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Abstract
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I. Introduction

Since nearly every spacecraft is spinning during part of its
life--in particular, at the time of orbit injection--spin-axis attitude*
estimation is an important segment of almost every mission support
operation. Indeed, for spin-stabilized spacecraft there is often no need
(or desire) to determine the complete three-axis attitude at every
point and, in fact, when accuracy requirements for the spin-axis attitude
dictate that many measurements taken at different times be processed
simultaneously, the computation of a three-axis attitude may not even be
possible,

Very often, three-axis attitude information is definitive data
required chiefly by mission scientists and generally processed anytime
from several days to several months after the receipt of telemetry. The
need for efficient three-axis attitude estimation algorithms in those
cases is determined by the definitive data rate. When three-axis
attitude information is required in real-time for the purpose of attitude
control, this is usually provided on-board by three-axis gyros (e.g. SMM)
or on the ground by the spin axis and a third angle, which can be
obtained by monitoring some other sensor reading such as IR scanner pitch
(e.g. AEM, Magsat).

Spin-axis attitudes by contrast are usually required not only as
definitive data but also by the ground support system in near real-time
for the purpose of monitoring spacecraft performance and determining
large scale attitude maneuvers. Thus, the efficiency of a spin-axis
attitude estimation algorithm becomes a factor in the safety and daily
operation of the spacecraft.

*
Since the single-axis attitude of interest is invariably the spin-axis

attitude these terms will be used almost interchangeably throughout this
work.
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While a number of highly-efficient algorithms exist for three-axis

! the computation of spin-axis attitude? is by

attitude estimation,
comparison very clumsy. This is largely because the computation of
three-axis attitude uses complete vector measurements in general and can
take advantage of the linear properties of Euclidean three-space. The
computation of spin-axis attitude, on the other hand, must rely on
incomplete vector information (the measurement of arc lengths and
dihedral angles) to determine a quantity (the spin-axis) which is
restricted to the surface of a sphere. Thus, while three-axis attitude
computations need only execute simple matrix operations, the computation
of spin-axis attitude is beset with the burden of solving complex
relations from spherical trigonometry.

Since spin-axis attitude is usually not computed frequently, the
need for efficient algorithms is not immediate, at Teast not for ground
support systems. The determination of the spin-axis attitude from batch
measurements of arc 1engths and dihedral angles has become highly
standardized and reliable® and there is no obvious need to replace th1s
software in normal ground support operat1ons.

The need for more efficient algorithms lies in two areas: 1) the
eventual implementation of spin-axis attitude computation in onboard
microprocessor-based attitude determination systems; and 2) the computa-
tion of spin-axis attitude accuracies, which imposes a far greater
computational burden than computing just the attitude due to the greater
number of terms and because the computation of the attitude covariance
involves implicitly the computation of derivatives of the attitude.

The 1arge computational burden imposed by the need to solve
spherical trigonometric equations in the computation of spin-axis
attitude covariances is evident in the work of Wertz and Chen,z’l"6

the most complete and careful work to date. The difficulties which are
encountered in this approach are of two kinds: 1) the complexity of the
trigonometric relations, themselves, and 2) the fact that for certain
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cases the representation of the quantities being.calcu1ated becomes
indeterminant while the quantities themselves are well defined. This
last difficulty is simply a manifestation of the fact that the
representation of rotations by Euler angles is sometimes ambiguous and is
overcome in the same way, namely, by changing the representation.

The need for computing spin-axis attitude covariance matrices is
two-fold. - Firstly, it is necessary to be able to assess the accuraéy of -
‘a spin-axis attitude computation during the spacecraft mission,

Secondly, it is important to be able to predict spin-axis attitude

_ accuracies for mission planning, particularly in the determination of
launch windows. For an example of launch window computations using the
geometrical approach see Chen.’ |

The purpose of the present work is to develop algorithms for
computing spin-axis attitude and the associated covariance matrix without
- relying as heavily as do current methods on the solution of trigonometric
equations. A completely vectorial approach is, of course, not possible
owing to the nature of the measurements themselves. However, in large
degree many of the trigonometric equations can be abandoned with the
result that the spin-axis attitude and, particu]ab1y, the covariance
matrix can be computed more efficiently. '

