Computer Program for Pulsed Thermocouples With Corrections for Radiation Effects

Herbert A. Will

 जHTLLAND AFB, N.M.

N/SN

Computer Program for Pulsed Thermocouples With Corrections for Radiation Effects

Herbert A. Will
Lewis Research Center
Cleveland, Obio

National Aeronautics and Space Administration

Scientific and Technical

 Information Branch
Summary

A pulsed thermocouple is used for measuring gas temperatures above the melting point of common thermocouples. This is done by allowing the thermocouple to heat until it approaches its melting point and then turning on the protective cooling gas. This method requires a computer to extrapolate the thermocouple data to the higher gas temperatures. In earlier work by this author the extrapolation was done by using a first-order exponential curve fit to predict the final thermocouple wire temperature. Since radiation effects were neglected, the gas temperature was not computed. Hand calculations had to be used to estimate the gas temperature. This report describes a method that includes the effect of radiation in the extrapolation. Computations of gas temperature are provided, along with the estimate of the final thermocouple wire temperature. Results from tests on high-temperature combustor research rigs are presented.

Introduction

An earlier investigation by the author (ref. 1) described the use of a pulsed thermocouple to measure gas temperatures above the melting point of common thermocouples. This method of measuring temperature is intended for the measurement of temperatures at the exit of experimental aircraft combustors at temperatures to 2400 K and pressures to 4 MPa (40 atm). The previous investigation described an approach that uses a thermocouple cooled by a small jet of inert gas. When a measurement is to be made, the cooling jet is turned off and the thermocouple is allowed to heat up to near its melting point. When the temperature of the thermocouple approaches its melting point, the cooling is reapplied. The data are then fitted to a first-order exponential function. The final temperature that the thermocouple would have attained is then calculated by extrapolation.

The computer program (ref. 1) did not take into account the fact that at the higher temperatures the heating curve deviates from a true exponential. This deviation is the result of radiant energy (obeying Stephan's T ${ }^{4}$ law) being absorbed or emitted by the thermocouple wire.

The analysis described in this report takes into account the T^{4} radiation terms in the differential
equation describing the temperature of the thermocouple wire as a function of time. The report describes the solution of this differential equation for time as a function of temperature. This solution cannot be inverted (except numerically) to give temperature as a function of time. A computer program is described that fits measured data to the theoretical curve based on this more complete analysis. The computer program uses the gradientexpansion method (ref. 2) to fit the data to the theoretical function. The program computes final thermocouple wire temperature and final gas temperature.

This report also presents typical input and results for the computer program. Data and results are discussed from tests in two combustor test facilities.

Theory

This section describes the theoretical equations necessary to compute gas temperatures with a pulsed thermocouple. Most of the time the thermocouple is protected with a jet of cooling gas, as shown in figure 1. When a temperature measurement is to be made, the cooling gas is turned off and the thermocouple output is sampled at a high rate and recorded. Just before the thermocouple reaches its melting point the cooling is reapplied to protect the thermocouple wire. The gas temperature can then be calculated by extrapolation from the initial heating curve. For the extrapolation to be valid, it must be based on a theoretical heating curve. The derivation of the theoretical equation is described here. All symbols are defined in appendix A.

The equation that describes the pulsedthermocouple wire temperature can be derived from the basic heat transfer relations (ref. 3). Assume a bare wire thermocouple with infinitely long leads in a hot gas stream. This assumption causes the conduction effects to be neglected. Very little error is introduced if we neglect the transfer of heat to the junction by conduction along the wire for carefully designed probes. Thus in the absence of conduction, heat can be transferred to the wire by convection of the gas, by radiation from the gas, and by radiation from the duct walls. Also heat can be transferred away from the wire by radiation.

The rate of heat storage in the wire will be equal to the rate of heat entering the wire minus the rate of the heat leaving the wire. The rate of heat storage q_{s} per

Figure I. - Thermocouple heating curve.
unit length is given by
$q_{s}=q_{c}+q_{r}$
where q_{c} is the rate of heat convected per unit length to the wire by the gas and q_{r} is the net heat radiated per unit length to the wire.

The rate of heat storage per unit length of the wire is given by (ref. 3)
$q_{s}=\rho C \frac{\pi D^{2}}{4} \frac{d T_{w}}{d t}$
where ρ is the wire density, C is the specific heat of the wire, T_{w} is the wire temperature, t is the time, and D is the wire diameter.

The rate of heat transfer to the wire by convection q_{c} is given by (ref. 3)
$q_{c}=\pi \mathrm{Nu} K_{g} P_{s c}\left(T_{g}-T_{w}\right)$
where Nu is the Nusselt number, K_{g} is the thermal conductivity of the gas, $P_{s c}$ is the probe shape constant, and T_{g} is the gas temperature. For an infinitely long wire in crossflow $P_{s c}$ is unity. The probe shape constant was introduced to take into account the fact that the presence of a probe to support the wire will cause a reduction in the effective Nusselt number of the thermocouple. In
practice the $P_{s c}$ must be determined experimentally and generally falls in the range 0.8 to 1.0 .

The rate of heat transfer by radiation q_{r} is given by (ref. 3)
$q_{r}=\sigma \epsilon_{w}\left[(1-\alpha) T_{d}^{4}+\epsilon_{g} T_{g}^{4}-T_{w}^{4}\right] \pi D$
where σ is the Stefan-Boltzmann constant, ϵ_{w} is the emissivity of the wire, α is the effective absorptivity of the gas, T_{d} is the duct temperature, and ϵ_{g} is the emissivity of the gas. The first term in equation (4) represents the heat received by the wire from the hot walls of the duct. The second term represents radiant heat received from the gas. The third term represents radiant heat emitted from the wire.

Combining equations (1) to (4) gives
$d t=\frac{-K_{1} d T_{w}}{T_{w}^{4}+K_{2} T_{w}-K_{3}}$
where
$K_{1}=\frac{\rho C D}{4 \sigma \epsilon_{w}}$
$K_{2}=\frac{\mathrm{Nu} K_{g} P_{s c}}{D \sigma \epsilon_{w}}$
and
$K_{3}=K_{2} T_{g}+\left[(1-\alpha) T_{d}^{4}+\epsilon_{g} T_{g}^{4}\right]$

To solve equation (5), we integrate both sides of the equation. The integration is easier if we factor the denominator. The roots of a fourth-order equation can be found by algebraic methods (ref. 4). The roots of the equation are
$T_{w}=\alpha_{1} \pm i \beta, \alpha_{2}, \alpha_{3}$
where
$\alpha_{1}=\frac{1}{2} \sqrt{Y_{1}}$
$\beta=\frac{1}{2}\left(Y_{1}+\frac{2 K_{2}}{\sqrt{Y_{1}}}\right)^{1 / 2}$

$$
\begin{align*}
\alpha_{2}= & \frac{1}{2}\left[\sqrt{Y_{1}}+\left(-Y_{1}+\frac{2 K_{2}}{\sqrt{Y_{1}}}\right)^{1 / 2}\right] \tag{12}\\
\alpha_{3}= & -\frac{1}{2}\left[\sqrt{Y_{1}}+\left(-Y_{1}+\frac{2 K_{2}}{\sqrt{Y_{1}}}\right)^{1 / 2}\right] \tag{13}\\
Y_{1}= & {\left[\frac{K_{2}^{2}}{2}+\left(\frac{K_{2}^{4}}{4}+\frac{64 K_{3}^{3}}{27}\right)^{1 / 2}\right]^{1 / 3} } \\
& +\left[\frac{K_{2}^{2}}{2}-\left(\frac{K_{2}^{4}}{4}+\frac{64 K_{3}^{3}}{27}\right)^{1 / 2}\right]^{1 / 3} \tag{14}
\end{align*}
$$

Equation (5) can then be rewritten as

$$
\begin{align*}
& d t= \\
& \qquad \begin{array}{c}
-K_{1} d T_{w} \\
\left(T_{w}-\alpha_{1}-i \beta\right)\left(T_{w}-\alpha_{1}+i \beta\right)\left(T_{w}-\alpha_{2}\right)\left(T_{w}-\alpha_{3}\right)
\end{array} \tag{15}
\end{align*}
$$

or
$d t=\left[\frac{H_{1}}{T_{w}-\alpha_{2}}+\frac{H_{2}}{T_{w}-\alpha_{3}}\right.$

$$
\begin{equation*}
\left.+\frac{H_{3}}{T_{w}-\alpha_{1}-i \beta}+\frac{H_{3}^{*}}{T_{w}-\underline{\alpha_{1}+i \beta}}\right] d T_{w} \tag{16}
\end{equation*}
$$

where
$H_{1}=\begin{gathered}-K_{1} \\ \left(\alpha_{2}-\alpha_{3}\right)\left[\left(\alpha_{2}-\alpha_{1}\right)^{2}+\beta^{2}\right]\end{gathered}$
$H_{2}=\begin{gathered}-K_{1} \\ \left(\alpha_{3}-\alpha_{2}\right)\left[\left(\alpha_{3}-\alpha_{1}\right)^{2}+\beta^{2}\right]\end{gathered}$
$H_{3}=\begin{gathered}-K_{1} \\ \left(\alpha_{1}-\alpha_{2}+i \beta\right)\left(\alpha_{1}-\alpha_{3}+\overline{i \beta)(2 i \beta)}\right.\end{gathered}$

If the denominator of H_{3} is multiplied out, we get
$H_{3}=\frac{-K_{1}}{E+i F}$
where
$E=-2 \beta^{2}\left(2 \alpha_{1}-\alpha_{2}-\alpha_{3}\right)$
and
$F=2\left[\beta\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)-\beta^{3}\right]$
Thus H_{3} can be rewritten as

$$
\begin{align*}
H_{3} & =\frac{-K_{1} E}{E^{2}+F^{2}}+i \frac{K_{1} F}{E^{2}+F^{2}} \\
& \equiv H_{3 \mathrm{~A}}+\mathrm{iH}_{3 \mathrm{~B}} \tag{23}
\end{align*}
$$

Equation (16) can then be integrated to get

$$
t=H_{1} \ln \left(\alpha_{2}-T_{w}\right)+H_{2} \ln \left(T_{w}-\alpha_{3}\right)
$$

$$
\begin{align*}
& +H_{3 \mathrm{~A}} \ln \left[\left(T_{w}-\alpha_{1}\right)^{2}+\beta^{2}\right] \\
& +2 H_{3 \mathrm{~B}} \tan ^{-1}\left(\frac{\beta}{T_{w}-\alpha_{1}}\right)+H_{4} \tag{24}
\end{align*}
$$

where H_{4} is a constant of integration.
Equation (24) shows the theoretical relationship between the wire temperature T_{w} and the time t. In general all the parameters in the equation are known except for the gas temperature T_{g}, the probe shape constant $P_{s c}$, and the integration constant H_{4}. After a measurement a set of wire temperature readings are known. The procedure used finds the values of T_{g}, $P_{s c}$, and H_{4} that result in the best fit of the temperature data to the theoretical equation (eq. 24)). The next section describes the computer program written to fit equation (24) to the data.

Description of Computer Program

The FORTRAN IV computer program described in this report is designed to calculate gas temperature by using data taken from a separate pulsedthermocouple controller. A listing of the program and its various subroutines is shown in appendix \mathbf{B}. The program input requirement is a set of wire temperatures taken at regular time intervals, the Mach number, the total pressure, the wall temperature, and the probe shape constant. The computer program output is the extrapolated wire temperature and the computed gas temperature. In addition, if the probe shape constant has not been entered, the computer program will calculate and output PSC, the probe shape constant.

The program uses a curve-fitting procedure from reference 2 called the gradient-expansion method to
fit the theory to the input data. Two parameters, gas temperature TGAS and possibly probe shape constant PSC, are adjusted for best fit of the theory to the data. These parameters are adjusted until the sum of the squares of the differences between the measured wire temperature and the theoretical wire temperature is a minimum. The error, which is called CHISQR, is defined by
$\mathrm{CHISQR}=\sum_{i=1}^{n}\left[\left(T_{\text {data }}\right)_{i}-\left(T_{\text {theory }}\right)_{\mathrm{i}}\right]^{2}$
where $T_{\text {data }}$ is the measured wire temperature, $T_{\text {theory }}$ is the corresponding theoretical wire temperature, and n is the number of measured data points. Note that the theoretical wire temperatures must be evaluated point by point at the same values of the time parameter used for the measured data.

Both the gradient-expansion procedure and the evaluation of CHISQR require computation of theoretical wire temperature at every measurement time. In addition, the gradient-expansion method requires values for $\partial T_{w} / \partial T_{g}$ and $\partial T_{w} / \partial P_{s c}$ at every measurement time. These requirements create a difficulty because the analytical solution to the differential equation expresses time as a function of wire temperature in equation (24). The equation cannot easily be inverted to yield the needed wire temperature as a function of time and its derivatives. As a result a great amount of the computer time is devoted to numerically inverting the equation and evaluating the derivatives. Since theoretical wire temperature values at the measurement times are not available directly from equation (24), they are calculated by interpolating in a table of wire temperature-time pairs that do satisfy equation (24). This table must be regenerated whenever equation parameters are changed.

This procedure must be repeated once for every evaluation of wire temperature and twice for every evaluation of the derivatives. The derivatives are approximated by computing the differences in wire temperature that result for two values of the parameters TGAS and PSC: one value slightly above the present value and one value slightly below the present value.

