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SUMMARY

A low-speed wind-tunnel investigation was made to determine the longitudinal and
lateral~directional aerodynamic effects of plain and tabbed vortex flaps on a flat-
plate, highly swept, arrow-wing model. Flow-visualization studies were made using a
helium-bubble technique. Static forces and moments were measured over an angle-of-
attack range from 0° to 50° for sideslip angles of 0° and *4°.

Results from flow-visualization studies indicated that the tabbed-vortex-flap
arrangement was more effective in trapping a vortex along the wing leading edge than
the plain vortex flap. At high angles of attack, the tabbed-vortex-flap configu-
ration did not exhibit an asymmetric vortex breakdown pattern due to sideslip as
noted for the plain-vortex-flap and basic-wing configurations. The differences in
the vortex flow patterns between the two flap designs resulted in the tabbed-vortex-
flap configuration providing a stable rolling-moment variation with sideslip angle,
whereas the plain—~vortex-flap configuration showed an unstable variation in rolling
moment with sideslip angle.

Results from static-force tests indicated that both the plain-vortex-flap and
tabbed-vortex—-flap configurations exhibited significantly improved 1lift-drag ratios
over that of the basic wing; however, pitch instability was increased by the addition
of the vortex flaps. Also, the tabbed-vortex—-flap configuration exhibited higher
values of lift—-drag ratios over a wider range of lift coefficients than measured for
the plain~vortex—-flap configuration. At high angles of attack, the tabbed-vortex-
flap configuration significantly increased the dynamic directional stability which
eliminated the directional divergence instability of the basic wing. However, use of
trailing-edge flaps for pitch-trim requirements could seriously degrade the lateral
stability characteristics and eliminate the beneficial effect of the tabbed vortex
flap on dynamic directional stability.

INTRODUCTION

The National Aeronautics and Space Administration is currently conducting a
broad research program to provide basic research information on the aerodynamics,
stability, and control of advanced aircraft capable of supersonic-cruise flight.
Typically, these aircraft employ low-aspect-ratio, highly swept, arrow-wing planforms
which have been optimized for supersonic-cruise efficiency. Unfortunately, such
configurations usually exhibit significant deficiencies in the areas of low-speed
performance, stability, and control (see ref. 1). In addition, the application of
arrow-wing designs to advanced fighter aircraft and the desire for increased maneu-
verability have required careful attention to aerodynamic characteristics in the
moderate to high angle-of-attack range. Typically, highly swept wings exhibit strong
vortex flows which augment lift at moderate angles of attack; however, this vortex
lift is usually accompanied by undesirable pitch~up characteristics and significant
increases in drag. At high angles of attack, asymmetric vortex bursting due to side-
slip can result in unstable lateral-directional characteristics.

The present investigation was conducted to determine the effects of vortex flaps
on the low-speed aerodynamic characteristics of an arrow-wing planform at low and
high angles of attack. Previous research on configurations having vortex flaps (see



refs. 2 to 4) have shown considerable gains in lift-drag ratio. The specific intent
of this investigation was to provide an assessment of the effects of vortex flaps on
lateral-directional characteristics as well as the longitudinal characteristics of an

arrow~wing configuration.

Tests were conducted in the Langley 12-Foot Low—-Speed Tunnel with a 3.66-m
(12-ft) octagonal test section. Static forces and moments were measured over an
angle-of-attack range from 0° to 50° for sideslip angles of 0° and #4°. A flat-plate
arrow-wing model with a sharp beveled leading edge of 70° sweep and an outboard panel
of 50° sweep was used as the basic-wing configuration. Two types of vortex flaps
were studied in the investigation. One flap concept was a "plain" vortex flap
similar to that in reference 2 and the second concept was a "tabbed" vortex flap
similar to that in reference 4. In addition to static~force tests, flow-
visualization studies were made using a helium-bubble flow-visualization technique.

SYMBOLS

The longitudinal aerodynamic coefficients are referred to the wind—-axes system
while the lateral-directional aerodynamic coefficients are referred to the body-axes
system (see fig. 1). The moment reference center was located at 45 percent of the
mean aerodynamic chord {(see fig. 2). Dimensional quantities are presented in both
the International System of Units (SI) and U.S. Customary Units. Measurements and
calculations were made in U.S. Customary Units.

