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1. DISCUSSION OF SIGNIFICANCE AND SCOPE OF
THE UNDERTAKEN STUDY

1.1 Introduction

The analysis of nonlinear behavior and failure charac;
teristics of unidirectional composites has received consid-
erable attention in the past ten years due to recent ad-
vances in the analytical and technological areas of these
high-strength, low-weight materials. As manufacturing
capabilities improve resulting in more consistent mechanical
properties of the cured composite, an obvious need arises to
be able to accurately characterize their respcnse in both
the linear and nonlinear range. Such characterization is
essential in predicting overall properties of given lami-
nates which are composed of a number of individual laminae
stacked at various fiber orientations with respect tc the
laminate geometrical boundaries as illustrated in Fig. 1l.1l.

The linear elastic behavior is well documented at both
the micro~ and macro~levels and thus will not be discussed
further. The nonlinear behavior however, is or can be
caused by a number of different independent or interdepen-
dent mechanisms acting on the micro-scale and can be there-
fore very complex. The need to recognize these mechanisms
is desirable in formulating constitutive equations for the
nonlinear range of composites. This in turn leads to the
need of characterization of the mechanical response of

individual constituents. On the other hand, the desirabil-
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ity of considering fibrous composites as homogeneous, ortho-
tropic or transversely isotropic materials is obvious from
aﬁalytical and design points of view. Ideally, therefore
Lhe constitutive equations ought to reflect the microstruc-
ture of the lamina as well as the vroperties of its constit-
uents in a rational manner within the general framework of
homogeneous anisotropic nonlinear analysis. The problem 1is
essentially that of the transition from micro-tc macro-
scales and the degree and extent to which the smearing
idealization is valid and applicable.

The nonlinear behavior of a lamina can be caused by
inherent material nonlinearities of the individual consti-
tuents, damage accumulation due to fiber or matrix cracxing
as well as crazing, interfacial debondinq, geometric ar-
rancement of the phases or any combination of the above. It
is evident that residual stresses and any viscoelastic
response of the constituents will play an important role in
interacting with the above phenomena. Kinematic effects at
finite strains will also contribute to the nonlinear re-
sponse as will high stress gradients due to the hetero-
geneous nature of the medium. Material instabilities of the
phases such as necking and microbuckling often cannot also
be disregarded along with the degree of constraint afforded
by the directional nature of the fibers and the resulting
channeling effects.

It is doubtful that all of the above menticned phe-
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nomena taking place at the micro-level will manifest them-

selves in the same manner and on the same footing on the

macro-scale. Accurate characterization of the macromechan-
ical respdnse necessitates therefore, at least conceptually,
a certain degree of characterizaticn of the constituent
behavior of each phase and weighing of importance of each
possible phenomena contributing to the nonlinear response at
the macro-level.

On the other hand characterization of the nonlinear
behavior cf composites ought to be carried out in accordance
with the kinown thermodvnamic principles and general theorems
governing behavior of various classes of materials. Con-
cepts such as stable material or structural response for
example are often useful ideas which can act as a guide in
analyzing how the mechanical response on the micro-scale
translates into global behavior {1].

A discussion and review of various approaches in deal-
ing with nonlinear response and failure of unidirectional
composites and their impact on laminate analysis at both the
micro- and macro-levels cited by researchers in the field is

presented in the following sections.

1.2 The Macro- vs Microscopic Approach

In the macroscopic approach the heterogqeneous nature cf
the lamina 1is replaced by homogenecus medium with aniso-
tropic properties whose symmetry is reflected in the micro-

structure of the material. It is presumed that the scale at
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which the heterogeneous nature can be smeared out is defina-

ble although in practice this is done implicity rather than

-explicitly.

Recently, Spencer [2] outlined the method of formula-
tion of constitutive equations for transversely isotrcopic
and orthotropic materials with the aid of invariants re-
flecting the extent of symmetry of given medium in question.
Linear elastic, finite elastic and plastic materials were
considered with direct applicability to fiber-reinforced
composites. The effect of kinematic censtraints on incom-
pressibility and inextensibility in certain directions was
discussed as useful idealizations for the strongly direc-
tional nature of these materials.

The macroscopic formulation must necessafily be based on
a set of comprehensive experiments if the ensuing équations
are to be applicable to more than just a very limited type
of loading paths. Nonlinear elastic (hyperelastic), elas-
tic-plastic or more general models with dissipation mechan-
isms must reflect the actual experimental behavior feor a
wider class of loading than monotonic since these concepts
are defined to a large extent by the unloading response. On
the other hand, combined response is restricted by thermo-
dynamic constraints which must be used to eliminate ambiqu-~
ity or impose bounds on the material parameters which are,
as well as those which are not, directly measurable by

experiment. Furthermore, combined loading may serve to



establish the extent of certain coupling phenomena in the
nonlinear range dictated perhaps by micromechanical consid-

erations or it may be used to test the validity of certain

P TSI TR PP Y - PP ~

hypotheses about the material behavior.

In the microscopic approach, the effect of the material
properties of each constituent, their arrangement and shape
on the overall properties of ensuing structure are analvzed.
This invariably requires idealizations in order to keep the
problem tractable since the approach involves determination
of internal stress fields in the individual constituents
and subsequent averaging throughout a representative volume
element to obtain the overall properties of an equivalent
anisotropic medium. Such procedure can be carried out in a
deterministic, approximate, or stochastic manner by a number
of different self-consistent, numerical or material model-
ling schemes which will be mentioned in the course of this
review. It must be said that in situations where the com-
posite nonlinearity is caused by the constituents nonlin-
earities and perfect bond is preserved during varioﬁs load-
ing stages between the phases, gerneral theoremé can pbe used
in shedding light on the overall structural response. This
apparently holds even for stable crack growth as long as the
interfacial bond is preserved. Other damage accumulation
mechanisms however require a totally different treatment
partially based on thermodynamic constraints. The preblem

is further complicated by random nature of damage accumu-
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lation present in many systems due to stochastic strength
distributions of the individual constituents. The above
difficulties resulted in an apparent separation in the
methods of approach to nonlinear behavior and failu;e prev-

alent in the current literature.

1.3 Literature Review

1.3.1 Macroscopic Studies

One of the earliest attempts at analyzing nonlinear
behavior of composites at the macro-level was carried out by
Petit and Waddoups [3]. The authors considered unidirec-
tional laminae under plane loading and assumed that material
nonlinearities in the longitudinal, transverse and shear
directions acted independently of each other during comixined
loading. This facilitated analysis of the nonlinear lam:i-
nate response to a great extent and permitted the lineari-
zation of the stress-strain curves in a straightforward
fashion. Furthermore the authors recognized that failure cof
a given ply in the laminate configuration did not neces-
sarily imply total failure if the unfailed plies wére still
capable of supporting incremental loads. Failure of 1indi-
vidual plies was determined on the basis cf maximum strain
criterion and it was assumed that failed plies unlcaded
along steep negative tangent modulus. Further assumptions
were made about load bearing capabilities of failed plies.

Transverse failure implied that load could still be carriecd
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parallel to the fibers and in shear while shear failure
allowed the ply to support load in parallel and transverse

directions. 'failure in<the fiber direction on the other
hand was taken to mean total degradation. Agreement with
experimental data was fair to good for the various laminates
tested as far as the stress-strain response was concerned.
Failure predictions were generally less than good. The
authors gave no consideration to unloading and thus no con-
clusion can be drawn regarding the nature of lamina nonlin-
earity.

Hahn and Tsai [4] on the other hand emploved a comple-
mentary elastic energy density approach to formulate consti-
tutive equations to model lamina nonlinearities in arbitrary
material directions and subsequently specialized the formu-
lation to handle shear nonlinearity only. Thus interaction
between shear and normal stresses was absent and furthermore
a unigue relationship between stress and strain was a direct
consequence of the elasticity formulation assumed to be
valid Zfor the considered systems. The theory was subée—
guently applied to unidirectional [4] and multidirecticnal
composite systems [5]. The agreement appeared fair to poor
zand in the case of unidirectional laminae the elasticity
assumption was never verified by cyclic tests. A claim was
nade that introduction of coupling between various stresses
in the nonlinear range was unnecessary for the boron-epoxy

svstem studied. This appeared somewhat arbitrary in view of



other reseachers' studies on this effect. In general, it
would appear difficult to make reasonable predictions abcut
~==+=-the-coupling problem in the nonlinear range without resor-
ting to micromechanical considerations and/or sufficiently
extensive testing program on specimens with consistent
properties. This was absent in the early studies on the
mechanical response of composites.

The Hahn-Tsali model was subsequently employed in the
study of the dynamic response of a thin composite plate car-
ried out by Benveniste and Aboudi [6]. The above analysis
revealed the possibility of shock formation due to a smooth
time~dependent input applied at the boundary of the plate.
Careful and accurate characterization of the nonlinearities
present in the response of composites thus cannot be over-
emphasized.

The apprcach taken by Sandhu [7] was to formulate
incremental constitutive equations in terms of tangential
properties of the lamina wherein the strain increment was
expressed as a function of the stress increments thfough
strain-dependent tangential properties. Since the tangen-
tial properties were assumed to be functions of all the
strain ccmponents, biaxial loading was required to determirne
normal and transverse tangent moduli for the plane stress
situation. No mention was made of the stress interaction in
shear and unloading and thus it is difficult to envision the

kind of nonlinearities that this formulation is intended tc
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model. A heuristic definition for equivalent strain was

also proposed in view of unavailability of biaxial data.

et ey e a—— e e T o e e e ~

Furthermore, a failure criterion based on the total work to
failure was proposed with independent longitudinal, trans-
verse and shear contributions. This is interesting since it
implies that failure is path-~-dependent in view of the incre-
mental nature of the constitutive equations. It must also
be mentioned that this was one of the few attempts cited in
the literature to associate nonlinear behavior and failure.
The theory was correlated with experiments on off-axis uni-
and multidirectional laminate configurations under mono-
tonically increasing loading.

Jones [8] proposed to model nonlinear behavior of
transversely lisotropic graphite by expressing secan* mater--
ial properties as functions of the strain energy to explain
effects such as biaxial softening (decreasing Poisson's
ratio) due to internal cracking. The material properties
were allowed to vary independently and were expressed in the
following manner: |

C.

, . v _ u
{Material property}; = Ai[l Bi(ﬁgz) ]

where u = %0 is the equivalent elastic strain energy.

. L€
13 1]
Subsequent comparisons with biaxial experiments yielded

devietions not exceeding three percent. Extensions to off-

axis tests on 0°, 45°, 70° and 9C° off-axis angles resulted

in good agreement in certain strain ranges but poor in
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others.

An attempt was subsequently made to extend the approach
to-unidirectional laminae -[9] with the necessary modifica-
tion that for high combined strain energies {material
property}i could not decrease beyond a certain positive
number in order to prevent the stress-strain curve from
falling. Comparison was carried out with data on off-axis
boron-epoxy laminae reported by Cole and Pipes [10]. Agree-
ment was fair.

The above model has been exposed to a fair amount of
criticism since its arbitrary formulation, which is totally
removed from thermodynamic considerations, requires ad hoc
arguments and modifications for application to different
material systems.

Hashin, Rosen and Bagchi [11] proposed a deformation
type theory to model lamina nonlinear behavior in shear and
transverse directions. A loading function was assumed,
based on invariants for the transversely isotropic system
considered, which was employed to determine the functional
form of the stress-dependent compliances. Stress interac-
tion in the nonlinear range was assumed between transverse
and shear stresses only for systems with stiff fibers in
comparison with the matrix. Longitudinal stress was assumed
not to influence shear and transverse strains and material
was taken to be lineérly elastic in the fiber direction. It

was further presumed that the material unloaded along the
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initial elastic modulus and thus the approach is reminiscent

of the total deformation plasticity theory formulation.

R an (P S

However, it is not clear if the léading function is asso-
ciated with yielding or onset of nonlinearity of the com-
posite and clearly the loading function and the nonlinear
strains are not related to any potential. Thus the question
of normality is not considered.

The concept of stress interaction introduced by Hashin
on the other hand raises several questions one of which is
the validity of various methods of determining the instanta-
neous shear modulus of unidirectional composites (12, 13].

The various phenomenological attempts to model nonli-
near behavior and failure of composite materials have been
influenced to a great extent by the early works of Hill {14]
and others [15,16] on the orthotropic and slip theories of
plasticity. This is understandable in view of the fact that
a good number of advanced composites that exhibit nonlinear
behavior are compcsed of stiff elastic fibers embedded in
ductile nonlinear matrices which appear to possess plastic-
like characteristics. It must be mentioned however that
Hill's outline of anisotropic plasticity theory was based on
the implicit assumption of weakly orthotropic behavior with
intended applications to materials such as cold-rolled
steel. Furthermore, the yield criterion was not based on
invariance principles and thus was only defined with respect

to the principal material coordinate system. Plastic flow
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was characterized by incompressibility, isotropic hardening
. was inherent .in the formulation, and normality and convexity
conditions were preserved.

A number of authors attempted to generalize Hill's
formulation. Dubey and Hillier [17] proposed a general
yield criterion, coincident with the plastic potential, and
an associated flow rule for arbitrary elastic-plastic aniso-~
tropic solids on the basis of invariance principles. Incom-
pressibility, isotropic hardening were retained and the
Bauschinger effect accommodated through retention of cubic
terms in their tensor polvnomial yield criterion. The
authors presumed that the anisotropic coefficients remained
constant during plastic flow.

Shih and Lee's formulation [18] followed essentially
the same outline with two exceptions. Bauchinger effect was
modelled via linear terms in the yield criterion which
characterized kinematic hardening and allcwance was made for
variation of anisotropic parameters during the continuing
deformation.

In extending Hill's ideas to composite materials it
must be kept in mind that significant differences in mechan-
ical behavior can be exhibited by materials that can be
approximated as homogeneous at a certain level and those
that possess significant heterogeneity and strong anisotropy
at the same level. Whereas the idealization of incompressi-

bility and failure by perfect plastic flow in weakly aniso-
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tropic and stain-hardening metals is certainly justifiable,
_such assumptions are clearly not for strongly anisotropic
composites with high volume fraction of oriented, elastic
fibers. The formulation of failure in terms of definite
surface or combination of surfaces in stress or strain
spaces has inherent disadvantages such as path independency.
The compressibility of certain composites and the gquestion
of path dependency of failure were recently studied and it
was 1llustrated that both effects exist and can be signifi-
cant [19,20].

Mulhern, Rogers and Spencer {21] developed a continuum
model for fiber-reinforced plastic materials assumed to be
inextensikle in the fiber direction with the £fibers being
infinitely thin and characterizing the preferred orientation
and constraint. The model was developed within the trans-
versely isotropic framework and the matrix taken to be
incompressible and rigid-perfectly plastic. The vield surface
of the overall medium was formulated in terms of invariants
characterizing transversely isotropic response with respect
to the preferred orientation which was maintained during
continuing deformation and plastic £flcw was associated with
the yield surface. Since the matrix was assumed perfectly
plastic, vielding in the matrix followed by unconstrained
flow in the preferred directions was associated with fail-
ure. The analysis was applied tc off-axis tests on unidirec-

tional laminae and predictions compared with the experi-
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mental data of Cooper [22] and Jackson and Cratchley [23].
Good agreement”for'angleswg;ggggrughan 5° for Cooper's data
and 15° for Cratchley's data was found.

The theory was subsequently extended to include elastic
fiber and elastic-plastic matrix response [24]. In con-
structing the theory the authors assumed that yielding was
not affected by the normal stress in fiber direction and
thus hysteresis loops could not be predicted in cyclic load-
ing. This problem was treated by the authors in an earlier
paper which dealt with axisymmetric deformation of a single
elastic fiber with a plastic coating [25]. Thus the basis
for bounds on error for the proposed theory has been laid
out for this class of loadings.

Dvorak et al. [26] on the other hand employed the
results of finite-element, microscopic studies on systems
such as boron-aluminum to develop a continuum theory for the
elastic-plastic response of fibrous composites. The theory
is applicable to axisymmetric loadinyg situtations: the yield
surface was expressed in terms of macroscopic stresses and
corresponding stress concentration factors presumed to be
determined from microscopic analysis; the plastic strain
increment remained normal to the yield svrface and kinematic
hardening was employed. Agreement with numerical analyses
was shown to be very good for various loading programs.

The majority of macroscopic failure criteria cited in

the literature have been formulated in terms of strains or



stresses and typically represent closed surfaces in their
respective spaces: -Failure is-thus—-assumed to be.path .
independent and no explicit mention is made of the mechanism
gading to it. Generally'spcaking, two broad categories of
fallure criter:a can be outlined: those with independent
failure modes and those with interacting ones. The former
is characterized by plecewise linear surfaces in the strain
or stress space whereas the latter by piecewise smooth
surtaces.
In the first category failure is predicted when any one

ot lengitudinal, transverse and shear stresses or strains
oexceeds the limits determined by simple tests. These vaiues

are determined with respect to the material system of symme-

try and thus cannot be transformed freely from one coordi-
nate system to another. On the other hand they do emphas:ize
the directional nature of the composite and it may even be
arqued that they predict the failure mode 1f not the mechan-
1sm. Maximum stress and strain theories have been exten-
sively utilized by numerous authors mainly because of the:ir
simplicity. However, experiments performed on unidirec-
tional off-axis compesites with stiff fibers subjected to
combined stresses along the axes of material symmetry have
gererally revealed the presence of normal stress interac-
tion. Also, such tests strongly suggested the existence ot
smooth transition f£rem normal to shear transverse tailure

mode [27]. Furthermore, coertain conceptual inconsistenciles
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inherent in the above type of formulation have been pointed
out in the literatqre ;gsy. L

Lance and Robinson [29] on the other hand proposed a
maximum ghear stress theory of plastic failure of fiber
reinforced composites. The theory allowed for three inde-
pendent shear failure modes of the matrix material and
fibers and was expressed in terms of the maximum shear
stress reaching critical values on three different planes.
Yield criteria were developed for determining when the mate-
rial may flow plastically in terms of the appliecé macro-
stresses and also the particular mode under which unre-
stricted flow occurs. The theory is reminiscent of the
maximum resolved shear stress criterion proposed and veri-
fied by Schmid for single crystals of metals [30].

In order to take into account various interaction
mechanisms revealed by early studies on unidirectional
composites, different quadratic failure c¢riteria have been
proposed. These have been reviewed extensively in the
literature [31,32,33] and thus only general concepts and
methodologies will be discussed herein.

A popular approach is to express the failiure conditionin
terms of a single closed surface generated by expanding the
stress components in a power series in accordance with the
principles of tensor algebra. This leads to the definition
of a strength tensor which was perhaps introduced for the

first time by Ashkenazi [34]. The resulting formulation,
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which includes as many terms of different orders as deened
necessary for accurate failure characterization was intro-
duced by Goldenblat and Kopnov [35] and. subsequently adapted
by Tsai and Wu [36] who considered only the quadratic
expansion.

The invariant character of the tensor polynomial cri-
terion made it very attractive for applications tc multi-
directional laminate configurations, However, it has been
pointed out that the determination of certain intsraction
factors which can be cbtained only under combined loading
requires careful optimization [37]. While the exclusion of
these interaction terms in not significant for off-axis uni-

directional laminae as shown by Narayanaswami [38], the

th

failure surface in the principal material stress space 1
very sensitive to small perturbations in these factors as
demonstrated by Collins and Crane [39]. While the accﬁracy
and convenience, as well as mathematical consistency of the
quadratic tensor polynomial criterion has been illustrated
bv the studies of Wu [40], Cole and Pipes [10], Huang arnd
Kirmser [41] and others, Tennyson, MacDonald and Xanyaro's
experiments [42] indicated that for the glass-epoxv and
graphite-epoxy systems that were studied a cubic respresenta-
tion was required since the quadratic formulation was toc
conservative.

One of the shortcomings of the tensor polynomial cr:i-

terion is that it predicts the tensile failure stress in
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terms of the compressive one and vice versa. This apparent
physical inconsistency was pointed@ out by Hashin (43} who

proposed to model the various complex failure mechanisms

T O - emowe e

taking place at the micro-level by ékpgéssing failﬁre
condition in terms of four distinct quadratic polynomials.

The polynomials were expressed in terms of invariants

reflecting the transverse isotropy of the considered medium

and were intended to model tensile and compressive fiber
and matrix failures. The resulting failure envelope is
thus piecewise smooth and twice differentiable. It must be
pointed out that the above formulation is reminiscent of
the early interaction formulas prcposed by authors such as

Norris 441,

1.3.2 Microscopic Studies

General groundwork for evaluation of overall macro-
mechanical properties of fiber reinforced materials from
their constituents has been laid out by Hill {45]. The
class of materials was limited to transversely isotropic
with elastic fibers and elastic-plastic matrices. For
simplicity, Hill employed linearized yield surface appro-
priate for his transversely isotropic medium and an asso-
ciated flow rule. Bounds were stated for the main overall
moduli and flow stress at any stage of deformation. Uni-
axial extension was discussed in detail and the entire
analysis formulated in terms of incremental stresses andé

strains. The mechanical properties were thus expressed in
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terms of instantaneous moduli.

Further discussion of the approach was continued by
Dvorak and Bahei-~el-din [46] who employed the self-consis-
tent model together with a modified scheme in calculating
internal stress fields, overall and local yield surfaces,
instanteneous moduli, thermal coefficients, plastic strains
and thermal microstresses. These were cbtained for axisym-
metric mechanical loads and uniform temperature changes
while extensions to shear loads were briefly discussed.

Along the same lines, Sawicki [47] discussed elastic-
plastic theory of composites with regular internal structure
when both constituents obeyed the von Mises yield condition
and an associated flow rule. Several examples were treated
using Voight and Reuss idealizations in order to obtain
easily Hill's stress and strain concentration factors for
illustrative purposes.

Huang [48] attempted to predict overall plastic behav-
ior of composites under polyaxial stresses that were com-
posed of deformation theory type matrices and rigid inclu-
sions. It was hoped that this model would be a useful
idealization for real composites subjected to large strains.
The above assumptions simplified the analysis considerably
due to proportional loading in the matrix under proportion-
ally varying surface tractions. The self-consistent scheme
was employed in determining the stress concentration factors

and only low fiber volume fractions were considered in
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accordance witih the assumption of noninteracting stress
fields. The analysis was subsequently applied to unidirec-

tional composites under transverse tension and an attempt

R

was made to include elastic~-plastic matrix fesponse on a
semi-empirical basis.

Tanaka, Wakashima and Mori [49] employed an energy
balance meﬁhod to determine plastic anisotropy and work har-
dening rate of a composite material with unidirecticnal and
randomly oriented inclusions. They found that aligned
fibers introduced strongly anisotropic mode of plastic
deformation while isotropic deformation governed the re-
sponse of randomly oriented inclusions. The micromechanics
approach was based on Eshelby's model for stresses in homo-
geneously deformed inclusion with the matrix undergoing uni-
form plastic deformation [50,51]. The subsequent results
indicated that the flow stress increase was linearly depen-
dent on plastic tensile strain and the hardening cocefficient
varied strongly with off-axis fiber orientation and inclu-
sion-to-matrix ratio. The mode of plastic deformation
followed similar trends for the various plastic strain
ratios,.

Cho, McNamee and Chou {52} determined initial yielding
of a laminated composite consisting of isotropic elastic-
plastic layers obeying von Mises yield criterion and the
associated flow rule. The approach was based on a three-

dimensional thecory for laminated media based on a combina-
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tion of Voight and Reuss hypotheses and was initially
developed to evaluate elastic compliances and stiffnesses of
these materials. The analysis resﬁiﬁeé 16 ; yiéla“;;:g;;i;;v
of the same form as the tensor polynomial failure criterion
without the linear terms for each individual layer. Thus
the initial yield condition of an n-ply laminate was repre-—
sented by n equations in terms c¢f laminate macrostresses.
This resulted in a set of intersecting and/or noninter-—
secting surfaces with the smallest inscribed envelope as the
initial surface. An interesting consequence of the analysis
was the implication that corners on the surface were pos-
sible. Convexity, of course, was preserved.