The main computer program takes care of reading the input data, calling the curve-fitting routines, deciding when the curve fit is good enough, and writing the results. Initially input data of Mach number, pressure, and duct temperature are read in as well as 1000 readings of thermocouple wire temperature. The temperatures represented by these numbers are taken at equal time intervals before and during the temperature rise. The first 100 readings
represent the thermocouple wire temperature while the cooling air is on. The rest of the 900 temperature readings are taken during the temperature rise of the thermocouple wire when the cooling air is turned off. If the cooling air is turned on again before the 900 readings are taken, the remaining readings are zero.

After the data are read in, a call to subroutine STCFIT determines the best estimate of the temperature ramp starting time. This is necessary because the theoretical curve is always forced to pass through this point.

With the starting time determined, the curvefitting process begins. Repetitve calls to CURFIT and FDERIV result in adjustments to several parameters such that CHISQR is decreased. With every adjustment in the parameter values a call to CONGEN is needed to evaluate the constants in equation (24). The parameters adjusted include the gas temperature TGAS; the probe shape constant PSC; and FLAMDA, a parameter whose value controls the curve-fitting process. The probe shape constant is adjusted only if its value is not included in the input data. If the PSC is to be adjusted, the variable NTERMS is set equal to 2 by the computer program; otherwise NTERMS is set equal to 1 and only TGAS is adjusted. Thus the main program recalls FDERIV and CURFIT until the decrease in CHISQR is less then 1 percent. This value of 1 percent was chosen by trial-and-error methods to provide a wire temperature within 1 or 2 K of the ultimate wire temperature without using an unreasonable amount of computer time.

Subroutine CURFIT

Subroutine CURFIT makes a least-squares fit to a nonlinear function by using the gradient-expansion algorithm described in appendix C. The algorithm is really two curve-fitting techniques combined into one program. One of the techniques works well when the variables are far from the correct values, and the other works well when they are close to the final values. A parameter λ (called FLAMDA in the program) is used to change the curve-fitting routine gradually from one technique to the other.

The subroutine works by starting with FLAMDA $=0.001$ (when FLAMDA is less than 1 the fitting technique that works close to the minimum is dominant - see appendix C). The error χ^{2} (appendix C) between the measured and theoretical data is called both CHISQ1 and CHISQR in the program. CHISQ1 is an initial value of χ^{2} calculated once when the subroutine is entered. The program makes changes in the wire temperature, the probe shape constant, and FLAMDA until a new value of χ^{2} (called CHISQR) starts to decrease, at which time FLAMDA is divided by 10 and the subroutine returns to the
calling program. It is the responsibility of the calling program to check CHISQR to see if the change in CHISQR since the last call to CURFIT is small enough to stop the program. If it is not, subroutine CURFIT should be called again without changing the value of the current FlamDa.

Subroutine FDERIV

Subroutine FDERIV computes data needed by the curve-fitting routine CURFIT. The data needed are the derivatives of the wire temperature with respect to both gas temperature and the probe shape constant. Also needed are theoretical values of wire temperature evaluated at the measured time (the times corresponding to the measured wire temperatures). The derivatives are determined from (ref. 5)

$$
\begin{align*}
& \frac{\partial T_{w}}{\partial T_{g}}=T_{w}\left(T_{g}+1, \mathrm{PSC}\right)-T_{w}\left(T_{g}-1, \mathrm{PSC}\right) \tag{26}\\
& 2
\end{aligned} \begin{aligned}
& \frac{\partial T_{w}}{\partial \mathrm{PSC}}=T_{w}\left(T_{g}, \mathrm{PSC}+0.001\right)-T_{w}\left(T_{g}, \mathrm{PSC}-0.001\right) \tag{27}\\
& 2(0.001)
\end{align*}
$$

If the probe shape constant is not to be calculated (NTERMS $=1$), only equation (26) will be calculated. The theoretical values of wire temperature are generated from equation (24) with a call to subroutines TABL and INTRP.

The subroutine returns a 1000 - by 3 -element array. The derivative of the wire temperature with respect to the gas temperature at time I is returned in array $\operatorname{DERIV}(1,1)$. The derivative of the wire temperature with respect to the probe shape constant at time I is returned in array $\operatorname{DERIV}(1,2)$. The table of the computed wire temperatures at time I is returned in array $\operatorname{DERIV}(1,3)$.

Function XICALC

Function XICALC computes the sum of the squares of the differences between the measured wire temperature and the theoretical wire temperature (from the numerically inverted equation (24)). The sum of the squares of the differences will be

XICALC $=\sum_{I=S T A R T}^{\text {RANGE }}\left[T_{w}(I)-T_{\text {theory }}(I)\right]^{2}$

The program first calls subroutine CONGEN to generate new constants for equation (24) since the gas temperature and the probe shape constant may have changed. Subroutine TABL is then called to generate a table of theoretical temperatures and times. The interpolation necessary is done by this subroutine and not by subroutine INTRP because the output of this routine is a single number, the error XICALC, and not an entire table of numbers.

Subroutine TABL

The purpose of subroutine TABL is to generate values of theoretical wire temperatures and times for subroutine INTRP. Subroutine CURFIT, FDERIV, and function XICALC require a value of theoretical wire temperature at every measurement time. These wire temperatures must be obtained by inverting equation (24). However, because of the form of equation (24) a numerical inversion will have to be done. A call to subroutine TABL generates a table of temperaturetime pairs that satisfy equation (24). Then a call to INTRP interpolates in this table to get temperatures at the measurement times.

To generate the interpolation table, a set of temperatures is needed to put into equation (24) to obtain computed times. The values of computed time that result from equation (24) should be as close as possible to the measured times for accurate interpolation by subroutine INTRP. The set of temperatures is determined one at a time, starting with a known point on the theoretical curve. Each succeeding temperature is computed from the previous one by using a linear approximation to the theoretical curve (fig. 2). The linear approximation will have a slope equal to the slope of the theoretical

Figure 2. - Graphical representation of linear approximation to theoretical wire heating curve. The t_{j} are measured times and the t_{j}^{\prime} are computed times from equation (24).
curve at the previous temperature. Thus each succeeding temperature will be

$$
\begin{equation*}
T_{j+1}=T_{j}+\frac{t_{j+1}-t_{j}^{\prime}}{\left(d t / d T_{w}\right)_{T_{w}=T_{j}}} \tag{29}
\end{equation*}
$$

where $j=1,2,3, \ldots, n$ measured data points. The times corresponding to the measured data points are t_{j}. The times t_{j}^{\prime} are computed by evaluating equation (24) with $T_{w}=T_{j}$. The derivative of equation (24) is

$$
\begin{align*}
\frac{d t}{d T_{w}} & =\frac{-H_{1}}{\alpha_{2}-T_{w}}+\frac{H_{2}}{T_{w}-\alpha_{3}} \\
& +\frac{2\left[H_{3 \mathrm{~A}}\left(T_{w}-\alpha_{1}\right)-H_{3 \mathrm{~B}} \beta\right]}{\left(T_{w}-\alpha_{1}\right)^{2}+\beta^{2}} \tag{30}
\end{align*}
$$

In the program $t_{j+1}-t_{j}^{\prime}$ is defined as DELTIM and
$\operatorname{DELTMP} \equiv \frac{\text { DELTIM }}{\left(d t / d T_{w}\right)_{T_{w}=T_{j}}}$
The program starts by setting $T_{j}=T_{1}=$ TAVE, which is the temperature on the theoretical curve; and $t_{j}^{\prime}=t_{1}^{\prime}$ is equal to MSTIME*START. The next temperature T_{j+1} is evaluated by setting $t_{j+1}=t_{2}=\operatorname{MSTIME}^{*}($ START +1$)$ in equation (29). What results is a table of theoretical timetemperature pairs that do satisfy equation (24), where the times are not exactly equal to the measurement times. The array of times is called TIMC, and the array of temperatures is called TC in the program. A linear interpolation will need to be done because temperatures at the exact measurement times are needed.

Subroutine INTRP

Subroutine INTRP is used to correct the table of theoretical temperatures (array TC) generated by subroutine TABL. Subroutine INTRP performs a linear interpolation between the calculated data points so that the calculated times (and corresponding temperatures) fall exactly on the measured time. The resulting interpolated values of temperature are stored in array TC.

Subroutine STCFIT

Subroutine STCFIT determines the starting point of the thermocouple temperature rise. The starting point is defined as the intersection of two straight lines. One line is the best fit through the data before

Figure 3. - Search process for subroutine STCFIT.
the cooling is turned off. This line is called TAVE. The other line is the best fit through approximately the first 50 points of the temperature rise. Since a solenoid is used to turn the cooling air on and off, there will be some delay between when the power is removed and when the cooling air actually stops flowing. The solenoid power is turned off at data point 100 , and the starting point search ranges between data points 100 and 130 .

The starting point of the search process is shown in figure 3. A standard least-squares fit to a straight line of the data from point 100 to point 160 is performed. In general, point 100 is not the true starting point; so this line (line 1 in fig. 3) will not intersect the tave line at point 100 . In fact, if the starting point of the data for the least-squares line is varied from 100 to 130, the intersection of the least-squares line (line 2) with TAVE will approach the true starting point and then back away. Therefore the intersection point will have a maximum as the starting point is varied. The output of this routine is this maximum value of the starting point. This represents the best approximation to the start of the ramp.

Subroutine CONGEN

Subroutine CONGEN computes the constants necessary to evaluate equation (24). Constants K_{1}, K_{2}, and K_{3} are evaluated by using equations (6) to (8). The wire emissivity ϵ_{w} for clean platinum was found to be (ref. 6)
$\epsilon_{w} \approx 0.085+(0.76 \mathrm{E}-4) T_{w f}$
where $T_{w f}$ is the final wire temperature in K . The other parameters used for platinum (type R) thermocouple wire are (ref. 7):

$K_{g}=(0.3007 \mathrm{E}-3) *$ TGAS $^{0.78} \mathrm{~J} /(\sec \mathrm{K} \mathrm{m})$
$\mathrm{Nu}=188.41 *\left(\sqrt{\text { WDIA } * M N * P)} *\right.$ TGAS $^{-0.6}$

$$
\begin{equation*}
*\left|1+0.2 *(\mathrm{MN})^{2}\right|^{-1 / 4} \tag{34}
\end{equation*}
$$

where wdia is the wire diameter, MN is the Mach number, P is the pressure in pascals, and T_{g} is in K . The gas effective absorptivity and emissivity are assumed to be zero. This corresponds to a transparent gas and the worst case for radiation effects.

The subroutine also computes $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, H_{1}$, $H_{2}, H_{3 \mathrm{~A}}$, and $H_{3 \mathrm{~B}}$ from equations (10) to (23). The value of H_{4} is computed by putting the initial conditions into equation (24) and solving for H_{4}. The initial temperature is the average cooled temperature tave. The initial time is the measurement time interval MSTIME times START.

Function evaltm

Function evaltm evaluates equation (24) to obtain a calculated time for an input of wire temperature. The input wire temperature must be between the initial average cooled temperature TAVE and α_{2} in order to avoid taking the logarithm of a negative number. Values of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, H_{1}, H_{2}$, $H_{3 A}$, and H_{4} must have been previously calculated with a call to the CONGEN subroutine.

Subroutine matinv

Subroutine matinv does an inversion of a 1 - or 2 -degree matrix. For a 1 -degree matrix only a simple reciprocal is needed. For a 2 -degree matrix the adjoint matrix is calculated. Then each element is divided by the determinant to form the inverse matrix. The original matrix is then replaced by its inverse.

Tests and Results

A pulsed-thermocouple system was tested in a combustor rig at the Air Force Wright Aeronautical Laboratory (AFWAL) as part of a joint AF-NASA
program on instrumentation. The system included a probe, a sample-and-hold voltmeter, a microcomputer-based controller, and a digital recorder, as shown in figure 4. Figure 5 shows the probe that was put into the combustor. The probe consisted of a water-cooled shell with a replaceable platinum (type R) thermocouple. Compressed-air cooling for the thermocouple was controlled by a fast-acting solenoid valve. The thermocouple voltage was converted to digital form by a sample-and-hold digital voltmeter. A microcomputer was used to control the voltmeter and turn the cooling air on and off. The time between data points (called mstime) was controlled at 0.0042 second. This value was chosen so that most of the ramp would be included in the 1000 data points. If a different probe with a different time constant were used, this MSTIME would have to be changed.

A full curve including the final wire temperature could be recorded for each pulse because the gas stream of the combustor configuration under test was not hot enough to require the cooling air to come on. The data were first processed by the computer program to compute the probe shape constant. The average computed probe shape constant for 20 pulses at fixed combustor conditions was 0.91 , with a maximum deviation of 0.09 . This deviation is the result of the fact that the burning process is not constant during the pulse and thus results in a temperature that can vary during the pulse by as much as 3.2 percent.

With the average probe shape constant of 0.91 the data were curve fit 60 percent of the way up the

Figure 4. - Block diagram of pulsed-thermcouple system.

Figure 5. - Thermocouple probe.

Figure 6. - Results with final temperature well below wire melting point.
curve. It is estimated that at least 60 percent of the curve could be measured at the highest expected gas temperatures. A typical result is shown in figure 6. The solid line is the measured data (a total of 1000 data points). The triangles and squares represent the theoretical curve. The squares represent the portion of the curve that was used in the computation. The triangles represent the portion of the curve that was

Figure 7. - Results with final temperature near wire melting point.
extrapolated by using the theoretical curve. The computed final wire temperature varied from 1525 K to 1581 K , with an average of 1561 K for the 20
readings. The actual final wire temperature varied from 1525 K to 1575 K because of fluctuations in the burning. A comparison between the final wire temperature computed using 60 percent of the ramp and the actual final wire temperature measured for the 20 readings showed a maximum deviation of 3 percent.

