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INTRODUCTION

The use of acoustic liners to reduce aircraft engine noise has been the
subject of intense investigation by both governmental and industrial groups for
over a decade. Figure 1 is an illustration of three types of acoustic liners
which have potential noise suppression benefits. Earlier research was concen-
trated on uniform liners. Recent efforts have centered on axially segmented
liners where the liner admittance changes with distance along the duct. There
has been little previous work on peripherally segmented liners.

Certain characteristics of axially segmented liners may preclude their
application to aircraft engine noise suppression. The optimum design of axially
segmented acoustic liners requires an accurate description of the modal distri-
bution of acoustic energy; however, the number of modes generated in a typical
aircraft engine is large, and the problem of determining the modal amplitude and
relative phasing of these source modes is difficult (if not impossible). Engine
nacelles of today's aircraft may not provide sufficient length for the effective
use of these liners. Further, axially segmented liners perform best in the
lower range of the engine noise spectrum. They do not perform as well in the
higher frequency range where greater suppression is needed.

The peripherally segmented liner has a wall admittance which changes in the
circumferential direction. These liners may have significant advantages when
compared to uniform or axially segmented liners. The duct length is less impor-
tant because of the fact that segmentation is around the duct circumference
instead of along the axis. This is important since high-bypass-ratio engines
have inlet ducts with diameters as large as their lengths. Peripherally seg-
mented liners redistribute acoustic energy of a circumferential wave into
higher-order circumferential waves and, since these higher order waves are more
rapidly attenuated, an improved suppression may result.

Mani (ref. 1) tested a peripherally segmented liner and found that some
additional suppression beyond that achieved with a uniform liner could be
observed over a broad frequency range. On the basis of this work, he was
granted a patent on the concept. However, there has been no extensive experi-
mental testing of this idea. In addition, no theoretical analyses of such
liners are available. The separation-of-variables technique cannot be used to
obtain the solution for the acoustic field in ducts with peripheral liners.
Thus, the solution for the acoustic field in the duct's cross section is more
complex than for uniform or axially segmented liners, where separation of vari-
ables is possible in the circumferential direction.

Watson (ref. 2) attempted a multimodal, finite-element solution to this
problem. However, the number of peripheral strips was severely restricted
because of matrix size limitations, and the effects of a realistic sound source
could not be evaluated. Abrahamson (ref. 3) attempted a direct numerical solu-
tion of the linearized three-dimensional Euler equation with variable-admittance
boundary conditions. He concluded that this method could not succeed using
present—-day computers because of the size and character of the coefficient
matrix. Astley et al. (ref. 4) also attacked the problem using a multimodal,



finite-element method, including the effects of an arbitrary mean flow.
Astley's approach is subject to the same limitations as the method of refer-
ence 2. Thus, there is no available method for computing the acoustic field in
ducts with peripherally segmented liners. Such a method is necessary before an
evaluation can be made of the effectiveness of circumferential liners as sound
attenuators. A method is developed herein which can account for the sound
source and a large number of peripheral strips. The primary objectives of this
paper are to compute the eigenvalues and eigenfunctions in ducts with peripher-
ally segmented liners and to compare their properties to those of the uniform
liner. It is shown how redistribution of the acoustic energy of a single cir-
cumferential wave into a multitude of other circumferential waves is a basic
physical property of peripherally segmented liners which is not possible for
uniform or axially segmented liners. A secondary objective of this paper is to
demonstrate the use of uniform-liner eigenfunctions to calculate the eigen-
values and eigenfunctions of peripherally segmented liners. Finally, attenua-
tion characteristics of a peripheral liner are compared to those of an optimal
uniform liner for plane~wave sources.

SYMBOLS
a duct radius
A amplitude of pressure wave
B admittance matrix
c speed of sound
i unit imaginary number
Im( ) imaginary part of complex expression
I Bessel function of first kind with order m
K wave number
L predetermined length over which transmission loss is computed
M number of m wvalues, m=0, 1, ..., M-1
N number of n wvalues, n =20, 1, ..., N-1
Nin normalization constant for basis function
P(R,9,2) acoustic pressure field
PQ(R,O) acoustic pressure eigenfunctions
sz coefficients of basis functions in series acoustic pressure

eigenfunctions



Re( )

[s/N]

B(9)

source pressure

coefficients of basis functions in series for source pressure

dimensional coordinates

cylindrical coordinates

real part of complex expression

number of peripheral strips

integer division of integer s by integer N
periodicity of peripherally segmented liner
acoustic admittance of duct wall

Kronecker delta function

eigenvalue

ambient density of medium

basis functions for series expansion of R(8)
basis functions for series expansions of PQ(R,G)

Laplace operator

Subscripts:

s,t

basis function index

eigenfunction index
circumferential harmonic number
radial (basis) eigenfunction index

integers

and

A bar over a symbol denotes a basis function or a constant.
denotes the first derivative with respect to distance.

Consider a semi-infinite circular duct with radius
A lining material with specific acoustic admittance

ure 2.

STATEMENT OF PROBLEM

a,

Q(R,0)

A prime

as shown in fig-

B(6)

is placed

along the inner wall, and an initial noise source (such as one generated by an



aircraft engine) is given at =z = 0. The purpose of the acoustic liner is to
attenuate the noise as it propagates along the duct. The mathematical problem
is to determine the acoustic field inside the duct. The effectiveness of the
lining material may be evaluated from the solution for this field.

Acoustic waves are governed by the Helmholtz equation
V%P (R,6,2) + K?P(R,0,2) = O (1)

. . . -i a |
in which a time dependence of the form e Wt has been assumed, K = %;— is the

dimensionless wave number, P 1is the dimensionless acoustic pressure, W is
the angular frequency, t 1is time, and ¢ denotes the ambient speed of sound.
In equation (1), all distances are referred to the duct radius a and the
acoustic pressure is referred to the quantity pc2 in which © 1is the ambient
density of the medium.

The acoustic boundary condition along the outer wall (R = 1) is expressed
in terms of the admittance of the lining material R(9),

oP(R,0,2)

AR = iK B(8) P(R,H9,7) (2)

At the entrance plane, the boundary condition is assumed known as
P(R,0,0) = Q(R,0) (3)

Capital letters are used for dimensionless groups throughout this paper.

