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Summary 
A pulsed thermocouple is used for measuring gas 

temperatures above the melting point of common 
thermocouples. This is done by allowing the 
thermocouple to heat until it approaches its melting 
point and then turning on the protective cooling gas. 
This method requires a computer to extrapolate the 
thermocouple data to the higher gas temperatures. In 
earlier work by this author the extrapolation was 
done by using a first-order exponential curve fit to 
predict the final thermocouple wire temperature. 
Since radiation effects were neglected, the gas 
temperature was not computed. Hand calculations 
had to be used to estimate the gas temperature. This 
report describes a method that includes the effect of 
radiation in the extrapolation. Computations of gas 
temperature are provided, along with the estimate of 
the final thermocouple wire temperature. Results 
from tests on high-temperature combustor research 
rigs are presented. 

Introduction 
An earlier investigation by the author (ref. 1) 

described the use of a pulsed thermocouple to 
measure gas temperatures above the melting point of 
common thermocouples. This method of measuring 
temperature is intended for the measurement of 
temperatures at the exit of experimental aircraft 
combustors at temperatures to 2400 K and pressures 
to 4 MPa (40 atm). The previous investigation 
described an approach that uses a thermocouple 
cooled by a small jet of inert gas. When a 
measurement is to be made, the cooling jet is turned 
off and the thermocouple is allowed to heat up to 
near its melting point. When the temperature of the 
thermocouple approaches its melting point, the 
cooling is reapplied. The data are then fitted to a 
first-order exponential function. The final 
temperature that the thermocouple would have 
attained is then calculated by extrapolation. 

The computer program (ref. 1) did not take into 
account the fact that at the higher temperatures the 
heating curve deviates from a true exponential. This 
deviation is the result of radiant energy (obeying 
Stephan’s T4 law) being absorbed or emitted by the 
thermocouple wire. 

The analysis described in this report takes into 
account the 9 radiation terms in the differential 

equation describing the temperature of the 
thermocouple wire as a function of time. The report 
describes the solution of this differential equation for 
time as a function of temperature. This solution 
cannot be inverted (except numerically) to give 
temperature as a function of time. A computer 
program is described that fits measured data to the 
theoretical curve based on this more complete 
analysis. The computer program uses the gradient- 
expansion method (ref. 2) to fit the data to the 
theoretical function. The program computes final 
thermocouple wire temperature and final gas 
temperature. 

This report also presents typical input and results 
for the computer program. Data and results are 
discussed from tests in two combustor test facilities. 

Theory 
This section describes the theoretical equations 

necessary to compute gas temperatures with a pulsed 
thermocouple. Most of the time the thermocouple is 
protected with a jet of cooling gas, as shown in figure 
1. When a temperature measurement is to be made, 
the cooling gas is turned off and the thermocouple 
output is sampled at a high rate and recorded. Just 
before the thermocouple reaches its melting point the 
cooling is reapplied to protect the thermocouple wire. 
The gas temperature can then be calculated by 
extrapolation from the initial heating curve. For the 
extrapolation to be valid, it must be based on a 
theoretical heating curve. The derivation of the 
theoretical equation is described here. All symbols 
are defined in appendix A. 

The equation that describes the pulsed- 
thermocouple wire temperature can be derived from 
the basic heat transfer relations (ref. 3). Assume a 
bare wire thermocouple with infinitely long leads in a 
hot gas stream. This assumption causes the 
conduction effects to be neglected. Very little error is 
introduced if we neglect the transfer of heat to the 
junction by conduction along the wire for carefully 
designed probes. Thus in the absence of conduction, 
heat can be transferred to the wire by convection of 
the gas, by radiation from the gas, and by radiation 
from the duct walls. Also heat can be transferred 
away from the wire by radiation. 

The rate of heat storage in the wire will be equal to 
the rate of heat entering the wire minus the rate of the 
heat leaving the wire. The rate of heat storage qs per 
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Figure 1. - Thermocouple heat ing curve. 

practice the P,, must be determined experimentally 
and generally falls in the range 0.8 to 1.0. 

The rate of heat transfer by radiation qr is given by 
(ref. 3) 

where u is the Stefan-Boltzmann constant, eW is the 
emissivity of the wire, cy is the effective absorptivity 
of the gas, Td is the duct temperature, and eg is the 
emissivity of the gas. The first term in equation (4) 
represents the heat received by the wire from the hot 
walls of the duct. The second term represents radiant 
heat received from the gas. The third term represents 
radiant heat emitted from the wire. 

Combining equations (1) to (4) gives 

- K1 dTw 
T4,+K2Tw -K3 

dt = 

where 

unit length is given by 

4 s  = 4 c  + 4 r  

where qc is the rate of heat convected per unit length 

per unit length to the wire. 

is given by (ref. 3) 

to the wire by the gas and qris the net heat radiated K~ = NuKgPsc 
DUE , 

The rate of heat storage per unit length of the wire 
and 

rD2 dT,  
4 s  =pc- ~ 

4 dt K3=K2Tg+ ( 1  [ - 4 + €g C] 

(5) 

where p is the wire density, C is the specific heat of 
the wire, T ,  is the wire temperature, t is the time, 
and D is the wire diameter. 

The rate of heat transfer to the wire by convection 
qc is given by (ref. 3) 

To solve equation (5 ) ,  we integrate both sides of 
the equation. The integration is easier if we factor the 
denominator. The roots of a fourth-order equation 
can be found by algebraic methods (ref. 4). The roots 
of the equation are 

where 

1 
a1 = -% 2 

where Nu is the Nusselt number, Kg is the thermal 
conductivity of the gas, P,, is the probe shape 
constant, and Tg is the gas temperature. For an 
infinitely long wire in crossflow Psc is unity. The 
probe shape constant was introduced to take into 
account the fact that the presence of a probe to 
support the wire will cause a reduction in the p= Y1 + ~ 

1 ( 2 K ~ ) l ' ~  

effective Nusselt number of the thermocouple. In m 
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E= -2P2(2a1 -a2-a3)  

and 

27 

(14) 27 

Equation ( 5 )  can then be rewritten as 

d t=  

or 

where 

If the denominator of H3 is multiplied out, we get 

where 

Thus H3 can be rewritten as 

= H ~ A  i H 3 ~  (23) 

Equation (16) can then be integrated to get 

t = H1 ln(a2 - T,) + H2ln(TW - a3) 

where H4 is a constant of integration. 
Equation (24) shows the theoretical relationship 

between the wire temperature T ,  and the time t .  In 
general all the parameters in the equation are known 
except for the gas temperature T g ,  the probe shape 
constant Psc, and the integration constant H4. After 
a measurement a set of wire temperature readings are 
known. The procedure used finds the values of T g ,  
Psc, and H4 that result in the best fit of the 
temperature data to the theoretical equation (eq. 
24)). The next section describes the computer 
program written to fit equation (24) to the data. 

Description of Computer Program 
The FORTRAN IV computer program described in 

this report is designed to calculate gas temperature by 
using da ta  taken from a separate pulsed- 
thermocouple controller. A listing of the program 
and its various subroutines is shown in appendix B. 
The program input requirement is a set of wire 
temperatures taken at regular time intervals, the 
Mach number, the total pressure, the wall 
temperature, and the probe shape constant. The 
computer program output is the extrapolated wire 
temperature and the computed gas temperature. In 
addition, if the probe shape constant has not been 
entered, the computer program will calculate and 
output PSC, the probe shape constant. 

The program uses a curve-fitting procedure from 
reference 2 called the gradient-expansion method to 
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fit the theory to the input data. Two parameters, gas 
temperature TGAS and possibly probe shape constant 
PSC, are ddjusted for best fit of the theory to the 
data. These parameters are adjusted until the sum of 
the squares of the differences between the measured 
wire temperature and the theoretical wire 
temperature is a minimum. The error, which is called 
CHISQR, is defined by 

where Tdata is the measured wire temperature, 
Ttheory is the corresponding theoretical wire 
temperature, and n is the number of measured data 
points. Note that the theoretical wire temperatures 
must be evaluated point by point at the same values 
of the time parameter used for the measured data. 

Both the gradient-expansion procedure and the 
evaluation of CHISQR require computation of 
theoretical wire temperature at every measurement 
time. In addition, the gradient-expansion method 
requires values for aTw/aTg and aTw/aPs, at every 
measurement time. These requirements create a 
difficulty because the analytical solution to the 
differential equation expresses time as a function of 
wire temperature in equation (24). The equation 
cannot easily be inverted to yield the needed wire 
temperature as a function of time and its derivatives. 
As a result a great amount of the computer time is 
devoted to numerically inverting the equation and 
evaluating the derivatives. Since theoretical wire 
temperature values at the measurement times are not 
available directly from equation (24), they are 
calculated by interpolating in a table of wire 
temperature-time pairs that do satisfy equation (24). 
This table must be regenerated whenever equation 
parameters are changed. 

This procedure must be repeated once for every 
evaluation of wire temperature and twice for every 
evaluation of the derivatives. The derivatives are 
approximated by computing the differences in wire 
temperature that result for two values of the 
parameters TGAS and PSC: one value slightly above 
the present value and one value slightly below the 
present value. 

The main computer program takes care of reading 
the input data, calling the curve-fitting routines, 
deciding when the curve fit is good enough, and 
writing the results. Initially input data of Mach 
number, pressure, and duct temperature are read in 
as well as lo00 readings of thermocouple wire 
temperature. The temperatures represented by these 
numbers are taken at equal time intervals before and 
during the temperature rise. The first 100 readings 

represent the thermocouple wire temperature while 
the cooling air is on. The rest of the 900 temperature 
readings are taken during the temperature rise of the 
thermocouple wire when the cooling air is turned off. 
If the cooling air is turned on again before the 900 
readings are taken, the remaining readings are zero. 

After the data are read in, a call to subroutine 
STCFIT determines the best estimate of the 
temperature ramp starting time. This is necessary 
because the theoretical curve is always forced to pass 
through this point. 

