General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

A STUDY OF HIGH DENSITY BIT TRANSITION

Requiramients versus the effects on bch
ERROR CORRECTING CODING

Interim Final Report
Covering the Period
July 1, 1980 - September 30, 1981

Submitted to:
Mr. Russ Coffee EF-13
George C. Marshall Space Flight Center National Aeronautics and Space Administration Marshall Space Flight Center, Alabama 35812

Submitted by:
Mississippi State University Engineering and Industrial Research Station Department of Electrical Engineering Mississippi State, Mississippi 39762
(NASA-CK-101881) A STULY UF hIGH DEWSITy BIT TRANSITION K\&qUIREacNTS VE\&SUS THE EFEECTS ON BCH LKROR CUEEECTLNG CUDING HO. AOS MF AOI
Interim Final Report, 1 Jul. $1980-50$ Sep.
Uncias 1981 (MississipEi State Univ. Mississippi G3/61 27730

Principal Investigator: Frank Ingels Associate Investigator: William O. Schoggen

EXECUTIVE SUMMARY

Digital data streams using non-return-to-zero-level encoding (NRZ-L) as the signalling waveform are subject to periods of no level change. The signalling waveform with not changing levels has energy content that is rich about the origin and of course does not contain any edges in the waveform.

Proper operation of the ground station receiving such digital data streams depends upon satisfactory bit synchronization. Bit synchronizers typically require a certain minimum percentage of edges in the received signalling waveform. This requirement is not always satisfied by NREZ-L waveforms.

The purpose of this investigative study has been to determine a satisfactory method of providing sufficient bit transitions (edges) in the signalling waveform for the 2 MHz data link of the Space Shuttle High Rate Multiplexer (HRM) unit.

The system design already in existence places several constraints on any method used to ensure the desired bit transition density of at least 1 bit transition in every 64 bits and at least 64 bit transitions in every 512 bits.

These constraints are:

1. The method chosen must produce at least 1 bit transition in every 64 bits and at least 64 transitions in every 512 bits.
2. The method chosen must not increase the present bandwidth nor decrease the present information rate.
3. The method chosen must be compatible with the existing BCH code.
4. The method chosen should have a minimal design impact on the present system.
5. The method chosen must pass unaltered any data stream whose data rate is greater than 2 Mzz .
6. The method chosen should resolve the bit phase ambiguity problem inherent in the Channel 2 return link of the KUBand system.

Many methods for increasing bit transition densities in a data stream exist. These methods have been sumarized, discussed in detail and compared one against another and against the constraints mentioned above.

These methods include use of alternate Pulse Code Modulation (PCM) wiveforms, data stream modification by insertion, alternate bit inversion, differential encoding, error encoding and use of bit scramblers. (Bit scramblers come in many different versions such as: self synchronizing, multi and single count, serial, cascaded and parallel scramblers).

Of all the methods discussed, one method satisfied the desired objective, met all constraints and had advantages that outweighed disadvantages when compared against the remaining methods. This method was chosen - the reset scrambles or simply the Psuedo-Random Cover Sequence Generator (PN-CSG). This technique is fully analyzed and a design implementation is proposed.

The method consists of modulo-2 addition of a PN sequence to the data stream before the modulations of the Radio Prequence (RF) transmitter. It is recommended that only the data streams and the 4 bit frame synchronization Identity Count (ID) be so modified. It is recommended that there be no change in the 28 bit frame synchronization word.

If the PN sequence is added to the frame synchronization word, it Is very likely that the special properties chosen for frame synchronization patterns would be violated. Furthermore, the decoder must then search for four frame synchronization patterns if it is desired to correctly detect the presence or absence of the PN cover sequence, and to alleviate any phase ambiguity.

The probability of failing to provide the required bit transition density is less than $2.44 \cdot 10^{-17}$. A computer simulation program was developed which tests the truncated PN sequence with random data streams. The computer results indicate that the outfut sequence to be transmitted by the RF modulator will have a transition density of approximately 50%. This should improve the overall KU Band system performance considerably in the presence of low signal-to-noise ratios by increasing the bit synchronizer's capability to stay locked to the incoining bit clock.

table of contencs

Chapter Page
EXECUTIVE SUMMARY 1
LIST OF FIGURES v
LIST OF TABLES vi
LIST OF SYMBOLS vil
1 INTRODUCTION 1
2 STATEMENT OF PROBLEM AND CONSTRAINTS 7
2.A THE PROBLEM 7
2.B PRIMARY SYSTEM CONSTRAINTS 7
2.C SECONDARY SYSTEM CONSTRAINTS 11
3 DIFFERENT METHODS AVAILABLE TO ALLEVIATE THE
PROBLEM 13
3.A ALTERNATE PULSE CODE MODULATION WAVEFORMS 13
3.A. 1 Bi-PHASE. 13
3.A. 2 DELAY MODULATION 13
3.B DATA STREAM MODIFICATION 16
3.b. 1 ALTERNATE BIT INVERSION 17
3.B. 2 DIFFERENTIAL ENCODING 17
3.B. 3 BIT INSERTION 18
3.B. 4 ERROR ENCODING 19
3.B. 5 BIT SCRAMBLERS 25
3.B.5.a SELF-SYNCHRONIZING SCRAMBLERS 25
3.B.5.a.1 MULTI-COUNTER SCRAMBLER 29
3.B.5.a. 2 SINGLE-COUNTER SCRAMBLER 30
3.B.5.a.3 TRANSITION DENSITY FOR
SEL F-SYNCHRONIZING DESCRAMBLERS 30
3.B.5.a.4 SELF-SYNCHRONIZING
DESCRAMBLERS 31
3.B.5.a.5 THE SPECTRUM OF THE SCRAMBLER OUTPUT 34
3.B.5.a.6 SERIAL, CASCADED, AND
PARALLEL SCRAMBLER 35
3.B.5.b NON-SELF-SYNCHRONIZING (RESET) SCRAMBLERS 38

TABLE OF CONTENTS (Continued)

Chapter Page
4 PSEUDO-NOISE COVER SEQUENCE (RESET SCRAYBLER) 41
4.A PSEUDO-NOISE (PN) SEQUENCE 41
4.B the particular pn sequence for the cover SEQUENCE FOR THE COVER SEQUENCB GENERATOR (CSG) 44
4.C PROBABILITIES ASSOCIATED WITH THE SEQUENCE 47
5 CONCLUSIONS AND RECOMMENDATIONS 54
6 REFERENCES 57
7 APPENDICES 59
7.A COMPUTER SIMMLATION PROGRAM 60
7.B SPECIFICATION DOCUMENT FOR PN CSG ENCODER/DECODER 76
7.C NOVEMBER 1980 MONTHLY REPORT 86

LIST OF FIGURES

Figure Page
1.1 KU Band Return Link 2
1.2 HRM - KUSP Interface 4
1.3 General User's Format 6
3.1 PCM Waveforms 14
3.2 1/3 Convolutional Encoder with Alternated Bit Invertion Employed by Space Telescope 21
3.3 Periodic Convolutional Interleaver and Deinterleaver Employed by Space Telescope. 24
3.4 Basic Self-Sync Scrambler 26
3.5 Nulti-Counter Scrambler 27
3.6 Single-Sounter Scrambler 28
3.7 Multi-Counter Descrambler 32
3.8 Single-Counter Descrambler. 33
3.9 Cascading of N M-bit Scramblers 36
3.10 Parallel Scrambler Configuration. 37
3.11 Reset Scrambler and Descrambler (PN Conver Sequence Generzter) 39
4.1 General PN Cover Seqr:nce Generator. 42
4.2 CSG Encoder Using Shift Register Implementation. 45
4.3 CSG Encoder Using ROM Implementation 46
B. 18 CSG Encoder Functional Location 79
B. 16 CSG Decoder Functional Location 79
B. 2 HRM Data Stream 80
B. 3 Basic Cover Sequence Encoder Block Diagram 82
B. 4 Cover Sequence Decoder Block Diagram 83
C. 1 Modified Cover Sequence Encoder Block Diagram 89
C. 2 Modified Cover Sequence Decoder Block Diagram 90

LIST OF TABLES

Table Page
1.1 Available Input Data via KU-Band Link 2
2.1 Main System Constraints ©
2.2 Secondary System Constraiats 12
3.1 Bit Transition Densticy Coding Choices 40
4.1 Zero-One Distribution for nol3 Maximal Length PN Sequence 48
4.2 Truncated Sequence for the CSG 49
4.3 Zero-One Distribution for the Truncated Sequence 51
4.4 Alternate One-Zero Distribution for the Truncated Sequence 52
5.1 Comparison of CSG With System Constraints 56

LIST OF SMBBOLS

BCH	Base-Chanduri-Hocquanghem
BER	Bit-Error-Rate
BSR	Bit-Slip-Rate
BSS	Basic Self-Sync Scrambler
CSG	Cover Sequence Generator
DM	Delay Modulation
FBSRG	Feedback Shift Register Generator
FM	Frequency Modulation
HBTD	High Bit Transition Density
HRAA	High Rate Acquisition Assembly
HRDM	High Rate Demultiplexer
HRM	High Rate Multiplexer
KUSP	Space Shuttle KU-Band Signal Processor
LCM	Least Common Multiple
Mbps	Mega Bits Per Second
MCS	Multi-Counter Scrambler
ML	Maximal Length
PCM	Pulse Code Modulation
QPSK	Quadrature Phase Shift Keying
SCS	Single-Counter Scrambler
SL	Spacelab
SR	Shift Register
ST	Space Telescope
TDRSS	Tracking and Delay Relay Satellite System

CRAPTER 1

INTRODUCTION

The Spacelab (SL) is an orbital laboratory which remains attached to the Space Shuttle for the duration of a miseion. The SL will utilize the KU-Band communication aystem of the Shutcle for communication with the ground. Figure 1.1 is a simplified sketch of the return link. The following paragraphs give a brief description of the SL return link, for further information the reader is referred to References 1, 2, 3, and 4.

The onboard experiment data is collected by the High Rate Acquisition Assembly (BRA). The HRAA consists of the onboard High Rate Multiplexer (HRM) plus associated High Rate Links, and the ground based High Rate Demultiplexer (HRDM). The return link, connecting the HRM and HRDM, utilizes the Shuttle KU-Band Signal Processor (KUSP) and the Tracking and Delay Relay Satellite System (TDRSS) which includes the receiving station, and the bit syachronizer. The return link will provide a bit-error-rate (BER) of at least 1×10^{-5} with a Bit-SlipRate (BSR) of less than 1×10^{-15} provided certain system constraints are met. Herein lies the problem; the SL data stream violates the transition requirements of the bit synchronizer. This will be further reviewed in Chapter II.

The HRM receives data from 18 experiments, 2 I/O units and 2 records, and outputs data to the KUSP and the 2 recorders. Sixteen of the 18 experiment channels are switchable and the other 2 are direct. The HRM time multiplexes these 16 channels with the other data including playback data from the recorders and serially transmitts the data to the RUSP.

The SL employs the KU-Band Link of the Shuttle and this link utilizes the two operation modes of the KUSP; Mode 1 - Quadrature Phase Shift Key (QPSK) modulation and Mode 2-FM modulation. The KUSP has three channels of input data in each mode. Table 1.1 lists the available input data in both modes. Figure 1.2 111ustrates the interface between the HPM and the KUSP.