Equations (1) to (3) constitute a boundary value problem for the acoustic
pressure field P(R,0,2). A solution must be obtained before the effectiveness
of the peripheral liner can be evaluated. Analytical solutions to these equa-
tions are not available since the acoustic admittance [ depends on the azi-
muthal coordinate 6. Previous attempts at finite element solutions have had
limited success because of the size and character of matrices used in the
analysis. Thus, an approximate series expansion is used in this paper.

EIGENFUNCTION EXPANSION TECHNIQUE

The solution to equations (1) to (3) is expressed in the form (ref. 2)

2MN-N-1 .
lKQ,Z
P(R,6,2) = z By Py (R,0) e (4)
2=0



in which each eigenfunction PQ(R,G) satisfies a Helmholtz egquation
V2 p,(R,0) + A2 P, (R,8) = O (5)
g g T

with the homogeneous boundary conditions

BPQ(R,G)

SR + iK B(6) PQI(R,B) =0 at R =1 (6)

where V2 is the two-dimensional Laplace operator in R and 6. The eigen-
value XZ is

2 2

The eigenfunctions satisfying equations (5) to (7) are also orthogonal.
This can be proved using Green's theorem

PSL BPm Pm BPQ
55 (PQ/ V2Pm - P Vsz) da =S' R - R dc (8)

In view of the fact that both Pn and Py satisfy equations (5) and (6),
equation (8) becomes

(xﬁ - xi)yyplpm da =0 (9)

if XQ # Xm, equation (9) becomes

SPQPm dA = 0 (10)

where m # £. Further, the eigenfunctions will be required to form an ortho-
normal set so that

Sy ()’ ar =1 (11)

Equations (5) to (7) constitute an eigenvalue problem which must be solved
before the acoustic field of equation (4) can be determined. In this paper, a
numerical solution to this equation is obtained using a second modal expansion
for the eigenfunctions PQ(R,G).



SERIES SOLUTION FOR EIGENFUNCTIONS

To solve the eigenvalue problem for a peripherally segmented liner, a

Galerkin method is employed (see ref. 5) which simultaneously considers the

field equation (eqg. (5)) and the admittance boundary condition (eq.

Solutions of the form
2MN-N-1
PiR,O) = D Pe b (R,6)
s=0
are sought in which
Jm(kmnR)/ﬁmn cos mb
ws(Rle) =

Jm(AmnR)/Nmn sin mO

'

[s/N]

[(s - N - MN)/N]
.

s — mN

s —mN - MN - N

AN

in which the notation [s/N] denotes integer division of the integer

the integer N. The normalization constant Np,
basis functions wS(R,O) are orthonormal

ﬁ%n = j];Ji(anR)(cosz mO) da

for

for

for

for

for

for

v

v

v

MN

MN

MN

MN

MN

MN

(6)).

S

by

is determined so that the

(12)

(13)

(14)

(15)

(16)

and the eigenvalues an are uniform-liner eigenvalues chosen to satisfy the

transcendental equation

>‘mn ‘]I;I(an) - lKé Jm(imn) =0

(17)




The constant admittance £ may be arbitrarily chosen. Two of the possible

- 2T
choices are B = 0, for a hard-wall duct, and R =-§F jﬁ B(0) 46, the average
0

value of B for the peripherally segmented liner. The use of these two basis
values will be discussed in the following sections.

The unknown coefficients PQs are determined by Galerkin's method.
Galerkin's condition is

‘g\(vng + AgPo) U, @A = 0 (18)

where t =0, 1, ..., 2MN-N-1. Integrating equation (18) by parts to transfer
the Laplace operator to the basis functions wt gives
( oP Py oY
2 2 ) _ Ve L t)
j]r(v wt + Agwt Py da = S\< R R dc (19)

Eliminating Vzwt and BPQ/BR from equation (19) gives

()\% - Xf—_)yy thQ' dA = iK j(é - B)PQ}Pt dc (20)

and substituting the expansion for Py into equation (20) gives

2MN-N-1
2 72
ApPoe = z (5st>‘t * Bts) Pos (21)
s=0
where
Bug = —iKy(B - B)Ugly de (22)

Equation (21) determines the vector PZs to within an arbitrary constant.
This constant is defined through the normalization condition

2MN-N-1
2
Pls =1 (23)
s=0
Equations (21) to (23) represent a system of linear equations which can be

solved for the eigenvalue AQ and series coefficients Pog using standard

matrix techniques. In this paper, the QR algorithm is employed to obtain the
solution to this equation (ref. 6).



CHOICE OF PERIPHERAL LINER AND SOURCE

The source pressure function is usually generated in a hard-wall section.
Thus, the source will be specified in terms of hard-wall duct modes. The source
pressure function Q(R,0) 1is expanded in the form

2MN-N-1

Q(R,0) = z Qg Vg (24)
0

S

in which the hard-wall basis functions ¢4 are obtained from equation (17) by
setting B = O.

One may also assume that the fabrication of a peripheral liner B(8)
will consist of some sort of periodicity as shown in figure 3. It is assumed
that the admittance of the liner repeats after each A6 on the interval
2T
0 £ 0 < 21 where ABH = "+ B liner of this type is referred to as a liner
with periodicity T, where T denotes the number of times the liner repeats on
the interval 0 = 6 £ 27. Within each interval, the liner may be subdivided

into strips which do not form a repeating pattern.

Because of its periodicity, the admittance function 8(8) is expanded into
the fourier series

BO = > ¢ B, (25)
s=0
where
cos mTo for s even
g (8) = (26)
sin mTO for s odd
m=[(s + 1)/2] (27)

EFFECTIVENESS OF LINING MATERIAL

Before proceeding with the solution to equations (5) to (7), it is useful
to develop an expression for the attenuation produced by the liner in terms of
parameters which have been introduced. The axial acoustic intensity at any
axial position in the duct is

I(R,9,z) = K_lRe [—ip* —g—gil (28)



in which the nondimensional acoustic intensity is referred to pc3, Re[ ]
denotes the real part of the complex expression enclosed within the brackets,
and the superscript asterisk indicates the complex conjugate. The total
acoustic power is the integral of the acoustic intensity across the cross

section
wW(z) = S‘S‘I da (29)

and the transmission loss, or decrease in level of the acoustic power from
Z =0 to 2 =1L, can be written as

TL = 10 log,, EN(O)/(W(Lﬂ (30)

Generally, the specific admittance B 1is chosen so as to maximize the trans-
mission loss.

