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1.0 SUMMARY

This report presents the results of a combined experimental (wind tunnel test
results) and theoretical analysis utilizing random harmonic analysis
techniques to predict the dynamic response and the structural dynamic loads of
flat plate photovoltaic arrays due to wind turbuience. Guidelines for use in
predicting the turbulent portion of the wind loading on future similar arrays
using the results of this study are presented.

The dynamic response and the loads dynaiic magnification factor of the two
array configurations (a four post array and a two post array) are similar.
Figures 1-1 and 1-2 are typical magnification factors for the two array
configurations located in identical positions within the array field. The
figures show the magnification factors at a mid chord and outer chord location
on the array illustrated and at four points on the chord. The wind tunnel
test experimental rms pressure ccefficient that the magnification factors are
based on i1s also shown on each figure. In general, the largest response and
dynamic magnification factor occur at a mid chord location on an array and
near the trailing edge. A technique employing these magnification factors and
the wind tunnel test rms fluctuating pressure coefficients to calculate design
pressure loads due to wind turbulence is presented in Figure 1-3.
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exceed from decision 4.

stp £
°‘ Multiply Step D by dynamic
‘ wind pressure from decision
h

| 5 = design pressure load on
array surface due to

non-steady portion of wind

Figur- = 3. Flow Chart io Calculate Array Design Wind L oads due to
the Non-Steady Portion of the Wind




2.0 INTRODUCTION

This report summarizes a combined theoretical experimental analysis of the
structural dynamic loading on long, flat plate photovoltaic arrays resulting
from exposure to the non-steady rortion of the wind environment. This report
1s an extension to the analyses reported in DCE/JPL 954533-79/2 and -81/3. The
study was performed under contract number 954833 to the Jet Propulsion
Laboratory as part of the Engineering Area Task of the Low Cost Solar Array
(LSA) Project. This project is being managed by JPL for the Department of
Energy, Division of Solar Technology.

2.1 0Objectives

The cost associated with the design and construction of solar photovoitaic
arrays to produce electric energy from sunlight is an important factor in the
acceptance and use of solar energy. The load due to wind on an array and on
its support structure strongly influences the design and ultimately the cost of
the photovoltaic panels, panel and array support structure and foundation of
the array. It is, therefore, essential to determine the true marimum wind load
tnat the array will experience during its lifetime in order to minimize the
structure costs. The objective of this study was to establish wind load guide-
lines on flat plate photovoltaic arrays for that portion of the wind
environmernt that is considered non-steady (turbulence).

2.2 0Discussion and Background

Taree factors affect the amount of wind loading on a body: the fl:w field in
which the body is placed, the aerodynamic characteristics of the body itreif,
and the dynamic response of the body due to the wind louding., Aitl. ugh the
structural loads resulting from this latter factor are not totally composed of
aerodynamic forces (they also include inertia forces), these structural loads
do result from the wind loading, or more precisely, the fluctuations in wind

loading.

The flow field of the type that would be found around arrays in an array field
has three aspects: 1) the steady state flow before it encounters any
obstacles, 2) atmospheric gusts, and 3) turbulence. The steady state flow



is characterized by of a shear layer adjacent to the ground whose shearing
effects decrease with elevation above the ground until a uniform flow is
attained. Gusting is the result of velocity variations and changes in the
direction of the prevailing wind due to atmosphecic instabilities. Turbulence
may be caused by several factors. Gusting can cause turbulence when adjacent
volumes of air are moving at different velocities, thus producing a shearing
effect. Terrain roughness causes turbulence because of shearing effects. An
obstacle in the path of the flow can also create turbulence by upsetting the
flow and causing eddies and vortices to form. In addition, the shape of the
body will affect the characteristics of the turbulence. Turbulent flow is
highly complex, with varying frequencies and intensities occurring .n a random
manner.,

The effect on the array forces due to the flow field is a function of the
airflow characteristics and the resulting pressure distribution over the array.
When the flow is turbulent, the pressure distribution and, consequently, the
forces exerted on the array are nonuniform in frequency and intensity. These
forces may cause vibrations in the structure resulting in additional structural
dynamic forces on the array. Since turbulence varies in frequency and
intensity, the resulting loading will also vary as a function of the frequency
and intensity.

