Navedi. snd [J Mill. “An AHPL comesler/
mm."-h«. Sixm Tezes Comf. Comput Svat.. pp

{13! T. D. Fredmen, 'Mal‘l’rk regram 1o compile desgns from
-—..a.“n ot Annn. IEEE Comput. Cony.,
138-139. 1 i

(18] T.D. Fredmen oad S C. Yang, “‘Methods weed wn an autometic
togic deugn gemerated (ALERT).” IEEE Tromse Compur.. vol
CII PP 593-41). Juty 1948

list 4 A “The a‘
mo‘u of Jgnsl ™D ¢

tioa, Cornegeedelion Umiv., Pristuegh. PA. Amn 164, May

I“'
18} =, "Abwlulummdwumm-
» Proc. Depgm Auro. m,. 15:0-15-8, 1900,
(17 w. l Frants ond W. K. Giloi. "APL+DS A herdware dascription
lenguage (or dengn and umulation.” m Prac, /at Con? CNDL 2
Applications pp. 45-33. 1974,
(31} l D. M"d Tumm.m-d— wm Proc.
Jaunt Comput. Conf..pp. 107-204. 1970
[1e§ l-n Guyot. Lux. Mermet. snd Paven. “CASSANDRE and the
computer asded logical iystems desgn.” TA o. 26. Peoc IFIP
Conge. ., |0"|
130 Y Chu “An ALGOLJike computer dvamn language.”
mun. A Comput Mach.. vol. §. pp $07-615. Out uu
Ovgen. -

fel) —— oprog g Engle:
weod Clills, N) Pretice-Holl. 1972 il

>§

'!

133) =, “Deongn by the dengn =
!l‘-.znn Compuier Scwace Center. Tech Rep. 09-36. Mar.
1331 € K. Y. “Tr e for the

-u‘uwmmrc‘m-w
Conter Uln Moryiand. Tech. Rep. 07-42 June 1964,
[3¢) ¥ Cln Am for

S Conter. Unev. Maryiend.
Tech. Rep 68-70. " 1968
138 = “Streetwre of CDL ‘' Dep C s
Univ. Maryiend. Toch. Note 74-50, Mav 1974
13¢])} R Meh. B D Coarrall. aad T. C Cwik. “"CDL A tool for
w Poc Demgm Awic

wd
Cony.. pp. 449-440_ June 1977
127" T T Cwnh, “Multiproceming umuiation of the 1ate! 8080 and
the PDP-8 wasng CDL." Master's thess. Auburn Lmiv.. Avburn,
AL. Mar. 19%
128) L R _Stwe snd |). Mowie. “A Possion papet on PRIeaMDAS |0
tll:‘ t‘lg‘l’.' w Poc. int Con/ CHDL: Appicenens, pp. 10)-