The types of measurements studied here are of two kinds:

measurements of arc length, which will always be the angle

between the observed direction and the spin axis.

measurements of dihedral angles, i.e., the angle between two

planes, where the 1ine of intersection is assumed to be the
spin axis.®

Dihedral angles, in gehera], are measured by observing two crossing
times in the spacecraft and multiplying by the angular velocity. Arc

16-4



lengths may be measured in a variety of ways, for example, by direct
sighting (as of the Sun or a star) or by measuring the component of a
vector along the spin axis (e.g., the magnetic field vector). The
measurement of the nadir angle is hybrid in that an arc length (the nadir
angle) is determined from the measurement of a dihedral angle (the Earth
width), It is the measurement of the nadir angle which is the source of
most of the computational complexity.

Estimation algorithms may be classified either as deterministic
(usually single-frame, i.e., single-time) algorithms, in which a minimal
sdbset of the available data is chosen to compute the spin-axis attitude,
or as optimal (batch) algorithms, in which a larger quantity of data is
used from which one computes a "best" result. Three cases are treated in

this report
1) A deterministic estimator using two arc-length measurements,

2) A deterministic estimator using the measurements of two arc
Tengths and the included dihedral angle. (Since in this
case the spin-axis attitude is,over-determined the question
of optimality is also discussed.) |

3) An optimal batch estimator utilizing any number of
measurements of dihedral angles and arc lengths,

In each case the covariance analysis is presented in detail.

In the appendix the measurement of the nadir angle is presented. It
is at this point thét‘trigonometric relations cannot be avoided, at least
in so far as measuring instruments (horizon scanners) are presently
constructed. The treatment is similar to that of Wertz and his
collaborators (Ref. 2) but a method is given for avoiding sign
ambiguities. '
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The treatment of single-axis attitude estimation presented here
complements that of Wertz., The advantage of Wertz's treatment is that
the variances along two great circles of the celestrial sphere
intersecting at the direction of the spin axis and the dihedral angle
between these two circles (the correlation angle) is given fairly
directly. Much less direct is determining the covariance of the
spin-axis vector in inertial space. This part of the calculation falls
out simply in the present formalism.

The results presented here are quite simple although they do not
seem to be generally known. An important result, which is demonstrated
here, is that little accuracy is lost by relaxing the constraint in the
optimization that the spin-axis vector be a unit vector and then
unitizing post hoc. This is responsible for a great deal of
simplification of the methods presented here, especially for batch
estimation,

II. Single-Frame Spin-Axis Estimation from
the Measurement of Two Arc Lengths

Consider the simplest case in which the measured quantities are B,
the Sun angle (the angle between the spin axis and the Sun vector), and
n, the nadir angle (the direction between the spin axis and the nadir
vector). The case where one of these measurements is replaced by the
magnetic field angle is analogous.

Let § denote the Sun unit vector, E the nadir vector, and § the spin
axis. Then

:§':’l.= cos B = cg (1a)
Een=cosn= cp (1b)
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The direction of the spin-axis can then be determined simply by using a
method that has been published recently by Grubin,9 though it has been in

use since the beginning of the space program and probably has been known
for several hundred years.

If S and £ are not parallel, then it is always possible to write

n=af+af+a §xE (2)

The problem is now to determine the coefficients dgs 8ps Aye

From Eqs. (1) and the normalization condition we have

Cg = :’.‘..:S. = ag + aE( ':E.) (3a)
cp = k= aS@-ﬁ) +a (3b)
1 =000 = a§ + ag + 2agap(S°E) + aﬁlé. ><£|2 (3¢)
which have the solution

ag = ——— [cg - cg(3:8)] (4a)

IS~ E|
ag = —L— [cp - cg(8:E)] (ab)

g

1 Y- 2 s 2 2,-1/2

= W |3 = E|° - (e5 - 2egep(§eB) + 1V (4c)
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Note that there are two possible solutions for n. ~These are shown
geometrica]]y_in Figure 1.

