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ABSTRACT

Two techniques for increasing the efficiency of Earth grav-

ity calculations are analyzed. The first is a representa-

tion uslng Chebyshev expansions in three-dimensional cells.

Mathematical formulas are given for converting the standard

spherical harmonic representation (e.g., GEMIOB 36 x 36) to

the Chebyshev representation. The error in the truncated

Chebyshev representation was measured as a function of cel!

size and degree of truncation. For example, with a sixth

degree Chebyshev expansion, the maximum gravity error is

about 10-10g for a 36 x 36 parent representation in a cell

extending 5 degrees in both latitude and longitude and hav-

ing a thickness of 600 kilometers. Computer storage re-

quirements and relative CPU time requirements are presented.

The Chebyshev gravity representation can provide a signif-

icant reduction in CPU time in precision orbit calculations,

but at the cost of a large amount of direct-access storage

space, which is required for a global model.

The second technique employs a temporary file for storing

the components of the nonspherical gravity force. In
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differential correction orbit solutions it is often unneces-

sary to repeat computations for most of the gravity terms

during subsequent iterations for which the satellite's posi-

tlon changes only slightly. By saving a direct-access file

of gravitational forces and partial derivatives it is pos-

sible to reduce CPU time without slgnificantly affecting

orbit accuracy. The gravity file is updated whenever the

position tolerance is exceeded. The Goddard Trajectory De-

termination System was temporarily modified to test this

technique, and the results of the test are presented.

i. INTRODUCTION

As the orbit determination accuracy for Earth-orbiting

spacecraft is improved through the use of increasingly more

accurate Earth gravity models, the computer time require-

ments increase rapidly, using the customary global spheri-

cal harmonic expansion, the amount of computation time

increases approximately as the square of the maximum degree

and order of the expanslon. For currently available gravity

models, for example, the Goddard Earth Model 10B (GEMIOB),

most of the computation for an orbit solution is devoted to

evaluations of the gravity force. Clearly, less time-

consuming methods of gravity evaluation are required, par-

ticularly if precise gravity models are needed for future

operational orbit determination. The need for faster meth-

ods is enhanced by the fact that the utilization of more

precise gravity models requires the use of correspondingly

smaller step sizes for numerical integration of the space-

craft equations of motion.

Table 1 shows the amounts of computer time IGSFC IBM

S-360/75) currently required for orbit solutions calculated

using the Goddard Trajectory Determination System CGTDS).

In order to isolate the dependence of the computer time on

the specified value of the maxlmum degree and order In the
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Table 1. GTDS Computer Time Usage for Various Sizes of
the Smherical Harmonic Gravity Expansion

SPACECRAFT: SEASAT-1

NUMERICAL INTEGRATOR: COWELL FIXED STEP. 12THORDER

FORCE MODEL:

• GRAVITY: SOLAR, LUNAR, GEM9

• DRAG,WITH HARRIS-PRIESTER ATMOSPHERE

• SOLAR RADIATION FORCE

• MEAN OF 1950.0 SYSTEM FOR INTEGRATTQN

EPOCH: 18nON JULY 10, 1978 ARC LENGTH: 30 HOURS

EPOCH - ARC LENGTH: 18n ON JULY 10, 1978 - 30 HOURS

OBSERVATIONS: 391 DOPPLER USB, 100LASER RANGE

IBM S-360/75 COMPUTER TIME USAGE (MIN)

SIZE OF EARTH 90-SECOND STEP SLZE 45-SECOND STEP SIZEGRAVITY MODEL

CPU Ii0 CPU I/0

EPHEM PROGRAM

4 x 4 0.888 0.241 1.544 0.239

8 x 8 1.007 0.241 1.613 0.239

21 x 21 1.280 0.252 2.306 0.249

36 x 36 (GEM10B) 3.210 0.329 5,058 0.330

DC PROGRAM 1

4 x 4 7.448 1.804 I 11.015 1.725

8 x 8 8.322 1,805 12.051 1.727

21 x 21 10.419 1.817 15.482 1,739 _

36 x 36 (GEMIOB) 20.577 I 1.938 35.952 1.855
I :o

1SIX ITERATIONS AND CONVERGENCE
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spherical harmonic expansion, all other input oarameters for

these Solutions were identical. Computer times for both GTDS

Ephemeris Generation (EPHEM) and GTDS Differential Correction

(DC) Program runs are shown in this table.