SGIEUE: QR Fr- |

L

1391 J Bers snd R Born. “A CDL compaier for domgning and simulat

ing dugstal systoms ot the roqister transier level.” in Pene [nr. 2] U Blumenschow snd W. Langner. “Entwickiung and defmuion
Cons CHD'y . PP. 96102, 1973, L :. vepuariraaiovproche RTS 11 * NVSL 83, laatutet fur Noeh-
1381 D R. Smith, “Computer sructwre loaguage.” \a Proe Jnr. Cons ™ 19%. "
CNDL's Apphcations. 1p 153-100. 1978 1e8] R. Piloty. 1 wne. Ul (nates).” s
(311 D. L. Distmeyer and ! R Duiey. “Register transfer tut far Nochrichteaversbesntuag. TH Dermatadl. 1974
ond thew tromsision.” m Digras! Sysem Desgn Auwitomenion 1691 R. Piloty. “Segpmontation comstructs for RTL 111" w Free. Mnt
lﬁ Simuionon ond Dute Base. M. §. Brever, Ed. Weod- Symp. CHDL 3 Appiications, pp. 118-124. ":l.
tamd CA: Computer Sctonce Prase. 1975, ¢h. 3, pp. 117218, 170] E. P. Stabler, “Symem $eoeripiion longuages. Trane. Com-
(321 1. R. Duisy. “DDL-A digital system dosgn longuage.” b D. dis- put.vol. C-19.9p. 1108=1173, Dee. | .
Fa0 1 B et 0ot 5. & Bt —" Ul - oy prakilass
. . L. . A SYRem design lon- D . of ¥
guage (DDL)," /EEE Twama Comput.. vel. C:17. pp. 850-801. 1721 W. M. VeaC “AR chical longuage for the structurel
Sept. 1968, dmeription of diguel syetema.” ia Mroc. Desgm Auto. Conf.. P9
Y e *I0Es Trene Compus . vl € S0t TR By TRW Inc., Avg. 1977
oquatieay. « vol. C-10, pp - 73| SMITE Traimng Manual, .. Aug. .
. {ul W. Georte sad M. 1. Hoffmen. “Simuiation of switching circuits
138] R. L. Ammét 00d D. L. Destmeyer, “DOLSIM-A digital denign by SBM-a sew hardware simulation lsaguspe.” in Prec. Jor
."* Pree. Nev Seewoniss Conf.. vel. 30, pp Symp. CNDL 3 Appliconianc. pp. 113-133, 1978 =
1781). A. N. Lee, “VDL =4 definstinnsl iystem for oMl levels. i Proc
138] “DDLTRN-weons manual.” Dep. Elec. Comput Fust Annu. Symp. Comput. Avch.. pp. 41-48, Dec. 1973
Wacommn -Madiwen (76) D. L. Parnas, “A for o the *
1971 of DOL 3 doug) " Univ. * Co A Marh..vel. 9. 80. 2
Wisconsin-Madison. Rep No <2713, Sept. 1977 Feb. 1966,
138) weers Masual.” Dep. Eloc. Comput. Eng., Univ. of 1*7] W. M, VeaCleemput. Compurer Aided Dasgn of Digiral Sverems.
- A Bibhagraphy Woodland Nills. CA. C: 3
[39) M. S Dushiond D. L. o:w.-hwnl:;lnu—-u 19%. 72l . Wittt »
COMBRICAs! logrc " Law. 1= M. Huey and F. J. seneration Soson
s 78-17 Nov. 1978 L :.._.. n Moc. Int. Symp. CNDL @ Apphicenons. pp. %108
(L] “Deg: I An and be- 1078
" Pec Symp. CHDL 31 Applcencas. 1791 N. Kawsto. T. Saito, F. Maruyama. and T. Urhars. “Dusign and
. - 1978, venficstion of large seals computers by wmng DDL.” in Prec
[41] A. M. Deapasn. “The wee of twe CHDL 5. PMS snd DIDL w» the Dusgn Ause. Con/., pp. 360-304. 1979
‘ourer transform prossmoc.” in Moc Int. Symp 190 1. M. Gould, “The large wcale Microslectronscs computer aubed
Applicancns. pp. 76-84. 1973 Geugn ond iest systom.” NASA TM.78202. Marshall Spece Flight
1ea1 J. L. . A formel for the e Center, AL, Oct. 1978. o .
Saital = PD. Univ. Shiva. “A hardw -
.. Catada. 1974 i ’u&au 157763, Morshall Spece Flught Conter, AL, Oct. 1978,
(e3] H. Trecey. “An 182] Progress Report of the Werking Growr of the Coaference on
0’—:-‘- -.-:;md“ul-nn-.’ Com- CHLDY. Oct. uz:- - o -
X 4], Jume 1977, 83) G. J. Lipowhi, grey »
lea] E A . "Automated functions) domgn of digital systoma. L) Pvec. imt Svemp. CHDLY dpphcaions. po. 184+ 84. 197,
PLD. duseriation. Cose Western Resevwe Unen.. Nov. 1967, |84l Y.Che. C ofs desgn ‘o Prac
(451 A.C. Parier and J. W. Gauit. A for the specify of Design Auso. Cony.. pp. 45-50. 1979
Ggatal wierfacing problems,” 18 Prec. int. Symp. CHDL 3 Apph:- 188] R. A. Musiler and G. R. Johneon. “A generstor [0 MICroprocessor
Conons, pp. §5-80. 1974, smembiers snd nmwisters.” Proc. IEEE, vel. 4. pp. 931-9)1,
148] A. Guee. “HARGOL ~A h algol " AS Jume 197.
Regaecontralon. Internal Rer. VAS, Copenbagen. Denmers, Ang 188) L. 1. Mefer and A C. Parker. “‘Register-transfer level dignal de
"L : ugn sutometion: The aliocstion procem.” Prec. Desgn Auwto.
147] P. L. Fieke. G I1- and M. Shoriand, “The HILO lepc Conf.. p9. 213-219, 1978, > ;"
T e 8 ' 191 W 1 ke _oha Gpw. 2 r wnd -
PP 100-171, . regster Rop
(48] C. C. Bell.). Grason, and A. Newsll. Demgning Compuiw end tooks.” Prec. Symp. Comput. Avch., pp. $6-63. 1975,
Diguoal Syssom. Mayased. MA Dugitel Prem. 197) 1881 M. A. Brewer. “Genevsl survey of demgn swtometon of dignel
(69] G. Bull mnd A. Newsll. Co ond Ex computens.” Proc. IEEE. vel. 34, pp. 1790-1 T21. Dec. 1908,