2.3 Study Requirements
The requirements of this study involve analysis and test. They are:

1. Wind tunnel test and data reduction in the form of auto and cross
spectrums,

2. Theoretical structural dynamic modeling of arrays.

3. Dynamic analysis results.

4. Establishment of design guidelines for estimating unsteady wind loads
on photovoltaic arrays.



The following is a summary of the statement of work for Phase IV.

1.

3.

Array Vib -ation Characteristics

1)

11

Array

i)

)

—

A structural finite element ccomputer model will be developed in
sufficient detail to adequately define the structure for use in the
calculation of structural mode shapes of a photevoltzic array. The
tilt angle of the array will match one ¢f the tilt angles of the
arrays used in the Phase III study (reported in refercnce 1).

Structural vivration characteristics of the array will be calculated
to produce mode shapes and ge  -~alized mass and stiffness data for
the array model developed in 1).

Structural Dynamic Load

The generalized mass and stiffness data and the vibration mode shapes
will be combined with the steady state aerodynamics from one array
field configuration chosen from the Phase III test data to generate
the structural dynamic equations of motion.

The Phase III wind tunnel pressure time Listory data will be anal,zed
for the array configuration chosen ir 2 (i) to yield auto- and cross-
spectral density functions and will be used in calculating the
geraralized forcing functions for tne equations of motion.

Structural Dynamic Loads

Structural dynamic responses and loads for the arrays will be
calculated from the equations of motion and load equations deve! jped
in 2. The resulting aerodynamic forces from the dynamic analysis
will be compared to the steady state aerodynamic forces to indicate
the level of increase to be expected from th2 dynamic forces.

2.4 Report Organization

The remainder of this report presents the results of the dynamic analysis and
its formulation. Section 3.0 presents the basic terhnical approach, details
the results and discusses the pertinent findings. Conclusions are prese-ted in
Section 4.0. The use of the results as design guidelines are presented for

wind turbulence in Section 5.0. New Technology and Refererces are outlined in



Sections 6.0 and 7.0 respectively. Appendix A presents the analysis procedure;
Appendix B, the wind tunnel measured rms delta pressure coefficients; and
Appendix C, the Colorado State University test report for the test and test
data reduction pertinent to the dynamic analysis.

aIGINAL PAGE IS
OF PONR DUATITY



3.0 TECHNICAL APPROACH, RESULTS AND DISCUSSION

Becaus:: the pressure fluctuation on the arrays caused by the wind turbulence
is random in nature, random harmonic analysis techniques can be applied to
determine the dynamic response of the arrays. The technical approach was to
develop theoretical mathematical models of arrays and solve for the response
of the arrays using wind tunnel measured pressuire fluctuations on the arrays
as the forcing function. Pressure measurements were recorded simultaneously
at several lccations on rigid arrays during a wind tunnel test conducted at
Colorado State University. These pressure data were then reduced to yield
auto and cross spectra at and between each pressure tap. The test procedures
and results of the wind tunnel test is presented in Appendix C.

The structural dynamic response of an array is dependent on the structural
characteristics of the array as well as the forcing function. For this study,
two typical arrays (Figure 3-1) were modeled theoretically utilizing the modal
approach; the mode shapes are shown in Appendix A. The first configuration
was a four post array designed by JPL (see Ref. 5 for the detailed design
configuration) and the second configuration was a two post array (support
posts at the center of each end of the array). The theoretical equations for
the dynamic response of the arrays were calculated and included the equation
of motion and pressure load equations on the arrays. The theoretical
procedure is detailed in Appendix A. The fluctuating wind induced pressure
forcing functions (auto and cross spectra*) on these arrays were simulated
from the wind tunnel test for the wind conditions on the first array of an
array field exposed to the wind, the first array protected by a fence, and the
fifth array within an array field. The wind was considered tc de head-on to
the arrays.

The wind tunnel test results consisting of auto and cross spectra of the array
pressure coefficients are of significant importance to the dynamic response of
the arrays. Figure 3-2 shows a typical normalized cross spectrum for the 5th
array located in an array field with a tilt angle of 35° and a 90 mph wind.