In this paper, the eigenmode Py 1is expanded in terms of the hard-wall
basis functions. These basis functions were chosen not only because the eigen-
values A are real and appear in standard tables but because the resulting

mn
expression for the acoustic power reduces to

2MN-N-1 2MN-N-1

_ i(K3-K,)%
W(z) = z z K lReExEAEKSLIMe R J (31)
=0 2=0
2MN-N-1
*
Io% = ZS PosPis (32)
s=0
2MN-N-1
By = Poe@s (33)
s=0

The function W(Z) cannot be simplified to a double summation if R # O.

RESULTS AND DISCUSSION

In this section, eigenvalues and eigenfunctions are presented for uniform
and peripherally segmented liners. Emphasis is placed on the solution for the
eigenvalue Kz and the eigenfunction PQ(R,G) for peripherally segmented
liners. The way these solutions change with the number of peripheral strips and
the wave number K of the system is of fundamental interest. First, confidence
in the analysis is obtained by demonstrating that it agrees with exact results
which are possible when the liner admittance is independent of the coordinate 0.
Afterward, results are presented for peripherally segmented liners.



Uniform Liners

Analysis.- When the admittance R is independent of the coordinate 6, an
exact solution to equations (5) to (7) can be obtained by requiring that
B = B. Eguation (21) becomes

where s =0, 1, ..., 2MN-N-1. The exact solution to this equation, with
the normalization condition, is

AQ = >‘s
Pos = 6£s
where m and n are related to s by equations (14) and (15). Observe that

the solution PQ(R,G) has the following properties for the uniform liner:
(1) Each eigenfunction is either an even or odd function of 6
(2) The eigenvalues for the even and odd eigenfunctions are identical
(3) Each eigenfunction is composed of only a single function of mf

These observations are important, since it will be shown in the following sec-
tion that the eigenfunctions for a peripheral liner will have_none of these
properties in general. Further, if B 1is chosen such that B # 8, then,

Bts # 0 1in general and equation (21) cannot be solved exactly (the solution
was obtained employing the QR algorithm). However, the solution for the eigen-
functions Pl(R,e) and eigenvalue KQ will have the three properties dis-
cussed earlier. These three properties are_preserved because the matrix equa-
tion which governs equation (22) when B # B is block diagonal, with each
diagonal block giving the solution for either an even or odd eigenfunction.
This eigenfunction is composed of only a single function of mf.

Now consider the eigenfunction expansion of the acoustic field as given by
equation (4). The modal coefficient A2 is

2MN-N-1

s=0

Now for uniform liners, Ag is zero for any standing wave (cos mO0 or sin m0)
not present at the source. Thus, for uniform liners, the acoustic energy in an
even standing wave of the source remains in that even standing wave in the lined
section. This is also true for odd standing waves. It is not possible, there-
fore, to redistribute the energy of a single standing wave of the source into a

10



multitude of standing waves in the lined section with a uniform liner. In
addition the uniform liner restricts the energy in even standing waves of the
source to even waves in the lined section. Similarly, the energy in odd stand-
ing waves of the source is restricted to odd standing waves in the lined sec-
tion. In the next section, it is shown that peripherally segmented liners do
allow the redistribution of acoustic energy out of even standing waves of the
source into even and odd standing waves in the lined section. It is also shown
that peripherally segmented liners allow the redistribution of acoustic energy
out of a given standing wave of the source into a multitude of standing waves
in the lined section. These properties of peripherally segmented liners may
make them better attenuators of sound than uniform liners.

Eigenvalue computation.- Attention is now focused on the eigenvalues com-
puted from the present analysis and how they approximate the exact eigenvalues
satisfying equation (17). 1In order to compare the two solutions, equation (171
has been solved using a Newton-Raphson iterative procedure (ref. 7) with B8 = 8.
Results for uniform liners will be restricted to optimum liners for plane-wave
sources where the optimum values of B have been taken directly from the
results of Lester and Posey {(ref. 8). All uniform liner results are for
m=0, 1, 2 and N = 10.

Table I allows comparison of eigenvalues computed from equation (21) to
those computed from solving the exact transcendental equation for m = 0 with
K = 2. Note that the present analysis computes the eigenvalues with the larger
magnitudes more accurately than those with the smaller magnitudes. This is not
surprising since lower-order eigenvalues can be expected to have more simple
mode shapes than higher-order ones. Thus, it can be expected that more terms
are needed in a Bessel function series to represent functions which are closer
to plane waves. Overall, the agreement between the exact eigenvalues and those
of the present analysis ranges from one to four significant figures.

Eigenvalues are presented in tables II and III for m =1 and m = 2,
respectively. Values of K and B are identical to those of table I. The
trends of these tables are consistent with those of table I.

Results are presented in table IV for a nondimensional wave number of
K=5 for m = 0. Eigenvalues computed from equation (21) compare favorably
with those computed from the exact transcendental equation. Computations for
m=1 and m = 2 are given in tables V and VI, respectively. The value of
the admittance [ is identical to that of table IV. These results show that
better comparison is obtained at this higher value of K. The eigenvalues com-
puted in tables IV, V, and VI agree to within two to three significant figures
with those of the exact transcendental equation.

Computations have also been obtained for K = 10. These results are shown
in tables VII, VIII, and IX for m = 0, 1, and 2, respectively. Results in
these tables are consistent with those of the previous tables. The highest
order eigenvalues are computed more accurately than the lower order ones.
Again, agreement between the eigenvalues computed from the exact equation and
those of the present analysis is within two to three significant figures.
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Overall, the agreement between the eigenvalues tends to improve with increasing
wave number K and mode order £.

Eigenfunctions.- Attention is now focused on the characteristic functions
PR(R,G) computed from the analysis presented in this work. As in any accept-
able approximate formulation, the series solution computed here must converge
in some sense to the exact solution of the problem. Because basis functions
used here are for B = 0, the expansion given by equation (12) cannot possibly
satisfy the boundary conditions at the outer wall. It is useful to study the
effects of this choice of basis functions on the approximate solution. Further,
since the circumferential dependence of each eigenfunction will match for a
uniform liner, only the radial dependence of the eigenfunctions will be studied.