It was subsequently shown by Wakashima, Suzuki and Ume-
kawa [53] that consideration of residual stresses in the
micromechanical formulation will result in linear terms in
the yield surface.

The methodology developed by Chou et al. was subse-
quently extended by Chou and Chou [54] to the discussion of
plastic flow rules for the considered media. The analysis
was restricted to materials obeying Hencky-type plastic flow
rule and the stress and strain fields were assumed uniform
for each layer within the representative volume element.
Explicit anisotropic flow rules were subsequently derived
for proportionally loaded layers that followed piece~wise
linear stress-strain relations. The authors concluded that

the symmetry of flow could be different from yielding and
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plastic flow could occur under hydrostatic loading. Normal-~
ity was not discussed and elastic unloading assumed to take
place without any plastic loading.

A number of authors have employed numerical procedures
such as the finite-element analysis to determine initial
vield surfaces and subsequent stress-strain curves of unidi-
rectional laminae under various combinations of surface dis-
placements. Various regular arrays have been considered and
analyses carried out on a representative repeating element
of the regular array. Typically, elastic fibers with elas-
tic-plastic von Mises, strain-hardening matrices have been
considered to study the effect of various material parame-
ters on the nonlinear response and yielding. The results of
such analyses were subsequently employed by some authors to
develop approximate continuum theories of elastic-plastic
behavior of fibrous composites as mentioned in the preceding
section [26].

Adams [55] studied the nonlinear response of unidirec-
tional boron-aluminum and boron-epoxy systems under trans-
verse loading with two different fiber volume fractions and
rectangular and hexagonal geometries. The nonlinear stress-
strain response was traced to the initiation of first fail-
ure in either of the constituents. Significant differences
were noted for the two geometries. Agreement with experi-
mental data was found to be reasonable for the rectangular

array but poor for the square one. The effect of increasing

- PN - N ax et ——
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fiber volume fraction was to drématically decrease the
strain-hardening behavior. Residual stresses.were_not
considered but it was suggested that they may have signi-
ficant influence on the subsequent mechanical response.

Foye [56,57] considered the effect of matrix nonlin-
earities on post-yielding behavior of uni- and multidirec-
tional laminate configurations under axial and combined
loading. Effects such as the number of post-yielding load
increments and number cf plies in the unidirectional lami-
nate on the stress-strain response in the nonlinear range
were analyzed. It was demonstrated that the coupling effect
between normal and shear stresses is significantly more
noticeable for the shear than transverse stress-strain curve
for a von Mises strain-hardening matrix. This 1is supported
by experimental data reported by Cole and Pipes [10]. The
author also concluded that the composites studied had the
capacity for smoothing out any abrupt features of the matrix
response. The predictions for multi-axial laminate behavior
which was subsequently considered agreed well with experi-
mental data for the fiber dominated configurations. Agree-
ment with angle-ply laminates was fair to poor. Failure
analysis was not considered.

Studies on initial yield surfaces‘usinq the finite-
element analysis were also carried out by Lin, Salinas and
Ito {58] for the boron-aluminum system subjected to plane

combined loading. Yield surfaces were generated in the

e oA e e e
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principal normal stress plane that appeared to be convex and
symmetric through the origin. Application of increasing
shear stress caused the surface to shrink continuously. The
above analysis was subsequently extended by the authors [59]
to the problem of longitudinal loading of unidirectional
laminae to determine the stress-strain response and progres-
sion of the elastic-plastic boundary. The results indicated
that initiation of yielding took place at opposite corners
of the fiber/matrix interface and proceeded inward the
representative volume element with increasing deformation.
The elastic limit macro-stresses appeared to vary inversely
with the matrix stiffness. It was noted that cnce the
matrix started yielding, the plastic zone expanded very fast
with the increasing applied tractions.

Similar but more extensive study was carried out by
Dvorak et al. [60,61]. Significant conclusions of the stu-
dies were that, generally speaking, yielding starts at the
fiber/matrix interface for high fiber volume fractions,
plastic zone expands very fast with increasing macrostress,
vield surfaces are convex, temperature changes cause signi-
ficant yielding and translation of the yield surface, compo-
sites yield under hydrostatic stress and exhibit volume
changes and yielding in the fiber direction is controlled by
the Ef/Em ratio and fiber volume fraction. High ratios
inhibit yielding in the longitudinal direction. Yielding in

the transverse plane on the other hand is matrix yield

e cameme .
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stress controlled. Also, high longitudinal and transverse
shear stresses facilitate yielding under combined loading.
On the basis of the above results an approximate cdﬁtihuﬁh )
theory for elastic-plastic behavior of fibrous composites
was developed as mentioned previously.

The analyses outlined above dealt primarily with nonli-
nearities caused by plastic flow of the matrix and in most
cases no explicit mention was made of failure. Stowell and
Liu [62] were perhaps the first to define independent fai-
lure modes for unidirectional metal matrix composites in a
paper dealing w~ith strengthening effects of stiff inclu-
sions. They postulated three failure modes governed by the
strength of the fibers and transverse and shear strengths of
the matrix. Further work along the same lines was carried
out the Kelly and Davies [63] who toock into account the
effect of fiber constraint on the matrix by multiplying the
matrix strengths by an appronpriate factor. Prager [64] on
the other hand pointed out that matrix failure by plastic
flow will be influenced by all the stress components and
subsequently carried out failure analysis of unidirectional
and angle-plies reinforced hy infinitely thin, inextensible
fibers and perfectly plastic matrix obeying the von Mises
yield condition and associated flow rule. The analysis
predicted trends postulated by Liu and Stowell. An inter-
esting point brought forth was the prediction of com-

pressive fiber stresses for the tensile off-axis loading of
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unidirectional laminae in certain angle ranges.

McLaughlin and Batterman [65] on the other hand em=-
ployed limit analysis to study plastic failure of composites
composed of long, elastic perfectly-plastic fibers embedded
in a strengthless matrix. Limit surfaces in laminate stress
plane were determined and the effect of unequal compressive
and tensile strength demonstrated. The analysis was sub-
sequently extended by McLaughlin [66] to load-supporting
matrices with both constituents being elastic-plastic with
acceptable limit behavior. Numerical examples were worked
out for off-axis unidirectional and angle-ply laminates and
results ccmpared with experiments carried out by Jackson and
Cratchley [23] on reinforced aluminum with steel wire speci-
mens. It was concluded that the theory predicted qualita-
tive trends.

Experimental studies were carried out by Cooper [22]
and Jackson and Cratchley [23] to verify Stcwell's and Dav-
ies' hypotheses cf independent failure modes on unidirec-
tional and angle~ply configurations. Cooper's experiments
generally revealed good agreement with theoretical predic-
tions; however, modifications were necessary for thin sheets
with few fibers across the thickness or weak fiber-matrix
interfaces. Cratchley on the other hand concluded that the
mode of composite fractures could be correlated quantita-
tively with fiber orientation for the metal matrix unidirec-

tional composites studied. Poorer agreement however was
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obtained for angle-plies,

The various analyses discussed in this section up to
this point have been based on certain idealizations such as
regular micro-structure or statistically homogeneous mate-
rial behavior on the macroscale, perfect bond between fiber
and matrix, flawless state of constituents at the beginning
of loading and uniform properties of the phases with respect
to geometry and stress levels. Thus the analysis of non-~
linear behavior has been carried out up to the initiation of
first failure in either of the constituents whereas total
failure was handled differently since it was not clear how
failure at a point in a representative volume element trans-

lated intoc global response. The problem is further compli-

- cated by stochastic strength distributions introduced by

size and manufacturing techniques in brittle fibers, absence
of perfect interfacial tond which contributes to the intro-
duction of cracks at various stages of deformation as well
as residual stresses which can be sometimes sufficiently
high to initiate yielding or cracking before actual appli-
cation of mechanical loading. Visco-elastic response, if
present, will also influence the above phenomena. These
various effects have been studied by Stowell and Liu [62]
and others and comprehensively cutlined in a review paper of
Kelly and Davies [63] on strengthening effects in composites
where the limited usefulness of the strength predictions

based on the rule of mixtures was demonstrated and the
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concepts of ineffective length and associated transfer
mechanisms summarized. These concepts were introduced by
Dow [{67], Cox [68] and Rosen [69] in their studies of the
effect of broken or discontinuous fibers on the mechanical
properties of composites.

Zweben and Rosen subsequently employed the idea of
ineffective length in a more comprehensive statistical
theory of strength of unidirectional composites subjected to
longitudinal loads with elastic fibers obeying Weibull
strength distribution [70]. Various modes of damage accumu-
lation such as adjacent fiber break propagation due to
localized stress concentrations caused by fiber breaks,
bundie type failure and crack propagation in the matrix were
diséussed and critical stresses for each mode derived. In
his subSequent attempts at analyzing the effect of constit-
uent properties on failure modes of unidirectional com-
posites Zweben [71] employed his so-called "materials mod-
eling approach" to study the effect of matrix inelasticity
and matrix splitting on the resulting failure surface of a
composite subjected to combined axial and shear loads. It
was demonstrated that the effect of fiber/matrix interface
splitting manifested itself in lack of convexity which was
retained only if plastic yielding of the matrix was considé-
ered alone.

In subsequent studies dealing with damage accumulation

Kousiounolus and Williams [72], Goree [73] and Zweben [74]
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examined the effect of oriented finite lenath cracks on the
strength and mode of failure of unidirectioanl cbmposites.
On the basis of tests on off-axis laminae with edge cracks
perpendicular to the load axis Williams concluded that the
primary mode of failure in high fiber volume fraction compo-
sites 1is cruck propagation by fiber/matrix interface debond-
ing or ma:trix splitting. Zweben on the other hand employed
the mater:ials model approach to study notched unidirectional
composites with central crack extending over multiple broken
fibers perpendicular to fiber and load axis. The effect of
matrix plasticity and interfacial failure was considered and
the lamirate was idealized to consist of twc distict re-
gions: the central ccre with the broken fibers and the
outside undamaged region. Fiber stress concentration fac-
tors were determined and compafed with tHledgepeth and van
Dvke's analysis [75] which was based on the use of influence
functions and superposition for infinite array of ftibers
embedded in elastic matrix. The results suggested signi-
fiéant reduction in stress concentration factors due to
inelastic eftfect for a notch of arbitratary size. Goree's
general approach followed Zweben's concepts but in the
actual stress determination methodology individual broken
fibers were considered resulting in a system of nt+l equa-
tions for the n broken fibers and the outside core. These
were reduced to a pair of integral equations which were

subsequently solved numerically. Good agreement with exper-
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imental data for load vs. COD for the boron-epoxy system
without matrix splitting was obtained. The author concluded
that for vielding without splitting, fracture strength was
crack length dependent whereas for large splitting no such
dependency was found since failure occurred immediately in
these cases regardless of the size of crack length.

Some theoretical articles have appeared recently that
have attempted to deal with general concepts of damage accu-—
mulation on the microscale within the framework of the
continuum model. Drucker [1l] for instance discussed stable
micro-crack propagation in a composite consisting of linear
clastic fibers and eclastic or elastic-plastic matrix.
Convexity and normality were suggested to hold for situa-
tions where fhe interfacial bord remained intact. In sys-
tems where frictional effects are in evidence, such as those
due to fiber pull-out or slippage, however, Drucker [76]
illustrated that normality was not necessarily present. In
still another paper it was demonstrated by Palmer, Maier
and Drucker [77] that concave vield surfaces were possible
for systems where the elastic response was affected by priox
plastic deformation. An example of such a system is a stif-
_fening spring placed in parallel with a plastic matrix
cyclically loaded at various stress levels., It is clear
therefore that various internal damage or dissipative
mechanisms operative in composites may influence the gleobkal

response in ways completely different from the generally
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accepted ones and consequently their presence ought to be
considered either implicitly or, wherever possible, explic-
itly in the formulation of constitutive equations.

Rice [72] on the other hand analyzed the structure of
inelastic constitutive relations for solids on the basis of
internal variable theory and discussed its application to
metal plasticity. The class of solids for which the theory
is applicable was presumed to be that whose inelastic behav-
icur at finite strain was due to specific structural rear-
rangement on the microscale of constituent elements. Nor-
mality of constitutive equations on the macroscalz was shown
to arise when each of the local microstructural rearrange-
ments proceeded at a rate governed by its associated thermo-—
dynamic force. Although the possibility of extending Rice's
methodology to model fiber breaks and other damage accumu-
lation mechanisms as "specific structural rearrangements” in
unidirectional composites exists this has not been carried
out.

To avoid problems dealing with normality and convexity
arnd to consider the influence of history of damage accumula-
tion and deformation on the current stress and strain lev-
els, Valanis [79,80] proposed a theory of visco-plasticity
without a yield surface. The underlying principle was that
the history of deformation was defined in terms of a time
scale which in itself was a property of the material at

hand. The theory was developed on the basis of the internal
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variable formalism in conjunction with certain concepts of
classical irreversible thermodynamics and was shown to
resemble and reduce to theories of plasticity and visco-
elasticity, respectively, upon imposition of suitable con-
straints on the material parameters involved. Although the
theory was formulated for an arbitrary anisotropic medium,
only the isotrépic case was discussed in detail. Various
loading programs were considered for several metals and
surprisingly good correlation with experiimental data was
obtained for such phenomena as hysteresis loops and cross-
hardening as well as nonlinear Poisson's strains.

Damage accumulation in composites has been studied by
Hahn and Tsai [81] in 0°/90° laminates. The damage under
consideration was the successive breakage of the 90° plies
which resulted in the decrease of Young's modulus. Analyti-
cal mcdel based on a bundle of elastic springs with variable
strengths was postulated and compared with experimental
data. More extensive studies along similar lines were
carried out by Reifsnider et al. [82] who employed a shear-
lag-like analysis at the laminate level and subsequently
postulated and experimentally verified the existence of the
so-called "characteristic damage state." Although the above
analyses have dealt with laminate response, individual

lamina behavior "in situ" was considered and thus these can :e

considered as micro-mechanical approaches.

Acoustic emission techniques have been employed by var-
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ious authors to study damage accumulation such as fiber or
matrix cracking or crazing and fiber/matrix debonding or
slipping, all of which lead to generation and propagation of
energy wave forms that can be picked by acoustic transducers
located on the surface of the specimen [83]. Current
attempts are aimed at correlating the emission frequencies,
amplitudes and distribution with the various damage mechan-
isms.

Adams and Flitcroft [84] carried out experiments to
determine the effect of shear damage on torsional behaviour
of carbon-reinforced plastics. Torsional modulus and
damping capacity of uniaxial specimens were measured as a
function of strain amplitude, proportion and type of fiber
and fiber surface treatment. It was found that after initi-
ation of cracking, damping was a more sensitive indication
of the presence of damage than the modulus.

Saint-John and Street [20] on the other hand demons-
trated that loading paths can have a significant effect on
failure stress levels of unidirectional composites. Such
path dependency 1is not predicted by a number of failure con-
ditions. An analytical study carried out by Akbarzadeh [85]
with the help of finite-element analysis demonstrated that a
single broken fiber has negligible effect on the longitudi-
nal strength but the void caused at the breaking point can
significantly affect the transverse strength.

Nonlinear stress-strain response may not be caused
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solely by the constituent nonlinearities and damage accumu-
lation mechanisms. Effects such as fiber waviness, uneven
fiber distribution and kinematic effects at finite strains
or large stress gradients can also be significant.

Mansfield and Purslcw [86] studied analytically the
influence of fiber waviness on shear and Young's moduli of
unidirectional lamina using the material modelling approach.
The study was undertaken to explain higher experimental
values for the shear modulus than those predicted theoreti-
cally on the basis of various models. BAnalytical results
indicated neglible effect on both moduli if constraints were
imposed on allowable fiber and matrix deformation modes such
that failure strains in either phase were not exceeded.

This effe-tively imposed upper limits on the fiber wave
amplitude to wavelength ratio which controlled the nonlinear
behavior. The study revealed the possibility of significant
influence of the fiber waviness for those systems with
ductile matrices and flexible fibers.

Van Dreumel and Kamp I87] carried out an experimental
study aimed at separating the influence of fiber wavinocss
and fiber nonlinear response on the stiffening behavior of
0° graphite-epoxy laminae. Laminates with fibers having
amplitude to wavelength ratios between 0.05/55 and 0.75/55
were tested and linear relationship was found between the
longitudinal modulus and stress of the following form: E =

E, ¢t 21lc. The authors concluded that no significant influ-
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ence of fiber waviness was found for the ratios tested as
far as the longitudinal modulus was concerned. On the other
hand, Purslow's analysis indicated that the ratios consid-
ered in Kamp's study would not result in significantly
different responses. However, the strengths for the various
waviness ratios varied between 1,440 and 2,000 n/mm2. Also,
Poisson's ratio increased from 0.29 to 0.59 with increased
waviness ratios in the range considered by the authors.

Zraddock and Zak [88B] developed a model intended to
take into account the effect of uneven fiber distribution on
premature vielding of the matrix. This was thought to be
responsible for significantly nonlinear response of lami-
nated tubes under combined loading very early during the
deformation process. The approaéh followed Hill's formu-
lation, but the strair concentration factors were expressed
in terms of a distribution function describing the amount of
matrix material of a given strain concentration level. Thus
no explicit consideration of the actual goemetry was under-—
taken and volume integrations were replaced by integration
over all possible strain concentrations defined by the
author on the basis of certain heuristic arguments. Certain
distribution functions were considered and it was shown that
these modelled the nonlinear response of the tubes with
sufficient accuracy.

Scldatov [89]) discussed nonlinear rasponse of a compo-

site consisting of linearly elastic constituents on the
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‘basis of geometrically nonlinear theory for small displace-

ments and very non-uniform internal stress fields. The

'longitudinal extension of a meridionally axisymmetric cyl-

inder with clamped ends was treated and the resulting
Young's modulus of the structure turned out to be a function
of the deformation level.

1.4 Literature Summary, Objectives and Outline of the
Present Study

The above discussion brings forth the complexity of
nonlinear response and failure exhibited by composite mate-
rials and rooted in the many different mechanisms operating
at the micro-level. This helps to explain the apparent
separation of approaches used to study the nonlinear re-
sponse of composite materials. The var;ous approaches at
the micro-level cited in the literature have generally dealt
with only certain of the mechanisms contributing to overall
nonlinearities whereas the phenomenological or macro-level
studies have often been based on heuristic developments that
have either lacked thermodynamic foundations or theoretical-
experimental correlation justifying the employed assump-
tions. On the other hand, the outlined discussion of the
surveyed literature indicates that an attempt to consider
all or most of the mechanisms at the micro-level in a rig-
orous fashion in the process of arriving at an averaged,
macromechanical response would appear to pose an intractable

prcblem. References [76] and [77] evince the dilemma very
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clearly by illustrating how an isolated dissipation mech-
anism or even specific structural arrangement of material
phases with known responses can destroy the otherwise well-
established theoretical structure of a nonlinear constitu-
tive model. However, the various micromechanical studies do
establish the importance of each operative mechanism and its
impact on the ensuing structural or macro response as well
as the constitutive variables affecting it.

In summary, it is seen that a need exists for a uni-
fied, nonlinear continuum constitutive theory for fibrous
composites that would be consistent with the current, gen-
erally accepted thermodynamic concepts and still be capable
of reflecting the significant micromechanisms resulting in
the observed nonlinear response. In subsequent chapters
Valanis' endochronic theory which is based on the internal
variable formalism employed within the context of classical
irreversible thermodynamics is extended to transversely iso-
tropic media and shown how it can fulfill the above re-
quirement. The structural content of the present study
aimed at accomplishing the above objective is given in what
follows.

A brief outline of the internal variable formalism and
“he associated thermodynamic framework employed in the
process of arriving at Valanis' endochronic constitutive
theory is given in Chapter 2. General time-independent

equations for transversely isotropic media are subsequently
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developed to illustrate the extent of coupling present in

the nonlinear (dissipative) domain. These are then shown to

"reduce to the isotropic formulation discussed by Valanis

[79]. Certain other features of the endochronic theory that
underline fundamental thermodynamic differences between this
and plasticity or viscoelasticity theory are also briefly
mentioned. These differences have not been in the author's
opinion sufficiently emphasized in the published literature.
Applicability of the endochronic theory with regard to
the prediction of nonlinear response of fibrous composites
is illustrated with the aid of the observed response of off-
axis, unidirectional Gr/Pi coupons. Chapter 3 outlines the
experimental technique and associated testing program aimed
at fulfilling the above objective. Generated experimental
results are presented and discussed in Chaptér 4. The
actual experimental-theoretical correlation is carried out
in Chapter 5 where the methodology employed in the course of
specializing the general endochronic equations to model the
response of this particular composite system is explicitly
delineated. It is subsequently shown how certain micro-
mechanics considerations can be incorporated into the struc~
ture of endochronic equations. The chapter closes with the
introduction of a micromechanics-based failure condition,
subsequent correlation with the observed ultimate stresses
and comparison with other selected criteria. Conclusions

and recommendations for further study follow in Chapter 6.
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2. ENDROCHRONIC THEORY FOR TRANSVERSELY ISOTROPIC MEDIA

27T Introduction

The endochronic constitutive theory was developed by
valanis [79,80) in 1971 to explain certain responses exhib-
ited by ductile metals.in the nonlinear range that could not
be treated easily and accurately by the various classical
plasticity theories. Effects such as formation of hyste-
risis loops in loading/unloading cycles, cross-hardening in
tension due to a prestrain in torsion and vice versa as well
as other effects were predicted by Valanis for certain
metals with surprising accuracy.

The theory is based on the methodology of irreversible
thermcdynamics and employs the approach and concepts of the
internal variable formalism. Thus the system of consti-
tutive equations governing the response of a given medium is
consistent with the thermodynamic constraints. Employment
of the Onsager's relations results in the constitutive
equations possessing fading memory characteristics with
respect to a deformation scale which is assumed to be a
property of the material at hand. Thus the name endochron-
ic. The deformation scale can be either time dependent or
independent or both so that the classical linear visco-
elastic relations are recovered directly as a special case.

Valanis has extended the theory in a series of papers

{90-93] where he discusses both the strain and stress formu-

40
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lation, various functional forms of his deformation scale

and application to prediction of fracture. However, the

‘explicit derivation of the constitutive equations is limited

to isotropic media. An interesting feature of the theory is
that the dissipative response of an isotropic medium is
governed by two generally independent sets of "hardening" or
relaxation/retardation exponents. 1In particular if a single
set of internal variables is chosen to specify the irrevers-
ible behavior of the material at hand two characteristic
exponents are obtained. In general therefore, the dissi~
pative response in shear will exhibit different "hardening"”
behavior than that in tension. Consequently, a loose analogy
can be drawn with the linearly elastic isotropic material
whose response is defined by the two well-kno&n elastic
constants. The above is in direct contrast with tﬁe clas-
sical isotropic plasticity theories in which the decomposi-
tion of total strain into elastic and plastic portions
together with the definition of a yield surface results in a
single hardening exponent.

In what follows the endochronic theory is extended to
transversely isotropic media and the dissipative response is
shown to be controlled by four independent hardening expo-
nents for the choice of a single set of so-called hidden
coordinates as well as for a large number of such variables.
In the latter case, a power law representation is possible

leading to the above result as will be shown in Chapter 5.
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There are however, apparently five independent hardening

compligpces due to coupling of the four dissipation modes.

e v e

2.2 Analytical Development

From the point of view of applying the endochronic the-
ory to the prediction of the response of unidirectional
fiber-reinforced composites (modelled as transversely iso-
tropic continuum) it is advantageous to formulate the theory
in terms of stresses as one of the sets of independent
variables. The evaluation of the various constants in the
model ought to be simpler and interpretation easier for the
case of off-axis testing since then the loading along the
principal material directions remains proportiona} and only
three stress components are present.