A aspect ratio
b wing span, m (ft)
) Axial force
CA axial-force coefficient, —— L ———
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CD drag coefficient, —igg
CD induced-drag coefficient
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C lift coefficient, Lift
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C lift-curve slope, =
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c dynamic directional stability parameter,

n
B,dyn
I
(04 -=2c sin «
n I 1
B x B
C side-force coefficient, Side force
Y qS
CY side-force coefficient due to sideslip, per deg
B
p mean aerodynamic chord, m (ft)
X,Iz moments of inertia about the X and Z body axes,
respectively, kg-m“ (slug-ft”)
L/D lift-drag ratio, C/Cp
q free~stream dynamic pressure, Pa (1b/ft2)
. 2 2
S wing reference area, m~ (ft“)
v, free-stream velocity, m/sec (ft/sec)
X,Y,Z body axes
o angle of attack, deg
B angle of sideslip, deg
6f le leading-edge flap deflection, deg
14
Gf te trailing-edge flap deflection, deg
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Abbreviations:

F.S. fuselage station
L.E. leading edge
V.F. vortex flap

MODEL DESCRIPTION

The model used in this investigation was essentially a flat-plate wing of 70°
sweep inboard with a 50° sweep outboard panel (see fig. 2(a)). Figures 2(b) and 2(c)
show detailed dimensional characteristics of the vortex flaps tested. The flaps were
similar to those of references 2 and 4. In some tests, sheet metal was added to form
trailing-edge flaps (see fig. 2(b)). Photographs of the model with these leading-
and trailing—edge flap attachments are shown in figure 3. For purposes of nomen-—-
clature vortex flaps of reference 2 will be referred to as plain vortex flaps, and
vortex flaps of reference 4 will be referred to as tabbed vortex flaps throughout the
text of this report. The tabbed vortex flap was attached to the full span of the

wing leading edge, while the plain vortex—flap configuration did not include the
innermost segment.




TESTS

The tests were conducted in the Langley 12-Foot Low~Speed Tunnel which has a
3.66-m (12-ft) octagonal test section. The free-stream dynamic pressure was 191 Pa
(4 psf) which corresponds to a Reynolds number of 620 000 based on the mean aerody-
namic chord of 0.50 m (1.65 ft). Data were obtained over an angle-of-attack range
from 0° to 50° for sideslip angles of 0° and t4°. The principal configuration vari-
ables were the leading—edge flap elements which were tested at several different
deflection angles. Flow~visualization studies using a helium-bubble technique (see
ref. 5) were made to provide qualitative assessment of the leading-edge vortex

phenomenon.

The model was mounted on a strain~gage balance where forces and moments were
measured. The balance was selected with a sensitive axial component such that drag
accuracy was within +0.0010 variance of the drag coefficient. A fairing to house the
balance was instrumented with a pressure probe so that base pressure drag could be
accounted for. No corrections were made to the data due to jet boundary or blockage;
however, the model size was small relative to the tunnel size. The data are cor-
rected for a flow angularity of 1.5° upwash.’
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RESULTS AND DISCUSSION
Flow Visualization

In order to provide some insight into the vortex—-flow characteristics along the
wing leading edge, a helium-bubble flow-visualization technique was used. This tech-
nique consisted of injecting neutrally buoyant helium soap bubbles into the airstream
so that the bubbles could follow the streamlines around the model. On highly swept
wing configurations, the separated leading-edge flow formg vortex cores which trail
downstream. This vortex system is made visible by illuminating the helium bubbles in
the flow with concentrated light and by painting the model black to improve contrast
between the bubbles and the model.

The physical concept of the vortex flap is illustrated in figure 4 which shows
the flow over the arrow-~wing model at @ = 15° with the tabbed vortex flap installed
on the left leading edge. The tabbed vortex flap tends to trap the vortex core along
the leading—~edge flap area of the wing. As discussed in past studies, this trapped
vortex generates suction on the deflected flap area to produce a thrust component
which reduces the drag.