It will be conveniént to define the following quantities

az| S c=| S (5)
ac Cp '
- T
| 1 &b
U= '-T—Jt—f' (6)
IS<E° | g

where the tilde below the letter denotes a two-dimensional’vector or a
2x2 matrix.

Eqs. (4) can now be written

a=Uc | (7a)
Wt ere” )

The covariance analysis is now straightforward. Define the three-
vector ' ' |

& | | | (8)
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Then the covariance matrix of the measurements is given by

P, = <8¢ 8> | (9)

~ where the bracket denotes the expectation value and 6c is the error in c.
~ The covariance matrix of the spin-axis direction in the non-orthogonal
coordinate system is

P. = <Sa 6aT> : - (10)

a W -

and in an orthogonal coordinate system v

P = <6n Sp> (11)

"~

Substitution of Eqs. (7) in Eq. (10) gives readily

'
Moy -
Py=|——m—— | (12)
. |
Vs
with
M= <sasal>=up uf (13a)
SRLY | (130)
S=blMb | (13c)
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The orthogonal representation of the covariance matrix is then obtained

as

p=TP,T _ (1)
with

T=[3iE:3xE (15)

where the right member of Eq. (13) denotes a matrix Tabeled by its column
vectors,

It is easy to verify that
Pn=0 (16)
as required by the condition that‘ﬁ be a unit vector.
A further representation can be obtained by writing
]
|
M i

i
Pa = B -_tf—l
0"

\

[{en)]

T T

—— 1B
0

=B MB (17)
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where

B=|———t—— (18)

Equations (17) and (14) may now be combined to give

2 2 T
P=1) 1 Mis X Xs (19)
i=1 j=1
where
FREE RN (202)
o =E+ b (3x B (20b)
Eq. (16) is again satisfied since
X \n=0 i=1,2 (21)

IIT. Single-Frame Spin-Axis Estimation from the Measurement
of Two Arc Lengths and the Included Dihedral Angle

The ambiguity in determining the spin-axis observed in the previous
section is removed if the included dihedral angle is also measured. The
dihedral angle v is defined as the angle between the (S,n) and (E,n)
planes and is easily shown to be given by

o (8 = E)

/ (1-(§_-ﬁ)§)(1-(£-:n.)§>

sin ¢ = (22a)
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(S-F) - (3:n)(En)

Y = . - 22b
T aEna-EnD #2)
tan ¥ = —————4ﬁ£1§Lf-£Q———- (22c)

($-E) - (8-8)(E:n)
The geometry is depicted in Figure 2.

To determine the spin axis attitude it will be convenient to define

Ch =-J(1-c§)(1~c§) sin ¢ (23)

and
&=l | | (24)

The vectordzis now determined by four equations

cg = a,S + aE(§_-§_) N (25a)
Cg = as(§1§) *+ap (25b)
ey = |3 % £ s " (25¢)
NTIRTE N .
- a2 2 13 x g2
1= a5+ ag + 2agap(S°E) + ay |§x£| (25d)
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The three components of g are now overdetermined. The most convenient
solution is obtained by solving the first three equations, which are
linear, leading to

a=Uc (26)
where
1 (3B o]
v —L—  [-&hH 0 (27)
SxE
"‘ I 0 0 1

The spin-axis n given by this a, however, is not properly normalized
since the measurements are not exact. A properly normalized spin-axis
vector is then obtained by simply normalizing the solution

n =g/|a| (28)

The covariance matrix of a is given simply by

P =1U PC U (29)

(30)

similarly to Eq. (14). The covariance matrix of the properly normalized
spin-axis vector is recovered simply as

P=—=QP,Q (31)

il
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where

Q=1-54d (32)

[ =2

It is well to ask how good is the approximation of ignoring the
normalization condition and then normalizing the solution post hoc.
Instead of this seemingly brutal approach one can find the best solution
to Eqs. (25abc) subject to the constraint of Eq. (25d), i.e., one seeks
to minimize the Toss function