Any irreversible process characterized by dissipation
of energy is subject to the following laws of thermodynam-
ics: Conservation of Energy and the Dissipation (Clausius-
Duhem) Inequality. The first law of thermodynamics in
conjunction with the principle of conservation of momentum

takes the following form locally:

3 po .

e = 5— Jl]cl] - hl,l + Q (2.1)
where

e = internal energy per unit volume

g,. = stress tensor

1]



€£.. = strain tensor

= heat flux vector entering the body

e = @e= . pate. of-heat--absorption

p = densities of the medium in the undeformed and
deformed configurations, respectively.

The dot denotes time derivative, comma differentiation
with respect to the spatial ccordinates and the above guan-
tities are referred to the undeformed configuration in a
rectangular Cartesian coordinate system. The rate of irrev-

ersible entropy generation can be expressed as:

6y = -2 5. .6 + B8R -6 -2n. 9. (2.2)

upon employing the first law to eliminate the heat aksorp-
tion term in the classical definition. In the above

Y = irreversible entropy per unit volume

n = entropy per unit volume

9 = absolute temperature

8,i = temperature gradient in the material system

The Clausius-Duhem inequality states that the rate of irrev-
ersible entropy generation must be either zero or positive
(for reversible or irreversible process, respectively) and so
we have the following constraint on all the possible pro-
cesses that a system can undergo:

Y >0 (2.3)

In the internal variable formalism an assumption is

made that the state of a body undergoing an irreversible
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process can be specified by a set of independent quantities
such™ d578Y¥Fa i, stréss or temperature which are presumed
measurable as well as a number of internal variables, inde-
pendent'of the observed variables, that control the irrever-
sibilities. For the stress formulation for processes that
occur at constant temperature (which will be assumed in the
course of this work) it is convenient to define Gibbs'

potential in the following manner:

Vo)
G =Glo,..,0, Y 4 (2.4)

A O Lu.
IS 1371
where it 1s assumed that the state of a body undergoing an
irreversible process, such as dissipation of energy during
deformation caused by various inherent micro-mechanisms
(plastic slip, triction, void fo:mation, etc.), can be
adequately described by a set of n independent hidden or
internal variables qzj. These variables are assigned ten-
sorial character so that they can be treated along the same
lines as stress or strain variables in a consistent manner
as discussed by valanis [79].

Expressing the rate of internal onergy in terms of the
5

corresponding elements of Gibbs' potential in Egn. (2.2),

the Clausius-Duhem inequality becomes:

hoo .. >0 (2.5)
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Since ”ij' q;j and ¢ are independent of cach other and since

their rates can always be varied independently of the
respective total quantities (at least in principle), the
following must hold in order to preserve the inequality for

an arbitrary process:

. - .'(y_
RS }cij '
3G -
1] = - —‘—{:“ ; (2.7
fn )
| G . i
T N WU
i —_— 1] U S S
IR SRR
la=1 11} ]

In particular, if homothermal fields are assumed as is done

in the present study, the last expression reduces to:

n
. \ IG . v
R (2.8)
. ! ij -
x=1 "113

The Clausius-Duhem inequality will certainly be sat-
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isfied for all processes if we allow:

G o~ a e
T T T PG RO sumoon o) (2.9)
aqij

for each one of the n internal variables where the quantity
Si?kl is a constant, positive-definite fourth-order tensor
in the classical treatment. These are the much-discussed
(and controversial) Onsager's relations which relate ther-
modynamic forces and the subsequent fluxes that characterize
the irreversibilities in a linear manner. The dissipation
inequality thus becomes:
n .
o7 = I BiSpe 955 9xe (2.10°
a=1
Now let us consider time-independent, dissipative
deformation processes. In this case the dissipation func-
tion must be independent of any change in the time scale,
that is, { must be homogeneous (of order 1) in dzj' This
will be satisfied if we let:

5. = 2

Pijke T Az
dt

where z 1s some function related to the deformation process

at hand. The restriction on z imposed by the dissipat:ion

inequality is that dz must be always greater than zero dur-

ing continuing irreversible deformation.

The point of departure for Valanis' endochronic theory
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from other internal variable developments (c.f. Schapery
[94]) is the assumption that the function z, called an

intrinsic time scale, is a function of material defcrmation

R - -

measures £ or Y given by

v

£ = J/pijkl dgij dskR , de 0 : strain formulation

or

Yy = vaijki doij dokQ + dy > 0 : stress formulation

where the fourth order, positive-definite tensors pijkl’

sijkE are material parameters reflecting the symmetry of

the medium at hand.

The system of equations given by the first two of Egn.
(2.7) and Egqn. (2.9), where the time derivative is now re-
placed by the intrinsic time scale derivative %;, char-
acterizes the response of the system during an irreversible
process. It remains to specify the form of Gibbs' function
about a stable equilibrium state Go = Go(oij,e) which is
commonly done by using quadratic expansion in the hidden
variables. This implies that an irreversible process 1is
close to stable equilibrium states that are defined by the
potential GO given only in terms of the measurable or direct-
ly controllable quantities. Thus following Valanis we

assume that

n

o] a 1
,8) + ] Bijaiqj + 5
a=1 a=1

a = [© S s |

I e B
a
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where contracted notation has been employed and the matrices
Y., cY.
13 1]
with the plane of isotrépy~bétng=2-3. -The -requirement of

are transversely isotropic and assumed co.istant

the positive-definite character of incremental work done
locally on the material system by an external agency at

constant temperature in a reversible manner, i.e., éoiS;j,

q? = constant, imposes the following constraint on Gy:

2
3 Go

Sosa. 093995 £ 0
13

with the equality holding for Soi = 0. Thus the matrix

A2
oGO

550 must be negative-definite. On the other hand, max-
i3

imization of entropy at a stable equilibrium state requires

that:
2r~
—S = Cfy 2 0
ququ
2
where stable equilibrium is defined by ‘GI = 0. At this
3q.,
i

point, using the above definition as a starting point, the
difference between time~-dependent response of materials such
as viscoelastic materials discussed by Schapery within the
internal variable thermodynamic framework and valanis'
theory can be clearly outlined. 1In the viscoelastic theorvy,
the imposition of the constraint ¢, = const,or £; = const.

{depending on the material) following an arbitrary defor-
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mation history will result in the state of the body ap-

proaching the surface 397-= 0 as t + » together with éz + 0.

(&
3q°
0 o

Thus stable equilibrium is always associated with the above
two conditions. In the endochronic theory the vanishing of
the rate of change of internal variables with respect to real

time does not imply EEE = 0 since rates are defined with
1
dqy
respect to the intrinsic time scale which is tied to a
measure of material deformation specified by either ﬂij or
dij' The condition dz = 0 on the other hand implies that
q? = const.and thus the rate of entropy production can be
zero at any point on the Gibbs' potential and not just on

the surface SIS 0.

Sq;

In what follows the discussion will be at first
restricted to a single tensorial internal variable in the
quadratic expansion of Gibbs' potential given by Egqn. (2.11).
Subsequently, an extension to the n dimensional case in the
internal variables will be briefly discussed in anticipa-
tion of the specialization of the developed general endo-
chronic equations aimed at modelling observed response of
the Gr/Pi system. This will be carried out explicitly
in Chapter 5 where Hashin-type equations for transversely
isotropic fibrous composites will be generated with certain
unloading features that reduce to anelastic response as a

special case. The above decision to begin with the specific
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and then generalize the formulation is motivated by nota-
tional clarity only. ~ L it

The above formulation, while still leaving the ensuing
constitutive equations sufficiently general, automatically
excludes the reduction of the constitutive model to the
classical plasticity formulation in its entirety. However,
it has already been shown by Valanis that plasticity-like
equations can be obtained if a judicious choice of material
parameters is made in the strain formulation with a single
internal variable. A similar result will be shown to occur
in the stress formulation. However the guadratic expansion
precludes the existence of a yield surface as will be dis-

cussed later. Thus Valanis’ statements about "...a visco-
plasticity theory without a yield surface..." will become
quite clear. This is in direct contrast with Schapery's
specialization of the viscoelastic equations to the time-
independent case where the existence of a yield point, and
thus presumably yield surface for the multi-axial loading
case, 1s assumed.

Substituting the assumed Gibbs' function into the equ-
ations of motion given by the first of Egn. (2.7) and Egn.

(2.9) for the case 8 = constant the following set of rela-

tionships i3 obtained:
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5(Cyp=Cpy) 0 O

R e B PO U

0 Ceg O
0 0 Cg
04}
95
%

(2.15)

(2.15) are already decoupled and so we can solve

directly for dgr 95 and dg in terms of Gur Og and O and

substitute into Equations (2.13) to obtain shear strains in

terms of shear stresses.

obtain:

z
+ j E-o4(z')e

-\

4(2-2')

Carrying this out explicitly we

(2.16;
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where
\ - 22723
47 B,,b,, T
57 % b,
2
g o L (B2a7Ba3)
2 byy7bys
2
_ (Bgg)
F=s_
66

From the above it is seen that the hardening char-
acterisitcs of the material along the principal material
directions in shear are generally governed by two different
exponents x4 and AS which reflect different dissipation
modes. In order to obtain the strain response in longi-
tudinal and transverse tension it is necessary to uncouple
Equations (2.14), that is to find *he normal modes. 1In the
isotropic case this is easily accomplished, as illustrated
by Valanis, by decomposing strains and stresses into devia-
toric and dilatational portions. For the transversely
isotropic situation we proceed by first defining the fol-
lowing quantities:

979 =>a = q) 0y =0
qp; = 49, + gy => 32 = &2 + §3 v Oy T 0y + 04 (2.17)
93 = 9z 7 93 = 3, = &2 - &3 , 03 = 03 7 93

where the symbol """ signifies derivative with respect to z.
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Now, adding the third of Equations (2.14) to the =econd

and rewriting the result in terms of the newly defined

e 4 e . eaw e -

quantities together with the flrst ylelds the follOW1ng set:

- ~

by P12 G, | ‘u 12 9
2015 (Byp*Py3)i |9, 2C1p  (Cxp%C3) | |22
(2.18)
r - (_
__| B By 9
2B1a (ByptBy3) | |9,

On the other hand, subtracting the third of Equations

(2.14) from the second yields directly in the new notation:
(byy=by3)ay + (Cyy-Chzlay = —(Byy-By3)0, (2.19)

which can be integrated readily to produce:

z

~ % (Bya-Boa) A (z-2")

= - TBEE?EEET Gylzt)e dz’ (2.20)
} o Bgp7Pys
0

where
(C )
Voo C927C3)

37 Toy,7by3l 4
In this way the problem has been reduced to unconupling

a system of two instead of three equations. Now, the dis-

sipation matrix in Equations (2.18) can be inverted to

yield:
(_,_\_ } C* C* T _ [‘ * *= (—
9y 11 ©12 i (91 1311 Byl (o1
o + % * - = - * * - r (2-21)
Q) ‘21 sz_! 9 P21 Baa| %2
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where
- | - ]ty by, TR
b l(b22+b23)-2b12
S L lete,., (byytbo ) =(C. 4C, )by )
12 7 D vn, ool 12227023 T (6227C230 0,
\ (2.22)
S = 77} " [2C15P17172Cy;by5)
D1y (Pya+by3)=2by,
C3 = - 2 \'[(C22+C23)b11 =2C) 5Py 5!
) D11 (bgptby3)=2by,

*
with similar expressions for the matrix [B ].
The solution of the above system of equations can be
obtained in a straight forward fashion in terms of the

normal modes ?1, §2 of {3} as follows: define {q} = [P]l{y}

o * —_ * —_
[Pl{y} + [C JIPl{y} = - [B ]{o}
(:~ "'l * - -l * —
or {y: + [Pl “[Cc ](pl{y} =~ (P] (B ]{a} (2.23)
where [P} Y(c*1[P] = [A] = diagonal matrix.

The elements of the matrix [A] are the eigenvalues of

*
{C ] and are obtained from the determinantal equation:

*
lcn‘A Cia
.. =0
Ca1 G

l *
M2 l‘cn J(Cu C33) +4C12C21l
(2.24)
l *
=3 | * J(Cll C3o) “HacT,C 21]
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The normalized eigenvector matrix {P] is taken in the

.......

following form:

| |
il az{
(p] = | | (2.25;
o 1
[*1 !
where
*
Gy
@ = - ——3
€12
(2.26)
* . *
- (Caa7h) €y N
2 * - 1
Co1 €1

We note here that the above choice of :he eigenvalues
and eigenvectors will reduce the resulting endochronic equa-
tions to the isotropic form with ay = 2, 1, = -1 as will be
illustrated. Any other combination will yield results which
do not appear to be reducible to the above special case.

Solving explicitly for the normal modes we obtain:

v = - _.__]_'_._.
yl l—alaz

i -3 (272"

*

* *  _ *
- ' - 11
[(Bll \.12821)‘31(2 )+(E12 a2B22)02\z.)]e
¢

dz'

S

v, = ___l._
41%2
z
[ * * * x 'Xz(Z-Z')

. J [(BZ-L—GlBll)Jl(Z')*(822-(11812)02(2.)]e dZ'

0
(2.27)
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The superposition of the normal modes using the eigen-

vector matrix given by Equation (2.25) results in:

q =¥y * o7, e e e S e

9 = Myt Y,
or, upon inverting the definitions given by Equations (2.17)

we obtain:

91 = Yy F %Yy

1, = =
qz = j[alyl + y2 + q3] (2.28)

a3 = logd) + ¥, - @]
where 63 is given by Equation (2.20).

Substituting the above relations into the expressions
for strains given by Equations (2.12) we obtain the follow-

ing set of equations:

3

G
- _ _0 _ = _ =
177 35, (By1+B1y01)y) - (Byy+By 05)y,
3G, L _
€2 = 7 55, "1Bra * 3(Byp*By)onlyy
- [Byy0y + 2B, +B,.) 17, = %(B,,-B,.)q
12%2 T 7\P027R23/ 1Yy T 73iPy57P53743 (2.29)
3G, L
37 " 3o, T Bua * 2By * Bazdoyly)
[By,c, + =(B,, + B,al¥, + =(B,, - B,)q
12%2 7 71822 231¥2 ¥ 71855 23’93

The above formulation helps to bring forth the extent
of coupling of the normal modes and their effect on the