With the starting time determined, the curve- 
fitting process begins. Repetitve calls to CURFIT and 
FDERIV result in adjustments to several parameters 
such that CHISQR is decreased. With every 
adjustment in the parameter values a call to CONGEN 
is needed to evaluate the constants in equation (24). 
The parameters adjusted include the gas temperature 
TGAS; the probe shape constant Psc; and FLAMDA, a 
parameter whose value controls the curve-fitting 
process. The probe shape constant is adjusted only if 
its value is not included in the input data. If the PSC is 
to be adjusted, the variable NTERMS is set equal to 2 
by the computer program; otherwise NTERMS is set 
equal to 1 and only TGAS is adjusted. Thus the main 
program recalls FDERIV and CURFIT until the decrease 
in CHISQR is less then 1 percent. This value of 1 
percent was chosen by trial-and-error methods to 
provide a wire temperature within 1 or 2 K of the 
ultimate wire temperature without using an 
unreasonable amount of computer time. 

Subroutine CURFIT 

Subroutine CURFIT makes a least-squares fit to a 
nonlinear function by using the gradient-expansion 
algorithm described in appendix C. The algorithm is 
really two curve-fitting techniques combined into one 
program. One of the techniques works well when the 
variables are far from the correct values, and the 
other works well when they are close to the final 
values. A parameter X (called FLAMDA in the 
program) is used to change the curve-fitting routine 
gradually from one technique to the other. 

The subrout ine works by s tar t ing with 
F L A M D A = ~ . ~ ~ ~  (when FLAMDA is less than 1 the 
fitting technique that works close to the minimum is 
dominant-see appendix C). The error x 2  (appendix 
C) between the measured and theoretical data is 
called both CMIsQi and CHISQR in the program. 
CHIsQl is an initial value of x 2  calculated once when 
the subroutine is entered. The program makes 
changes in the wire temperature, the probe shape 
constant, and FLAMDA until a new value of x 2  (called 
CHISQR) starts to decrease, at which time FLAMDA is 
divided by 10 and the subroutine returns to the 
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calling program. It is the responsibility of the calling 
program to check CHISQR to see if the change in 
CHISQR since the last call to CURFIT is small enough 
to stop the program. If it is not, subroutine CURFIT 
should be called again without changing the value of 
the current FLAMDA. 

Subroutine FDERIV 

Subroutine FDERIV computes data needed by the 
curve-fitting routine CURFIT. The data needed are the 
derivatives of the wire temperature with respect to 
both gas temperature and the probe shape constant. 
Also needed are theoretical values of wire 
temperature evaluated at the measured time (the 
times corresponding to  the measured wire 
temperatures). The derivatives are determined from 
(ref. 5 )  

If the probe shape constant is not to be calculated 
(NTERMS= I) ,  only equation (26) will be calculated. 
The theoretical values of wire temperature are 
generated from equation (24) with a call to 
subroutines TABL and INTRP. 

The subroutine returns a 1OOO- by 3-element array. 
The derivative of the wire temperature with respect to 
the gas temperature at time Z is returned in array 
DERIV(I.1). The derivative of the wire temperature 
with respect to the probe shape constant at time I i s  
returned in array DERIV(I,Z). The table of the 
computed wire temperatures at time Z is returned in 
array DERIV(I,~).  

Function XICALC 

Function XICALC computes the sum of the squares 
of the differences between the measured wire 
temperature and the theoretical wire temperature 
(from the numerically inverted equation (24)). The 
sum of the squares of the differences will be 

RANGE 2 
XICALC = (28) 

I=START 

The program first calls subroutine CONGEN to 
generate new constants for equation (24) since the gas 
temperature and the probe shape constant may have 
changed. Subroutine TABL is then called to generate a 
table of theoretical temperatures and times. The 
interpolation necessary is done by this subroutine 
and not by subroutine INTRP because the output of 
this routine is a single number, the error XICALC, and 
not an entire table of numbers. 

Subroutine TABL 

The purpose of subroutine TABL is to generate 
values of theoretical wire temperatures and times for 
subroutine INTRP. Subroutine CURFIT, FDERIV, and 
function XICALC require a value of theoretical wire 
temperature at every measurement time. These wire 
temperatures must be obtained by inverting equation 
(24). However, because of the form of equation (24) 
a numerical inversion will have to be done. A call to 
subroutine TABL generates a table of temperature- 
time pairs that satisfy equation (24). Then a call to 
INTRP interpolates in this table to get temperatures at 
the measurement times. 

To generate the interpolation table, a set of 
temperatures is needed to put into equation (24) to 
obtain computed times. The values of computed time 
that result from equation (24) should be as close as 
possible to the measured times for accurate 
interpolation by subroutine INTRP. The set of 
temperatures is determined one at a time, starting 
with a known point on the theoretical curve. Each 
succeeding temperature is computed from the 
previous one by using a linear approximation to the 
theoretical curve (fig. 2). The linear approximation 
will have a slope equal to the slope of t.he theoretical 

Linear 
approximation 7, 

Theoretical 
heating 
curve c 

al 

-- I I I I 

Figure 2. - Graphical representation of l inear approximation to 
theoretical wire heating curve. The t. are measured times 
and the t j  are computed times from eiuation (24). 
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curve at the previous temperature. Thus each 
succeeding temperature will be 

wherej= 1,2,3, .. ., n measured data points. The times 
corresponding to the measured data points are t,. 
The times ti’ are computed by evaluating equation 
(24) with T, = T,. The derivative of equation (24) is 

In the program $ + I  - ti’ is defined as DELTIM and 

DELTIM 
DELTMP 

(dt/dTW)Tw= 5 

The program starts by setting Tj = T1 = TAVE, which 
is the temperature on the theoretical curve; and 
t j = t ;  is equal to  MSTIME’START. The next 
temperature T j + l  is evaluated by setting 
t j+  1 = 12 = MSTIME*(START + 1) in equation (29). 
What results is a table of theoretical time- 
temperature pairs that do satisfy equation (24), 
where the times are not exactly equal to the 
measurement times. The array of times is called 
TIMC, and the array of temperatures is called TC in 
the program. A linear interpolation will need to be 
done because temperatures at the exact measurement 
times are needed. 

Subroutine INTRP 

Subroutine INTRP’~S used to correct the table of 
theoretical temperatures (array TC) generated by 
subroutine TABL. Subroutine INTRP performs a linear 
interpolation between the calculated data points so 
that the calculated times (and corresponding 
temperatures) fall exactly on the measured time. The 
resulting interpolated values of temperature are 
stored in array TC. 

Subroutine STCFIT 

Subroutine STCFIT determines the starting point of 
the thermocouple temperature rise. The starting 
point is defined as the intersection of two straight 
lines. One line is the best fit through the data before 
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f igure 3. - Search process for subroutine STCFIT. 

the cooling is turned off. This line is called TAVE. The 
other line is the best fit through approximately the 
first 50 points of the temperature rise. Since a 
solenoid is used to turn the cooling air on and off, 
there will be some delay between when the power is 
removed and when the cooling air actually stops 
flowing. The solenoid power is turned off at data 
point 100, and the starting point search ranges 
between data points 100 and 130. 

The starting point of the search process is shown in 
figure 3. A standard least-squares fit to a straight line 
of the data from point 100 to point 160 is performed. 
In general, point 100 is not the true starting point; so 
this line (line 1 in fig. 3) will not intersect the TAVE 
line at point 100. In fact, if the starting point of the 
data for the least-squares line is varied from 100 to 
130, the intersection of the least-squares line (line 2) 
with TAVE will approach the true starting point and 
then back away. Therefore the intersection point will 
have a maximum as the starting point is varied. The 
output of this routine is this maximum value of the 
s tar t ing poin t .  This  represents the  best 
approximation to the start of the ramp. 

Subroutine CONGEN 

Subroutine CONGEN computes the constants 
necessary to evaluate equation (24). Constants K1, 
K 2 ,  and K 3  are evaluated by using equations (6)  to 
(8). The wire emissivity E ,  for clean platinum was 
found to be (ref. 6) 

E ,  ~0.085 + (0.76 E-4)Twf (32) 

where T,f is the final wire temperature in K. The 
other parameters used for platinum (type R) 
thermocouple wire are (ref. 7): 
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Wire density, kg/m3 ......................... 0.2078 x lo5 
Stefan-Boltzmann constant, 

J/K4 secm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.56697 x 
Wire specific heat, J/kg K ................ 0.1427 x 
Gas effective absorptivity. ............................... ..O 
Gas effective emissivity ................................... .O 
Wire diameter, m ........................... 0.8128 x 

(33) Kg =(0.3007 E-3)*TGAs0.78 J/(sec K m) 

NU = 188.41*(dWDIA*MN*P)*TGAS-0.6 

\ 
Hot gas 
f l y  

(34) 

i 

where WDIA is the wire diameter, MN is the Mach 
number, P is the pressure in pascals, and Tg is in K. 
The gas effective absorptivity and emissivity are 
assumed to be zero. This corresponds to a 
transparent gas and the worst case for radiation 
effects. 

The subroutine also computes al , a 2 ,  a3, 6 ,  H I ,  
H2, H ~ A ,  and H ~ B  from equations (10) to (23). The 
value of H4 is computed by putting the initial 
conditions into equation (24) and solving for H4. 
The initial temperature is the average cooled 
temperature TAVE. The initial time is the 
measurement time interval MSTIME times START. 

Function EVALTM 

Function EVALTM evaluates equation (24) to 
obtain a calculated time for an input of wire 
temperature. The input wire temperature must be 
between the initial average cooled temperature TAVE 
and a 2  in order to avoid taking the logarithm of a 
negative number. Values of al, a2, a3, 6 ,  H I ,  H2, 
H ~ A ,  and H4 must have been previously calculated 
with a call to the CONGEN subroutine. 

Subroutine MATINV 

Subroutine MATINV does an inversion of a 1- or 
2-degree matrix. For a 1-degree matrix only a simple 
reciprocal is needed. For a 2-degree matrix the 
adjoint matrix is calculated. Then each element is 
divided by the determinant to form the inverse 
matrix. The original matrix is then replaced by its 
inverse. 