ampias. New York: MeGrow-Hill, 1971,
S and ISP

] for truc-
tures.” @ Proc. Sprmg Jowr Compumr Conf.. pp. 181-374. 1970
[$1] M. R. Barbece: ond D. P. Siewnorek. “ Applicstions of sa Iﬂ"z

!
i-
3
;

1521
1531 M. R. Berbecei.
15?3

154] M. R. Burdazci snd A. W Nagei. “An ISTS umetator.” Dep. of
CS ond EE Rep., Carnegre-Metion Universty. Nov. 1977
ISS] M. 5. Barey ond 5 Y. H. Su. A gighal system modeling snd de-

1561 S Y. M. Su. "A language for sutometed lope and system domgn."
D« L

Untversity New bronswick. NJ (Sept. 0-7. 1073).
-Su.M B Barav,and R. L. Carberry . ".unu- modeling

|
;

4
=1

1s7)

{
|
:
f
!

1581 D. Barrone. “LASCAR: A for of comp
srchuecture. ia Proc. /ot Symp. CNDL 3 Applicenons. pp. 143-

192, 2
(38] C.). Evenguissts. G. Geortsel, end M. Ofeh. “Dengning with LCD
Language for computer deagn.” i Prec. Design Aure. Conf., pp

1e0) Germen sad 1. P. Anderson, “A kugic Gusign trensinter.” m
Proc. Foll Jomt Comput. C=x/f..pp. 381-261. 1943,
161]). Lead. “LOGAL Jogx mic leaguage.” Univee Tech.

1631 H P. Schiorppi. “A formel

-e
13. Avg 1964
1. Lipoweki. “Namung comvention for modulst design lea-
Suapes.”” proprnind ot e First Woia:Nop on Computer Nerdware
De L R Unrv., New NJ (Sepr.

M. Peskin. ““The MODEL/LINDA design sutome-
Int Symp CMDL '3 Applicanons. pp. §)-

ol s
(88] R W, Morcavmshi. W T Puiczva. and | M. Suchacki. "OSM-
i
Poc Int. Svnp CMDL 1 Applicenons. pp 181171 19°8
b]

(86] R. Phaty, “RTS! (Regwtortronsiorproche).
for Ny ™ Jt. 1969

1e3)

:
H
7

e iR

e

TABLE |
Inpunaxtamion Detains of NDL
| mplrmen ted Impiementstion
Languge Referance Adapted from Machme Language

