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SUMMARY 

A local linearization technique has been successfully used to solve a 

system of stiff differential equations associated with a Magnetic Bearing 

Assembly. The technique has proven to be accurate, stable and extremely 

efficient. A variable order Adams method with a stiff option was used as a 

reference case. 

INTRODUCTION 

Certain models encountered in simulation studies require the solution of 

systems of stiff, nonlinear differential equations. Solving a system for the 

state as a function of time using general purpose flexible integration 

routines becomes costly because of overhead, satisfying error tolerance 

requirements and the fine integration step size which may be required to 

represent properly the system response. The problem is compounded when one or 

several of these models are required to be interfaced as subsystems of a large 

dynamic simulation which may have many time consuming derivative evaluations 

as well as slowly varying states. In such applications, the stiffness of the 

entire system may be amplified, thus requiring the entire simulation to 

operate at a very small integration step size. A method for solving this 

problem is to apply a stiff differential integration technique to only the 

stiff models of the simulation, thus allowing for stiff and nons tiff 
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integration algorithms to be used, and consequently improving the efficiency 

of the overall simulation. Therefore, a numerical integration technique, 

preferably with one derivative evaluation.per step, which is stable, accurate, 

and efficient is needed to solve these stiff simulation models. 

An integration technique which exhibits the desired characteristics is 

the local linearization (LL) technique described in reference 1. The LL 

algorithm is especially suited for models for which the Jacobian matrix is 

easily obtained. 

An excellent model to demonstrate the application of the LL technique is 

the Magnetic Bearing Assembly (MBA) described in appendix A. The MBA is a 

magnetic actuator which is used in critical solar, stellar and earth pointing 

applications on Space Shuttle missions. This model has eigenvalues ranging 

from 10 to 2000. However, if the MBA's are interfaced into the Annular 

Suspension and Pointing System (ASPS) simulation model, eigenvalues ranging 

from 0.1 to 2000 are obtained, thus considerably amplifying the stiffness of 

the system. The ASPS is described in reference 2 

The purpose of this study is to demonstrate the LL technique to simulate 

a MBA or other similar models which cannot be solved efficiently using general 

purpose, flexible integration methods. 

The LL performance is documented in this report against a general 

purpose, variable order Adams method with a stiff option (VOADAM) which 

assumes a dense Jacobian. 

SYMBOLS 

B, C, u, v, r, q, cS submatrices required for matrix inversion 
/" 

I Kl' Kz, K3 ,K4 MBA current loop parameters 

;,_ KLD , Kp' Kr 
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RAC ' Lr.E' RO' Lgo MBA circuit parameters 

A(t) time varying Jacobian matrix 

bij 
elements of B, where i, j = 1, 2, 3, 4, 5 

aij elements of A(t), where i, j = 1, 2, 3, 4, 5 

C1 ' C2 , C3 MBA scale factors 

0 matrix representing special SxS inverse 

d .. 
1.J 

elements of D, where i, j = 1, 2, 3, 4, 5 

F n-dimensional vector composed of general nonlinear 

time-varying functions of the state vector 

fU force generated by upper magnetic pole, N 

fL force generated by lower magnetic pole, N 

f MBA force output, N 

fc force command input to MBA, N 

Fmax maximum MBA force output, N 

g actual magnetic gap, m 

go nominal magnetic gap, m 

h integration step size, seconds 

I identity matrix 

IC MBA current command, A 

10 MBA bias current, A 

K MBA force constant, Nm/A2 

m payload mass, Kg 

P, Q matrix coefficients in general LL algorithm for 

solution of nonlinear time-varying systems 

s Laplace operator 

t time, seconds 

common terms used in inverting the Sx5 matrix B 
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Llg 
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w
B 

l; 

l; 

Subscripts: 

k 

L 

n 

MBA voltage command, V 

n-dimensional vector representing system states 

difference between nominal and actual magnetic gap, m 

estimate of ilg,m 

functions of magnetic gap and gap coefficients 

MBA bandwith, radlsec 

actual gap coefficient, 1m 

estimated gap coefficient, 1m 

integer constant 

denotes lower MBA pole 

denotes steps in construction of submatrices, n = 2, 

3, 4, 5 

U denotes upper MBA pole 

Dot over symbol denotes time derivative 

Abbreviation: 