Tests and Results 
A pulsed-thermocouple system was tested in a 

combustor rig at the Air Force Wright Aeronautical 
Laboratory (AFWAL) as part of a joint AF-NASA 

program on instrumentation. The system included a 
probe,  a sample-and-hold voltmeter,  a 
microcomputer-based controller, and a digital 
recorder, as shown in figure 4. Figure 5 shows the 
probe that was put into the combustor. The probe 
consisted of a water-cooled shell with a replaceable 
platinum (type R) thermocouple. Compressed-air 
cooling for the thermocouple was controlled by a 
fast-acting solenoid valve. The thermocouple voltage 
was converted to digital form by a sample-and-hold 
digital voltmeter. A microcomputer was used to 
control the voltmeter and turn the cooling air on and 
off. The time between data points (called MSTIME) 
was controlled at 0.0042 second. This value was 
chosen so that most of the ramp would be included in 
the lo00 data points. If a different probe with a 
different time constant were used, this MSTIME would 
have to be changed. 

A full curve including the final wire temperature 
could be recorded for each pulse because the gas 
stream of the combustor configuration under test 
was not hot enough to require the cooling air to come 
on. The data were first processed by the computer 
program to compute the probe shape constant. The 
average computed probe shape constant for 20 pulses 
at fixed combustor conditions was 0.91, with a 
maximum deviation of 0.09. This deviation is the 
result of the fact that the burning process is not 
constant during the pulse and thus results in a 
temperature that can vary during the pulse by as 
much as 3.2 percent. 

With the average probe shape constant of 0.91 the 
data were curve fit 60 percent of the way up the 

Compressed - :-g 
gas I 

I 

Sample-and- 
hold voltmeter Microcomputer 

Digital c1 Temperature 

Figure 4. - Block diagram of pulsed-thermcouple system. 
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curve. It is estimated that at least 60 percent of the 
curve could be measured at the highest expected gas 
temperatures. A typical result is shown in figure 6. 
The solid line is the measured data (a total of lo00 
data points). The triangles and squares represent the 
theoretical curve. The squares represent the portion 
of the curve that was used in the computation. The 
triangles represent the portion of the curve that was 
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mL 
Figure 7. - Results wi th  f inal temperature near wire melting 

extrapolated by using the theoretical curve. The 
computed final wire temperature varied from 1525 K 
to 1581 K, with an average of 1561 K for the 20 

p o i n t  
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readings. The actual final wire temperature varied 
from 1525 K to 1575 K because of fluctuations in the 
burning. A comparison between the final wire 
temperature computed using 60 percent of the ramp 
and the actual final wire temperature measured for 
the 20 readings showed a maximum deviation of 3 
percent. 

The average of the 20 computed gas temperatures 
was 1691 K, with a maximum deviation of 47 K, or 
2.7 percent. The difference of 130 K between the 
computed wire temperature and the gas temperature 
is the radiation error. It is estimated that the 
radiation error can be computed to within about 20 
percent, which for this case would be =t26 K. 

Results for a pulsed-thermocouple probe different 
from the probe just described were obtained during a 
high-temperature combustor test at the Lewis 
Research Center as shown in figure 7. The probe 
shape constant for this geometry was determined at 
lower temperatures than shown in figure 7 to be 0.96. 
The gas temperature for the data shown in figure 7 
was 2300 K, and the final computed wire temperature 
was 2190 K .  The wire melts at 2215 K .  The protective 
compressed air was set to turn on at about 2000 K in 
order to assure a long thermocouple life. 

Concluding Remarks 
The pulsed thermocouple was developed as an 

instrument to determine high gas temperatures. The 
pulsed feature is needed at temperatures above the 
melting point of common thermocouples or when 
streaking of a combustion process is occurring. The 
cooling gas was found to adequately protect the 
thermocouple during this high-temperature 
operation. 

The computer program for computing gas 
temperature was designed to take the P radiation 
error into account. The program requires as input the 
Mach number, the wall temperature, and the total 
pressure in addition to the thermocouple data. Tests 
at temperatures below the melting point of platinum 
thermocouples show that the pulsed-thermocouple 
system can compute the gas temperature to within 
about 4 percent with as little as 60 percent of the 
temperature step as input data. 

Lewis Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, December 15, 1980 
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... .. . 

Appendix A 
Symbols 

Mathematical 
symbol 

----- 
Nu 
P 
psc  
4 c  
4 r  
9 s  
T 

P 
Eg 
E W  

U 

X2 

Computer 
symbol 

__--- 
SPHT 

WDIA 

H 1 ,H2,H3A, 
H3B,H4 
----- 
Kl,K2,K3 

MN 

NU 

P 

PSC 
----- 

TAVE 

TDUCT 

TGAS 

TWIRE 

TWF 

ALPHAG 

ALPHAl, 
ALPHA2 
ALPHA3 

BETA 

EGAS 

El +E2*T 

SIGMA 

CHISQR, 
CHISQl 

Definition 

parameter of function x 2  

specific heat of wire 
wire diameter, m 
intermediate constants 

thermal conductivity of gas, J/sec K m 
intermediate constants 
Mach number 
Nusselt number 
pressure, Pa 
probe shape constant 
rate of heat transferred by convection into surface of wire, J/sec m 
rate of heat transferred by radiation, J/sec ,m 
rate of heat storage, J/sec m 
temperature, K 
average temperature 
duct temperature 
gas temperature 
wire temperature 
final wire temperature 
time 
general independent variables 
intermediate constant 
effective absorptivity of gas 
intermediate constants 

intermediate constant 
emissivity of gas 
emissivity of wire 
Stefan-Boltzmann constant, J/K4 sec m2 
least-squares error 
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Appendix B 
Computer Programs 

C 
C 
C 
C 
C 
C 
C 
C 
c: 
c 
c 
C 
c 
c 
c 
1: 
c 
c 
c 
c 
c 
c 
C 
C 
C: 
C 
c 
(3 

iiE;:AL.. 'r'W IRE :  :L 000 1 Y TAUE II A I  ...F'tin.J. Y nL"F:'HA2 P AI ... F'I-IA3 Y BIfTA 9 

H:I. II ti2 P H 3 A  II H 3 B  7 t.14 II TDlJCT' II MSTIME II MN I. I" 9 M N N  II M T M F '  
C 

c 

c 
C 

1:IATA MST:IME:/O + 42E-.::!/ 
M s 'r :c M E: I s :I: N s t: c: CI N D s + 

c 

C 
c 0 M PI 0 N / Ec I... I< 2 I S T n R .r II R A N ii E 

c 

11 



COMMON /BI-K3/TC r T I M C  Y XSERIU 

20 
c 
c 
c 

30 

40 

50 

60 

7 0  

80 

90 

l o 0  
C 
C 
C 
C 

1 0 3. 

C 
C 
C 

110 

C 
C 
c 

C 
c 
C 

115 

1. 1 8 

1.20 

REA11 TEMPERATURE DATA (TWIRE 1 
IN XSEG, K (1000 B A T A  P O I N T S I t  

R E A D  I N P U T  DATA 

rtiE NEXT 3 STATEMENTS ARE NEErIEn ONLY 
FOR THE EXAMPLE I N  T I i I S  REF'ORT+ 

W R I T E C ~ Y ~ O ~ )  

REA11 C 5 Y 80) 
FORMAT ( I X Y ' MACH N1JMEE:R TEMPERATURE DEG c K t ' ) 

MTMF' 

TAUE = O,o  

TAUE = T A U E f T W I R E C I )  
no : t i 0  I=J.,PP 

TAUE TAUEZ/99t 

DETERM1"E START O F  I I A M F ' ,  

CALL. S T C F I T  

TEMPERATURE OVER MEI-TING POINT? 

12 



130 
C 
C 
C 

RANGE = RANGE-1 

CUR'JE F I T +  

1 3 5 

C 
c 
c: - 

C 
C 

C 
e: 
C 
C 

140  

150 
160 

1. 70 

1.130 

C 
c 
C 
C 

CAL..L.. FBERIU ( T G A S ?  F'SC NTIfRMS Y TWF') 
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c 
C 
C 
C 
C 
C 
c: 
C 
c 
C 
c 
c 
C 
c 
c 
C: 
c 

P IJRP 0 S E: 
TtI:CS SUEROIJ'TINE MAKES A LEAST SC11JAFi'ES CURVE F I T  TO 
A NON-L:ENEAR F-IJNC'r:CC)N r\ 

C 
c 
c 

1 
C 

INTEGER smtw RANGE: 
C 

C 

1 
C 

IN'TEGEF: I t .J Y K Y NTERMS s ERFLAG 
C 
C 

I. 
C 

COMMON 
H I  r H 2  7 H3A 7 H 3 E  r H 4  r TDUOT r MSTIME Y MN Y F ' v  H N N  9 MTMF' 

/ELK:l./TWIRE r PAVE 7 AI  ... F'HRI. 9 AL.PHA2 P AL.F'HA3 r BETA r 

C 

C 
C 
C 
C 
C 
C 

10 

2Q 
6: 
C 

A L  ALPHA MATRIX,  
E{E = BETA t w r R I x I  

TRUNCATE TGAS S I N C E  SMALI... CHANGES TN TGAS 

14 



C 
1... 
.7 

CAlJSE UNNECESSARY ITERA'I-1C)N 

30 

40 
5 0 
60 

70  
C 
I:: 
(: 

C 
8 0 

c 
c 
c 
C 

c 
C 
C 
C 

C 
C 
C 

9 0 
:I. 0 0 

:L 10 

1. 2 0 
130 

EUAL..lJAT$ CI-lI SQUARE: A T  STARTING P O I N T  

C t i  I SQ 1 = X :I: CAL..C ( A ( 11. ) Y A ( 2 1 I E:RFL..AG I TWF 1 

CAL..l:uL"ArE AI  ...Pt.IA PRIME MRTli:Cx (CAL ..L..ED A R R A Y  1 
ANLl At-SO :CNVER'T IT, 

CALCULATE: CHISCJR FOR NEW PARAMETER VAI...IJES t 

ERF'L..ACi=6 IF" A I  ... F ' H A 2  1:!3 TOO I...OW + 

IF (ERFLAG+E[:J+6) GO TO 140 
I F i i:H I SQ :I. -CH I SQR ) I 40 I 1. 50 Y 1.50 
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C 
c 
C 