Of importance in the cross spectrum is that the phase angle in all cases were

*The cross-spectrum relates pressure versus frequency at twu different points

(i and j); the auto-spectrum is similar except at a single point (i=j). These

terms are used in the analysis as shown in Appendix A. A detailed technical

deszription of the auto and cross spectrum can be found in References 3 and 4.
9



Configuration I

20 ft

°°“”// %

-~

Weight = 977 1bs
First Plate Bending Mode = 10 Hz

Configuration II

12 ft

ZZ/ f/[ ]f

Weight = 933 1bs
Pitch Mode = 3 Hz
First Plate Bending Mode = 10 Hz

Figure 3-1. Array Configuration Charactersstics
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zero. That is, the pressure at each pressure tap is in phase with each other
pressure tap on the array. The importance of this feature is that only
symmetric modes of vibration about the center line of the array can be excited
by the wind turbulence. Another important aspect of the spectra is that for a
ninety mph wind the power in the wind as indicated by the array pressure
coefficient spectra becomes insignificant (<1% of maximum) at frequencies
greater than 5 Hz.

.0 ﬁ
001 -
i 90 uwph Wind
P
20
vt kz 1
IR
-
i
Qo007 b
b
[ \
Y Y B VIR I3 SN
.65 1.65 16.5 HOR

F-equency ~ Hz

Figure 3-2. Typical Cross Spectrum between Pressure Taps on sn Arrsy
in 8 90 mph Wind

Htilizing random harmonic anaiysis techniques and the properties of auto and
cross spectrums, a structural dynamic analysis was performed for the two array
configurations. The results presented as magnification factors defined as the
theoretical RMS dynamic load divided by the experimental RMS pressure load is
shown in fiqgures 3-3 to 3-5 for configuration I and figures 3-6 to 3-8 for

11



cnfiguration I1. Figures 3-3 to 3-5 show the effect of loca*ion of
configurati..- I arrays in an array field (1lst array without a fence, lst array
protected by a fence, and 5th array within an array field, respectively).

tach figure also shows the effect of the first modal structural freguency on
the magnification factor and the effect of location on the array {@mid chord

¢ d outer chord locations). In general, the largest magnification factors are
.ocated near the trailing edge of the array (downwind edge) and at the mid
rhord location. The magnification factor decreases with an increase in the
first mode structural frequency. For the condition where the first mode
frequency is between one and two cycles/sec, the magnification factors change
ripidly. This is caused by the combination of the very flexible structures
3§ indicated by the low natural frequency) and the aerodynamics interacting
10 reduce the stability of the structure. At frequencies above 3 iz, the
structure becomes stiff enough so that the interaction with the aerodynamics
does not present a problem. The magnification factors for the 5th array and
the 1st array protected by a fence tend to be slightly larger than the 1st
array that s unprotected. This is expacted since the fence and the upwind
arrays will increase the leve! of turbulence in the wind compared to the wind
flowing over the 1st array.

The results for configuration II arrays (figures 3-6 to 3-8) are similar but
of reduced " synitude compared to the results for configuration I urrays. The
riuduced magnitude is a result of the larger weight per unit surface area tha*
is required for stctic load considerations by configuraticn II compared to
coafiguration I. As a result of the higher weight, less dynamic response
oczurs for the same lst mode structural frequency. Also, the magnification
~ factors for the vu-er chord and the mid chord locations are very similar in
shape and magy. itude for configuration II.

In a-neral, the structural configuration (weight, stiffness and shape) will
af.act the dynamic response of the structure. The larger the weight and
sti“fness, the less the dynamic response for a given forcing function. The
wei.ht and sti’fness of the array considered as configuration I was about as
Tight and rlexible as possible and yet maintain structural integrity for the
ctotis Toads. The nominal first structural natural frequency of this array
that would be excited by the wind was just siight below 10 Hz. For both

12



configurations, the structure whose 1st wind excited structural frequency is
below 5 Hz is sufficiently flexible that it is questionable whether it could
withstand the static loads with sufficient confidence to be a viable
structure. Because for configuration I to have a lowest natural frequency of
S Hz requires the structure to be approximately 4 times as heavy or 4 times as
flexible as the nominal structural configuration, the results for the
configur.tion with a 5 Hz frequency should be very conservative. If 5 Hz is
considered as the lower limit for a variable structure, the maximum
magnification factor for configuration I is 1.3 and configuration Il is 1.08.