Two methods for efflciency improvement are examined in this

paper• Section 2 outlines a gravity representation using

Chebyshev polynomials rather than spherical harmonics. Sec-

tion 3 considers a procedure for making use of previously

computed values of the gravity force during the later itera-

tions of differential correction orbit solutions. This

procedure, unlike the Chebyshev representation, is not gen-

erally applicable to orbit prediction. Section 4 assesses

the merit of these two methods and indicates directions for

future work.

2. REPRESENTATION OF THE EARTH'S GRAVITY FIELD
USING CHEBYSHEV POLYNOMIALS

2.1 OUTLINE OF THE METHOD

In order to accurately represent the Earth's gravity using

Chebyshev polynomials, the region of interest is partitioned

into cells, and for each cell the gravity force components

are expressed as a series of Chebyshev polynomials• The

numerical values of the expansion coefficients for a given

cell are, in general, different from those of any other

cell. With a suitable selection of the cell dimensions, the

convergence of the Chebyshev series is sufficiently fast

that the computational effort for its evaluation is signifi-

Cantly less than the effort required to evaluate the stand-

ard spherical harmonic expansion• In exchange for the

reduction in computational effort, however, the Chebyshev

representation requires a large data set containing the ex-

pansion coefficients for all of the cells.



The evaluation of the gravity force in GTDS is accomplished

with the followlng standard spherical harmonic expansion:

D
max n

F r = -g (n * 1) n
n=0 m=0 (i)

•(Cm cos ml _ Sm 1n sin ml

n
max n

(l}n _ [pm+l (sin _)- m tan _ Pmn (sin _)IF_ = g
n=O m=O (2)

"(Cmncos ml + Smnsin mX)

n
max n

FX = cos _ m pmn (sin _)
n=O m=O (3)

(smncos mX - Cmnsin ml)

where r = radial distance in Earth radii _a)

= geocentric latitude

I = geocentric longitude

m

Pn = Legendre function of degree n and order m

nma x = maximum degree of the spherical harmonic expan-
sion for the Earth's gravity field

g = GM/(ar) 2, where G is the universal constant of
gravitatlon, M is the Earth's mass, a Is the
Earth's radius, and r is defined above

m m

C n Sn = nonnormalized spherical harmonic expansion co-
efficients for the geopotential field model con-
sidered
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The Chebyshev expanslons used in this paper also yield the

radial, latitudinal, and longitudinal gravity components, F ,r

F¢, F I. The Chebyshev expansions are applied only to that part
of the gravity force described by spherical harmonic terms

of degree greater than 4. Terms of degree less than or equal

to 4 are still evaluated uslng spherical harmonics.

In each cell, independent position variables, x, y, and z,

are designated. These variables are related to r, _, and 1

by means of the followlng equations:

1 1
-- = -- + Ax (ixi < i) (4r r

o

sin <_= sin _o . Cv (1%l _<45°, Ivt _<I) 5)

O

cos (_= cos @o + Cy (l<bl> 45 , [yl < i) 6)

cos I = cos I + Dz (II - 90°I < 45°, izl < i) C7)
O _

The cell origin is (rO, ¢o' lo) and the physical size of a
cell is controlled by the three parameters A, C, and D. The

position variables x, y, and z describe displacements, rela-

tive to the cell orlgin, in the radial, latitudinal, and

longitudinal directions, respectively. The locus of points

such that x = +i or x = -I describes spherical surfaces

bounding the top and bottom of a cel l•. The locus of points

such that y = +i defines cones of constant latitude bounding

the north and south sides, and the locus of points such that

x = +i describes longitudinal planes bounding the cell on

the east and west sides. This choice of independent vari-

ables leads to cell crowding near the poles, but allows a
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fast and efficient orocedure for calculation of the Chebvshev

expansion coefficients.