1. 40 

C 
c: 
C 
C 
150 

160 

c: 
C 
C 
C 
C 
C 
c: 
c 
c: 
C 
c 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 

F 1.1 R P 0 S E 
CC!MF'UTEi: THE D E R I V A T I V E  !IF- 'TWIRE WITH RESPECT TC) BOTH 
mns 8 PSC ANU AI ....sc) Ei:uni ...[. m r E  THE THE:C)RE~:T:I:CAI ... E:QI.IAIX)N 

TGAS =: ESTIMATEJI GAS 'TEMF'ERATLJRE tK! + 

NTERMS = NIJMBER OF TERMS C 1 OR 25 
T W F  -= ESTIMATE11 F:ENAI ... WINE 'T'E!MF:'ERATTlJfE: ( K ! ,  

F'SC = F'ROEE SHAPE c O " w r +  

SlJBRO1.JTINE F."DERIU t TGASt  PSOt NTEHMSr TWF) 

REAL 
H1 rH2 r H3Ar H3B r H 4 ~  TD1JC:Tr MSTIME t MNt P r  M N N  r MTMP 

TWIRE t I000 5 r TAUE r AL.PHA1 r AI...F'tiA2 Y AL-F'HA3 P B E T A  9 

1 
C 

INTEGER STARTrRANGE 
C 
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C 

C 
INTEGER FVFF,ERFL.AGIIYLY. 

C 
D A T A  DEL..TA/.I + 0 7 0 + 00 l /  

C 
COMMON 
H I  I ti2 Y H3A 7 t ~ 3 B  9 H4 r TUUCT Y MSTIME 9 MN I F' I M N N  I MTMP 

/BLKI /TWIRE 7 TAUE I ALF' I . iA I  9 ALPHA29 ALPHA39 BETA Y 

1 
C 

COMMON /BLK2/START9HANGE 
C 

C 
C 
C 
C 
C 
C 
C 
c 

I. 0 

C 
C 
I= 

C 
C 
C 
C 

C 
C 
C 
C 

20 

C 
C 
C 

C 
C 

C 
C 
C 
C 

COMPUTE D A T A  FOR D E R I V A T I V E  01' 'TWIRE WITH 
m S P E c r  rc! r m s t  

17 



c 
i:: 

C 

c 
c 
C 

C 
C 
C 
C 
3 0 

35 

C 
I:: 
C 
C 
C 
c 
C 

4 0  

I= 
C 
C 

C 
C 
C 

C 
c 
C 
c 

C 
c 
C 

I N T E R F" 0 I.. A '1 E!: F*" 0 Ft T =: T G A E i  .t D E I... T A I :I. 1 + 

CALL I N T R P (  1 t 1 )  

CALL INTRPe 2 Y I. 1 

CAL..CIJL.ATE DE:RIUAT:CUE OF TWIRE WITH RESPECT TO 
T G A S  A N D  STORE I T  I N  DERIU( I I. j + 

CALL.. CONGEN ( T  Y PC P ERFLAG 7 TWF 1 
IF ERFILAG + NE + 0 1 EiTClF' 995 

C A L L  TAEL.. I. 1 

COMPUTE DATA POINTS FOR T=TGAS A N D  
Pc=Psc-nEt ...m ( 2 )  

T = TGAS 
F'C = PSC - D E L T A ( 2 )  

CALL CONGEN T t F'C I, ERFLAG 7 TWF 1 
I F  (ERFLAG+NEtO> STOP Y Y 4  

c 
c 
C 

GENERATE ANOTHER TABLE t 

18 



C 
C 
C 

C 
c 
C 

C 
c: 
C: 
C 
50 

C 
I:: 
e: 

e: 
C 
c 

7 5 

1:NTERPOL.ATE BETWEEN UATA POINTS FOR PC=PSCtDELTA ( 2  1 + 

CALL I N T R P ( I Y ~ )  

CAL.L I N T R P ( 2 v 2 1  

CAI  ... CULATE X:iERIUATIVE!: O F  TW:I:RE WITH RESPECT 
TO PSC A N I 1  STORE :I:N D E R I ' J i I y 2 )  + 

CALI... TAR1 ... r; :L 1 

e: A 1.. I... :r N 7' R F:' C :I. ? 3 j 
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1. 
c 

TGAS I ESTIMATED G A S  TE:MPERATUl?E: < K 1 + 
PSC -T PRC)HE SHAPE: CONSTANT+ 
TWF = ESTIMATED FINAL.. WIRE: TEMPERATURE <I(? + 

REAL.. 
H I  I H 2  Y H3A P H3E I H4 I TDUCT Y MS'TIME; Y MN I P I M N N  Y MTMF' 

TWIRE ( I000 1 Y TRUE? ALPHA1 I AL-F'tiA2 Y AL.PHA3 Y BE:TA r 

INTEGER START Y RANGE 
C 

R E A L  TC( 1000~ 2 1 I T T M C  ( 1.000 P 2 )  I U E R I U  1000 r 3 1 
C 

REAL x f Y Y T C M  r ER 
C 

C 
C 

1 
C 

COMMON /El ...I.t:i./TWI:RE: Y TAUE: 9 AL-F"HA1. I AL-PHA2 I ALPHA3 Y BETA r 
HI. I 1-12 Y H3A P H3E I ti4 P TDI.JCT' I MST:[MI! Y M N  Y P Y M N N Y  MTMF" 

COMMON /BL.K2/S'TART r RANGE 
C 

C 
C: 
C 
C 

:I. 0 

C 
C 
C 
C 
55 

60 

20 

GENERATE CONSTANTS FOR THEORETICAL EQUATION, 

CAL-1.. TAHL.. 1. 1 
J = START 
1-1 =: START+I  
L.2 = RANGEtl 
ER := 0 ,  

1NTERPOL.Al-E SO T H A T  TIMES FOR THEORETICAL DATA 
CORRESPONL~ TO U A T A  F O R  ACTUAL.. MEASURED TIMES + 



d 

b 

70 
C 
C 
C 

1 
C 
C 
C 
C 
8 0 

85 

90 

I F  NO CHANGE IN T C ( J t 1 1  NO INTERPOLATION NECESSARY* 

CALCULATE X I  SQUARED+ T H I S  IS I N C L U D E ~ I  I N S I I I E  
INTERPOLATION LOOP F O R  CONUIENENCEI 

ER = E R t ( T W I R E ( I ) - T C M ) f t 2  
GO TO 90 
TCM = T C ( J r 1 )  
GO TO 80 
CONTINUE 
x I C A 1.. C = E R 
RE TLJR N 
EN11 

C 
SUBROUTINE TAE{I- (F: 1 

C 
C 
c 
c 
c 
C 
C' 
C 
C 
c: 
C 
C 

REAL TWIRE 
H I  ~r H 2  Y HJA ~r ti3B Y H4 Y TDI.JC:T 7 MSTIME Y MN Y F'Y M N N  9 MTMF' 

1000 1 Y TAUE Y A l ._F 'HAi  Y A I  ... FHA2 9 ALPHA3 Y ICSETA Y 

1 

INTEIGER START Y RANGE: 

I N T E G E R F 7 . J  v 1 Y I... l 7 L 2 
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C 

C 

C 
c 
1.00 

e 

c; 
C 

e 

C 
C 
C 
C 

C 
1:: 
C 

C 
e 
e 
1 1 Q  

c 
C 
C 
C 

1. 
1 

C 
C 
C 
C 
C 
C 
c 
C 

COMMON /BLK3/TC F T I M C  7 DER:I:U 

I N I T I A L I Z E  PO 1: N 'T C: 0 (J N T'E R 1::' 11 R A C TlJ  A I... M E  AS U R  E D T :I: ME!: S + 

..I = START 
z = AL..PtiA2-o,ox 

C 0 M PlJ T E T A E L.. E 0 F T EMF'E R A T 1J I? E S 

L.1 = S T A R T f 1  
L2 = R A N G F - b l  
Ls o :I. 4 o I =I  ... :L I- 2 

COMPUTE D E R I V A T I V E  O F  T I M E  WITH RE:SPE:C:T TO 
TEMPERATURE FOR TtiEORET:I'C:AL CIJR'JE: + 

DEL.TIM = CHANGE I N  TIME FROM THE: LAST rlArIq NECE:SSARY 

r i " w  = THE CORRESPONDING CHANGE I N  TEMPERATURE + 

TC! MAKE THE: CURRENT D A T A  POINT FAL.I... RF:'PROXIMATEL..Y C!N 
THE ACTUAL MEASUREIl T I M E +  

NOTE THAT THE THEORETICAL FlJNCTION (EUALTM) G I V E S  
T I M E  BACK F O R  AN I N P U T  O F  TEMPERATURE+ 
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C 
C 
C 
C 
c 
120 

I... 
C 
130 

140 

C 
i: 

3 

c 
1 I., 

i:: 

-. 

r.lEL.TMP = XSELTIM/Y 
TCALC = TCALCtDELTMP 
T C ( I I F )  Z= TCALC 
TIMC(IYF:) = EVALTM(TCALC) 

DETERMINE THE CI-IANGE I N  T I M E  NE:CESSARY FOR THE NEXT 
CAt..CUL..ATED DATA P O I N T  TC) FALL ON T H E  NEXT MEASlJRELs 
ISATA POINT, 

J = J t l  
ISE~LTIM 
IF: I D E l " T I M t 1  ... E , O , O )  GC) T(:l 120 
GO TO 140 

M S T I M ~ : t F I  ... ClAT(J+1. )- 'TIPIC( I I F )  