The HRY uses several different format structures for its output. Only the general user format, for frequencies less than 32 Mbps , will

Pigure 1.1 KU Band Return Link

table 1.1 available inpur data via KU-BAND LITS

PM YODS 1:

CHNRELE 1 - SALE AS PM Mode
CHANIELI 2 - SAME AS PM MODE
CBARIELE 3 - PAYLOAD DIGITAL OUTPUT, 2-50 MBPS WITH CLOCR, NRZ-L, M, OR 8

PM MODE 2:

CAANREL 1 - 192 KBPS Bi-PHASE-L PCM AND VOICE FROM MSP
CHANNEL 2 - SELECT ORE OF POUR INPUTS

- PLI (NARROW BAND BZANT PIPE FROM DETEACHED PAILOAD)
- PAYLOAD DIGITAL OUTPUT, 16 KBPS-2NRPS, NRZ-L, M, OR S, OR 16 RBPS - 1.024 MBPS BL-PHASE L, M, OR S
- operational recorder dunp
- Payload recorder dunp

CHANNEL 3 - SELECT ONE OF FOUR INPUTS

- TV
- PAYLOAD DIGITAL OUTPUT, 16 KBPS-4 MBPS, NRZ-L, M, OR S
- payload analog output, dC-4.5 Mhz
- PLI (WIDE BAND BENT PIPE FROM DETACHED PAYLOAD)

$\begin{array}{ll}\text { Figure } 1.2 & \text { High Rate Multiplexer to Kロ-Band Signal } \\ \text { Processor Interface }\end{array}$
be discusaed. For further information concerning the baw formate; see references 1 and 2. The ueer format consiata of elght frames of 96 worde each (768 words), each frame beginning with a aync or a etatus word. The normal frame is composed of 6 lines by 16 words. Since each of the 21 inputs to the HRM operate at bit ratee aesyachronous to the output bit rate, fill data is required. The 16th or last word of each line is a fill data indicator. The REM aploya a unique method to provide the neceasary fill data mords. When a line of data requires fill, all the valld data worde to the right of the fill word are shifted to the left thus making the fill word the 15th word of the data line. The syaten requires that tine fill data (stuffing) indicator shall be constructed such that the probebility of error in interpreting the indicator is less than 10^{-10}. The HEN utilizes a ($31,16,3$) BCR code to eatiafy the required BER for the otuffing indicator. The HEM encodea the 16 bit atuffing indicator into a 31 bit BCA code word capable of correcting 3 errore per word. When more than one fill word is needed, the valid date words are again shifted left and the 14th word of the previous line is inserted into the 14th word of the present line.

The general input data format is illustrated in Figure 1.3. The iaput data to the HRM is as follow:

18 experiments	MRZ-L	
HDRR	NRZ-L	Reverse playback 2 Mbp only
PLR	Manchester II	Reverse IMbp only
		(Must be playback through HRDM)

Figure 1.3 General User Format

CHAPTER 2

Statminnt of problem and constraints

2.A THE PROBLBM

An investigation of the effect of low bit transition density on the performance of the Channel 2 KU -Band return link was conducted. The results of this investigation indicated the SL will not meet the minimum specifications of the TDRSS Users' Guide with respect to the bit synchronizer. The end result of this failure to meet the bit synchronizer (sync) specifications is loss of lock by the bit sync and subsequent loss of data for an undefined period of time (Reference 5). To alleviate this problem the SL must increase the bit transition density on the Channel 2 kU -Band return link to a minimum of one bit transition every sixty-four bits and sixty-four bit transitions within five-hundredtwelve bits.

There are several different methods that may be employed to provide the data stream with the secessary bit transition density. These methods are discussed in more detail in Chapter III. This chapter deals mainly with the problem and the constraints caused by the system. There are four main constraints placed on the HBTD coder. They are listed in Table 2.1 and discussed in the following paragraphs.

2.B PRIMARY SYSTEM CONSTRAIMTS

The primary objective of the HBTD modification is to increase the bit transition density of the data stream to at least one bit transition every sixty-four channel symbols and sixty-four bit transitions every five-hundred-twelve channel symbols. This is the absolute minimum requirement by the TDRSS bit synchronizer at White Sands, New Mexico to provide the desired BSR of 10^{-15} with the SL signal characteristics.

Since the 2 Mbit channel is expected to operate at the maximum rate of 2 Mbps for maximum utilization, the modification must not increase the channel errors. The system requires that the fill indicator must be able to locate the fill data with an accuracy of no less ihan 10^{-10}. The fill indicator is a $(31,16,3) \mathrm{BCl}$ code. A $(31,16,3) \mathrm{BCH}$ code takes 16 information bits and converts them into a 31 bit code word capable of correcting 3 errors. Since the channel bit error rate affects the fill

TABLE 2.1 HIGH BIT TRANSITION DENSITY (HBTD) CODE CONSTRAINTS

1. tHE hbtd CODE muSt have at least one transition every 64 bits and at least 64 transitions Within 512 bits
2. THE CODE MUST NOT INCREASE THE PRESENT BANDWIDTH, NOR DECREASE THE INFORMATION RATE.
3. IT must be compatible with the existing bch code. (Implies a schene WHICH PRODUCES MULTIPLE DECODER ERRORS PER DISCRETE CHANNEL ERRORS WOULD BE INCOMPATIBLE WITH BCH CODE.)
4. THE HARDWARE IMPLEMENTATION MUST HAVE MINIMAL DESIGN IMPACT ON THE PRESENT SYSTEM.

Indicator word, any modification that increases the channel error would degrade the fill indicator. For example, if the system modification produced only one additional error per channel error, then the reliability of the fill indicator, as shown below, would be 4.6×10^{-8}, which is unacceptable.

To illustrate the problem consider the effects of differential encoding on BCH word error probability. Assuming the RF channel has an average random error rate, due to additive white gaussian noise, corresponding to 1 bit in 100,000 (that is an average bit error rate of 1×10^{-5}) one may calculate the probability of an erroneous decoding of a BCH coded word with use of NRZ-L code and also with use of a differental encoding such as NRZ-M or NRZ-S.

The model to be used is:
Using NRZ-L Coded Data Stream
A single error on the RF channel in the BCH code word will result in a single error in the data input to the BCH decoder. The BCH code word can correct up to and including 3 errors out of 31 bits.

Thus the probability of erroneous decoding of the BCH word (PEBCH) is

$$
\begin{equation*}
\text { PEBCH }=1-[P(0)+P(1)+P(2)+P(3)] \tag{2.1}
\end{equation*}
$$

where:
$P(0)=$ Probability of no errors in the 31 bit word $P(1)=$ Probability of 1 error in the 31 bit word $P(2)=$ Probability of 2 errors in the 31 bit word $P(3)=$ Probability of 3 errors in the 31 bit word In general $P(X)$ is expressed as

$$
\begin{equation*}
P(x)=\binom{N}{X} \quad p_{q} X^{N-X} \tag{2.2}
\end{equation*}
$$

where
P is the probability of an RF channel error
q is the $1-p$
X is the number of errors in the word
N is the number of bits in the word.

The expression $\binom{N}{X}$ relates to the number of different ways in which X errors occur in an N bit word and

$$
\begin{equation*}
\binom{N}{\mathrm{X}}=\frac{\mathrm{N}!}{(\mathrm{N}-\mathrm{X})!\mathrm{X!}} \tag{2.3}
\end{equation*}
$$

Using NRZ-M or NRZ-S (Differential Encoding) Coded Data Stream

A single error on the RF channel in the BGA code word will result in two adjacent errors on the data stream input to the BCH decoder. (Reference is any text in commuications, in particular: Reference 16, page 324.)

Thus we have as the probability of erroneous decoding of the BCH word with Differential Encoidng (PEBCHDE)

$$
\begin{equation*}
\text { PEBCHDE }=i-[P(0)+P(1)] \tag{2.4}
\end{equation*}
$$

Where the expressions $P(0)$ and $P(1)$ are as defined in the previous case. Note this expression for PEBCHDE reflects the fact that 2 RF channel errors in the BCH word will result in 4 errors presented to the BCH decoder and this will result in erroneous decoding.

These calculations were performed using a double precision eigital computer program.

The results are

$$
\begin{aligned}
\text { PEBCH } & =3.01841884819964434 \times 10^{-16} \\
\text { PEBCHDE } & =4.64910190316402087 \times 10^{-8}
\end{aligned}
$$

One sees a significant difference in the error performance due to erroneous decoding of BCH words!

For a 50 Mbps data stream the average length of time between erroneous decoding of the BCH word would be approximately

160 seconds average between erroneous decoding of BCH words using differential encoding (NRZ-M or NRZ-S)
$16,000,000,000$ seconds average between erroneous decoding of BCH words using NRZ-L encoding.

The unacceptability of adding additional errors to the system is obvious.

The fourth criterion, minimal impact on the present system, results from the fact that the system is in the production stage and any major changes would be very costly. Apprcximately $\$ 100,000$ cost results from a minor change alone due to the paper work required.

2.C SECONDARY SYETEM CONSTRAINTS

Additional criteria, dealing with the implementation, results from the expected characteristics of the data stream. The modification must pass unaltered data emanating from any source other than the HRM and data rates greater than 2 Mbps from the HRM. These constraints result from the physical location of the modifications and the operational functions of the HRM. All data emitted from the HRM via the 2 Mbit channel will be NRZ-L. The above stated constraints apply to both the encoder and decoder. There decoder must also resolve the phase ambiguity problem which results when a Bi-Phase NRZ-L data is used. Since NRZ-L employs a high level to represent a one and low level to represent a zero, it is possible for the data stream to become Inverted. That is to say a transmitted one is received as a zero and vice versa. Therefore the decoder must be capable of detecting and correcting the inverted data stream. These secondary system constraints are listed in Table 2.2.

TABLE 2.2 SECONDARY SYSTEM CONSTRAINTS

1. hbtd CODE muSt pass unalter any data stream mhose rate is GREATER THAN 2 MBPS.
2. the CODe must pass unalter all data streams which banate from sources other thaf the hrm regardless of the data rate.
3. tHE hBTD ENCODER MUST have a bypass mode.
4. the hbid code must resolve the "bit ambiguity" PROBLEM INHERENT TO THE CHANNEL 2 RETURN LINK.

CHAPTER 3

different methods avaitable to alleviate the problem

Two basic types of modifirations exist to improve the Bit Transition Density of the Channel 2 data stream to the minimum requirements of the bit synchronizer. They are: (1) Use an alternative PCM waveform or (2) modify the data stream. The remainder of the section is devoted to describing several methods for accomplishing these modifications.

3.A ALTERNATE PCM WAVEPORM

The 2 Mbit channel presently employs a NRZ-L waveform. There are several other binary waveforms available. Several of the most common ase show. in Figure 3.1. The most frequently used waveforms, for high bit transition density applications, are the Bi-Phase and Delay Modulation waveforms. Both are widely used in the tape recording industry.
3.A. 1 Bi-Phase

The three main types of B1-Phase waveforms are; Bi-Phase Level, Bi-Phase-Mark, and Bi-Phase-Space. Bi-Phase Level is also called Split Phase or Manchester Code. All three waveforms provide at least one transition for each bit cell. They produce single output errors for a single input or channel error. The hardware required to implement each is moderate in complexity. All three Bi-Phase waveforms are self-synchronizing. The main disadvantage of all three is that BiPhase modulation requires twice the bandwidth of the present NRZ-L to provide the same information rate. Therefore the use of Bi-Phase would require either an increase in the present bandwidth or a decrease in the information rate. Neither case is acceptable since it violates one of the main system constraints.

3.A. 2 Delay Modulation

Delay Modulation (DM) is a procedure for encoding binary data into rectangular waveforms of two levels according to the following rules for $D M-M$:

CODF: DFFI: ITIONS

NO: --REILRN-TO-ZERO-LE:EL
"Onc" is reprosented by one level.
"7ero" is rcproscured by the other level.
XO: - Y PT:R2:-TO-7.EROM:APK
"Onc" is represented by a change in level.
"Zero" is represented by no change in level.
SO:-RETLT:
"One" is represented by no change in level.
"Zero" is represented by a change in level.
3I-PHASE LEVEI. (SPLIT PHASE)
Level chanfe occurs at center of every bit period.
"One" is represented by a "one" level with the tramaition to the "zero" level.
"7ero" is represented by a "zero" level with the transicion to the "one" level.
"BI-PHNSE-XARK
lievel change nccurs at the beginning of very bit period.
".me" is represented by a midbit level change.
"Lero" is represented by no midbit level change.

