NASA-CR-164903
19820002159

A Reproduced Copy OF

NASA CR-164, 903

Reproduced for NASA
 by the

NASA Scientific and Technical Information Facility

LIBD!ov nomy
SEP 211983
LANGL.
$E R$
LIBRARY,
HAMPTON VIRGINIS

DEPABTHENT UF MECHANICAL GMGINEERING AND MECHANICS SCHOO OF ENGINEERING OLD DOMINION UNLVERSITX MORFOLK, VIRGINIA

COMPARATIVE STUDY OF FLARE CONTROT LAVS

By
A.A. Nadkarni, Principal Investigetor

(NASA-CR-104y(U3) CUMEARAL_VL STUDY CF FLARE
$\mathrm{NB}<-10032$
CUNTicha LANS Eindi heport. 15 Dec. 1s7y -
vact. 1981 (Ola Doainich Univ., Noritolk.
CSCL U1C
Unclas
27747
Final Report
For the period Decamber 15, 1979- October 15; 1981

Prepared for the
National Aeronautics and Space Administration Langley Research Center Hampton, Virginia

Under
Rescarch Grant NSG 1480
J.F. Creedon, Technical Nonitor

Flight Rlectronics Division
department of mechanical engineering and mechanics SCHOOL OF ENGINEERING OLD DOMINION UNIVERSITY NORFOLK, VIRGINLA

COMPARATIVE STUDY OF FLARE CONTROL LANS

By
A.A. Nadkarni, Principal Investigator

Prepared for the
National Aeronautics and Space Admiristration
Langley Research Center
Hampton, Virginia

Under

Research Grant NSG 1480
J.F. Creedon, Technical Monitor

Flight Electronics Division
Submitted by the
Old Dominion University Research Foundation
P. O. Box 6369
Norfolk, Virginia $23508-0369$
Page1
INTRODUCTION 3
DESCRIPTION OF THE SYSTEM MODEL.3
Introduction 3
Aircraft Dynamics with Wind Disturbances 5
Wind Model
The Basic Augmented System: Aircraft in a Wind Disturbance 8
Field 10
DERIVATION OF THE CONTROL LAW11
IMPLEMENTATION OF THE CONTROL LAH 11
Incroduction11
Forced Regulator Method 12
Regulator Method 12
RESULTS 16
CONCLUSIONS 20
REFERENCES
LIST Of TABLES
Table141 Inertial wind profiles simulated
LIST OF FIGURES
Eigure211 Coordinate frame and flight geometry2a Flare response: altitude, sink rate, pitch, and pitchrate; no wind22
2b Flare response: thrust, throtile, and elevator; no 23wind

LIST OF FIGURES (CONTINUED)

Figure

Page

3a

Flare response: altitude, sink rate, pitch, and
pitch rate; wind profile A 24
3b
Flare response: thrust, chrottle, and elevator;
wind profile A25

Flare response: wind velocity components at the wing; wind profile A26
$4 a$ Flare response: altitude, sink rate, pitch, and pitch rate; wind profile B 27
$4 b$ Flare response: thrust, throttle, and elevator;
wind profile B 28Flare response: wind velocity components at thewing; wind profile B29
58 Flare response: altitude, sink rate, pitch, and pitch rate; wind profile C 30
5b Flare response: thrust, throttle, and elevator; wind profile C 31
$5 c$ Flare response: wind velocity components at the wing; wind profile C 32
6a Flare response: altitude, sink rate, pitch, and pitch rate; wind pro\&ile D 33
Flare response: thrust, throttle, and elevator;
wind profile D 34
Flare response: wind velocity components at the wing; wind profile D 35
Flare response: altitude, sink rate, pitch, and pitch rate; wind profile E 36
Flare response: thrust, throttle, and elevator;
wind profile E 37
Flare response: wind velocity components at thewing; wind profile E38

LIST OF FIGURES (CONCLUDED)

FigurePageBa Flare response: alcitude, sink rate, pitch, and pitch rate; wind profile F 39
8 b wind profile F. 40
Bc Flare response: Wind
wing; wind profile F 41
9 a Flare response: altitude,
pitch rate; wind profile 42
9b Flare response: thrust, chrottle, and elevator;
wind profile G 43
9c Flare response: wind velocity components at the
wing; wind profile G 44
10a Flare response: altitude, sink rate, pitch, and pitch rate; wind profile H 45
10b Flare response: thrust, throttle, and elevator; wind profile H 46
10c Flare response: wind velocity components at the wing; wind profile H 47

COMPARATIVE STUDY OF GLARE CONTROL LAWS

By

Arun A. Nadkarni*

INTRCDUCTION

This report presents the development of a digital, 3-D, automatic control 1 aw designed to achieve an optimal transition of a B-737 aircraft between glide slope conditions and the desired final touchdown condition. The digital control law developed here is a time-invariant, state-estimate feedback law, and the design is capable of using the Microwave Landing System (MLS) under development by the Federal Aviation Agency (FAA). The study of a curved flight path leading to a steep final approach and touchdown under low visibility conditions is part of the Terminal Configured Vehicle (TCV) program, sponsored by NASA/Langley Research Center (LaRC). The goals of this program include the reduction of aircraft noise in communities surroundings airports, the reduction of fuel consumption, the reduction of the effects of adverse weather conditions on aircraft operations, and the efficient use of sirspace in congested terminal areas. A specific objective which supports these goals is the development of the capability to perform automatic flares from steep glide slopes to precise touchdown locations.