J = J+ 1 
lC( I t F )  =I AL..F'l-lA2 
TIMC: C X I F ' l  := M5TIME:tFLOAT (.J 1 
CONT 1: NIJE 
R I_ T IJR N 
E: N D 

F' IJ R F' 0 !:; E: 
T O  IN'T'E:RPOI ... ATE EE~T'WEEN D A T A  I-"I:NTS C : R L  .. C:I.JI ... R'~EI:I F-ROM 
T H t: 'r H E c) R E: 'r I c: A L. E CJ I.! A T :c i:) N E 1.1 !:; E: I:I E Y s 11 E i i  (:I u T :c N E F D E  R I u 

F = SPEC :c I- I ES r HE: S E ~ C ) N ~ : I  :I: NDI~;:X ( Y. i : iR 2 FOR r c  A N I I  'r :E ME + 
F F =: S P E C :I: F' I: E 5 1- HE ti E i:: Cl N I:I I N D E;: X C :I. Y 2 Y i:) l i  3 ? I- i:) R D E R I U 

C 

C: 

c 
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REA1 ... x 
C 

C 

c 

r: 

C 
C 

C 
c 
c 
c 

1. 0 

I!. 6 0 
170 

1. 7 5  

:I. 8 0 

C 

1 
1 

I: 

190 
2 0 0 

COMMON /)SI ... K2/STAHi' Y RANGE 

C 
C SIJBROIJT INE STCF 1 I 
C 
C 
C F' ll RPOSE 
C TO CALCULATE THE STARTING l...0CATION O F  THE: RAMP, T H I S  

C 
C LOCATION IS CALi-Eri ' S T A R T . .  
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C 
C 
C 
C 

1 
C 

INPUT IS TEMPERATURE DATA 'TWIRE' + THE B A T A  POINTS 
I=100 TO 160 WILL BE CURVE F I T  TO A STRAIGHT L I N E  
Y = M ~ X  t B WHERE Y=TWIRE(I) X=I=TIME+ 

SUBROUTINE S T C F I T  

T H I S  ROUTINE CALCULATES THE STARTXNG L.OCATION 
OF THE RAMP, 

REAL 
H ~ ~ ~ H ~ I H J A I H ~ ~ ~ ~ H ~ I T D U ~ T Y M S T I M E ~ ~ M N Y P I M ~ ~ Y M T M P  

TWIRE ( 1000 ) il TAVE Y AL..PHAI il AI...F'HA2 7 ALPHA3 I BETA I 

INTEGER STARTIRANGE 
C 

IN'T'EGER 11,Ji lKi l IX 
REAL S U M X  I SUMY Y S U M X X  il SUMYY I S U M X Y  Y B I M I X 

C 

1 
C 

C 
C 

C 
C 
c 
C 

1. 0 

C 
C 
C 

C 
c 
G 
c 

2 0 

30 
C 
L.. 
c 
-. 

COMMON 
H I  il H2 il H3A il H3B Y t i 4  7 TDUCT I M S T T M E  I MN Y F' Y MNN 7 MTMF' 

/ E L K 1  /TW I R E  I T A U E  I AL..F'kIA1. Y A L F ' I i A 2  ? A I  ... F'I.ifi3 Y BETA I 

COMMON /R l  ... K Z / S T A R T  il RANGE 

START = 100 

DO 50  K = 1 0 0  Y 1.30 

I N I 'r I A L I ZE u AR I A R I._ E~:S 

SI.JMX = 0, 
S U M Y  z: 0 + 
S U M X X  0 + 
SISMYY 0 ,  
S l J M X Y  0 ,  
J r:: () 

PERFORM STANDARD ILEAST SQUARES CURVE FI 'r TO A 
STRAIGHT L I N E  + 

no 30 I = K , I ~  
.J = . J t 1  
SIJMXY = S U M X Y t  (FLOAT I I ) 1 t7'WIRE: I I) 
SIJMY = SUMYtTWIRE( I ) 
SUMX = SlJMXtFL(3AT I T 1 
S U M X X  S l J M X X +  IFL.I3hT ( I 1 #*2 

CURVE F I T  DATA TO Y := M*X .t B 
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C 
C 
C 
C 
c: 
c 
C 
C 
c 
C 
C 

4 0 

50 

C 
14 
C 
c: 
c 
C 
C 
C 
c 
C 
C 
C 
C 

".. 

STRAIGHT L..INE CURVE F I T  XSONE t 

SET Y = TAUE 

SUBROUTINEC CONGEN TGAS r F'SC Y ERFL-AG 9 TWF) 

PURF'OS E 
T H I S  F'ROGRAM GENERATES THE CONSTANTS NEEIlED F O R  THE 
THEORETICAL TIME US, TEMPERATURE EQUATION (EQUt 2414 

SUBROUTINE CONGEN(TGASrPSCrERFLAGITWF) 
C 
C 

1 
C 

INTEGER STARTpRANGE 
C 

1 
C 

i 
1 

D A T A  W D I A / 0 t 8 1 2 8 E - 3 / t  W D E N S / 0 + 2 0 7 8 5 E t 5 / ~  S P H T / 0 + 1 4 2 7 E t 3 / ~  
S I G M A / 0 t 5 6 6 9 7 E - 7 / ~  E l / O t 8 5 E - l / ~  E 2 / 0 t 7 6 E - 4 / ~  
EGAS/OtO/r ALF'HAG/OtO/ 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

7'EMF'E:RATlJRE DEG t K + 
WDIA = WIRE IIIAMETER (METERS), 
WUENS = WIRE LIENSITY ( K ~ I T I / I T I ~ * J )  + 
SPHT = WIRE S P E C I F I C  HEAT ( J / ( K ~ I T I P K ) ) +  
SIGMA = STEPHAN BOL.TZMAN C u N c m "  (..I/ ( SEC: KWM n l w 2  1 1 
E M I S S I V I T Y  OF WIRE = E I t E 2 f T W F t  NO U N I T S  ON ELI.+ 

~2 t iAs  UNITS OF i / r i E G ,  K +  
EGAS = E M I S S I V I T Y  O F  GA!;+ 
A I  ... F'HAG = ABSORPTIVITY O F  GAS,  
F' = F'RESSURE (F'ASCAL..) t 

EQUIVALENCE ( A Z  I E 1 Y (EZ Y F 1 
C 

I. 
C 

C 
c: 
i 0 

C 
C 
C 
15 

1 
C 

COMMON /BLK?/START I RANGE 

ERFLAG = 0 
M N N  = MN 

M N N  = M N I S O R T  (TGAS/M'TMF' 1 

CCJ M F1J T E N IJS 8 E I... T N UM E E: R + 

C 

1 
C 

C 
C 
i: COMPUTE At-F 'HA1 I ALPHA2 I AL.F'HA3 I BETA I H I  I H 2  Y H3A I H3E + 
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I lIIIl11111l11111l1111 

C 
C 
C: 
C 
C 

2 0 
1 

I:: 

C 
I:: 
C 

C 
c 
C 

SCALE NLJMEERS BOWN EY A FACTOR O F  j.051--20 TU3 
F'RE:UE!NT Q'JERFLOIJ t 

E R R I3 I? I 1:- E z :I: s F' 13 S :I: 7' I u E 

C 

C 
c 
C 
C 
C 
c 

C 
C 
G 
C 
C 
C 
c 
C 

e 

30 

H9 = CONSTANT TC) HE DETERMINEDE 
TAVE zz A V E R A G E  I N I T I A L .  WIRE TEMF'ERRTURE t 
MSTIME I S  T IME SI::AL..E FACTOR + 
MSTIMEti TIHE INTE:GER> IS T I M E  SINCE: START O F  D A T A ,  
T IME = 0 AT D A T A  F'OINT :l:-O 
T I M E  = MSTIME AT I I A T A  F:'C)INT :l:::::I. e t c t  

SET ERROR FLAG IF At..F"x? IS I...ESS ' r t i A N  TAUE S:UNCE IT 
WOULD REClUIRE TAKING THE 1-OG OF A NEGATIVE NUMBER, 
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ERFLAG = 6 
RETURN 

C 

C 
C 
c 
C 

40 

1 
1 
:t 

C 

C 
c 
C 
C 
C 
C 
C 
C 
i:: 
C 
C 

X = TAVE-ALPHA1 

COMPUTE: INTEGRATION CONSTANT H4  BY SETTING T=TAVE: 
AT THE STARTING T IME A N D  SOLVING FOR H 4 +  

H 4  = MSTIMEtFLOAT(START)  - (Hj . tALOG(ALPHA2-TAVE) f 
H2tALOG(TAUE-ALPHAJ) f 
H J A t A L . O G ( ( T A V E - A L P H A I ) X I 2 S B E T A Z t 2 )  f 
2 t O f H 3 B t A l R N 2 ( E E T A I I X ) )  

RETlJRN 
END 

FUNCTION E U A L I M ( T )  

PURPOSE 
EVALUATE THE 'THE0RE:TICAI ... ERIJA'TION ('TEXT ERU t 24)  
FOR T I M E  AS A FUNCTION O F  'T'E~MF'EFiATUREt 

T = I N P U T  TEMPERATURE (Kl t 

C 
? 