ensuing expressions for the normal strains. Combining Equ-
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-~ ations (2.27) with the above and rearranging yields the
following results:
3Gy (T
e et a —ry ! 1 ] he
€y = 36, 4 J By, (z-2 Yo, (z') dz
0
z
+ J By, (z-2") [0,(2")+04(2")] dz’
0
N 3G, z_
‘ | €2 = - 55; + J B2l(z-z )cl(z ) dz
- 0
=7 z z
. - 1 1 ' =y - 1 ] 3 1 ]
+ J 322(2 z )02(2 ) dz' + j 323(2 z )03(2 ) dz
0 0
3G z
) €y = ~ 35— + J BZl(z—z')ol(z') dz'
v!' . z 2
'ﬂ“f + J §23(z-z')02(z') dz' + J Ezz(z—z')GB(z') dz"’
) : 0 0
e (2.30)
j;ﬂ, where:
L = o 1 B* * =i, (z-z2')
T Bpy(z-2) = [I:EIE; (By17Bp1%p) = (Byp#Byp3yde
N . % ~A,(z-2")]
* (Bpy=B1y9y) - (Byjay+Byyle J
_ { 1 ) * * ‘A2(Z-Z')
- Bia(z-2") = ti—alazj'{(812—822a2)'(Bll+812al)e
~~~~~ —— * * —Az(Z_Z')}
T * (BypmBypay) s (Byjap+Byyle
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5 tmenty = [on* _g* 1 '*1(2’2"}
21(272") = {(By;=By1a,) = [By, + 5(Byy+By3layle

. * 1 ‘A2(2;21Y¥
T (Byy=B1j07) [Bypa, + 3(Byy+Byglle )

I S S
lmalaz

- , * * 1 'Al(z"z')
Byplz-2') = {512”322“2"[312 * 7(By,+Byglagle
. PN 1 —x2<z—z')}
L t (BypmB1p0g) n(Byp0y + 7(ByptByyle
1 2 \
[t 2(82278y3) " “Aalzmzh)
(lmalaz (b22-b23)
_ , _{ * * 1 ‘ -Al(z-z’)
B23(z-z ) = \(BlZ-BZZaZ)'[Blz + 5(822f823)al]e
r— . —Az(z—z')}

_____;,,,‘,.‘-‘ * - * ° 1
] . + (Byp=Byjay) c[Byyay + 5(Byy+B)g)le

= B__ (z-2")
5. ) 32
22 723 (2.31)

T-a,a (b

\\"‘\ l - 2 - -t
i 1 5(By37Bo3) Aylz-z')
o_ + e
1%2

* *
and where the elenents Bij's have the same form as Cij's

given by Egations (2.22).

An interesting consequence of the above formulation is
::M< _ an apparent loss of transverse isotropy manifested by the
expressions for 512(2-2') and 521(2—2') which are not imme-

diately identical. In order to preserve transverse isotropy

o a constraint must be imposed by equating the corresponding
R =Xy (z-2")
coefficients of the eigenfunctions e
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—Az(z—z') _
and e in the expressions for Blz(z-z') and
§21(z—z'). The transverse isotropy conditions thus become:
(B, ,-Bo B,,+B = (B] ¥ 1
1278p2%2) " (B ¥By507) = (Byy-Bpyap) s Byy + 3(Byy+Byzleyl
and (2.32)
B* * +B _ * * l
(Byp=By0y) « (Byyap¥Byp) = (Byy=Byyag) @ [Bypay + 7(Byp+Bya)]
*
Substitution of the expressions for the elements Bij
given in terms of Bij and bij in the above yields two iden-
tical sets of requirements for the preservation of trans-

verse isotropy of the type:

b. ., +b -
22 723 =
[b12+[~—~§———]al+blla2+b12ala2_ =g

2
[2312‘511(522+523l

from which two conditions are obtained:

2 =
2B12 - Bll(B22+B23) = 0 (2.33)
or
(b,,+tb,,)
22723 3
b12 + 5 al + blla2 + blzalaz = 0 (2.34)

The first conditicn apparently corresponds to the van-

ishing of the determinant

4 B11 B12 l
!2512 ‘522+Bz3)l o)
91
which implies that the imposition of the stress state { }
1 T4 ¢
("2}

effectively uncouples dissipation and mechanical
stresses as seen in Equations (2.18). This is somewhat simi-
lar to the assumption of plastic incompressibility and con-

sequently absence of plastic work in the presence of hydro-



static stresses that is used in the classical plasticity
theories for isotropic media. In this formulation howeve;a
the above condition is not a necessary one, being merely

a possibility.

On the other hand, substitution of the expression for
oy and a, given by Equations (2.26) in the second condition
together with the use of Equations (2.22) can be shown to
satisfy it identically. The formulation thus appears to be
internally consistent in that the transverse isotropy of
the ensuing stress-strain response is preserved under all
loading conditions.

Employing the equivalent transverse isotropy relations
given by Equations (2.23) in Equations (2.31) we can express

the kernels of the memory integrals as follows:

_ ~Al(z-z') -Az(z—z')
Bll(z—z ) = Ae + Be
_ =iy (z-2*) -Ay(2=2")
Blz(z—z') = Ce + De
(2.35)

2 =X, (z-2") 2 =i, {z-2') -, (z=-2")
= . C 1 D 2 3
822(2-2 ) = 7€ + g e + Ee

2 =iy (z=2") 2 A,(z-2'") -A,{z~2")
<Y ' _C 1 D 2 - 3
823(2-2 ) = e + 5 € Ee

where:
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—1 l L] v - — -—
A=Z {[Bll(b22+b23) 2By ,by,1 = [2By,byy zgllblzlaz}

*(By; + Byy0y)

- l. - - - -—
B =3 {[2512b11 2By 1byo] = [By (byatbyy) 2B12b12]a1}

'(Blz + Bllaz)

—ln . - - -
¢=73 {[Bll(bZZ + by3) - 2Byobyol - [2By,bygy 2Bllb12]a2}

+ B.,,)a

1
+ 5(Byy + By,

'[Blz l] (2.36)

—-_— 1‘ - - ‘ -
D=3 {[2812b11 2By1bypl = [Byy (byy+by3) ZBlelZ]al}

1
*[Bypay + 5(Byy + Byl

- 1 _ 2 -
E= 5By, B,y) /(b22 b23),

1
3
(1-ay05) [by g (bystby3) = 2bys]

and Yy =

The set of equations given by Equations (2.16),
(2.30), and (2.35) completely specifies the response
of a transversely isotropic medium undergoing an irrevers-
ible deformation process. As is evident, the dissipative
response is characterized by four independent retardation
or "hardening" exponents and considerable coupling is pres-
ent in the general transversely isotropic model. The con-
tribution of each element of the matrix [B] and [b] to the
coupling is clearly delineated in the above expressions.

The coefficients A, B, C, D, E, and F of the eigenfunctions



63

that characterize the f£sur independent dissipation modes
comprise a total of six apparently independent constants.
1’ Az and X3 are

coupled by five of these constants in the expressions for

The three normal modes represented by A

Bll(z), Blz(z), Bzz(z) and 823(2) in sucb a way that these
compliances are apparently independent. No apparent relation-
ship between the coefficients A, B, C, D and E appears to be

available.

2.3 Specialization to Isotropic Media

The developed set of constitutive equations can be
readily reduced to the fully isotropic case by making use of

the following identities:

B = B ’ B = B

11 = B 12 23 ! Bgy = 7(B1,

with similar relationships for the elements Cij and bij'
Making use of the above we obtain the following relation-

. * * * * .
ships between Cyyr C22, Cin and C21 from Equations (2.22):

*x * _ * * _ *
Ci1 ~ €y = =Cypr Gy = 2C12 (2.37)
The expressions for the eigenvalues thus reduce to:
A, o = S1(Cr. + Co1F 3(Cr, - Cal 2.38
1,2 = 24 €11 * Ca2 (€11 = €22 (2.38)

so that the eigenvectors ay and o, given by the Equations

2
(2.26) are now
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* * * x*
ap=- G M €t 20, Yoy
% - - * =
€12 €12
and (2.39)
* * * x*
(€ = A (€, m 2C, + Cy)
a0, = - —22 2 - - 1 = -1
Ca €2

It can be easily verified that the transverse isotropy con-
dition given by Equation (2.34) is identically satisfied by
the above eigenvectors. The eigenvalues take on the fol-
lowing form upon substituting the simplified expressions for

*
and C

%*
Cll 5 in terms of Cij and bij'
N e S AR b
17 |6, 75,
: (2.40)
N e S s 1 I
2 P11 7Py 3

These are the same as those obtained by Valanis [79] in his
isotropic treatment and can be readily obtained through
decomposition of stresses and strains as well as the inter-
nal variables into deviatoric and dilatational components.
The kernels of the memory on the other hand become:

2 . _ 2 o
(Bll+2812) -Al(an ) 2(Bll Blz) . Ap(z=2")

B,,(z-2'") = zy——sr"— e T & T e
11 3{by,+2by,) 3(by,-b,5)

(B,,+2B )2 Xl(z'z') (B, .-B )2 —)‘z(z_.z')

g (z—z’) =___l.l.__lz_e _ﬂ%L—%Z‘—e
12 3(byy+2bys) 117°12!
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which again corresponds with Valanis' results.

2.4 Endochronic Theory and Plasticity

It has already been mentioned that a quadratic expan-
sion of Gibbs' potential in terms of the internal variables
about the equilibrium potential Go(oi,e) precludes rigorous
reduction of the ensuing equations to the plasticity formu-
lation. This can be easily shown as follows. In the clas-
sical plasticity formulation the total strain increment is
assumed separable into two well-defined portions, fully
recoverable (elastic) and permanent (plastic) increment.
The plastic portion is usually associated with a yield
surface through a normality condition. In terms of the
thermodynamic internal variable formulation therefore there
ought to be portions.of Gibbs' potential on which the mea-
surable quantities, in this case the stresses, could be
varied in a reversible manner. That is, paths for which
5G/3q? = 0 should be possible at any point of locading within
and past the initial yield surface. The yield surface(s)
are then represented by the conditions 32G/aq§3q§ = 0 which
denote neutral equilibrium states. The plastic deformation
process would thus entail a sequence of alternating stable-
unstable states described by local fluctuations in the
Gibbs' potential about some mean or “"hardening" state.
Similar point of view has been taken by Ponter, Bataille and

Kestin [95] in their description of the Frank-Read dis-
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location generation mechanism using the internal variable
approach.

It is clearly evident that a quadratic expansion cannot
satisfy the above conditions in a nontrivial manner and so
the total strain cannot be decomposed into elastic and
plastic portions. Thus a well defined yield surface asso-
ciated with certain regions of Gibbs' potential does not
exist in this formulation if the outlined conditions are
accepted as necessary for a reversible process.

On the other hand, plasticity-like equations, not
associated with a yield condition, can be cbtained in the
stress formulation by setting the matrix [C] to zero.

In such a case, the increments in the internal variables are
proportional to the total stresses and so we have
3

G } 2
B
- 4+ — g dz
j b

de = d 55

for the one dimensional treatment. If G, is quadratic in

0
stresses the above becomes

2

de = Ado + g— g dz

The above equation will be identical to Valanis' reduction |
of his strain formulation [79] to illustrate the relation-
ship of the endochronic theory with classical plasticity
formulation if the intrinsic time scale is expressed in

terms of the strain measure given by
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£ = J\[pijkzasijdskl .

On the other hand if the stress measure

n = fdg;jkldcijdck
is employed in the intrinsic time scale then the fading
memory character of the ensuing equations is lost. This
will then preclude the generation of hysteresis loops
during cyclic loading for the cawe [C] = [0] if the same
time scale is employed throughout the entire deformation

path.

2.5 Extension to Multi-Internal Variable Formulation

Extension of the endochronic formulation to multi-
internal variable treatmeﬁt is now quite straightforward
since Egquations (2.14) and (2.15) are solved independently
for each set of internal variables specified by a. On the
other hand, thne second part of Equations (2.12) and (2.13)
involves summation of each qgj so that Equation (2.35)
remains valid for every o as well. Generalizing Equation

(2.35) we thus have

n
By, (z-z") = )
=1

—Aa(z—z') a -Aa(z-z')
[Aae 1 + B e 2

with similar expressions for the remaining kernels.



3. Experimental Technique

3.1 1Introduction

Verification of the applicability of any constitutive
theory to a particular material system is based on a set of
experiments in which both the state of stress and strain are
known with sufficient accuracy at the point of measurement.
The most widely used testing technique is the tension test
which allows the determination of Young's modulus, Exx' and
Poisson's ratio, vxy’ with respect to the longitudinal axis
of a coupon from a single experiment. For linearly elastic
isotropic materials this is sufficient to determine the
remaining constants. In the case of transversely isotropic,
linearly elastic materials such as linearly elastic fibrous
composites however, additional tests are required since the
material response is described in terms of five independent
parameters. Four of these parameters, a sufficient number
for plane stress applications, can still be obtained from
the tension test; however three different specimen orienta-
tions are required to accomplish this. The two Young's
E

moduli E asscociated with the principal material

117 =22
directions (refer to Fig. 3.1) along with either vy, OF

v,y are obtained from tensile coupons with fibers aligned
parallel and perpendicular to the load axis, respectively.

The fourth independent material constant, the shear modulus

G12 can be obtained from the so-called "off-axis tensicn

68
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Lamina
Coordinates

\\\IM

1, 2, 3 lamina coordinates

X, ¥, 7z lamlnate coordinates

Fig. 3.1 Lamina geometry and the associated coordinate systems
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test" (see Fig. 3.2) as proposed by Chamis [96]. The alter-

native method of determining G is from a pure torsion test

12
of thin-walled tubes with fibers wound either parallel or
perpendicular to the torsion axis. Such a direct procedure,
while being very desirable, can be prohibitive due to either
excessive cost or technological difficulties associated with
fabrication of such tubes.

The coff-axis tension test can also be used to study the
material response of a composite system in the nonlinear
range. However, a single off-axis configuration such as the
10° off-axis coupon is often not sufficient to determine the
pure nonlinear shear response. This is due to the pos-
sibility of various stress interactions taking place in the
nonlinear range at the micro-level caused by the presence of
three stress components along the principle material direc-
tions. Foye [56] for example demonstrated the influence of
th~s transverse normal stress component on the shear strain
response (and vice versa) along the material axes for com-
posites with stiff, linearly elastic fibers and ductile
matrices using a finite-element, micromechanical analysis.
He showed that for coﬁbined normal-shear loading in a fixed
ratio yielding initiated sooner and the extent of inelastic
behavior was more pronounced than for either normal or shear
stress acting alone (Fig. 3.3). Even in the case of less
ductile matrices, the possibility ¢f damage accumulation in

the form of stable micro-crack evolution, crazing, etc.
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resulting in stress interaction cannot be overlooked.

In view of the above observations, a set of experiments
on nine off-axis Gr/Pi coupon configuraticns including the 0°
.and 90° orientations was designed. The main objectives were
extensive characterization of the room-temperature response
of the Gr/Pi system for laminate type analysis including the
extent of stress interaction in the nonlinear range, and
subsequent correlation of the experimental results with the
developed set of endochronic eguations for transversely
isotropic media as well as the possibility of deducing pure
nonlinear shear response from the off-axis tests.

The test matrix is given in Table 3.1. In order to
determine the type of nonlinearity exhibited by the system
and thus the applicability of the endochronic theory,
loading/unloading/relcading cycles at various stress levels
were alsc included. All tests were carried out at a strain
rate of 0.01 in/in/min and the possibility of time dependent

response was not considered.

3.2 Test Method

In the tension test the strain is determined with the
help of an electronic transducer such as a strain gage
bondedé to the coupon, whereas the stress response is
obtained from a load cell which is an integral part of the
testing machine. The load cell yields the force at any

given stage of deformation which must be subsequently con-
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Table 3.1 Test matrix for the Gr/Pi
‘ off-axis coupons

Fiber oriehtation Type of loading

with respect to (# ccupons)
the load axis Monotonic Cyclic

0° 3 3

5° 3 3

10° 4 3

15° 3 3

30° 3 2

45° 3 2

60° 3 2

75° 3 —

90° 3 —_
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verted to stress acting at the point where the strain gage
is located. If the strain and thus stress field is homo-
geneous across the coupon at the location of the strain
gage, then stress at that point is equivalen% to average
szgésé which is simply force divided by cross-sectional area
of the specimen. The design of the tensile coupon as well
as the gripping arrangement must therefore be such as to
induce a homogeneous state of strain in the plane across the
location of the strain gage.

In the case of isotropic materials the above is easily
accomplished by using tapered geometries of tensile coupons
to minimize perturbations in homogeneous strain field caused
by the grips. The success of the method can be traced to
the symmetry as well as fast rate of decay of these pertur-
bations about loading axis of the specimen which in turn is
a consequence of the specimen's isotropy.

In the case of off-axis, transversely isotropic tensile
coupons on the other hand, the off-axis orientation effec-
tively transforms the coupon into a completely anisotropic
specimen in the coordinate system coincident with the load
axis. If the ends of the coupon are rigidly gripped and
prevented from rotation dictated by material's natural
response during applied displacement at the grips, a highly
inhomogeneous state of deformation will be induced. This 1is
known as "the shear-coupling" effect and results in bending

of the coupon in its own plane as illustrated in Fig. 3.4.
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Fig. 3.4 Influence of end constraints in the testing of anisotropic
bodies, Ref. [97]
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The extent of such "bending" and thus induced inhomogeneity
in the stress field is a function of the specimen's geo-
metry, that is aspect ratio, material parameters and off-

axis orientation.

T et | e

The first attempt to analyze the effect of shear~
coupling, together with the parameters enumerated above, on
the deformation field in an off-axis tensile specimen was
carried out by Pagano and Halpin [97]. The approach employ-
ed was that of a plane stress elasticity formulation with
idealized displacement boundary conditions at the grips
which facilitated an analytical, closed form solution.
Guided by experimental cbservation that the ends tend to
pull out from under the grips in off-axis tension tests on
soft composite systems, the authors constrained only the
center~line of the specimen from rotation in their analyt-
ical model and thus were able to obtain their closed form
results. This would thus appear to be the most favorable
fixed, rigid grip formulation from the point of view of
minimizing strain gradients induced by the gripping arrange-
ment.

The thrust of the paper dealt with the effect of the
already mentioned parameters on determination of Young's'
modulus Exx in the coordinate system coincident with the
load axis. It was shown that due to shear-coupling the
effective Young's modulus is given by the following ex-

pression:
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_ 1
E;; = Exx(i?ﬁ) , (3.1)

where n, the shear-coupling coefficient, is:

=2
6S
D m 1.6,‘ — (3.2)
3 A

E** = effective Young's modulus in the coordinate
system coincident with the load axis

Exx = true Young's modulus in the same coordinate
system
S §l6' §66 = elements of the transformed compliance

I
11 matrix in the above coordinate system

L,h = length and half the width of the tension spec-
imen, respectively.

The above is based on the values of stress and strain
at the center of the specimen (at the location of the strain
gage). If the calculation is based on the average stress
value and the center-point strain as is done in practice
however, the following expression for the effective Young's
modulus E;x can be derived. The details are given in

Appendix A.

A8
1+ 6(%)‘ _66 - % (—16)2
S S
E* = E L.ll 11
XX XX ’g (3.3)
1 + 6(%)2 _§6 - 16)2
S B
| T11 11

The above expression will be closer to the true value

Exx than Eqn. (3.1) since the average stress is closer to
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the actual value than the center-line stress in the absence
of shear-coupling.

The ratio of true Young's modulus and the corresponding
" effectivervalue -based-on -average stress calculation is
plotted in Fig. 3.5 for five values of Gy, between 0.5
X 106 psi and 0.9 x lO6 psi, three aspect ratios of 5, 10
and 20, E;; = 19.81 x 10° psi, E,, = 1.42 x 10° psi and v,
= 0.35. The range of the above values is representative of
the Gr/Pi system employed in this work as will te shown
later. It is seen that the effect of shear-coupling on
determination of true Eox becomes quite small with aspect
ratios above ten for most off-axis configurations of this
particular composite system.

A rather interesting result, apparently not mentioned
in the literature in this particular form, ensues if
Pagano's model is used to determine variation in the elastic
shear modulus G12 determined from various off-axis orienta-
tions in the presence of shear-coupling. The relationship
between the true elastic shear modulus G12 and the corre-
sponding effective value Giz can be shown to be given by the

following expression:

G*. = - A sinfcos§ (3.4)

12 © -7 = = —
25,necose[(512—sll)(l+C)~(826-Sl6)B] +

2 . 2 = —
(cos”8-sin e)[816(1+C)—56681

where:
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Fig. 3.5 Ratio of true Young's Modulus Exx and the corresponding

*
effective value E.x 85 a function of the off-axis angle.
Based on the Halpin-Yagano model and average stress calculation
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S S
a=1+6M2|E8 - 2162
511 S11
B ;
B = 5(%)2(:£m) (3.5)
S
11
S,_.
c =625
$11

The detailed derivation is given in Appendix A.

It is important to note that this expression is dif-
ferent from tﬁe expression for the effective shear modulus
Gi; say, using the familiar point transformation law with
the apparent Young's modulus E;x instead of Exx as employed
by Rizzo |98]. 1In effect, Rizzo's method neglects certain
stress components and results in slightly different vari-
ations of Giﬁ with the off-axis angle than those for Giz
given by Eqgn. (3.4) for this particular composite.

The expression for the effective shear modulus sz is
plotted in Fig. 3.6 for the same set of parameters as
those employed in calculating effective Young's moduli
E;x's of Fig. 3.5. From these graphical results it is
evident that the error in the elastic shear modulus Gys
obtained from an off~axis tension test in the presence of
shear-coupling is significantly greater than the corres-
ponding error in the value of Exx‘ Even for high aspect

ratios such as 20 the deviation is noticeable in low off-

axis fiber orientation range for this particular composite
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Ratio of true shear modulus GIZ and the corresponding
*
effective value G12 as a function of the off-axis angle.

Based on the Halpin-Pagano model and average stress
calculation
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system. The error can be directly traced to the presence of
the shear stress component in the coordinate system parallel
to the load axis induced by the grips which is neglected in
the calculation of'Gfimas*shown~in Appendix A..

The extent of shear-coupling depends on two different
and perhaps interrelated phenomena: thne rigid clamping of
specimen's ends and prevention of rotation of the grips.
Pagano and Halpin state parenthetically in their study that
the effect of clamping is the more dominant factor. Wu and
Thomas [99], on the other hand, demonstrated experimentally
that a rotating-—-type grip arrangement can noticeably reduce
perturbations in the strain field caused by preventing a
rigidly clamped specimen from rotating at the grips for 15°
off-axis coupons with aspect ratios of 5, 4 and 2.5. A
finite-element comparison study between fixed-grip, rota-
ting and non-rotating boundary conditions was subsequently
carried cut by Rizzo [98] fecr several composite systems,
aspect ratios and the 30° off-axis orientation. Results
obtained by Rizzo numerically tend to support Wu and Thomas'
contention about desirability of using a rotating, fixed-
grip arrangement for off-axis tests.

In view of the above observations a rotating grip
arrangement was designed. The grip assembly is shown in
Fig. 3.7. The objectives of using such a design were sev-
eral-fold. The first pertains to introduction of suffi-

ciently homogeneous strain field at the location of strain
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gage (plane cutting through the mid-point of specimen) as
mentioned previously. The second objective was to eliminate
or raduce as much as possible stress concentvrations in géé '
grip region and thus obtain higher ultimate failure loads
more representative of "true"” material strength properties.
The third objective was to study the experimental feasi-
bility of such a test method and its advantages in deter-
mining material characteristics over the non-rotating grip
arrangement. This category includes such aspects as repro-
ducibility of test data, elimination of alignment problems,

as well as a basis for future comparison studies between

this method and the standard grip set-up.

3.3 Specimen Fabrication and Geometry
Three Gr/Pi unidirectional panels were fabricated from
prepreg ét the NASA-Langley facilities using in-house devel-
oped fabrication methods. The prepreg that was employed was
composed of Celion 6000 graphite fibers developed by
Celanese Corporation and a high-temperature polyimide
system PMR-15 developed at NASA-Lewis. Fabrication tech-
nique utilized a drum winding apparatus desigrned for this
purpose at NASA-Langley. Reference [100] compiled by Dr. J.
G. Davis, Jr. discusses the above aspects in great detail.
The panels were rectangular plates, 26 in. by 50 in.,
the nominal thickness corresponding to a 12-ply lay-up, with

the fiber direction parallel to the longer side. The ply
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thickness was a nominal 0.007 in. which resulted in laminate
thicknesses in the vicinity of 0.075 in. after cure, varying_
nominally by + 0.005 in. This particular fabrication pro-
cess employed in conjunction with above type of prepreg
yields a nominal fiber volume fraction of sixty percent.
This was verified by cutting out several pieces of material
from various locations in the panels and leeching away the
matrix material. The numbers recorded ranqéd from 59.77% to
62.51% by volume. The matrix digestion process was carriec
out with a hot sto4 solution. Furthermore, each panel was
C-scanned after its fabrication to determine presence of
voids. The panels were found defect-free upon visual exam-
ination of the C-scan photecgraphs.

Each panel was laid out into several areas from which
specimens of different fiber orientations were cut out using
a diamond~blade saw. Each specimen was assigned a triple
number of the form X-YY-ZZ for easy identification. The
first number refers to the panel from which the coupon was
machined, the second to the coupon number and the third %o
off-axis fiber orientation. Table 3.2 gives the specimens
used in the test program; their identification numbers, tyce
of loading and physical dimensions used to reduce the exper-
imental data. As can be seen the specimen dimensions are
quite consistent.

The initial coupon geometry called for tabbed coupons

of 0.5 in. x 14.0 in. with 2.5 in. at either end reserved
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Table 3.2 Gr/Pi off-axis coupon specifications
. No. of un- Mid cross- Average