The major reason for the use of steep glide slopes is the resultant noise reduction in comparison with the currently used 2.5° to 3° glide slopes with the Instrument Landing System (ILS). The steeper glide slope reduces the noise levels perceived on an identical segment of the ground for two reasons: first, at equal distances from the touchdown point, the aircraft flying a steeper, say a six-degree glide slope, is at about twice the altitude compared to that flying a three-degree glide slope. This difference in altitude causes a considerable reduction in the noise level perceived on the ground even if the two sources generate identical

[^0]noise levels. Second, en aircraft flying a steeper glide slope requires a lower thrust setting, and this causes further reduction in the noise level perceived on the ground. The reduction in thrust setting has the added advantages of reducing the fuel consumption during the final phase of the filght path. The ability to fly varying glide slopes may also provide an effective method to avoid encountering vortices generated by larger alrcraft. This versatility may result in a more efficient use of the alrspace.

This is not without its attendent disadvantages. The use of steeper glide slopes for noise reduction requires that the aircraft be flown in a high-drag, low-power-setting configuration. In addition to this situation, the higher sink rates associated with these paths allow pilots considerably less reaction time to recognize an emergency and to take appropriate corrective actions in the event of atmospheric disturbances (e.g., gists, wind shears, etc.), systen or sensor fallures, etc.

There is also a need for reducing touchdown dispersions in the presence of varying flight: conditions encountered during the flare portion of the landing. The reduction in the touchdown dispersions greatly facilitates high-speed rollout, which significantly increases the traffichandilng capacity of the cerminal. It is obvious that developing capability to perform automatic flarc maneuvers will accomplish many of these goals.

In the next section, "Description of the System Model," the system equations of motion of the aircraft are presented. These linear equations represent the perturbed motion of the aircraft from the nominal glide slope trajectory. A method of incorporating the spatial, low-level wind shears Into these perturbed equations of motion is indicated. It is shown that the gystem equations then assume the familiar form of the linear regulator problem, acted upon by a constant disturbance. Under "Derivation of the Control Law," a design procedure to compute a digital, time-invariant, optimal control law for the discrete regulator problem acted upon by a constant disturbance is indicated. This is followed by a section describing implementation of the control law. Under "Results," performance curves are presented to show the capability of this digital, state-feedback

Controller to perform the optimal flare maneuvers in the presence of various wind shear conditions indicated. In the final section the conclusions derived from the study of the automated flare maneuvers are listed along with scope for further work.
dESCRLPTION OF THE SYSTEM MODEL

Int roduction

The development of the mathematical model in this study follows closely the development of a similar model described in detail in references 1 to 6 . The complete derivation of the system equations is described in these references; however, a brief outline of the derivation $1 s$ given below for the sake of completeness.

Aircraft Dynamics with Wind Disturbances

This study is concerned only with the final phase of flight, viz the flare. Thus, the alrcraft is approaching the runway on a certain initial glidepath. The aircraft is aligned with the runway, has a zero or at most a very small yaw angle with respect to the runway as well as a zero bank (or roll) angle, except in the case of a significant crosswind. Therefore, all the lateral dynamics are neglected during the analysis and only longitudinal dynamics are considered.

With these assumptions and assuming small perturbations about the nominal path, the nonlinear equations of motion of the aircraft can be linearized using well-known methods. The complete equations of motion and the inearization procedure are outlinei in references 5 to 7. These nonlinear equations are derived assuming (1) a flat earth, (2) an earthfixed frame of reference, (3) a rigid aircraft, and (4) that second-order cerms are neglected. These equations of motion are coupled. However, for a steady-state filght condition, the equations can be decoupled into two groups, the longitudinal equations and the lateral equations of motion. As already indicated, only longitudinal equations of motion are dealt with in this atudy.

The decoupled, nonlinear longitudinal equations of motion are then linearized about the nominal trajectory (1.., the steady-state flight of $-3^{\circ},-6^{\circ}$ glide slope, etc.) to obtain the linear perturbation equations in the state variable form. The equations are expressed in a stability axes coordinate frame attached to the aircraft at the center of mass (fig. 1). The final linearized, longitudinal equations of motion, including wind disturbances, assume the following standard form (refs. 1-4):
$\dot{x}=A x+B u+D_{w}$
where
$x=\left(C u^{\prime} \alpha q \frac{x-x_{0}}{U_{0}} \frac{z-z_{0}}{U_{0}} \delta T \delta t h \delta s \delta e\right)^{T}$
$u=\left(\delta_{\dot{e}}^{\circ} \delta_{s}^{\circ} \delta t h \delta_{s p}\right)^{T}$
and
$w=\left(u_{w}^{\prime} \alpha_{w} q_{w}\right)^{T}$
where the states ($x^{\prime} s$) and the controls ($u^{\prime} s$) are
$\theta \quad=$ perturbation in pitch angle
$u^{\prime} \quad-\begin{gathered}\text { perturbation in velocity along } \\ \text { normalized }\end{gathered} x_{s}$ (stability) axis
a - perturbation in angle of attack
q \quad perturbacion in the pitch rate
$\frac{x-x_{0}}{U_{0}}=\begin{aligned} & \text { perturbation in the horizontal position of the aircraft } \\ & \\ & \text { (normalized), in inertial frame }\end{aligned}$
$\frac{z z_{0}}{v_{0}}=\underset{\text { (normalized), in inertial frame }}{ } \quad$ perturbation in the vertical position of the aircraft
$\delta T=$ perturbation in the thrust
8th $=$ perturbation in the throttle position
$\boldsymbol{\delta s}_{\mathrm{s}} \quad$ perturbation in stabilizcr position
Se arturbation in the elevator position