The real and imaginary parts of the £ = 0 mode for K = 2 are plotted
in figures 4 and 5, respectively. Agreement between this analysis and the
exact analysis is poor for this lowest order mode. Results for the £ =4 and
£ = 9 modes are shown in figures 6 to 9 for K = 2. The results for these
higher-order modes are virtually indistinguishable from the exact results, even
at the boundary. In general, the higher the mode number, the more accurately
this analysis computes the eigenfunction.

The real and imaginary parts of the £ = 0 mode for K = 10 are plotted
in figures 10 and 11, respectively. At this higher value of K, this lowest-
order mode is in good agreement with the exact value. Results for the £ = 4
and £ = 9 modes are given in figures 12 to 15 for this higher value of K.
Results computed from this analysis are identical to the exact values for these
higher-order modes.

Characteristic functions have also been computed for X = 3, 4, 5, 6, 7,
and 8 for various values of 2. Results for these will not be presented for
the sake of brevity. However, trends show that the accuracy of the modes com-
puted from this analysis increases with increasing K, with the lowest-order
mode being less accurate than higher-order ones.

Attention is now focused on the radial derivative of the characteristic
function PQ(R,S). How the radial derivative computed from this analysis com-
pares with the exact value is of special interest because of the fact that the
hard-wall duct modes are used as basis functions. Recall that the radial
derivatives computed from this analysis cannot compare with the exact value at
the boundary unless B = 0, or Pl(l,e) = 0.

The real and imaginary parts of BPQ/BR for the 2 = 0 mode are plotted
in figures 16 and 17, respectively, for K = 2. Overall, values computed from
this analysis do not compare to the exact values for this lowest-order mode.
Further, results computed from this analysis are less accurate as the outer
boundary (R = 1) is approached.

Results for the real and imaginary parts of BPR/BR for the £ = 4 and
£ = 9 modes are plotted in figures 18 to 21 for K = 2. Results for these
higher-order modes are virtually indistinguishable from the exact values, with
the exception of the outer boundary (R = 1).

12



Shown in figures 22 and 23 are results for dPy/dR for & =0 with
K = 10. Observe that the analysis used here computes the radial derivative
of Py more accurately at this higher value of K than at K = 2. Overall,
this lower—-order mode has not been accurately computed by this analysis at this
higher K, and the accuracy decreases as the boundary R = 1 1is approached.

Results for the real and imaginary parts of BPQ/BR for the 2 = 4 and
£ = 9 mode are plotted in figures 24 to 27 for K = 10. Results for these
higher-order modes are in good agreement with the exact values except near the
outer boundary.

Transmission losses.- In this section, the transmission losses predicted
from equations (30) to (33) for optimum uniform liners are compared to results
predicted from the analysis of reference 8. The source pressure distribution
was assumed to be a plane wave so that Q(R,0) = 1. The duct geometry was
chosen so that the length to diameter ratio was unity (L = 2).

Transmission losses are presented in figure 28. The transmission loss
spectrum is given for a frequency range 2 < K £ 20. The losses predicted from
the analysis of this work are identical to those of the method of reference 8
for K > 4. However, for K < 4, the transmission losses predicted from this
analysis are less than those predicted in reference 8. As the frequency
decreases, the difference between the two curves in figure 28 increases.

The discrepancies between the transmission losses at low frequencies
(K < 4) predicted from this analysis and from that of reference 8 are not sur-
prising. Thus, for K < 4, only the £ = 0 mode is cut on in the duct
(ref. 8). However, the analysis of this work cannot accurately resolve the
2 = 0 mode at low fregquencies.

Peripherally Segmented Liners

Analysis.— Attention is now focused on peripherally segmented liners. To
understand why the eigenfunction PQ(R,G) for a peripheral liner has properties
fundamentally different from those of a uniform liner, the basic structure of
equation (21) is studied when £ is a function of the coordinate €. 1In this
instance, the matrix of coefficients Bts is not block diagonal as for the uni-
form liner. As a consequence, the energy in either an even or odd mode of the
source is redistributed into other even and odd modes in the lined section.

This also results in the generation of a multitude of standing waves for each
eigenfunction PQ(R,G). As a consequence, the energy in a single standing wave
of the source is redistributed into a multitude of standing waves in the lined
section of the duct. The results of this section will show that this does
indeed occur.

Now the number of unknowns in equation (21) will be large. For example,
the order of this matrix equation will be 190 if M = 10 and N = 10. However,
if the function R(0) is restricted to an even function, Byg = B = 0 for
s >MN and t £ MN. As a result, the eigenfunction PR(R,G) will be composed
of either even or odd modes. Further, if the source produces only even modes,

13



only the even functions need be included in equation (12) and the order of the
system is reduced by (MN - N). Thus, results in this section are restricted to
admittance functions which are even and, in addition, the source is assumed to
be composed of only even modes. Results of the previous section also show that
10 radial modes (N = 10) appear to be sufficient in the series expansion of
equation (12) for uniform liners. The number of radial modes has been termi-
nated at N = 10 for peripherally segmented liner results. Note also that up
to this point there is no rule for choosing the number of standing waves in the

expansion given by equation (12). Finally, since £(0) 1is assumed an even
function, RB(0) = B(2m - 6) and the form of R(0) need only be specified on
the interval (0,T). Results for peripheral liners are restricted to a liner

having a periodicity of one (T = 1) in which the admittance segments alternate
between Bl and 62 with a given number of strips S on the interval (0,T),
as shown in figure 29.

Eigenvalues.- Table X contains eigenvalues for a two-strip liner (S = 2)
for various values of M. The liner admittance has been taken as
By = 1.54 - 1.291 and 62 = 0.0 + 0.0i with the dimensionless frequency K
chosen as 2. These results show that the eigenvalues are significantly differ-
ent for the lower values of M, but do converge as M increases. In fact,
there is very little change in the first 10 eigenvalues when M 1is increased
from 6 to 10. Table XI contains eigenvalues for K = 5, with all other param-
eters identical to those of table X. The effects of M at this higher value
of K are consistent with those at the lower value of K. Eigenvalues have
also been computed for K = 4, 6, 8, and 10, and the effects of increasing M
were always consistent with those of tables X and XT.