Specimen Loading - .
- ) loading stress| sectional |cross-sectional
Designation # Type
levels area area
1-15-0° Monotonic — 0.0389 0.0387
1-16-0° Monotonic —_— 0.0387 0.0384
1-17-0° Monotonic —_ 0.0379 0.0378
1-18-0° Cyclic 2 0.0379 0.0379
1-19-0° Cyclic 3 0.0376 0.0376
1-21-0° Cyclic 1 0.0379 0.0379
1-5-5° Monotonic — 0.0409 |  0.0412
1-6-5° Monotonic — 0.0407 0.0406 !
1-7-5° Monotonic — 0.0405 0.0404 !
1-16-5° Cyclic 0.0397 0.0399 |
1-17-5° Cyclic 0.0380 0.0386 |
1-18-5° Cyclic 0.0366 0.0377
1-20-10° Monotonic — 0.0381 0.0383
1-15-10° Monotonic —_— 0.0371 0.0376
1-17-10° Monotonic — 0.0371 0.0376
1-18-10° Monotonic — 0.0358 0.0364
. 1-5-10° Cyclic 3 0.0404 0.0399
1-7-10° Cyclic 3 0.0393 0.0395 ‘
1-13-10° Cyclic 2 0.0381 0.0382 ;
2-4-15° Monotonic —_— 0.0396 0.0398
2-5~15° Monotonic — 0.0394 0.0396
2-6~-15° Monotonic — 0.0393 0.0395
2-2-15° Cyclic 3 0.0401 0.0402
2-3-15° Cyclic 3 0.0397 0.0396
2-8-15° Cyclic 5 0.0388 0.0389
2-8-30° Monotonic —_ 0.0405 0.0401
2-9-30° Monotonic — 0.0409 0.0404
2-15-30° Monotonic — 0.0409 0.0409
2-19-30° Cyclic 4 0.0400 0.0406
2-22-30° Cyclic 6 0.0393 0.0398
3-13-45° Monotonic — 0.0412 0.0410
3-15-45° Monotonic e 0.0413 0.0412
3-18-45° Monotonic — 0.0395 0.0397
3-21-45° Cyclic 4 0.0411 0.0406
3-22-45° Cyclle 3 0.0395 0.0399
2-10-60° Monotonic ——— 0.0404 0.0400
2-13-60° Monotonic — 0.0418 0.0417
2-15-60° Monotonic — 0.0419 0.0417

T —
o
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Table 3.2 cont'd.

. L No. of un-~ Mid cross- Average

Specimen Loadirng . X .
. loading stress | sectional [cross-sectional
Designation Type
levels area area

2-19-60° Cyclic 4 0.0407 0.0410
2-20-60° Cyclic 0.0410 0.0415
2-11-75° Monotonic _— 0.0406 0.0404
2-14-75° Monotonic _— 0.0406 0.0404
2-16-75° Monotonic — 0.0408 0.0407
1-13-90° Monotonic — 0.0398 0.0399
1-15-90° Monotonic — 0.0396 0.0396
1~-16-90° Monotunic — 0.0395 0.0397
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for tabs having the same fiber orientation and material com-
position as the specimen. This would have resulted in the
specimens having aspect ratios cf 18. The decision to bond
tabs to the coupons was based on a limited, preliminary
study carried out on a somewhat aged Gr/Pi system which
indicated generally slightly higher strengths for tabbed
coupons than untabbed ones. Unfortunately, after the tabs
were bonded and several tests carried out it was discovered
that an improper bonding technique used resulted in prema-
ture failures of the low off-axis confiqurations. A deci-
sion to cut the tabs off of all specimens for consistency
was made which resulted in coupons having an aspect ratio of
10.

The question of tabbed versus untabbed unidirectional
tensile coupons is still far from settled and some re-
searchers prefer to use the untabbed geometry [101]. As
will be shown in the Experimental Results section, this
particular geoﬁetry yielded very consistent strength data.

In order to have as homogeneous a set of specimens as
possible, the glass transition temperature of each panel
based on several pieces of material taken from each panel
was determined. Some variation (100°F or so) was found in
some samples and therefore each specimen was subjected to a
post—~cure cycle shown in Fig. 3.8 to achieve a glass-—-tran-
sition temperature of approximately 620°F for all coupons.

The specimens were strain gaged with a single Micro-
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Measurements 45° rosette WK-06-060WR-350 konded at the mid-
point of the coupon and a uniaxial gage WK-06-062AP-350
mounted back-to-back with the rosette. The rosette enables
one to determine the complete strain field at a point neces-
sary for strain tensor transformation from one coordinate
system to another while the uniaxial gage is used to deter-
mine presence of bending in the specimen. The alignment of
each strain gage was checked under a microscope and mis-
alignment angles with respect to the coupon's longitudinal
axis were recorded for data reduction purposes. Generally,
the misalignment angle was found to be small; very often
less than 1.0°. A photograph showing dimensions of the 45°
rosette and uniaxial gage with respect to the coupon's

width is given in Fig. 3.9, while the specimen's geometry is
shown in Fig. 3.10.

3.4 Experimental Set-Up: Testing Machine, Data Acquisition
and Procedure

All tests were carried out in the Engineering Science
and Mechanics Department at Virginia Tech using displa;ement
rate controlled Instron Tensile Machine. The displacement;
rate was set at (.05 in/min which yielded an average strain
rate of 0.01 in/in/min. ASTM Standards recommend a strain
rate between 0.01 and 0.02 in/in/min for this type of test.
The lower bound was chosen in order to facilitate the acqui-
sition of data controlled by a fixed scanning rate of 20

channels per second inherent in the data acquisition system
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used for that purpose. The system consisted of Vishay 2120
Wheatstone Bridges, HP3495A scanner with an A/D converter
and a Tektronix 4051 Minicomputer which recorded the output
data on tape with the help of a data acquisition program
developed for this purpose by Mr. David Danello of the ESM
Department. Five recording channels were used; one for the
load output and the remaining four for the strain gages.
The above testing arrangement is shown in Fig. 3.11.
Monotonic loading tests were carried out first on all
off-axis configurations in order to establish the ultimate
stress levels on the basis of which cyclic tests could be
performed. The stress levels at which unloading took place
during cyclic tests were generally obtained by dividing the
ultimate stress by the number of intended cycles so that
they would be approximately evenly spaced. The various off-
axis configurations were cycled to different stress levels
ranging from one to six to establish a wide data base for
the correlation of honlinear response with permanent strain

accumulation, unloading and reloading response.
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4. EXPERIMENTAL RESULTS

4.1 Introduction

The reduction of experimental data was carried out with
the help of a computer program that included the following
features: correction for the small strain-gage misalign-
ment, bending and transverse sensitivity effects and calcu-
lation of stresses based on cross-sectional area at mid-
point of the coupon. The above were accomplished in the
following fashion. First, the strain components in the co-
ordinate system of the rosette wére transformed (after
evaluating the shear component through the appropriate
transformation equations)'to the coordinate system of the
uniaxial gage located on the réverse side of the specimen.
Subsequently, the transverse sensitivity effects were elim-
inated using the well-known relations [102]. These relations
are given in Appendix B along with transverse sensitivity
factors for the rosette and uniaxial gages. The amount of
bending was determined by comparing the strain outputs of
the longitudinal gages and subsequently used to eliminate
bending effects in all the arms of the rosette. The re-
sulting strains were then transformed to the lamina coordi-
nate system through the misalignment angle of the uniaxial
gage from which various responses along the material prin-
cipal directions could be determined.

The reduced experimental data will be presented in

96
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three parts. The initial (linearized) response will be
discussed in the first section in the lamina as well as
material principal coordinate systam in terms of Young's
modulus E__, Poisson's ratio v__, shear modulus G and

XX Xy 12
minor Young's modulus E22 under combined loading as func-
tions of the off-axis fiber orientation. The second part
will deal with the nonlinear response along the material
principal directions under combined and, where applicable,
pure loading conditicns. Aspects such as the nonlinear
elastic and initial hardening response, permanent strain
accumulation as well as reloading response will bhe discussed
in this section. Finally, strength dat; fci monotonic and

cyclic loading programs will be presented in the third part.

4.2 Initial (linearized) response

The correlation of initial elastic response in the
lamina coordinate system with the transversely isotropic
linear transformation equations for plane stress requires
the knowledge of Ell’ E22, V12 and Glz‘ The first three
constants can be obtained with good accuracy from tension
tests on the zero and ninety degree configurations. The

shear modulus G however, can exhibit some variations

12’
caused by the shear-coupling effect if the off-axis tension
test method is employed for its determination as discussed

previously. Since these lamina-configuration-dependent

variations are not known for the particular test fixture
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employed in the present study, it is not possible to deter-

mine G from a single off-axis orientation with great

12

certainty. Rather it is more productive to examine trends

exhibited by the various lamina stiffness components for
various off-axis configurations with G12 as a parameter and
correlate those with the trends exhibited by the obsexrved
effective shear modulus. In view of this, the comparison of
experimentally obtained initial material response in the
laminate and natural coordinate systems with the lamina
stiffness transformation equations has beén carried out for
a relatively wide range of values of Gl2' Tre particular
value of G12 that yielded best agreement with the trans-
formation equations was then selected for the discussion of
the nonlinear response. The above procedure assumel a
priori of course that the initial response can be appro-
ximated by a transversely isotropic model which can be
defended only on the basis of consideration of the very fine
and orderly oriented microstructure of the Gr/Pi lamina as
well as the resulting experimental-theoretical correlation.

The Young'’s modulus Exx in the laminate coordinate
system as a Junction of the off-axis angle is presented in
Fig. 4.1 for the range of G12 values: 0.5 x 106 psi <

6

G 0.9 x 10" psi. The experimental results in the range

A

12
30° < & < 90° where shear-coupling effects are smallest

suggest a value of G12 between 0.7 x 106 psi and 0.8 x 106

psi. The small deviation from the response bounded by these
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two curves in the region 10° < & < 15° could be ascribed to

the shear-coupling phenomena which can be noticeable for

“these configurations as i1Xlustrated in the previous chapter.

Fig. 4.2 illustrates the behavior of Poisson's ratio
vxy in the lamira coordinate system as a function of the
off-axis angle for the same range of G12 as above. Again,
if the transversely isotropic model is chosen for the ini-
tial response OE this particular system, then the value of

G in the vicinity of 0.7 x 106 psi will yield reasonably

12
good experimental-theoretical correlation. The small dis-
crepancy in the low off~axis angle range will be subse-
guently explained by the shear-coupling effect using the
Halpin-Pagano model. The deviation in the high off-axis
angle range on the other hand could be attributéd to strain-
gage sensitivity or resolution problems since the trénsverse
strains for these configurations are very small. Alter-
natively, it is possible that the initial response of this
material system deviates slightly from the assumed trans-
versely isotropic model.

Finally, the initial shear modulus G12 along the
material principal coordinate system as determined from the
various off-axis configurations is plotted in Fig. 4.3.

Also plotted are the predictions of the effective shear
modulus (with shear-coupling included) on the basis of

Halpin-Pagano model for the range 0.5 x lO6 psi < G12 <
6

psi, c.f. Egqn. 3.4. In the off-axis range
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0 < €& < 30°, where the shear-coupling effect appears to be

most significant, the deviations between experimentally

et e A . Dee - e

obtained.véiués of Glé and the corresponding effective
values obtained from the above mentioned model do not exceed
13% if the true value of G12 is taken to be approximately
0.725 x 106 psi as suggested by the results from the 45°
off-axis specimen. There appears to be little variation in

G in the range 45° < 6 < 90° where shear-coupling is

12
negligible.

In view of the above observations, a comparison between
experimental results cf initial lamina response and theoret-
ical predictions of linear transformation eguations has been

6 . .
psi. The pre-

reiterated on the basis of Gip = 0.725 x 10
dictions of the Halpin-Pagano model have also been includea
in the subsequent figures to illustrate the effect of shear-
coupling on the initial response for this particular value

of G Since it appears that the test fixture used in the

12°
present study produces somewhat greater shear-coupling
effects than the Halpin-Pagano idealized "test fixture,” the
above will be a lower bound for the coupling effect. An
upper bound would then be total constraint of the ends.

Fig. 4.4 shows the comparison between experimentally
obtained values of Exx and the predicted response. The
experimental-theoretical correlation is seen to be excellent

for the range 45° < 6 < 90°. In the range 0° < 6 < 30° the

deviations do not exceed 10% with the exception of the 10°
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off-axis specimen which yielded approximately a 14% discre-
_p;ESZ:V“?he.Hq%piq:gaganq model, represeted by the dashed
curve, helps to reduce the above variations somewhat, how-
ever the results indicate again that the shear-coupling
effect is apparently somewhat more pronounced; as far as Exx
is concerned, in this particular test fixture than in the
Halpin-Pagano model.
The variation of Poisson's ratio vxy with the off-axis

ahgle is shown in Fig. 4.5 for the above value of G The

12°
dashed curve is the effective ratio based on the already
mentioned model and it is seen that a significant portion of
the observed discrepancy in experimental-theoretical corre-
lation can be well explained on the basis of shear-coupling
effect.

Finally, the experimentally determined initial minor
Young's modulus Ezz(e) under combined loading in the mate-~
rial principal coordinate system for the various off-axis
configurations is presented in Fig. 4.6 along with the
theoretical predictions with and without shear-coupling.
Since the loading is proportional, we can express E22(8) for
combined loading as follows:

E

E,,(8) = 1.0 — = A-Ezz (4.1)
(Sy5 *+ Sy, cotan™8) (1 _ |, (22, oran?s;
12 (8]

*
The effective value of 522(9) based on the Halpin-Pagano

model can then be derived, using the same procedure as out-
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lined in Appendix A, yielding:

£5,(8) = A sin®0/{sin%6 (5, (1+C) -5, B] +
+ 0820 (5], (1+C) -8, B] - sindcos6 {8 ;(1+C) -5 B}
(4.2)
where A, B and C have been defined in Chapter 3.

It is seen that good experimental-theoretical correla-
tion is obtained using the Halpin-Pagano shear-coupling
model (given by the dashed curve) for the range of off-axis
configurations presented even in the region where E22(6)
changes rapidly.

Table 4.1 summarizes the initial response results. The
data presented in Figs. 4.1-4.6 represent averages of all
specimens tested including those loaded cyclically, except
where indicated by an asterisk in the table. These tests
yielded drastically different results from the average trend

and were thought to be caused by faulty strain gages.

4.3 DNonlinear Response

4.3.1 Longitudinal Response

The nonlinear response along and transverse to the
fiber direction for a typical 0° coupon is illustrated in
Figs. 4.7 and 4.8. The longitudinal stress-strain response
exhibits a stiffening, esentially bi-modulus behavior with
the average initial and final moduli of 19.81 x 106 psi
and 23.28 x 106 psi, respectively. The response appears to

be practically reversible for the testing parameters used as
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Table 4.1 TInitial response (moduli) data of the Cr/Pi coupons

#* - excluded from averaging

Specimen Young's Poisson's Shear Minor Young's

designation # Modulu§ ratio v modulus5 Modulus E22(9)

Exx (msi) Xy G12 (x107) (msi~comb. load)

1-15-0° 19.68 0.298* | not applicable| not applicable
1-16-0° 19.84 0.342 ' "
1-17-0° 19.72 0.360 " '
1-18-0° 18.40%* 0.348 " "
1-19-0° 19.72 0.348 " "
1-21-0° 20.08 0.350 " '

0° average 19.81 0.350
1-5-5° 16.39 Not avail, Not avail. Yot avail.
1-6-5° 16.50 " " "
1-7-5° 16.41 " " "
1-16-5° 17.79 0.420 10.12 "
1-17-5° 17.98 0.319%* 9.19 "
1-18-5° 17.92 0.409 11.26 "

5° average 17.16 0.414 10.69
1-12-10° 12.99 0.445 3.43 Sot avail.
1-15-10° 12.40 0.400 8.96 "
1-17-10° 13.27 G.298%* 9.40 "
1-18-10° 13.39 0.420 9.47 "
1-5-10° 12.66 0.432 9.19 "
1-7-10° 12.40 0.454 9.08 "
1-13-10° 13.16 0.532%* 10.64%* "

10° average 12.89 0.430 9.25
2-4-15° 9.05 0.329* 8.93* 2.064%
2-5-15° 8.51 0.435 8.72 3.28
2-6-15° 8.58 C.439 8.62 3.64
2-2-15° 8.51 0.379%* 8.99* 2.60%
2-3-15° 8.10 0.471 8.50 3.77
2-8-15° 8.47 0.460 8.47 3.85

15° average 8.54 0.45 8.58 3.64
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Table 4.1 cont'd.
. Young's . ) Shear Minor Young's
4 S?ec1men Modulus P01§son s modulus Modulus E,,(6)
esignation # E (msi) ratio vx c ( 105) 22
XX 4 12 ¢ (msi-comb. load)
2-8-30° 3.23 0.397 7.76 1.64
2-9-30° 3.21 0.366 . 7.62 1.64
2-15-30° 3.53 0.413 8.09 1.83
2-19-30° 3.50 0.385 8.01 1.69
¢=22~30° 3.33 0.395 7.81 1.76
30° average 3.36 0.391 7.86 1.71
3-13-45° 1.90 0.355 7.06 1.62
3-15-45° 1.98 0.337 7.37 1.56
3-18-45° 1.95 0.343 7.13 1.73
3-21-45° 1.91 0.329 7.04 1.56
3-22-45° 1.99 0.327 7.55 1.43
45° average 1.95 0.338 7.23 1.58
2-10-60° 1.59 0.216 7.81 1.48
2-13-60° 1.50 0.227 6.67 1.51
2-15-60° 1.51 0.224 6.67 1.42
2-19-60° 1.57 0.204 7.55 1.41
2-20-60° 1.47 0.218 6.79 1.43
60° average 1.53 0.218 7.10 1.45
2-11-75° 1.46 0.095 6.94 1.50
2-14-75° 1.44 0.096 7.53 1.42
2-16-~75° 1.44 0.111 6.93 1.42
75° average 1.45 0.101 7.13 1.45
1-13-90° 1.40 0.048 not applicable 1.40
1-15-90° 1.43 0.047 ' 1.43
1-16-90° 1.44 0.046 " 1.44
90° average 1.42 0.047 " 1.42
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verified by cyclic tests at several unloading stress levels.
The strain-strain (Pqis§opfs{lbehav{qgag%igrggpeargﬁto_pg of
a bi-modulus, virtually reversible character with the av-~
erage initial and final ratios of 0.350 and 0.318, res-

pectively.

4.3.2 Shear Response

The nonlinear shear response on the other hand exhibits
a significant amount of nonlinearity and dissipation in the
majority of the off-axis configurations tested. This is
illustrated in Fig. 4.9 which shows the uncorrected resclved
shear stress-strain behavior c¢f a typical 15° off-axis
coupon cycled at several stress levels (i.e. uncorrected for
shear-coupling as discussed previously). Such pronounced
nonlinearity and dissipation loops are more evident in the
low than high off-axis orientations due to significantly
higher ultimate strains present in the former cases.

In order to be able to compare the monotonic shear
response of the various configurations on an equal fooﬁing
it was necessary to devise a method to eliminate the shear-
coupling both in the linear and nonlinear range in a con-
sistent fashion. The presence or absence of the so-called
stress-interaction phenomenon could then be ascertained from
such comparison. To this end, the Halpin-Pagano model was
utilized in which now the constant material parameters were
replaced by the corresponding secant properties since the

derived equations remain also valid in the case of total
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deformation-type constitutive response. In order to bring

the experimentally observed initial values of the shear

T N Ty e e

modulus in correspondence with the initial Halpin-Pagano
effective value predictions, a factor representing the ratio
of the two was employed and assumed to hold true in the
nonlinear range as well. This factor, although being depen-
dent on the off-axis orientation, did not vary significantly
in the average sense in the range 5° < 8§ < 30°, where shear-
coupling is most significant, as can be verified from Fig.
4.3. Since the effective secant properties are known from
experiment, the extended Halpin-Pagano model can now be
employed to find the "true" secant properties in an iter-
ative fashion. This in turn allows one to find the cor-
rected value of stress at each strain level (since in the
model, the center-—-line strain remains constant and equal to
the applied average strain) and thus the corrected or "true"
stress—-strain response. The above écheme was thought not to
depart significantly from the "exact" method (most likely
based on a finite-element model) in view of the fairly good
correlation between the experimental results and Halpin-
Pagano predictions in the linear range.

Fig. 4.1C illustrates the corrected shear response in
the material principal coordinate system for the off-axis
angles in the range 10° < 9 < 75°. The effect of the
combined state of stress on the shear response manifesting

itself in the so-called stress-interaction phenomenon is
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clearly visible. Of particular technological interest is

L . -

the relative response of the 10° off-axis coupon in réilation
to other off-axis orientations. It appears that the shear
response is not a monotonically decreasing function of the
increasing off-axis angle with respect to stiffness in the
nonlinear range. The reversal of the stress-strain curves
in the 15° - 30° off-axis range that is seen in Fig. 4.10
would point to the importance cf the longitudinal stress 91
on the nonlinear shear behavior.

In order to study the character of the nonlinear shear
response, the nonlinear strain (that portion of strain that
deviated from the linear behavior) together with the corres-
ponding stress level was plotted on the log-log graph for
each off-axis orientation before and after the corrections
mentioned previously. The corrected results are illustrated
in Pig. 4.11 where it is apparent that a power-law predicts
the shear response with very good accuracy. Although the
power exponent varies slightly with different off-axis angles
and with speéimens of the same orientation, the hardening
exponent n. and shift parameters AEG(O) obtained from Fig.
4.11 (i.e. dashed curves) results in very good prediction of
the overall shear behavior for each configuration. This is
shown in Fig. 4.10 where the predicéed response is repre-
sented by the indicated symbols. The extent of variation in
the shift parameters A66(e) is a clear indication of the

amount of stress interaction present in the shear mode in
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this Gr/Pi system, It ought to be mentioned that the hard-

ening exponent n. was not affected significantly by. the...-ecim -~

correction scheme outlined previously. The shift parameters
A66(6) however, were affected and could be brought into
coincidence with the uncorrected results by shifting log-log
plots for each off-axis configuration horizontally. The
above indicates, as was subsequently verified, that the
ratio of corrected to uncorrected secant shear moduli re-
mained nearly constant along the entire deformation path.

The cyclic shear response is illustrated in Figs. 4.12
and 4.13 where the permanent strain and the corresponding
unloading stress level have been plotted on log-log scale.
Taking the experimental scatter of each configuration into
account as well as the inherent inaccuracy of strain deter-
mination at low deformatiocn levels it is seen that the
unloading behavior can be predicted with sufficient accuracy
by a power-law with the same exponent as that for the ini-
tial hardening response. The shift parameters character-
izing unloading (permanent strain vs unloading stress) have
been subsequently determined on the basis of the above value
of hardening exponent.

The cyclic response in shear has been corrected for
shear-coupling in the same manner as the monotonic data by
determining the hardening envelope for each cycled coupon.
No significant differences were found between hardening

envelopes of cyclic tests and monotonic hardening curves for
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given off-axis orientation. The uncorrected monotonic and
cyclic stress-strain curves can be nearly brought into
coincidence by merely rotating the graph of one by a small
émount about the origin relative to the other, indicating
that the small differences present in specimens of the same
orientation are most likely caused by slight material or
experimental variations.

The coincidence of the hardening envelope obtained from
a cyclic test with the monotonic response suggests a change
in the reloading characteristics within the region bounded
by the envelope. Two points of interest have been observed.
First, there appears to be a noticeable change in the
initial shear moduli at the points of reloading i.e. G = 0,
for low off-axis configurations. This is particularly
noticeable in the 5° and 10° off-axis coupons where the

influence of longitudinal stress oy is significant. The

1
initial shear moduli at points of reloading decresase with
the number of cycles for the above orientations suggesting
material degradation due perhaps to micro-crack growth. The
hardéning exponent on the other hand exhibits a bi-modulus
character, remaining constant and significantly smaller than
the exponent characterizing monotonic loading within the
envelope and increasing sharply in the vicinity of the last
(maximum) unloading level. This is illustrated in Fig. 4.14

for a typical 10° off-axis specimen.

Table 4.2 summarizes the monotonic and cyclic response



Table 4.2 Summary of monotonic and cyclic response of the Gr/Pi coupecns in terms of hardening
exponents and parameters
x A22(®)
A* (6) A*u?é) *unl & AZZ(G) based on
off-axis 66 66 A66(0)/A66(6) based on n, = 2,303
fiber based on based on tio n, = 2,670 nonlinear
orientation n, = 3.467 n, = 3.467 ra linear analysis
6 6
analysis of Chap. 5
10° 2.57632x107 18 | 7.56813x10717 0.305 — _—
° -16 =17 -13 -12
15 1.64273x10 4,.82565x10 0.285 5.38494x10 7.17800x10
30° 1.64273x1071 | 3.82565x10717 0.285 . —
° ~16 -17 -13 -12
45 2.21746x10 8.36408x10 0.397 1.14294x10 2.31873x10
60° 3.47767x1078 | 1.21697x10710 0.365 2.23936x1071* | 8.19567x10713
75° 6.66161x1071° — — 1.70948x1071* | 7.05408x1071?
90° — — — 1.39961x10 % | 6.38280x10713

€Z1
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for the various coupons tested. It must be noted that the
unloading shift parameters follow the same trend as those
for monotonic loading with the exception of 45° off-axis
coupons. This is indicated by the ratio of unloading to
loading shift parameters given in the table. This ratio
does not vary significanﬁly for the 10°, 15° and 30° off-
axis configurations. The 60° orientation yielded a somewhat
higher ratio, while still retaining the above trend, which
could be attributable perhaps to the difficulty of measuring
accurately small permanent strains inherent at high off-axis

angles.

4.3.3 Transverse Response

The transverse response in the material principal coor-