AS indicated bv Equations _5) and _6), the latitude-like

variable, y, is defined differently for the polar and equa-

torial regions. This difference is necessary to avoid slow

convergence of the Chebyshev expansions close to the poles

and close to the equator. This slow converaence problem also

exists for I :=0 or I = _ using the definition given for z

by Equation (7). However, it is only necessary to apply a

longitude shift when the problem occurs Cby suitably adjust-

ing the C_'s and S_'s) and thus avoid a double definition.

The expansion of each factor of a typlcal spherical harmonic

1 m cos
n+l Pn (sin _) sin ml

r

into a series of Chebyshev polynomials follows the equations

(for each cell)

oo

2 1o= X T (X) _8)
rn _ ni i

oo

pm j_0 12 - _jo ym. T (y) _91

n (sin %) = _ n] j

[2 - @ko] Z (i) Tk[Z ) CI0)cos ml = _ mk
k=0
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_'_°[2 - 5ko] Z(2sin ml = _ ,_ mk Tklz)
(II)

k=0

The Chebyshev polynomials, T i, are functlons of x, y, or z and

satisfy the recurrence relation

Ti+l(x) = 2x TI(x) - Ti_1 Cx) C12)

where the subscript indicates the degree of the polynomial.

In several cases, the Chebyshev expansions indicated by Equa-

tions (8) through (II) are finite, not infinite, as a result

of the definitions of x, y, and z. The X's, Y's and Z's are

the Chebyshev expansion coefficients and their values depend

on the cell parameters r o, #o' lo' A, C, and D, in addition

to the order and degree of the spherical harmonic.

The X's, Y's, and Z's are combined in the following way,

according to Equations (i) through _3), to form the three
_i)

subscrlpted Chebyshev expansion coefficients, e.g., Cij k,
used for the calculation of the force components:

n
max n

ijk = Q (n + i) Xni j _ n mK
n=4 m=0

n
max n

(2) E E -m+l ((i) + smz(2)) (14)Cijk = Q Xni Ynj CruZ k mk
n=4 m=0

nmax n

E E / m Ii) mz(2)) (15)C_ ) = Q Xni mymj _CnZmk + Sn mk
n=4 m=0
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nmax n

(4 E E m (Smz{l)- cmz(2)) _16Cij) = Q Xni mYnj mk mk
n=4 m=0

[2- @0i) [2- 60j) (2- _0k)
Q -- 3 (17)

The three gravity force components are then calculated in

the following way:

I J K

Fr =-g E E E C_ T i(x)Tj[y)Tk(Z) (18
i=0 j=0 k=0

I J K

j) - tan % Cij:) T i(x)Tj (y)T k [z) [19)
i=O j:0 k--O

I J K

EEEF1 = _cos % • Ciji Ti(x)Tj(V)_Tk(z) [20
i=O j:0 k=O

These three equations represent the calculation of gravity

as it might be performed in an orbit determination program,

using precalculated coefficients.

The formulation used in this paper required four types of

three-subscripted Chebyshev expansion coefficients. With

additional work, it should be possible to also expand the

function

tan _ pm (sin @)n

5-9



in a Chebyshev series, leadino to a formulatlon usina only

three _ypes of coefficients. This additional complication

was omitted for the present for simplicity.

As indicated by Equations (8) through C16) the three-

subscripted coefficients depend on the gravity model coeffi-

cients, Cm and Sm the cell location, and the cell dimensions.n n'
The combined set of three-subscripted coefficients for all

cells constitutes a Chebyshev representation for the given

gravity model.