The average of the 20 computed gas temperatures was 1691 K , with a maximum deviation of 47 K , or 2.7 percent. The difference of 130 K between the computed wire temperature and the gas temperature is the radiation error. It is estimated that the radiation error can be computed to within about 20 percent, which for this case would be $\pm 26 \mathrm{~K}$.

Results for a pulsed-thermocouple probe different from the probe just described were obtained during a high-temperature combustor test at the Lewis Research Center as shown in figure 7. The probe shape constant for this geometry was determined at lower temperatures than shown in figure 7 to be 0.96 . The gas temperature for the data shown in figure 7 was 2300 K , and the final computed wire temperature was 2190 K . The wire melts at 2215 K . The protective compressed air was set to turn on at about 2000 K in order to assure a long thermocouple life.

Concluding Remarks

The pulsed thermocouple was developed as an instrument to determine high gas temperatures. The pulsed feature is needed at temperatures above the melting point of common thermocouples or when streaking of a combustion process is occurring. The cooling gas was found to adequately protect the thermocouple during this high-temperature operation.
The computer program for computing gas temperature was designed to take the T^{4} radiation error into account. The program requires as input the Mach number, the wall temperature, and the total pressure in addition to the thermocouple data. Tests at temperatures below the melting point of platinum thermocouples show that the pulsed-thermocouple system can compute the gas temperature to within about 4 percent with as little as 60 percent of the temperature step as input data.

Lewis Research Center
National Aeronautics and Space Administration Cleveland, Ohio, December 15, 1980

Appendix A
 Symbols

Mathematical symbol	Computer symbol	Definition
a	---	parameter of function χ^{2}
C	SPHT	specific heat of wire
D	WDIA	wire diameter, m
$\begin{aligned} & H_{1}, H_{2}, H_{3 \mathrm{~A}} \\ & H_{3 \mathrm{~B}}, H_{4} \end{aligned}$	$\begin{aligned} & \text { H1,H2,H3A, } \\ & \text { H3B,H4 } \end{aligned}$	intermediate constants
K_{g}	-----	thermal conductivity of gas, $\mathrm{J} / \mathrm{sec} \mathrm{K} \mathrm{m}$
K_{1}, K_{2}, K_{3}	K1,K2,K3	intermediate constants
-----	MN	Mach number
Nu	NU	Nusselt number
P	P	pressure, Pa
$P_{s c}$	PSC	probe shape constant
q_{c}	-----	rate of heat transferred by convection into surface of wire, $\mathrm{J} / \mathrm{sec} \mathrm{m}$
q_{r}	-----	rate of heat transferred by radiation, $\mathrm{J} / \mathrm{sec} \mathrm{m}$
q_{s}	-----	rate of heat storage, $\mathrm{J} / \mathrm{sec} \mathrm{m}$
T	-----	temperature, K
-----	TAVE	average temperature
T_{d}	TDUCT	duct temperature
T_{g}	TGAS	gas temperature
T_{w}	TWIRE	wire temperature
$T_{w f}$	TWF	final wire temperature
t	-----	time
X, Y	----	general independent variables
Y_{1}	-----	intermediate constant
α	ALPHAG	effective absorptivity of gas
α_{1}, α_{2},	ALPHA1,	intermediate constants
α_{3}	ALPHA2	
β	BETA	intermediate constant
ϵ_{g}	EGAS	emissivity of gas
ϵ_{w}	$\mathrm{E} 1+\mathrm{E} 2 * \mathrm{~T}$	emissivity of wire
σ	SIGMA	Stefan-Boltzmann constant, $\mathrm{J} / \mathrm{K}^{4} \mathrm{sec} \mathrm{m}^{2}$
χ^{2}	CHISQR, CHISQ1	least-squares error

Appendix B Computer Programs

```
C
C
C
C
C
C
C
C
FOUTTNE FOF CUFVE FITTING MATA FFOM A FULSEN THEFMOCOUFILE THEFMOCOUFLE IAATA SHOULI BE CONSTANT FOF THE FTRST 100 DATA FOINTS（THEFMOCOUFLE COOLEI）．THE THEFMOCOUFIEE IS THEN HEATEII ON AN EXFONENTIAL．HEATING CUFUE（9OO MATA FOINTS）． THE FFOGFAM NEGIECTS CONOUCTION EFFOFS．
```

```
    TNFUTS FEQUTFEO AFE:
```

 TNFUTS FEQUTFEO AFE:
 WIFE TEMFEFATUFE (10OO IIATA FOINTS) (K゙).
 WIFE TEMFEFATUFE (10OO IIATA FOINTS) (K゙).
 MACH NUMEFEF.
 MACH NUMEFEF.
 FFESSUFE (FE).
 FFESSUFE (FE).
 IUCT TEMFEFATUFE (N゙).
 IUCT TEMFEFATUFE (N゙).
 FFOBE SHAFE CONSTANT.
 FFOBE SHAFE CONSTANT.
 ALSO THE FOILOWTNG FAFAMETEFS MUST EE SET TO
 THE FFOFEF UAI UE UEFENITNG ON THE TYFE OF
 THEFMOCOUFILE USEO:
 MSTTME == TTME BETWEEN MEASUFEMENTS (THTS FFOGRAM) *
 WHTA = WTFE ITAMETER. (SUBFOUTTNE CONGEN).
 WTENS = WTFE IENSTTY (SUBFOUTTNE CONGEN).
 SFHT = WIFE SFECTFTC HEAT. (SUBFOUTINE CONGEN) .
 WIFE EMTSSTUTTY* (SUBFOUTTNE CONGEN) .
 EGAS = EMTSSTUITY OF GAS. (SUBFOUTTNE CONGEN).
 ALFHAG = ABSOFFTTUTTY OF GAS. (SUBFOUTTNE CONGEN) .
 FEAL．TWIFE（1000），TAUE ALFHAI，ALFHA2，ALFHAZ，BETA：
HI,H2,HZA,H3E,H4,THUCT,MSTIME,MN,F,MNN,MTMF
INTEGEF STAFT，FANGE
FEAL．TC（1000．2），TIMC（1000．2）， $1 \mathrm{OEFTU}(1000,3)$
MATA MSTIME／O．42E－2／
MSTIME TS IN SECONTIS．
INTEGEF I．NTEFMS
FEAL CHTSQO，FLAMMA，TGAS，TBF，FSC，CHISQF，X
COMMON／ELKI／TWTFE，TAUE，ALFFAI，YAIFHAZ，ALFFHZ，BETA，

```

```

COMMON／EIKO／STAFT FFANGE

```

\section*{COMMON /ELKB/TC,TIMC, DERTU}

C
\(C\)
C
C FEAII TEMFEFATUFE IIATA (TWIFE)
C C

C
C
C
C THE NEXT 3 STATEMENTS AFE NEEIEI ONLY
C
C

\section*{\(C\)}

C
C
1.10 TAUE = TAUE+TWIRE(I) TAVE = TAUE/99.
C
\(C\) IIETEFMINE START OF FAMF.
C
CALL STCFIT
C
C TEMFEFATUFE DUEF MELTTNG FOTNT?
C
\(118 \quad \mathrm{HO} 120\) RANGE \(=100.1000\)
IF (TWIFE (FANGE) +LE + 400+) GO TO 130
120 CONTINUE
```

 130 FANGE:= FANGE-1
 C
C CUFVE FIT.
C
135 IF (FGC+NE.O.) GO TO I.40
NTEFMS = 2
FSC=0.8
C
C "FIEFIU" COMFUTES THE IEFTUTTIUE OF TWIFE WTTH FESFECT
C
C
C
140
CALIL FGEFIU(TGAS,FFSC,NTEFMS,TWF)
C
C
C
C
C
C
C
C
C
C
X = ABS((CHISQF-WHTSQO)/CHISQF)
IF (X+LT+O.OI) GO TO. 150
CHISQO = CHISQF
TWF = ALFFHAZ
GO TO 1.40
WFITE(7,160) TGAS
160 FOFMAT(1X,'GAS TEMFEFATUFE =, %FG,2,'N゙')
WFITE(7,170) ALFHA?
1.70
1.80 FOFMAT(1X,'FROEE SHAFE CONSTANT =, FG.3)
STOF 123
ENII
TO TGAS \& FGC * ALSO IT FEETUFNS VALUES OF CALCULATEM
THEOFETICAL WTFE TEMFEFATUFE AS A FUNCTION OF TIME.
"CUFFTT" MOMIFIES TGAS ANM FSC TO OBTAIN THE EEST
MATCH BETWEEN THE THEORETTCAL CURUE ANI THE ACTUAL DATA.
CALL CUFFIT(NTEFMS,FSC,TGAS,CHTSQF,FLAMOA,TWF)
"CHISQF" IS THE EFFOF BETWEEN THE THEOFETTCAL CURUE ANI
THE ACTUAL MEASURETI IATA \& IF THEFE IS LESS THAN A
ONE FEFCENT CHANGE IN THE ERFOF STNCE THE LAST
CALL TO CUFFIT THEN THE FFOGFAM IS FINISHEI.
FOFMAT(IX,'FINAL WTFE TEMFEFATUFE ==, F9,2,'K゙`)
WFITE(7,180) FSC

```

C
C SUBROUTINE CURFIT(NTERMS,FSC,CHISQR,FIAMIA,TWF)
C
C

FUFFOSE
THIG SUEROUTINE MAKES A LEAST SRUAREG CURUE FIT TO A NON－LTNEAR FUNCTTON．

TIME＝SET OF INTEGERS TAKEN AS INDEFENIENT VARTABLE ． TWTRE＝AFRAY OF WTRE TEMFERATURE REAOTNGS TAKEN AS DEPENDENT VARTABLEE．
STAFT＝INTEGER VALUE OF TIME FOF STAFT OF TIATA． RANGE＝TNTEGER UALUE OF TIME FOF ENII OF DATA． NTEFMS＝NUMEER OF FARAMETEFS（MAX．＝2）． TGAS＝FARAMETER 1：GAS TEMFERATURE． FSC＝FARAMETER 2：FROBE SHAFE CONSTANT． \(A=\) ARFAY OF FARAMETERS． FLAMIAA＝FROFORTION OF GRAGIENT SEARCH TNCLUDED． TWF＝ESTIMATED FIMAL WIFE TEMFERATURE． CHISQR \(=\) CHI SQUARE FOR FIT．

SUBFOUTINE CURFIT（NTEFMS，FSC，TGAS：CHISQR，FLAMIA：TUF）

FEAL TWTFE（IOOO），TAUE，ALFHAI，ALFHA2，ALFHAB，BETA，
HA，H2，H3A，H3B，H4，TLUCT，MSTIME，MN，F，MNN，MTMF：
INTEGER START，FANGE
FEAL TC（1000．2），TIMC（1000．2），DEFTU（1000，3）
FEAL EE（2），AL（2，2），FSC，TGAS，CHISQ1，CHISQR，FLAMLAA．TWF，

TNTEGEF T，JッドッNTEFMSyEFFLAG

COMMON／ELKK1／TWIFE，TAVE，AL FHA1，ALFHAZ，ALFHA3，BETA， HI，H2，H3A，H3E，H4，TUUCT，MSTTME MN，FYMNN，MTMF

COMMON／ELLK／STAFT，RANGE
COMMON／ELKK／TC，TTMC，LEERIU
```

C CAUSE UNNECESSAFIY ITEFATICIN
C
C. EUALUATE CHT SQUAFE AT STAETING FOTNT
C
C
80 IO 100 J=1,NTERMS
MO 90 K゙=1.%NTEFMS
C
C CALCULATE ALFFHA FRIME MATFIX (CALIEEI ARFAY)
C
C
90 AFFAY(J,J)=AFFFAY(J,J)*(I.+FFI..AMMA)
1O0 CONTINUE
CALIL MATTNU(AFFAY,NTEFMS)
110 B(O)=A(2)
HO 130 J=1,NTEFMS
B(J)=A(J)
HO 1.20 K=I yNTEFMS
120 E(J)=E(J) + BE(N゙)*AFFAYY(J,N゙)
130
C
C TFUNCATE: B(I) \& E(2) TO CONSTNEF ONLY INTEGEF UALUES
C
C
B(I)=AINT(E(I))
E(2)=E(2)*100.
B(2)=AINT(E(2))
B(2)=E(2)/100.

```

CALCULATE CHTSQR FOR NEW FAFAMETEF UALUES．
CHISQF＝XICALC（E（1），B（2），EFFLAG，TWF）
C
C
C
EFFL．．AG＝6 IF ALIFHAZ IS TOO LOW．
```

A(1)=AINT(TGAS)
A(2)=FSC
HO 60 I=STAFT, FIANGE
IO 50 J=1,NTEFMS
BE(J)= EE(J)+(TWTRE(I)-MEFIU(I,3))*DERTU(I,J)
IIO 40 K゙=1.g
AL(J,N゙)=AL(J,N゙)+MEFIU(I,J)*GFFIU(I,N゙)
CONTINUE
GO 70 J=, N,NTEFMS
IO 70 K゙=1,J
AL.(K゙yJ)=AL.(J.K゙)
CHISQI= XICALC(A(I),A(2),EFFLAG,TWF)
ANG ALSO TNUEFT IT.
AFFAY(J,N゙)=Al...(J!N゙)
CONTINUE
OF TEMFEFATUFE ANO ONLYY 2 STGNTFTGANT FTGUFES FOF FGC*
IF（EFFLAG．EQ．6）GO TO 140
TF（CHTSQ1－CHTSQF） $140,150,150$

```
```

C IF CHISQR INCFEASEI, INCREASE FLAMIIA.
C
140 FLAMIIA = 10.O*FLAMIIA
go To 80
C
C IF CHISOF DECFEASEI, DECFEASE FLAMIA \& GET NEW
C
C
150 TGAS = E(1)
FSC = B(2)
FLAMMA = FLAMDA/10.
160 FETURN
ENG
c
C SUBFOUTINE FDEFIU(TGAS,FSC,NTEFMS,TWF)
C
c
C
C COMFUTE THE DERIUATIUE OF TWIEE WITH RESFECT TO BOTH
C
C
C
C TGAS = ESTIMATEI GAS TEMFERATUFE (K).
C
C
c
SUBROUTINE FGERIU(TGAS,FSC,NTERMS,TWF)
C
C

FEAL. TC(1000, 2) yTIMC(1000,2), IEEFTU(1000,3)
$F C=F \cdot S C$
C
C
C
C GENEFATE A TABIE OF COMFUTEII TIMES ANI TEMFEFATUFES +
C
C
C
C
C
C
$20 \quad T=T G A S-$ IELTA 1.$)$
$F \cdot C=F \cdot S C$
C GENEFATE CONSTANTS.
C
C
C GENEFATE ANOTHER TABLE
CALL. TABL. (2)
C
C TNTEFFOLATE BETWEEN IAATA FOTNTS SO THAT THE
C
C
FEEAL IELTA(2), T,FC,TGAS,FSC, X,Y,Z,TWF

INTEGEF F,FF,EFFLAG,I,LI.