The effects of varying the number of strips on the eigenvalues of periph-
eral liners for K =2 and K =5 are shown in tables XII and XIII, respec-
tively. Values of B; and B, employed in the two tables are identical to
those of table X, and 10 standing waves have been employed (M = 10). It is
clear from these two tables that the number of strips affects the eigenvalues
and subsequently the eigenmodes PR(R,S) even though the amount of the duct
which is acoustically treated for each configuration is still 50 percent.

Thus, the attenuation properties of peripherally segmented liners will depend
on the number of peripheral strips, gyen if the amount of lined section is kept
fixed.

Eigenfunctions.- The analysis presented in this work can also be used to
investigate the eigenfunctions of peripherally segmented liners. Valuable
insight about the eigenfunctions can be obtained by studying the coefficients
Pgg which go into the series expansion for the eigenfunction PQ(R,O) in
equation (12). In table XIV the coefficients Poe computed for the £ =0
mode of table XII are shown. Only values of £ which correspond to n = 0 are
shown (i.e., each value of s corresponds to a different order standing wave).
The first column of coefficients in this table is for the uniform liner for
which Bl = 82 = 1.54 - 1.291 and for the same value of K as the peripheral
liner. Results of table XIV confirm that the peripheral liner generates a
multitude of standing waves regardless of the number of segments. This is
borne out by the fact that PQs # 0 for any s for the peripheral liners.

Contrast this to the uniform liner coefficients in which PQS =0 for s # 0.
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Results similar to those of table XIV have been computed for other values of £
in addition to £ = 0 and for other values of K, Bl, and 82. For each
value of £, the peripheral liner eigenfunction PQ(R,G) consisted of a multi-
tude of standing waves, while the uniform liner contains only one standing
wave. Thus, the multimodal expansion of the acoustic field for peripherally
segmented liners (eq. (4)), will contain a multitude of standing waves for any
given source.

Transmission losses.- Baseline trends for the transmission loss of a
peripherally segmented liner are given by the attenuation of the least atten-
vated mode (this would correspond to setting Ag = 0 in eq. (33) for 2 # 0).
The attenuation of the least attenuated mode is -8.69 Im(KgL) dB in which
Im( ) denotes the imaginary part of the complex expression within the paren-
theses and dB denotes decibels of sound.

The attenuation of the least-attenuated mode £ = 0 is assumed to provide
a rough estimate of the transmission loss for the peripheral liner. This
attenuation would equal the transmission loss if the duct was infinitely long
and the mode & = 0 carried all the acoustic energy. Figure 30 allows com-—
parison of these attenuations for uniform and peripherally segmented liners
for L = 1. The uniform liner is chosen so that the attenuation is optimum at
K = 3 (this implies an admittance of B = 0.81 - 0.78i); whereas, the periph-
erally segmented liner is chosen so that 81 = 0.81 - 0.781 and 82 = 0.
Results of figure 30 show that peripheral liners with a small number of strips
(S =2 and S = 4) have poor attenuations compared to the uniform liner. The
S =6 and S = 10 liners attenuate more for frequencies >3.5 than the uniform
liner. This is rather surprising, since only 50 percent of the duct wall is
treated with peripheral strips; whereas, the uniform liner covers the entire
wall. Peripheral liners with a large number of strips have broader attenuation
characteristics than uniform liners, and the peak attenuation occurs at a higher
frequency. These characteristics may be a significant advantage for actual
engine sources which produce noise over a wide frequency range.

Turning now to the effects of the sound source, figure 31 is a comparison
of transmission losses for an optimum uniform liner to those of an arbitrarily
chosen peripherally segmented liner. Results in this figure are for a plane-
wave source (Q = 1) with L = 2. The uniform liner is optimum at X = 5 so
that B = 0.34 - 0.59i for this liner (ref. 8). The admittances of the
peripheral liner are chosen such that Bl = 0.40 - 0.59i and 82 = 0.5 - 0.2i.
The transmission loss was computed from equations (30) to (33). Both peripher-
ally segmented liners give transmission losses comparable to that of the uniform
liner for K £ 6 and for K 2 17. For values of K between these values, the
peripheral liner gives greater transmission losses than the uniform liner for
this plane-wave source. Further, the S = 4 peripheral liner gives a
50-percent increase in the attenuation over the uniform liner for K = 8.

CONCLUSIONS

An analysis method has been developed for computing the acoustic field and
transmission losses in ducts with peripherally segmented liners, arbitrary
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sources, and any number of peripheral strips. Based upon this work, the
following conclusions are made:

(1) Peripherally segmented liners redistribute the energy in standing
waves composed of only a single circumferential mode at the source into other
waves which contain a multitude of circumferential modes in the lined section.

(2) The accuracy of the eigenvalues and eigenfunctions computed from this
analysis increases with both the frequency and the mode order.

(3) Transmission losses computed from this analysis were determined to be
accurate for wave numbers greater than four, which is the approximate cut-on
value of the first order radial mode in a hard-wall duct.

(4) Results based on the attenuation of the least-attenuated mode show
that peripherally segmented liners can attenuate more sound over a broader fre-
quency range than a uniform liner, although 50 percent of the peripheral liner
was hard wall.

(5) Finally, results show that, for a plane-wave source, a nonoptimal
peripherally segmented liner may attenuate as much sound as an optimized uni-
form liner at the optimal point, while giving more noise suppression at other
frequencies. These results lend credence to the concept of a peripherally
segmented liner and encourage further analysis utilizing optimized peripherally
segmented liners and more realistic sources.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

August 5, 1981
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TABLE I.- EIGENVALUES AT OPTIMUM ADMITTANCE FOR PLANE-WAVE SOURCE

(K =

2,

= 1.54 - 1.29i)

Radial mode

Exact solution to transcendental

number, £ equation: A% Jé(lz) - 2iR JO(AR) =0
0 2.885 - 0.489i
1 3.062 - 3.0831
2 6.592 - .422i
3 9.902 - . 2991
4 13.122 - .230i
5 16.310 - .1861
6 19.482 - .157i
7 22.645 - .135i
8 25.803 - .119i
9 28.957 - .106i

Numerical solution
computed from solving
equation (21)

2.
2.
6.
9.
13.
16.