L(a) = (c-A0)" Pt (c-Pa) (33)
subject to the constaint
éTA£=1 (34)

where

T N 0 (35)

The solution is straightforward and yields

. |
dopt = (A=2P) " g | (36)

where X is the Lagrange multiplier for the constraint and from Eq. (34)
is the root of the equation

oS =1 (37)

which yields the smallest value of the loss function.
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Equation (36) may be rewritten

-1

where a is given by Eq. (26). Since‘_gopt is expected to be close to a,

it follows that APCU must be small. An approximate solution for‘gopt can
be obtained by expanding Eqs. (37) and (38) in APCC and solving. This

yields
: T
»s 1 l'ﬁ A.g
Bopt ~ 2" 7 Tl vV )
c

Now

<1-3"Aa> = Tr(P.U) (40a)

T

<(1-2'A2)% =4 a'p a (40b)

C-u

so that the additional root mean square (rms) error in a when optimality
is not taken into account is of the same order of magnitude as the rms
error in the cosine measurements. However, the source of this additional

error, as shown by Eqs. (40) is the error in the normalization. Hence
this error will be greatly reduced when the unit vector is normalized.

IV. Batch Estimation
The value of avoiding trigonometric expressions becomes more obvious

in dealing with batch estimation. The cbmputational advantage of the
present approach over the geometrical approach3 is substantial.
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For batch estimation the non-orthogonal basis cannot be used since
only the Sun vector is constant (and then only for relatively short data
spans). The present treatment focuses on the case where the measurements
consist of two arc lengths and the included dihedral angle. The
extension to other cases is straightforward. |

Let cs(i), cE(i), cN(i) be a series of measurements of the Sun
projection, the nadir projection, and the Sun-nadir dihedral angle,
respectively. Then the best solution for the spin-axis is obtained by
minimizing o

LN Y
L(n) izl { °§ |C5 n §i|
BT
+o§ ICE 51“51'
ey B £);[% } (a1)
N

subject to the constraint

(42)

§3°
§=.>
]
—

In order to decrease the number of subscripts in the expressions it has
been assumed that each data type is available at each time and that each
measurement type has a single characteristic error. Except for a
proliferation of subscripts the expressions which follow are not changed

when this assumption is removed.
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The minimization of Eq. (41) subject to the constraint is
straightforward and leads to

f=many | (43)
where
N 1 ~ AT 1 A AT 1 A A A A T
M= 1 588+ 55k +5 @x5;G Dy} (44a)
i=l o o] o
S E N
N 1 ~ . " 1 . A 1 . A A
J - .21 5 Egi) & + 5 cp(i) By + 5 cy(1) (3 xB) ) (asb)
1= g [0} g

S E N
and A is the root of

T 1

v V=1 45
.,.(M—_”')?w (45)

which Teads to the smallest value of Eq. (41).

As in the previous section it can be expected that the constraint
can be ignored (A=0) and the solution be approximated by

o =1/|n| (46)
where
-1
n=M Y (47)
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This approximation has been tested for one spacecraftlo and been observed

to be quite good. The covariance of n is given by

_w-l
P, =M (48)
and the covariance of the normalized solution is given again by
P=—tx QP Q (49)
LI -

V. Measurement Errors

The computation of the spin-axis covariance matrix requires as
input a model for the covariance matrix of the cosine measurements.
Expressions are derived here for computing these for the case of Sun and
Nadir measurements. The treatment when one of these measured quantities
is the magnetic field is treated in the same way.

Sun Measurements

The quantity measured is usually the Sun angle, B. Hence,

Scg = -singds - (50)

Nadir Measurements

If the spacecraft has angular velocity w, then the Earth width is
‘given by

Q = w(to-tl) ' (51)

where tI and to are the in- and out-triggering times, respectively, of
the Earth scan (for a momentum-wheel mounted scanner, w will be the
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angular velocity of the momentum wheel).