[IATA IIELTA/L.0.0.001/
1 HI,H2,H3A,HZA,H4,THUCT,MSTIME,MN,F,MNN,MTMF
COMMON /ELK゙2/STAFT,FANGE
COMMON/ELKKZ/TC.TTMC, IIERIU
COMFUTE IAATA FOF MEFIUATIUE OF TWIFE WITH
FESFECT TG TGAS.
COMFUTE IIATA FOTNTS FOF T=TGASHELTA(I)
ANII $\mathrm{FC}=\mathrm{FSC}$.

GENEFATE CONSTANTS +
CALL CONGEN(T,FCYEFFLAG,TWF)
IF (EFFLAG + NE + O) STOF 997
TAELI FUTS IIATA INTO TC AND TTMC
CALL TAEL (1)
C COMFUTE IATA FOTNTS FOF T=TGAS- NELTA(1)
ANI $\mathrm{FC}=\mathrm{FSCC}$.
CALL CONGEN(TyFC, EFFLAGyTEF)
IF (EFFLAG + NE.O) STOF 996
CALCULATEI TTMES (TIMC) COFFESFONO TO THE:
MEASUFEII TIMES (I*MSTIME) *

```
C
# INTEFFOLATE: FOF T=TGAS+MEITA(I).
C
C
C TNTEFFOLATE FOF T=TGAS-TIELTA(1) *
C
C
C CALCULATE DERIVATIUE OF TWIRE WITH FESFECT TO
C
C
    30
40 T = TGAS
    FC= FSC + UELTA(2)
C
c GENEFATE CONSTANTS.
C
    CALL CONGEN(T,FC,ERFLAG,TWF)
    IF (EFFLAG.NE.O) STOF 99G
C
C
    gENEFATE A TAELE OF COMFUTEI TIMES ANI TEMFERATURES.
C
C
C
c
C
C
C GENEFATE CONSTANTS.
C
COMFUTE IIATA FOINTS FOR T=TGAS ANM
FC=FSC--MELTA(2).
T = TGAS
    FC = FSC - DELTA(2)
    CALL CONGEN(T,FC,EFFFLAG,TWF)
    IF (EFFLAG.NE.O) STOF 994
    gENERATE ANOTHEF TABIE.
        CALL TABL(2)
```

60 CALL CONGEN(TGAS,FGC,EFFLAG.TWF)

60 CALL CONGEN(TGAS,FGC,ERFLAG,TWF)IF (ERFLAG.NE:O) STOF 993
CALL INTEF(1.2)
INTEFFOLATE FOR FC=FSC-DELTA(2)
CALL INTRF(2,2)
CALCULATE MEFTVATTUE OF TWTRE WITH FESFECT
TO FGC ANT STORE TN GEFTU(T,2).
DERTU(START, 2) $=0$.no $55 \mathrm{~T}=\mathrm{L} 1, \mathrm{FA} A \mathrm{NGE}$DEFTU(T,2)=(TC(T,1)-TC(T,2))/(2,*IELTA(2))CONTINUE
GENERATE CONSTANTS FOR TGAS \& FSC.
IF (ERFLAG.NE:O) STOF 993COMFUTE A TAELE.CALL TABL(1)
CALL INTRF (1,3)
STORE THE TNTEFFOIATEX FUNCTION (TWTRE US. TTME)INTO DEFTU(T. S).
$10075 \mathrm{I}=1.1000$
DEFTU(I, 3$)=T C(T, 1)$
CONTINUE
INTEFFOLATE BETWEEN IIATA FOTNTS FOR FC=FSC+IELTA(2).
RETUFN
ENTI
c
FUNCTION XICALC(TGASyFGC,ERFLAGYTWF)
C
c FURFOSE
C TO COMFUTE CHI GQUARE FOR FRESENT FARAMETER UALUES.
C

FEAL TWTFE（1000），TAUE，ALFHA1，ALFHA2，ALFHAB，BETA，
HI，H2，H3A：HZE，HA，TIUCT，MSTIME MN，F MNN，MTMF
INTEGEF STAFTYFANGE
FEAL TC（1000，2），TIMC（1000．2），HEFTU（1000．3）
FEAL X，Y，TCM，ER

COMMON／ELKI／TWTRE，TAUE，ALFHAI，ALFHAZ，ALFHAB，BETA， HI，H2，HZA，HZE，H4，THUCT，MSTTME，MN，F，MNN，MTMF

COMMON／ELK゙2／STAFTYFANGE
COMMON／BLKB／TCッTIMC，IERTU

GENEFATE CONSTANTS FOF THEOFETICAL EQUATTON．
CALL CONGEN（TGASyFSC，EFFLAG：TWF）
TF（EFFLAG．NE O O）FETUFN TEMFEFATUFE US．TIME．THE UALUES OF TIME AFE ONL．Y AFFFROXIMATELY EQUAL．TO THE ACTUAL MEASUFEE TIMES．

CALL TABL（1）
$J=$ STAFT
$11=5 T A F T+1$
$L 2=$ FANGE +1
$E F=0$ ．
COFFESFONI TO UATA FOF ACTUAL MEASUFEA TIMES.

IO $90 \mathrm{I}=\mathrm{L} . \mathrm{J}, \mathrm{FANGE}$
$X=$ MSTIME＊FLOAT（T）
11060 K゙＝J， 1 ？
IF（X．LT＋TIMC（K゙ッI）GOTO 70
CONTINUE

```
        TGAS = ESTTMATEN GAS TEMFEFATUFE (K゙) .
        FSC = FROBE SHAFE CONSTANT.
        TWF = ESTIMATEI FINAL. WIFE TEMFERATURE (K゙) +
```

 \(J=\kappa ゙-1\)
 1085
 \(\operatorname{TCM}=\operatorname{TC}(\mathrm{J}, 1)+(X-\operatorname{TIMC}(\mathrm{J}, 1)) *(\operatorname{TC}(\mathbb{1}, 1)-\operatorname{TC}(J, 1)) /\)
 (TIMC(K,1)-TIMC(J,1))
 CALCULATE XI SQUAFEI. THIS IS INCIUNEI INSIDE INTEFFOLATION LOOF FOR CONUTENENCE.
    ```
EF=ER+(TWIFE(I)-TCM)**2
```

GO TO 90
TCM $=T C(1,1)$
G0 T0 80
continue
XICALC=EF
FETUFN
END

SUBFROUTINE TABL (F)
FUFFOSE
GENERATES A TARLE OF THEORETICAL TEMFERATURE US. TIME IIATA FOINTS. THE COMFUTEI TIME CORFESFONIS closely with the measured time but not exactly.
$F=$ SECONI INDEX ON TC AND TIMC. $(F=1$ OR 2$)$.

FEAL TWIRE (1000), TAUE, AI FHAI, AI FHA2, ALFHA3, BETA,
H1, H2, H3A Y H $3 \mathrm{~B}, \mathrm{H} 4$, TLUCT, MSTIME, MN, F, MNN:MTMF
TNTEGEF START,FANGE
FEAL TC(1000,2),TIMC(1000,2), DERIU(1000,3)
FEAL RELTIM, TIELTMF:TCALC,ZY
INTEGER F,Jy.I. 1, L2
COMMON GLLK1/TWTRE,TAUE, ALFHA1, ALFHA2, ALLFHA3, BETA, HI, H2, H3A, HZE, H4, TGUCT, MSTIME, YN:FF, MNN,MTMF

| C | |
| :---: | :---: |
| | COMMON /ELKE/START, RANGE |
| C | |
| | COMMON/ELK゙3/TC,TIMC, DEFEV |
| c | |
| C | |
| 100 | TC(START,F) = TAVE |
| | TCALCC = TAVE |
| C | |
| C | MSTIME = ACTUAL TME BETWEEN MEASURED DATA FOINTS |
| C C OF Thlire. | |
| | |
| | CELTIM = MSTIME |
| c | |
| c | |
| c | FIX FIRST FOINT. |
| c | |
| | TIMC(STAFT,F) = EVALTM(TCALC) |
| C | |
| C | INITIALIZE FOINT COUNTER FOR ACTUAL.. MEASUREI TIMES. |
| C | |
| | $J=$ STAFS |
| | $\mathrm{Z}=\mathrm{ALFH} \mathrm{F}$ (2-0.01 |
| C | |
| C | Compute table of temperatures |
| C | |
| 11.0 | $L 1=$ START +1 |
| | L2 = RANGE+1 |
| | DO $1.40 \mathrm{I}=1.1 .2$ |
| C | |
| C | COMFUTE TCALC AT POTNT 1 - 1. |
| C | |
| C | IF TCALC $>$ Z WE ARE ON TOF Flat Fortton of curve |
| C AND TEMPERATURE WILL NOT CHANGE ANY MORE. | |
| | |
| | IF (TCALC.GT. C) GO TO 130 |
| C | |
| C | COMFUTE DERIUATIUE OF TIME WITH RESFECT TO |
| C | TEMFEFATURE FOR THEORETICAL CURUE. |
| C (Y (${ }^{\text {c }}$ | |
| | $Y=-H 1 /(A L F H A 2-T C A L C) ~+~ H 2 /(T C A L C-A L F H A 3) ~+~$ |
| | 2.0*(H3A* (TCALC-ALFHA1)-H3B*EETA)/ |
| | ((TCALC-ALIFHAI)**2+BETA**2) |
| C (| |
| C | UELTIM = CHANGE IN TIME FROM THE LAST IIATA NECESSARY |
| C | TO MAKE THE CURFENT IAATA FOINT FALI. AFFFROXIMATELY ON |
| C | THE ACTUAL MEASUREI TIME. |
| C | IELTMF = THE CORFESFONIING CHANGE IN TEMFEFATUFE. |
| C | NOTE THAT THE THEORETICAL FUNCTION (EUALTM) GIUES |
| C | TIME EACK FOR AN INFUT OF TEMFERATURE. |
| C | |