BI-PHASE-SPACE

Level change occurs at the beginning of every bit period.
"Onc" is represented by no midbit level change.
"Zero" is represented by a midbit level change.
DELAT YODLLATIO: - MiARK (MILLEER CODE)
"One" is represented by a level change midbit tise.
"Zero" foliowed by a "zero" is represented by a level change at the end of the first "Zero" bit. Ho level change occurs when a "rero" is preceded by a "one".

DELAY :MDLZATION-SP\&CE (MILLER CODE)
"Zero" is represented by a devel change at midit time. "Gne" fcllowed by a "one" is represented by a tramistion at the end of the first "one" bit. No level change ozcurs shen a "one" is preceded by a "zero".

1. A one is represented by a transition from one leval to the other at the midpoint of the bit cell.
2. A zero is represented by no transition unless it is followed by another zero. The case of consecutive zeros is represented by a tronsition at the end of the leading zero bit cell.

In the case of DM-S the rules for ones and zero are enterchanged. These rules are illustrated in Figure 3.1.

Delay Modulation has several attractive properties:

1. The majority of the signalling energy lies in frequencies less than one-half the symbol rate.
2. The power spectrum is small in the vicinity of $f=0$ (that is at D.C.).
3. $D M$ provides at most one transition per bit cell and at the least 2 bit transitions every 3 bit cells; thus, providing a bit stream with : very high bit transition density. These properties provide DM with the advantage of inherent selftiming information using phase modulation which is not present in NRZ-L, while requiring approximately the same bandwidth as NRZ-L. DM is also suitable for use with tape recorders, especially when higher packing density is required, or with systems which require high bit transition densities.

DM requires a given 3 bit sequence to assure proper bit sync. This sequence is 101 fo: DM-M. This sequence has a high probability of occurring one or more times in any random data bit stream. The probability that one or more 101 bit sequences will occur increases rapidly as the number of bits in the data sequence increases. The following equation may be used to obtain a close approximation of the probability of 101 occurring n or more \boldsymbol{c} imes in m bits (the number of bits per sequence).

$$
\begin{align*}
P_{m}(101 \geq n)= & 1-P_{m}(101 \leq n)=1-\left(P_{m}(101=0)+P_{m}(101=1)+\ldots\right. \\
& P_{m}(101=(n-1)) \tag{3.1}
\end{align*}
$$

Where:

$$
\begin{aligned}
P_{m}(101 \sim r) & =\binom{k}{r}\binom{k-r}{q_{0}}\binom{r}{P_{0}} \\
q_{0} & =\text { the probability of any } 3 \text { bite not being } 101=\frac{7}{8} \\
P_{0} & =\text { the probability of any } 3 \text { bite being } 101=\frac{1}{8} \\
k & =m-2 \\
\binom{k}{r} & =\frac{k!}{(k-r) \mid r!}
\end{aligned}
$$

For example, let m be 16 (for 14 binary bits) then the probability of a 101-bit sequence occurring one or more times is:

$$
\begin{aligned}
P_{16}(101=1) & =1-P(101=0) \\
& =1-\binom{14}{0}\left(\frac{7}{8}\right)^{14}\left(\frac{1}{8}\right)^{1}=1-\frac{14}{1410!}\left(\frac{7}{8}\right)^{14}=1-\left(\frac{7}{8}\right)^{14}=1-.154=.846
\end{aligned}
$$

In other words, there is a 84.6% probability of a 101 pattern occurring and hence providing bit sync within a 16 bit sequence. Thus, one should expect a bit sync lock within a very short time upon the atart up of a DM encoded sequence. The main disadvantage of Delay Modulation is that single errors into the decoder will yield double errors out of the decoder. This results from the comparison of the present and most recent bit to determine the value of the previous bit. Thus the property that produces the improved bit transition density also makes DM incompatible with the BCH code used by the fill indicator.

3.B DATA STREAM MODIFICATION

There are several means of modifying the present data stream to meet the bit transition requirements. The first method that comes to mind is to simply invert every other bit or alternate bit inversion. Other means such as differential encoding, a bit insertion technique or error correcting encoding techniques are commonly used to improve
the bit tranaition density of a data stream. Bit ecrambling is another technique which is employed to increase the bit transition in a iequence. Each of these methode are discuased in the following paragraphe.

All the aforementioned techniques require the same bandwidth for the same information rate as the present syotem.

3.B.1 Alternate Bit Inveraion

Alternate bit inversion is probably the simpleat method for increasing the transition density. This technique inverts every other bit of the data strean. It yields excellent resulta in the case of long sequences of bits of the same value. The implementation is very simple except for the synchronization with the data stream and a bit silp will result in the ioversion of the original data stream. Single channel errors produce etigle output errors. The main diesdvantage of this cechnique is the inability to guarantee the bit transition density. In the case of an alternating input data stream, this procedure will produce an output sequence of bits of the same value equal in length to the input sequence. Since the SL data stream is excepted to contain long runs of alternating bits this method must be discarded. Additional logic could be added to the encoder and decoder to prevent this occurrence but the logic required would be quite complex and require additional conaiderations.

3.B. 2 Differential Encoding

The use of differential encoding as a means of improving the bit transitions density has received considerable use in other systems, especially when the data stream contains long stringe of bits having the same value; all ones or all zaros. This technique has advantage over alternate bit inversion in that an alternating bit sequence retains half of the original transitions. There are two types of differential coding, NRZ-M and NRZ-S as illustrated in Figure 3.1. mRZ-M uses a change of state to indicate a one and no change for zero, while RRZ-S indicatea a zero by a change in level and no change for a one. Differential encoding provides a 50% transition density for an alternating input data stream and a 100% transition density for sequence of the same valie provided the value is the one represented
by a change of state, one for mR -M and sero for RRI-8. If the valuee is the level represented by no change, nothing is gained by different encoding. Therefore one mat deaign for the level which is moat doninant in the data atrean and know that the sequence lengthe of the other level will not result in a loss of lock by the bit aync. Another disadvantage of differential encoding is that single input errore produce double output errors. since the dif-: termatial encoding propagates the number of channel errors and can be deaigned for only a single case of bit sequence of the same value instead of for both, it must be eliminated as a possible solution.

3.B.3 Bit Insertion

Bit insertion technique are also commonly used to increase bit transition density. There are several different types of bit insertion techniques. Some add bits to the data strean while othera use blocke of bits to replace cartain deta sequences. However, all of these techniques share the need for a complex timing and counting circuitry. The basic concept for all insertion techniques is the need to recognize when to insert and when to remove their speicfied patterns. Por example, assume a bit replacement technique is to be used to meet the sixiy-four in five-hundred-twelve requirement. The obvious way to grarantee that the data stream would meet this requirement would be to have at least one tranaition every eight bits. This would mean that an eight bit pattern would have to be inserted in place of any eight bit sequence of the same value. The selection of the particular partern to be used for insertion must be chosen in a manner similar to that of a synchronization pattern for frame sync. The insertion sequence must meet the following:

1. The probability of it occurring naturally in the data stream must be extremely small. Since it is very desirable to avoid false recognition at the receiver, which would result in a misinterpretation of valid data for inserted data.
2. The inverse of the sequence must also be available. Since the bit sequence of the same value may be either ones or zerus, two separate sequences are needed.
3. The effecte of channel errors muat be considered. should the sround receiver accept no errore, one error, two errors, etc? If a chort eequence such at the aight bit one used in the exmaple is celected, then the no ertor caec would probably be beat. The probability of no errore in any 8 bits is . 99992 thus the probability of not recognizing the incerted pateern due to chanmel error would be about 8×10^{-5}, elightly greater than the chapacl error rate of 1×10^{-5}. In the one error cace the probebiiity of false synchronization detection would be much higher than the gain in recognizing a valid insertion with a single error.

By employing this aimple insertion technique, one does not take advantage of the natural eransition that might occur prior to and following the aequence of the same value. As stated above the timing and clocking circuitry would be complex even for this simple case. For this reason bit insertion is not the most favgrable method although it can be dusigned to meet the syatem constraints given in Chapter 2. But it should be noted that only the replacement type can be employed. The inserting of additional bits would decrease the information rata and therefore this type is not acceptable. Since the amount of additional bite cannot be predetermined.

3.B.4 Error Encoding

Telecommication systems of ten. employ different types of error correcting codes to improve their bit transition density. In this manner, the error correcting codes provided two services. firet, they improve the channel bit error rate and second, they provide an increase transition density. This type of method is employed by the 50 Mbit channel of the shuttle as well as by many ciher systems. All these syateas add addition bits to the data and thus decrease the information rate. Therefore they are not viable candidates for the UBID modification, but are incliseel in the following for completeness.

The foliondug discuseion concerning the output symbol transition density of the $1 / 3$ convolutional encoder with alternate $2 ;$ mbol inversion is based on the miterial by M.K. Simon and J.F. Smith in Reference 6 and
illustrated in Figure 3.2. Simon and Smith have determined, for a particular class of convolutional codes, that alternate symbol inversion assures a maximum transition-free run of output symbols, and hence its minimum transition density. This maximum length is independent of the data source model, independent of the code connections, and dependent only on the code constraint length and rate. Simon and Smith separate all $1 / v$ convolutional codes into three classes of codes: V even, V odd for transparent codes, and v odd for nontransparent codes. A transparent code is one which provides the complement of the output sequence for the complement of the input sequence. A simple test to determine if a code is transparent is each row of the generator matrix C has an odd number of ones then the code is transparent.

The generator matrix \underline{C} for the $1 / 3$ convolutional code employed by the Space Telescope (ST)

$$
\underline{c}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 1 \tag{3.3}\\
1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

where the right hand column represents the present input and the left hand column represents the oldest (content of the last shift register K, the code constraint length) input.

Since $v=3$, odd and each row of \underline{C} contains an odd number of ones, the convolutional code is a member of case 2. Simons and Smith state for v odd and transparent codes, the only input bit sequence that will produce an output alternating sequence longer than $N_{\max }$ symbols, where $N_{\text {max }}$ is defined as

$$
\begin{equation*}
N_{\max }=K+\left\lceil\frac{\mathrm{K}-1}{\mathrm{v}-1}\right\rceil-1+v \tag{3.4}
\end{equation*}
$$

$K=$ the code constraint length; $\lceil\mathrm{X}\rceil$ denotes the smallest integer greater than or equal to X.
is the alternating sequence. Furthermore, if the encoder is such that the alternating input sequence produces the alternating output sequence, then this output sequence can continue indefinitely, i.e., alternate symbol inversion will not produce a finite transition-free symbol sequence.

Reference 6 provides a test to determine if a case 2 code will produce an alternating output for an alternating input. Split the generator matrix \underline{C} into two matrices $\underline{C}_{\text {odd }}$ and $\underline{C}_{\text {even }}$ where $\underline{C}_{\text {odd }}$ is composed of all the odd columns of $\underset{C}{ }$ and $\underset{e}{C}$ even $a l l$ the even columns. If the number of ones in each row of the matrix formed by stacking $C_{\text {odd }}$ on top of $C_{\text {even }}$ alternates even, odd, even, ... or vice versa, then an alternating input sequence will produce an alternating output sequence. Testing the generator matrix, it is found the number of ones in each row of the test matrix does not alternate even, odd or vice versa. Therefore the maximum number of transition-free output symbols from the $1 / 3$ convolution encoder with alternate symbol inversion is

$$
\begin{aligned}
N_{\max } & =K+\left\lceil\frac{K-1}{V-1}\right\rceil-1+v \\
& =7+\left\lceil\frac{7-1}{3-1}\right\rceil-1+3
\end{aligned}
$$

$$
\begin{equation*}
=12 . \tag{3.5}
\end{equation*}
$$

The maximum number of transition-free output symbols was also determined to be 12 in References 7 and 8. Magnavox in Reference 7 utilized an extensive computer analysis to arrive at a maximum of 12 Baument, et al., Reference 8, used a slightly different mathematical approach to obtain 12 as the maximum bits between transitions and therefore the system is guaranteed to meet the 1 in 64 requirement.