de \quad perturbation in the elevator rate

6: perturbation in the stabilizer rate
dth = perturbation in the throttle rate
5sp $=$ perturbation in spoiler position
The subscript w indicates the perturbation in the variable due to wind disturbances. Note that, out of the 10 variables in the state vector x, the first 4 variables are sufficient to describe the longitudinal perturbed motion of the aircraft. The next rwo variables vir $\frac{x-x_{0}}{u_{0}}$ and $\frac{z-z_{0}}{U_{0}} \quad r=e$ defined for designing a $4-\mathrm{D}$ control law to minimize the deviations from the nomina?. path, if desired. The perturbation in the thrust is defined as a state variable in order to model the thrust dynamics taking the "spool up" time of the engine into account, at least lincarly. The last three variables, the perturbations in the position of the throttle, the stabilizer, and the elevator, were added as a result of the design decision to command the rates of these concrols.

The position of the spoiler was included as a control variable in case it is decided to study the effects of direct lift control in future studies. In the present work, however, the spoiler was made inoperative during the simulation runs.

Wind Model

In order to complete and simulate the system model given by equation (1), the wind perturbation vector w musc be specified. The components of this vector consist of $u^{\prime}{ }_{w}$, the normalized wind velocity in the $+x_{s}$ direction; α_{w}, the perturbation in the angle of attack due to the wind; and q_{w}, the perturbation in the pitch rate of the aircraft due to wind. These wind variables may be logically modeled as the sum of a gust component with zero mean value and a steady component.

The gust components are modeled using the well-known Dryden spectrum (refs. 5-7). This method consists of using spectral factorization methods to obtain a dynamical system which generates a random process having the specified power spectral density when driven by white noise. Because of
the linearity of the system, the three gust components can be treated individually; thus, only appropriate components are included in the longitudinal equations (eqs. (1a) - (1d)). The detailed derjvation of the gust components can be found in references 3 to 6 and will not be given here.

The Dryden spectra describe the statistical behavior of the wind gust velocities in the aircraft body-fixed coordinates, and the gust components can be expressed in the following form (refs. 3-7):

$$
\begin{equation*}
\dot{H}_{g}=A_{w w} W_{g}+B_{\xi_{1}} \xi_{1} \tag{2}
\end{equation*}
$$

where

$$
v_{g}=\left(\alpha_{g b} \dot{a}_{g b} q_{g b} u_{g b}\right)^{T}
$$

These four gust components constitute the four components (x_{11} to x_{14}) of the state vector. The elements of $A_{w w}$ and B_{51} can be obtained from reference 3 .

The sceady-state components of the wind are simpler to model since they do not involve spectral factorization. These components can be modeled as the output of a first order deterninistic plant, corrupted by a whice noise. This can be done in different ways (refs. 3 and 4).

To permit modeling of spatial shears, a new method was pruposed (refs. $8-10$). The model also makes the whole system controliable, and the feedback gain matrix can be computed as is done in the usual manner for the regulator problems without the need for splitting the matrix Riccati equation in two.

Let the aircraft be coming down on a nominal glide slope in a steady flight condition. Also, for simplicity, let the aircraft be flying in a disturbance-free atmosphere $\{t=s, s<0\}$. (It is noted that the method can be trivially extended to the situation when the aixcraft is flying in a constant wind, for $\{t=s, s<0\}$.) Now, at $t=0$ let the aircraft encounter a step wind, with a component $U W_{0}$ in the $+x_{e}$ direction and a conponent $W_{w_{0}}$ in the $\boldsymbol{r}_{\mathrm{e}}$ direction. Also, let the subsequent wind field be
described by a linear shear proflle with a shear rate of $X \mathrm{kn} / 30.48 \mathrm{~m}$ (100 ft) in the horizontal wind velocity, and $2 \mathrm{kn} / 30.48 \mathrm{~m}$ (100 ft) in the vertical wind velocity. In the present notation, $U_{W_{0}}>0$ represents a tailwind, $W_{w_{0}}>0$ represents a downdraft, $X>0$ represents a linear
increase in tailwind (with decreasing height), and $2>0$ represents a Inear inciease in downdraft (with decreasing height) as seen by an earthfixed observer. Then the rate of change of the perturbation wind velocity in the horizontal direction (after normalizing with $U_{i_{0}}^{s}$) is given by (ref.
10) :

$$
\begin{equation*}
\dot{u}_{W}^{\prime}=-\frac{X}{100}\left(\cos \gamma_{0} \cdot \theta+\sin \gamma_{0} \cdot u^{\prime}-\cos \gamma_{0} \cdot \alpha\right) \tag{3}
\end{equation*}
$$

Similarly, the rate of change of the normalized perturbation wind velocity in the vertical dixection is given by

$$
\begin{equation*}
\dot{W}_{W}^{\prime}=-\frac{2}{100}\left(\cos \gamma_{0} \cdot \theta+\sin \gamma_{0} \cdot u^{\prime}-\cos \gamma_{0} \cdot \alpha\right) \tag{4}
\end{equation*}
$$