13
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4.0 CONCLUSIONS

Although the structural configuration affects the dynamic response due to wind
turbulence, the general trends of the twc configurations studied are similar.
The mid chord location on an array has the largest response and the largest
magnification factors cn be h configurations. The outer chord magnification
factor of configuration I is considerably lower than the mid chord factor
because of the corner constraints, whereas for configuration 1I, the outer
chord magnification factor is only slightly reduced compared to the mid chord.
The largest dynamic response occurs near the downwind edge of the array and
decreases as the 1st structural modal frequency increases. ~* 3, to minimize
the dynamic loads due to turbulence requires the maximum pr a1 stiffness
for the structure. A dynamic magnification factor of 1.3 ap to be a
conservative factor for any type of flat plate photovoltaic array structure.

It should be noted that for the types of structures used in this analysis, if
the 1st wind excited structural frequency is below 5 Hz the structure is
sufficiently flexible that it is questionable whether it could withstand the
static loads with sufficient confidence to be a viable structure. For
configuration I to have a lowest natural frequency of 5 Hz reqbifas the
structure to be approximately 4 times as heavy or 4 times as flexil:le as the
nominal structural configuration, thus, the results for the configuration with
a 5 Hz frequency should be very conservative. If 5 Hz is considered as the
lower 1imit for a variable structure, the maximum magnification factor for
configuration I is 1.3 and configuration II is 1.08.

mat_ 0 posusy Rors
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5.0 ARRAY DESIGN GUIDELINES FOR WIND TURBULENCE

Based on the results of the boundary layer wind tunnel test and the results of
this dynamic analysis, the following design guidelines are given for
determining wind loading on photovoltaic flat plate arrays for the turbulent
portion of the wind. These juidelines are valid feo- arrays at least 2 chord
lengths from the edge and for a wind velocity profile that approximates a 1/7
power law. However, because of the edge ccnstraints of the arrays in a
dynamic sense, and oecause of the conservatism in this analysis, the wind
designs loads calculated using these guidelires would probably be also
adequate for the side edge arrays.

Fi we 5-1 presents guidelines to calculate design pressure loads on array
surfaces due to the non-steady portion ot the wind. (The desion guidelines
for tne steady state portion of the wind that needs to be combined with the
turbulent poricion for the total design load was documented in reference 1.)
This procedure requires a number of decisions which includes; 1) the choice of
confisuration I or Il must be representative of the design under
consideration; 2) the choice of th2 rms unsteady pressure coefficients for the
appropriate design array tilt ingle and array location from the wind tunnel
results presented in Appendix B; 3) the level of probability not to exceed a
given level (i.e., 1o = 68.27%, 20 = 95.45%, 30 = 99.73%); 4) the design
configuration first structural natural frequency that can be excited by the
wind turbulence; 5) the design free stream wind speed. The appropriate
magnification fact r< from figure 3-3 to 3-8 multiplied by the rms unsteady
pressure coefficient chosen from Appendix B is the design rms pressure
coefficient for wind turbulence with a 68.3% probability of not exceeding.

For a higher probability such as 95.5%, this design rms pressure coefficient
would be multiplied by 2.0. The following is an example copiying this
procedure.

Assume that the design is similar to configuration I, has a tilt angle of 35°
and the first structural fr¢ uency normal to the array is 5 Hz. For any
interior arrays, the rms unsteady pressure coefficient for this condition
extracted from Appendix B is rnshown in figure 5-2. The magnification factor
(M.F.) for 5 Hz at the mid span lccation (figure 3-5) and these M.F.
multiplied by the rms ACp from figure 5-1 is shown in table 6.1 as a function
of chord position. Assuming that a level of probability not to exceea 95.5%

23 MOE_J 2 INTENTIOAEY 0w



Step A {Decisions)

(1)
Design configuration
matches ?

Configuration I (See
II Figure 3-1)

(2)

Desian configuration 1Ist
structural natural
freqirency excited by wind

(3)

Rms unsteady pressure
coefficients for
appropriate design
configuration - Appendix B

(4)

Level of probability not
to exceed

68.27% = 10

95.45% = 29

99.73% = 3¢
(5)

Design wind speed at
an elevation of 10 meters

Step B

Obtain mag:ification factor
(M.F.) from appropriate
figures 3-3 to 3-8 using
decisions 1 and 2

step ¢ Y

Multiply M.F. by rms
unsteady pressure
coefficient from decision 3
= design pressure
coefficient with probability
not to exceed 68.27%

o“‘

Figure 5-1. F'ow Chart *0 Calculat: Array I
the Non-Steady Portic.; ~* th

-l

24

step 0 WP

Multiply Step C by level |
of probability not to
exceed from decision 4.

stpt Q@

Multiply Step D by dynamic
wind pressure from decision
5 = design pressure load on
array surface due to
non-steady portion of wind

27, = due to



of the design load due to turbulence is required, the rms ACp times the M.F.
is increased by a factor of 2. The design delta pressure coefficient for the
turbulent portion of the wind is shown in table 5-1 and in figure 5-3. The
pressure due to a 90 =;h wind is also shown in table 5-1 and figure 5-3.