Simon and Smith also prove in Reference 6 the 11-bit input sequence 01110100100 yields the output 010000000000001 . Neither this output sequence nor its compliment can be repeated within the next 33 output symbols. The next input will produce at least one additional bit transition therefore the average bit transition for this worse case plus one additional input is 2 transitions per 16 output symbols which yields an average of 1 transition every 8 output symbols. Therefore the output of the $1 / 3$ convolutional encoder with alternate bit inversion and generator matrix given in Equation 3.3 will meet both the 1 transition per 64 bits and 64 transitions in 512 or an average of 1 transition every 8 bits.

If the 12 -bit input sequence is 01110100100 the output will be 010000000000001100.

If the 12-bit input sequence is 01110100101 the output will be 010000000000001011.

Since the output of the $1 / 3$ rate convolutional encoder will have a transition at least every 13 bits independent of the data input, it is not necessery to examine the equipment preceeding the encoder. However if the channel interleaver is utilized it is necessary to determine if it is possible to obtain 64 or more symbols out of the interleaver without a transition. The channel interleaver is shown in Figure 3.3. This interleaver will take any two symbols within 30 of each other and separate them by at least 119 bits. Equation 3.6 may be used to express a typical output symbol b_{i} in terms of the input symbols a_{i}.

$$
\begin{array}{ll}
b_{j+1}=a_{j+i-4 \times 30}=a_{j+1-120_{i}}=a_{j-119}{ }_{i}^{j \geq 119_{i}} \\
b_{j+1}-0 & j \leq 119_{i} \tag{3.6b}
\end{array}
$$

where

$$
\begin{aligned}
& J=0,30,60,90,120, \ldots \\
& 1=0,1,2,3, \ldots, 29
\end{aligned}
$$

Therefore, a typical output sequence of the interleaver would resemble a sampling of the input sequence with the samples being taken every $119^{\text {th }}$ bit for sequences up to 30 bits in length. In order for the interleaver to have an output of 64 consecutive symbols of the same value, the input data must be such that samples of the input sequence separated by 119 symbols be of the same value. The length of input symbols corresponding to 64 output symbols is approximately 3511 . Also noting that the output of the interleaver is combined with a PN cover sequence of length 30 , it would appear highly unlikely that a string of 64 ones or zeros will occur, however due to the systematic construction of the components of the system, it is possible that a

Figure 3 . 3 reriodic Convolutional Interleaver and Deinterleaver
sequence of data does exiat that will yield a string of 64 output symbol without a transition. Since the actual structure of the data is presently unavailable it is not possible to examine this problem more closely. It would be necessary to examine very closely the structure of the data and how that structure is effected by the various components of the system.

3.B. 5 Bit Scramblers

A bit scrambler is a digital machine which maps a data sequence into a channel sequence and with the special mapping of a periodic data sequence into a periodic channel sequence with period much greater than the data period. For periodic source, the channel sequence produced by the scrambler, also, has many transitions.

The basic element of all scramblers is a feedback shift register generator (FBSRG) with tap polynomial $h(x)$; where $h(x)$ is a primitive polynomial over the field $G F(p), p$ is prime. The manner in which this element is connect determines whether the scramblers is self-synchronizing or not. The self-synchronizing group utilizes the data sequence to drive the FBSRG. The non-self synchronizing group, often call reset, utilizes the FBSRG as a maximal length (ML) generator and modulo adds the ML sequence to the data. Each group is discussed in the following paragraphs.

3.B.5.a Self-Synchronizing Scramblers

The self synchronizing group maybe subdivided into two types called multi-counter scramblers (MCS) and single-counter scramblers (SCS). Both types consists of a "basic self-sync scrambler" and a "monitoring logic". Figure 3.4 illustrates the "basic self-synchronizing scrambler" (BSS). The logic circuit determines the scrambler type Figures 3.5 and 3.6 show the MCS and SCS respectively.

The BSS when excited by a periodic sequence of period ' s ' will respond with a periodic line sequence which has either period ' s ' or a period which is the least common multiple (LCM) of ' s '

[^0]

Figure 3.4 General Basic Self-Sync Scrambler
$h(x)=x^{m}+c_{1} x^{m-1}+c_{2} x^{m-2}+\ldots+c_{m}$
where $C_{i}=1$ or 0 and $h(x)$ is a primitive polynomial over GF(2) of degree M. C_{m} must equal one.

Figure 3.5 Multi-Counter Scrambler

Pigure 3.6 Single Counter Scrambler
and $p^{m-1} 1^{\text { }}$ (denoted by LCM $\left(s, p^{m}-1\right)$. The period with which the scrambler responds is a function of the initial values stored in the scrambler atorage elements, (its initial state) and there is only one such state (for each phace of input sequence) for which the line sequence has period 's'. For all other such initial states the line sequence has the larger period. The preceding statements are Savage's Theorem 1 for BSS (See Reference 9 for proof).

The logic circuit employed by the MCS and SCS are used to detect the presence of a periodic sequence of low period on line and alter the starting state of the BSS to insure the 1 ine sequence has period of LCM ($8, p^{m}-1$).

3.B.5.a.1 Multi-Count Scrambler

The logic used by the MCS is more general than the SCS and allows for the simultaneous detect of sequences of several periods. The MCS employs N counters, one for each period ' s_{i} ', $1 \leq 1 \leq N$, and the $i^{\text {th }}$ counter will generate +1 if it reaches its threshold $t_{s_{1}}$. The counter is reset whenever the reset lead is nonzero so that $t_{s_{1}}$ consecutive zeros on the reset lead of the 1 th countar will cause it to reach its threshold. Whenever a counter reaches its threshold a ' 1 ' is added to the feedback line of the BSS, thereby change the state of the BSS. Thus, the line sequence will then be changed from period ' s_{i} ' to period $\operatorname{LCM}\left(S_{i}, p^{m}-1\right)$ where the $i^{\text {th }}$ counter was the one reaching threshold. At the same time, all counters are reset.

Thus, the MCS shown in Figure 3.5 will scramble a periodic sequence of period ' s ' if ' s ' divides ' s_{i} ' (denoted by ' s '/' s_{i} ') for some $1, \quad 1 \leq i \leq N$, and will produce a periodic line sequence of period $\operatorname{LCM}\left({ }^{\prime} s_{i}, p^{m}-1\right)$ if the following two conditions are met:

1) The tap polynomial $h(x)$ of degree m is primitive over GF(p) where data sequences have components from GF(p).
2) The thresholds $t_{s_{1}}, 1 \leq S_{i} \leq N$ are chosen as

[^1]\[

$$
\begin{gathered}
t_{a_{1}} \geq\left(m_{1}-1\right)+\max ^{1 \leq 1<N} \\
j \neq 1
\end{gathered}
$$
\]

If all input periods divide 'so' then the statement holde when condition (i) is met and a threshold of $t_{0_{0}} \geq$ im is used. The above 1s Savage's MCS theorem. (See Reference 9 for proof.)

3.B.5.a.2 Single-Counter Scramblers

The SCS is designed to scramble periodic binary eequences whose periods divide either ' B_{1} ' or ' B_{2} ' or both. Since the SCS utilizes only one counter, it may be less costly to build than the MCS in some case. The SCS oparates in the ame manner as the MCS.

Savage's SCS theorem states that a SCS exists which will scramble all periodic binary sequences with periods which divide ' s_{1} ' or ' s_{2} ' where $s_{1}<s_{2}$ and s_{1} does not divide s_{2} (denoted by $s_{1} X s_{2}$) if

1) the tap polynomial $h(x)$ of degree ' m ' is primitive over GP(2).
2) s_{1} and s_{2} are relatively prime to $2^{m}-1$, and
3) a counter threshold, $t, t \leq s_{2}\left(2^{m}-1\right)-2^{m-1}+2$ is chosen. See Reference 9 for proof.
3.B.5.a.3 Transition Density for Self-Synchronizing Scramblera

Transitions occur frequently in a scrambled periodic sequence and in one period of a scrambled sequence there are approximately half as many transitions as there are digits. These have been illustrated in Reference 9 when the source is binary and the scrambler input periods are relatively prime to $2^{m}-1$, where m is the size of the BSS.

Assuming the BSS generates a line sequence with period ' ℓ ' when the input has period ' s ', the source is binary, the BSS has ' m ' stages, and ' s ' is relatively prime to $2^{-2}-1$; then ' ℓ ' is an ' s ' $\left(2^{m}-1\right)$ component vector. If the binary line sequence is converted into a line signal by the mapping $1 \rightarrow+1,0 \rightarrow-1$ and if it is linear modulated,
then Savage's Transition theoren states "The binary vector ' ℓ ' of length s($2^{\text {min }}-1$) representing the reaponse of a binary seramblar to an irput of period 's', when 's' and $2^{\mathbf{n}}-1$ are ralatively prime, has at least one transition evary ' s ' + ' m ' digite and has a total of $\operatorname{Tr}(\ell)$ transitions where

$$
\begin{equation*}
\frac{1}{2}\left(\frac{2^{m}-2}{2^{m}-1}\right) \leq \frac{\operatorname{Tr}(l)}{3\left(2^{m}-1\right)} \leq \frac{1}{2}\left(\frac{2^{m}}{2^{m}-1}\right) \tag{3.8}
\end{equation*}
$$

This theorem may hold for reset ecrambler also, but Savage's proof does not take into count the reset scrambler. Therefore prior to applying these boundn to the reset scrambler further evaluation is needed.

3.B.5.a.4 Self-Synchronizing Descramblers

The descramblers for the MCS and SCS are shown in Figures 3.7 and 3.8 , respectively. The descrambler is aaid to be out of aynchronism with the scrambler if either (1) the values in the BSS and the delay elements differ from those stored in the corresponding sections of the scrambler or (2) if the countere in the monitoring logic are not at the same levels as those at the scrambler or both. Examining Figure 3.7 or 3.8 , it can be seen that the delay elements of the descrambler will be purged after 's' N ' clock intervals, provided ' s_{N} ' is the largest expected period (number of delay elements). The monitoring logic at the scrambler and descrambler will be at the same level after an additional 's, N^{\prime} clock intervals provided no line errors have occurred. Therefore the descrambler will require at most $2 x$ ' $s{ }^{\prime}$ ' clock intervals free of error (channel errors or bit slip) to recover sync.

The primary effect of a channel error on the descrambler is to Introduce additional errors. If the effect on the monitoring logic is neglected, the descrambler will produce approximately $w(h)$ as many output errors as channel errors, where $w(h)$ is the number of nonzero terms in the tap polynomial $h(x)$.

Figure 3.8 Single-Counter Descrambler

3.B.5.a.5 The Spectrum of the Scrambler Output

Assume a lincarly modulated carrier, a binary source, and the source is converted into a waveform such that $0=-1,1=+1$. Let T_{0} be the time interval alloted to each binary digit and let $\hat{\ell}(t)$ be the waveform generated by the binary sequence ℓ.

If ℓ is the output of the scrambler for an equiprobable, independent source input, then ℓ is a sequence of independent, equiprobable, binary digits. Thus the autocorrelation function of $l(t)$ is

$$
R_{l}(\tau)=\left\{\begin{array}{cc}
1-\frac{|\tau|}{T_{0}} & ,|\tau| \leq T_{0} \tag{3.9}\\
0 & ,|\tau|>T_{0}
\end{array}\right.
$$

and the power density spectrum for $\hat{\ell}(t)$ is

$$
\begin{equation*}
S(f)=T_{0}\left(\frac{\sin \pi f T_{0}}{\pi f T_{0}}\right)^{2} \tag{3.10}
\end{equation*}
$$

Now let the source be periodic, with period 's' such that the line sequence has period $T_{0}\left(\operatorname{LCM}\left(s, 2^{m}-1\right)\right)$; then the power density spectrum for $\hat{\ell}(t)$ is
$\left.S(f)=\frac{1}{p} \delta(f)+T_{0}\left(\frac{s i n \pi f T_{0}}{\pi f T_{0}}\right)^{2} \right\rvert\, \frac{u}{s P T_{1}} \sum_{j=-\infty}^{\infty} \delta\left(f-\frac{j}{P T_{1}}\right)$

$$
\begin{equation*}
\left.+\left(1-\frac{u}{s}-\frac{1}{P}\right) \frac{1}{P T_{0}} \sum_{j=-\infty}^{\infty} \delta\left(f-\frac{j}{P T_{0}}\right)\right\} \tag{3.11}
\end{equation*}
$$

where $P=2^{m}-1$

$$
T_{1}=s T_{0}
$$

u is a function of the scrambler input (the number of l's in $\ell+\ell_{k}, k$ a multiple of P, depends on the input; ℓ_{K} represents k cyclic shifts of ℓ).