dinate system exhibits very little nonlinearity, dissipation
or permanent strain accumulation as can be seen in Fig. 4.15
which shows the behavicr of a tyrical 60° off-axis coupon.
Sinilar response has been observed for other configurations.
Cyclic experiments have not been performed for 75° and 90°
off-axis orientations due to small strains at failure and
the response of testing machine overshadowing the material
response at points of stress reversals.

The corrected monotonic stress-strain curves for the
off-axis orientations 15° < 6 < 90° are shown in Fig. 4.16.
These have been plotted with the Poisson's strains elim~

inated in order to illustrate the extent of stress inter-
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action present. Poisson's strains were assumed to be lin-
carly dependent on the associated longitudinal stress. The
nonlinear portion.of transverse strain as a function of
stress on the other hand has been plotted on log-log scale
‘of Fig. 4.17 to determine the nature of nonlinearity. It
can be observed that a power-law representation with the
same hardening exponent for all the configurations (with the
exception of the 30° orientation) will yield good character-
ization of the transverse response under combined as well as
pure loading. Again, as in the case of the off-axis shear
response, the variations in shift parameters Azz(e) clearly
indicate the degree of stress interaction present. The
transverse stress-strain response predicted on the basis of
the determined hardeninq exponent and shift parameters of
Fig. 4.17 is given by the indicated symbols in Fig. 4.16.

The Poisson's response of the 90° configuration on the
other hand remains virtually ccnstant with very little vari-
ation from specimen to specimen despite noticeable deviation
from transversely isotropic behavior. As mentioned pre-
viously, this could be causzd by strain gage sensitivity
problems associated with measuring such small strains.

The cyclic response in the transverse direction appears
to follow similar trends as those of the shear response.
However, because the associated strains are very small and
the possibility of error relatively large, nc detailed

discussion beyond the above observation will be attempted.
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4.4 Failure

The ultimate axial stress O, 35 @ function of the off-
axis angle for the various configurations tested is illus-
trated in Fig. 4.18 for both monotonic and cyclic cases.
Several noteworthy aspects regarding faiiure have been
observed. First of all, all the specimens, with the excep-
tion of 0° configuration, failed or fractured along the
fiber direction as revealed by visual examination of the
fracture surfaces. These surfaces were quite smooth even at
low off-axis angles. The coupons generally failed away from
grip regions with the exception of the 5° off-axis orienta-
tions pointing to the new test fixture's capability of
inducing test-section failures. ‘Fracture location of the 5°
off-axis coupons was indicative of the "scissoring effect”
due to the fibers originating in the endgrips (see test
specimen dimensions of Fig. 3.10). The 0° coupons on the
other hand either failed explosively, first splitting along
the fibers and subsequently shattering which gave them a
broom-like appearance or fractured perpendicular to the
fibers producing a jagged surface. The typical failed
specimens of each orientation arez shown in Fig. 4.19.

The ultimate lamina stresses, longitudinal and trans-
verse strains as well as measured fracture angles are re-
ported in Table 4.3. As can be observed the strength data
is relatively consistent with deviations from the average

behavior on the order of few percent for most off-axis
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Table 4.3 Summary of ultimate stresses, strains and fracture angles
of the Gr/Pi coupons

* - excluded from averaging
/ - separates monotonic and cyclic average strength data

Ultimate % difference Ultimate
. Fracture

Specimen stress g from strain

. . . XX s angle

designation # a (psi) € (%)
XX average XX

1-15-0° 224,679 -0.3 1.0491 90° - jagged -
1-16-0° 227,132 +0.7 1.0548 90° - jagged
1-17-0° 224,274 -0.5 1.0379 split & shatter
1-18-0° 170,976% — 0.8443 split & shatter
1-19-0° 211,436 ~2.4 0.9803 split & shatter
1-21-0° 221,900 +2.4 1.0323 split & shatter
° 225,362/
0° average 216, 668

1-5-5° 105,660 +2.9 0.6724 5°

1-6-5° 98,939 ~-3.6 0.6221 5°

1-7-5° 103,432 +0.7 0.6908 5.2°
1-16-5° 107,557 -1.2 0.6581 4.,5°
1~-17-5° 110,000 +1.0 0.6415 4,5°
1-18-5° 109,153 +0.2 0.6379 4.75°

° 102,677/
5° average 108,903

1-12-10° 58,924 +0.2 0.5792 9.5°
1-15-10° 55,859 -4.9 0.5488 9.5°
1-17-10° 59,973 +2.0 0.5844 9.75°
1-18-10° 60, 335 +2.6 0.5976 10.4°
1-5-10° 63,490 +1.2 0.6421 9.5°
1-7-10° 62,086 ~1.0 0.6450 9.75°
1-13-10° 62,598 -0.2 0.6259 9.75°

o 58,773/

10° average 62,725
2-4~15° 42,475 +2.8 0.6351 14.8°
2-5-15° 40,457 -2.1 0.6272 14.5°
2-6-15° 41,018 -0.7 0.6683 14.75°
2-2-15° 39,202 -3.5 0.6022 14.75°
2-3-15° 33,955 -10.4 0.5235 14.5°
2-8-15° 40,515 +6.9 0.6617 14.5°
15° average 4;;?;;{
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_Table 4.3 (cont'd.) Summarv of ultimate stresses, strains and
Uracture anples of the Gr/PE coupons

/ ~ separates monotonic and cyclic average strenght data

Ultimate % difference Ultimate Fracture
Specimen stress Oxx from strain angle
designation # T (psi) average € x (%) &
2-8-30° 18,617 +5.0 0.7807 30°
2-9-30° 17,433 ~1.6 0.7027 30°
2-15-30° 17,115 -3.4 0.6223 30°
2-19-30° 17,200 ~-7.0 0.7176 29.75°
2-22-30° 19,796 +7.0 0.8216 30°
o 17,722/
30° average 18,498
3-13-45° 11,893 -1.9 C.7864 45,2°
3-15-45° 12,276 +1.2 0.7983 45,2°
3-18-45° 12,228 +0.8 0.8100 " 45°
3-21-45° 11,302 +2.6 0.7360 44 5°
3-22-45° 10,721 -2.6 0.6422 44,25°
° 12,132/
45° average 11,011
2-10-60° 9,304 +5.1 0.6341 60.4°
2-13-60° 9,210 +4.0 0.6817 61.2°
2-15~-60° 8,043 -9.1 0.5845 59°
2-19-60° 9,226 +3.2 0.6592 60°
2-20-60° 8,658 -3.2 0.6400 60.5°
° 8,793/
60° average 8,942
2-11-75° 8,793 -2.3 0.6322 75.8°
2-14-75° 8,830 -1.9 0.6583 75.6°
2-16-75° 9,387 +4.3 0.7077 74.,8°
75° average 9,003
1-13-90° 7,600 +1.5 0.5674 90.25°
1-15-90° 5,723 — 0.4062 90°
1-16-90° 7,367 -1.5 0.5419 90°
90° average 7,484
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configurations. The observed differences in strength be-
_tween monotonic and cyclic tests do not appear to be signif-
icant and their apparent randomness tends to be indicative
of slight material variations rather than the particular
testing program. However, one important pecularity has been
brought forth by the cyclic tests. All of the configura-
tions, with the exception of the 15° off-axis coupons,
failed at stress levels above the maximum unloading stress
irrespectively of the number of times they were cycled (3,
4, 5, or 6). All three 15° off-axis coupons on the other
hand failed below the maximum unloading stress pointing to
the possibility of path dependent failure for this orienta-
tion. It must be noted that in most cases the maximum
unloading stress was chosen fairly close to the ultimate -
striess of the particular configuration cycled, as determined
from monotonic tests. Such peculiar response is illustrated

in Fig. 4.9.

4.5 Summary of Observed Response of the Gi/Pi System

i) Initial (linearized) response can be very well approx-
imated for most off-axis configurations by a trans-

versely isotropic model with Gy = 0.725 x 106 psi
yvielding best fit with the experimental data.

ii) Longitudinal stress-strain response appears to be
reversible with a stiffening, bi-modulus character.
Major Poisson's ratio also exhibits a bi-modulus,
reversible appearance. Experimental data reported in
the literature as well as tests performed on the graph-
ite fibers employed in this particular system (courtesy
of Celenese Corporation) suggest that the stiffening
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iii)

iv)
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characteristics are due to straightening of the cellu-
lar structure of graphite fibers. Thus if dissipation
due to fiber breakage, fiber/matrix interface debonding,
matrix crazing, etc. is taking place it has negligible
effect on the overall response in the fiber direction
under the outlined testing conditions.

Shear response in the material principal coordinate
system exhibits considerable nonlinearity and dissi-
pation as well as measurable permanent strain accumu-
lation as verified by cyclic tests. Monotonic shear
response for the various of.-axis configurations tested
can be described with good accuracy by a power-law
relation with a constant hardening exponent and ori-
entation-dependent shift parameters. This is indic-
ative of the so-called stress interaction phenomenon in
which the longitudinal stress 911 also plays a role for

this particular material system. Monotonic and cyclic
responses are similar in the sense that the shift
parameters for both types of loading follow the same
trend for most off-axis configurations. hardening
envelopes of cyclic tests furthermore coincide to a
large extent with monotonic curves and the material
"remembers” the last unlcading point while generating
hysteresis loops during reloading within the hardening
envelope.

Monotonic transverse response follows the same trends
as in shear except that the amount of nonlinearity and
dissipation is significantly smaller in this case.
Power~law behavior with a smaller hardening exponent is
applicable, stress interaction is noticeable and the
minor Poisson's ratio remains practically constant
until failure.

Failure characteristics appear to exhibit two distinct
modes: fracture along the fiber direction resulting in
visually smooth surfaces for all the off-axis orienta-
tions with the exception of the 0° coupons which failed
either perpendicular to the fibers or by splitting and
then exploding which resulted in their final broom-like
appearance.
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5. APPLICATION OF ENDOCHRONIC THEORY TO THE
OBSERVED RESPONSE OF THE GR/PI SYSTEM

5.1 Introduction

The observations on the experimentally determined
response of the Gr/Pi system cutlined in the previous
chapter will form a basis for the development of a material
model utilizing the previously developed general equations
of endochronic theory. The discussions will be divided into
three sections. The first part will deal with the apparent
reversible behavior that has been observed in the fiber
direction. To this end a potential is proposed which models
the stiffening, bi-modulus reversible response parallel and
perpendicular to the fibers. Certain properties as well as
thermodynamic constraints on the newly introduced potential
will be briefly outlined and the various constants evaluated
from experimental data.

The combined response is discussed in the second sec-
tion where the specialization of the general endochronic
equations for transversely isotropic media is caried out
explicitly to demonstrate their applicability to this
particular material system. Theoretical-experimental corre-
lation will be subsequently carried out for the various off-
axis configurations in both monotonic and cyclic modes after
evaluation of the necessary material parameters employing
phenomenological as well as micromechanics—-aided approach.

Finally, the failure characteristics will be examined

137
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in the third part where the predictions of two representa-

et e —— W -

tive and currehtly used criteria as well as a newly proposed
micromechanics-based failure condition will be compared with

the observed monotonic response.

5.2 Reversible Response

In order to model the reversible portion of the re-

sponse a potential of the following form is proposed:

—
1 1 -avlijoioj ~
-G_ = % A..0.0. + = (e - 1) + VL..0.0.
o 2 7137173 Q 137173
{5.1)
so that the reversible strains are given by:
R aGO Zi.o. -avi Omon
£ = - —= = 0. + L) 11 -e ] (5.2)
i ko) 1373 T 5 o
mn n

In the above the following are assumed at the outset:
Zij is positive-definite and the parameter a whose signi-
ficance will be shortly discussed is greater than zero.
Applying the restriction 62(—GO) > 0 and examining the

limiting behavior of the above, the following thermodynamic

constraints are obtailned as is illustrated in Appendix C:

.2 _ . |
ﬁlfoé (—GO) = (Aij + alij)ooiécj >0 (5.3)
i

so that (Aij + azij) must be positive-definite;

. 2 _ .
g?de (-G,) = Aijdoiooj >0 (5.4)

and therefore Ajj by itself must also be positive-definite.
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Furthermore, it can alsc be shown (See Appendix C) that the

“above Gonstraints in conjunction with the initial two
assumptions are sufficient for the condition
52(~G0) > 0 to hold true for all plane stress loading situ-
ations.
At the outset we limit our discussion of the nonlinear
elastic response to normal strains along and perpendicular
to the fibers in view of lack of evidence of initial stiff-

ening in shear. Thus we assume that 2 0

a6 = *s5 = s =
which is consistent with the constraint given above.
The physical significance of the various material para-
meters can best be illustrated through hypothetical lcading
experiments along the specified material principal direc-
tions. Let us consider the following loading situation to
illustrate the general methodology.
Example: Ul # 0, all other zero

The following plane stress-strain equations are obtain-

ed from Egns. 5.2

AV 2,40
_R _ , > 1171
€y = Allol + /Lll(l e )
(5.5}
2 -Vl .35
R _ , 12 _ 1171
€2 = AlZJl + v (1 e )

The significance of the various material parameters is
brought forth by examining the limiting behawior of the

above system of eguations. Differentiating the first of
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Egns. 5.5 with respect to o, we obtain:

1
3€R -av/l. .0
L A + al,,e 1171
so, - Mt el U L
so that:
|
dC? a€§!
3| = App t Aty 3 | = A (5.6)
Ol=0 0’1:00

and since o > 0, All’ 111 > 0; the initial compliance
(stiffness) is greater (smaller) than the limiting compli-
ance (stiffness) in case of strict inequality of the second
relation so that stiffening response in the fiber direction
has been generated. The initial and final responses along

the fiber direction are thus, respectively:

R = ¢
el(ol + 0) = (A11 + alll)ol
(5.7)
R - ‘
€)(0) = =) = Ay0) HAp

- o 4 .
and thus lel is the Ol

response. The geometric interpretation of o can now be

= (0 intercept of the final limiting

obtained upon finding the intersection of the two limiting

curves. Setting E?(Ol - 0) = e?(ol + ») we cbtain:
. S (5.8)
111 %1

*
where 9 is the common stress at the intersection of these

two curves. We can therefore adjust the initial stiffening

response in conjunction with the "knee" of the stress-strain
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curve by varying the parameter o« for a given le. The
features of the model outlined above are illustrated in Fig.
5.1 for the longitudinal stress-strain response. In summary
we note that the three material parameters All’ lll and o
can easily be obtained from a single longitudinal tension
test, i.e. Egns. 5.6 and 5.7.

Some of the interesting features of the Poisson's or
strain-strain behavior in longitudinal tension inherent in
the model are best examined by separating the response into
constant and stress-dependent components. Equating the expo-
nential parts of Egqns. 5.5 and then differentiating with

respect to the El—strain we obtain:

3e, o (Byp gy 7 Bypdy) 90, (5.9)
= Vi T * T 3¢

12 24y 11 1

Three types of longitudinal strain-strain response are

now possible depending on the value of the term

(R1p%11 = Bi1t10)

€
. _ .___2__
i) A12211 - A11212 = 0; 361 = constant
362
ii) A L8 - A, % < 0; == = constant - f£(o,),
12711 11712 9eq ’ 1 (5.10)
f(ol) >0
852
iii) Alzlll - A11212 > 0; 53; = constant + t(ol),
f(ol) > 0

Thus either a constant, stiffening or softening
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Fig. 5.1 Longitudinal stress—strain response of a hypothetical 0° Gr/?i
coupon illustrating certain features of stiffening behavior of
the proposed model
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Poisson's response can be generated according to the above
scheme. The unknown constants A, and L., are obtained by

examining the limiting response as outlined previously. To
this end it is more convenient to express the instantaneous
Poisson's ratio in a more direct way by differentiating the

second of Egns. 5.5 with respect to the sl—strain to obtain:

o€ ~-av2 g, 30
2 _ . 11 1 1
5, (Byp + aZqpye Yyes (5.11)
1
so that
|
de, . . )301‘ 362] . 301_1
Je 12 127 3¢, ' Je. 12 3¢}
1 a,=0 + g,=0 1 g. =0 llg =
1 1 1 1
(5.12)

and thus the entire treatment in analyzing major Poisson
response follows along the same lines as that for the longi-
tudinal behavior. The discussion regarding the transverse
response is evidently completely analogous.

The various material parameters of the proposed elastic
potential have been evaluated on the basis of average lim-
iting responses of the tested coupons using the relations
developed above. Since the transvérse response appears to
be coupled, consisting of reversible and dissipative por-
tions conceptually speaking, a similar condition to the
first of Egqns. 5.10 was employed to find a relationship

between A and 2?2 in view of the available cbserved re-

22
sponse, i.e. A12£22 - A22212 = 0. These parameters are
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Table 5.1 FElastic material parameters of the '"nonlinear' elastic
potential G, for the Gr/Pi composite system

0
Ay ) Agy Age
5 26 6 a3
0.04296 x 10 -0.01366 x 10 0.54370 x 10 1.37931 x 10
‘11 12 %92 a
3 =5 =3 —=
0.37800 x 10 +0.20000 x 10 7.95988 x 10 1.991 x 10

1 —aﬂzfoio.
A,.0,0, +—le JrI 1 + A o.0.
i i371i73

-G = JiJ o

rof=
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given in Table 5.1 and it can be easily verified by inspec-

tion that they obey the derived thermodynamic constraints.

w4 e amw g . an e s

The predicted average response in longitudinal tension is
shown in Figs. 5.2 and 5.3 with selected experimental data
included for comparison. The agreement appears to be good.
It must be mentioned that even better agreement can be
obtained if specific coupons are used to evaluate the neces-
sary parameters and then compared directly with the predic-
ted response on a one-to-one, instead of average, basis;

The proposed elastic model predicts that the reversible
portion of the total response in transverse tension yields
stiffening response whereas the character of the transverse
dissipative behavior has been determined in the preceeding
chapter on the basis of deviation from linearized stress-
strain relation. To correct this discrepancy the transverse
hardening response has been re-evaluated using tlie newly
proposed nonlinear equations to eliminate the reversible
porticn of the total response. The results are illustrated
in Fig. 5.4. Two noteworthy aspects can be delineated; the
decrease in the hardening exponent and the subsequent in-
crease in the shift parameters, and considerable reduction
in the fluctuations of the hardening exponent from orient-
ation to orientation for most off-axis angles. Thus it
appears that the newly introduced elastic potential brings
more consistency to the observed dissipative portion of the

total transverse response when analyzed in the outlined
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5.3 Longitudinal tension of 0° Gr/Pi coupons - predicted and
observed Poisson's response




)

nonlinear
22

In(e

148

_15.0 \ L\\ L i A i 1 A1 L 1
RN
N ~ t§\\
p \\\ ‘\$?\\ -
N N
\\ \\ AN
-12.0 A <~ 0 -
-9.0 4 -
. e 15° off-axis \\ !
. g N
-6.0 1 o e0° " oot
° N
a 75 " N \\ \\\\
] o 90° AN
\\ N
N
-3.0 A AN
000 r ¥ T LS ¥ T 1 T T
5.0 6.0 7.0 8.0 9.0 10.0
1n(022)
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in the range 15° < 8 < 90° re-examined with the nonlinear
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manner.

T e - W

5.3 Combined Response

In specializing the general equations developed in
Chapter II to model the dissipative portion of the experi-
mentally determined response of the Gr/Pi system we are
guided by the two observations of power-law relationship
between stress and dissipative strain and apparent revers-
ible behavior along fiber direction. The first observation
implies "the presence"” of large number of internal variables
while the second restricts the influence of dissipation
modes to the plane of transverse isotropy, that is;

b, =90, B% =8% =90, c% =¢c% =0 (5.13)

b 12 Ci11 = 12

a =
11

for each internal variable specified by a. On the basis of
the above observations we assume that the response of this

particular composite system can be approximated by the fol-

lowing set of equations, c.f. Egns. 2.12-2.15:



150

22 723} ldz

o o
Lo b b~ L——- 6 Cy5 C




151

_%(bgz-b§3) 0 o g;z _%(cgz—cg3) o,,,,oj_.qi‘W e
0 b26 0 Jgggf + 0 cgs 0 Jqsr
L ° 0 Ygg ngg L 0 0 Ceql lag
—%(332-333) 0 o] {04’
- 0 Bgg O |{osf
| 0 0 Bzﬁ {06

so that the solution of the above can be readily obtained as
a special case of the general equations developed in Chapter
2. The relevant system of equations for plane stress
loading situations takes on the following form upon em-
ploying the constraints given by Egns. 5.13 in Eqns. 2.35
for each value of « and then carrying out the required

summation over all o's:

e = - 20
1 801
3Gy [
= e e— —_— ! ] [} -
€y = 802 + f BZZ(Z z )cz(z ydz (5.15)
0
3G, z
—_ - ¥ L |
€g = 306 + j 366(2 z )06(2 )dz

0

where the functions §22(z) and 566(2) are given by:
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n o a 32 a a-. o 32 I
B,,(z) = %. Zl (85,+8%,) e-xzz (85,-855)% "~A5z
a= o o o o
(b3,+by5) (5357b55)
5 n (855)" 3Gz
Bee(2) = L 3 (5.16)
o=
66
a a o v} a
A% = (C22+Eﬁél A = (C22—C23) . 66
2 a . * 73T o Loy ! 6 .o
(b5,+b55) (by,-b5-) bge

Thus in general for this specialized case, the response
in the transverse direction to the fibers will be governed
by two independent sets of hardening exponents. This is due
to coupling between transverse normal and shear response in
the plane of isotropy as can be easily deduced by observing
that Ag = AZ. In particular, if the hardening response is
similar in shear and transverse tension in the 2-3 plane,

which corresponds to the case

a —
b23 =B

then Ag = Ag, and so one set of hardening exponents ensues

in the transverse mode. Thus,

2

a a a4
_ n (822) -Azz N c22
B,,(z) = Z —_—e where now A = —=
22 a=1 b% 2 "
22 22

as will be assumed henceforth.
In order to obtain the power-law approximation we pro-
ceed as follows. Integrating Egns. 5.15 by parts we have

for €gs SaY;5

o



N o] 2 - 12
C o oGO A 3_1 1 ](866) ->\6(Z z') , [
6 = 55 | Z —_—e 06(2, ) S
6 a=1{x}i b !
‘"6 66 'g
(5.17)
Z a 2 Q. 4y 90.(2")
; f i ;_}(866 AL A PY
Lo Tx )
0 a=1 XG} b66
The above can be rewritten as
2 1
3G n % - 2z
ee = - 22+ o (0) | (L |86 [y _ o6
6 006 6 a=1 2 X
g 66
z a2 oy ) a .
7 on o ) (Bgg) { ~hg(z=2') 30 (2")
+ ] ’ lfaJ 5 1 -e j 55— dz!
o @=llig) Dbgg

as can be verified readily by integrating ocut the first part
of the kernel. The power-law approximation ensues if a
sufficiently large number of internal variables is assumed

so that we can write:

Lhg

2
a 23
(e5s) [, . e-AGZ} . ng

IIMD

and similarily (5.19)
a a
n (1) (B3 =A%) o, )
— - (1 ~-e % BS,ez , Ny, > 1
) A& B2 22 2
a=1'"2 22

as the above are merely summations
ing functions with different rates
different transition points. More

dependence results if a continuous

of monotonically increas-
of asymptotic decay and
precisely, power-law

distribution of retarda-
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tion times Ag's and Ag‘s, is assumed by drawing a parallel aralocy
with standard viscoelastic treatment for such a case [94,
103].
As 06(0) = 02(0) = 0, which is a commonly assumed
requirement of the intrinsic time scale, the relevant total
plane stress constitutive equations thus become:

€, = A,,0, + A,.O

1 11%1 1292
(£,,0,+2,0.) -a V& 0%+20. 0,042, 02
11917%129%2 119179712919 2%%22%2
+ l-e
p) 2
J111°1+2212°102+“22°2
€y = B1p0p + BAy0y
(2,,0,+3,,0,) . —WAJQ 02428, 0,01, 02
120177229 “ ¥ 119179 12%1%27 7227
+ l-e
) 2 '
‘J211°1*2£12°152+122°2
z n, 30,(z")
0 of(wen? —_— !
+ J 822 (z-2"') L dz (5.20)
0
z ng 90g(z")
- o . —_ ! —— '
€ = Age0e + J 866 (z~-2") T dz
0

Thus for monotonically increasing and proportional
loading for instance the choice of the intrinsic time scale
of the form dz = dy = /E;;EE;EE; will result in the type of
equations that Hashin proposed to model the response of

transversely isotropic composites as can be readily verified
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by direct integration of the above equations. The above
scheme however is evidently more general since it allows for
all the stress interaction components to be included in a
rational and consistent manner. The presence or absence and
degree of such stress interactions can be brought forth only
through experiment or some micromechanics analytical or num-

erical scheme as that of Foye [56] mentioned previously. In

what follows, the various parameters of the chosen intrinsic”

time scale will be at first determined directly on the basis
of available experimental data without attaching any phys-
ical significance to them. Subsequently, one possible
method of determining these parameters on the basis of koth
the available experimental data and micromechanical consid-
erations will be illustrated in order to study the feasi-
bility of inccrporating micromechanics in a fairly elemen-
tary way into the constitutive framework to model some of
the mechanisms contributing o the dissipative response of

this particular fibrous composite.

5.3.1 Experimental-Theoretical Correlation
i) Phenomenological approach - Monotonic response

The material parameters governing the dissipative
response of the proposed model can be obtained from the off-
axis tension test once a choice of the intrinsic time scale
is made. On the basis of the observed response of the Gr/Pi

system it will be assumed that dz = dy for the monotonic
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loading so that the relevant Egns. 5.20 can be directly

integrated to yield:

e, = eX
2 "2
BO n /2
22 4 2 17274 (n,+1)
nz+l[sllcotan 6+(2512+566]cotan 6+522J 0, 2
6 = %6
Bo n /2
66 2 2,1%67° . (n.+1)
= +l{sllcotan 0+ (25 ,+s ) +s,,tan”e O 6
¢ (5.21)

where R stands for reversible as before and use has been
made of the fact that for proportional locading situations
all the various stress components can be expressed in terms
of the desired one and the related ratios of trigonometric
functions'relating the components to a single loading
parameter. In the above formulation, one of the positive
constants B%z' Bgs is somewhat arbitrary since only the
ratio Bgz/Bg6 can be determined in view of sij assumed to be
B%G is set
equal to unity. In what follows, the components sij of the
endochronic time measure will be determined on the basis of
the resolved off-axis shear response along material prin-
cipal directions. We note that as the combination

(2s12 + 566) always appears together, there are essentially
three unknown parameters $117 Soo and (2512 + 566) that have

to be evaluated. Thus three off-axis tests are required in
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By the same token, it is not possible to