The design load for the front array (either protected or unprotected by a
fence) is calcuiated in the same manner using the appropriate rms delta
pressure coefficient and magnification factors. This procedure can be
simpified by utilizing the highest M.F. (M.F. = 1.3 for modal frequencies > ©
Hz) for all conditions. This would eliminate the need to determine the design
configuration natural frequency as well as not requiring the determination of
the M.F. along the chord from figures 3-3 to 3-8.
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Table 5-1. Results for an Interior Arrey Using the Design Guidelines

Steps S/C
see
Figure 5-1 .96(T.E)] .74 .26 l.oa(n..s}
Step A Rms ACp (see Figure 5-2) 104 | .09% .133 .189
Step A | q (psf) (90 mph wind) 20.5 — - —
Step B M.F. (see Figure 3-5) 1.19 1.27 1.17 1.07
Step ¢ | (M.F.) (rms ACp) 1238 | .1207 | .1556 | .2022
Design ACp

.2475 | .2413 |.312 |.4045
SteP D ) (20) (M.F.) (rms ACP)
Step £ | (agy CoureS 5.07 |4.95 |6.38 | 8.29

T.E. = Trailing Edge

L.c - Leading Edge
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6.0 NEW TECANOLOGY

No reportable items of new technology have been identified by Boeing during
the contract of this work.
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Appendix A - Analysis Procedure

A mathematical model of the photovoltaic array included the important
structural, mass and aerodynamic characteristics necessary to simulate the
dynamic response of the array to the turbulence generated by the upwind arrays
and that contained in the free stream wind.

The structural model included the elastic characteristics of the complete
array. A finite element program NASTRAN was used to model the structure and
to calculate modes of vibration. The mode shapes for the two configurations
that can be excited by aerodynamic turbulence are shown in Figure A-1.
Generalized aerodynamic forces representing the aerodynamics on the array were
computed using the steady state pressure distributions measured in Phase III
(reference 1) and combined with the mcdes of vibration to produce the
following equations of motion for use in a Boeing developed Ranuom Harmonics
analysis computer program (reference 2).

- efd ol -1

[Ml] generalized structural stiffness and structural damping matrix
M3 generalized mass matrix
[ ] aerodynamic stiffness matrix
[Ms] aerodynamic damping matrix
{a}  vector of generalized coordinates
[ C] matrix of generalized forces associated with unit pressures at each
of the excitaticn points
{Ap} vector of excitation pressures

A corresponaing set of load equations using the force summation method was
developed in the form

[J- ] o) )0

Where {Li is the load vectcr and the[:ﬁ}] matrices are as defined for the
response equations, except that they represent generalized load coefficients.

Al



The auto and cross power spectrai densities of the pressures measured in the
wind tunnel was used to excite the array mathematical model. The loads output
spectrum was calculated utilizing the following equation:

L(w) = EN zN: xi(w) x; (w) 45 (w)

i-‘—] jz]

where

Xj (w) transfer function for system response to excitation i
d denotes conjugate
$i; 1= j auto power spectral density for pressure i
i # j cross power spectral dernsity between pressures i and j

Integration of the output spectrum produces the rms load response

T- {”L(w ) duw )”2

Because the pressure taps on the wind tunnel model in the Phase III study were
Tocated on only one spanwise station, other spanwise stations were assumed to
have an identical auto- and cross-spectrum chordwise and a correlation
function of unity spanwise. The assumption of the same chordwise spectrum at
each spanwise station is a valid assumption since the process is random.
However, the assumption of a correlation function of unity between spanwise
pressure taps is conservative.
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Configuration I

Configuration I ./

Frequency Ratio: Mode 2/Mode 1 = 1.6

Figure A-1. Array Mode Shapes
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Configuration I 4

Frequency Ratio: Mode 3/Mode 1 = 3.3

Configuration II

Figure A-1. Array Mode Shapes (Continued)
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Configuration II