In other worde the principle effect of scrambling is to decrease the number of tones in a given bandwidth by a factor which is approximately P and to decrease the level of each tone by approximately the same factor. The bandwidth is unchanged.

3.B.5.a.6 Serial, Cancaded, and Parallel Scramblers

Self-synchronising acramblers may be claseed in subgroups depending on the inter connects between the scramblers. A single scrambler with m delays is called a serial scrambler. The scramblers described in the above were serial.

Scramblers may also be connected in cascaded, meaning the output of one is fed to the input of the naxt scrambler. Cascade acramblers are inferior to serial scramblers with the same number of delay elements. For exampla 4 sarial scramblers conoected in cascade (see Figure 3.9) has a longest output period (output of the $4^{\text {th }}$ scrambler) of only the $\operatorname{LCM}\left(a, 4\left(2^{m}-1\right)\right)$ and a probability of occurance of $\left(1-2^{-2 m}\right)$ where as a single scrambler with 4 m delays has a maximum output period of $\operatorname{LCM}\left(8,2^{4 m}-1\right)$ with a probability of occurance of ($1-2^{-4 m}$). Therefore a serial scrambler is preferred to a cascaded scrambler.

Scramblers may also be connected in parallel. The main advantage of parallel scramblers is the reduction of the number of output orrors to input errors. Parallel scramblers use two inputs thereby requirins additional components for series input sequences. Figure 3.10 shows the configuration for parallel scramblers. Examining Figure 3.10. If an error occurs on input ' a '. $w(h)+1$ errors will be produced by the output, but if an error occurs on input bonly one will be produced in the output. Therefore, in the case of parallel inputs, the output errors will be reduced for line b. This technique providas little improvement for randomerrors occurring in serial data; however.

References 9 and 10 provide additional information on selfsynchrunizing scramblers. The main point concerning self-aynchronizing scramblers is that the principal effect of infrequent channel errors on the descrambler is to multiply the number of channel orrors by $w(h)$, where $w(h)$ is the number of non-zero terms in the tap polynomial $h(x)$.

Pigure 3.9 Cascading of N K-bit Scramblers

Figure 3.10 $\begin{aligned} & \text { Parallel Scrambler Configuration } \\ & \text { (Monitoring Logic Omitted) }\end{aligned}$

3.B.5.b Non-Self Synchronizing (Reset) Scramblers.

The reaet scrambler is simple, consisting of a maximal-length sequence generator modulo 2 added to the data sequence prior to modulation. The reset scrambler must be provided with synchronizing pulses in order to relock on sync. Since the kL sequence is independent of the data stream there is no multiplication of output errors relative to input errors.

At present the number of transition for a given sequence length is unknown. It is possible that the reset scrambler may provide the same $\operatorname{Tr}(\ell)$ as the self-synchronizing scrambler, but the proof utilized by Savage ${ }^{9}$ cannot be directly applied to tie reset scrambler.

The scrambler and descrambler for the reset group are identical maximal-length sequence generator for binary data. Figure 3.11 shows the reset scrambler. The synchronizing pulse may be obtained from the frame sync or another sync pattern found in the data stream. Since the sync pattern would be utilized to reset and start the MLsequence, it would not be scrambled.

The self-synchronizing scramblers are poor candidates for the SL due to the multiplication of channel errors. The reset group is a better candidate provided a lower bound can be determined for the number of transitions for a given sequence length, and is discusseci in the next Chapter. (See Reference 12 for a brief summary on scramblers.)

Table 3.1 sumarizes the possible methods discussed in this section for improving bit transition density of the 2 Mbit SL Link. Only the reset scrambler remains as a viable option. The reset scrambler is actually a PN Cover Sequence which is modulo-2 added to the data stream. This technique is examined in further detail in Chapter IV.

Figure 3.11 Reset Scrambler and Descramble
$h(x)=x^{m}+c_{1} x^{m-1}+\ldots+c_{m}$
where $C_{i}=1$ or 0 and $h(X)$ is a primitive
polynomial over GF(2) of degree M

TABLE 3.1 BIT TRARSITION DENSITY CODING CHOICES

TECBEIGUE	SPECTRAL ${ }^{\text {a }}$	EREOR CBALACTERISTICS	Stichatomizatiom	mambate centexit	Tansition phoperte	$\begin{gathered} \text { comatrats } \\ \text { Fountes } \end{gathered}$
1. E1t Scrambler self Symehroalalat a. Serial b. Parallei	Same as Deta Streme \qquad Sede as 2ata Strean	Error propagation and multiple output errors for single error 1aput Same as la.	Self Sjuchroaizias \qquad Self Syachroalalag	Eocoder-Moderate Encoder-Moderate	A Cuaranteed Ferformance cea De Provided \qquad a Cuarenteed Performace can be proviche	43
						33
2. Delay Modulatioa a. Miller	sace as Data Screat	Double ertore aut for single error la	Must Provide Syachronization	Encoder-Moderate Decoder-Hore Complex	2 Tranaitioas in every 3 bie celle	33
b. Misler ${ }^{2}$	Saie as Data Streat	Double errors oue for single error in	Must Provide Synchroaleation	Encoder-Moderate Decoder-More Complex	1 Iransitioer in every 3 bic celle	43
3. Bl-Phase Molulation (Manchester, Manchester II, Bl-Phese Hark, Bl-phane 8pace)	Double Data sanduidth	```l erzor out for l error in```	Self symehroaizios	Eacoder-Hoderate Decocer-Hoderate to Complex	1 trameition for every bit cell	02
4. hlternate Bil Version	$\begin{aligned} & \text { Smee as } \\ & \text { Dace } \end{aligned}$	l bie elip ylelds Inverted bit streen. 1 ertor out for 1 ertot in.	Mast Provide Synchronizacion	Encoder-Moderate Decoder-Moderate	Date Patter: Semstive. Wo Cwerantees. Scatioticaliy Goed	13
S. Sequence taserciom (Incliadee Firar Codes)	Saee as Deta	```Ponsible error mulei- plication due to champl errors and daca convolu- tions.```	Must Provide Synchronization Senaitive to Inverted Date Streas	Tialot and Countias Complex-	Cow be Designed to Maet Specifleotheme.	13
6. PX Cover Sequence (leaet Scrambler)	Sace as Date	1 etror out for 1 error 1 a.	Munt Provide Symhroniration	Encoder-siaple Decoder-Moderata	Cen be Dealgond to Murt Speelfleetlone.	mer

CHAPTER 4

PSEUDO-NOISE COVER SEQUENCE (Reset Scrambler)

In the preceding chapter, different techniques were examined to determine their capability of resolving the bit transition density problem of the SL 2 Mbit Return Link and these techniques are summarized in Table 3.1. Only the PN Cover Sequence (or Reset Bit Scrambler) was capable of meeting all the system constraints listed in Tables 2.1 and 2.2. This chapter deals primarily with the particular PN sequence chosen for the SL, however a brief general discussion of PN sequences is also given.

4.A PSEUDO-NOISE (PN) SEQUENCES

Pseudo-Noise Sequences are binary-valued, noise-like sequences in that they are purely random. That is any bit in the sequence may be a one or a zero with equally likely probability. However their primary advantages are that they are deterministic, easily generated by feedback shift registers, and they have a correlation function which is highly peaked for zero delay and approximately zero for other delays. By proper selection of the tap polynumial, which Indicates the feedback connections, a maximal linear (M) sequence or m-sequence is generated. Figure 4.1 illustrates a general ML sequence generator. A $!\mathbb{L}$ sequence has a length, $L=2^{n}-1$, where ' n ' is the number of stages in the shift register (SR). The number of ones in the sequence equals the number of zeros plus one. There are

$$
\left[\frac{2^{n}-1}{2}\right] \text { zeros and }\left[\frac{2^{n}-1}{2}\right]+1 \text { ones. }
$$

The number of transitions within the sequence is approximately half the number of bits in the sequence. The number of transition equals $\left[\frac{2^{n}-1}{2}\right]$. The maximum number of bits without a transition is equal to the number of stages in the $S R, ~ ' n '$. The statistical

Figure 4.1 PN Cover Sequence. The $d_{i}(1=1,2, \ldots, n)$ are either one or zero, depending on the tap polynomial, $h(x)$, where $h(x)$ is a primitive polynomial over the field $G F\left(2^{n}\right)$ and $h(x)=1+d, x+d_{2} x^{2}$ $+d_{3} x^{3}+\ldots+d_{n} x^{n}$.
distribution of ones and zeros is well defined and always the same. There are exactly $2^{n-(p+2)}$ runs of length ' p ' for both ones and zeros in every maximal sequence where ' p ' is any positive integer less than ' n ', including zero. However, the relative positions of their runs vary from ML sequence to ML sequence depending on the tap polynomial and the method of comection. The main properties of ML sequences are listed below.

1. The number of ones in a sequence equals the number of zeros within one bit.
2. The statistical distribution of ones and zeros is well defined and always the same. Relative poaitions of their runs vary from code sequence to code sequence, depending on the tap polynomial and the method of connection, but the number of each run length does not.
3. Autocorrelation of a maximal linear code sequence is such that for all values of phase shift the correlation value is -1 , except for the 0 to 1 bit phase shift area, in which correlation varies linearly from the -1 value to $2^{\text {n }}-1$ (the sequence length).
4. A modulo-2 addition of a maximal linear code with a phase shifted replica of itself results ia another replica with a phase shift different from either of the originals.
5. Every possible state, or m-tuple, of a given n-stage generator exists at some time during the generation of a complete code cycle. Each state exists for only one clock pulse. The exception is that the all-zeros state does not normally occur and cannot be allowed. (For additional information concerning ML sequences, see Reference 13, pp. 53-72 and Reference 14.)

The particular ML sequence, the reasons for choosing it, and a statiscical statement of the probability of not incurring sufficient transitions are discussed in the following paragraphs.

4.B THE PARTICULAR PN SEQUENCE FOR THE COVER SEQUEMCE GENERATOR (CSG)

It is a common engineering practice to select a M sequence whose length is at least equal to the number of bits between aynch words, since the aync pattern in better left lone. The SL general user format contains 3040 bits between each 32 bit sync word (28 bit sync pattern and a 4 bit ID word), therefore the eequence generated by the CSG should have a length equal to or greater than 3040 . Although a $12^{\text {th }}$ degree polynomial yields a Ml sequence length of 4095 bits and is the smallest sequence that could be used, it is not a Mersenne prime sequence and is therefore susceptible to interperodicty. For this reason a $13^{\text {th }}$ degree polynomial was chosen. It will generate a $2^{13}-1=8191$ bit sequence before repeating itself; its composition will vary depending upon the tap polynomial used. A 13 stage PN generator is a Mersenne prime generator. Various tap polynomials are available for use and some are listed as follows:

$$
\begin{aligned}
& g(x)=1+x+x^{3}+x^{4}+x^{13} \\
& g(x)=1+x^{4}+x^{5}+x^{7}+x^{9}+x^{10}+x^{13} \\
& g(x)=1+x+x^{4}+x^{7}+x^{8}+x^{11}+x^{13} \\
& \text { etc. }
\end{aligned}
$$

The first polynomial listed yields the fewest number of connections which would be desirable if a shift register implementation was used for producing the code.

Since the sequence generated is 8191 digits long and only 3040 digits exist between the frame synchronization patterns, a truncation of the sequence is desirable.

Deciding upon the particular 3040 bit piece of the sequence is dependent upon the structure of the sequence. It is highly desirable to avoid long strings of alternating 1 ' s and O 's due to the very likely prospect of these strings occurring in the data. Factors which enter into the sequence structure are the initial condition (or contents) of the PN sequence shift register and the tap polynomial.