C 
C 

REAL.. TWIRE ( IO00 1 Y TAVE II ALPHA1 II AL.F 'HA2 7 A I  ...F't.IA;3 II BETA II 
1 H I  I I H ~ Y H ~ A ~ H ~ E ~ ~ H ~ Y T D U C T I I M . ~ S T I M E I I M N Y P I I M N N ~ M ' T M F '  

C 
\ COMMON /ELI(1/TW I R E  II TAVE Y ALPHA1 Y Al..F'HA2 Y A I  ... PHA3 II BE.ITA Y 

1 H I  II 1-12 II HJA Y H3E II H 4  II TDUCT .r M S T I M E  II M N  9 F ' r  ? I N N  II MTMF' 
c 
C 

10 X = I-ALF'HAJ. 
E:U,ALTM = Hl.fRLOCi (ALF'HA2-T 1 f 
H2tALOG ( T-ALPHA3 ) f 
H3AtALOG ( ( T-A I...F:'I-IA:I. ) * t 2 + B E T A t t 2  1 f 
2 t O I H J E t A T A N 2  (EETA 9 X )  +H4 

1 
1 
1 

RETURN 
END 
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SUBROUTINE MATINU 

C 
C 
C 
C 

C 
10 

C 
C 
C 

20 

C 
I: 
C 
30 

C 
c 
C 

C 
I: 
C 

4 0  
50 

C 
C 

PURF'OSE: 
INVERT A X OR 2 EfEGREk MATRIX,  

A R R A Y  = INP!.JT MATRIX WHICH 1:s REF'l_AC:ED J3Y I T S  I N V E R S E ,  
NORDER= DEGREE O F  MATRIX + 

REAL A R R A Y ( 2 r 2 )  PDETrX 
INTEGER NORDER I I 9 J 

I F  CNORDER,EC4+1) GO TO 20 
I F  (NORDER+EQ,2 )  GO TO 30 
STOP 800 

CAI .. CUI-ATE INVERSE OF ONE DEGREE MATRIX + 

A R R A Y ( i P l . 1  = i + / A R R A Y ( X I X )  
R ET U R N  

DET = ARRAY C 1 P 1 1 * A R R A Y  ( 2 9 2 1 -ARRAY ( 1 P 2 ) * A R R A Y  i 2 P 11.1 
I F  (XSET+EQ+O) STOP 801 

CAl..CUl..ATE ADJOINT MATRIX 

x -1: R R R A Y l I r i )  
A R R A Y  ( I. I 1 > 
A R R A Y ( 2 P 2 1  -1: x 
ARRA Y C 1 ? 2 
ARRAY C2 I i 

- A R R A Y  I 2 ? 2 1 

- A R R A Y  C 1 9 2 ) 
z:: -ARRAY C 2 P I. ) 
:= 

CAl..CIJL..ATE THE INVERSE C I F  SECOND UEGREE MATRIX e 

LIO 50 I = i r 2  
DO 40 .Jz l .  I 2 
A R R A Y  ( I I ..I ) 
CONTINIJE 
C 0 N 1- I N LIE 

-1: ARRAY ( I I ..I 1 /DET 

t 

I 

RE: T I.! R N 
END 
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Appendix C 
Gradient-Expansion Method 

i 

This appendix describes the least-squares fit to a 
nonlinear function that uses the gradient-expansion 
algorithm taken from Bevington (ref. 2). The 
objective of the process is to search for the values of 
parameters in the theoretical equation that will 
minimize the sum of the squares of the difference 
between the data points and the theoretical nonlinear 
function. This sum to be minimized is defined as 

where m is the number of data points, Yi is the 
dependent variable, X ;  is the independent variable, 
and Y(X) is the theoretical function with unknown 
parameters a '. 

The quantity x 2  is regarded as a function of the 
parameters aj of the fitting function Y(X). There are 
m data points (X; ,Y; ) .  The idea is to choose the 
values of the n parameters aj so that x 2  is a 
minimum. 

The first approach is to take the gradient of x2 

I 

where the l i j are unit vectors. The gradient of x2  
gives the direction of the maximum rate of increase 
of x 2 .  We want to increment the parameters from 
some starting value xg so that x 2  decreases. Hence 
we write 

= - ( 
aa- 

where Yo(X) is the value of Y(X) at the starting point 
for the expansion. Then 

We now want to minimize x 2  as a function of the 
increments Sa,; so we take ax2/asak and set it equal 
to zero 

This gives a set of n linear equations for the n 
quantities Saj. Define 

and 

The Aaj are size constants that must be supplied. The 
parameters aj are incremented by 6aj and the process 
repeated. The minus sign insures that the increments 
are in a direction opposite to the gradient so that they 
are in the direction of most rapid decrease of x 2 .  
However, the method tends not to work well near the 
actual minimum-it is better further away. 

Another approach is to expand the fitting function 
Y(x) as a first-order Taylor series in the parameters 

m 

i= 1 
xg= IY;-Y0(X;)l2 

thus 

k=1,2 ,  ..., n 



This can be put into the form of a matrix equation where h is an arbitrary parameter that changes the 
method from the Taylor series to the gradient 
method. If A is near zero, the method is the same as 
the Taylor series approach. If h is large, the diagonal 
terms dominate and the equations are essentially 

or 

or 
where /3 and 6a are column matrices with n elements 
and (Y is an n-by-n symmetric square matrix. This 
method tends to work well near the actual minimum 
but poorly far from the minimum. 

By combining the two methods it is possible to 
obtain an algorithm that works well far from the 
minimum and also close to it. To combine the two 
methods, one writes (ref. 7) 

which result in the gradient method. 
This technique can be used by starting with an 

arbitrary small value of A, such as 0.001. If the 
computed &aj causes x 2  to increase instead of 
decrease, the initial guess at the uj is not good 
enough, and x 2  is too far from the minimum for the 
second method to work. Then h is increased by a 
factor of 10 and a new set of 6aj is found. Each time 
h is increased the algorithm is more like just taking 
the gradient, which works well for a, far from 
( a j )  . . This continues until x 2  starts to decrease, at 
whicyntime h is divided by 10 at each iteration. By 
this time the minimum will have been found. 
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Appendix D 
Typical Program Input and Results 

This appendix provides an example of data used by 
the computer program. The following data were put 
into the computer program: 

INPUT MACH NUMBER 0.0286 
INPUT PRESSURE IN Pa. 99805. 
INPUT DUCT TEMPERATURE IN DEG. K. 396.0 
INPUT PROBE SHAPE CONSTANT 0.0 
MACH NUMBER TEMPERATURE DEG. K. 415.8 

The following data were put out by the computer 
program: 

GAS TEMPERATURE = 1707.00 K 
FINAL WIRE TEMPERATURE = 1565.79 K 
PROBE SHAPE CONSTANT = 0.850 

The following data were not put out by the computer 
program but may be useful: 

CHISQR = 0.267E +05 
TAVE = 677.0 
ALPHA1 = 1183.2 
ALPHA2 = 1565.8 

BETA = 321 8.3 

H2 = 0.259 
H3A = 0.321 
H3B = - 0.260 
H4 = 0.072 

ALPHA3 = - 3932.2 

H 1 = - 0.902 

The 1000 data points of thermocouple wire 
temperature are shown in the following listing: 

. 
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I 

1 

3 
4 

6 
7 
8 
9 
10 
:t 3. 
12 
13 
1 4  
15 
16 
17 
18 
19 
20 
21 

23 
24 
25  
26 
27 

29 
30 
31 
32 
3 3 
3 4  
35 
36 
37 
38 
39 
40 
4 1  
42 
43 
44 
45 
46 
47 
48 
49 
50 

3 
1.. 

c ..I 

33  ...... 

2a 

TWIRE( I ) I 

674 + 7 
675 + 7 
676 I7 
678+6 
675 t 7 
677 I 6 
677 t 6 
679 E 5 
679 + 5 
676 t 7 
675 t 7 
675 + 7 
675'7 
674 + 7 
677 * 6 
676 t 7 
673 + 8 
675 t 7 
672 + 8 
672 t 8 
670 t 9 
671 +8 
6 7 i + a  
671 ,a 
671.8 
671 +8 
672 t 8 
669 t 9 
669 t 9 
671 e 8  
672 t 8 
671 e8 
673 + 8 
673 + 8 
678+6 
678 t 6 
678 + 6 
680 t 5 
682 c 4 
680+5 
679 t 5 
682 t 4 
681 + 5  
678+6 
682 + 4 
683 + 4 
682 + 4 
681 + 5  
678 + 6 
676 7 

5 1 
52 

54 

56 
57 
58 
5 9 
60 
61 
6 2  
63 
64 
65  
66 
67 
68 
69 
70 
7 l 
72 
73 
74 
75 
76 
77 
78 
79 

8 1. 
82  
83 
84 

86 

88 

90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

L- 
\.J 3 

c tz 
..I .I 

a0 

a5 

87 

a9 

676 * 7 
674*7 
676 t 7 
675 t 7 
673 e 8 
674+7 
672 + 8 
675 + 7 

671 t 8 
673*8 
673 t 8 
673 8 
672 t 8 
6 7 1 . 8 
669 t 9 
670 t 9 
674+7 
673 + 8 
674 + 7 
675 + 7 
676 t 7 
677 + 6 
677 t 6 
680 I 5  
679 b 5 
6 8 0 + 5  
679 + 5 
680 5 
680 + 5 
680.5 
684 E 3 

683 4 
683+4 

6 7 :I. a 

604 3 

682 4 
686.3 
685 3 
682 + 4 
679 5 
678 + 6 
682 + 4 
679 t 5 
6 a i + 5  
,578 + 6 
677 t 6 
678 t 6 
679 5 
678 + 6 
678 t 6 

101 
102 
103 
1.04 
105 
105 
107 
10U 
109 
1. 1 0 
l 1. 3. 
:I. 1. 2 
11.3 
:I. 3. 4 
11.5 
1 :I. 6 
117 
:I. :I. 8 
l 19 
3. 20 
121 
1. 22 
1. 23 
1 24 
125 
126 
127 

3. 29 
130 
1 3 1. 
13" 
133 
1. 34 
135 
136 
3. 3 7 
138 
139 
140 
1. 4 l 
142 
1 4 3  
144  
3. 45 
1. 46 
1 4 7  
148  
149 
150 

i 28 

D A T A  ( K )  

T W I R E ( I )  

678 I 6  

677 6 
678 t 6 
678,6 
681 + 5  
682 t 4 
684 * 3 
687 + 2 
692 t 0 

678.6 

694. a 

708.2 

701,s  
703 + 4 

713e8 
715,7 
717+6 
723 + 3 
726 + 3. 
730 t 8 
729 t 8 
734 t 5 
738 2 
738 t 2 
741. + 0 

746 t 6 
750 E 3 
752 t 2 
754 * 0 
757 P 8 
762 t 4 
765.2 
7 6 9 t 8 
773 t 4 

779 t 8 
783 c 5 
787,2 
789 t 9 
790 t 8 
795 t 4 
799 0 
801 + 7  

744 +a 

7 -) x.J.3 = 

a07 e 2 

81.4.4 

809 t 9 
812+6 

816.2 
821 + 6 

I 

151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
1 6 1. 
162 
163 
164 
1. 65 
166 
167 
168 
169 
170 
171. 
172 
173 
:I. 7 4 
175 
176 
1. 77 
1. 78 
179 
180 
1 8 l 
182 
183 

:t 85 
186 
187 
188 

190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 

184 

1 a(? 