ASPS Annular Suspension and Pointing System 

CPU Central ProceSSing Unit 

LL Local Linearization 

MBA Magnetic Bearing Assembly 

VOADAM Variable Order Adams with stiff option 
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PROBLEM DESCRIPTION 

Shown in figure 1 is a block diagram of the MBA. The simplified ASPS 

dynamics shown was used purely for MBA model checkout and is not included in 

the state equations. The state differential equation of the MBA is given by: 

Z = F (Z, f , ~g, ~g, ~g, t) 
c 

where Z, f , ~g, ~g, ~g and t 
c 

represent the state vector, the command 

(1) 

force, gap, gap rate, gap estimate, and time, respectively. The LL solution 

at t k+l is given by: 

where 

aF 
'af 

'af 

at 
c 

c 

P = A-I (eAh - I) 

Q A-I (p - hI) 

+ aF 
a~g 

. 
A az/az 

~ + aF 
at a~g 

(2) 

(3) 

(4) 

(5) 

(6) 
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1 = nxn identity matrix 

and h is the integration step size. The order of the system is n, which for 

this system is 5 for the upper pole and 5 for the lower pole of the MBA. The 

n-differential equations of (1), the A matrix (5) and the n-vector (6) are 

given in appendix B. 

The approach taken to efficiently solve equation (2) was to substitute a 

first order Pade' approximation for the matrix exponential and to develop a 

special matrix inverse to take advantage of the zero elements of the resulting 

5x5 matrix. Another approach which was not investigated, but should also be 

efficient when used in conjunction with the first order Pade' approximation 

is to solve systems of differential equations in lieu of computing inverses. 

This would probably reduce the number of operations required to obtain a 

solution as compared to the approach taken. 

If the Pade' approximation 

Ah e ~ (1 - Ah/2)-1 (1 + Ah/2) (7) 

is substituted into equations (3) and (4) P becomes: 

P = h (I - Ah/2)-1 (8) 

and Q becomes: 

Q = Ph/2 (9) 

The matrix ~ -~1 can be inverted using standard system matrix 
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routines. However, to take advantage of the many zero elements, a special 

inverse was obtained using the partioning and bordering technique discussed in 

reference 3 and summarized in appendix C •. This final code resulted in 

approximately a 76 percent reduction in execution time required for the 

inverse problem. 

RESULTS 

Several test cases were examined comparing the LL and VOADAM results. 

Forcing functions used were a step, triangular wave and sine wave. The 

triangular wave had a frequency of 1 Hz and a slope of 1 Newton/second. The 

sine wave had an amplitude of 4 Newtons and frequencies of 2.5 and 10 Hz. The 

11 test cases were run with a integration step size of 0.001 seconds. The 

error criteria used for the VOADAM solutions was selected such that the 

solution was to have no more than 125 units of error per 1,000,000 units of 

magnitude. Two test cases were made with each forcing function except for the 

step input where only one case was run. The two cases run were with and 

without the aF at vector zeroed. The step, which was input at t = 0.005 seconds 

3F 
with a magnitude of 1.5 newtons, was only run with at zeroed since by 

definition the derivative of a step has infinite slope. The purpose of 

examining the effect of zeroing the aF at vector is that in practice it is 

seldom available. In some applications a backward difference calculation of 

3F at can be used, however, caution should be exercised when using this 

procedure. 

The LL and VOADAM solutions to a 2.5 Hz sine wave is shown in figure 2. 

The variables plotted are the MBA output, f, the error between the VOADAM and 

LL solutions, and the magnetic gap change, ~g, resulting from applying f 
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to a 90 Kg mass." Figures 3 to 5 show the LL and VOADAM solutions to a 10 Hz 

sine wave, a triangular wave and a step input, respectively. Presented in 

tables I to IV is a digital representatio~ of portions of the data shown in 

the time history plots. The maximum error which occurred during the run is 

shown enclosed in the box. 