ACDL 1 - - -
AMPL 10-12 APL CDC 4400

DEC-10 TORTRAN
ALERT 1314 APL 1M 7094 -
APDL 15-16 ALGOL CDCG20 ALGOL-60
APL 7 - ey memdly
APLeDS 1?7 APL - -
CASSANDRE 18 (9] 1BM 360 P
CASSANDRE 19 ALGOL 1BM 360,370
cDL 20-29 ALGOL 1M 370 FORTRAN ASSEMSLY
csL 30 ALGOL IBM 37071588
DDL 31-3 - Harms 6024/ -
DIGITEST Il P - -

petry Nets
DIDL 41 - - -
DSDL 42 DDL 1DM 360 xrL
FLOWWARE 43 Nowcharts 1BM 160/50 Pl
DL NOVA-SOL. NOVA ASSEMBLY

FST “ - IBM 360 FORTRAN IV
GLIDE 4 - - -
HARGOL “% ALGOL - -
'I;Lo 4 - ICL 1900 -
gsl 4854 ALGOL POP-10 BLISS
LALSD §8-57 - IBM 360/9: nn

CDC 6400 SNOBOL
LASCAR 58 CASSANDRE - -
LD 59 140} - -
LT 6 RTL Burroughs. ALGOL-S8
LOGAL 6l RTL UNIVAC 1108 FORTRAN IV
LoTms 62 ALGOL - -
MDL 63 APL - -
MGDEL/LINDA o4 - - -
oS (4 ODRA-1308 PLAN
S 9 ALGOL POP-10 SNOBOL
RTL 6 - » CoCl ALGOL
RTSI 66 ALGOL Swemens 4004/151 FORTRAN
RTS Il 67-68 RTS4 - -
RTS LI [1) CDLRTS I - -
SDL 70 RTL - . -
soL U ki ALGOL - -
SDL n - - -
SMITE 73 - CYBER 174 -
SSM 7e - - -
VDL " - - -
VoIS 7 Pus - -

NOTES: |) “-" Indicates that the detail s esther not svailebie of net kaown.

2) No

d for Lhe

of thas table.

TABLE Ul
CDL Mice0oraa nons
erator Exampie Explanatson
3 AEQS Exprosson is | UT L4) =)
A ANES Expromion n i1 T (4) © (B)
g. AGTS Expresmon s | T 4) > (D)
\ ALTS Expressioa 6 | Y (4) < ()
v AGES Exprosson s | UT (4) > (B
LE ALES Exprosmon s | T 4) €
AND.e AANDSAS Performs lagical AND bit by bit
OR.» AORBAS Performs logical inchusive OR it by bit
ERA. AERAS Performs logenl exclusrve OR bat by bit
% A Performs |'s comploment of 4
ADD. AADLS Binary sum of (4) snd (B) o LA) * U
SUB. ASURS Mm. of () and () o
) =i
CNTUP. ACNTUP. Increments 4 by | ot (A) = (A)* |
CNTDN. A.ONTDN. Decromants 4 by | ot (4) = 4) =~ |
- A8 Cascaoes repueen 4 ed &
SHR. ASHR m.: nght oas bat position, eaters 0
at
SHL. ASHL. Shifts A left one bu pomtioa. enten 0
at right
QR ACIR. Circular (ciossd) nght shift of 4 | bat
QL. ACIL. Circular (closad) left shaft of A 1 but
SHRA' ASHRA. Anthmetic nght shift of 4 | b, no
change ; left most bit (mga bit)
. Y | Contemts of A are replaged by contents
ol #
TABLE Il
HDL Companuson
s oL ANPL DOoL
1) Softwase
transiator PODP-10 BLISS Many - Fortran/ Amembly CDC 6400 Fortran Harms 6024 [Ntren
amalstor POP-10 BLISS u-h’uu—w Hams 6024 [fran
hardwere compiler o 0 CDC 6400 Anobol (partial)
portabiiity no laiely (aarty - laisty
2) Level of Description mstrection st level regmster transier level regisies transier aad delow register transfer and balow
3) Modularity yes L] o] yes
4) Logic Generation no ot vory well ye ves
5 Eame dafficult L] diflicult difficult