Then, using the results from the appendix

§ é
CE cosn

acosn

Bcosz

Q
Sécos vl

sinn Q
- §
Toty - cotn °%% 7

sinn

. Q
coty - cotn (sin 70 (Gto - 6tI) (52)

-2
"2

where v is the scan-cone half angle.

Dihedral Angle Measurements

The dihedral angle ¥ is determined from the time interval from the
Sun crossing to the mid-point of the horizon scan

v = ultg -lz(to Lt (53)

Thus, (8,2,¥) or (B,n,p) is a set of statistically independent
variables. The "dihedral cosine" Cy» however, is given by

cy = sinB sinn siny (54)
hence

Scy = cy[cots &8 + cotn én + coty &v] (55)

From Egs. (50-55) the covariance matrix Pc can easily be calculated.
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To a large degree, much of the trigonometric complexity which has
been removed from the attitude solution has simply been shifted to the
computation of a derived measurement covariance matrix. There is,
however, a substantial gain because the covariance matrix need not be
computed to the same degree of accuracy as the spin-axis attitude
itself. Hence, a great deal of computational approximation is possible,
such as approximation of the trigonometric functions by simple rational
functions.

Appendix - Measurement of the Nadir Angle

Because the Earth is an extended body the nadir vector is not
measured directly but determined from measurements of the Earth width.
Earth widths are measured by a horizon scanner, which effectively is a
sensor mounted on a rotating cone (of half-cone angle y) about the
spacecraft spin axis, which detects the crossings of the Earth horizon on
the scan cone., The Earth has an effective angular radius of p, which is
a function of altitude and (for a non-spherical Earth) latitude. The
Earth width is the dihedral angle between the in- and out~crossings (HI
and HO) the horizon by the scanner and is denoted by ©. These quantities
are related by the spherical law of cosines?

€osp = cOSY cosn + siny sinn cos(2/2) (A-1)
The geometry is depicted in Figure 3.
Eq. (A-1) may be solved to give

cosp cosY * sinp cos(2/2) JAcosZo
A

cosn =

(A-2)
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where

2

A = cos? + sin?y 0052(9/2) (A-3)

The sign ambiguity may be eliminated if another measurement is
present, say that of the Sun angle, 8, and the Sun-Earth dihedral angle,
Y. Let & be the arc length from the Sun direction to the mid scan point

cos& = cosB cosSY + sinB'sinY cosy (A-4)

Then it is possible to show that the underdetermined sign in Eq. (A-2)
must be the same as that of

(cosB - cosy) (E*S - cosg)

Alternatively, one may consider simultaneously Sun and horizon
measurements. This leads to three simultaneous equations

cosB cosn + sinB sinn cosp = -8 | (A-5a)
cosY cosn + siny sinn cos(9/2)7= cosp (A-5b)
cos?n + sin?n =1 (A-5c)

Equation (A-2) was obtained by solving Egs. (A-5b) and (A-5c)
simultaneously. One could just as easily solve Eqs. (A-5a) and (A-5b)
for cosn and sinn, The result will not necessarily satisfy Eq. (A-5c)
but the two equations have the advantage of being linear. The solutions
can then be renormalized to satisfy Eq. (A-5c).

This approach of ignoring the proper normalization for the
trigonometric functions has another advantage in that a simultaneous
solution to Egs. (A-5b) and (A-5c) may not exist in certain extreme cases
because the measurements are not exact. By solving Eqs.  (A-5a) and
(A-5b) a solution will always exist. '
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There 15, however, one clear disadvantage. If Eq. (A-2) is used then
B, n, and ¥ will be statistica]]y independent. If, however, the linear
equations are solved, n will be correlated with 8 and ¥, Thus, the
simplicity gained in computing cosn is counterbalanced by greater
complexity in computing theﬂmeasurement covariance matrix Pc.

Figure 1

Single-Axis Attitude from Two
Arc-Length Measurements
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Figure 2
Single-Axis Attitude from Measurements
of Two Arc Lengths and One Dihedral Angle . A
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S
Figure 3

Geometry for Nadir-Angle Determination
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