The calculation of the Chebyshev coefficients for the spher-

ical harmonic factors, that is, the calculatlon of the X's,

Y's, and Z's, can be easily accomplished using recurrence

relations. These recurrence relations are as follows:

Recurrence relations for the radial Chebyshev coefficients:

A 1

Xn+l,i = [ (Xn,i+1 + Xn,i_l) + r0 Xn,i In > OF all i) 21

[
_ 1 |(2n + i) _ Xn,0Xn+l,0 n + 1 _0

22

2 Xn-l,0 _n > 0)
r01

Recurrence relations for the longitudinal Chebyshev coeff -

cients :

, )(i) = D IZ(I) .(I) . 2 cos 10 Z (I)Zm+i,k \ m,k-i _ _m,k+l m,k
{23

- Z (I) (all m all k)m-l,k
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(all m ,  all k )  

Recurrence relations for the latitudinal Cbebyshev coeffi- 

c i e n t s  ( I 4 1  - < 45') : 

- n + m  Ym 
n - m + l  n-lfj (all j, n > m  > 0 )  - - 

( a l l  j, n 2 2 )  



Recurrence relations for the lati'tudinal Chebvshev coeffi-

cients (l_l > 45°) :

n+2,1 = Cn + 1 - m)(n + 2 - m) I (2n - i) n-2,i

[ ] (m m )+ - (2n + 1)(C cos _o ) Yn,i+l + Yn,i-1

I-+ (2n + 1) n,i+2 + n,i-2 (27)

[_ (n+ 1 - m)_n + 1 + m)+ [ (2n + 3)

_ C2
+ (2n _ i) sin°2_0 (2n • I) 2

_ (n +(2nm)_(ni)-m)jYmn,_I (all l, n _>m _>0)

%

J

Yn+l,i = (2n + i) os _0 ynn,i + _ Y ,i+l
_28)

>]n,i-i fall i, n > 0)

The derivation of these recurrence relations is omitted

here; some detail is given in Reference i. It should be

noted that, although the same symbol is used in each case,

the Y's of Equations (25) and (26) are defined differently

than the Y's of Equations (27) and (28). There should be no

confusion since Equations (25) and (26) are intended only

for the equatorial region, while Equations {27) and {28)

apply to the polar regions.

2.2 ERROR MEASUREMENTS FOR THE CHEBYSHEV REPRESENTATION

This section addresses the question of how closely a

Chebyshev gravity representation matches the gravity field

defined by the parent spherlcal harmonlc representation. In

order to study the Chebyshev expansion error, a computer
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program was written to numerically evaluate the error for

any selected cell. The program first constructs the

Chebyshev expansion coefficients for the given spherical

harmonic expansion, using the recurrence relations given in

Section 2.1. These Chebyshev expansion coefficients are

functions of the cm'sn and sm's.n , the cell parameters ro, Go'

and io; and A, C, and D. Then, for a selected maximum

degree, the three gravity force components, Fr, F_ and F 1
generated by the Chebyshev expansions IEquations (18)

through (20)) are numerically compared with the corresponding

force components calculated from the spherical harmonic ex-

pansion (Equations (i) through C3)), using a minimum degree

of 4. This comparison is made at many points uniformly

distributed throughout the given cell, and the maximum dif-

ference between the two representations provides a measure

of the Chebyshev expansion error. All of the error measure-

ments in this paper apply to Chebyshev representations based

upon the GEMIOB 36 x 36 gravity model.

Figures 1 and 2 show the numerically computed error as a

function of the cell size parameter A. For simplicity, the

latitude size parameter C, and the longitude size param-

eter D, remained equal to A as A was varied° Figures 1 and

2 show the error for cells at reference heights of 967 kilo-

meters and 255 kilometers, respectively. On each figure, a

reference error level at 10-10g is indicated. Order of

magnitude estimates place the resultant orbit error at less

than 0.I meters for a 5-day orbit propogation subiect to a

high-frequency gravity error having this amplitude. The

maximum degrees for each of the Chebyshev components were

equal to one another and are indicated for each group of

curves in the figure. For example, in Fiaure i, the upper

group of curves represents the error in the three-force com-

ponents as a function of A for a 3 x 3 x 3 Chebyshev expan-

sion.
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Figure I. Numerical Measurement of Chebyshev Gravity
Representation Error as a Function of Cell
Size and Expansion Degrees (Heightof Cell
Center = 967 Kilometers)
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Figure 2. Numerical Measurement of Chebyshev Gravity
Representation Error as a Function of Cell
Size and Expansion Degrees (Height of Cell
Center = 255 Kilometers)
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Each of the error curves in Figures 1 and 2 has a ranae, for