Note that equations (3) and (4) yleld the perturbation components of the wind at the wing. However, due to inertia effects, the flow field over the wing does not sense these changes until it travels a few chord lengths (ref. 5). These inertia effects can be modeled by a first-order lag term with an appropriate time constant. Thus, the steady state components of the perturbation wind velocity in a shear field can be modeled as

$$
\begin{align*}
& \dot{x}_{15}=a_{1} x_{15}+b_{1} x_{17} \\
& \dot{x}_{16}=a_{1} x_{16}+b_{1} x_{18} \\
& \dot{x}_{17}=-\frac{x}{100}\left(\cos \gamma_{0} \cdot \theta+\sin \gamma_{0} \cdot u^{\prime}-\cos \gamma_{0} \cdot \alpha\right) \\
& \dot{x}_{18}=-\frac{2}{100}\left(\cos \gamma_{0} \cdot \theta+\sin \gamma_{0} \cdot u^{\prime}-\cos \gamma_{0} \cdot \alpha\right) \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
& \dot{W}_{g}=A_{w w} W_{g}+B_{\xi_{1}} \xi_{1} \tag{6}\\
& \dot{W}_{g}=A_{w x} x+B_{\xi 2} \xi_{2}+B_{w} W_{d} \tag{7}
\end{align*}
$$

where ξ 's are white noise processes to account for the unknown disturbances and the wind vectors are

$$
\begin{aligned}
& w_{g}=\left(\alpha_{g b} \dot{a}_{g b} q_{g b} u_{g b}^{\prime}\right)^{T} \\
& w_{g}=\left(u_{w}^{\prime} w_{w}^{\prime} u_{w_{a}^{\prime}}^{w_{w}^{\prime}}\right)^{T}
\end{aligned}
$$

Here the subscripts g and s refer to gust and steady components, respectively. The elements of the matrices $A_{\text {ww }},{ }^{B} \xi_{1}$, and $B_{\xi_{2}}$ can be obtained from references 3 , and 4. The elements of the $A_{\text {wx }}$ and B_{w} can be obtained from equation (5) and references 9 and 10. Defining a composite wind vector

$$
\begin{equation*}
W \Delta\left(W_{g}^{T} W_{s}^{T}\right)^{T} \tag{8}
\end{equation*}
$$

the wind vector w defined in equation (1) can be expressed as

$$
w=\left[\begin{array}{ll}
c_{w g} & c_{w s}
\end{array}\right]\left\{\begin{array}{l}
w_{8} \tag{9}\\
w_{3}
\end{array}\right\}
$$

where $\left[c_{w g} C_{w s}\right.$] is an appropriate transformation matrix (ref. 3). The steady winds, the wind shears, and the gusts can now be included in the system equations (1 a) to (1d).

The complete system equations, with the irclusion of the wind model, can now be expressed in the standird state variable form as
$\left\{\begin{array}{l}\dot{x}_{\dot{2}} \\ \dot{W}_{g} \\ \dot{W}_{B}\end{array}\right\}=\left[\begin{array}{lll}A & D C_{w g} & \Delta C_{w s} \\ 0 & A_{w w} & 0 \\ A_{w: ~} & 0 & 0\end{array}\right]\left\{\begin{array}{l}x \\ W_{8} \\ W_{s}\end{array}\right\}+\left[\begin{array}{l}B \\ 0 \\ 0\end{array}\right] u+\left[\begin{array}{l}0 \\ 0 \\ B_{w}\end{array}\right] W_{d}+\left[\begin{array}{ll}0 & 0 \\ B_{\xi 1} & 0 \\ 0 & B_{\xi 2}\end{array}\right]\left\{\begin{array}{l}\xi_{1} \\ \xi_{52}\end{array}\right\}$
or

$$
\begin{equation*}
\stackrel{\Delta}{x}=\frac{\vec{A}}{x}+\vec{B} u+\overrightarrow{B_{w}} W_{d}+\vec{B}_{\xi} \boldsymbol{\xi} \tag{10}
\end{equation*}
$$

It is now possible to undertake the design of the optimal control law for the above problem by invoking the sepayation theorem in the usual manner. The general approach to study the flare performance (refs. 1, 2 , 8) is briefly as follows. The longitudinal equations of motion of the aircraft (eq. (10)), which are perturbations about the nominal glide slope trajectory, are discretized (ref. 11). The constant gain, state feedback optimal control law, designed in a manner described below, is incorporated into the system equations, and the system is expressed as a deterministic clcsed-loop system. The difference between the initial glide slope and the desired tounhdown conditions is supplied as initial condition x_{0}, and the time response of the deterministic closed-loop system is simulated on a digital computer (refs. 8, 9, 12).

The complete system equations for the augmented system can be expressed in discretized form as (refs. 8-10):

The optimal time-invariant control law for this system can now be computed using the method described in references 13 to 15 . The control law can be expressed as

Substituting for $\mathbf{u}_{\mathbf{2}}$ as
$u_{2}=\frac{u_{k+1}-u_{k}}{\Delta T}, \quad \Delta T=$ tine interval
$u_{k+1}=H_{11} x_{k} \Delta T+\left(H_{12} \Delta T+1\right)_{u_{k}}+H_{12} W \Delta T, u_{k=0}=u_{0}$

The initial condition u_{0} can be obtained from the expression for the minimum performance index (ref. 16) as
$u_{0}=\left(P_{22}^{-1} P_{12}^{T} x_{0}+W\right)$
where
$P=\left[\begin{array}{ll}P_{11} & P_{12} \\ P_{12} T & P_{22}\end{array}\right]$
is the steady-state solution of the Riccati equation. This matrix is already ottained during computation of the constant, state feedback gain matrix above.