The data presented shows LL to be extremely accurate even with the 

vector zeroed. As mentioned previously, the LL data presented was run 

at only one integration step size, 0.001 seconds. No attempt was made at the 

writing of this report to vary the step size or to investigate methods of 

approximating the aF 
at vector with backward differences or other numerical 

methods of computing derivatives. It is reasonable to assume, however, that 

the 11 results for 

above methods. 

aF 
at equal to zero could be improved by one or both of the 

Computer execution times comparing LL to VOADAM for an input sine wave 

frequency of 1, 5, and 10 Hz are shown in the following table: 

Freauencv (Hz) 1 5 10 

LL 2.7 2.7 2.7 

VOADAM 24.2 31.1 28.0 

%CPU saved 88.8 91.3 90.3 

The execution times are expressed as CPU-second/second of run time and the 

percent CPU saved is the amount of CPU time saved by LL. For timing purposes, 

a step size of 0.001 seconds was used for LL while VOADAM adjusts the step 

size to satisfy a maximum error criteria of 125 units of error per 1,000,000 
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units of magnitude. VOADAM was required to return to the calling program at 

0.01 second intervals. Although this is not the most efficient use of VOADAM, 

it was required to simulate the operating environment of the MBA. The MBA 

receives inputs at 0.01 second intervals from a digital controller. 

CONCLUDING REMARKS 

A local linearization technique (LL) has been successfully used to solve 

a system of stiff differential equations associated with a Magnetic Bearing 

Assembly. The LL technique proved to be accurate, stable and extremely 

efficient when compared against a general purpose flexible Adams integration 

method with a stiff option. In large dynamic simulations, which require the 

simulation of models such as the Magnetic Bearing Assembly, the LL technique, 

when applicable, appears to be one of the most efficient methods to employ. 

When considering budget constraints, the LL technique may very well determine 

whether or not models such as the MBA can be included, without simplication, . 

in large dynamic simulations. 

The LL technique presented in this report is not restricted to the 

application discussed herein. For example, in the linear time-varying case, 

the Jacobian and LL coefficients (p and Q) are constant, which makes the LL 

technique especially suitable for real time simulation applications since only 

one initial computation of the Jacobian is required. 
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APPENDIX A 

DESCRIPTION OF THE MAGNETIC BEARING ASSEMBLY 

The Magnetic Bearing Assembly (MBA) is a magnetic actuator used for fine 

pointing control in the Annular Suspension and Pointing System (ASPS) which is 

described in reference 2. Shown in figure 1 is a block diagram of the 

hardware model and the associated current loop electronics. Actuators of this 

type are inherently nonlinear. This particular model uses bias current 

linearization to remove the current squared nonlinearity and a signal 

proportional to the gap is used to multiply the coil currents to compensate 

for the inverse-gap-squared relationship. A current control loop is used to 

obtain the desired actuator response. The MBA parameters are shown in table 

V. The current control loop parameters are tabulated in table VI. The 

following functional relationships are used to calculate the bias current and 

current control loop parameters. 

~D 

Lg 
a 

(A-I) 

(A-2) 

(A-3) 

(A-4) 

(A-5) 
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where wB is the bandwidth and Fmax is t~e maximum force output. The 

parameters Kl and Kz were selected to give desired damping 

characteristics. The value of the remaining parameters are the result of 

laboratory measurements. 
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APPENDIX B 

STATE DIFFERENTIAL EQUATIONS, "A" MATRICES AND THE aF VECTORS at 
The differential equations are 

n3 
=-

Lg 
o 

Upper Pole 

Lower Pole 

(B-1) 

(B-2) 

(B-3) 

(B-4) 

(B-S) 

(B-6) 
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where 

14 

n = (1 + I;~g) 
2 

n = (1 - I;~g) 
3 

(B-7) 

(B-8) 

(B-9) 

(B-lO) 

(B-ll ) 

(B-12) 

(B-13) 

(B-14) 

(B-1S) 



(B-16) 

(B-I7) 

(B-18) 

(B-19) 

(B-20) 

(B-2!) 

(B-22) 

(B-23) 

The aF/at vector for the upper pole is given by: 
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az2U K1 
at = -K • VAR1 

3 

The aF/at vector for the lower pole is given by: 

16 

(B-24) 

(B-25) 

(B-26) 

(B-27) 

(B-28) 

(B-29) 

(B-30) 

(B-31) 



The "A" matrix, 

given by: 

where 

dZ
i 

-" - (i = 1, 0 0 0, 5, j oZ. 
J 

0 

a 21 
0 

a41 
0 

0 

a 22 
a 32 
a 42 
0 

0 

0 

0 

a 43 
0 

= -K 
2 

(B-32) 

(B-33) 

(B-34) 

(B-35) 

1, 0 0 0, 5) for the upper pole is 

a 14 0 

a 24 0 

0 0 (B-36) 
a 44 a 45 
a54 a 55 

(B-37) 
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(B-38) 

(B-39) 

(B-40) 

(B-41) 

(B-42) 

1 (-K4 ~ ) a42 = L K + K 
LE 3 P 

(B-43) 

(B-44) 

(B-45) 

(B-46) 
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Lg 
o 

The following elements are zero: 

= 

The "A" matrix for the lower pole is given by: 

(B-47) 

(B-48) 

Elements through a45 are identical to the upper pole "A" matrix 

elements. The remaining two elements are: 

n4RAC 
Lg 

o 
(B-49) . 