intermediate values of A, where the curve is nearly a

straight line. In this range, the slope of this straight

line, on a log-log scaler is one greater than the maximum

degree of the Chebyshev expansion; i.e., the error varies as

the cell size to the K +i power, where K is themax max

maximum Chebyshev degree. (This rule does not seem to be

accurate for the larger values of Kmax.) For larger

values of A, the curves bend away from the straight line.

For very small values of A, a numerical noise level is
-18

reached and the error reaches a lower limit--about i0 g

for Figure 1 and 3 x 1017g for Figure 2.

Figures 3 and 4 show the numerical error as a function of

latitude for a 5° x 5° cell, using a 6 x 6 x 6 poly-

nomial degree expanslon. The cell thickness was chosen to

be small, at a value of 12.8 kilometers, to eliminate the

effects of radial variation on the error. The results in

Figure 3 were obtained using the equatorial zone formulation

(Equations (5), (25), and (26)) and those in Figure 4 were

obtained using the polar zone formulation (Equations (6),

(27), and (28)). The former diverges near the poles and the

latter diverges near the equator, so that a global Chebvshev

gravity model must be based upon a combination of these two

formulations. In Figures 3 and 4, the maximum error in each

cell is plotted at the cell center, so that cells centered

at 2.5 degrees latitude extend to the equator and cells cen-

tered at 87.5 degrees extend to within 0.001 degrees of the

pole.

The slight rise in error near the pole in Figure 4 occurs at

error sampling polnts that are 0.75 degrees from the pole.

This slight rise Is presumably due to factors of cos-l_ and

an associated loss of precision in the calculation of F_

and F 1 (Equations (2) and (3)).

5-16



10 -'16 , I n I , I i I , I , I , I , I , -
0 _0 20 30 40 _o so 7o 8o _o

LAT,TUDE(OEGREES,

Figure 3. Numerical Measurement of Chebyshev Gravity Representation Error as a
Function of Latitude (Equatorial Zone Expansion Used)
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Outside of the latitude regions in which diveraence of the

Chebyshev expansions is approached, it is clear from Fig-

ures 3 and 4 that a uniform level of error is obtained using

cells of constant latitudinal and longitudinal dimensions.

The solid angle of these cells is much smaller near the

poles than near the equator; leading to an unpleasant crowd-

ing of cells near the poles in a global Chebyshev model.

2.3 ESTIMATED CHARACTERISTICS OF A GLOBAL CHEBYSHEV GRAVITY
REPRESENTATION

The use of the Chebyshev representation for precise satel-

lite orbit determination requires a large, direct-access

data set that contains the three-subscripted Chebyshev coef-

ficients for a distribution of cells covering the entire

spatial region of interest. The orbit determination program

would retaln in main memory the coefficients for a small

number of cells and would update this working storage as

necessary, drawing from the large, direct-access data set.

In this section the general characteristics of a sample

global Chebyshev representation are estimated.

Table 2 provides data for estimating the speed of the

Chebyshev representation, relative to the spherical harmonic

representation. For each representation, the table shows

the number of machine multiplication or division operations

required to evaluate the three force components at a single

spatial point. The numbers given assume efficient coding.