19

22.
25.
28.

950
740
600
903
121
309

.481

644
802
956

0.4611
3.1201
.3731
.2651
.204i1
.1651
.1381
L1171
.1011
.0871

TABLE II.- EIGENVALUES AT OPTIMUM ADMITTANCE FOR PLANE-WAVE SOURCE

(K =

2,

B

= 1.54 - 1.297)

Radial mode

Exact solution to transcendental

18

number, &£ equation: AR Ji(AZ) - 2iB Jl(Az) =0
10 3.146 - 3.0411i
11 4.683 - .534i
12 8.199 - .359i
13 11.473 - .2631
14 14.684 - .207i
15 17.869 - .171i
16 21.040 - .146i
17 24.204 - .127i
18 27.362 - .112i
19 30.517 - .101i

Numerical solution
computed from solving

equation (21)

2.

4.

8.
11.
14.
17.
21.
24.
27.
30.

860
720
202
472
683
868
039
203
361
516

3.0701
.4761
.3201
.2351
.1851
.1521
L1291
L1113
.096i1
.0831




TABLE III.- EIGENVALUES AT OPTIMUM ADMITTANCE FOR PLANE-WAVE SOURCE

Radial mode
number, £

20
21
22
23
24
25
26
27
28
29

(K =2, B=

Exact solution to transcendental

equation: XQ Jé(Xg) - 2iR Jz(kz)

3.537 - 2.8761
6.203 - .485i
9.680 - .318i
12.962 - .2381
16.183 - .1911i
19.377 - .159i
22.555 - L1371
25.725 - .1201
28.888 - .1071
32.046 - .0961

1.54 ~ 1.291)

0

Numerical solution
computed from solving
equation (21)

3.277 - 2.860i
6.216 - .433i
9.680 - .2861
12.961 - .214i
16.182 - .171i
19.376 - .142i
22.554 - .1211
25.723 - .105i
28.886 - .092i
32.045 - .092i

TABLE IV.- EIGENVALUES AT OPTIMUM ADMITTANCE FOR PLANE-WAVE SOURCE

Radial mode

(KZSI

B

= 0.34 - 0.591)

Exact solution to transcendental

number,

L

COoOJOuUTdWwNnHFO

equation: Az Jé(hg) - 5if JO(AQ) =0

3.058 - 0.2774i
1.668 - 3.485i
6.589 - L2171
9.881 - .159i
13.101 - .124i
16.291 -~ .101i
19.465 - .086i
22.630 - L0741
25.790 - .065i
- .058i

28.945

Numerical solution
computed from solving

equation (21)

3.096 - 0.2601
1.476 - 3.3701i
6.609 - .1941
9.894 - .141i
13.111 - .109i
16.299 - .0891i
19.422 - .0741i
22.637 - .064i
25.796 - .055i
28.953 - .047i
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TABLE V.- EIGENVALUES AT OPTIMUM ADMITTANCE FOR PLANE-WAVE SOURCE

(X

Radial mode

number, £
10 4,744
11 1.790
12 8.182
13 11.450
14 14.663
15 17.851
16 21.024
17 24.190
18 27.350
19 30.505

5,

B

= 0.34 - 0.591i)

Exact solution to transcendental
equation: AR Ji(lz) - 5if Jl(kz) =0

0.2681
3.3541
.1881
.1411
1123
.0931
.0801
.0701
.062i
.0551

Numerical solution
computed from solving
equation (21)

4.772 - 0.244i1
1.615 - 3.226i1

8.197 - .168i
11.461 - .126i
14.672 - .100i
17.858 - .082i
21.031 - .0701i
24.196 - .0601
27.356 - .052i
30.512 - .045i

TABLE VI.- EIGENVALUES AT OPTIMUM ADMITTANCE FOR PLANE-WAVE SOURCE

(K

—

Radial mode

number, £
20 2.157
21 6.212
22 9.658
23 12.940
24 16.164
25 19.360
26 22.540
27 25.711
28 28.875
29 32.035

20

5,

B

= 0.34 - 0.591)

Exact solution to transcendental
1
equation: AR J2(A2) - 5if J2(A2) =0

2.9301
.264i
.1691
.1281
.104i
.0871
.0751
.0661
.059i
.053i

Numerical solution
computed from solving
equation (21)

2.003 - 2.7701

6.234 - .2231
9.671 - .152i
12.949 - .115i
16.171 - .092i
19.366 - .077i
22.546 - .066i
25.717 - .057i
28.881 - .050i1
32.042 - .043i




TABLE VII.- EIGENVALUES AT OPTIMUM ADMITTANCE FOR PLANE-WAVE SOURCE

Radial mode
number, £

OOV d WwNEFO

(K = 10, B = 0.21 - 0.45i)

Exact solution to transcendental
1
equation: JO(AQ) - 10iB JO(KR) =

0

Numerical solution
computed from solving
equation (21)

0.194i

2.865 -
6.395 - .219i
9.736 - .179i
2.086 - 5.0241
12.988 - ,.145i
16.198 - .121i
19.387 - .103i
22.573 - .0901i
25.730 - .0791
28.892 - .071i

2.912 - 0.1851
6.439 - .191i
9.769 - .152i
1.742 - 4.713i
13.013 - .121i
16.220 - .100i
19.406 - .084i
22.580 - .072i
25.748 - .062i
28.911 - .052i

TABLE VIII.- EIGENVALUES AT OPTIMUM ADMITTANCE FOR PLANE-WAVE SOURCE

Radial mode
number, £

10
11
12
i3
14
15
16
17
i8
19

(K =10, B = 0.21 - 0.451)

Exact solution to transcendental
equation: Ji(hg) - 10iB Jq(Ap) =

o

Numerical solution
computed from solving
equation (21)

4.521 - 0.232i
8.011 - .202i
2.142 - 4.9271
11.321 - .162i
14.561 - .133i
17.766 - .112i
20.952 - .096i
24.126 - .084i
27.293 - .075i
30.455 - .068i1i