Substituting the above control law, the original system equations can now be solved by simulation on a digital computer as usual.

IMPLEMENTATION OF THE CONTROL LAW

Introduction
In this section, two methods of implementing the digital, state feedback, optimal control law derived in the previous section are discussed briefly. Their relative advantages and disadvantages are discussed under "Conclusions."

Forced-Regulator Method

The dichotomy of this method of implementation can be described as fol'ows. By running a few trial simulations, the values of the rates of
throttle and elevator are found winch will flare the airplane from the nominal glide slope (-3° in the present case) to an acceptable touchdown condition in the absence of any winds, either gusts or shears. The values of these ramps on the throttle and elevator are now stored and forced on the airplane (in an open-loop manner) even when it is flaring through a given wind shear field, However, the perturbations in the state variables from the baseline no-winds trajectory due to the effect of the wind shears are now used to close the loop and generate an additional control using the control law derived in the previous section. The total control therefore corsists of two parts: (1) the open-loop ramps (i.e. values of the rates of throttle and elevator) derived for the no-wind flare performance and (2) the state feedback, optimal control law designed to drive the deviations from the baseline no-wind trajectory to zero. The two parts are added algebraically to yield the total control required. The particuiar atructure of the controller leads to the name "Forced-Regulator Method."

Regulator Method

The concept of this method is very simple. The differences between the terminal (touchdown) conditions and the initial glide slope are supplied as the initial conditions for the optimal, state feedback control law derived in the previous section. The terminal conditions used could be either those on an equilibrium trajectory with sink rate of $0.61 \mathrm{~m} / \mathrm{s}$ (2 ft / s) or any desired toushdown conditions. The later case was extensively studied in previous works of the author (refs. 8-10, 12).
A few runs were simulated using the terminal conditions on an equilibrium trajectory with a sink rate of $0.61 \mathrm{~m} / \mathrm{s}(2 \mathrm{ft} / \mathrm{s})$ to derive the initial conditions for generating the closed-loop control law, but the ref ilts were found to be very unsatisfactory, and so are not presented here. The disadvantages are discussed in detail under "Conclusions."
RESULTS
In this section the performance of the discrete, optimal control law implemented using the Forced-Regulator Method described in the previous
section is evaluated. The plant djnamics used are chose of the TCV Boeing737 research aircraft at NASA/LaRC. The aircraft is assumed to be on a 3° glide slope when the flare maneuver is initiated at a specified height. Simultaneously, the aircraft enters one of the example shear profiles tabulated in table 1.

Note that, even though an optimal feedback gein matrix was computed for each case, for purposes of simplicity in onboard implementation of the control law, it was decided to compute only one gain setting for the shear profile A, and to use the same setting for all the cases simulated. This procedure would eliminate the need for changing the gain setting ouboard the aircraft, each time a different shear profile is encountered by the aircraft. The time response curves presented indicate the performance of the Forced-Regulator Mechod of implementation of the control law described earlier.

After a few initial trial simulations, it was found that, in the absence of any winds, ramping back the elevator at the rate of $0.7835 \mathrm{deg} / \mathrm{s}$ and the throttle at the rate of 4.193 deg/s yielded a very satisfictory flare performance (fig. 2). Touchdown occurred at 6.2 s at a horizontal distance of $393.8 \mathrm{~m}(1,292 \mathrm{ft})$. The sink rate at touchdown was $0.67 \mathrm{~m} / \mathrm{s}$ ($2.186 \mathrm{ft} / \mathrm{s}$) and the pitch attitude was 2.662°. The value of the thrust was reduced to $10,822 \mathrm{~N}(2,433 \mathrm{lb})$. It was noted, however, that the value of the sink rate at touchdown was very sensitive to the comand rate of the elevator.

With the flare trajectory thus obtained by forcing the ramps on the elevator and the throttle as nominal or baseline trajectory, a wind shear field of profile A (table 1) was forced on the airplane. The state feedback optimal control law was activated to generate an additional control to null the deviations of the aircraft from the nominal trajectory (fig. 2). Figures $3 a$ to $3 c$ show the flare performance as the aircraft flew through the shear profile A. The touchdown occurred at 6.1 s at a horizontal distance of $38 \%, 7 \mathrm{~m}(1,272 \mathrm{ft}$) from the initiation of the flare maneuver, at a pitch attitude of 4.387°. The sink rate at the touchdown was $0.66 \mathrm{~m} / \mathrm{s}$ ($2.163 \mathrm{ft} / \mathrm{s}$) and the flare was inftiated at 15.54 m (51 ft) above ground level.