The maximum degree used in the Chebyshev re{oresentation,

Kma x, is assumed to be chosen to be the same for all three

indices in the expansions. Comparing the 36 x 36 spherical

harmonic representation with the 6 x 6 x 6 Chebyshev repre-

sentation, the latter requires about 75 percent less time

for force evaluation CI,736 operations versus 6,933 opera-

nions).
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Table 2. Number of Computer Multiplicatlon or Divislon
Operations Needed for Gravity Force Evalua-
tion in the Chebyshev and Spherical Harmonic
Gravity Force Representations

CHEBYSHEV REPRESENTATION

NUM8ER {N1)
MAXIMUM DEGREE OF MULTIPLICATIONS

(Kmax) OR DIVISIONS*

3 332

4 640

5 1,098 i
I6 1,736

8 3,669

10 6,685

*N 1 = 5(Kma x _ 1)3 + 3Kma x

SPHERICAL HARMONIC REPRESENTATION

NUMBER {N2)
MAXIMUM DEGREE OF MULTIPLICATIONS

(nmax) OR DIVISIONS**

[ 4. 116

8 409

16 1 473

21 2,463

30 4,875

36 6,933 _!

48 12,129 J

**N 2 = 5n2ax _ 13nma x - 15
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Since the number of operations in the Chebvshev representa-

tion increases as the third power of K , while the num-max
ber of operat±ons in the spherical harmonic representation

increases as only the square of the maximum degree, it is

desirable to choose as small a value as possible for Kmax
in order to achieve a computation time advantage. In order

to simultaneously meet accuracy requlrements, it is then

necessary to properly adjust the cell dimensions.

The characteristics of the Chebyshev model presented in Fig-
ure 5 were based upon Table 2 and the results of Sec-

tion 2.2. This sample model covers the range of many NASA

low-altitude spacecraft; an additional layer could be added

to extend the model to higher altitudes. The estimate of

the total number of three-subscripted Chebyshev coefficients

assumes that only three types were necessary. Although the

formulation presented in Section 2.1 employed four types of

these coefficients, it is expected that there would be no

difficulty in modifying the formulation to require only
three types.

From Figure 5, it is clear that the computation time advan-

tage of the Chebyshev representation is accompanied by the

need for a large, but not unreasonable, amount of direct-

access storage.

3. FILE RETRIEVAL FOR GRAVITY FORCE EVALUATION

3.1 FILE RETRIEVAL METHOD

In standard GTDS Differential Correction orbit solutions,

the full force model is reevaluated during every iteration.

Except for the first and second iterations, corrections to

the orbital position are generally so small that the change

in position has a negligible effect on the numerical values

of most of the spherical harmonic terms in the gravity model.
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• ACCURACY: 10-10g FOR GEM10B 36 x 36

• VIAXIMUM DEGREE OF EXPANSION: 6 x 6 x 6

• NUMBER OF CHEBYSHEV

COEFFICIENTS FOR EACHCELL: 3x(7 x7x 7] = 1029

• CELLS ZE: _h = 607 KILOMETERS (A =0.04)

._ = 5 DEGREES

•,_;_ 5 DEGREES

• CELL DISTRIBUTION: SINGLE LAYER (ro =6954KILOMETERS)

hMi N =284KILOMETERS

hMA x = 891 KILOMETERS

• NUMBER OF CELLS: 36 x 72 = 2592

• NUMBER OF CHEBYSHEV

COEFFICIENTS IN STORAGE: 2592 x 1029 = 2.7 MILLION

• CPU TIME FOR GRAVITY EVALUATION
(RELATIVE TO SPHERICAL HARMONICS): 0.25

Figure 5. Characteristics of a Sample Chebyshev
Gravity Model
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Rough estimates have indicated that, for a !-day orbit, a

10-meter error in the argument of the portion of the gravity

force that does not include the monopole and quadrupole

terms leads to orbital position errors that are well below

0.01 meter. These estimates suggest that considerable compu-

tation time could be saved, particularly for a 36 x 36 grav-

ity model, if a file of gravity values was saved for use

during the later iteratlons.

The method of gravity evaluation tested is shown in Figure 6.

This figure is a flowchart representing the GTDS subroutine

that evaluates the gravity force, F(N x N) , for a given in-

put position. A test is first made to determine whether a

gravity file value exists for the given integration point.