Frequency Ratio: Mode 2/Mode 1 = 3.6
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Appendix B
Wind Tunnel Test RMS Unsteady Delta Pressure Coefficients

RMS pressure coefficients shown in Figures B-1 to B-3 of the fluctuating
pressures were obtained from the wind tunnel test results reported in
reference 1. These coefficients were obtained for three tilt angles (20°, 35°
and 60°), and for the first array of an array field unprotected and protected
by a fence, the fifth array within an array field, and for wind directions
from the front and rear. The pressure coefficients were calculated based on a
wind reference velocity at 10 meters and a 1/7 power law wind velocity
profile.
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PREFACE

Simultaneous pressure measurements on flat plate photovoltaic solar
arrays were conducted in a simuiated atmospheric boundary layer charac-
terized by a 1/7th power law mean velocity distribution. This report
describes random properties of fluctuating local pressures on solar
arrays by cross-spectral analysis. The random properties to be analyzed
include the auto- and cross-spectra for fluctuating pressures for several
typical array configurations.

The essential experimental configurations, including facilities,
wind-tunnel models, instrumentation and the flow simulation technique,
have been described in a preceding report [5] '"Wind Pressures and Forces
on Flat-Plate Photovoltaic Solar Arrays,'" Colorado State University
Report CER80-8INH-JAP-MP-JEC13. The simultaneous pressure measurements
presented in this supplementary report required some additional arrange-
ments for instrumentation and data acquisition. These arrangements will

be described in Sections 1 and 2 of this report.
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1.0 PRESSURE TAPS AND ARRAY CONFIGURATIONS

1.1 Pressure Taps

The simultaneous pressure measurements were obtained at four
pressure taps along the chord on the upstream surface and four pressure
taps on the downstream surface of the solar array. These pressure taps
tested were taps 1, 4, 7 and 10 on the upstream surface, and taps 11{
14, 17 and 20 on the downstream surface. The location of each pressure
.tap is shown in Figure 1 which duplicates Figure 10 of the preceding
report.

1.2 Array Configurations

All array configurations tested for this phase of the study are
listed in Table 1. Array locations are shown'in.Figure 2 which dupli-
cates Figure 11 in the preceding report. Several typical array configu-
rations are chosen to be presented and discussed in this report. For
this study, the ground clearance and spacing of solar a;rays were 0.25 ¢
and 2,0 ~ respectively, and were not varied. The wind direction was 0°
for all array configurations. The definitions of these test parameters

are seen in Figure 2..

2.0 DATA ACQUISITION

The mean wind velocity outside the simulated turbulent boundary
layer in the Meteorological Wind Tunnel, shown in Figure 1 of the main
report, was approximately 50 fps as was used for the preceding tests

~ 43 {ps). The outputs from the 8 pressure transducers

(giving a Uref fd

were recorded simultaneously on digital magnetic tape for 35 seconds at
500 samples ner second using a data acquisition system based on a
Hewlett-Packard System 1000 minicomputer. The data werr then analyzed

by the same computer. Pressure, normal force and pitching mome t



€2

coefficients presented in this report were refersnced to the mean
dynamic pressure at 10 m elevation in the prototype. The power spectral
densities of local peak pressures were evaluated with these pressure
coefficients.

2.1 Prassure and Normal Force Coefficients

Pressure and normal force coefficients are respectively defined in
Sections 3.2 and 3.3 of the preceding report. The same definitions

apply to this report:

P . AP
C = s AC. =
P Qref P Uref
c 1)
1
CN = 2 I ACp(s)ds
0

2.2 Pitching Moment Coefficients

Pitching moment coefficients, CM’ about the mid-chord of the solaf
array ave defined by
M

T

ref * € @
where M is the calculated pitching moment per unit surface area about
the mid-chord of the array, Apef is the refeg?nce dynamic pressure of
approaching flow at 10 m full-scale, and .c is the chord length of the
array. In order to calculate M, the eccentricity of the center of
pressure, e, was obtained numerically by a curve fitting to the pressure
distribution using linear interpolation schemes along the chord of the

array. Thus
M" = FN ¢ e (3)

where FN is the normal force.

*pitching moment lifting windward edge up is defined to be positive.
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2,3 Spectral Analysis

2.3.1 Matrix Arrangement

A set of cross-power spectral densities of local pressure
fluctuations on the solar array were calculated. For simplicity of
notatior, the pressure tzp numbers 1,4,7,10,11,14,17 and 20 can be
renamed as 1,2,3,...,8 in order. Any pressure tap number used in
this report will be, hereafter, referred to as the renamed one.