4.571 - 0.2111%i
8.048 - .175i
1.816 - 4.618i
11.349 - .138i
14.583 - .112i
17.785 - .091i
20.969 - .079i
24.142 - .068i
27.309 - .059i
30.473 - .050i
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TABLE IX.- EIGENVALUES AT OPTIMUM ADMITTANCE FOR PLANE-WAVE SOURCE

(X

= 10,

B =0.21 - 0.45i)

- 10iB J2(X2) =0

Radial mode Exact solution to transcendental

number, £ equation: Jé(AZ)
20 5.994 - 0.2391
21 9.504 - .188i
22 2.323 - 4.628i
23 12.822 - .150i
24 16.069 - .124i
25 19.280 - .105i
26 22.472 - .0911
27 25.651 - .080i1i
28 28.822 - .0721
29 31.987 - .0651i

Numerical solution
computed from solving
equation (21)

6.041 - 0.213i

9.536 - .162i
2.019 - 4.2911
12.846 - .128i
16.089 - .104i
19.297 - .0871
22.487 - .075i
25.666 - .065i
28.836 - .057i
32.003 - .048i

TABLE X.- EIGENVALUES FOR TWO-STRIP PERIPHERALLY SEGMENTED LINER

22

(r=1, s=2, K=2,
M
L
1 3 5

0] 1.363 - 1.918i| 1.346 ~ 0.3391}1.276 — 0.254i
1] 3.450 - .388i§f 2.484 - 1.283i}2.826 - 3.044i
2| 6.824 - .209i| 2.830 - 3.044i(3.323 - .374i
3110.044 - .144i| 3.416 - .2661i|3.710 - .471i
4113.225 - .109i| 5.041 - .213i(3.638 - 2.369i
5116.391 - .088i| 6.483 - .231i|4.616 - .684i
619.549 - .074i| 6.813 - .188i|5.045 - .209i
7122.703 - .063i| 8.370 - .153i{6.469 - .230i
8[25.853 - .055i| 9.831 - .150i(6.810 - .190i
9129.002 - .048i(10.039 - .134i(7.810 - .180i

By = 1.54 - 1.29i, B_ = 0.0 + 0.0i)

2

6 10
1.285 - 0.230i(1.289 - 0.
2.823 - 3.0461i|2.825 - 3
3.300 - .326i|3.295 -
3.581 - 2.3931)13.599 - 2.
3.817 - .3111i|3.830 -
5.044 - .212i|5.045 -
5.024 - 1.552i|5.179 - 1.
5.765 - .409i(5.851 -
6.483 - .195i(6.514 -
6.813 - .183i(6.817 -

2281

.048i
.3251

414i

.3231
L2121

5591

.6281
.190i
1791




OO0V d WO

TABLE XI.- EIGENVALUES FOR TWO-STRIP PERIPHERALLY SEGMENTED LINER

2.815
3.346
6.478
9.828
13.067
16.266
19.446
22.614
25.776
28.934

]

I

0.388i
3.7861
.442i
.314i
.2441
.1981
.1661i
1411
1211
.1031

Bl = 1.54 - 1.291,

82 = 0.0 + 0.0i)

=2, K=25,
3

1.352 - 0.124i
3.159 -~ .147i
4.786 - .158i
3.681 - 3.5791
6.108 - .442i
6.516 - .2151
5.950 - 6.9381
8.130 - .198i
9.611 - .315i
9.816 - .2191i

M
5 6 10
1.319 - 0.142i}1.258 - 0.126i]1.281 - 0.1131
3.111 - .149i|3.083 - .148i(3.088 - .143i
3.971 - .204i|3.765 - .2381{3.869 - .193i
4.796 - .151i{4.793 - .157i|4.796 - .153i
4.561 — 3.024i;5.404 - .355i|5.651 - .3451
6.101 - .290i|6.211 - .247i]6.330 - .1861
6.516 - .211i{6.533 - .212i{6.566 - .193i
5.959 - 6.944i|5.960 - 6.9391|5.959 - 6.945i
6.362 - 6.6241(6.477 - 5.5631(6.377 - 6.634i
7.544 - .205i16.392 - 6.5671|7.557 - .182i

TABLE XII.- EFFECT INCREASING NUMBER OF STRIPS HAS ON EIGENVALUES OF

CONOULd WK O

PERIPHERALLY SEGMENTED LINER (T = 1, K = 2,
Bl = 1.54 - 1.291, 82 = 0.0 + 0.01)
S

2 4 10
1.289 - 0.228i 2.046 - 0.768i 1.568 - 1.7701
2.825 - 3.048i 2.504 - .678i 2.224 - 1.7151
3.295 - .325i 2.982 - 2.8081 2.978 - 1.539i
3.599 - 2.414i 3.393 - 2.013i 3.476 - .479i
3.830 - .323i 3.912 - .265i1i 3.917 - 1.3131
5.045 - .212i 5.063 - .275i 4.888 - 1.2081
5.179 - 1.559i 5.098 - 1.202i 5.138 - .355i
5.851 - .628i 5.926 - 1.033i 5.813 - .7041i
6.514 - .1901i 6.529 - .173i 6.524 - .2831
6.817 - .179i 6.836 - .167i 6.844 - .252i
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TABLE XIII.- EFFECT INCREASING NUMBER OF STRIPS HAS ON EIGENVALUES OF

PERIPHERALLY SEGMENTED LINER (T =1, K = 5,

By = 1.54 - 1.29i, B, = 0.0 + 0.0i)
s
L
2 4 10

0 1.281 - 0.113i 1.869 - 0.332i 2.603 - 0.453i
2 3.088 - .143i 2.885 - .351i 3.895 - .768i
3 3.869 - .193i 4.154 - .394i 4.882 - .663i
4 4.796 - .153i 4.697 - .248i 5.656 - 1.024i
5 5.651 - .345i 6.077 - .862i 4.732 - 3.420i
6 6.330 - .186i 6.296 - .226i 5.982 - .953i
7 6.566 - .193i 6.664 - .302i 5.625 - 3.190i
8 5.959 - 6.945i 6.814 - 1.011i 6.396 - .809i
9 6.377 - 6.634i 6.092 - 6.825i 6.864 - .604i
10 7.557 - .182i 6.381 - 6.390i 6.576 - 4.165i