TABLE IV
1BM 370 155 CPU Tinass ros CDL Smutamon

POPS INTEL 0080

age Lime 10 iste an 028 1.5
Nember of msTuchons/pass to ssembie e Sk v
CPU ume for pmembling & 20 mstructuon ’

pregram Kan s 96 000 s
Nore: K = 1024
9?&%
%Q
)
54 é

——————

889201g uojlewolny uSysag waiIsds Tel¥s8yg : 1 2andyy

N31SAS
IVNId
SUILINvEvd W
NOLLVINNIS WILSAS
: IVIISAHd ONILS3L
¥OIAVHIE (ONI1DVd
i @ .cz.zo..mﬁnﬁ...
ONINIL
s1SONOVIa 11nva | NOMINALENOD
21901 NOILVINNIS 21907
INISIY
<
\4'* a!-coﬂ«.n 01907 NOISEIANOD
A¥vygI 113
QYVONVL
zo.._.<.=.._:8.&l “UNIVYLSNOD
J4VMaNY N9 1S3
SU3L3INVUVd
NOILVINNIS
3009
zchw“.ﬂwu < Ep—— Isve viva NOTIVUINT® oxoL
, 300089 IN
No
NOILVISNVY Iivy
NOILJINISI 0) W39
ELIEE 3y 138 1831
1GH ONISN
. . * NOILdIND§3G 13A37 HoHl. . .
- s - o . o - -
[4 -
Ly u“
— e o = Y o b e bl s L o .

| S—

1

- .
"

LA A aaeag bt

J

Shift

R
top
' (Shift Right)
Iicuor
Count
Clock
Q
D S
Q

(1

Figure 2(a) : Serial Twos Complementer Hardware Structure

=

=

b

DN WVMEWN -~

el

—
o

11
12
13
14

wintliusbale

T K hteS AT Lo

ammdil
. 2aLTURKOE® 2
weLlsieken(l=0) ey
audTurteow(Dlie GFF)
. 2aLVlIKOLA S
NLUI:'L.\'C“-O, o |
LLOCA PP
. 2ot ROULCLOSUR S
/Sl ZisleSQ052)
F1PZAF (S EGe) NN ibietS=i L) sitait lu)=nll=) koo
(k=ntB) ' =i l=3)) elrtLetnew) THimnli=y)
ELSE(CSCelinlUPe)

=ik

solhULATlE

24 vl oml i vl

Ouu!Pul Lacteli)a (e eSe)
aoudlen I IVEVI

ALuAb

nad

oM <y

Figure 2(b) : CDL Description

Control

—’CInr

> Shift

W{OFF)

SW(ON)/AClear

C# 8/Shift=ON

Figure 3 : Controller for the Twos Complementer

R S ——

= Y = BEE =

e |

s |

- b

WUTFUT OF SariliLal a0 = Oy | A

aATCH TRANSE1IVW 4l LABLLL CYule L

Sw =2 Uld
R =05 C=v S=wv [|
RNV R LA 5000000808480 48002000000 00000083 400000 00 at ittt batsptbtnttpatetsenny
LALEL LYCLE) UL LauelS CLoLn Timg 1L
4 /Tay/
R = 4 C = S =1 rs1
B85 8,0 000088408 0880000830080 0020 08008 2 0RRRARR AR L0348 RR Rt ettt asRgstiney
LALEL LYCLLE < IRUE LAuELS CLOCK Time ¢
/Tae/
=S ol “ = e =1 r=1
BB L8050 580000008080 05808 TA0R 0004802004300 8000 0800800t 0000 L00 30000
LauEl CYCee O TRUL LAvelS CLULKR TivE o
¢ [2¢/
n = 30 . =39 > = 4 T =1
ABARB L5080 80080%008085000 0002000882080 100 PRRLE QIR 0800Ittt tinttytbannyg
LAvtl CrCLe & UL Lnoels CLOCK TimeE &
- /Tep/
R = S C=w S =1 T 21
(RIS AP PRI N P Y R Y PR I ERS NS A NS YN PR N P PO R YE YTy FEYE FYYYYYIE PRI T Y
eALLL CYCLL & IRVL LALeLS Cl.uCK T.Mk o
) VA RIS
R = oo . = 3 Sz =1
08088, 0488808380008 F,2000008002084088 0800008000000 08 0800000000t onatgttorny’
Lrnbi LVLE 1L Labels CLdin TiME U
/Ter/
s 70 ¢ =0 Sz I = v