T W I R E ( 1 )  

824 3 
827 9 
u m .  a 
1-335, 1 

837.8 
a42 + 2 
a42 + 2 
a44 + 0 

854.7 

835 , l  

851 l 

856.5 
861.8 
866 t 2 
867 + 1 
869.7 
871.5 
a77 + 7 

Ha6 5 
889. 1 
890 a 
a96. I 

878 + 5 
8 8 2 + 1  

392 + 6 

898 + 7 
902 t 2 
903 + 1 
906 t 5 
909 I 2 
912.6 
916+ 1 
916,  1 
91.8+7 
920 t 4 
922 t 1 
925 6 
928 + 2 
928.2 
931. .6 
934 t 2 
935 t 0 
935 0 
937 t 6 
940 t 2 
944,s  
944 5 
947 t 9 
950 + 4 
953 0 
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THERMOCOUPLE TEMPERATURE DATA (Io 

I TWIRE(I) I TWIRE(I) I TWIRE(1) 

201 957.3 
202 959.8 
203 960.7 
204 964.9 
205 964.9 
206 967.4 
207 973.4 
208 974.2 
209 975.9 
210 977.6 
211 981.8 
212 981.8 
213 9 8 3 + 5  
214 986.0 
215 986.8 
216 989.3 
217 989.3 
21.8 991.9 
219 994.4 
220 996.9 
221 997.7 
222 999+4  
223 1004+4  
224 1 0 0 6 + 1  
225 1009.4 
226 1010+3  
227 1014+4  
228 1016+9  
229 1019+4  
230 1021+9  
231. 1026.0 
232 1028.5 
233 1029.3 
234 1032.6 
235 1034.7 
236 1039.2 
237 1040.8 
238 1040+8  
239 1045,O 
240 1046.6 
241 1049.1 
242 1049.9 
243 1053.2 
244 1054.8 
245 1055.6 
246 1058.9 
247 1059.7 
248 1064.6 
249 1065.4 
250 1068.7 

251 1070,3 
252 1076+0  
253 1073.5 
254 1077.6 
255 1079.2 
256 1080.8 
257 1083.3 
258 1086+5 
259 1088e1 
260 1090.5 
261 1093+8 
262 1093.8 
263 1097.8 
264 1099.4 
265 1103.4 
266 1104.2 
267 1106.6 
268 1109,O 
269 1110+6 
270 1 1 1 4 + 6  
271 1117,O 
272 1117.8 
273 1121.0 
274 l121.8 
275 1124.2 
276 11.28+2 
277 1129.8 
278 1132.2 
279 1135.3 
280 1136.9 
281 1137.7 
282 1140.1 
283 1143.3 
284 1146.4 
285 1145.6 

287 1151,2 
286,  1148.8 

288 1151+9 
289 1153.5 
290 1156+7 
291 1158.3 
292 1162.2 
293 1162.2 
294 1164.4 
295 1 1 6 6 + 1  
296 1168.5 
297 1168.5 
298 1170+0  
299 1173.2 
300 1173.9 

301 l l 7 6 + 3  
302 1178.6 
303 1181+8  
304 1181.8 
305 1182.6 
306 1183.3 
307 1.187.2 
308 1188,O 
309 1189.6 
310 1192.7 
3:Li 1191+9  
312 1193.4 
313 1195.8 
314 1.1.98.9 
3l5 1199,7 
316 l202.8 
317 1202+8  

319 1205+9 
320 1208,2 

318 1205.9 

321 1208,9 
322 121.1+3 
323 1213.6 
324 1215.1 
325 1216.7 
326 1217.4 
327 1218*2  
328 1219.8 
329 1218.2 
330 1220.5 

332 1225.9 
333 1225.9 
334 1.229.0 
335 1229.8 
336 1231.3 
337 1232.1 
338 l234 .3  
339 1236.7 
340 1238.2 
341 1238.2 
342 1242.0 
343 1242.0 
344 1245.8 
345 1248.9 
346 1247.3 
347 1250.4 
348 1251+9 

331 1222+8  

349 1253.4 
350 1255.0 

I TWIRE(1) 

351 1256*5  
352 l25810  
353 1259.5 
354 1259.5 
355 1260.3 
356 1261+1  
357 1264.1 
358 1262.6 
359 1264.1 
360 1264*8  
361 1264.8 
362 1267+1  
363 1268.6 
364 1.270.2 
365 1270.9 
366 127:1*7 
367 1272.4 
368 1274+7  
369 1277+0  
370 1276.2 
371 1277J 
372 1280,O 
373 1282.3 
374 1282+3 
375 128445 
376 1286 8 
377 1287.5 
378 1288+3  
379 1288+3 
380 1289.8 
381 1290+5 
382 1292.0 
383 1294.3 
384 1294.3 
385 129713 
386 1297.3 
387 1298+8 
388 1301.1 
389 1301.8 
390 1 3 0 l + 1  
391 1303.3 
392 1303.3 
393 1304.0 
394 1306.3 
395 1305.5 
396 1305*5  
397 1307.8 
398 1309+3 
399 1312.3 
400 1312.3 
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THERMOCOUPLE TEMPERATURE DATA ( K )  

I TWIRE(1) I TWIRE(1) I TWIRE(I) 

401 1312.3 
402 1312.3 
403 1316+8 
404 1317.5 
405 1318*2 
406 1321.2 
407 1322.7 
408 1324.2 
409 1324.9 
410 1325e7 
411 1327.2 
412 1328.7 
413 1329.4 
414 1330.1 
415 1332+4 
416 1333*8 
417 1333.8 
418 1335.3 
419 1336.8 
420 1338.3 
421 1339.8 
422 1342.0 
423 1342,O 
424 l343*5 
425 1345*7 
426 1346.4 
427 1347,2 
428 1347+9 
429 1348+7 
430 1398.7 
431 1353+8 
432 1353e8 
433 1353.8 
434 1353.1 
435 1355*3 
436 1355.3 
437 1358.3 
438 1359.0 
439 1358+3 
440 1358.3 
441 1359*7 
442 1360+5 
443 1362.7 
444 1363+4 
445 1365+6 
446 1364+9 
447 1367+8 
448 1369.3 
449 1368.6 
450 1369.3 

451 1370.0 
452 1370+8 
453 1372.2 
454 1373.7 
455 1374+4 
456 13.75.2 
457 1375.2 
458 1375.9 
459 1375.9 
460 1.378+8 
461 1379.6 
462 1380+3 
463 1381+8 
464 1381+0 
465 1383.2 
466 1381.8 
467 1383e9 
468 1383e2 
469 1383.9 
470 1384+7 
471 1383+9 
472 1383.9 
473 1384+7 
474 1384.7 
475 1384+7 
476 1386.9 
477 1386.9 
478 1386+1 
479 1388+3 
480 1389*8 
431 1388.3 
482 1387+6 
483 1389+1 
484 1390+5 
485 1392.0 
486 1392.7 
487 1392+0 
488 1394,2 
489 1395.6 
490 1396+4 
491 1394+2 
492 1395.6 
493 1396+4 
494 1396.4 
495 1397.1 
496 1395+6 
497 1397+8 
498 1396+4 
499 1398.6 
500 1397.8 

501 139816 
502 1397+8 
503 1400+8 
504 1400+8 
505 1399.3 
506 1402+2 
507 l403+7 
508 1403+7 
509 1405+1 
510 1404.4 
511 1405+8 
512 1405,8 
513 1408.0 
514 l408+8 
515 1408,O 
516 1411+7 
517 1410+9 
518 1411'7 
519 1412+4 
520 1413.9 
521 1413.9 

523 1.413.9 
524 1418.2 
525 1418.2 
526 1417+5 
527 1416+8 
528 1418.2 
529 141.7.5 
530 1415*3 
531 l416.8 
532 1417,s 
533 l420+4 
534 1419+7 
535 1420+4 
536 1421,l 
537 1422.6 
538 1422.6 
539 1424,O 
540 1425+5 
541 1426.2 
542 1426e9 
543 1427.7 
544 1427*7 
545 1428+4 
546 l431+3 
547 1431+3 
548 1431.3 
549 1434+2 
550 1432.7 

522 1416+8 

I TWIRE(1) 

551 1434.2 
552 1435e6 
553 1436.3 
554 1436.3 
555 1436.3 
556 1437.8 
557 1437.8 
558 143815 
559 1438+5 
560 1440,O 
561 1440*7 
562 1441+4 
563 1442.8 
564 1444.3 
565 1445eO 
566 1443.6 
567 1445,O 
568 1446+5 
569 1445.7 
570 1445.0 
571 1442+1 
572 1443+6 
573 1445+0 
574 1443+6 
575 1445,7 
576 1446.5 
577 1446.5 
578 1447.2 
579 1447+2 
580 1447.9 
581 1448+6 
582 1448+6 
583 1450+8 
584 1450+8 
585 1451.5 
586 1452+2 
587 1454.4 
588 1454,4 
589 1453.7 
590 1455+1 
591 1455.1 
592 1455.8 
593 1457.3 
594 1457.3 
595 1456.6 
596 1455.1 
597 1456.6 
598 1458.0 
599 i458+7 
600 1458.7 
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I 

60 1 
602 
603 
604 
605 
606 
607 
608 
609 
610 
61  l 
612 
613 
614 
6 1 5 
616 
617 
618 
619 
620 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
63 1 
632 
633 
634 
635 
636 
637 
638 
639 
640 
64 1 
642 
643 
644 
645 
646 
647 