determine Sg6 i.e. pure shear component of the endochronic

time measure, directly using this approach.

. . *
Defining the shear hardening parameter A66(6) as fol-

lows:

*

Agg

B) =

Bg )ns/z

and utilizing the hardening parameters of three different

off~-axis tests to solve for Si1r S5

obtain:

g l
n54

=(n +L)

2 and (2512 + 566) we

2 2

THEI%T{Sllc°tan26+322tan29+(25 66)‘ (5.22)

511

,

) 2
* =y * .
66(91)“6—A66(92)“5}{ce -t9 ] { Agg (8 )“6 6(0 )16 l{:e -t?}

[c@l—cez [te -tf ] [ce —ce3J{t5 -cs

\

2 2 2 2
2 * B;_ * ne _ B Eﬁ_ * T A
s =(n +l)n5+{A66(61) A6 (02) }{Cel °e3) {Aéé(el) Ae6(03) }[cel cng
22~ (%

f

(25)7%8¢6)= |

(
ltel-cez][cel—c83)-[t61—t63)Icel-cﬁz}
2
(n +1)A66(8 )} - {sllcei + szztei] (5.23)
2

where i can be either 1, 2 or 3, tei Z tan”8 and

cei = cotanze..

With s, .
1]
is easily det

thus obtain:

parameters known, the scaling constant 522

ermined from the transverse tension test. We

»
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* n2
B, = (n, + 1)A22(9o°)/522'“z' (5.24)
* *
with Azz(e) defined in a similar manner as A66(e).

As the shear and transverse hardening parameters are
strongly nonlinear functions of a specific functional form
of the off-axis angle, they are naturally sensitive to the
choice of off-axis orientations used to determine their
endochronic parameters. Thus in order to cover the major
portion of the off-axis range with a good degree of accuracy
it is necessary to choose the three off-axis orientations
with the above in mind. The configurations that yielded
best agreement with experimental data were found to be 10°,
30° and 60°. The experimental and predicted values of the
shear and transverse hardening parameters are shown in Figs.
5.5 and 5.6, and it is seen that the agreement is quite good
over the range of significant nonlinearities occurring in
practice. The actual experimental and predicted stress-
strain response in monotonic shear and transverse tension
for the various off-axis configurations is shown in Fig. 5.7

and 5.8. The correlation is evidently good.

ii) Micromechanics approach

The micromechanics approach employed in the formulation
of the intrinsic time measure is based on Hill's stress
concentration factors relating the average stresses in

either phase of the composite to the average applied
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stresses in the elastic domain {104]. The elements of the
so-called stress concentration matrix can be determined once
the initial (linearized) compliance or stiffness elements of
the constituents and overall composite are specified. The
stress concentration factors for the matrix phase for

example are given by the following equations:
] - (uf] = c, M - mfy (8™ (5.25)

where [M], [Mf] and [Mm] are the compliance matrices of the
composite, fiber and matrix phase, respectively; < matrix
volume fraction and [B™] the stress concentration matrix of
the material matrix phase.

It is subsequently assumed that the dissipation taking
place in the composite is caused by two coﬁpled phenomena:
shearing deformation of the matrix phase governed by the
average deviatoric stress components in that phase not
deviating significantly from the initial average stress
ratios, and perhaps micro-void coalescence due to crazing
caused primarily by the longitudinal elongation governed by
the stress gy The second mechanism is included to account
for the significant 9 stress interaction present in the
observed response which cannot be explained on the basis of
matrix octahedral shear stress formulation alone. 1In fact,
the evidence of some form of stable damage accumulation in
this composite system is substantially supported by the

tests carried out on pure polyimide specimens as well as by



164

the off-axis shear reloading response along the material
principal directions as discussed in Chapter 4. Although
ambient temperature tension and torsion tests on polyimide
specimens at strain rates of 0.02 in/in/min indicated some
nonlinearity and dissipation present in cyclic tests, the
extent of the above was insufficient to explain the pro-
nounced hysﬁerisis loops observed in the tested composite
coupons in the combined shear mode.

Tension tests were carried out under plane stress
conditions according to the ASTM standard test method D638-
77a and produced permanent strains in the neighborhocd of
0.05% upon unlcading linearly from 80% of ultimate load for
example. The average strength of the tested polyimide
specimens was 5313 psi at the corresponding strain of 1.21%.
Torsion tests on the other hand were carried out on solii
cylindrical specimens 2.0 in long and 0.5 in in diameter and
yielded virtually no measurable permanent strain upon
unloading from as high as 80% of ultimate torque. The shear
strength was determined at approximately 6470 psi with
strain of 4.66%. The shear stress-strain curves were prac-
tically linear to stress levels as high as 4250 psi with
deviation of about 0.25% strain from linearity at failure.
While this particular shear test method can sigrnificantly

mask the extent of material nonlinearity, absence of hys-

terisis loop and permanent strain upon unloading would
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appear to indicate the brittle and to a large extent revers-
ible natuze of this material's response at room temperature.
Furthermore, the decrease in the composite shear modulus at
points of reloading observed in cyclic tests does point to
some material degradation caused by the deformation process.
The above phenomenon is markedly noticeable at low off-axis
configurations where the longitudinal stress gy is signi-
ficant.

with the above observations in mind the intrinsic time

scale is formulated as follows:

_ LR
dz = adol +'V%'doim dgim

, NO sum on m (5.26)
where a > 0 is the only restriction needed for monotonic
tensile loadings to ensure that dz > 0. Employing Hill's
stress concentration factors, the second part of dz can be
expressed in terms of the external stress increments so that

we have:

- e P et (5.27)
dz = adol +,v;ijdoidoj

where now,

=Llpn _ gl 12 = (BT 2
s11 = 3(By1 ~ Bai) Se6 = (Bge)
_l,m _ .m m m m
s12 = g(B11 ~ B1) (3B, ~ Byp ~ Bys)
2 2 -

2
1 | m m m m m m
S22° % EBzz © Bra) + (B - By3) + (B - B23)l

and the elements of the matrix [B™] are given in terms of



le66

the initial (linearized) moduli of the constituent phases
and composite in Appendix D along with the methodology of
their explicit determination on the basis of available
experimental data and certain other assumptions.

The necessity of including the first term in the time
scale can be readily demonstrated by finding the location of
minimum value of Ags(e) for the case a = 0. From Egn. 5.22
we readily obtain the condition
1

9 . = tanwl 3
22

L
min }' = 10.06°

for the set of stress concentration factors for this system
as determined in Appendix D. The actual response on the
other hand indicated that the minimum of A;6(6) occurs be-
tween 15° and 30°,

Thus two resolved off-axis shear responses are needed
now to determine the material parameters a and 386’ whereas
Bsz is obtained from the trans&erse tension test as before.
The off-axis configurations used to that effect that yielded
best agreement with the evnerimental data were 10° and 60°
orientations. The results are included in Figs. 5.5 and 5.6
for comparison with the phenomenological approach. While
the correlation is slightly less favorable than that of the
previous method, the advantage of such micromechanics-aided
approach is the possibility of deducing the pure shear

response as well as the utilization of only two off-axis
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iii) Cyclic response

It has been observed in Chapter 4 that the unloading
and subsequent reloading response appears to be independent
of initial loading path in the sense that the material
remembers the previous unloading stress level while gen-
erating hysterisis loops within the envelope bounded by that
level. This type of response is apparently difficult tc
predict with a single stress-based time scale. 1In view of
the above as well as other experimental observations on
cyclic response cutlined in Chapter 4 it is proposed tc
introduce a second time scale operative within 'the recion
bounded by the maximum stress level. This inner scale would
be reset at every point of stress reversal within the stated
regicn so that fading memory effects would only be present
or any one path segment that does not undergo reversal of
stress direction.

The introduction of an inner time scale and thus a
discontinuity in the overall intrinsic deformation scale
requires re-examination of thermodynamic constraints since
the Clausius-Duhem inequality considered in Chapter 2 alcng
with Onsanger's relations ensure positive character of
dissipation locally only. The resetting or sudden jump in
the intrinsic time scale z imposes certain constraints on

the choice of the inner scale that can be obtained by exam-
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ination of the required positive character of dissipated
work globally, that is in a given stress cycle. With the
above in mind we propose that the inner deformation scale
applicag%g on any given path within the region bounded by

the maximum unloading stress level be of the form:

dzi = Rdz, B > 0, i = inner (5.28)
and examine the validity of the above as well as limitation
imposed by global thermodynamic considerations on f. To
this end we consider the total response in a pure shear

loading-unloading-reloading cycle.

*
A) 1loading up to O = Og

The intrinsic time scale and the ensuing stress-strain

response is given by:

806 1
2 = YSg6 96 5z .
"S66
zZ
B2 n
€g = A6606 + f 66 (z - 2') 6 dz'
0 "Se66
B° 6 (n6+l)
= P66% * Tng +1)(' U6 (5.29)

*
B) unloading from Og = O¢ to Og = 0

The intrinsic scale now becomes

. 30
z' = 8/3 (c ~az), S _1
6 "6 1 p—
9z B/S66
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which is valid within the envelope bounded by the maximum
stress level so that the integration of constitutive equa-

tions is carried out as follows:

* i
z z
e - B2 B2 C e .
€., = A__0,_ + ( 66 (z*-z') dz' - 66 (zl—zl ) dzl'
6 = Pess T | 7 e
0 66 0 66
(5.30)

* * . .
where z = /566 g and thus the first integral represents

*
the dissipative portion of strain at Op = 0¢

well be obtained from Egn. 5.29 by using the above equality.

and can just as

Performing the necessary integration and substitution, Egn.

5.30 becomes:

B® n (n.+1)
~ - Bge 6, = (Ng
€6 = g6 * Tﬁgil)('sss) (a4)
(5.31)
*
B n (n.+1)
66 [, —1"6,  * 6
T g P%66)  (%67%)

Thus at Jg = 0, i.e. at the completion of the stress cycle,

the permanent strain is given by:

B n (n +l)[ n )
p_ 566  —— "6, * (M A
€6 = (n6+1)(““66) (gg) 1-8 (5.32)
Furthermore,
2
3%¢e ( n (n.-1)
6 _ _ o i 6 * 6
nGB66[B/566] (06 06) (5.33)

2
do¢
Thus for 0 < 8 < 1, the permanent strain after one cycle is

positive and the unloading response is concave with respect

to the stress axis ensuring that the work dissipated by the
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material is positive.

*

6 6

The reloading response is now given by the following

C) Reloading up to o, = ¢

“equation
. .
6
B2 _(vVs_,) (n,.+1) n n, (n,.+1)
e, = A, +-06 66 (% 6T 1 56 4 g6, 6
6 = P66 g+1) 6 6
(5.34)
so that at 06 = o; we cbtain:
o
(i x) * Bgg — Mg( ) (ng+l)
“6%6""%66 %6) ~ Pec%6 * T +D) "6’ |6

and we have arrived at the same point on the hardening
envelope while generating a hysterisis loop since Egn. 5.34
is convex with respect to the stress axis. The response in
the region past the unloading stress og is given now by Eqgn.
5.38 and the associated time scale z indicating the dual
character of the dissipative behavior. Several things will
be noted frcm the above analysis. Permanent strain accumu-
lation is governed by the parameter 8. For B = 1, anelastic
response is generated. Permanent strain accumulation as a
function of the unloading stress level exhibits similar
response as the corresponding guantitites in monotonic
loading except for the scale factor B; precisely as has been
observed to a large extent for the Gr/Pi system.

The application of the above model to prediction of
off-axis shear response is now straightforward since the

only parameter that remains to be determined is 8 - which is
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readily obtained on the basis of experimental results of
Chapter 4.

The cyclic response in shear is compared with the pre-

dictiaons .of the.model.in Figs. 5.9, 5.10 and 5.11 for the

10°, 15° and 30° off-axis configurations to illustrate the
degree of applicability of the proposed model. The correla-
tion appears to be good if the unloading stresses based on
the corresponding strains obtained from experimental data
are employed in predicting cyclic response as has been done

in the above comparison.

iv) Lamina response predictions

The developed set of constitutive equations is utilized
in this section to predict the response of Gr/Pi unidirec-
tonal off-axis coupons in the lamina coordinate system.
This is the most general test of the model's applicability
since it employs the response predictions of the proposed
nonlinear elastic potential as well. Selected cases will
only be presented for reasons of brevity and space limita-
tion.

As the point of immediate interest was verification of
the mecdel's ability to predict nonlinear response, the
experimental data were reduced with the aid of Halpin-
Pagano's equations and a correction factor so that the
initial moduli coincided with transversely isotropic trans-

formation predictions. The reduction procedure was the same
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as that employed in Chapter 4. Furthermore, in order to
clearly demonstrate the extent of scatter present in coupons
of the same orientation, actual experimental response of each
‘coupon is presented In the following graphs along with
theoretical predictions.

Figures 5.12 and 5.13 illustrate the stress-strain
response ¢ VS € in the lamina coordinate system for the
six off-axis configurations tested. The correlation is
excellent for the 20°, 45°, 60° and 75° orientations and
good for 10° and 15° off-axis angles. The reason for the
slightly poorer agreement for the high off—akis configura-
tions could be two-fold: method of reducing the data in the
high shear-coupling region and/or overestimation of the
transverse normal strain €5, due to highly nonlinear nature
of AZZ(G) at low off-axis angles (see rFig. 5.6). The maxi-
mum difference between predicted and mean experimental
response is approximately 10% (i.e. difference in strains at
failure) for the 10° and 15° orientations, while for the
remaining ones it is quite negligible. Figures 5.14 through
5.17 illustrate Poisson's response in the lamina coordinate
system for the same configurations as cited above. The

correlation is evidently very goocd for all the off-axis

orientaticns.

5.4 Failure Analysis

The Tsai-Wu as well as the maximum stress failure

criterion have been chosen for comparison with the observed
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strengths as they are representative of the two broad cate-
gories of phenomenclogical strength criteria outlined i; -
Chapter 1. The shear-coupling phenomenon has been included
in the calculation of strength predictions by taking into
account the shear stress component induced by the grips on
the basis of Halpin-Pagano model.

According to the maximum stress criterion failure
occurs when any one of the stress components along principal
material directions reaches a maximum value determined from
simple uniaxial tests, i.e. when ol = U?ax' 02 = Ogax or
Og = o?ax. In what follows average stresses will be ex-
ployed. Taking shear-coupling into account the above condi-

tions can be expressed in the lamina coordinate system as

follows:
max
Oxx(e)z 2 1
[cos®8 + 2sinfcoss8A(g)]
maXx
2
OXX(S) = 5 (5.35)
[sin“s - 2singcossa(s)]
Shax
o (8) = 0
xx [~singcos6 + (cosze - sinze)A(B)}
2(s
where A(8) = -[gh 16 L
) s 2[ (8, ) 5.6)°
11 1+ 6 h 66! _ 2[716
Ulls 35
11 11
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As the pure shear strength data was not available, corrected

ultimate stress of the 15° off-axis coupon was employed in

max
6

resolved shear strength, i.e. approximately 8600 psi.

place of ¢ as this configuration yielded the highest

On the other hand, the tensor polynomial criterion in
its simplest form predicts failure tc occur when the condi-
tion

F(oi) = F..0 =1 (5.36)

ij ioj
is satisfied for a given loading situation. Linear terms of
the form Fici that represent compressive/tensile differences
will be neglected in the present comparison due to insuffi-
cient data. 1In the above, the so-called strength tensors

Fos (no sum) are given by the following

1 1 1

22 2 7 66 ( 2
Jhax f max
2 {6

whereas F must be determined from biaxial test results.

12

Furthermore, the stability condition F > F2

11F22 2 F1

satisfied in order that F(oi) remain positive-definite.

2 mist be

As there are essentially two unknown parameters Flz
and Fee that cannot be determined directly in the present
analysis, they must be evaluated indirectly from strength
data of two off-axis configurations. Various combinations
of the required orientations were utilized and it was dis-
covered that none of them yielded results compatible with
the above stability condition. The results are given in

Table 5.2. 1In view of this it was subsequently assumed that
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Table 5.2 Determination of FlZ and F66 on the basis of strength data

obtained from one and two off-axis tension tests - sensitivity

. . ; 2
study vis-a-vis the stability condition FllFZZ > F12

Off-axis 7,
orientations F12 F66 F11F22 > FIZ |
employed i
10°, 15° -0.9199 x 1077 | 0.1920 x 107° Yo §
10°, 30° 0.1497 x 107/ | -0.1811 x 10~/ Yo |
10°, 45° ~0.4454 x 1077 | o0.9881 x 107/ Yo ;
10°, 60° 0.9621 x 10~/ | -0.1777 x 107° Yo i
15°, 30° 0.1719 x 107 | -0.3316 x 107° Yo |
15°, 45° 0.1871 x 1077 | ~0.2768 x 107/ No 2
15°, 60° 0.332 x 10°° | -0.6716 x 107° No |
30°, 45° -0.1510 x 107> | 0.3029 x 107> Yo |
30°, 60° 0.1797 x 107° -0.3570 x 107° No
45°, 60° 0.2057 x 107% | -0.4113 x 107% %o
10° ~0.1132 x 1073 *| 0.1352 x 107/ Yo
15° -0.2049 x 1078 *| 0.1352 x 107/ No
30° -0.8614 x 10~° *| 0.1352 x 107/ Yo
45° ~0.1893 x 1078 *| 0.1352 x 1077 No
60° 0.5821 x 1072 *| 0.1352 x 107 Yes
F, = 0.1969 x 10710
F,, = 0.1785 x 107’
*F66 evaluated on the basis of O:ax = 8,600 psi

)
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Ogax = 8600 psi and various off-axis orientations employed
tc determine Flzo The configuration that satisfied the sta-
bility condition turned out to be the 60° orientation.

A common practice is to set F12 = 0 which often does
not significantly affect off-axis strength predictions as
mentioned in Chapter 1 (c.f. Ref. [38]). This was done and
subsequently F66 determined from the available strength data
of various configurations. The 30° off-axis orientation

max

yvielded F that produced Og closest to 8600 psi and thus

66
this was employed in subsequent experimental-itheoretical
correlation. The critical stress oxx(e) predicted by the

Tsai~-Wu criterion is given by the following expression which

includes the effect of shear-coupling:

ag

crit.(s\ - 1
XX ! —
,JF11F1(6)+2F12F2(€)+F22F3(6)+F66F4(b)

(5.37)
- 2 - 2
cos 6 + 2sinbBcosBA(9)

L. -

where; Fl(e)

p- -

Fz(e) = c0528 + 2sinfcos6A(9) [sinze - Zsinecoseh(aﬂ
r 2 -1 2

F3(6) = Lsin 8 ~ 2sinBcosfA(8)
. 2 2 2

Fa(8) = [-sinecose + (cos“8 - sin e)A(eﬂ

Table 5.3 gives the predictions of the maximum stress and
the tensor polynomial criteria based on the outlined methods
of evaluating the necessary strength parameters along with the

observed data for easy comparison. Figure 5.18 illustrates



Table 5.3 Ultimate stress predictions as functions of the off-uxis angle of the tensor-plynomial,
maximum stress and the proposed independent mode, wmicromechanics-aided strength criteria
Uirimate laminate stress according to:
Of f Experimental Tensor Polynom. i Tensor Polynom. Independent mode,
-axis o1 n 0O PN 0T Maximum .
observations F..=0.0 F,,=0.582x10 micromechanics-—
orientation (monotonic) 12 -7 12 - Stress aided criterion
F, .=0.118x10 F, . =0.135x10
| 66 66
0° 225,362 225,362 225,362 225,362 L 225,362 L
5° 102,677 109,448 100,608 117,222 8 129,528 MSH
10° 58,773 57,627 52,174 56,569 S 63,452 MSH
15° 41,317 37,466 33,947 37,006 s 39,714 MSH
30° - 17,722 17,722 16,418 20,147 S 17,847 MSH
45° 12,132 11,696 11,158 15,153 T 12,132 MSH
60° 8,853 9,048 8,853 10,005 T 10,034 MDN
75° 9.003 7,839 7,796 8,023 T 8,028 MDN
90° 7,484 7,484 7,484 7,484 T 7,484 MDN
L = Longitudiral stress failure
S = Shear stress failure
T = Transverse stress failure all defined with respect
MSH = Matrix shear and hydrostatic stress failure to the lamina coor. system
MDN = Matrix deviatoric stress failure:

normal components only

981
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the experimental-theoretical failure correlation of the two
outlined criteria and it is seen that the effect of shear-
transverse stress interaction is quite evidently pointing to
the applicability of the tensor polynomial furmulation for
this composite system.

In order to gain some insightvinto failure mechanisms of
this composite system a limited micromechanics analysis was
carried out and a simple strength criterion proposed to
account for the observed apparent failure modes. Comparison
of the strengths of 90° laminae in transverse tension andé pure
polyimide matrix revealed that the stresses in the matrix
phase of the composite at failure were significantly higher
than the ultiﬁate stress of the polyimide specimen tested by
itself. This is indicative of some form of the matrix
material's insensitivity to certain stress combinations as
far as failure is concerned. Subsedquent coméarison of the
ultimate stresses in the matrix phase of the lamina and pure
sample in terms of the second in?ariant of stress deri-
viators yielded surprisingly close correlation. Wwhile the
pure matrix specimen failed at I; = 3067 psi in tension, the
corresponding second invariant of the deviatoric average

stresses in the matrix phase of the 90° lamina turned out to

2
stress of the polyimide was 6470 psi while that of the com-

be I, = 2986 psi. On the other hand, the ultimate shear

posite at least 8600 psi. The above strengths (i.e. tension

and torsion) of the polyimide matrix are therefore not
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related to a single invariant pointing to at least two
distinct failure mechanisms.

Two well known deformation mechanisms in glassy poly-
mers are normal yielding (crazing) and shear yieidina [105].
Crazing is inhibited by hydrostatic stress causing cavi-
tation of the microscopic cracks which leads to reduction of
stress concentrations around those locations. Shearing
deformation on the other hand is in fact influenced by
hydrostatic stress due to void formation and resulting
decrease in load bearing capapility of the material in
shear. The observed ultimate stresses of Gr/Pi laminae in
transverse tension could therefore be indicative of the
presence of the first mechanism discussed above. Further-
more, the apparent shear-transverse stress interaction
evident in Fig. 5.18 may be the result of the influence of
hydrostatic state of stress in the matrix and therefore be
indicative of the second mechanism.

In view of the above discussion and the related experi-
mental observations three independent failure modes are
assumed: one due to fiber fracture caused by the longi-
tudinal stress oy and the remaining two having roots in the
matrix phase. The latter are taken to be caused either by
the resolved matrix average shear stress parallel to the
fiber direction and aided by hydrostatic stress or the part
of the second deviatoric stress invariant that consists of

normal matrix stresses only in the material principal
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coordinate system. Expressed analytically, failure occurs

when any one of the above modes reaches a maximum value:

_ _ max
FMy =0y 50,
- I .
FM ) = 106m] + 3(°1m +o, + o3m) (5.38)
1 2 1/?-

FM (o, -0
mdn el Im "2m

I

2
+ (OZm-02m) + (Olm—03m)

where m stands for the matrix phase and Hill's stress con-
centration factors relate the matrix and externally applied
stresses as before. The interaction constant p has been
determined on the basis of 15°, 30°, 45° and 60° off-axis
tension tests and found to vary negligibly for the 30° and
45° orientations and by 18% and 26% for the 15° and 60°
orientations, respectively, with the 45° one used as ref-
erence. On the other hand, pure polyimide strength data was

utilized to determine FM_ . and FMm

msh dn *

The predictions of the outlined criteria are illus-
trated in Fig. 5.19 along with experimentally observed
strength data whereas the actual numerical results are given
in Table 5.3 for comparison with the other schemes. The
proposed micromechanics—-aided strength criterion compares
favorably with both the experimental data and tensor poly-
nomial formulation (with the exception of the 5° off-axis
orientation) without possessing any apparent sensitivity
problems. That is, sufficiently wide range of the off-axis

orientations exists for this particular system to enable one
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to determine the interaction constant p with little varia-

tion.
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER STUDY

A constitutive formulation consistent with thermo-

dynamic constraints that was developed by Valanis to model

observed dissipative response of isotropic materials such as

strain-hardening steels has been extended to transversely

isotropic media. The objective of the above was to fulfill

an existing need of modelling observed nonlinear response of

fibrous composites in a rational manner that would be

sufficiently general to predict the following types of mate-

rial response often observed in these advanced, man-designed

materials:

i)

ii)

iii)

iv)

V)

linear or nonlinear elastic response along fiber
direction.

dissipation in shear and transverse tension character-
ized by permanent strain-accumulation, nonlinear un-~
loading and reloading resulting in generat .on of hys-
terisis loops and caused by various dissipative and/or
damage nucleation mechanisms such as matrix plasticity,
void or crack formation, crazirg, fiber slippage or
fiber/matrix debonding to name the better known phe-
nomena.

dissimilar strain-hardening in shear and transverse
tension characterized by different hardening exponents
in commonly employed power-law approximations.

influence of transverse stress on the nonlinear shear
strain and vice versa - an often observed phenomenon
commonly referred to as stress-interaction.

often highly nonlinear response along certain material
directions, e.g. shearing parallel to fibers, charac-
terized by continuous rates of hardening and relatively
small failure strains with no readily noticeable tran-
sition point between reversible and dissipative res-
ponses. This type of behavior is difficult to predict

193
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" with conventional plasticity theories as remarked by
vValanis due to the sensitivity of the manner in which
yield surface expands or translates to the definition