(B-50) 

the following upper pole elements are set to: 

= 0 (B-51) 
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(B-52) 

If VL < -VLIM or VL > VLIM the following lower pole elements are set to: 

(B-53) 

(B-54) 

For steady state initialization: 

(B-55) 

(B-56) 

(B-57) 
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Given the matrix B 

APPENDIX C 

MATRIX INVERSION TECHNIQUE 

B = 

B n-l 
1 
1 
1 

u 
n 

--- -1-----

v 
n 

1 
1 
1 

b nn 

where Bn- 1 is a (n-l) x (n-l) square matrix, vn is a 1 x (n-l) row, 

matrix, un is a (n-l) x 1 column matrix, bnn is a scalar. Assume the 

inverse to be of the form 

-1 
B = 

C n-l 
1 
1 rn 
1----
1 -1 
IOn 
1 

where Cn- l is a (n-l) x (n-l) square matrix, qn is a 1 x (n-l) row 

matrix, rn is a (n-l) x 1 column matrix, 0-1 is a scalar. 
n 

relationship BB- l = I as in reference 2, it follows that: 

_0-1 v B-1 
qn = n n n-l 

Using the 

(C-l) 

(C-2) 

(C-3) 

(C-4) 
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-1 
r = -B n n-l 

-1 -1 
Cn- 1 = B n-1 - B n-1 un qn 

(C-S) 

(C-6) 

The SxS matrix inverse was calculated by starting with n = 2 to get the 

2x2 inverse, with n = 3 to get the 3x3 inverse, etc., until n = 5. 

If B is of the form 

bU 
0 0 b14 0 

b21 b22 0 b24 0 

B = 0 b32 b33 0 0 (C-7) 
b41 b42 b43 b44 b45 
0 0 0 bS4 bSS 

the final SxS inverse, D, is given by the following equations. Equations (C-S) 

through (C-23) give the 4x4 inverse. Equations (C-24) through (C-33) give the 

SxS inverse extended from the 4x4 inverse. 

(C-8) 

(C-9) 

(C-10) 
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(C-ll) 

(C-12) 

(C-13) 

(C-14) 

(C-lS) 

(C-16) 

(C-l7) 

(C-18) 

(C-19) 
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(C-20) 

(C-21) 

(C-22) 

(C-23) 

1 (C-24) 

(C-25) 

(C-26) 

(C-27) 

(C-28) 
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(C-29) 

(C-30) 

(C-31) 

(C-32) 

dij dij + d55 di4 b45 b54 d4j i, j = 1, 2, 3, 4 (C-33) 

where 

Tl = 
b41 b42 b21 b43 b21 b32 
bll bll b22 

+ bll b22 b33 
(C-34) 

(C-35) 

(C-36) 

(C-37) 
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and 

26 

b21 b32 b l4 
TS = b

ll 
b

22 
b

33 
(C-38) 



TABLE V.- MBA PARAMETERS 

Maximum force output, Fmax' N ••••••••••••••••••••••••••••••••••• 34.25 

Bandwidth, W
B

, rad/sec •••••••••••••••••••••••••••••••••••••••••• 628 

Bias current, 1
0

, A ••..••••••••••••••...•..•..••••.•.••...•.••••• 0.55522 

Nominal gap, m ••••••••••••••••••••••••••••••••••••••••••••••• 0.00762 

Actuator force constant, 
2 

N.m 
A2 

............................... K, 0.00161284 

Gap coefficients, and r",/m 127.795 

Mass inductance measured at nominal gap, Lgo ' H •••••••••••••••••• 0.4347 

Leakage inductance, LLE' H ••••••••••••••••••••••••••••••••••••••• 0.243 

AC resistance, RAC,ohms •••••••••••••••••••••••••••••••••••••••••• 238 

DC resistance, RDJ ohms •••••••••••••••••••••••••••••••••••••••••• 7.4 
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TABLE VI.- CURRENT LOOP PARAMETERS 