Figures 4.2 and 4.3 illustrate the methods of modifying the data stream emanating from the HRM. Figure 4-2 illustrates the shift

Shife Register for $g(x)=1+x+x^{3}+x^{4}+x^{13}$
(a)

(b)

OPFRATION: FOT FTAE Synch and ID (32 bits) che Sh1ft Register output is " $0^{\text {n }}$. Thus Frame Synah and ID pass to tranemitcer unaltered. For the next 3040 bits the PM sequence (a specific 3040 bit portion of the 8191 total) is atded to data thereby producing the required transicion denelty in tha tramedeted ble sereen

Figure 4.2 CSG Encoder Using Shift Register Implementation

Pigure 4.3 BDBT Encoder Using ROM Implementation
regieter type of encodar for fDBT and Figure 4.3 illuatyates the zom type of encodor for apar. In either case the same sequence will be utilized. It should be noted that the freae aync and ID portion are not altered.

The eequence will have the run length distributions, shown in Table 4.1, for all tap polynomials and initial etart vectore (the arrangement of these various ruas will vary of course or there would be no difference in the eequences).

In general there are $2^{\mathrm{n}-(\mathrm{p}+2)}$ runs of length p for both ones and zeros in every maximal sequence, except that there is only one run of length n (ones) and one run of length $n-1$ (zeros).

A computer program based on an algorithm presented by Robert Gold in Reference 14 was used to generate the coaplete sequence of 8191 bite. This sequence was examined and the particular portion of 3040 bits was selected. This sequence is shown in Table 4.2. The zero-one distribution for this truncated 13 stage PN sequence is illustrated in Table 4.3. An examination of Table 4.3 reveals that this truncated sequence maintains the properties of a ML sequence. Although they are noz perfectly retained, it is very close. Since the SL data stream is expected to contain long runs of alteraste ones and zeros, the truncated sequence must be examined for these also. Table 4.4 lists the number and lengths of all alternating runs contained in the truncated sequences.

4.C probabilities associated with the sequance

Now let us investigate some probabilities of not achieving the transition density requirements.

In order for failure to achieve a transition in 64 bita to occur it must have a data sequence that exactly matcher the PN sequence for 64 bits. Since the PN sequence is atatistically independent of the data sequence in bit by bit as well as string by string fashion we have

$$
\text { Prob (of more than } 63 \text { bite with no transition) }
$$ $=(.5)^{64}=5.4210108 \times 10^{-20}$

The requirement that 64 transition in 512 bits occur may be thought of from the following viewpoint:

TABLE 4.1 ZERO-ONE DISTRIBUTION FOR $n=13$ MAXIMAL LENGTH PN SEQUENCE

TOTAL NUMBER OF ONES	4096
TOTAL NUMBER OF ZEROS	$\underline{4095}$
TOTAL BITS	$\mathbf{8 1 9 1}$

NUMBER OF RUNS CONSECUTIVE ONES

NUMBER OF RUNS CONSECUTIVE ZEROS

NUMBER OF BITS INCLUDED

13
13
12
11
10 2
$9 \quad 4$
8 8
7 16
632
5
4
3
2
1
1
0
0 1 12
1 1 22
2 . 2 40
$4 \quad 4 \quad 72$
$8 \quad 8 \quad 128$
16 - 16
224
32384
$64 \quad 64 \quad 640$
128128
1024
256
256
1536
$512 \quad 512$
2048
1024
2048

TOTAL BITS
8191

1011160101006001 0010110000111001 011110911 COI 1110

100101101011C001 9881188118191818

1110101010101111 Y181809010101091 11108001 C0100001 1001000016101101 0111100000001100

1011110110110000 101110010000 c 110 19000100000011900

0010010111110000 0000000000101818 0701000 Yi 901010

1011190001081111 110001110116ci19 co1011C01101C100

1101010010001010 $001010011110 \mathrm{Co10}$ 1001081010101101

C010001110nocecs 1101100001iqiof\} 1101001011101001

1011101C00011010 0011111101111110 001110011 COOCOO 0011000110101011 00001 110C101C1C1 0010000100110111
$01001001111 \mathrm{C1110}$ 10011101010CnOOC 0010001111111000

1110110010111101 111111119co1c119 C000010001119119
$010001010100 \mathrm{c1} 180$ 00090911 c1000111 10011110011.10110

8818190001111110 8818010010111001 0000001101001001

810118c811181119

81101106111011i1 1011111101001111

0000011000110110 fictifódot181188

1001010011001110 1091000001111001 0111010110101000

1100100911101001 0101cot111co1010 1910001111000010

1010n01010101100 Q1c8011100111011 1010101016010100

0110111001100001

0011 त1 1010111001
11011111001000C0
0111011010110190 0011001110019091 010011 1190111011 H19791891988811
1101111001000011
$0010 c 15000011101$ 10 nocoloililicco 0101110001111100

1000C11010111111 0000 001101011691 0001601101000111
$01 \mathrm{COC01006011111}$ 1010011100c11010 00010111111111
 100010111901001

1010611100109010
$00 c 11110 n 1110$
0110111100111010

019118111911998
0081101010101018

1018111110101108 810, C100010c11c01010

1111111011111090 2888888998888888

1110011101 C01100 1100810111991101
coli800001910000

0101000901111100 0101111110010001 010 1111111100000

0110101160100110 c108011081011000 1111100000111101

189091890988111

1091988998919901 1011100100100010

0101001101010110 di1110¢ $C 50018008$ So1198iff1811881
coilio1101119110

1000111C10011011 1111109000111101 $1101100110 C 01010$ 1101110100001010 C1111100111ico11 1190111000010119

1110001900110011 10C0900010cc1001 C011001100110111

1100111000001010 1101011611 ClCog cooiolifoilocoti

C110001c91c10111 C01100C1011011?0 1111000c.10001019
orignnat. pane ls (W) ? (M)R OHALITR:

TABLE 4.2 TRURCATED SERUEVCE FOR TEE DSG (Continued)

	$\begin{aligned} & 0111110001110011 \\ & 11118881118188 \end{aligned}$	
811191110011c198		c188019110109110
	$\begin{aligned} & 0101100010111011 \\ & 11001191919 \\ & 11001191901000 \end{aligned}$	$\begin{aligned} & 1111100118190001 \\ & 01101005000011 \\ & 100190000000160 \end{aligned}$
101101191910解88 1010101011110111	1908108911111909 0110100111000181 0111016001011001	$\begin{aligned} & 189181118881981 \\ & 0819110 c 88 \\ & 18110018101000 \end{aligned}$
0100110000089819 10101001100810 co 1110010191011000	1100011100901810 1601610160100811 0011001010101091	
P988019198818910 0000111011110001		$\begin{aligned} & 10101019 n 011019 \\ & 11900190810119 \\ & 0001081111011071 \end{aligned}$
1010000010000110		

```
                    TABLE 4.3
                    Truncated
                                    13 STAGE PN SEQUENCE PROPERTIES
                                    g(X)}=1+\mp@subsup{x}{}{9}+\mp@subsup{x}{}{10}+\mp@subsup{x}{}{12}+\mp@subsup{x}{}{13}\quad(MSRG
```

$\begin{array}{r} \text { Total Number of Zeroes }-\frac{1536}{\overline{3040^{*}}} \text { TOTAL DIGITS } \end{array}$			
RUN LENGTH	NUMBER OF RUNS CONSECUTIVE ONES	NUMBER OP RUNS CONSECUTIVE ZEROES	NubBer Of bits IMCLUDED
11	1	0	11
10	0	1	10
9	2	0	18
8	4	4	64
7	5	10	105
6	14	12	156
5	20	30	250
4	45	41	344
3	101	93	582
2	173	193	732
1	395	373	768
TOTAL BITS 3040			

* Maximum Run of Alternate One/Zero is 14

table 4.4

distribution of alternate ones/Zeros for
 the truncatid 13 STAGE PN SEQUBNCE

RUN LENGTH (BITS)

14 1
12 1
11 2
10 2
9 4
8 4
7 16
6 21
5 35
4 102

The PN sequence is random in nature and contains approximately equal numbers of ones and zeros with a corresponding large number of bit transitions. In fact from the run length table one may observe that approximately 4096 transitions between various run lengths will occur. This amounts to roughly a 50% (or 1 transition per 2 bits) transition density. Thus, for less than 64 transitions to occur in a total of 512 bits we must have the data match the 512 bit random sequence in all bit positions except for 63 bits or 62 bits, or 61 bits, etc.

$$
\begin{equation*}
P(\leq 64 / 512)=\sum_{k=0}^{63}\binom{512}{k}(.5)^{512} \tag{4.1}
\end{equation*}
$$

$$
=3.946^{+} \times 10^{-71}
$$

Thus, we see that the dominant factor is the probability of less than at least 1 transition in 64 bits which is -5.42×10^{-20}.

Of course there are 448 possible chances for a 64 bit string to have no transitions in 512 bits.

Thus, the transition density requirements should be met with at least a failure probability of no more than

$$
-2.434 \times 10^{-17}
$$

A computer simulation program was developed which tests the truncated CSG Sequence for achieving the high bit density transitions by modulo-2 addition with the data stream. This program is explained and listed in the Appendix. Since little is known about the SL data, the program generates a sequence of random numbers to represent the SL data stream. Several runs were made using different seed numbers to produce different random sequences. These random sequences were also truncated to various lengths and repeated to sirsiate periodic data sequences. The computer results indicate that the output sequence of the CSG will have a transition density of approximately 50%, an average of one transition every two bits. Although the computer simulation was not exhaustive, it ls sufficient to substantiate the theoretical probability of meeting the required bit transition density of the SL 2 Mbit return 1ink.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

In conclusion only the PN Cover Sequence of the six possible techniques examined is capable of meeting or exceeding the System Constraints placed on the HBTD encoder (See Table 5.1). Since the PN Cover Sequence is NRZ-L and employs the HRM clock, it will not alter the present bandwidth or data rate. The probability of not meeting or exceeding the required bit transition density is at most 2.434×10^{-17}. Since the PN Cover Sequence is independent of the data stream, it will not propagate channel errors, a single input error yields a single output error. Thus the PN Cover Sequence is compatible with the existing BCH code. The above mentioned are three primary constraints listed in Table 2.1. The fourth constraint deals with the means use to implement the CSG and will vary depending on whether shift register or ROM techniques are employed. This constraint is also effected by the Secondary Constraints in Table 2.2. However the circuitry required to meet the secondary constraints is basically the same for all six techniques and since the truncated PN Sequence is one of the least complicated to implement, the fourth constraint presents no major problem.

Since the actual implementation of the CSG is beyond the scope of this contract, it was not covered in the preceding material. However, a specifications dccument concerning the PN Cover Sequence Generator Encoder/Decoder was constructed and submitted with the April 1981 monthly progress report. A copy of this specifications document is included in the Appendix. It contains diagrams for the purpose of enhancing the concept of the CSG encoder and decoder. These figures illustrate the functional properties desired for both the CSG encoder and decoder which will enable them to meet the secondary constraints of Table 2.2 .

A second method of implementation was also put forth in the November 1980 Monthly Report for meeting the secondary constraints. This method differs in that the 4 ID Bits are used to desigate whether the CSG encoder had been activated or by passed. This modification
varies only slightly from the original truncated sequence, 4 additional bits are added increasing the sequence length to 3044 bits. This would not effect any of the first three constraints of Table 2.1 and would require moderate changes in the implementation. A copy of the November 1980 Monthly Report is included in the Appendix for convenience.
table 5.1 COMPARISON OF CSG WITH SYSTEM CONSTRAINTS

- NO CHANGE IN RF BANDWIDTH
- no change in data bandwidth
- PROBABILITY OF NOT MEETING TRANSITION REQUIREMENTS

1 TRANSITTON IN 64 bItS -5.421×10^{-20}
64 TRANSITION IN 512 BITS $-3.946^{+} \times 10^{-71}$
1 TRANSITION IN ANY 64 BITS GROUP FOR 513 BITS -2.434×10^{-17}

- NO ERROR PROPAGATION
- hardware implementation

AIrborne: SImple (frame sync pulses and clock provided by hry)
GROUND: MODERATE (REQUIRES FRAME SYNC DETECTION FOR NORMAL and Inverted and must determine data rate.)