Table 1. Inertial Wind Frofiles Simulated.
Profile Wind Parameters
A
Tailwind increasing at $10 \mathrm{kn} / 30.48 \mathrm{~m}$ (100 fc)
Tailwind increasing at $10 \mathrm{kn} / 30.48 \mathrm{~m}$ (100 fc) Downdraft increasing at $2 \mathrm{kn} / 30.48 \mathrm{~m}(100 \mathrm{ft})$
Headwind increasing at $10 \mathrm{kn} / 30.48 \mathrm{~m}$ (100 ft)
Updraft increasing at $2 \mathrm{kn} / 30.48 \mathrm{~m}(100 \mathrm{ft})$
Headwind increasing at $10 \mathrm{kn} / 30.48 \mathrm{~m}$ (100 ft)
Downdraft increasing at $2 \mathrm{kn} / 30.48 \mathrm{~m}$ (100 ft)
D \quad Headwind increasing at $5 \mathrm{kn} / 30.48 \mathrm{~m}$ (100 ft)
Updraft increasing at $2 \mathrm{kn} / 30.48 \mathrm{~m}(100 \mathrm{ft})$
E Ta:liwind increasing at $5 \mathrm{kn} / 30.48 \mathrm{~m}$ (100 ft)Downdraft increasing at $2 \mathrm{kn} / 30.48 \mathrm{~m}$ (100 ft)
F
Tailwind increasing at $15 \mathrm{kn} / 30.48 \mathrm{~m}$ (100 ft)
Downdraft increasing at $2 \mathrm{kn} / 30.48 \mathrm{~m}(100 \mathrm{ft})$
Headwind increasing at $15 \mathrm{kn} / 30.48 \mathrm{~m}(100 \mathrm{ft})$
Updraft increasing at $2 \mathrm{kn} / 30.48 \mathrm{~m}(100 \mathrm{ft})$
Hecdind increasing at $15 \mathrm{kn} / 30.48 \mathrm{~m}$ (100 ft)
Updraft increasing at $5 \mathrm{kn} / 30.48 \mathrm{~m}$ (100 ft)

Figure' 3b shows that the engines were throttled down to reduce the thrust at touchdown to $10,924 \mathrm{~N}(2,456 \mathrm{lb})$. The elevator assumed a negative value to provide the necessary pitch-up attitude.

Figure $3 c$ shows the velocity components of the wind at the wing and those felt by the wing.

Figures $4 a$ to $4 c$ demonstrate the flare maneuver performed by the alrcraft entering into a wind profile B. It is again noted that, when generating the closed-loop control law for the shear profiles B through H, the optimal gain matrix computed for the shear profile A is used in all the cases, even though, in each case, the oprimal gain matrix was computed and found to be significantly different for each case.

It is clear that the reverse of the shear in both the horizontal and the vertical wind velocity components had a significant effect on the elevator history. The touchdown occurred at 6.0 s at a distance of 381.3 m ($1,251 \mathrm{ft}$) from the iniciation of the flare. The pitch attitude at touchdown was 1.404°, the sink rate was $0.607 \mathrm{~m} / \mathrm{s}(1.992 \mathrm{ft} / \mathrm{s})$, and the thrust was $10,644 \mathrm{~N}(2,393 \mathrm{lb})$. It: is found that the flare would have to be infitiated at $14.66 \mathrm{~m}(48.1 \mathrm{ft})$.

Figures 5 a to 5 s indicate the flare performance when the aircraft entered the wind profile C. The touchdown occurred at 6.1 s at a distance of $386.8 \mathrm{~m}(1,269 \mathrm{ft})$. At touchdown the ai:craft had a pitch attitude of 2.513°, a sink rate of $0.658 \mathrm{~m} / \mathrm{s}(2.162 \mathrm{ft} / \mathrm{s})$ and a thrust value of $i 2,557$ $\mathrm{N}(2,823 \mathrm{lb})$. The ilare was initiated from an altitude of $15.21 \mathrm{~m}(49.9$ $f t)$.

Figures $6 a$ to $6 c$ indicaie the flare performance when the aircraft encountered the shear profile D. The touchdown occurred at 6.0 s at a distance of $381.6 \mathrm{~m}(1,252 \mathrm{ft})$. The aircraft landed with a pitch attitude of 1.727°, a sink rate of $0.658 \mathrm{~m} / \mathrm{s}(2.162 \mathrm{ft} / \mathrm{s})$, and a thrust value of $10,244 \mathrm{~N}(2,303 \mathrm{Lb})$. The flare was initiated at an altitude of 14.78 m (48.5 ft).

Figures $7 a$ to $7 c$ illustrate the performance of the aircraft when it flared through the wind profile E. The toushdown occurred at 6.3 s at a distance of $399.9 \mathrm{~m}(1,312 \mathrm{ft})$. At touchdown the aircraft had a pitch at:titude of 3.841°, a sink rate of $0.668 \mathrm{~m} / \mathrm{s}(2.194 \mathrm{ft} / \mathrm{s})$, and a thrust value of $10,951 \mathrm{~N}(2,462 \mathrm{lb})$. The flare was initfated at an altitude of $15.69 \mathrm{~m}(51.5 \mathrm{ft})$.

Figures 8 to 10 illustrate the flare performance of the aircraft when it encountered a fairly severe shear of $+15 \mathrm{kn} / 30.48 \mathrm{~m}(100 \mathrm{ft})$ in the horizontal wind velocity. Fresently, this is very near the maximum value of shear in the horizontal wind component in which the aircraft are allowed to attempt landing.

Figures 8a to 8 c show the flare performance of the aircraft wen it encountered the shear profile F. The touchdown occurred at 5.9 at a distance of $375.5 \mathrm{~m}(1,232 \mathrm{ft})$. At touchdown the aircraft hed a pitch attitude of 4.889°, a sink rate of $0.847 \mathrm{~m} / \mathrm{s}(2.125 \mathrm{ft} / \mathrm{s})$, and a thrust value of $10,319 \mathrm{~N}(2,320 \mathrm{lb})$. The flare was initiated at a height of $15.38 \mathrm{~m}(50.45 \mathrm{ft})$.