Parameter Value 

KLD 4.16 x 104 

Kp 6.48 x 107 

KI 6.94 x 108 

K1 0.00136 

K2 
0.2845 

K3 0.4347 

K4 238 
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TABLE 1.- 2.S HZ SINE WAVE COMPARISON (BOX DENOTES MAXIMUM ERROR) 

aF LL aF * 0 
aF aF 

t VOADAM LL - = 0 error - = 0 error, - * 0 , at ' at ' at at 

.210000000 .117449790 .148293~7f- .116824035 .030843786 -.000625755 

.211000000 .054503260 .085357574 .053876353 .030854314 -.000626907 

.212000000 -.008456853 .027400377 -.009084756 1.0308572301 -.000627904 

.213000000 -.071415009 -.040562478 -.072043755 .030852532 -.000628745 

.214000000 -.134355673 -.103515452 -.134985104 .030840221 -.000629431 

.215000000 -.197263310 -.166443010 -.197893272 .030820301 -.000629961 

.216000000 -.260122395 -.229329620 -.260752731 .030792775 -.000630336 

.217000000 -.322917413 -.292159762 -.323547961 .030757650 -.000630555 

.218000000 -.385632E65 -.354917929 -.386263483 .030714936 1-. 0006306181 

.219000000 -.448253272 -.417588630 -.44€883798 .030664641 -.000630526 

.720000000 -.511)763177 -.480156398 -.511393456 .030606779 -.000630219 

.221000000 -.573147152 -.542605789 -.573777028 .030541363 -.000629876 

.222000000 -.635389798 -.604921389 -.f36019116 .030468409 -.000629318 

.223000000 -.697475750 -.667087~15 -.698104356 .030387935 -.000628605 

.224000000 -.7593f9684 -.729089723 -.760017422 .0302999b1 -.000627738 

.275000000 -.821116316 -.790911807 -.821743032 .030204509 -.000626716 

.226000000 -.882640407 -.852~38807 -.883265948 .030101600 -.000625540 

.227000000 -.943946772 -.913955510 -.944570983 .029991262 -.000624211 

.228000000 -1.005020275 -.975146754 -1.005643003 .029873520 -.000622728 

.229000000 -1.0658451:139 -1 • 0-360974 3 5 -1.066466932 .029748405 -.000621093 -. 

N 
ID 



w 
o 

TABLE 11.- 10 HZ SINE WAVE COMPARISON (BOX DENOTES MAXIMUM ERROR) 

t VOADAM 
aF _ 0 

LL, at -
aF 

LL, -"* 0 at 

.460000000 .513067197 .63ee74723 .511264777 

.461000000 .256069556 .382617966 .254010125 

.462000000 -.001919442 .124848986 -.004248421 

.463000000 -.259912634 -.133413296 -.262489983 

.464000000 -.516860116 -.391147979 -.519693729 

.465000000 -.771ROAP73 -.64733623P -.774842931 

.466000000 -1.023688522 -.900965369 -1.026928999 

.467000000 -1.271522438 -1.151032816 -1.274955495 

.468000000 -1.514330397 -1.396550151 -1.517942083 

.469000000 -1.751152373 -1.636546999 -1.754928434 

.470000000 -1.981052266 -1.870074899 -1.964978028 

.471000000 -2.203121571 -2.096211060 -2.207181683 

.472000000 -2.416462944 -2.314062036 -2.420662156 

.473000000 -2.620293642 -2.5227t7259 -2.624575626 

.474000000 -2.813748851 -2.721502461 -2.818117040 

.475000000 -2.996084862 -2.909482934 -3.000522296 

.476000000 -3.166582075 -3.085966639 -3.171071474 

.477000000 -3.324567843 -3.250257140 -3.3290(H675 

.478000000 -3.469419126 -3.4017C6355 -3.473959679 

.479000000 -3.600564942 -3.539717111 -3.605104402 

aF 
error, 0 at 

.1257875~5 

.126528409 

1·1267684?7} 

.126499338 

.125732137 

.124472635 

.122723153 

.120489622 

.117780246 

.114605374 

.110977368 

.106910511 

.102420908 

.097526382 

.092246390 

.086601927 

.080615435 

.074310703 

.067712771 

.060847831 

error, (JF "* 0 
vt 

-.001822420 

-.002079432 

-.002328980 

-.00~577349 

-.002813613 

-.003034058 

-.003240477 

-.003433056 

-.003611686 

-.003776061 

-.003925762 

-.004060312 

-.004179212 

-.004281985 

-.004368189 

-.004437435 

-.004489400 

-.004523832 

1-.0045405531 

-.004539460 
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TABLE 111.- TRIANGULAR WAVE COMPARISON (BOX DENOTES MAxIMUM ERROR) 