```
        IOELTMF = IELTTIM/Y
        TCALC = TCALC+DELTMF
        TC(I,F) = TCALC
        TIMC(I,FF) = EUALTM(TCALC)
C
C IETEFMINE THE CHANGE IN TIME NECESSAFY FOF THE NEXT
C
C
C
    120 J = J+1
        MELTIM = MSTIME*FLOAT(J+I)-TIMC(I.FF)
        IF (GELTIM.IE*O.O) GO TO 120
        GO TO 140
    C
    C
    130 J = I+1
        TC(I,F) = ALFFHA?
        TIMC(I,FF) = MSTIME*FLOAT(J)
    140 CONTINUE
        FETUFN
        ENG
        C
        C
        C
        C
        C
        C
        C
        C
        C
        C
        C
        C
        C
        C
        C
            C
            FEAL TWTFE(1000), TAUE,ALFHAI, ALFHAD, ALFHAB, BETA,
C
C
C
            SUBROUTINE INTRF(F,FF)
            FURFOSE
        TO TNTEFFOLATE BETWEEN DATA FOTNTS CALCULATEO FROM
        THE THEORETICAL EOUATTON. USEG FY SUBROUTINE FDEFIV.
        F = SFECTFTES THE SECONG TNIEX (1 OR 2) FOF TC ANG TTME.
        FF = SFECTFTES THE SECOND INDEX (1,2, OR 3) FOR DERTU.
            UFON RETURN TC(I,FF) HAS THE TNTERFOLATEG UALUES.
            GUBROUTINE INTRF(FyFF)
            INTEGEFS STAFT yFANGE
            FEAL TC(1000:2),TTMC(1000,2), [EFFTU(1000,3)
```

FEAI．．X
C
C

COMMON／ELKJ／TWTFE，TAUE，ALFHAI，ALFHAZ，ALFHAB，BETA，
1.

C
COMMON／ELK゙こ／GTAFT，FANGE
C
COMMON／ELKK／TC，TIMC，MEFTU
C
C
10
$\mathrm{L} I=\mathrm{STAFT}+1$
C
C LERTU（I，FF）HAS NOT BEEN USEO YET ANG
C
C
$160 \quad$ IO $170 \quad I=1,1.000$
170 MEFIU（I，FF）$=T C(I, F)$
$J=S T A F T$
$175 \quad$ UO 200 I $=1.1 . F A N G E$
$X=M S T I M E * F L O A T(I)$
バ $=\mathrm{J}$－
$180 \quad k=k+1$
IF（X，GE，TIMC（K゙，F））GO TO 180
$J=\mathfrak{J} \cdots 1$
TF（DERIU（N゙ッFF），FQ，MEFTU（JッFF）） 60 TO 190
C

1
$T C(T, F)=\operatorname{MEFIU}(J, F F)+(X-T I M C(J, F)) *$ （GEFIU（K゙，FF）…EFIU（JyFF））／ （TIMC（K，F）ㅋ．TICC（J，F））
C
60 T0 200
190 TC（I，F）＝MERTU（J，FF）
200 CONTTNUE
FETTUFN
END

C
C SUEFOUTTNE STCFIT
C
C．
C．FUFFOSE
C TO CALCULATE THE STAFTING LOCATION OF THE FAMF．THIG C LOCATION IS CALLEA＂START＂＊
C HI，H2，H3A，HZE，H4，TIUCT，MSTIME，MN，F \％MNN，MTMF＇

INTEGEF STAFT，FANGE
INTEGEF IrJ，K゙ッTX
FEAL SUMX，SUMY，SUMXX，SUMYY，SUMXY，By，My X
 HI，H2，H3A，H3F，HA，TIUCT，MSTTME，MN，F，MNN，MTMF

COMMON／EIKス／STAFT，FANGE
C

STAFT $=100$
USE K TO TMCFEMENT GTAFTING TNDEX FOF TWTFE FFOM 100 TO 130 ．

1050 K゙＝100，130
TNITIALTZE UAFTABLES
SUMX $=0$ ．
SUMY $=0$ ．
SUMXX $=0$ ． SUMYY $=0$ ． SUMXY $=0$ ． $J=0$
INFUT IS TEMFEFATURE DATA＂TWIFE＂．THE IATA FOINTS $I=100$ TO 160 WILL EE CURVE FIT TO A STFAIGHT LINE $Y=M * X+E$ WHERE $Y=T W I F E(I)$ ANI $X=I=T I M E$ ．

SUEROUTINE STCFIT
THIS FOUTINE CALCULATES THE STAFTING LOCATION OF THE FAMMF．

FEAL TWTFE（1000），TAUE，ALFHA1，ALFHA ，ALFHAB，BETA，

110 $30 \mathrm{I}=$ ドッ 160
$J=J+1$
SUMXY $=$ SUMXY＋（FLDAT（I））＊TWTFE（I．）
SUMY＝SUMY＋TWTRE（I）
SUMX $=$ SUMX FFLOAT（T）
SUMXX $=$ SUMXX＋（FLOAT（I．））＊＊2

```
M=((FLOAT (J))*SUMXY-GUMX*SUMY)/((FLIOAT (J))*SUMXX-SUMX*SUMX)
B = (SUMY-M*SUMX)/(FLOAT(J))
```

```
STFATGHT I. INE CUFUE FIT LONE.
```

```
STFATGHT I. INE CUFUE FIT LONE.
```

DETEFMTNE IF LAST X WAS A MAXTMUM?
IF NO CONTINUE.
IF YES FROGFAM IS MONE ANI "STAFT" IS SET EQUAL
TO X AS THE STAFTING LOCATION OF THE FAMF:
SET Y $=$ TAVE
$X=(T A \cup E-B) / M$
$I X=T F I X(X)$
IF (IX GT. STAFT) STAFT $=$ IX
CONTINUE
FETUFN
ENII

SUBROUTINE CONGEN(TGAS,FSC,EFFLAG,TWF)
FUFFOSE
THIS FFOGFAM GENEFATES THE CONSTANTS NEEIED FOR THE THEOFETICAL TTME US + TEMFEFATUFE EQUATION (EQU. 24).

TGAS = ESTIMATEI GAS TEMFEFATUFE (N゙) + $F S C=F F O E E$ SHAFE CONSTANT.
EFFLAG = AN EFFROF FLAG $=9$ SET=O IF NO EFFOF . TWF = ESTTMATED FINAI. WIFE TEMFEFATUFE *

SUEFOUTINE CONGEN (TGAS,FSC,EFIFLAG,TWF)

FEAL TWIFE (1000), TAUE, ALFHA1, ALFHAZ, ALFHAB, BETA,
1 HI, H2, H3A, H3E, H4, TIUCT, MSTIME, MN, F, MNN, MTMF
INTEGEF STAFT,FANGE

1 E1,E2,EGAS,ALFHAG,X,AZ,E,BZ,F,Y
IIATA WIIA/0.8128E-3/, WIENS/0.20785E+5/, 5FHT/0.1427E+3/,
1 SIGMA/0.56697E-7/EE1/0.85E-1/:E2/O.76E-4/,
1 EGAS/0.0/, ALFHAG/O.0/
c
C
$10 \quad$ EFFLAG $=0$ MN = $=M N$

C THE FOLLOWING STATEMENT IS NEETEEI ONLY
c
C
C
C
C
TEMFEFATURE $=$ IEG. K. WIIA = WIFE RIAMETEF (METERS). WDENS $=$ WIRE LENSITY (Ksm/m**3). SFHT = WIFE SFECIFIC HEAT (J/(Ksm,N)). STGMA = STEFHAN EOLTZMAN CONSTANT (J/(SEC. . KK**4,m**2)). EMISSIUITY OF WIFE = EITE2*TWF + NO UNITS ON E1. E2 HAS UNITS OF $1 /$ DEG. K. EGAS $=$ EMISSIUITY OF GAS. AL..FHAG $=$ ABSORFTIUITY OF GAS. $F=$ FFESSUFE (FASCALI.. .

INTEGEF EFFLAG
AZ, BZ, E, FF ARE TEMFORAFY UARTABLES. AZ \& E ARE AT THE SAME LOCATION TO SAVE SFACE.

EQUIVALENCE (AZ,E), (BZ,F)
COMMON /ELK1/TWTRE, TAUE, ALFHAI, ALPHAZ, ALFHA3, BETA, HI, H2, H3A, H3B, H4, THUCT, MSTIME, MN, F, MNN, MTMF

COMMON /BLKO/START,RANGE FOR THE EXAMFIE TN THIS REFORT. the mach number was measuren nown gtream of the fulsen THERMOCOUFLE GITE WHERE THE GAS WAS COOLER. THIS NEXT STATEMENT CONUERTS THE MACH NUMBEF AT THE LOWER temperature to that at the fulsen thermocoufle site.

MNN = MN*SQRT(TGAS/MTMF)
COMFUTE NUSSELT NUMEEF.
$\mathrm{NU}=188.41 *(\operatorname{SQRT}($ MNN*F*WNTA $)) /$
$1((\operatorname{TGAS} * * 0.6) *((1 .+.2 * M N N * * 2) * * .25))$
KL = WHTA*WIENS*SFHT/(4**STGMA* (EI+EO*TWF))
$\kappa 2=($ TGAS**.78)*NU*FSC*3.007E-4/
1
(WMTA*SIGMA* (EI+E2*TWF))
$K 3=K 2 * T G A S+(1,-A L F H A G) *(T$ TUCT**A $)$ +EGAS* (TGAS**4)

COMFUTE ALFHA1, ALFHA2, ALIFHA3, BETA,HI,H2,H3A,H3B,

C
C

C

C
C
C
c
C

SCALE NUMEERS DOWN EY A FACTOR OF IO＊＊－20 TO FREVENT OUERFLOW．

AZ $=($ K2＊＊2）＊（1，OE－20）＊（K2＊＊2）／4．＋
1 K゙3＊（64．0E－20）＊（ド3＊＊2）／27．0

$$
B Z=A Z
$$

$Y=1 . / 3$ ．
$A Z=(\operatorname{SORT}(A Z) *(1.0 E+10)+(K 2 * * 2) / 2) * *$.
$\mathrm{EZ}=(\mathrm{K} 2 * * 2) / 2.0-\operatorname{SOFT}(\mathrm{EZ}) *(1,0 \mathrm{~F}+10)$
$x=\operatorname{ABS}(\mathrm{BZ})$
EREROR TF EZ TS FOSTTIUE
IF（X．EQ．GZ）STOF 2
EZ $=X * * Y$
EUALUATE ALFHA＇S AND BETA．
$Y=A Z-B Z$
ALPHAD $=\operatorname{GQRT}(Y) / 2$ ．
BETA $=Y+2, * K 2 / \operatorname{SaRT}(Y)$
GETA $=\operatorname{SQRT}(E E T A) / 2$
$X=5 Q R T(2, * K 2 / S Q R T(Y)-Y)$
ALFHA2 $=-\operatorname{SQRT}(Y) / 2++X / 2$.
ALFFHAB $=-\operatorname{SQRT}(Y) / 2,-X / 2$.

```
HI= -KL1/(((ALFHA2-ALFHH1)**2+BETA**2)*(ALPHA2-ALFHAB))
H2 = -K1/(((ALFHAZ-ALFHA1)**2+BETA**2)*(ALFHAZ--ALFHAD))
E=-2.*(EETA**2)*(2.*ALFHA1 - ALFHA2-ALPHAB)
F=2**(BETA*(ALFHA1-ALFHA2)*(ALFHA1-ALFHAB)-BETA**3)
X = E**2+F**2
H3A = - Kl*E/X
H3B=Nl*F/X
```

TIME $=$ HI*ALOG(ALFHA2-TT) + H2*ALOG(T--ALPHAB) +
H3A*ALOG((T-ALFHA1)**2+BETA**2) +
2.0*H3B*ATAN(EETA/(T-MLFHAI)) + H4
H4 =: CONSTANT TO BE DETEFMINEM.
TAUE =- AUEFAGE INITIAL WIRE TEMFERATURE.
MSTIME IS TMEE SCALE FACTOF:
MSTIME* (TIME INTEGEF) IS TIME STNCE STAFT OF DATA.
TIME $=0$ AT OATA FOINT $I=0$
TIME = MSTIME AT LATA FOINT IF 1 ete.
set erfor flag if alghaz is less than tave since it
WOULI REQUIFE TAKING THE LOG OF A NEGATIUE NUMBER.
IF (ALFHAZ.GT. TAUE) GO TO 40

```
            EFFLAG = 6
            FETUFIN
C
    40 X = TAUE-ALFHA1
C
C
C
C
    H4 = MSTTME*FLOAT(STAFT) - (HI*ALOG(ALFHA2-TAUE) +
    1 H2*ALOG(TAUE-ALFHAS) +
    1 HZA*ALOG((TAUE-ALFHA1)**2+BETA**2) +
    1 2 + O*H3H*ATAN2(EETA,X))
C
FETUFN
END
C
C FUNCTION EUALTM(T)
C
C
C
C
C
C
C
    T = INFUT TEMFEFIATUFE (K).
C
C
    FUNCTION EUALTM(T)
C
C
            FEAL. TWIFE(IOOO),TAUE,ALFHA1,ALFHAS,ALFHAB,EETA,
            I. HI,H2,HZA,H3E,H4,TIUCT,MSTTME,MN,F,MNN,MTMF
C
    FEAL. T,X
C
COMMON /BLKI/TWIRE,TAUE,ALFHAI,ALIFHAZ,AL.FHAB,BETA%
I H1,H2,H3A,H3B,H4,TIUCT,MSTIME,MN,F,MNN,MTMF'
C
C
1 0
    FUFFOSE
        EUALUATE THE THEOFETTCAL.. EQUATTON (TEXT EQU. 24)
        FOF TIME AS A FUNCTION OF TEMFEFATUFE.
O X T-ALFHAI.
EVALTM = HI*ALOG(ALFHAS-T)+
1 H2*ALOG(T-ALFHAS)+
1 H3A*ALOG((T-ALFHAI)**2+BETA**2)+
1 2.O*HZB*ATAN2(BETA,X)+H4
FETUFN
ENII
```