AEBBB L B G400 2058008088000 80 0040088000000 00000 000t kR4 208008%,5%80000g"

.o

QLIMULATIUI Cid'y mF TR v herPLTITivig
rallae LAlel wTvik IS
(%)

oL SET CYChurvioin

sLUAV

l\:;l

aLlhM wUro oﬂ*w
: NAL

Figure 4(a) : Twos Complementer Simulation Results for R = (05).

- ——

WulPUl OF SimtILAIIOl = OufnL

2uldTCh Thahdl il lVie AT Ll Civin)

Su -> vl

R s 2l C = 5=y 1 =1
SPANB LA R0 00RARRR 000008000 RART AL 1 4R ke data bbbttt sntststettaitana
vkl CYLLE) Inve Lnoels CLOC* Typwe 1

lon /Tar/

R 2 5 . =24 >=1 151
o‘.“.‘.“tt‘.t;“oo“‘p$0tot¢0¢40604404‘tc‘000.oo.0'$‘.t‘tt..0u0ttottﬁy§conto'
LabkL CYCLE ¢ 1PUe LAvklS CLUCA Tint ¢

/1%/

R = 6 C = & 3= 1 i %

P AT L TP T I TR Y P TP PR YN RN Y P T P Y PR T RS PP N A NN NS Y NP E PR AR EY ¥
LAkl CrCLe o bl Labelo CLICA TuaveE 4
/T#1 7/

s Te C =9 S = 2 11
PP YL P L R T T T YT I T TP P P TP L Ny Py N N Y L Y NS P P Y PR Y R P PP)
LAapbl LrCLe & Ikve LhbELS Cuuen Tatie »

i AR 4

R a7 L =9 S =4 1 =1
Y YL LR LY I e Y Y Y VY R Y e P Y L N e N PR PE R RSN YR Y NN L YA Y R
LALEL CTCLuL b IRUL LALELD CLOCK Tutik 9

’ /Ta/ =

K s 3o C =Y D = a I =1
P8BS B 0400880400830 80080080 0000000888800 820509%000) 062 38800 0000501 008040000
LAaokd CTLLL L 1KV Labeld CLUCK Taivi ©

. /1%-/
K= 57 C =9 5=1 I =

084048 , 0455000840 5800008000088R8 0884883080428 00 498008 ,838%¢0 0k 0b 000080880800,
DAEULA L TU DY AR TLie v BePLLilung

FLINAL wailel S 1o
= v

Figure 4(b) : Twos Complementer Simulation Results for R = (21)'

4
L
3
4 |

|
~ SR
3 .
| R/W BUS

. o L

0

MP
e NN e N

| 0 7
£ ’ = { Acc
, T]
L \2
e ' 255 0234 1
. 0 Tu _,E: abrs IR
* - MBR B —I
'* |

X 1 -
ALUl

Figure 5(a) : Minicomputer Bus Structure

e

am—

TR

oWwmEswWwNn -~

10
11

12

.. 13

14
15
16
17

18
19
20
21
22

I owivto @ n b I 9o

arnnlid
RLOIS LR AKIU=7) s ouR E0=11) 01’Clu=/) 2 ALC (=1) pann(=11) o X (yu=a})
SUURLUISTERrAn(ur) Sk (C=c) vinctlol D)Saic() s lntAvi) Sl (4=11)
mLetORY e (MR) stit =g eye0=11)
SwilLineSTarT(Urr el ot (CFFoCi) o STATL LR e 0L)
weCOLLR IR (U=)L (3=)
tehitfiab s SR GY) e 1=K LL) rand=n () ruinaa(3) sdon=pn (4) e JMiESK (H) 0
i RLISK(w) e I3 7)
weulne P Q)
.
L e¥t, INIT AL adnTaun
.
/oTARY (O ZACCS U ri el IKSvribnSuve AL oS T I Z0kr sr Ui SUne STA L L=F