a"F 
LL ~"* 0 

a"F aF 
VOADAM LL, - = 0 error - = 0 error, at"* 0 t 

at ' at ' at 

.541000000 .499271067 .498859295 .499337367 -.000411772 .000066300 

.542000000 .499841373 .499663338 .500043179 -.0001779A5 .000201856 

.543000000 .4999477fl5 .500023750 .5001~1731 .000075964 1.000233946 I 

.544000000 .499615176 .499908124 .499828048 .000292949 .000212873 

.545000000 .498926654 .499380925 .499095039 .000454271 .000168384 

.546000000 .497978622 .498539647 .498096720 .000561025 .000118098 

.'547000000 .496860664 .497482348 .496931430 .0006216R3 .000070765 

.548000000 .49564 5870 .496293016 .495676123 .000647145 .000030253 

.549000000 .4943f<€219 .495036759 .494386464 1.000648540 I -.000001755 

.550000000 .493124903 .493760065 .493099624 .000635162 -.000025279 

.551000000 • 49lP. 79290 .492493394 .491838045 .000614105 -.000041245 

.552000000 .490664179 .491254554 .490613202 .000590375 -.000050977 

.553000000 .489484820 .490052042 .489428937 .000567222 -.000055883 

.';54000000 .488341439 .4888(17967 .488284159 .000546528 -.000057281 

.555000000 .487231212 .487760394 .487174910 .000529182 -.000056302 

.556000000 .486149720 .486665122 .486095856 .000515402 -.000053865 

.557000000 .485091961 .485596948 .485041292 .000504986 -.000050669 

.558000000 .484053002 .484550510 .484005779 .000497508 -.000047223 

.559000000 .483028362 .483520807 .482984495 .000492445 -.000043867 

w .560000000 .482014203 .482503472 .481973390 .000489269 -.000040813 
...... 



w TABLE IV.- ~TEP COMPARISON (BOX DENOTES MAXIMUM ERROR) N 

aF" a'F 
t VOADAM LL, - = 0 error, at = 0 

at 
.005000000 0.000000000 0.000000000 0.000000000 

.006000000 .16225?170 .147347430 1-.0149047401 

.007000000 .493552465 .480234865 -.013317600 

.008000000 .844168912 .837443361 -.006725552 

.00900000(\ 1.146302109 1.146273165 -.000028943 

.010000000 1.3769~7376 1.381929791 .004972415 

.011000000 1.536057579 1.543985964 .007928385 

.012000000 1.633f90697 1.642993667 .009102990 

.013000000 1.6841t061A 1.693122399 .008961780 

.014000000 1.700371363 1.708349390 .007978028 

.015000000 1.694159157 1.700710234 .006551077 

.016000000 1.674726022 1.679707480 .004981459 

.017000000 1.648861594 1.652335073 .003473479 

.018000000 1.621246513 1.623396321 .002149808 

.019000000 1.5941:159358 1.595929231:1 .001069880 

.020000000 1.5713eAe77 1.571636786 .000247909 

.021000000 1.551602082 1.551270672 -.000331410 

.022000000 1.535648199 1.534947799 -.000700399 

.023000000 1.523294Q06 1.522395924 -.000898982 

.024000000 1.514102440 1.513134309 -.000968131 
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Figure 2.- 2.5 Hz sine wave comparison (+ symbol 
denotes VOADAM solution) 



.L! 

~ .2~------4-------~-----=~==~----+-------~ 

o 
'H-

I~I+J co co 
Z 

~ 

o 

I~I+J co co 
Z 

t,sec 

Figure 3.- 10 Hz sine wave comparison (+ symbol 
denotes VOADM1 solution) 
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Figure 4.- Triangular wave comparison (+ symbol 
denotes VOADAM solution) 
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