Matrices for the correlation and power spectral densities are

written as follows,

[ T auto-correlation , if i = j
R..(1)]| =

i 1 ] cross-correlation, if i # j
[ ] auto-spectrum , if i =3
¢.. N | =

SR cross-spectrum , if i # j

where 1t is time lag, N 1is frequency, and 1i,j refer to the pressure
tap numbers.

2,3.2 Correlation Functions

For this analysis, auto- and cross-correlation functions are defined

by
T

.1
R..(1) = lim = J C (t) -¢C C_ (t+1) - C dt (4)
1 T T 0 [ Py pmeani][ pj pmeanj]

where Cp (t) and C are instantaneous and time-averaged values
k

Pmeany

of pressure coefficient with respect to tap number k. Defining a

fluctuating component of pressure coefficient, C' (t), as

Px

C' (¢) = C_(t) -C (5)
Py pk pmeank



C4

the auto-correlation function, at t = 0, becomes for one tap

R..(0) C"(t) C"(t)

ii p P
i i 6)
2
= C°
Pros,
i
in which an overbar denotes a time averaging.
2.3.3 Power Spectral Density Functions
Power spectral density functions are defined by
o
¢ij(N) = 4 f Rij(r) exp(-j2nNt)dr €))
0
where j appearing in the exponential function refers to j2 = -1,
The integral property of the auto-spectral function requires
o. (NJAN = R..(0) = C2 (8)
ii ii D
0 msy

Because of this property, the power spectral density can be normalized

by

» - ij . . L
Oij(N) = T -~ with units [Hz] (9)

It is also common practice to normalize the frequency N by

N¢

NY = (16)

Uref
where Uref is the reference wind velocity.
The cross-spectral analysis was performed digitally by a Fourier
Transform subroutine using standard techniques such as those in
references [1] and [3]. Transforms were performed on 8 time segments,

each 2048 samples in length, for each pressure record (recorded at
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500 samples per second). Transforms were combined to form cross-spectra
and appropriate averaging across data points in frequency and time seg-
ments was performed to reduce normalized standard error o’ the spectrum.
Because of memory limitations, the cross-spectra were only calculated to

a maximum frequency of 125 Hz (N*= 1.0)., This frequency retained virtuall:
all the energy in the fluctuating pressures. Normalized standard error

of the cross-spectra reached a maximum of 11 percent at the lower

frequencies.

3.0 RESULTS AND DISCUSSIONS

3.1 Pressure and Normal Force Coefficients

Examples of time traces of normal force and pitching moment
coefficients are shown in Figure 3 obtained with the first solar array
at a = 35°, without fence. The time-averaged mean and rms pressure
coefficients are tabulated in Table 2 for six typical array con{igurations,
including Runs 21331, 21344, 21346, 21352 and 21368. These values agree
well with those found in the preceding report [5].

3.2 Power Spectral Analysis

The auto-spectra 1or each pressure tap are showr. in Figures 4
through 9 for the six cases listed in Table 2. Comparing the auto-
spectra for the individual pressure taps and for both surfaces of the
solar array, the power spectra show that the energy is shifted to higher
frequencies fnr the first array with fence and the fifth array, consistent
with the smaller scales of turbulence experted behind the fence and within
the array field. The rear side of the first array also shows this effect.
The area unoer the auto-spectra over the available frequency range is
compared to the measured variance in fluctuating pressure in Table 3.

Figures 4 through 9 clearly show that the energy content in the power
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spectra is concentrated at N* < 0.1, At N* - 0.3, a spike in the

power spectra is seen for both the upstream and downstream surt..ces,

This spike in the power spectra is due to vibration of the wind-tunnel
model. Moreover, for some cases, another spike at N* - 0.4 was obtained
which is a second mode of vibration of the model. No attempt was made to
model the full-scale structural stiffness or damping so that these
response spikes do not indicate full-scale response.

Both the real and imaginary parts of the auto- and the cross-spectra
were calculated. Only the real part is shown in Figures 4 through 9.

The imaginary nart was essentially zero for all cases. The implication
of this finding is that the phase angles of the various frequencies are
uncorrelated, This is a typical result in velocity or pressure
fluctuations in turbulent bowrdary layer £lows.