```
C
    C SUBFOUTINE MATINU
    C
    C
    C
    C
    c
    C AFFAY = INFUT MATFIX WHICH IS FEFINACEI EY ITS INUEFGE 
    C
    C
    C
    10 IF (NOFIIEF.EQ.1) GO TO 20
        IF (NOFMEF, EQ,2) GO TO 30
        STOF 800
        C
        C
        C
        20 AFRAY(1,1)=1./ARFAY(1,1)
        RETURN
    C
    C
    C
    30 DET = ARFAY(1,1)*ARFAY(2,2)-AFFAY(1,2)*AFRAY(2,1)
        IF (OET, EQ.O) STOF 801
C
C CAlCULATE AMJOINT MATRIX
C
    X = ARFAY (1,1)
    ARRAY (1,1) = ARFAY (2,2)
    ARRAY (2,2) = X
    ARFAY(1,2) =-ARFAY(1,2)
    AFRAY(2,1) =- - AFRAY(2,1)
C
C
C
C
C
RETURN
ENI
```


Appendix C Gradient-Expansion Method

This appendix describes the least-squares fit to a nonlinear function that uses the gradient-expansion algorithm taken from Bevington (ref. 2). The objective of the process is to search for the values of parameters in the theoretical equation that will minimize the sum of the squares of the difference between the data points and the theoretical nonlinear function. This sum to be minimized is defined as
$\chi^{2}=\sum_{i=1}^{m}\left[Y_{i}-Y\left(X_{i}\right)\right]^{2}$
where m is the number of data points, Y_{i} is the dependent variable, X_{i} is the independent variable, and $Y(X)$ is the theoretical function with unknown parameters a_{j}.

The quantity x^{2} is regarded as a function of the parameters a_{j} of the fitting function $Y(X)$. There are m data points $\left(X_{i}, Y_{i}\right)$. The idea is to choose the values of the n parameters a_{j} so that χ^{2} is a minimum.

The first approach is to take the gradient of χ^{2}
$\nabla \chi^{2}=\sum_{j=1}^{n} \frac{\partial \chi^{2}}{\partial a_{j}} \hat{a}_{j}$
where the \hat{a}_{j} are unit vectors. The gradient of χ^{2} gives the direction of the maximum rate of increase of χ^{2}. We want to increment the parameters from some starting value χ_{0}^{2} so that χ^{2} decreases. Hence we write

$$
\begin{align*}
\delta a_{j} & =-\left(\nabla \chi_{0}^{2}\right)_{j} \Delta a_{j} \\
& =-\left(\frac{\partial \chi_{0}^{2}}{\partial a_{j}}\right) \Delta a_{j} \tag{C3}
\end{align*}
$$

The Δa_{j} are size constants that must be supplied. The parameters a_{j} are incremented by δa_{j} and the process repeated. The minus sign insures that the increments are in a direction opposite to the gradient so that they are in the direction of most rapid decrease of χ^{2}. However, the method tends not to work well near the actual minimum-it is better further away.

Another approach is to expand the fitting function $Y(x)$ as a first-order Taylor series in the parameters
$Y(X)=Y_{0}(X)+\sum_{j=1}^{n} \frac{\partial Y_{0}(X)}{\partial a_{j}} \delta a_{j}$
where $Y_{0}(X)$ is the value of $Y(X)$ at the starting point for the expansion. Then

$$
\begin{align*}
x^{2}= & \sum_{i=1}^{m}\left[Y_{i}-Y_{0}\left(X_{i}\right)\right. \\
& \left.-\sum_{j=1}^{n} \frac{\partial Y_{0}\left(X_{i}\right)}{\partial a_{j}} \delta a_{j}\right]^{2} \tag{C5}
\end{align*}
$$

We now want to minimize χ^{2} as a function of the increments δa_{j}; so we take $\partial \chi^{2} / \partial \delta a_{k}$ and set it equal to zero

$$
\begin{align*}
& \sum_{i=1}^{m} 2\left[Y_{i}-Y_{0}\left(X_{i}\right)\right] \frac{\partial Y_{0}\left(X_{i}\right)}{\partial a_{k}} \\
&=\sum_{j=1}^{n} \delta a_{j} \sum_{i=1}^{m} 2 \frac{\partial Y_{0}\left(X_{i}\right)}{\partial a_{j}} \frac{\partial Y_{0}\left(X_{i}\right)}{\partial a_{k}} \tag{C6}
\end{align*}
$$

This gives a set of n linear equations for the n quantities δa_{j}. Define
$\beta_{k} \equiv-\frac{1}{2} \frac{\partial \chi_{0}^{2}}{\partial a_{k}}=\sum_{i=1}^{m}\left|Y_{i}-Y\left(X_{i}\right)\right| \frac{\partial Y_{0}\left(X_{i}\right)}{\partial a_{k}}$
$\alpha_{j k}=\sum_{i=1}^{m} \frac{\partial Y_{0}\left(Y_{i}\right)}{\partial a_{j}} \frac{\partial Y_{0}\left(X_{i}\right)}{\partial a_{k}}$
and
$\chi_{0}^{2}=\sum_{i=1}^{m}\left|Y_{i}-Y_{0}\left(X_{i}\right)\right|^{2}$
thus
$\beta_{k}=\sum_{j=1}^{n} \delta a_{j} \alpha_{j k} \quad k=1,2, \ldots, n$

This can be put into the form of a matrix equation
$\beta=\boldsymbol{\delta a} \cdot \boldsymbol{\alpha}$
or
$\boldsymbol{\beta} \cdot \boldsymbol{\alpha}^{-1}=\delta \mathbf{a}$
where β and δ a are column matrices with n elements and $\boldsymbol{\alpha}$ is an n-by- n symmetric square matrix. This method tends to work well near the actual minimum but poorly far from the minimum.

By combining the two methods it is possible to obtain an algorithm that works well far from the minimum and also close to it. To combine the two methods, one writes (ref. 7)
$\beta=\alpha^{\prime} \cdot \delta \mathrm{a}$
where
$\alpha_{j k}^{\prime}=\alpha_{j k} \quad$ for $\quad j \neq k$
and
$\alpha_{j j}^{\prime}=\alpha_{j j}(1+\lambda) \quad$ for $\lambda \geq 0$
where λ is an arbitrary parameter that changes the method from the Taylor series to the gradient method. If λ is near zero, the method is the same as the Taylor series approach. If λ is large, the diagonal terms dominate and the equations are essentially
$\beta_{j}=\lambda \delta a_{j} \alpha_{j j}$
or

$$
\begin{align*}
\delta a_{j}=\frac{1}{\lambda \alpha_{j j}} \beta_{j} & =-\frac{1}{2 \lambda \alpha_{j j}} \frac{\partial \chi_{0}^{2}}{\partial a_{j}} \tag{C15}\\
& =\frac{-1}{2 \lambda \alpha_{j j}}\left(\nabla \chi_{0}^{2}\right)_{j}
\end{align*}
$$

which result in the gradient method.
This technique can be used by starting with an arbitrary small value of λ, such as 0.001 . If the computed δa_{j} causes χ^{2} to increase instead of decrease, the initial guess at the \dot{a}_{j} is not good enough, and χ^{2} is too far from the minimum for the second method to work. Then λ is increased by a factor of 10 and a new set of δa_{j} is found. Each time λ is increased the algorithm is more like just taking the gradient, which works well for a_{j} far from $\left(a_{j}\right){ }_{\min }$. This continues until χ^{2} starts to decrease, at which time λ is divided by 10 at each iteration. By this time the minimum will have been found.

Appendix D

Typical Program Input and Results

This appendix provides an example of data used by the computer program. The following data were put into the computer program:

INPUT MACH NUMBER 0.0286
INPUT PRESSURE IN Pa. 99805.
INPUT DUCT TEMPERATURE IN DEG. K. 396.0 INPUT PROBE SHAPE CONSTANT 0.0 MACH NUMBER TEMPERATURE DEG. K. 415.8

The following data were put out by the computer program:

GAS TEMPERATURE $=1707.00 \mathrm{~K}$ FINAL WIRE TEMPERATURE $=1565.79 \mathrm{~K}$ PROBE SHAPE CONSTANT $=0.850$

The following data were not put out by the computer program but may be useful:

CHISQR $=0.267 \mathrm{E}+05$
TAVE $=677.0$
ALPHA1 $=1183.2$
ALPHA2 $=1565.8$
ALPHA3 $=-3932.2$
BETA $=3218.3$
$\mathrm{H} 1=-0.902$
$\mathrm{H} 2=0.259$
$\mathrm{H} 3 \mathrm{~A}=0.321$
$\mathrm{H} 3 \mathrm{~B}=-0.260$
$\mathrm{H} 4=0.072$
The 1000 data points of thermocouple wire temperature are shown in the following listing:

THERMOCOUPLE TEMFERATURE IATA (K)

| I | TWTFE (I) | \pm | TWTRE(I) | I. | TWIRE(I) | I | TWIEE(I) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 674.7 | 51 | 676.7 | 101 | 678.6 | 151 | 824.3 |
| 2 | 675.7 | 52 | 674.7 | 102 | 678.6 | 152 | 827.9 |
| 3 | 676.7 | 53 | 676.7 | 103 | 677.6 | 153 | 828.8 |
| 4 | 678.6 | 54 | 675.7 | 104 | 679.6 | 154 | 835.1 |
| 5 | 675.7 | 55 | 673.8 | 105 | 678.6 | 155 | 835.1 |
| 6 | 677.6 | 56 | $674+7$ | 106 | 681.5 | 156 | 837.8 |
| 7 | 677.6 | 57 | $672+8$ | 107 | 682.4 | 157 | 842.2 |
| 8 | 679.5 | 58 | 67517 | 108 | 684.3 | 158 | 842.2 |
| 9 | 679.5 | 59 | 6711.8 | 109 | 687.2 | 159 | 844.0 |
| 10 | 676.7 | 60 | 671.8 | 11.0 | 692.0 | 160 | 851.1 |
| 11 | 675.7 | 61 | 673.8 | 111 | 694.8 | 161. | 854.7 |
| 12 | 675.7 | 62 | 673.8 | 112 | 701.5 | 162 | 856.5 |
| 13 | 675.7 | 63 | 673.8 | 113 | 703.4 | 1.63 | 861.8 |
| 1.4 | 674.7 | 64 | 672.8 | 11.4 | 708.2 | 164 | 866.2 |
| 15 | 677.6 | 65 | 671.8 | 115 | 713.8 | 165 | 867.1 |
| 16 | 676.7 | 66 | 669.9 | 116 | 715.7 | 166 | 869.7 |
| 17 | $673+8$ | 67 | 670.9 | 117 | 717.6 | 167 | 871.5 |
| 18 | 675.7 | 68 | 674.7 | 118 | 723.3 | 168 | 877.7 |
| 19 | 672.8 | 69 | 673.8 | 11.9 | 726.1 | 169 | 878.5 |
| 20 | 672.8 | 70 | 674.7 | 120 | 730.8 | 170 | $882+1$ |
| 21 | 670.9 | 71 | 675.7 | 121 | 729.8 | 171 | 886.5 |
| 22 | 671.8 | 72 | 676.7 | 122 | 734.5 | 172 | $889+1$ |
| 23 | 671.8 | 73 | 677.6 | 123 | 738.2 | 173 | 890.8 |
| 24 | 671.8 | 74 | 677.6 | 124 | 738.2 | 174 | 892.6 |
| 25 | 671.8 | 75 | 680.5 | 125 | 741.0 | 175 | 896.1 |
| 26 | 671.8 | 76 | 679.5 | 126 | 74.4 .8 | 176 | 898.7 |
| 27 | 672.8 | 77 | 680.5 | 127 | $746 \cdot 6$ | 177 | $902 \cdot 2$ |
| 28 | 669.9 | 78 | 679.5 | 128 | 750.3 | 1.78 | $903+1$ |
| 29 | 669.9 | 79 | 680.5 | 129 | 752.2 | 179 | 906.5 |
| 30 | 671.8 | 80 | 680.5 | 130 | 754.0 | 180 | 909.2 |
| 31 | 672.8 | 81. | 680.5 | 131 | 757.8 | 181 | 912.6 |
| 32 | 671.8 | 82 | 684.3 | 132 | 762.4 | 182 | 916.1 |
| 33 | 673.8 | 83 | 684.3 | 133 | 765.2 | 183 | 916.1 |
| 34 | 673.8 | 84 | 683.4 | 134 | 769.8 | 184 | 918.7 |
| 35 | 678.6 | 85 | 683.4 | 135 | 773.4 | 185 | 920.4 |