Figures 9a to 9 c show the performance in the presence of wind profile G. The touchdown occurred at 5.9 s at a distance of $375.2 \mathrm{~m}(i, 231 \mathrm{ft})$. The aircraft had a pitch attitude of 1.096°, a sink rate of $0.67 \mathrm{~m} / \mathrm{s}$ (2.201 $\mathrm{ft} / \mathrm{s})$, and a thrust value of $11,405 \mathrm{~N}(2,564 \mathrm{lb})$ when it touched down. The flare had to be initiated at: an altitude of 14.49 m (47.55 ft).

Figures $10 a$ to $10 c$ illustrate the tlare performance of the aircraft when it encountered the shear profile H. In this case, the aircraft encountered an increasing headwind of $15 \mathrm{kn} / 30.48 \mathrm{~m}(100 \mathrm{ft})$ and an increasing updraft of $5 \mathrm{kn} / 30.48 \mathrm{~m}$ (10 ft). This was the most severe shear profile simulated in the present work. The touchdown occurred at 5.8 s at distance of $369.4 \mathrm{~m}(1,212 \mathrm{ft})$. At touchdown, the aircraft had a pitch attitude of 0.2986° (which is barely sufficient to avoid a nose-wheel landing), a sink rate of $0.679 \mathrm{~m} / \mathrm{s}(2.227 \mathrm{ft} / \mathrm{s})$, and a thrust value of $9,857 \mathrm{~N}(2,216 \mathrm{lb})$ Because of the extra lift available from the headwindupdraft combination, the aircraft needed to be flared from a much lower attitude of $14.1 \mathrm{~m}(46.25 \mathrm{ft})$.

Thus, it is seen that even with the use of a single gain setting (computed for the shear profile A), the forced-regulator method of implementing the control law tends to generate a satisfactory flare trajectory in the presence of widely different wind shear conditions.

CONCLUSIONS

regulator method of implementing the control law developed in an earlier section is quite capable of performing the required flare maneuvers in the presence of widely differing shear conditions.

It is noted that, in spite of using a single gain setting (computed for the wind shear profile A) for all the cases, three of the touchdown conditions, viz the time required for touchdown after initiation of the flare, the distance traveled to touchdown, and the thrust value at touchdown, were found to be relatively insensitive to the wind conditions. The t ime required to touch down varied from 5.8 s to 6.3 s . The horizontal distance required to touch down varied from $369.4 \mathrm{~m}(1,212 \mathrm{ft}$) to 399.9 m ($1,312 \mathrm{ft}$) - a dispersion of $\pm 15.2 \mathrm{~m}(50 \mathrm{ft})$, which is considered extremely good for the widely differing wind shear conditions studied. The thrust value at touchdown varied from a mininum of $9,857 \mathrm{~N}(2,216 \mathrm{lb}$) to a maximum of $12,557 \mathrm{~N}(2,823 \mathrm{lb})$.

Two variables, the pitch attitude at touchdown and the altitude at which the flare should be initiated [to obtain a sink rate of approximately $0.64 \pm 0.04 \mathrm{~m} / \mathrm{s}(2.1 \pm 0.12 \mathrm{ft} / \mathrm{s})$ at touchdown], were found to be sensitive to the wind shear profiles encountered. The value of the pitch attitude at touchdown varied from one barely sufficient to a $n i d$ nosewheel landing (0.2896°) to a very robust pitchup (4.889°). It was found that the aircraft landed with a lower pitch attitude than the no-wind condition (fig. 2) for a headwind and a higher attitude for a cailwind. This type of behavior is to be expected because of the relative gain (loss) of lift from the resulting headwind (tailwind) for the same pitch attitude.

The altitude at which the flare should be initiated to achieve a sink rate of approximately $0.64 \mathrm{~m} / \mathrm{s}(2.1 \mathrm{ft} / \mathrm{s})$ at touchdown also showed some variation. The minimum value of this altitude was $14.1 \mathrm{~m}(46.25 \mathrm{ft})$ and the maximum value was 15.7 m (51.54 ft). While this dispersion in the altitude may not be too great, it is considerd to be a disadvantage. For practical purposes, it would be of great convenience to the pilot (or the autopilot) to inftiate the flare maneuver every time from the same decision altitude, instead of differing decision altitudes for different wind conditions.

During the course of this project, the author has reported extensive studies of many different types of control laws (refs. 1, 2, 8-10, 12). The types of control-laws studied varied from time-varying gain to constant
gain type, in the absence of any winds to the inclusion of a new wind shear model developed by the author (ref. 10), and from the open-loop type of control law, and the pure regulator type control law to the forcedregulator type of implementation discussed in the present report. The forced-regulator method of implementation of the control law was considered to have the following advantages:
(1). It was easy to come up with a baseline flare trajectory (in the absence of any winds) by imposing two open-loop ramps on the elevator and throttle.
(2) The additional control could be generated by feeding back the difference between states due to the winds encountered and the states due to no wind conditions.
(3) Most of the conditions at touchdown (except the pitch and the decision height from which flare would be initiated) rere found to be insensitive to the widely differing wind shears simulated. This was observed in spite of the fact that a single gain-setting was used for all the cascs.

The disadvantages of this method of implementation were mainly twofold:
(1) The baseline trajectory in the absence of any winds was found to be extremely sensitive to the rate at which the elevator was commanded. A very small difference in the command rate resulted in either no touchdown (with even a slight rate of climb achieved) within the duration of time for which the simulations were performed or a very hard touchdown, both of which are generally unacceptable.
(2) It is required to select slightly different decision altitudes (to initiate the flare maneuver) for different wind profiles.