Figures 10 through 15 show cross-spectral plots for all combinations
of taps for each of the six cases listed in Table 2. Cross-spectra for
each array were grouped on plots so that similarly-sha~ " -irves would
appear on the same plot. The plots reveal thr same increase in energy
at higher frequencies for arrays behind the fence and withir the array
field as was observed for the auto-spsctra. Also, the model natural

frequency of vibration shows in the plots.

4.0 CONCLUSIONS

On the basis of the data presented in previous sections, the
following conclusions can be drawn.

1. Auto-spectra of local pressure fluctuations characteristically
fall rapidly with increasing frequency.

2. Auto-spectra show higher energy at the high:r frijusncies

where the pressure tap is within the array field cr veca.nd a wind fence.
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3. Cross-spectra showad prcperties similar to those in 1 and 2
above.

4. Cross-specira between taps 1n separated zones were quite
similar.

S. The imaginary parts of both auto- and cross-spectra were

essentiai:y zero.
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Figure 12. Cross-Spectra for First Array at o = 145°, with Fence
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Figure 13. Cross-Spectra for First Array at a = 160°, with Fence
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Figure 14. Cross-Spectra for Fifth Array at a = 20°, without Fence
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Table 1. List of Array Configurations Tested

Fence**

Run a Array

Height Distance Porosity

(He/c) (xg/c) O
21318 120 5 -- - -
21321 120 1 -- -- -
21323 120 1 0.75 2.5 30
21325 145 S -- -- -
21527 145 2 - -- -
21329 145 1 - - -—
21331 145 1 0.75 2.5 30
21338* 145 1 - - -
21340 160 S -- -- -
21342 160 1 -- -- --
21344 160 1 0.75 2.5 30
21346 20 5 -- - --
21348 20 1 -- - -
21350 20 1 0.75 2.5 30
21352 35 5 -- -- -
21354 35 2 -- -- -
21356 35 1 -- -- -
21358 35 1 0.75 2.5 30
21364* 35 1 - -- --
21366 60 5 -- -- -
21368 60 1 -- - -
21370 60 1 0.75 2.5 30

*edge study (see Section 2.3 of the preceding report for the definition)
**see Figure 2 for definition of parameters
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Table 2a, Time-\veraged Pressure Coefficients

Run 21331* Run 21344* Run 21346

o] Array a Array o Array
145 1 160 1 20 S

Tap (original) CPmean CPrms CPmean CPrms CPmean CPrms
1 (1) -.083 .051 -.105 .052 .020 .051
2 (4) -.068 .057 -.096 .061 .055 .050
3(7) -.088 .078 -.133 .072 .075  .069
4 (10) -.107 .068 -.109 .060 077 .113
5 (11) -.134 .040 -.096 .040 -.196 .210
6 (14) -.136 .039 -.096 038 -.116 121
7 (17) -.153 .042 -.121 .042 -.103 .078
8 (20) -.131 .044 -.107 .045 -.054 072

*with fence
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Table 2b. Time-Averaged Pressure Coefficients

Run 21352 Run 21356 Run 21368

o Array a Array a Array
35 S 35 1 60 1

Tap (original) CPmean CPrms CPmean CPrms CPmean CPrms
1 (1) -.013 .060 .087 .054 .223 .089
2 (4) .001 .062 .292 .067 .376 ,095
3 (7)) ~-,004 .081 .436 .1C67 .482 .148
4 (10) -,002 120 .451 .178 .279 177
5 (11) -.140 147 ~.300 .081 -.417 . 066
6 (14) -.104 .1098 -,290 .073 -.398 ,063
7 (17) -,126 .08% -.346 .071 -.472 .063

8 (20) -.092  .097 -.293 .072 -.417  .064
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Table 3. Comparison of Integration of Auto-Spectra

array = 1, a = 35°, without fence

*

pressure taps { oii(N)dN/clz’rmsi
1, 1) 0.590
2, 2) 1.069
(3, 3) 1.165
4, 4) 1.659
(5, 5) 1,004
6, 6) 0.971
7, 7 U.986
(8, 8) 0.963

array = 5, a = 3%°, without fence

(1, 1 1.035
2, 2) 1.016
(3, 3 1.070
(4, 4) 0.986
(5, 5) 1.06l
(6, 6) 1.06?
7, 7) 0.991
(8, 8) 0.972

*by theory, this quantity should be identically equal to 1
(see Equation 8)