| 36 | 678.6 | 86 | 682.4 | 136 | 775.3 | 186 | 922.1 |
| 37 | 678.6 | 87 | 686.3 | 137 | $779+8$ | 187 | 925.6 |
| 38 | 680.5 | 88 | 685.3 | 138 | 783.5 | 188 | 928.2 |
| 39 | 682.4 | 89 | 682.4 | 139 | 787.2 | 189 | 928.2 |
| 40 | 680.5 | 90 | 679.5 | 140 | 789.9 | 1.90 | 931.6 |
| 41 | 679.5 | 91 | 678.6 | 1.41. | 790.8 | 191 | 934.2 |
| 42 | 692.4 | 92 | $682+4$ | 142 | 795.4 | 192 | 935.0 |
| 43 | 681.5 | 93 | 679.5 | 143 | 799.0 | 193 | 935.0 |
| 44 | 678.6 | 94 | 68.1 .5 | 144 | 801.7 | 194 | 937.6 |
| 45 | 682.4 | 95 | 678.6 | 1.45 | 807.2 | 195 | 940.2 |
| 46 | 683.4 | 96 | 677.6 | 1.46 | 809.9 | 196 | 944.5 |
| 47 | 682.4 | 97 | 678.6 | 147 | 812.6 | 1.97 | 944.5 |
| 48 | 681.5 | 98 | 679.5 | 148 | 81.4.4 | 198 | 947.9 |
| 49 | 678.6 | 99 | $678 \cdot 6$ | 149 | 816.2 | 199 | 950.4 |
| 50 | 676.7 | 100 | 678.6 | 150 | 821.6 | 200 | 953.0 |

THERMOCOUFLE TEMFERATURE IIATA (K)

| I | TWIFE (I) | I | TWIFE(I) | I. | TWIFE (I) | I | TWIFE(I) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 201 | 957.3 | 251 | 1070.3 | 301 | 1.176.3 | 351 | $1256+5$ |
| 202 | 959.8 | 252 | 1076.0 | 302 | 1178.6 | 352 | 1258.0 |
| 203 | 960.7 | 253 | 1073.5 | 303 | 1181.8 | 353 | 1259.5 |
| 204 | 964.9 | 254 | 1077.6 | 304 | 1181.8 | 354 | 1259.5 |
| 205 | 964.9 | 255 | 1079.2 | 305 | 1182.6 | 355 | 1260.3 |
| 206 | 967.4 | 256 | 1080.8 | 306 | 1183.3 | 356 | 1261.1 |
| 207 | 973.4 | 257 | 1083.3 | 307 | 1187.2 | 357 | 1264.1 |
| 208 | 974.2 | 258 | 1086.5 | 308 | 1188.0 | 358 | $1262+6$ |
| 209 | 975.9 | 259 | 1088.1 | 309 | 1189.6 | 359 | 1264.1 |
| 210 | 977.6 | 260 | 1090.5 | 310 | 1192.7 | 360 | 1264+8 |
| 211 | 981.8 | 261 | 1093.8 | 311 | 1191.9 | 361 | 1264.8 |
| 212 | 981.8 | 262 | 1093.8 | 312 | 1193.4 | 362 | 1267+1 |
| 213 | 983.5 | 263 | 1097.8 | 313 | 11.95 .8 | 363 | 1268.6 |
| 214 | 986.0 | 264 | 1099.4 | 31.4 | 1198.9 | 364 | 1270.2 |
| 215 | 986.8 | 265 | 11.03 .4 | 315 | 1199.7 | 365 | 1270.9 |
| 216 | 989.3 | 266 | 1104.2 | 316 | 1.202.8 | 366 | 1271.7 |
| 217 | 989.3 | 267 | 1106.6 | 317 | 1202.8 | 367 | 1272.4 |
| 21.8 | 991.9 | 268 | 1109.0 | 318 | 1205.9 | 368 | 1274.7 |
| 219 | 994.4 | 269 | $1110 \cdot 6$ | 3.19 | $1205+9$ | 369 | 1277.0 |
| 220 | 996.9 | 270 | 1114.6 | 320 | 1208.2 | 370 | 1276.2 |
| 221 | 997.7 | 271 | 1117.0 | 321 | 1208.9 | 371 | 1277.7 |
| 222 | $999+4$ | 272 | 1117 +8 | 322 | $1211+3$ | 372 | 1280.0) |
| 223 | 1004.4 | 273 | 1121.0 | 323 | 1213.6 | 373 | 1282.3 |
| 224 | 1006.1 | 274 | L121+8 | 324 | 1215.L | 374 | 1282.3 |
| 225 | 1009.4 | 275 | 1124.2 | 325 | 1216.7 | 375 | 1284.5 |
| 226 | 1010.3 | 276 | 11.28 .2 | 326 | 1217.4 | 376 | 1286.8 |
| 227 | 1014+4 | 277 | $1129+8$ | 327 | 1218.2 | 377 | 1.287 .5 |
| 228 | 1016.9 | 278 | $1132+2$ | 328 | 1219.8 | 378 | 1288.3 |
| 229 | 1019.4 | 279 | 1135.3 | 329 | 1218.2 | 379 | 1288.3 |
| 230 | 1021.9 | 280 | 1136.9 | 330 | 1220.5 | 380 | 1289.8 |
| 231. | 1026.0 | 281 | 1137.7 | 331 | 1222+8 | 381 | 1290.5 |
| 232 | 1028.5 | 282 | 1140.1 | 332 | 1225.9 | 382 | 1292.0 |
| 233 | 1029.3 | 283 | $1143+3$ | 333 | $1225+9$ | 383 | 1.294 .3 |
| 234 | $1.032+6$ | 284 | 1.146.4 | 334 | 1.229.0 | 384 | 1294.3 |
| 235 | 1036.7 | 285 | $1145 \cdot 6$ | 335 | 1229.8 | 385 | 1297.3 |
| 236 | 1039.2 | 286 | 1148.8 | 336 | 1231.3 | 386 | $1297 \cdot 3$ |
| 237 | 1040.8 | 287 | 1151.2 | 337 | $1232+1$ | 387 | 1298.8 |
| 238 | 1040.8 | 288 | 1151.9 | 338 | 1234.3 | 388 | 1301.1 |
| 239 | $1045+0$ | 289 | 1153.5 | 339 | 1.236.7 | 389 | $1301+8$ |
| 240 | 1046.6 | 290 | 1156.7 | 340 | $1238+2$ | 390 | 1301.1 |
| 241 | 1049.1 | 291 | 1158.3 | 341 | 1238.2 | 391 | 1303.3 |
| 242 | 1049.9 | 292 | 1162.2 | 342 | 1242.0 | 392 | 1303.3 |
| 243 | 1053.2 | 293 | 1162.2 | 343 | 1242.0 | 393 | 1304.0 |
| 244 | 1054.8 | 294 | 1164.6 | 344 | 1245.8 | 394 | 1306.3 |
| 245 | 1055.6 | 295 | 1166.1 | 345 | 1248.9 | 395 | 1305.5 |
| 246 | 1058.9 | 296 | 1168.5 | 346 | 1247.3 | 396 | 1305.5 |
| 247 | 1059.7 | 297 | 1168.5 | 347 | 1250.4 | 397 | 1307.8 |
| 248 | 1064.6 | 298 | 1170.0 | 348 | 1251.9 | 398 | 1309.3 |
| 249 | 1065.4 | 299 | 11.73 .2 | 349 | 1253.4 | 399 | 1312.3 |
| 250 | 1068.7 | 300 | 1173.9 | 350 | 1255.0 | 400 | $1312+3$ |

THEFiMOCOUFLE TEMFEFATUFE IAATA (K゙)

| I | TWIFE(I) | I | TWIFE(I) | I | TWIFE (I) | I | TWIFE (I) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 401 | 1312.3 | 451 | 1370.0 | 501 | 1398.6 | 55.1 | $1434+2$ |
| 402 | $1312+3$ | 452 | 1370.8 | 502 | 1397.8 | 552 | $1435+6$ |
| 403 | 1316.8 | 453 | 1372.2 | 503 | 1400.8 | 553 | 1436.3 |
| 404 | 1317.5 | 454 | $1373+7$ | 504 | 1400.8 | 554 | $1436+3$ |
| 405 | 1318.2 | 455 | 1374.4 | 505 | 1399.3 | 555 | 1436.3 |
| 406 | 1321.2 | 456 | 1375+2 | 506 | 1402.2 | 556 | 1437.8 |
| 407 | $1322+7$ | 457 | 1375.2 | 507 | 1. $403 \cdot 7$ | 557 | $1437+8$ |
| 408 | 1324.2 | 458 | $1375+9$ | 508 | 1403.7 | 558 | 1438.5 |
| 409 | 1324.9 | 459 | 1375.9 | 509 | $1405+1$ | 559 | 1438.5 |
| 410 | 1325.7 | 460 | 1.378.8 | 510 | 1404.4 | 560 | 1440.0 |
| 411 | 1327.2 | 461 | 1379.6 | 5.1 | $1405+8$ | 561 | 1440.7 |
| 412 | 1.328 .7 | 462 | $1380+3$ | 512 | $1405+8$ | 562 | 1441.4 |
| 413 | 1329.4 | 463 | 1381.8 | 513 | 1408.0 | 563 | 1442.8 |
| 414 | 1330.1 | 464 | 1381.0 | 514 | 1.408 .8 | 564 | 1444.3 |
| 415 | $1332+4$ | 465 | 1383.2 | 515 | 1408.0 | 565 | 1445.0 |
| 416 | 1333.8 | 466 | 1381.8 | 516 | 1411.7 | 566 | 1443.6 |
| 417 | 1333.8 | 467 | 1383.9 | 517 | 1410.9 | 567 | 1445.0 |
| 418 | $1335+3$ | 468 | $1383+2$ | 518 | 1411.7 | 568 | 1446.5 |
| 419 | 1336.8 | 469 | 1383.9 | 519 | $1412+4$ | 569 | $1445 \cdot 7$ |
| 420 | $1338 \cdot 3$ | 470 | 1384.7 | 520 | 1413.9 | 570 | 1445.0 |
| 421 | 1339.8 | 471 | 1383.9 | 521 | 1413.9 | 571 | $1442+1$ |
| 422 | 1342+0 | 472 | 1383.9 | 522 | 1416.8 | 572 | $1443+6$ |
| 423 | 1342.0 | 473 | 1384.7 | 523 | 1413.9 | 573 | 1445.0 |
| 424 | 1.343 .5 | 474 | 1384.7 | 524 | 1418.2 | 574 | $1443+6$ |
| 425 | 1345.7 | 475 | 1384.7 | 525 | 1418.2 | 575 | 1445.7 |
| 426 | 1346.4 | 476 | 1386.9 | 526 | 1417.5 | 576 | 1446.5 |
| 427 | 1347.2 | 477 | 1386.9 | 527 | 1416.8 | 577 | 1446.5 |
| 428 | 1347.9 | 478 | 1386.1 | 528 | 1418.2 | 578 | 1447.2 |
| 429 | 1348.7 | 479 | 1388.3 | 529 | 1417.5 | 579 | 1447.2 |
| 430 | 1348.7 | 480 | 1389.8 | 530 | 1415.3 | 580 | 1447.9 |
| 431 | 1353.8 | 481 | 1388.3 | 531 | 1416.8 | 581 | 1448.6 |
| 432 | 1353.8 | 482 | 1387 .6 | 532 | 1417.5 | 582 | 1448.6 |
| 433 | 1353.8 | 483 | 1389.1 | 533 | 1.420,4 | 583 | 1450.8 |
| 434 | 1353.1 | 484 | 1390.5 | 534 | 1419.7 | 584 | 1450.8 |
| 435 | 1.355.3 | 485 | 1392.0 | 535 | $1420 \cdot 4$ | 585 | 1451.5 |
| 436 | $1355+3$ | 486 | 1392.7 | 536 | $1421+1$ | 586 | $1452+2$ |
| 437 | $1358+3$ | 487 | $1392+0$ | 537 | $1422+6$ | 587 | 1454 . 4 |
| 438 | 1359.0 | 488 | $1394+2$ | 538 | 1422.6 | 588 | 1454.4 |
| 439 | $1358+3$ | 489 | 1395.6 | 539 | 1424.0 | 589 | 1453.7 |
| 440 | 1358.3 | 490 | 1396.4 | 540 | $1425+5$ | 590 | 1455.t. |
| 441. | 1359.7 | 491 | 1394.2 | 541 | 1426.2 | 591 | $1455+1$ |
| 442 | 1360.5 | 492 | $1395+6$ | 542 | 1426.9 | 592 | 1455.8 |
| 443 | $1362+7$ | 493 | $1396+4$ | 543 | 1427.7 | 593 | $1457+3$ |
| 444 | 1363.4 | 494 | 1396.4 | 544 | 1427.7 | 594 | 1.457 .3 |
| 445 | $1365+6$ | 495 | 1397.1 | 545 | 1428.4 | 595 | 1456.6 |
| 446 | 1364.9 | 496 | 1395.6 | 546 | 1431.3 | 596 | $1455+1$ |
| 447 | 1367.8 | 497 | 1397.8 | 547 | 1431.3 | 597 | 1456.6 |
| 448 | 1369.3 | 498 | 1396.4 | 548 | 1431.3 | 598 | 1458.0 |
| 449 | 1368.6 | 499 | 1398.6 | 549 | 1434.2 | 599 | 1458.7 |
| 450 | 1369.3 | 500 | 1397.8 | 550 | 1432.7 | 600 | 1458.7 |

THEFMOCOUFLLE TEMFEFATUFE IAATA (K゙)

| I | TWTFE (I) | I | TWIFE(I) | I. | TWIFE (I.) | I | TWTRE(I) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 601 | 1460.2 | 651 | 1478.9 | 701 | 1498.3 | 751 | 1516.1 |
| 602 | 1459.4 | 652 | 1477.4 | 702 | 1.498.3 | 752 | 1516.8 |
| 603 | 1460.2 | 653 | 1478.9 | 703 | 1499.7 | 753 | 1514.7 |
| 604 | 1460.9 | 654 | 1478.9 | 704 | 1500.4 | 754 | 1516.1 |
| 605 | 1462.3 | 655 | 1477.4 | 705 | 1501.8 | 755 | 1516.1 |
| 606 | 1463.1 | 656 | 1480.3 | 706 | 1499.7 | 756 | 1516.1 |
| 607 | 1463.1 | 657 | 1480.3 | 707 | 1503.3 | 757 | 1516.8 |
| 608 | 1463.1 | 658 | 1480.3 | 708 | 1501.8 | 758 | 1518.3 |
| 609 | 1463.1 | 659 | 1478.9 | 709 | 1503.3 | 759 | 1518.3 |
| 610 | 1463.8 | 660 | 1481.0 | 710 | $1502+6$ | 760 | 1519.0 |
| 611 | 1464.5 | 661. | 1479.6 | 71. | $1503+3$ | 761 | 1519.7 |
| 612 | 1466.7 | 662 | 1481.8 | 712 | 1504.0 | 762 | $152 \mathrm{~L}+1$ |
| 613 | 1465.9 | 663 | 1482.5 | 713 | 1504.7 | 763 | 1519.7 |
| 614 | 1.468.1 | 664 | 1482, 5 | 71.4 | 1504.7 | 764 | $1520 \cdot 4$ |
| 615 | 1468.1 | 665 | 1483.9 | 715 | $1505+4$ | 765 | 1520.4 |
| 616 | 1468.8 | 666 | 1482.5 | 716 | $1506+1$ | 766 | 1521.8 |
| 617 | 1. 468.8 | 667 | 1483.2 | 717 | $1506+8$ | 767 | 1521.8 |
| 618 | 1468.1 | 668 | 1484.6 | 718 | 1506. | 768 | $1520+4$ |
| 619 | 1.468. 1 | 669 | 1484.6 | 719 | 1507.6 | 769 | $1523+3$ |
| 620 | 1467.4 | 670 | 1485,3 | 720 | 1.508.3 | 770 | 1522+6 |
| 621 | 1468.8 | 671 | 1494.6 | 721 | $1508 \cdot 3$ | 771 | 1.523.3 |