of initial yield.

Extension of Valanis' "endochronic theory of plastic-
ity" to transversely isotropic media entailed a solution of
an auxiliary set of six, first order differential equations
of motion defined with respect to a deformation measure or
"intrinsic time scale" characteristic of the particular
material at hand. These equations relate changes in the so-
called internal variables which characterize various irre-
versiblities in the system to exterral variables such as
stress or strain and form a basis of Valanis' treatment of
the internal variable formalism and the associated thermo-~
dynamic framework vis-a-vis time-independent deformation of
dissipative media. The above first order system is coupled
through transversely isotropic matrices and thus consists of
three coupled and three uncoupled equations of motion.
Uncoupling of the required equations was accomplished
through a simple transformation of the independent variables
which effectively reduced the formulation from a 3 x 3 to a
2 x 2 eigenvalue~eigenvector problem for each set of coupled
internal variables characterizing the dissipative response
of considered media.

General solution of the above system resulted in a set
of fading memory-type equations relating stresses to strains

through path-dependent integrals functicnally dependent on
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the intrinsic time measure which is assumed to be a material
-property. ~The kernels of the integrals consist of sums of
exponential eigenfunctions coupled via the eigenvectors
mentioned above whose rate of decay is controlled by five
independent retardation or "hardening" exponents. The
developed general transversely isotropic equations have been
shown to reduce to Valanis' isotropic formulation upon
specialization of the various matrices that control motion
of the system to the isotropic form. Furthermore, a power-
law formulation or approximation with five indevendent
hardening exponents ensues if a large number of internal
variables is assumed in the expansion of Gibbs' potential
about equilibrium or initial state of the system.
Applicabiiity of the general endochronic equations for
transverse isotropic media to prediction of nonlinear re-
sponse of fibrous composites has been demonstrated through
specialization of the developed constitutive equations in a
fashion commensurate with the observed response of Gr/Pi
composite system. This particular material system has been
chosen due to its potential usefulness in advanced space
vehicle applications currently under consideration at the
NASA~-Langley Research Center. 1In particular, items i)
through v) regarding the often observed response of fibrous
composites enumerated at the beginning of this section have

also been observed in this material system under plane
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stress, ambient temperature, proportional loadirg condi-

tions. This has been accomplished via the commonly employed
off-axis tension test method which entails loading of thin,
unidirectional composite coupons with high aspect ratios and
fibers oriented at an angle to the load axis. High aspect
ratios are required in order to reduce the adverse effect of
the well-~-known shear-coupling phenomenon on the experimen-
tally determined stress~strain response caused by rigid
gripping of the specimen's ends. A new test fixture whiéh
permitted the gripped ends of the specimen to rotate to some
extent with the rotating and deforming material was designed
to eliminate as much as possible the above phenomenon as
well as reduce stress concentrations in the neighborhood of
the grips. This would alsoc then, at least it was assumed in
priciple, result in ultimate strengths or failures more
representative of the "true" material response.

The presence of shear-coupling has been demonstrated in
this study to have a much more pronounced effect on deter-
mination of the shear modulus G12 in the material principal
coordinate system than on the Young's Modulus Exx in the
lamina coordinate system in low off-axis orientations even
with high aspect ratios. The above result followed from an
auxiliary analytical study based on the Halpin-Pagano model
and was motivated by the significant variations in the

inital shear modulus along fiber direction for the various
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off-axis orientations tested. Subsequent comparison between
the experimental data and predictions of the above model
yielded sufficiently good correlation trend-wise to attrib-
ute at least a significant portion of the observed variations
to this phenomenon. The above comparison has revealed that
the newly developed ﬁest fixture produced somewhat greater
shear-coupling effects than the Halpin-Pagano model if it is
assumed that this is the only cause of the observed varia-
tions as has been done here in the course of experimental-
theoretical correlation on the basis of the developed trans-
versely isotropic model. The Halpin-Paganc model is based

on highly idealized boundary conditions that call for preven-
tion of rotation of the specimen'’s centerline only which in
turn facilitates a closed form analytical solution for the
inhomogeneous strain field induced by the grips.

With the generated response of the Gr/Pi composite
system in mind it has been demonstrated that the endochronic
formulation is suffficiently general to allow uncoupling of
dissipation along particular material directions from the
corresponding reversible modes in a consistent fashion by
setting certain coupling parameters to zero. This then
enables one to obtain elastic response in the fiber direc-
tion with the introduction of a potential constructed in
terms of external variables such as stress, only. 1In this
particular case, a "nonlinear" potential has been proposed

that accurately predicts the observed stiffening response of
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the Gr/Pi composite in pure tension parallel to the fibers.

o

An interesting consequence of the introduction of the above
elastic potential turned out to be more consistent analysis
of generated data in the dissipative region in transverse
tension, namely, less scatter and fluctuation in the harden-
ing exponents was observed when the potential was employed
to separate elastic and irreversible strains of the various
configurations.

Dissimilar hardening characteristics in shear and
transverse tension that have been observed to obey power-
laws with different hardening exponents and surprising
accuracy in this particular system can also be accommodated
by this theory. Hardening is associated with disSipafion
modes that are represented by second order tensors and théi:
rates with respect to the intrinsic time scale and which are
also coupled by matrices characterizing the degree of given
material's symmetry. Since for transversely isotropic
materials shearing parallel to the fibers is independent of
transverse tension, the hardening exponents characterizing
dissipation in these two directions will generally be dif-
ferent and indeed this is reflected by the recorded data.
Single hardening exponent in transverse tension on the other
hand theoretically implies similar recorded data. A single
hardening exponent in transverse tension that has been cbser-
ved in this Gr/Pi system on the other hand theoretically

implies similar response in shear and tension, in the plane
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g;hisqtfogz g?agésyerizgd_by the same hardening exponent.
The observed dissipative response of the Gr/Pi system
determined in a series of cyclic tests at various stress
levels necessitated introduction of the concept of a second
or inner time scale operative within the region bounded by

the maximum unloading stress level on any given path not

undergoing a reversal of loading direction. Introduction of

the acove concept required imposition of an additional thermo-

dynamic constraint in order to ensure that the dissipated
work was positive in the global sense, that is, in any given
stress cycle. This was equivalent to the incorporation of
Illyushin's Postulate into the endochronic theory framework
ch was criginally developed with a single time scale z
for all loading situtations whose only constraint, dz > 0,
was sufficient to satisfy the Clausius-Duhem Inequality for
every deformation process. It was subsequently shown that
an inner time scale of the form dzi = Bdz, 0 < B < 1,
yielded predictions that correlated sufficiently well with
the observed behavior both in terms of permanent strain
accumulation and cyclic stress-strain response.

A fundamental aspect of the endochronic theory is the
concept of intrinsic time measure and the associated mate-
rial parameters or elements of the material metric that
define it. This is one of the major differences that sets
this theory apart from, say, incremental plasticity theories

in which deformation measure is defined in terms of plastic
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strain arc length which is common to all plastic media and
is"E£heérefore not"a material property. The stress inter-
action in shear and transverse tension apparently evident in
the generated data lends force to the utility of the theory
regarding application to fibrous composites as it is a
significant confirmation of the manifestation of such a
material "property" as the intrinsic time measure. To be
sure, shear-coupling must be taken into account in the above
observations as its effect has been eliminated with the aid
of the Halpin-Pagano model in order to compare the nonlinear
respense of the various configurations on the same footing
and thus establish the presence of stress-interaction.
However, the reduced data showed very good consistency with
distinct bounds for the significantly nonlinear shear re-
sponses along the fiber direction of the various config-
urations. Furthermore, experimental and analytical studies
referenced in the outlined literature review do point to the
presence of such stress-interaction. A consequence of
technolocgical importance of such phenomenon is the need for
more than one off-axis tension test for the determination of
the nonlinear shear response in the material principal
coordinate system.

The elements of the intrinsic time measure and related
constants in the integrals characterizing dissipation have
been evaluated with good accuracy vis-a-vis predicted

response on the basis of resolved shear response along fiber
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direction obtained from 10°, 30° and 60° off-axis tension
tests-and -transverse .tension of 90° coupon. Other off-axis
configurations yielded worse correlation with experimental
data due to highly nonlinear behavior of the orientation-
dependent shift parameters characterizing stress-inter-
action. However, pure shear response could not be deter-
mined using the above method as the intrinsic time para-
meters Se¢6 and Sy2 characteristic of shear and coupled
transverse-normal response respectively always appeared 1in
combination for this type of tension test.

A micromechanics-aided approach based on Hill's stress
concentration factors was subsequently employed to demon-
strate the feasibility of incorporating certain micro-
mechanical considerations into *he endochronic framework via
the intrinsic time measure. This was accomplished by as-
suming the observed dissipation to be a function of devia-
toric stresses in the matrix whose trajectories do not
deviate significantly from the initial directions under
proportional loading of the coupon. The elements of the
metric sij then become functions of the matrix stress
concentration functions that are determined from the know-
ledge of the initial composite, fiber and matrix compli-
ances. The above assumption,however, was insufficient to

account for the significant 0, interaction observed in the

1
Gr/Pi resolved shear stress response and thus an extra term

reflecting possible crack evolution caused by the longi-



202

tudinal stress was incorporated into the intrinsic time
'meééufét‘w;;; ;;ééénéé‘éf—;;magé accumulation due to 9, in
this material system is supported to an extent by noticeable
degradation in the initial shear modulus at pbints of
reloading for low off-axis configurations. The above
micromechanics-aided scheme required only two off-axis ten-
sion tests for determination of the material parameters and
yielded comparable results to those of the purely pheno-
menological approach when the 10° and 60° off-axis results
were utilized for that purpose.

The limited failure analysis carried out in this study
produced several notable results. First of all, the newly
designed text fixture yielded very consistent strenqgth data
with average differences often less than 3% and test section
failures for most off-axis configurations. No significant
differences were found between ultimate loads of monotonic
and cyclic tests with the exception of the 15° off-axis
coupons. These failed consistently below the maximum
unloading stress level and thus this could be indicative of
path-dependent failure modes along certain stress trajec-
tories for this particular combosite system.

The observed ultimate load as a function of the off-
axis angle correlated well with a quadratic tensor poly-
nomial criterion with F12 set equal to zero. Relaxation of
this constraint necessitated use of two off-axis test results

for determination of F12 and F66 with the consequence that
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none of the available pairs produced results that satisfied
_the stability.condition E; F,n-2 Fiz. A distinct mode
failure criteria based on three possible failure mechanisms
was subsequently proposed and the necessary strength para-
meters evaluated from both the coupon and matrix ultimate
load data with the aid of Hill's stress concentration fac-
tors. The assumed mechanisms are given by the following:

i) failure due to fiber breakage and governed by the
longitudinal stress 01

ii) failure governed by a critical value of the second
invariant of the average matrix stress deviators
excluding shear components, i.e., consisting of normal
stresses only

1ii) failure governed by a critical value of the average
matrix shear stress parallel to the fiber direction and
influenced by the mean matrix pressure.

Predictions of the proposed criterion correlated well
with the recorded data and Tsai-Wu quadratic criterion for
most off-axis configurations. Furthermore, the coupling
parameter for the shear and mean stress failure interaction
could be obtained from the generated data with little fluc-
tuation in the off-axis range 30° < 6 < 45°.

With the above discussion in mind, the following re-
commendations regarding future work in this area follow from

the present study:

i) in view of the pronounced effect of shear-coupling on
G12 in low off-axis configurations even with relatively

large aspect ratios for material systems such as Gr/Pi,
the 45° coupon is recommended for determination of the
shear modulus G12'
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iii)

iv)

v)

vi)
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the possibility of the presence of stress-interaction
phenomenon even in relatively brittle systems such as

“Gr/Pi requires Mmore than &rie off-axis test for deter-

mination of nonlinear shear response in the material
principal system. Three ocff-axis tension tests are
therefore recommended to establish the extent of
stress—-interaction: 10°, 30° and 6G° configurations
might be considered as they cover a significant portion
of possible stress-interaction range without being
adversely influenced to a large extent by strain-gage
sensitivitv problems.

pure torsion tests on thin, unidirectional tubes are
recommended to determine how well the micromechanics-
aided prediction of pure shear response correlates with
the actual one. This might help to establish a viable
off-axis tension test method to determine the nonlinear
shear response in the presence of stress-interaction.

consideration of the effect of small perturbations in
the intrinsic time scale about some mean path on
predictions of the total constitutive response apvears
to be warrented. Recent series of publicaticns [106,
107,108] are indicative of scme controversy regarding
the variocus aspects of the endochronic theory, in-
cluding the one outlined above, which is still consic-
ered to be in its infancy.

further investigation into compliance degradation in
cyclic tests at points of reloading in the considered
system would appear to be desirable. The functional
form of intrinsic time scale chosen for this particular
constitutive model does not predict this phenomenon;
however, this does not affect the experimental-theore-
tical correlation significantly.

SEM investigation of fracture surfaces would be bene-
ficial in estimating the extent of various failure
modes at any particular off-axis angle. This would
subsequently facilitate correlation between the obser-
ved failure modes and the proposed failure criterion
reflecting the assumed mechanisms proposed in this
study.
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Appendix'A

EFFECTIVE ELASTIC MODULI IN THE PRESENCE OF

SHEAR-COUPLING T Lo

The relationship between stress and strain at the mid-
point of an off-axis tension coupen whose center-line is
prevented from rotation has been shown by Pagano and Halpin

{97] to be of the following form:

m

2
i
vl

XX 11 12 16 Ixx
Eyy = S12 522 SZ6 0 (A.1)
Yxy 516 S26 Ses Txy
with Iex and Txy given by:
0xx = C2
~ 2
xy - Coh (a.2)
where:
¢ - 631650
o 2,5 = = 2 =2 ,2
6" (Sy15¢6 ~ S16) * Sp1it
C
- 9 . 2 | = 2
C, = §~_ (6566h + Slll ) (A.3)
16
€0 = applied center-line displacement,

constant along center-line

and the remaining terms are the same as defined previocusly.
The above expressions are referred to the coordinate

system aligned with longitudinal (load) axis of the coupon.
Using Eqns. (A.2) and (A.3) we can express T in

Y
terms of O,y 28 follows:
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-0
. _ XX . : . . AA.4)
Xy g S
66 2(711
s

1 .2
— 1+ 4 (H)

516

16

so that the first of Egns. (A.l) becomes:

s 5,.\2
1+ e(y2[ 266 216
¥ \s g
- g 1 11 -
xx = S11 /= 9 xx (A.3)
h,2 {566
L+6( ==
511
Defining E;; = 555, we obtain Pagano's and Halpin's
XX

expression given by Eqn. (3.1). However, in practice we use
the actual strain as obtained from strain gage located at
the center of specimen, i.e. sxx’ and average stress based
on the load and specimen's cross~sectional area. The ex-

pression for total load necessary to deform the specimen

derived by Pagano is given by:

h . 25, n?
P = tJ o {5, y) dy = 2¢h(C, ~ ———— C )
- Xx'2 2 35 o
11
Thus the relation between average stress 0 = 2 and o
XX 2t bod
is obtained as:
S
1+ 6(%—)2 ——-__66
511 -
g = o (A.6)
xX 3 3 > XX
1+ 6(%)2 66\ _2/[716
g 3\s
11 11

so that upon substituting the above expression into Egn.
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(A.5) we obtain E;x given by Egn. (3.3).

Now, the shear strain along principal material axes 1-2
given in terms of the measured quantities in the x-y coordi-~
nate system is obtained from the standard tensor transfor-
mation relations. These yield:

2

- ; _ 2, _
le = 251n6cose(eyy Exx) + (cos” 6 sin O)ny (A.7)

or, in terms of Oxx and Txy given by Egns. {(A.l), the above
becomes:
_ . = _ = 2, _ i 20w
Yip = [251necose(s12 Sll) + (cos“® sin e)sl6loxx
. = = 2 . 240y =
+ [251n6cose(826 - 516) + (cos™9 - sin 6)566]Txy
{A.8)
Using Eqns. (A.4) and (A.6) we can express the above rela-
tionship in terms of the applied average stress ng in the

x-y coordinate system as follows:

Y12 T Opx {2sinfcoso [ ( 12-511) (M+C) = (5,45, ()BI+

2. . 2. = —
(cos“6-sin“9) [516(1.+C)-56613]}/A (A.9)

This unusual arrangement does serve a purpose as will be
seen subsequently.

Now, using the point transformation relations, the
shear stress in the 1-2 coordinate system can be expressed
in the following fashion:

- P 2, _ _:. 2
112 = —GXXSLnGCOSG + (cos™ 8 sin e)rxy (A.10)

However, in practice we use the following relation to

obtain 112:
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Ty5 = -Exxsinecose (A.11)
which amounts to disregarding shear-coupling stresses. Sub- ~
stituting the expression for O in terms of P obtained
from the above relation into Eqn. (A.9) we arrive at the
effective shear modulus Giz of Eqn. (3.4). If Egn. (A.l0)
is employed on the other hand, the exact result

T12

Yi2 66

is obtained since then all the stress components have been
taken into account in the standard point transformation
relations.

In a similar manner as that used to derive E;x, the
effective Poisson's ratio V;y can be obtained from the first
two of Eqns. (A.l). Employing Egn. (A.4) to express

Txy in terms of O x the following result is obtained:

o _ &
s 526
127 3 =
66 1.0.2.511
L
€ 516 °h S16
v;y = - X - — (A.12)
XX 516
s 66 , 12,2 511
1 - 3z teR )
3 5
i 16 16 |




APPENDIX B

TRANSVERSE SENSITIVITY CORRECTION

The following corrections for the true strain outputs

€xx’ €4507 Eyy in the coupon coordinate system have been
employed in the process of data reduction as cited in

Reference [{102]:

(1 - vK) . ~
ot
€ = ————— (g - K, e )
Xx (1 - Ki) XX t7yy
T (1 - vK) . ~ - ~
: € ot
6o = ————— g - K, (¢ + € - € )]
45 (1 - Ki) 45° t'Txx vy 45°
S L
Yy (1 - Ki) Yy toxx

~

where gxx’ é45° and gyy are the apparent strains recorded by
the tree arms of the 45° rosette. Kt is the transverse
sensitivity factor characteristic of each strain gage and

Vo Poisson's ratio of the material used for calibrating the
gages, typically 0.285. The transverse sensitivity factors
of the 45° rosette and uniaxial gages employed in the present
study were:

Kt(uniaxial) = - (0.8%

Kt(rosette) = - 0.3%
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APPENDIX C

NONLINEAR ELASTIC POTENTIAL GO AND

ASSOCIATED THERMODYNAMIC CONSTRAINTS

The proposed nonlinear elastic potential is reproduced

below for convenience.

-a¥YL,. .o, 0

+ L 131 Ly 4 siToeT (c.1)

-G_ = A..0.0.
137173 a ij7173

(o}

N

Applying the stability condition -SZGO > 0 we obtain:

Y ij""i "5 _ mn mn
4 GO = Ai.écidoj + (1 e )

- 1373 3

g2 J 1 . mama (C.2)

mn m n
Series expansion of the exponential terms and subsequent

simplification of the resulting expression yields:

2. a/ V-
=) Go = Aijdoiéoj + aiijéoiéoj(l - 5T + 37 ool

al(f..0.80. )

b (o Gy - 1)+ e? Gy - )

. mnmn

FaP/ T - ) 4] 2 0 (c.3)

where v = /anoﬁgg . Thus from Egn. (C.3) it is clear that:

lim I G = (A.. + .. . . .
o *0( ) ( i3 azl])éolécJ >0 (C.4)
i
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whereas from Egn. (C.2) we readily obtain:

. 2 B
lim (-¢§ Go) = Aijdoidoj >0 (C.5)
g, o
i
In order to show that the above constraints are suffi-
cient for the stability condition to be satisfied for all

plane stress loading situations, Egn. (C.2) is rearranged as

follows:
2 (l-e-a imngmcn) (21.01604)2
-8 GO = AijGO{GOj + - 941360160'] - % G-E‘—S—
/lmnomon mn mn
(Qi.oiéc.)z -a/imnomon
+ a —(_Q,—LTJ—FL)_- e > 0 (C.6)
mn m n

The above will be certainly satisfied if

2
(R..0.80.)
Rijsoidoj - 1)1 3

iv
o

( jz‘Illx‘lclllol'l)

For plane stress applications, expansion of the above yields:

2 2 2 2 2 L2
[21101+22120102+22202+26606]-[211601+2212601602+222602+266006]

[%2,,0,80,+2

11918917275 (0,80,+0,80,) 050,80, 40 0 80,1 > 0

Omitting superfluous algebra, the above can be shown to

reduce to the following form:
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2 2

(080,-0,80,) (211%557%75)

+ 2, .{2,,(c,.80,-0,380 )2 + 2., (0, 50,-0,80 )2

667116 "1 176 2276772 72776

+ 2212(06601—01606)(06502—02606)} >0
The first part is always positive or zero since Zij is
positive-definite, whereas the second part is a quadratic

form with coefficients Zij and thus must also be positive or

zero for the same reason.



APPENDIX D

HILL'S STRESS CONCENTRATION FACTORS

Hill's stress concentration factors can be obtained
explicitly in terms of the composite, fiber and matrix
compliances, respectively, upon inverting Eqn. (5.25).
Assuming that the individual phases are isotropic and

employing the following definition:

: ] - mF] = [em)
£,
(M"] - [M7] = [Am)
the elements of the stress concentration matrix for the
matrix phase become [B™] = é« [Am]-l[AM], or:
m

m 1, -1 -1

—— Byp = golemyy &My + 28my50M),]
m _ 1 -1 -1
B12 = E;[Amll AMl2 + Amlz(AM22 + AMZS)]
m _ .m
Bi3 = Byp
m _ 1 -1 -1
821 = E;(Amll AMlz + Ale(AMll + AMlZ)]
m _ 1 -1 -1
Byy = E;[Amu Aoy + Amy5 (AMy, + AMy5) ]
m 1 -1 -1

/ Byy = E;[Amll MM, 5 + Amlz(AMlz + AMZZ)]

m _ 1 -1
Bgg = o Amgg MMgg

where [Am]_l is the inverse of [Am] defined by [Am]—l[Am] =

[I], [I] being unit (diagonal) matrix. The elements of
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[Am]-l are given by:

2 2

) o Ampy - Ampp
11 3 2 2
(Amll - 3AmllAm12 + 2Am12)
Am2 - Am, . Am
Am-l - 12 117712
12 3 2 2
) (Amll - 3AmllAm12 + 2Am12)
where:
Am =.(_}3£_.'_ET)_
11 EfEm
in _ (Emvf - Efvm)
12 EfEm
. o (6T -
66 Gme
and also:
Ef - £ )
AM = e
11 EfE
11
f f
a _ (Ellv - E vlz)
12 EfE
11
f -
i, - o F22)
22~ TTF
E E22
£
. _ (E22v - E v23)
23 £
ETE
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AM,, = ————E
66 Cf”
7 V12

The material parameters needed for determination of the

stress concentration factors are given below.

E™ = 0.4535 x 10° psi ef = 31.90 x 10°% psi
G™ = 0.1609 x 10° psi cf =11.77 x 10% psi *
v = 0.391 v = 0.355 "
E,, = 19.81 x 10° psi
11 . P
E., = 1.42 x 10° psi
22 . p
Gy, = 0.725 x 10°% psi
_ _ *
vy = vy, = 0.350

It is of interest to note that the isotropic relationship

m
™ = —FE _ is satisfied within 2% for the matrix employed

2(1+v™)
in this work. The starred quantitites have been determined
indirectly (these are usually unavailable due to diffi-
culties associated with their measurement) in the following
fashion:

i) vf has been determined from the relation e?l = efl

which can be shown to be given by:

c
m £ m m m f
Mll + Mll [-c-?] Bll + 2!'112 + 2M
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It was possible to satisfy the above relation to within less
than 3% (i.e. % difference between left and right side of

the equation) with the above value of vf

ii) Gf has been determined from the isotropic relation
£ ef
G =.___._..._f__
2(1+v7)
iii) Vos has been assumed to be equal to Vig- This is a

common assumption employed by various researchers, c.f. Ref.

f100].

In order to determine the effect of variation in vf on

m m
127 Ba2

£
B§3 have been plotted as functions of v" in the range
c .

the stress concentration factors, BTl, 8?,, B and

0.0 < v

m
Byar

< 0.5 in the following figures. It is seen that

m m . s . m
822 and 323 vary negligibly whereas the functions Bll
£

and Bgl are nearly linearly dependent on v . BAlso plotted

is the variation in B™,  due to Gf and it follows that BT

66 66
does not change significantly over a wide range of the fiber

shear modulus. In particular, :the range of Gf of immediate
interest is bounded by 0.0 < v

£
106 psi < Gf < 15.95 x 106 psi which evidently does not

< 0.5. This yields 10.63 x

influence 326 significantly.
The stress concentration factors determined on the
basis of the material parameters given above are the fol-

lowing:
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0.0255

0.0038

0.4591

= 0.6522

1.2265

0.5416
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