(This method is valid only for fixed-step numerical integra-

tion.) If the file value exists, then the position associ-

ated with the file is compared with the input position. If

the difference is less than a prescribed tolerance, s,

then the file value is accepted. The file value describes

that part of the gravity force represented by spherical har-

monic terms of degree greater than four. This value is ad-

ded to the 4 x 4 force calculated for the input position,

F(4 x 4), to produce the total gravity force F(N x N).

If the file gravity value does not exist, or if the position

deviation IA-_I is greater than the specified tolerance, s,

then the file is not used. Instead FIN x N), F(4 x 4), and

F(FILE) are calculated, F(FILE) is stored for later use, and

F(N x N) is returned by the subroutine. The resultant orbit

precision of this method is controlled by the specified

value of _.

Not shown in Figure 6 is the treatment for partial deriva-

tives of thegravity force with respect to position. These

are stored, retrieved, and calculated in a manner parallel

to that of the force components themselves.
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Figure 6. Method for Gravity Force Evaluation Using
File Retrieval
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3.2 FILE RETRIEVAL RESULTS

In order to test the file retrieval method, two GTDS differ-

ential correction orbit solutions, 12 hours in length, were

calculated using a 36 x 36 Earth gravity model and using

Unified S-Band and laser tracking data. One solution was

calculated in the standard way, and the other used the file

retrieval method. For the latter solution, the position

tolerance, _, was specified to be 500 meters. Each solu-

tion requlred four iterations to converge, and each differ-

ential correction solution was followed by 12-hour ephemeris

generation, using the converged orbital elements. The a

priori elements for the two solutions were identical, dif-

fering from the converged elements by about 80 meters.

A direct comparison between the ephemerides of the two solu-

tions is shown in Figure 7. The position difference between

the two solutions is plotted over the solution time inter-

val. Examination of the intermediate results showed that

for the first hour, the gravity file was built, but never

subsequently updated since the 500-meter tolerance was never

exceeded. On the other hand, for the following ii hours,

the gravity file was built during the first iteration, and

since the 50G-meter tolerance was exceeded during the second

iteration (because the first-iteration orbit error progres-

sively worsened with time, and this first-iteration orbit

was the basis for the first-iteration file) the file was

automatically updated, using positions generally accurate to

5 meters. The last two iterations were calculated with no

further updates to the file. This file update history ex-

plains the sharp drop in orbit error over the first half

hour in Figure 12--from 42 millimeters to the 5-millimeter

level.

It is clear from this file update history that the file re-

trieval method reduces the number of standard gravity force
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evaluations by more than a factor of two without substantial

orbit precislon loss. The CPU times for the two solutions

were 1.23 minutes and 0.69 minutes (IBM S-360/95) for the

standard and file retrieval solutions, respectively. These

CPU times do not accurately show the full potential computa-

tion tlme reduction of the file retrieval method because,

for simplicity, these test calculations did not incorporate

file usage into the numerical integration startlng algo-

rithms.

4. CONCLUSIONS

The results presented in this paper show that the Chebyshev

representation should provide substantial computation time

savlngs for orbit determination uslng precise Earth gravity

models, although its disadvantage is the requirement for a

large file of pre-calculated Chebyshev coefficients. Tests

of this representation in actual orbit calculations need yet

to be performed.

Two areas for possible improvement for the Chebvshev repre-

sentation are evident. First, truncation of terms in the

three-dimensional expansion should be explored. Rather than

summing over terms such that ir j, and k range from 0 to

Kma x, it may be possible to sum over terms such that

i + j + k ranges from 0 to Kma x. This type of summation

reduction could save a factor of approximately three in both

execution time and in direct-access storage. The second

improvement would be to extend the formulation so that

Cartesian components of the gravity force are directly cal-

culated, rather than spherical components. This would re-

quire the derivation of additional recurrence relations for

evaluation of the Chebyshev coefficients.

The file retrieval method for gravity evaluation has been

shown to be an effective method for reducing computation
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Lime without sacrificing orbit accuracy. Combined with the

Chebvshev reDresentation, it could almost eliminate computa-

tion time problems in orbit determination using currently

available, precise gravity models.
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