| 622 | 1468.1 | 672 | 1486.8 | 722 | 1506.8 | 772 | $1523+3$ |
| 623 | 1468.8 | 67.3 | 1487.5 | 723 | $1507 \cdot 6$ | 773 | 1524.7 |
| 624 | 1471.0 | 674 | 1486.8 | 724 | 1509.7 | 774 | 1524.0 |
| 625 | 1471.7 | 675 | 1.487 .5 | 725 | 1509.7 | 775 | 1525+4 |
| 626 | 1471.0 | 676 | 1.488 .9 | 726 | 1509.7 | 776 | 1525 - 4 |
| 627 | 1472.4 | 677 | 1.489 .7 | 727 | 1509.7 | 777 | $1525+4$ |
| 628 | 1473.8 | 678 | 1.489 .7 | 728 | 1509.7 | 778 | 1524.7 |
| 629 | 1473.8 | 679 | 1490.4 | 729 | 1511.1 | 779 | 1524,7 |
| 630 | 1475.3 | 680 | 1490.4 | 730 | 1511.1 | 780 | 1534.7 |
| 631 | 1473.8 | 681. | 1491.8 | 731 | 1510.4 | 781 | $1526+1$ |
| 632 | 1473.1 | 683 | 1490.4 | 732 | 1611.1 | 782 | $1526+1$ |
| 633 | $1475+3$ | 683 | 1492.5 | 733 | 1511.8 | 783 | $1526+8$ |
| 634 | 1473.8 | 684 | 1492.5 | 734 | 1511.1 | 784 | 1538+3 |
| 635 | 1474.6 | 685 | $1492+5$ | 735 | 1511.1 | 785 | 1527.6 |
| 636 | 1.476 .0 | 686 | 1493.2 | 736 | 1.511.1 | 786 | 1599.0 |
| 637 | 1476.0 | 687 | 1493.2 | 737 | 1511.8 | 787 | $1530+4$ |
| 638 | 1476.7 | 688 | 1496.1 | 738 | L511.8 | 788 | 1530.4 |
| 639 | 1478.2 | 689 | 1.495,4 | 739 | 1512.6 | 789 | $1528 \cdot 3$ |
| 640 | $1478+2$ | 690 | 1.494.7 | 740 | 1513.3 | 790 | 1529-7 |
| 641 | $1478+2$ | 691 | 1496.8 | 741 | $1512 \cdot 6$ | 791 | 1529.7 |
| 642 | 1477.4 | 692 | 1498.3 | 742 | 1514.0 | 792 | 1.530,4 |
| 643 | 1478.2 | 693 | 1497.5 | 743 | 1514.7 | 793 | 1529.7 |
| 644 | 1478, 2 | 694 | 1497.5 | 744 | 151.4.7 | 794 | 1531.1 |
| 645 | 1478.2 | 695 | 1498.3 | 745 | 1514.0 | 795 | 1.531.8 |
| 646 | 1478.2 | 696 | 1497.5 | 746 | 1513.3 | 796 | 1531.1 |
| 647 | 1476.0 | 697 | $1498+3$ | 747 | 1513.3 | 797 | 1527.6 |
| 648 | 1477.4 | 698 | 1497.0 | 748 | 1516.1 | 798 | 1531.1 |
| 649 | 1478.9 | 699 | 1498.3 | 749 | 1514.7 | 799 | 1532.6 |
| 650 | 1477.4 | 700 | 1.499 .0 | 750 | 1514.0 | 800 | 1533.3 |

THEFMOCOUFLE TEMFEFATUFE IAATA (K)

| I | TWIRE(I) | I | TWIFE (I) | I | TWIFE(I) | I | TWIFE (I) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 801 | 1534.7 | 851 | 1536.1 | 901 | 1541.8 | 951 | 1543.3 |
| 802 | 1533.3 | 852 | 1536.1 | 902 | 1542.5 | 952 | 1543.3 |
| 803 | 1531.8 | 853 | 1537.6 | 903 | 1543.3 | 953 | 1543.3 |
| 804 | 1533.3 | 854 | 1536.1 | 904 | 1542.5 | 954 | 1544.7 |
| 805 | 1531.1 | 855 | 1539.0 | 905 | 1542.5 | 955 | 1543.3 |
| 806 | 1531.1 | 856 | 1.539 .0 | 906 | 1542.5 | 956 | 1543.3 |
| 807 | 1531.1 | 857 | 1536.8 | 907 | 1541.8 | 957 | 1544.7 |
| 808 | 1531.1 | 858 | 1534.7 | 908 | 1541.8 | 958 | 1544.7 |
| 809 | 1530.4 | 859 | 1534.7 | 909 | 1544.0 | 959 | 1.544 .7 |
| 810 | 1531.8 | 860 | 1534.7 | 910 | 1540.4 | 960 | 1545.4 |
| 81.1 | 1531.1 | 86.1 | 1535.4 | 911. | 1539.0 | 961 | 1544.7 |
| 812 | 1531.1 | 862 | 1536.1 | 912 | $1537+6$ | 962 | 1544.7 |
| 813 | 1529.7 | 863 | 1536.1 | 913 | 1539.0 | 963 | 1544.7 |
| 814 | 1531.1 | 864 | 1536.1 | 91.4 | 1539.0 | 964 | 1544.7 |
| 815 | $1531+1$ | 865 | 1536.8 | 915 | $1539+0$ | 965 | 1545.4 |
| 816 | $1531+1$ | 866 | 1537.6 | 916 | 1536.8 | 966 | 1545.4 |
| 817 | 1531.8 | 867 | 1538.3 | 917 | 1538.3 | 967 | 1547.5 |
| 818 | 1531.8 | 868 | $1538+3$ | 918 | 1.539 .0 | 968 | 1544.0 |
| 819 | 1531.1 | 869 | 1537.6 | 919 | 1539.0 | 969 | 1544.7 |
| 820 | 1532.6 | 870 | 1539.7 | 920 | 1539.0 | 970 | 1.544.7 |
| 821 | 1534.0 | 871. | 1539.0 | 921 | 1539.0 | 971 | 1544.0 |
| 822 | 1533.3 | 872 | 1535.4 | 922 | 1538.3 | 972 | 1545.4 |
| 823 | 1.534.0 | 873 | 1537.6 | 923 | 1539.0 | 973 | 1544.0 |
| 824 | 1533.3 | 874 | 1536.8 | 924 | 1539.0 | 974 | $1544+7$ |
| 825 | 1533.3 | 875 | 1537.6 | 925 | 1540.4 | 975 | 1543.3 |
| 826 | 1534.7 | 876 | 1537.6 | 926 | 1539.0 | 976 | 1544.0 |
| 827 | 1535.4 | 877 | 1537.6 | 927 | 1540.4 | 977 | 1545.4 |
| 828 | 1533.3 | 878 | 1538.3 | 928 | 1540.4 | 978 | 1543.3 |
| 829 | 1534.7 | 879 | 1536.8 | 929 | 154.1.1 | 979 | 1542+5 |
| 830 | 1534.0 | 880 | 1537.6 | 930 | 1541.8 | 980 | 1542.5 |
| 831 | 1534.0 | 881. | 1539.0 | 931 | 1540.4 | 981 | 1541.1 |
| 832 | 1534.7 | 882 | 1538.3 | 932 | 1542.5 | 982 | 1539.7 |
| 833 | 1534.7 | 883 | 1538.3 | 933 | 1542.5 | 983 | 1539.0 |
| 834 | 1535.4 | 884 | 1539.7 | 934 | 1544.7 | 984 | 1539.0 |
| 835 | 1534.7 | 885 | 1539.7 | 935 | 1542.5 | 985 | 1539.0 |
| 836 | 1532.6 | 886 | 1537.6 | 936 | 1542.5 | 986 | 1539.7 |
| 837 | 1533.3 | 887 | 1537.6 | 937 | 1542.5 | 987 | 1539.7 |
| 838 | 1534.7 | 888 | 1.539 .0 | 938 | 1544.0 | 988 | 1539.0 |
| 839 | 1534 +0 | 889 | 1539.7 | 939 | 1543.3 | 989 | 1539.0 |
| 840 | 1536.1 | 890 | 1539.7 | 940 | 1543.3 | 990 | 1539.0 |
| 841 | 1534.7 | 891. | 1541. 1. | 941 | 1544.0 | 991. | 1.537.6 |
| 842 | 1534.7 | 892 | 1540.4 | 942 | 1545.4 | 992 | 1538.3 |
| 843 | 1535.4 | 893 | 1541.1 | 943 | 1543.3 | 993 | 1539.0 |
| 844 | 1534.7 | 894 | 1540.4 | 944 | 1543.3 | 994 | 1539.7 |
| 845 | 1533.3 | 895 | 1539.7 | 945 | 1543.3 | 995 | 1539.0 |
| 846 | 1535.4 | 896 | 1541.1 | 946 | 1545.4 | 996 | $1540+4$ |
| 847 | 1535.4 | 897 | 1541.8 | 947 | 1544.0 | 997 | 154.1 |
| 848 | 1534.0 | 898 | 1541.1 | 949 | 1.544, 7 | 998 | 1539.7 |
| 849 | 1534.7 | 899 | 1541.8 | 949 | 1544.7 | 999 | 1540.4 |
| 850 | 1535.4 | 900 | 1541.8 | 950 | 1544.0 | 1000 | 1541.1 |

References

1. Glawe, George, E.; Will, Herbert A.; and Krause, Lloyd N.: A New Approach to the Pulsed Thermocouple for High Gas Temperature Measurements. NASA TM X-71883, 1976.
2. Bevington, Philip R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill Book Co., Inc., 1969, p. 235.
3. Scadron, Marvin D.; and Warshawsky, Isidore: Experimental Determination of Time Constants and Nusselt Numbers for Bare-Wire Thermocouples in High-Velocity Air Streams and Analytic Approximation of Conduction and Radiation Errors. NACA TN-2599, 1952, p. 7.
4. Davis, H. T.: College Algebra. Prentice-Hall, Inc., 1942, pp. 281-282.
5. Bevington, Philip R.: Data Reduction and Error Analysis for
the Physical Sciences. McGraw-Hill Book Co., Inc., 1969, p. 241.
6. Glawe, George E.; and Shepard, Charles E.: Some Effects of Exposure to Exhaust-Gas Streams on Emittance and Thermoelectric Power of Bare-Wire Platinum Rhodium-Platinum Thermocouples. NACA TN-3253, 1954, p. 29.
7. Scadron, Marvin D.; and Warshawsky, Isidore: Experimental Determination of Time Constants and Nusselt Numbers for Bare-Wire Thermocouples in High-Velocity Air Streams and Analytic Approximation of Conduction and Radiation Errors. NACA TN-2599, 1952, pp. 48 and 54.
8. Marquadt, D. W.: An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Indust. Appl. Math., vol. 11, no. 2, June 1963, pp. 431-441.

| 1. Report No. NASA TP-1895 | 2. Government Accession No. | 3. Recipient's Catalog No. |
| :---: | :---: | :---: |
| 4. Title and Subtitle
 COMPUTER PROGRAM FOR PULSED THERMOCOUP LES WITH CORRECTIONS FOR RADIATION EFFECTS | | 5. Report Date
 September 1981 |
| | | 6. Performing Organization Code $505-32-82$ |
| 7. Author(s)
 Herbert A. Will | | 8. Performing Organization Report No. E-615 |
| | | 10. Work Unit No. |
| 9. Performing Organization Name and Address
 National Aeronautics and Space Administration
 Lewis Research Center
 Cleveland, Ohio 44135 | | |
| | | 11. Contract or Grant No. |
| | | 13. Type of Report and Period Covered |
| 12. Sponsoring Agency Name and Address
 National Aeronautics and Space Administration Washington, D. C. 20546 | | Technical Paper |
| | | 14. Sponsoring Agency Code |
| 15. Supplementary Notes | | |
| 16. Abstract
 A pulsed thermocouple is used for measuring gas temperatures above the melting point of common thermocouples. This is done by allowing the thermocouple to heat until it approaches its melting point and then turning on the protective cooling gas. This method requires a computer to extrapolate the thermocouple data to the higher gas temperatures. In earlier work by this author the extrapolation was done by using a first-order exponential curve fit to predict the final thermocouple wire temperature. Since radiation effects were neglected, the gas temperature was not computed. Hand calculations had to be used to estimate the gas temperature. This report describes a method that includes the effect of radiation in the extrapolation. Computations of gas temperature are provided, along with the estimate of the final thermocouple wire temperature. Results from tests on high-temperature combustor research rigs are presented. | | |
| 17. Key Words (Suggested by Author(s))Computer programs; Temperature measure-ment; Thermocouples; Jet engine;Extrapolation; Combustion temperature \quad18. Distribution Statement
 Unclassified - unlimited
 STAR Category 61 | | |
| | | |
| 19. Security Classif. (of this report) Unclassified | 20. Security Classif. (of this page) Unclassified | 21. No. of Pages
 41 22. Price*
 A03 |

* For sale by the National Technical Information Service, Springfield, Virginia 22161

National Aeronautics and Space Administration

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

Washington, D.C.
20546

Official Business

Penalty for Private Use, $\$ 300$

> 3 I IUG, 092481 SOO903DS DEPI OF TAE AIK FORCE AF NEAPONS LABORATORY ATIN: IECHNICAL LIBRARY (SUL) KIKTLAMD AFB NH 87117