Previous research (see refs. 6 to 8) has shown that vortex cores shed by highly
swept wings break down at high angles of attack resulting in loss of lift. Vortex-
breakdown phenomena due to angle of attack for the basic-wing, the plain-vortex-flap,
and the tabbed-vortex—flap configurations are illustrated in figures 5 to 7. For the
basic wing (fig. 5), the vortex-breakdown point occurs at the trailing edge at
a@ = 25° and it rapidly moves forward at higher angles of attack. For the plain
vortex flap (fig. 6), two vortex systems can be seen. Since the plain-vortex-flap
system did not extend to the apex of the wing, a primary pair of vortices were shed
off the leading edge near the apex, and a secondary pair of vortices developed on the
vortex flap. Two primary observations from figure 6 are (1) the secondary vortex
system does not stay attached along the length of the flap and (2) the secondary
vortex merges at a relatively low angle of attack into the primary vortex system.
Vortex breakdown on the plain-vortex-flap configuration occurs at a lower angle of
attack than on the basic wing.

Flow visualization for the tabbed-vortex—-flap configuration is shown in fig-
ure 7. A side-view photograph is presented along with the top view to show that the
vortex core was trapped within the vortex flap. Vortex bursting occurred on the flap
at & = 20° and moved rapidly forward to the apex as ® was increased to 30°.

As pointed out in reference 5, highly swept wing configurations exhibit unstable
lateral-directional characteristics at high angles of attack due to asymmetric vortex
breakdown at small angles of sideslip. The effect of sideslip on the configurations
tested at high angles of attack is illustrated in figure 8. These photographs show
the vortex—-flow pattern on the left and right sides of the model at a = 35° and
B = -4° and -8°. For the basic wing, the effect of sideslip changed the symmetrical
vortex flow at B = 0° to an asymmetric flow condition with the windward vortex
burst point moving toward the apex of the wing, and the leeward vortex moving toward
the wing trailing edge. As noted in reference 5, this type of asymmetric vortex
breakdown results in an unstable variation in rolling moment with sideslip due to the
lift loss associated with vortex breakdown. Flow visualization of the plain-vortex-
flap configuration (fig. 8(b)) also showed an asymmetric vortex-breakdown pattern due
to sideslip. However, the vortex breakdown due to sideslip of the tabbed-vortex-flap
configuration did not show large asymmetry due to sideslip (see fig. 8(c)). For
example, at a = 35° the vortex burst points for the tabbed-vortex-flap configu-




ration were located near the apex of the wing, and there was little variation in the
vortex-breakdown location due to sideslip. This result would be expected to improve
lateral stability at high @, as will be discussed in a later section.

Longitudinal Characteristics

Comparison with theory.- The vortex-lattice method of reference 9 was used to
predict the longitudinal characteristics of the basic-wing planform, and a comparison
with the experimental data is shown in figure 9. The theoretical method incorporates
the leading-edge suction analogy of reference 10, and is restricted to inviscid flow
computations. Theoretical results were in good agreement with the experimental data
at low to moderate angles of attack. At high angles of attack the experimental 1lift
data deviated from theoretical values due to the lift losses associated with vortex
bursting, which are not accounted for in the theory. Slight differences in pitching
moments are due to the planar representation of vortices in the theoretical method.
Thus, higher order paneling methods would be needed in order to obtain better agree-
ment between theory and experiment. An increment of drag due to viscous effects was
added to the inviscid values to obtain the comparison in figure 9. This comparison
of drag indicates that the configuration exhibited a drag polar which was close to
that predicted by theory.