-
L 4d4&s FIRST bLimece widivurl Creley CF Foilmn

-

/i UNQUN) 45Tl e) 220 Q) Zimit=r e

UN(QI) ASTATClR) sPULIZPCaCatlal U g 0 S0 (i)
ZRUN VN 25 TATL (P) s L) Z A=t

A%y FUUrIb retute e lidUn vt Puin v b o b 0.5 Tue T Lotk
thay ODtFer Lkt tF Ldlrealie sl oTalk LiE ool

0 G N

AU (UL ASTAaTC F e (o) otk T) *Zir (alaha 1) afued) iniLidtSiale=n
clotlSialb=L)

-
. 244y *‘LALT Y (oadb wi1Clu
.
/RUIC) aSTATE () aP i vt [Zhun . =UF L
[
. k%% veFeh SlaTo LU fReC vty CuPul ATLUNIS
-

sibaun) aSTale o) ety) Zrinzan (agle)
U et asTRIL (L) AP L) 2o St Vi)
/U VL) 25Tiie o) art) Zan LA) =it te=] 1)
AU U)o TATE (L) 4P (L) /L TATLSE
.

. ‘e, CALCU T aw, wbk traals v el Yt

.
i i D ASTAIL (L) a LD s vt VAL /2 =inlL
ZhUidlid *oTal L)) e vid) et b))/ an=L L)

U (W) sSThalw(L) s () e tnnil b EAL) 7 o= Vg)
AnUN) sSTATL (L) #r V) ®pail/ZinnCaritileAr D n i LSr
/(L) v nde L) 2Pt o) v e Zioel=r ner s nr ol Lar

647_

Gip

O Aq ”
Figure § 466

e 5(b) : CDL Description 004‘ &

| a—

e ==

23
24
25
26

27
28
29
30

31
32
33
34

35
36
37

38
39
40

41
42
43
44
45
46
47

LAake 1N LAl Ll
.
WU (G $STATL (L) sty) 3058 /mnkea T L)
WV LU ASTAIR (L) #1P L0) #0Sa/Tuis=k i)
VN (U 25TATE(R) ¢l) aune /i wui® e niil L
/hUN(bd)thAlt(;)0V(g)tAb¢/m(hAn)=munoir(Idh.Luou)Tnhn
(PCSkCelinTUI') oS L AN LEF
.
. &y 'WCA' canlUllui
-
MU (W) 2T IL (L) 4P LG) auLAZMUh S CL
Zrun(UH) eSTalu () st i) aulaZini=a L aun)
/i UN (U ASTATE (L) *P L) ¢ ULAZKWLCS G pin Ciivin) =004
U (L) ASTA (L) 2P v y) suLn/S AL
-
. 13, YUSKY LALLUI Juis
-
RN UN) *STATL (R) 2P UL) XU/ un=2lue vu=t L
ZulUn (Vi) #STATC (L) «aP L L) ¢USIK/Zianin=y
U (V) ASTATE (L) 2 (e) 4USKRZ 0 %ae) =ion
/UL (UN) STRATE (L) 2 Q) 2uS/r Sl (AR) 0wl ATEZ
-
. sk, RETUNIE CALLLUY AU
-
ZUI i) aSTie (L) 12 tu) ant T ZHiAin=y
ZuUn (i) 85Tl (u) et L) 2l Zi vicsi. G
U A5TalLta) s) fie T /Zre= M (=L) o ST 01T =
.
. %k, YUMH'Y LAcLul il
-
Ui (u) sSTalale) e’ L) suiri’/Pe<in (wwin)
AU U) *5Ta (L) el) sumb /ol AlLsr
Lol
»bu"'-U._an
P R (R VR VU] W IO VAR
. \ ’ ‘ 7 ‘e \ -‘(7)'1:‘)
aLUTPUI LABC ta) Zvim e inekLrnllr duearoindoe JaesTART v
eondfn LeSianti=uld
sLVAU
MLUmO)EDrne TewredYerued
I AlU=10)S0r 774040 U avenrebTaraliiirode
re=iu
R <UD