The pure regulator type of implementation of the control law was also atudied extensively by the author (refs. 8-10) and was found to have a single, but very important disadvantage - an initial increase in the sink rate of the aircraft before it decreased to the desired touchdown value. It was determined that this significant increase in the sink rate was solely due to the way in which the initial conditions were described for that problem. The large arror in the glide-slope trajectory and the
shallow trajectory (either trimed or otherwise) at the desired touchdown sink rate introduced highly transient behavior in the perturbed trajectory, and this was responsible for the significant reversal in the sink rate in the initial stage.

From the extensive study of the different types of control laws for performing the flare maneuver in the presence of winds, it is evident that mach work is needed in the area of developing insensitive control laws to solve this very difficult problem. Further work is also needed to conduct online estimation of the wind parameters and to reduce the sensitivity of the touchdown parameters to the differing wind conditions. The results of implementing the various types of control laws reported in the present work alang with that reported in the references should form a base for further work in solving this very important problem.

REFERENCES

1. Nadkarni, A.A.: Digital Flare Law Development. Final Report, NASA contract NAS1-14193-34, Dec. 1977.
2. Nadkarni, A.A.: Comparative Study of Flare Control Lavs. Progress Report, NASA Grant NSG 1480, July 1978.
3. Halyo, N.: Development of an Optimal Automatic Control Law and Filter Algorithm for Steep Gilde Slope Capture and Glide Slope Tracking. NASA CR-2720, Aug. 1976.
4. Halyo, N.: Development of a Digital Automatic Control Law for Steep Glide Slope Capture and Flare. NASA CR-2834, June 1977.
5. Etkin, B.: Dynamics of Atmospheric Flight. John Wiley and Sons, Inc. 1972.
6. Roskam, J.: Flight Dynamics of Rigid and Elastic Airplanes. Roskam Aviation and Engineering Corporation (KS), 1972.
7. McRuer, D.; Ashkenas, I.; and Graham, D.: Aircraft Dynamics and Automatic Control. Princeton Univ. Press (Princeton, N.J.), 1973.
8. Nadkarni, A.A.: Comparative Study of Flare Control Laws. Progress Report, NASA Grant. NSG 1480, Feb. 1979, Also, NASA CR-158114.
9. Nadkarni, A.A.: Comparative Study of Flare Control Laws. Progress Report, NASA Grant NSG 1480, Feb. 1980.
10. Nadkarni, A.A.: Modeling and Controlling Wind Shear Disturbances. Eleventh Annual Modeling and Simulation Conf. (Pittsburgh), May 1-2, 1980.
11. Ogata, $K_{0}:$ State Space Analysis of Control Systems. Prentice-Hall, Inc., 1967.
12. Nadkarni, A.A.: Automatic Flare Transitions Penetrating Wind Shears, Proc. of Joint Automatic Control Conf. (San Fransisco), Aug. 13-15, 1980.
13. Vaughan, D. R.: A Nonrecursive Algebraic Solution for the Discrete Riccati Equation. IEEE Trans. AC, Oct. 1970, pp. 597-599.
14. Vaughan, D.R.: A Negative Exponential Solution for the Linear Optimal Regulator Problem. Proc. JACC, 1968.
15. Vaughan, D.R.: A Negative Exponential Solution to the Matrix Riccati Equation. IEEE Trans. AC-14, Feb. 1969, pp. 72-75.
16. Anderson, B. D. O.; and Moore, J.B.: Linear Optimal Control. PrenticeHall, Inc. 1971.

Figure 1. Coordinate frame and flight geometry.

Figure 2a. Flare response: altitude, sink rate, fitch, and piten rate; no winc.

Figure 2b. Flare response: thrust, thrott:le, and elevator; no wind.

Figure Ba. Flare response: altitude, sink rate, pitch, and pitch rate; wind profile A.

Figure 3 b . Flare response: thrust, throtcle, and elevator; wind profile A.

Figure 3c. Flare response: wind velocity components at the wing; wind profile A.

Figure 4a. Flare response: altitude, sink rate, pitch and pitch rate; wind profile B.

Figure $4 b$. Flare response: thrust, throttle, and elevator; wind profile b.

Figura 4 C . Flare response: wind velocity components at the wing; wind profile B.

Figure 5b. Flare response: chrust, throttle, and elevator; wind profile C.

Figure 5c. Flare response: wind velocity components at the wing; wind profile C.

Figure 6b. Flare response: thrust, throttle, and elevator; wind profile D.

Figure 6c. Flare response: wind velocity components at the wing; wind profile D.

Figure 7b. Flare response: chrust, throttle, and elevator; wind profile E.

Figure 7c. Flare response: wind velocity components at the wing: wind profile E. (

Figure 8a. Flare response: altitude, sink rate, pitch, and pitch rate; wind profile F.

Figure 8b. Flare response: thrust, throttle, and elevator; wind profile F.

Figure 9a. Flare response: altitude, sink rate, pitch, and pitch rate; wind profile G.

Figure 9b. Flare response: thrust, throttle, and elevator; wind profile G.

Figure 9c. Flare response: wind velocity components at the wing; wind frofile G.

Figure 10a. Flare response: altitude, sink rate, pitch, and pitch rate; wind profile H.

Figure 10b. Flare response: thrust, throttle, and elevator; wind profile H.

End of Document

[^0]: *Visiting Assistant Professor, Department of Mechanical Engineering and Mechanics, Old Dominion University, Norfolk, Virginia 23508.