Effect of leading-edge deflection.— The effect of the plain vortex flap on the
longitudinal aerodynamic characteristics of the model is shown in figure 10. The
data of figqure 10(a) indicate that the plain vortex flap exhibited more pitch insta-
bility and nose-up trim change than the basic wing; however, the pitch instability
decreased as the leading-edge flap deflection was increased. The effect of the plain
vortex flap on L/D is shown in figure 10(b). Also shown in this figure are curves
representing the O-percent and 100-percent leading-edge suction for the reference
wing as computed by the method of reference 11. The condition of minimum induced
drag in which Cp. = CL%/ﬂA corresponds to 100-percent leading-edge suction, and the

i

condition of completely separated flow in which CD = CL tan (?L/CL > corresponds
i a

to O-percent leading-edge suction. It should be noted that the data of this report
are based on the wing reference area unless otherwise noted. The data of fig-

ure 10(b) indicate that the basic wing exhibited L/D values that were close to the
0-percent suction curve, as expected. Adding the plain vortex flap improved L/D,
even for a flap deflection of 0°. Although there is no deflected leading~edge flap
surface to act on at a 0° deflection angle, an inclined surface results from the
beveled leading edge of the wing. The beneficial effects of vortex flaps on suction
force are indicated in figure 10(c) for the flap~installed configuration by the nega-
tive increase in axial-force coefficient. It can be seen that the axial-force coef-
ficient decreased and became negative by adding the vortex flap with 0° deflection to
the basic wing and generally became more negative with increasing leading—edge flap
deflection. At low 1lift coefficients, the data indicate that the configuration with
a leading-edge flap deflection of 45° was over deflected for producing thrust.

Leading-edge segments.— A component buildup study was made for the plain-vortex-
flap configuration by starting with the inboard segment and adding segments until the
complete configuration was formed. The leading—edge flap was divided into five seg—
ments, four inboard of the wing leading-edge crank (see fig. 2). A leading-edge
deflection of 15° was used in the study. The data shown in figures 11(a) and 11(b)
indicate an increase in nose-up pitching moments as the leading~edge segments are
added to the basic wing. The data of figure 11(b) indicate that segment one had
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little effect on L/D; however, by adding segment two, the configuration showed about
as much improvement in L/D as was obtained for the complete leading-edge-flap con-
figuration. The addition of the outboard segment provided an additional improvement
in L/D for lift coefficients above about 0.3.

Trailing—edge-flap effectiveness.- The trailing—-edge-flap system, shown in fig-
ure 2(b), consisted of sheet metal bent to the appropriate deflection angle and
attached to the trailing edge of the wing. The flap was nearly full span and repre-
sented an extended—-flap arrangement. Trailing-edge~flap deflections of 0°, 10°, 20°,
and 30° were tested.

Figure 12 presents data which show the trailing-edge-flap effectiveness for
various deflections of the plain vortex flap. Data for the basic wing were added to
the plot of figure 12(a) to illustrate the effect of adding area. By adding the
leading- and trailing—-edge flaps with 0° deflection, there is an increase in the
lift-curve slope, a decrease in the drag polar, and no change in pitch instability.
The data of figure 12 indicate that the trailing-edge-flap system was effective in
producing increments of 1lift and pitching moments for the deflection angles tested.
The pitch-up noted for the basic wing became more pronounced for the higher trailing-
edge—-flap deflections. The leading-edge—-flap deflection had little effect on the
trailing—edge-flap effectiveness.

Figure 13 presents untrimmed L/D characteristics for various combinations
of the leading- and trailing-edge flaps. The data show that trailing-edge~flap
deflection was a dominant factor in improving L/D. At the low lift coefficients
applicable to take-off and second-segment climb for supersonic—-cruise transports,
leading-edge-flap deflections of 0° and 15° in combination with a trailing~edge-flap
deflection of 10° provided the highest values of L/D. At moderate to high 1lift
coefficients applicable to take—-off and second-segment climb for supersonic-cruise
transports, leading-edge-flap deflections of 0° and 15° in combination with a
trailing—edge—-flap deflection of 10° provided the highest values of L/D. At
moderate to high 1lift coefficients applicable to maneuver conditions for fighter
aircraft, leading-edge-flap deflection had little effect on improving L/D., It
should be noted that trim considerations must be evaluated before optimum flap
settings can be selected.

Tabbed vortex flap.- Results of tests for the tabbed-vortex—-flap configuration,
shown in figure 14, indicate that the stall of the basic wing was extended to a
higher angle of attack; however, the pitch instability was significantly increased.
A marked increase in instability occurred for this configuration at & = 20°, which
corresponds to the angle of attack where vortex breakdown started to occur on the
vortex flap. With a trailing-edge-flap deflection of 20°, sizeable increments of
lift and pitching moments were produced.