Figure 5(b) (Continued)

: |
L(
t]
; , Operation
1 U * Code Mnemonic Comments
' 0 AND (ACC) * (Mem) -+ ACC AND Memory
. TAD (ACC) + (Mem) -+ ACC ADD
g 2 182 locrement memory and skip next instruction, if
zero.
3 DCA Deposit and clear ACC.

| 4 JSR Jump to Subroutine, (PC) + MP(0)

F 5 JMP Jump

i 6 RET Return

. 7 HLT Halt

‘) NOTE: () indicates "Contents of"
& |
>

Figure 5(c) : Instruction Set
1
! -

SO

g
b

] . PROGRAM
{ - 3£,, Memory Assembly Binary Decimal
) Location
LT 1 1
10 AND 5 000 0 00000101 5
- 1 LL TAD* 6 000 1 00000110 74
12 ISz 6 010 0 00000110 1030
r 13 1Sz 4 010 0 000CA100 1028
L 14 M L1 101 0 00001011 2571
. 15 DCA 7 011 0 00000111 1543
16 HLT 111 0 00000000 3584

:
!
i
f
L

= ™

Figure 5(d) : Program to Add Four Integers

— =

Lzl | ST

| -

]

=

Memory

L]
H
[

Address Contents

'
i

e

O 0 N OO B W N~

e el i o o =
o Wn s W N - O

5

> 3
174
1030
1028 >
2571

DATA

'COUNT (-4092 in ones
: complement 12 bits)

|
!
| RESULT

|NOT USED

i
|
|
|

1

PROGRAM

1543 J

3584 AJ

Figure 5(e) : Memory Map

831A0Q peiojdwo)

w218£s IVav) : 9 2an8yy

Buyssed0sd seom

.

Ul JoYy

j

Uo!§0214q04
o UO|§DISUSY 1020/
1801 djiowony
[ﬂ
siskjouy wopoirw g E— _ uojiojrwig 3180 |
ySON o0UDW 4004
Bujynoy

s3ydop
OA|ODIOU|

S
YT, -

§—— puo juewed0| g4

2|iowoiny

gonuow)
uoyoejeg _II¢
119D piopubis
4

a3
—l wojidiiaseq “
1

! 10K

P |

F—— e gy

(— uorionuns |

! 19407 4BIH

Ls = ||H.Il.|

~—T= == "T=="9

I(sisayivkg1807))
] !

J

| uvoyio0jjdwoy !
! 9JOMPIDH !
I

woibpiqg 21607

Aioaq)
.l .. ned
* ¢ pioOpuDIS

Lo .t

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C09_.pdf
	0001C10.pdf
	0001C10_.pdf
	0001C11.pdf
	0001C11_.pdf
	0001C12.pdf
	0001C12_.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf
	0001F10.pdf
	0001F11.pdf
	0001F12.pdf
	0001F13.pdf
	0001F14.pdf
	0001G01.pdf
	0001G02.pdf
	0001G03.pdf
	0001G04.pdf
	0001G05.pdf
	0001G06.pdf
	0001G07.pdf
	0001G08.pdf
	0001G09.pdf
	0001G10.pdf
	0001G11.pdf
	0001G12.pdf
	0001G13.pdf
	0001G14.pdf
	0002A02.pdf
	0002A03.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002A13.pdf
	0002A14.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002B13.pdf
	0002B14.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C04.pdf
	0002C05.pdf
	0002C06.pdf
	0002C07.pdf