CRAPTER

References

1. Baillavoine, J. "High Rate Acquisition Assembly; Equipment Specification," MATRA ESPACE, DOc. \#EQ. MA. O229, VL'LIZY, France, 1977.
2. \qquad "System Deacription and Operation; High-Rate Demultiplexer System Operations and Maintenance Manual," Martin Marietta, Denver, Colorado, Volume 1, MCR-80-1328, 1980.
3. Teasdale, W. E. and Lai-ium Lo. "Space Shuttle Payload Data Handling and Communication Description and Performance Document," Revision A prepared by NASA, Johnson Space Center, Houston, Texas, JSC-14241, 1980.
4. Tracking and Data Relay Satellite System (TDRSS) User's Guide, Revision 4, prepared by Goddard Space Flight Center; Greenbeit, MD., 1980.
5. Memo from Networks Directorate, Network Engineering Division, Goddard Space Flight Center, Greenbelt, MD to Data Syarems Laboratory, Mr. Russell D. Coffey, Marshall Space Flight Center, "Tracking and Data Relay Satellite System (TDRSS) Shuttle Return Link Channel 2 Bit Synchronization Performance Under Low Data Transition Density Conditions,".
6. Simon, M. K. and J. G. Smith. "Alternate Symbol Inversion for Improved Symbol Synchronization in Convolutionally Coded System," IEEE Trans. Commun., Vol. COM-28, Feb. 1980.
7. Cartier, D. E. and D. E. McConeell, "Space Telescope High DAta Rata System Study," Magnavox Government and Industrial Elec. Co., Silver Spring, MD, Contract No. NAS5-24225, prepared for Goddard Space Flight Center, Greenbelt, MD, July 1979.
8. Baumert, L. D. et.al., "Symbol Synchronization in Convolutionally Coded System," IEEE Trans. Inform. Theory, Vol. IT-25, PP 362-365, May 1979.
9. Savage, J. E., "Some Simple Self-Synchronizing Digital Data Scramblers", Bell System Technical Journal, Vol. 54, No. 3, Mar. 1975, pp 569-593.
10. Gitlin, P. D. and J. F. Hayes. "Timing Recovery and Scramblers in Data Transmission," B.S.T.J., Vol. 54, No. 3 (Mar. 1975), pp 569-593. B, E, (Parallel Scramblers) 2b
11. Spilker, J. J., Jr. Digital Commication by Satellite, McGraw-ilill, 19 . Pp. 473-491.
12. Nuller, Horat. "Bit Sequence Independeace Through Scramblers in Digital Communication Systems," Nachrichtentechnische Zeitschrift, Vol. 27, Dec. 1974, pp. 476-479.
13. Dixon, R. C. Spread Spectrum Systeme, New York, N. Y., Wiley and Sons, 1976.
14. Sequences," Short Course prepared by Robert Gold Associates, Los Angeles, CA., Sept. 1978.
15. Lindsey, W. C. and M. K. Simon, Telecommaication Systems Engineering, Englewood Cliffs, NJ, Prentice-Hall, 1973.
16. Ziemer, R. E. and W. H. Tranter, Principles of Commnications Systems, Modulation, and Noise, Houghton Mifflin Co., 1976.

APPENDICES

A computer aimulacion program was developed which tests the PR-Sequence for achieving the high bit density transitions by modulotwo addition with the data atrean.

The computer progran will generate several different Pid-Sequencee for given generating polynonials (represented by IX) with ziven initial conditions (represented by IG). Both IX and IC are written in octal represcatation. The program generates, via subroutines, a sequence of random numbers which aimiates the input data atreen to the Cover Sequence Generator (CSG) Encoder. Any apecified portion of this random sequence can be used to simulate a periodic input sequence. Thus the program can generate periodic sequences of varying lengths and transition densities to simulate the input data stream to the 586 Encoder. The modulo-two sum of the PN-Sequence and the aimulated iaput data is calculated. This modulo-two sum represente the output data strean of the CSG Encoder. All three sequences are printed and the total number of transitions for each is determined and printed.

The program will also determine for the output sequence the run lengths for all bits of the same value and the order of their occurrence. This information is stored and printed in two groups, one for the all zeros case and the other for the all ones case. Examination of these two groups permits a determination of whether the output seiquence satisfies the required transition density.

The status of the requirement of one transition every sixty-four bite is determined by simply checking the number of bits per run in each group. The second requirement of sixty-four transition within five-hundred-twelve bits is silghtly more complicated to evaluate. An average of one transition every eight bits will satisfy this requirement. Thus by locating all runs of length eight or greater and examining the runs prior to and following each of these, a determination concerning this requirement can be made. Note the outfut sequence alternates between the two groups. The question of vhich group to start with, $2 e r o s$ or ones, depends upon the value of the first output bit ('XOR OF THE

GEMEATED BIT8'). If the bit is a one start with the "LaxGTHS 0 . GROUPS OR ORES" and if the firat output bit is a sero start with the "Lmegras or groups or zeros".

OSy Pnymis.ofonns


```
    SUGROUTINE PNSED(1G,IX,m,NC,K)
    DIMENSION 1G(20),1X(20),X(3,3100)
C:*: THE PNSEO SURRCUTIME WILL GEAERATE A SET OF PSEUDO-RANDOM
C:-: PITS. IN TMIS ROUIINE SUSFUNCTION GITS BROM IHE LIERARY
C** OF UNIVAC IIOO HAS OEEN UTILIZED
    mb=m
    NTPINC
    1HQCD=1G(MTP)
    =0
    1G(NTP)=1G(NTP):?
    1=1*1
    1F(I.GT.M6)G0 TO ?
```



```
    1F(x(1:TP:I):EO:A)GOTOTO
    IG(NiP)=xOR(IG(NIP).IX(NTP))
    C0 to 10
    COMTIMUE
    RETLRN
    EMD
Gicilinal page is OF POOR QUALITY
```


cet

c＊IROUEI FOR PN－SEQUEMCE

Con jolums fon moo－2 SUN
dLINE＝0
${ }_{0}^{2} 10=10$
NP＝ToytoyTete3
NTE（qutelof

JLIE A JINE
10
20
Sug no utime ye ispostangis
C与（JHINEAESZ3） 60 IO 10
CONTINUEAN－ $1817 \pi_{0} 100(11)$ ）
GETUAN
ENO

sus RoUTIME RANO (N, M)

 LK=315227
 NeN*K
 RHEN
 日anN 34359738337 .
 áanos (a)
 RET

C:O:

```
C**
C**
ThIS subpoutime Hill tare bandon
CTRANO AND STAOTING AT POI NT MPS SEOUENCE GEAERATEOOY
NLN PITS OF THE SEEUENCE AMO PUIS IT IN ARBAY YOR
CO-. TMEN STARTS TO REMRITE INE AGRAY K WITM TME ACY OF MLM CO: EITS PERIOOIC SEGUENCESO SO IM THIS OPERAIIOKOAIGIMAL
c••
C**
NPNLENPS ©NLN-1
ACYEIFIM(H/MLM)
NCTIANCYO!
NNC YENEYOMLN
0010 IEAPSOMPML
\(11=1-N P S\). 1
R(AK(1) 1) m 2,1 )
CONTINUE
```



```
x (2,ij)=rond
1FCIJECOM) 601040
30
CONTENUS
CONTINUE
RETURN
ENO
```


SUBPOUTINE AMOOZ(R, ${ }^{m)}$
DIMENSION X(3,3100)
C**
ThIS ROUTJNE finds mod-2 SUM Cf any two elmany numben
C-A. IN PN AMD IMPUT SEQUENCE
$0010 \quad 1=1, m$

10
RETUMN
ENO

Enteaing user program

101000010181100100101 CCOC1111110C100101111081000100001000000018100108100101110010001181000110110e181 8109010101900000001101001001001101010010101110911001090000010101100011108110101011111010110000101100
 0601000001100019011011111110111110100001100110101610001106000118190080010000010011101101890810110010
 000001111001110001018100110110000100110100100111010110101000001100000111000011100001001809188001000 $11101001010160000111810010010000161081010101001118001010010181111001000101111000000 e 1109111000111190$ 0010610111811110000010111101801100001010001080101100911080110010018010181001000001100109011100811818 0100011001011000110601000000010014101010100101001111100000111101001001011111000008110011019081001500 $00100 c 0001110000600008101010101016810000011010111000110000010101000111001010010000111110000000810181$
 1 101001011001101012011011111001004001018100100100010110101001000101001119110101101000101001401010110 0010100111100010091100111001001101111000000100001001001010101101010011111018181100180000100400010010 0011100000011101001001000011011900100101900111011000018110119111190100190011001090111008110111010090 1110100111011110010000110011101101111110101190100001101000800100006118011000111090081018001811190118

 010111 C01 1100000101211111119100101111010001101003001110101801161600100008100018118111100010111809001
 0001011911001001111001110110011011110019101011110000100010111000100101000000011111000111801800808110 $001010110100100010000 c 11111110001111010000060101100018100000109101110001101110806190001010010101010$ 0111011101110011010001011010011104101100010110161110003010001018019010101100101900008100198100018918
$1010 p 10000101100010010001010100101010081111100108011110101001111010110001011101111111001101000010101$ 1801101130111100111101111011001101000001001101010101101001111100111111010001100110000000100110110110 1010001010001900181110001001011110001001111010101101000001101001110001010010111000001111101010101911 0111411101000801808111111100111016000100110000000011110001110000101010060000011010101010100080001000

-

1011000co $90100 c 001101011000110010(01110 c c 01110111110010001001101001011111001100900000001101110011180$ 0100120191111011010611100108010101000000011110880110100001001100100108040110010011110018100100100110 $1001101010001111000 \operatorname{coccs} 0011110101000100001100118111189011101111111101001011100110000018101010180110$ 0010011010100111000101010100110101111610001100101110010011101180811001111000000110100011800001116000

 $100100118000019000011000118101010 c 110011101010101011011101000010000 e 10001010011111180018118118081810$ 000110110014000000010101061119800011110101000010001110000101000100000101100001008100000081811018181
 0011101011111010010101111011090400010000011010116001100100011100001110111110010001001101869011111801 $1000 C 0200 C 011011100111100100808111111011010011100101010101000000018180110110100001001100108100800110$

 001010101100006108110 c111000100ce 1100000c111C1110100101010111111000100019111000019011001081018110109

 0100110004000101110181111010101100001080000111011010101011119001001000100000000100111111090000081811 0000001206000111601001100611101611111610010161118011400000010000011010150901100180011100601110121110 0100010014016010111112011003600006011011100111100106106111111649010011100108010101009000018110210180

 $050011001001101161911010110001100501081011000000111111080101100100011110100011100000100189080 c 001010$

 0101001081010110190100111011101171110000110111600111100086001800110111000000001180061081109881618000
 18100000081011180009010000106011600010100010001180101081000101181800011801811001010111001810108810 T1110C1111101810001106111011111081c000101110111061001010000000001110001010801111100100ce100e10110e10 001101119111001608001116110011160111010110100011111009101110110180000810818001108100101100081018080 $9010114001111110121911101600001 C 01901810601000100100800111100100011011010000008111111000018190900100$

 $0000010018118010181110018110000 c 01811180191900001100181080016110001018081101101000010810008110810181$

on-stenence teansition

 isiscamben sceucnce fiansitiom
1650
ourput semence reansirsom
1481

APPENDIX B

SPECIFICATION DOCUNENTT FOR PN COVER SEQUENCE

 GENERATOR ENCODER/DECODER
1.0 Introduction

This Statement of Work (SOW) is to establish the requirements for the definition and fabrication of Cover Sequence Generator (CSG) encodere and decoders and associated cabling hardware for utilization in Spacelab.

The encoder shall be utilized in the interface between the Spacelab GRM 2Mbps output and the Orbiter KU-band signal processor to format the bit stream to ensure minimum bit transition density.