The data of figure 14(b) indicate that the tabbed vortex flap significantly
improved L/D over the basic wing for lift coefficients above 0.25. With trailing-
edge flaps deflected 20°, the configuration had L/D values close to those predicted
for 100-percent leading-edge suction for values of C;, 9greater than 0.7. However,
the values of L/D presented are not trimmed, and requirements for trim could alter
the results shown.

Comparison of vortex flaps.~ A summary plot of the longitudinal aerodynamic
characteristics of the basic~wing configuration compared with the vortex-flap config—
urations is presented in figure 15 to show the effect of vortex flaps. The data
of figure 15 indicate that the tabbed-vortex-flap configuration, with undeflected




trailing-edge flap significantly increased the maximum lift coefficient and the angle
of attack at which it occurred. However, this increase in 1lift was accompanied by a
significant increase in destabilizing pitching moments.

A comparison of the lift-drag ratios between the vortex—-flap configurations and
the basic wing is shown in figure 16. Since the flap areas are sized differently,
the data are corrected for area and shown in figure 16(b) for the purpose of
analysis. The data indicate that the plain-vortex—-flap configuration provided
significant improvement in L/D at low lift coefficients, but this improvement
diminishes with increasing lift coefficient. The tabbed-vortex~-flap configuration
had a slightly lower value of (L/D)max than the plain vortex flap, but had higher
values of L/D over a wider range of lift coefficients. One explanation for this
may be that the tab made this arrangement less sensitive to the leading—edge inflow
angle and thus more effective in tripping the flow to set up a trapped vortex along
the span of the flap. Another factor which may have influenced the results for the
plain vortex flap was that no leading-edge—-flap element was used close inbocard on the
wing (see fig. 2(b)). If the plain vortex flap were allowed to extend inboard to the
wing centerline, the data for the plain vortex flap could possibly alter the results
obtained in the present investigation (see ref. 4).

Axial-force characteristics are shown in figure 17 for the basic wing, plain
vortex flap (5f 1e = 30° ), and tabbed vortex flap. Both vortex—-flap arrangements
resulted in greater leading—edge thrust than that of the basic wing. The tabbed-
vortex-flap configuration produced axial forces which approached the 100-percent
leading—edge suction curve. At low lift coefficients, the tabbed-vortex-flap
geometry was overdeflected, causing an increase in the axial force.

Lateral-Directional Characteristics

A previous investigation (ref. 5) has shown that the current configuration
exhibited an unstable dihedral effect at high angles of attack due to asymmetrical
vortex breakdown. Thus, it is of interest to determine the effects of vortex flaps
on the lateral-directional characteristics of the configuration at high angles of
attack.

Plain vortex flaps.~ The effects of deflecting the plain vortex flap on the
lateral-directional stability characteristics are presented in figure 18. Adding
plain vortex flaps to the basic wing markedly decreased the directional stability
Cn and generally did not affect the variation of C. with angle of attack as

B B
noted for the basic wing. The effect of a spanwise component buildup of the plain
vortex flap on the lateral-directional characteristics (fig. 19), indicates that the
destabilizing trend in Cn . due to leading-edge~flap segments, generally increased
8
with the buildup of flap segments.

The effect of trailing-edge-flap deflection on the lateral-directional stability
characteristics is presented in figqure 20 for various deflections of the plain vortex
flap. In general, trailing—edge-flap deflections had a large destabilizing effect
on C at the higher angle of attack. This result is in agreement with the results
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of reference 5 where a downward elevator deflection produced a destabilizing change
in C1 . This destabilizing effect on C1 is caused by large 1lift losses due to

B B

asymmetrical vortex bursting at a sideslip angle.

Tabbed vortex flap.— The lateral-directional stability characteristics of the
test configuration with a tabbed vortex flap attached to the leading edge are
presented in figure 21. The data of figure 21 show that the tabbed-vortex-flap con-
figuration significantly increased the dihedral effect at high angles of attack and
had a destabilizing effect on directional stability. As in the case of the plain-
vortex-flap configuration, trailing-edge~flap deflection sharply decreased the dihe-
dral effect and had a destabilizing effect on directional stability near the stall.