649 
650 

648 

THERMOCO 

T W I K E ( I )  I 

1460.2 
1459.4 
1460.2 
1460+9 
1462.3 
1463 1 
1463 t 1 
1463.1 
1463.1 
1463.8 
1464.5 
1466+7 
1465 e 9 
1468 + 1 
1468.1 
1468.8 
1.468,8 
1468 t 1 
1468 t i 
1467.4 
1468e8  
1468.1 
1 468 t 8 
1471 + 0  
1471.7 
1 4 7 1 * 0  
1472 t 4 
1473.8 
1413.8 
1475.3 
1473.8 
1473.1 
1475 t 3 
1473 t 8 
1474.6 
1476.0 
1476.0 
1476+7 
1478.2 
1478 t 2 
3.478.2 
1477+4 
1478.2 
1478 2 
1478 t 2 
1478.2 
1476+0 
1477.4 
1478.9 
1477.4 

651 
652 
653 
654 
655 
656 
657 
658 
659 
660 
6 6 l  
662 
663 
664 
665 
666 
667 
668 
669 
670 
6 7 :I. 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681. 
682 
683 
6 t3 4 
685 
686 
687 
688 
689 
690 
69 1 
692 
693 
694 
695 
696 
697 

699 
700 

698 

1 UPL E TEMPERA TLJ RE 

TWIRE( I ) I 

1478.9 
1477*4  
1478.9 
1478 + 9 
3.477.4 
1480.3 
1480.3 
1480,3 
147819 
1481 e 0  
1479.6 
1481 18 
1482.5 
1482 5 
1483.9 
1482.5 
1483.2 
1484.6 
1484.6 
1485,3 
:I. 484 , 6 
1486.8 
1487.5 
1486.8 
1487.5 
1488,9 
1.489,7 
1489,7 
1490.4 
1490.4 
1491 6 8  

1490.4 
1492,s 
1492.5 
1402 , 5 
I 4 9 3  2 
1493.2 
1496,i  
1495 .4  
i 4 9 4 * 7  
1496.8 
1498.3 
1497,s 
1497,s 
1498.3 
1497,5 
i498,3  
1499.0 
1498.3 
3.499.0 

70 1 
702 
703 
704 
705 
706 
707 
7013 
709 
710 
7 1  1 
712 
713 
7 I 4 
715 
7 1.6 
717 
718 
71.9 
720 
721 
7 2 ;? 
723 
724 
725 
726 
727 
728 
729 
730 
73 1. 
732 
733 
734 
735 
736 
737 
738 
739 
740 
74 l 
742 
743 
744 
745 
746 
747 
748 
749 
750 

KiATR (IO 

TWIRE(I) I 

1498.3 
1 4 9 8 * 3  
1499.7 
1500 4 
1501 8 
1499.7 
3.503 . 3 
1503. ,8 
1503,3 
1 5 0 2 , h  
1503+3 
1504 t 0 
:L504 7 
i 5 0 4  * 7 
1505*4  
1506.1 
1.506,8 
:I. 5 0 6 i 
i 507 t 6 
3. 508 3 
1508 . 3 
3.506 c 8 
1507+6 
1509.7 
1509 t 7 
:I. 509 7 
i509 + 7 
i509 .7  
i511.1  

151.0 t 4 
:I. 5 :I. 1 . 1 
:L5i1.8 
1 5 1. 1 . :I. 
1. 5 1 1 :t 
i 5 1. 1. t i 
1511 ,8 
:1511*8 
153.2.6 
1 5 :I. 3 t 3 
i 5 i 2 6 
1514.0 
1514.7 
151 4 t 7 
1514+0 
1513,3 
1513.3 
i516.1  
1514.7 
1514 t 0 

1. ..I 1. . :L + J. 

75 1 
752 
753 
754 
755 
756 
757 
758 
759 
760 
761 
762 
763 
764 
765 
766 
767 
7 6 13 
769 
770 
77 1. 
772 
773 
774 
7 7 5 
776 
777 
778 
779 
780 
7 8 1  

782 
783 
784 
7 8 5 
786 
7137 
788 
789 
790 
791 
792 
793 
794 
795 
796 
797 
798 
799 
800 

1 5 i 6 + 11. 
:I 5 I 6 8 
1514.7 
1 5 :I. 6 i 
1 5 1. 6 t I. 
1. 5 :I. 6 t :t 
i 5 1. 6 t 8 
1. 5 i R 3 
1518.3 
:I. 5 1. 9 t 0 

'I. 5 2 0 t 4 
152044 

:t 5 :? :I. t 8 
:t <- >.Is.. T J. ' 6 8 

1. :s' 2 3 e 3 
1.523+3 
1524.7 
:I. 524 t 0 
i 5 2 5  + 4 
:t 52 5 . 4 
i 5 2 5 , 4  
1524.7 
:I. 524 t 7 
'I. 5 2 4 t 7 
1 5 2 6 + :I. 
'I. 5 2 6 t 1 
1.526.8 
:I. 528 t 3 
:I. 527 6 
1. 5 2 9 0 
1530 t 4 
:t 530 . 4 
1528.3 
3.529.7 
I. 529. 7 
1530. 4 
1529.7 
1531 + 1 
1.531.8 
1531 1 
1527.6 
1531 1 
1532.6 
1533.3 
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THERMOCOUPLE T E M P E R A T U R E  D A T A  ( K )  

I T W I R E ( 1 )  1 T W I R E ( 1 )  I T W I R E ( I )  

803. 1534+7 
802 1533,;3 
803 1531.8 
804 1533.3 
805 153111 
806 1531.1 
807 1531.1 
808 1531.1 
809 1530.4 
810 1531*8 
811 1531,1 
812 1531.1 
813 1529+7 
814 1531.1 
815 153:t .i 
816 1531+1 
817 1531,8 
810 1531,8 
819 1531.1 
820 1532.6 
821 1534.0 
822 1533+3 
823 1534+0 
824 1533e3 
025 1533.3 
826 1534.7 
827 1535+4 
020 1533,;3 
829 1534.7 
830 1534,O 
831 1534+0 
032 1534,7 
033 1534+7 
834 i535+4 
835 1534.7 
036 1532+6 
837 1533+3 
030 1534,7 
839 1534+0 
840 1536+1 
841 1534.7 
842 1534+7 
843 1535+4 
844 1534.7 
845 i533.3 
046 1535e4 
847 1535.4 
848 1534.0 
849 1534.7 
850 1535.4 

851 1536+1 
852 1 5 3 6 + 1  
853 153716 
854 1536+1 
855 1539+0 
856 Y.539+0 
057 1536+8 
850 1534.7 
859 1534+7 
860 1534.7 
8 6 i  1535+4 
862 1536,l 
063 1536.1 
064 i536,i 
865 1536+0 
866 1537.6 
067 I530e3 
868 %538+3 
869  153716 
870 1539+7 
871. 1539.0 
872 1535.4 
873 1.537,6 
074 1536.8 
075 1537.6 
876 1537,6 
077 1537.6 
878 1538+3 
879 1536.8 
880 1537.6 
881 1539+0 
882 1538 + :3 
883 1538+3 
004 1539+? 
085 1539 7 
086 1537.6 
087 3.537.6 
888 i539,O 
089 1539+7 
890 1539.7 
091. i 5 4 i  + 1. 
892 3.540.4 
893 1541.1 
094 i540.4 
895 1539.7 
896 1541.1 
097 154:1.+0 
090 1541,1 
099 1541,0 
900 1541+8 

901 1541+0 
902 1542,s 
903 1543.3 
904 1542.5 
905 1542*5 
906 1!542+5 
907 1541.8 
908 1541+8 
909 1544.0 
910 1540.4 
91i 1539+0 
91.2 1.537,6 
913 1539.0 
914 1539,O 
5'15 i539+0 
9i6 1536.8 
917 1 5 3 8 * 3  
910 .1.539+0 
919 1539.0 
920 1539+0 
921 1.539+0 
922 1538,3 
923 1539.0 
924 1539 0 
c):.'; 1540 t 4 
926 1539.0 
927 1540*4 
928 1540+4 
929 % 5 4 1 * 1  
930 1 5 4 i . 8  
931. 1540,4 
932 1542,5 
933 1542.5 
934 1544,7 
935 1542.5 
936 1542.5 
937 1.542 + 5 
938 1544,O 
939 1543,3 
940 1543+3 
941 1544.0 
942 1545.4 
943 1.543+3 
944 1543,3 
945 1543.3 
946 1545.4 
947 1.544.0 
940 1544.7 
949 1544.7 
950 1.544.0 

I 

951 
952 
953 
954 
955 
956 
957 
958 
959 
960 
96 1 
962 
963 
964 
965 
966 
967 
968 
969 
970 
97 1 
972 
973 
974 
975 
976 
977 
970 
979 
900 
90 1 
902 
903 

985 
986 
907 
988 
989 
990 
991 
992 
993 
994 
995 
996 
997 
990 
999 

1000 

984 

T W I R E (  I ) 

i543+3 
1543.3 
1543.3 
1544 * 7 
1543+3 
1543*3 
1'544 t 7 
1544+7 
1544,7 
1545.4 
1544.7 
1544.7 
1.544 t 7 
1544 t 7 
1545.4 
1545*4 
:I. 5 4 7 + 5 
1544 + 0 
1.544 t 7 
1544.7 
1544 t 0 
1545 + 4 
1 544 t 0 
1544+7 
1543 0 3 
154440 . 
1545+4 
i543 3 
1.542*5 
1542.5 
1541 t 1 
1539,7 
1539.0 
:I. 539 . 0 
:t 539 F 0 
1539.7 
1.539.7 
1.539*0 
1539 t 0 
1539 i 0 
1537.6 
1538 + 3 
1539.0 
1. 539 * 7 
1539.0 
1540+4 
1541.1 
i 5 3 9 7 
1540.4 
1541. 1 

Y 
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