The decoder shall be utilised in the interface between ground station receivers and $\operatorname{HRDM}(s)$ to restore the reformatted data to the non-encoded configuration and to resolve output bit ambiguity.

2.0 Scope

The contractor shall provide the necessary effort to define and fabricate:
(a) CSG encoders and associated cabling and hardware both for the Spacelab module and pallet modules.
(b) CSG decoders for implementation and integration into:

1. ATE at KSC
2. SLDPF at GSFC
3. POCC at JSC

The contractor shall provide the necessary effort to support the High Data Link Test scheduled at JSC - April 1982 by having available a CSG encoder/decoder qualification unit set and providing engiueering and test support.
The contractor shall prepare and maintain a schedule plan which impiements this SOW.
3.0 Deliverables

- One (1) Set of Documentation
- One (1) CSG E/D Oualification Set
- Two (2) CSG Encoders
- Three (3) CSG Decoders
- Associated Hardware and Cabling

4.0 Specifications

The units shall be manufactured in accordance with Spacelab flight and GSE requirements. The quality program shall be in accordance with NHB 5300.4(1C). Functional characteristics shall be in accordance with Appendix B. 1.

5.0 Acceptance

Acceptance tests will be performed at the contractor plant. The acceptance data package will be provided to NASA for review and approval. The review by NASA will be completed with 30 days of submittal.

6.0 Reviews

Design and development reviews shall include but not be limited to the following:

PRR
PDR
CDR
Acceptance Review (AR)
The contractor will present additional reviews as required.

APPENDIX B-1
 COVER SEQUENCE GENERATOR EXSCODER/DECODER PRELIMINARY SPECIFICATION

1.0 Scope

This appendix defines the preliminary requirements for design of the CSG Encoder/Decoder elements and will be used as the basis for development of the part 1 CEI Detail Specification (CM-04).

: Purpose and Description

The Cover Sequence Generator Encoder serves the purpose of reformatting the Spacelab HRM 2MBPS serial bit stream in order to satisfy data handling constraints for minimum bit transitions density. The CSG Encoder will be physically located on board the Spacelab vehicle and will be functionally located between the Spacelab HPM 2 MBPS output and the Orbiter KU Band Signal Processor (KUSP).

A complementary decoder shall be utilized to restore the reformatted data to the non-encoded configuration. The decoder shall be functionally located in the interface between the ground station receiver and the HRDM. Figure $\overline{3} .1$ illustrates the functional location of the encoder and decoder units. Figure B. 2^{2} illustrates the portion of the data stream to be reformstted and the portion of the data stream which is not to be reformatted. Note that use of the frame synchronization pulse generated by the HRM is necessary to turn the CSG Encoder on and off at the proper time. Note further that either the synthesis of the frame synchronization pulse or use of such a pulse from the HRDM will be necessary in the decoder. Furthermore, becanse of possible phase inversion of the data stream (including the frar:e synchronization word), the synthesis of the frame synchronization pulse if necessary will require a frame synchronization patterr or the inverted frame syachronization pattern. If however, the HRDM supplies the frame synchronization pulse it will take the possibility of inverted data into account.

The CSG encoder/decoder consists basically of a PN sequence which is derived using a $13^{\text {th }}$ order polynomial. The sequence so generated is truncated to 3040 bits to match the data stream between frame synchronization pulses.

a) CSG Encoder Function1 Location

b) CSC Decoder Functional Location

Figure B. 1

28 BIT F.S. WORD	4 BIT ID	3040 BIT DATA STREAM	28 B: F.S. WORD	4 BIT ID

This Portion has PN Sequence
Modulo Added

Figure B. 2 HRM Data Stream

A printout of the desired 3040 bit sequence will be furnished to the contractor by the contracting agency. Figures B. 3 and B. 4 illustrate the functional properties desired for both the CSG encoder and decoder. These diagrams are provided for the purpose of enhancing the communication of the concept of the CSG encoder and decoder.

IN NO WAY ARE THE FIGURES 'ZB. 3 AND B. 4 INTENDED OR SHOULD BE CONSTRUED TO BE RECOMMENDED DESIGN APPROACHES.

The basic system requirements are:
For the Cover Sequence Generator (CSG) Encoder

1. Data input shall be NRZ-L from the HRM formatter varying discretely at a rate between 125 KBPS to 2 MBPS. The encoder shall utilize a frame syachronization pulse from the GRM to turn the PN encoder on and off.
2. Only HRM 2 MBPS data line (Data rates vary from 125 EBPS 2 MBPS) formatted data will be CSG encoded.

For the Cover Sequence Generator (CSG) Decoder

1. If no HRM frame synchronization (nominal 2 MBPS data rate) word occurs in the data stream from the bit synchronizer the data shall be passed on unaltered.
2. For HRM 2 MBPS formatted science data with proper frame synchronization word the data outputs phase will be unaltered and the cover sequence removed.

In Figure B. 4 the Timing Gate and the Time Coincidence Gate serve the purpose of determining that the clock and frame sync are indeed a 2 MB'?S rate rather than a higher rate. The hold portion of the Time Cofncidence Gate is to activate the cover sequence generator for a major portion of a frame.

It should be noted that the frame synchronization detector protion of the CSG decoder must contain capability for and follow the same frame synchronization search, acquire and maintenance mode protocol as that specified in the HRDM specifications.

These following statements describe the basic HRDM frame synchronization operation and frame synchronization pulse location.

Figure B. 4 Cover Sequence Decoder Block Diagram

1. Frame synchronization is achieved by searching for two consecutive frame synchronization words. When the first word is recognized the 4 bit ID count is set in a counter. This count is then updated by 1 count and upon receipt of the next frame synchronization word the new 4 bit ID count is compared to the updated count and if there is agreement frame synchronization is achieved.

At this time a pulse is generated (from high to low) which lasts for one bit time during the 32 nd bit of the frame synchronization word.

The data that is received during these two frame synchronization words is discarded.

2.0 Requirements

2.1 Performance

2.1.1 CSG Encoder

The CSG Encoder will reformat the 2 MBPS HRM serial bit stream with the following constraints.
a. The probability of not having at least one transition in 64 bits shall be $5.4210108 \times 10^{-20}$ or less
b. The probability of not having 64 transitions in 512 bits shall be $3.945^{+} \times 10^{-71}$ or less
c. The combined fallure probability shall be 2.434×10^{-17} or less
d. The reformatted data stream shall not increase or decrease the information rate
e. The reformatted data shall be compatible with the existing BCH code
f. The mechanization of the PN cover encoder shall have a minimal impact on the existing system
g. Source voltage for the PN cover encoder will be provided by a 28 volt input $D C$ to $D C$ converter
h. There shall be no increase in RF bandwidths

1. The HRM sync word shall be unaffected by the CSG sequence
j. There shall be no error propagation due to the use of the CSG
k. The recommended 13th order polynomial sequence is $\mathrm{g}\left(\mathrm{x} 0=1+\mathrm{x}^{9}=\mathrm{x}^{10}+\mathrm{x}^{12}+\mathrm{x}^{13}\right.$ which shall be truncated to a 3040 digit data stream
2. The CSG shall pass through any data without an KRM frame sync undisturbed
m. The CSG shall ignore any frame sync pulse signal that indicates a total. data rate greater than 2 MBPS
n. Parts for the CSG shall be EEEE.

2.1.2 CSG Decoder

The CSG Decoder will reformat the 2 MBPS HRM data streams with the following constraints:
a. The CSG Deocder shall pass data without HRM frame sync (normal or complementary) undisturbed
b. The CSG Decoder shall pass NRZ-S, NRZ-M and B1- data undisturbed, assuming basic NRZ-L compatible logic levels
c. The CSG Decoder shall have the capability to recognize both normal and complementary uRM frame sync. (If avallable the CSG Decoder may substitute a frame synchronization pulse from the HRDM in lieu of generating this information within the Decoder itself. The availability of this frame synchronization pulse from the HRDM must be resolved between the contractor and the contracting NASA agency.)

APPENDIX C
A STUDY OF HIGH DENSITY BIT TRANSITION REQUIRMEATIS VERSUS THE EFFECTS ON BCH ERROR CORRECTIMG CODING

A Monthly Progress Repori Covering the Period November 1, 1980 - November 30, 1980

Submitted to:
George C. Marshall Space Flight Center National Aeronautics and Space Administration Marshall Space Flight Center, Alabama 35812

Submitted by:
Mississippi State University Engineering and Industrial Research Station Department of Electrical Engineering Mississippi State, Mississippi 39762

Principal Investigator: Frank Ingels Associate Investigator: William O. Schoggen

Contract No. NAS8-33887

A STUDY OF HIGR DANSITY BIT TRANSITION REqUTRGMENTS VERSUS TER EFTECTS OH 8CH ERROR CORRECTING CODING

Work Suamary
Per1od: (Novamber 1, 1980 to November 30, 1980)
A meeting was held at MASA-MSFC on Rovember 10, 1980. Participants were Mr. David Mann (MSPC), Mr. Eilington Pitts (MSFC), Mise Virginia Johnson (MSFC), one representative from MDTSCO; Mr. W. O. Schoggen (MSU) and Dr. F. Ingels (MSU). The purpose of the meeting was to discuse the latest requirementa on the system to be implemented for achieving a high density bit transition data streara for the 2 MBPS HEM formatted science data.

The requirements are:
For the Cover Sequence Generator (CSG) Encoder

1. Data input shall be KRZ-L from the HRM formatter. However, the encoder shall pass NRZ-S, NRZ-M or Bi- $\$$ data streams in unaltered fashion as long as they have proper logic levels (that is logic levels compatible with the HRM NRZ-L data).
2. The encoder shall pass unaltered data streams of 2 MBPS which emanate from the system other than from the HRM formatter. These data streams will not contain a frame synchronization pattern similar to that of the HRM 2 MBPS formatted acience data.
3. Oniy HRM 2 MBPS formatted data will be CSG encoded. If the HRM formatted data is being transmitted at a faster rate it shall not be encoded.

For the Cover Sequence Generator (CSG) Decoder

1. If no HRM frame synchronization (2 MBPS data rate) word occurs In the data stream from the bit synchronizer the data shall be passed on unaltered.
2. For HRM 2 MBPS formatted science data with proper frame synchronization word tiae data output shall be non-1 werted in phase and the cover sequence removed.
3. The decoder shall pass NRZ-M, NRZ-S, or B1- $\$$ data without alterstion. It is assumed that these data streams will have compatible logic levels with the HRM 2 MBPS formatted science data stream.

The CSG Encoder block diagram is illuatrated in Figure C4l. The CSG Decoder block diagram is 1llustrated in Figure C. 2.

In Figure 2 the Tining Gate and the Time Coincidence Gate serve the purpose of determining that the clock and frame cync are indeed a 2 MBPS rate rather than a higher rate. The hold portion of the Time Coincidence Gate is to activate the cover sequence generator for a major portion of a frame.

After recognition of a frame aynchronization word the 4LD bits of the frame aynchronization pattern are encoded to provide a 4 bit pattern for the decoder to use for determining that the cover sequence. has actually been added to the cata atream.

The design is fail safe in that the HRPY 2 MBPS formatted data will pass through unaltered if the Encoder fails to activate the CSG, however, in this event the data stream is not guaranteed to contain a sufficient bit transition deusity.

In Figure C. 2 the double frame synchronization word detectors suffice to determine if the data atream enamating from the bit synchronizer is in non-inverted or inverted phase. In the case of the inverted phase the data stream is reinverted automatically. The 4ID bits are checked for the presence of the cover sequence and if it is present and if the Time Coincidence Gate agrees that the data stream is a 2 MBPS rate then the cover sequence generator is activated.

The 4 Bit Delay is necessary for inspection of the 4ID bits prior to activation of the cover sequence generator.

[^0]: *A sequence has period ' s ' if it is the smallest period in the sequence.

[^1]: ${ }^{*} p^{m}-1$ is the period of the maximal length sequence genersted by BSS in the absence of an input.