TABLE XIV.- REDISTRIBUTION OF ENERGY INTO MULTIPLE STANDING WAVES BY

PERIPHERALLY SEGMENTED LINER (T = 1,

K= 2, Bl = 1.54

82 = 0.0 + 0.01)

- 1.29i,

Series Uniform liner Pe?ipheral liner Pe?ipheral liner|Peripheral l%ner
coefficients, values with 2 strips with 4 strips with 10 strips
Pog (s = 2) (s = 4) (s = 10)
Pyoo 0.213 + 0.1881i|~0.347 - 0.188i |-0.063 + 0.266i {0.525 + 0.0001i
P10 .000 + .000i .834 + .0001 -.340 - .3361i |-.301 + .337i
P20 .000 + .000i{ -.200 + .208i .539 + .000i |-.238 - .094i
PO3O .000 + .0001 .187 - .028i ~.275 - .347i |-.015 + .l124i
Pyao .000 + .000i .001 - .084i .077 - .075i |-.115 - .024i
Pyso .000 + .0001i .067 - .0841 155 + .197i .004 + .087i
Poeo .000 + .000i .014 - .027i ~-.006 + .009i |-.086 + .017i
Py70 .000 + .000ij{ -.027 + .031i .005 - .036i .015 + .094i
PO8O .000 + .000i{ -.010 - .010i ~-.018 + .045i |-.092 - .034i1i
P090 .000 + .0001 .014 - .021i ~.018 + .008i .039 + .272i
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Uniform liner

Peripherally segmented liner

Figure 1l.- Duct liner concepts.
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Figure 2.- Semi-infinite circular duct.
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Figure 3.- Peripheral liner with periodicity of T = 4.
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Re(PK)
o
T

-2.00

Figure 4.~

B =

)

Im(P

~2.00

Exact value

Value computed from this analysis

1 I

.50
R

Real part of £ = 0 radial mode for K =

1.54 - 1.29i, and XQ = 2.885 - 0.4889i.

Value computed from this analysis

Exact value

| 1
.50
R

Figure 5.- Imaginary part of £ = 0 radial mode for

B =

1.54 - 1.29i, and XQ = 2.885 - 0.4889i.
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Value computed from this analysis

Exact value

Re (

| ]
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Figure 6.- Real part of £ = 4 radial mode for K
B =1.54 - 1.29i, and Xg = 13.122 - 0.23i.
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Exact value
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FPigure 7.- Imaginary part of & = 4 radial mode for
B =1.54 - 1.29i, and XQ = 13.122 - 0.23i.
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Figure 8.- Real part of £ = 9 radial mode for K = 2,
B =1.54 - 1.29i, and Ag = 28.957 - 0.1061i.
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Figure 9.~ Imaginary part of £ = 9 radial mode for K = 2,

B =1.54 - 1.29i, and KQ = 28.957 - 0.1061i.
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Figure 10.- Real part of &% = 0 radial mode for X = 10,
B 0.21 - 0.45i, and AQ = 2.865 -~ 1,94i.
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Figure 11.- Imaginary part of £ = 0 radial mode for K = 10,
B =0.21 - 0.45i, and AR = 2.865 - 1.94i.



Value computed from this analysis

Exact value

Re(PQ)

-4.00 | |

Figure 12.- Real part of £ = 4 radial mode for K = 10,
B =0.21 - 0.45i, and Al = 12.988 - 0.145i.
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Figure 13.- Imaginary part of £ = 4 radial mode for K = 10,
B = 0.21 - 0.45i, and Ag = 12.988 - 0.145i.
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Figure 14.- Real part of £ = 9 vradial mode for K = 10,
B = 0.21 - 0.45i, and KQ = 28.892 - 0.071i.
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Figure 15.- Imaginary part of £ = 9 radial mode for K = 10,
B = 0.21 - 0.45i, and Az = 28.892 - 0.071i.



=D Exact value

Value computed from this analysis

Figure 16.- Real part of radial derivative of the £ = 0 radial mode for
K=2, B =1.54 -1.29i, and KQ = 2.885 - 0.4889i.
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Figure 17.- Imaginary part of radial derivative of the £ = 0 radial mode
for X =2, B =1.54 - 1.29i, and kz = 2.885 - 0.4889i.
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Exact value

-20.00
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Figure 18.- Real part of radial derivative of the £ = 4 radial mode
for K=2, B =1.54 - 1.29i, and AQ = 13.122 - 0.23i.
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Figure 19.- Imaginary part of radial derivative of the £ = 4 radial mode
for K=2, R =1.54 - 1.291i, and AQ = 13.122 - 0.231i.
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Figure 20.- Real part of radial derivative of £ = 9 radial mode
for XK =2, B =1.54 - 1.29i, and Al = 28.954 - 0.106i.
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Figure 21.- Imaginary part of radial derivative of £ = 9 radial mode
for k=2, B =1.54 - 1.29i, and AR = 28.954 - 0.1061i.
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T Value computed from this analysis

Exact value

Figure 22.- Real part of radial derivative of £ = 0 radial mode
for X =10, B = 0.21 - 0.45i, and Kg = 2.865 - 0.194i.
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Figure 23.- Imaginary part of radial derivative of £ = 0 radial mode
for X =10, B = 0.21 - 0.45i, and AQ = 2.865 - 0.194i.
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Figure 24.- Real part of radial derivative of & = 4 radial mode
for X =10, B = 0.21 - 0.451i, and AQ = 12.988 - 0.145i.
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Figure 25.- Imaginary part of radial derivative of £ = 4 radial mode
for K =10, B = 0.21 - 0.45i, and AQ = 12.988 - 0.145i.
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Figure 26.- Real part of radial derivative of £ = 9 radial mode
for K =10, R = 0.21 = 0.45i, and XQ = 28.892 - 0.01711i.

7Q2.00 ~
Value computed from this analysis
Exact value
T
ade g L —
—
E
=
-0, 00 —-»——- L !
0 .50 1.00

R

Figure 27.- Imaginary part of radial derivative of £ = 9 radial mode

for X =10, B = 0.21 - 0.45i, and XQ = 28.892 - 0.071i.

38



Transmission loss TL, dB
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Figure 28.- Comparison of transmission loss predicted at
optimum admittance for plane-wave source.
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Figure 29.- Even peripherally segmented liner with
eight strips (S = 8).
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