A comparison of the effects on lateral-directional stability for the two types
of vortex flaps investigated is presented in figure 22. The data of figure 22 indi-
cate that the plain vortex flap exhibited lateral-directional stability charac-
teristics generally similar to those of the basic wing; however, the tabbed-vortex-—
flap configuration exhibited a substantial improvement in C1 compared to

B
that of the basic wing. The significance of this improvement in C1 can be seen in
B
figure 23 where Cn , a parameter used to indicate directional stability
B,dyn
characteristics under dynamic conditions (see ref. 12), is plotted against angle of
attack. The parameter Cn is computed from
B.,dyn

(=]

Cn = Cn - EE C1 sin «
B,dyn B B

»

and negative values of Cn indicate the possible existence of directional
B8,dyn
I
divergence. Using a ratio of EE = 6, typical of current fighter aircraft, the data
x
of figure 23 indicate a potential divergence for the basic wing at an angle of attack
of about 35°. Adding plain vortex flaps to the wing leading edge did not alleviate
the instability; however, adding the tabbed vortex flap did result in a significant
increase in Cn and thus eliminated the directional divergence. However, use
B,dyn
of trailing~edge flaps to trim the configuration would seriously degrade the lateral
stability as shown in figure 22, and this could eliminate the beneficial effects of
the tabbed vortex flap on C .

n
B,dyn
SUMMARY OF RESULTS
The results of low-speed wind~tunnel tests to determine the effects of vortex
flaps on the longitudinal and lateral stability characteristics of a flat-plate

highly swept arrow-wing planform may be summarized as follows:

1. Flow visualization with a helium-bubble technique illustrated the vortex
flow pattern associated with the vortex—flap concept. Results of the flow studies



showed that separated flow off the leading edge of the wing coalesces to form a
vortex core that is trapped within the leading-edge flap area. This trapped vortex
generated suction on the deflected flap area to produce a thrust component which
reduced drag.

2. Results from flow-visualization studies indicated that the tabbed-vortex-
flap arrangement was more effective in trapping a vortex along the wing leading edge
than the plain vortex flap. At high angles of attack, the tabbed-vortex-flap config-
uration did not exhibit an asymmetric vortex—breakdown pattern due to sideslip as
noted for the plain-vortex—flap and basic~wing configurations.

3. Results from static—-force tests indicated that the tabbed-vortex-flap
configuration was more effective than the plain-vortex~flap configuration in improv-
ing the lift—~drag ratio at moderate 1lift coefficients; however, pitch instability was
increased.

4. At high angles of attack, the tabbed vortex flap provided a stable rolling-
moment variation with sideslip angle whereas the plain-vortex-flap configuration
showed an unstable variation in rolling moment with sideslip angle.

5. The tabbed-vortex-flap configuration significantly increased dynamic direc-
tional stability which eliminated the directional divergence instability of the basic
wing. However, use of trailing-edge flaps for pitch-trim requirements could
seriously degrade the lateral stability characteristics and eliminate the beneficial
effect of the tabbed vortex flap on dynamic directional stability.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 4, 1981
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Figure 1.- System of axes.
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(a) Planform.

Figure 2.- Dimensional characteristics of model. Dimensions given in cm {in.).
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(a) Top view with plain vortex flap and trailing-edge flap.

Figure 3.- Photograph of model installed in wind tunnel.
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(b)

Three-quarter front view of plain vortex flap.

Figure 3.- Continued.
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(c) Three-quarter front view of tabbed vortex flap.

Figure 3.~ Concluded.
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Figure 5.- Helium-bubble flow visualization.
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Figure 5.~ Continued.
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(e) a = 35°.

Figure 5.- Concluded.
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Figure 6.- Concluded.
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Side view

(a) a =

Figure 7.— Helium—-bubble flow visualization.
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Effect of angle of attack on tabbed-

vortex—-flap configuration. f§ = 0°.
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Figure 7.- Continued.
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Figure 7.- Continued.
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Side view . L
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(d) a = 30°,

Figure 7.- Continued.
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Figure 7.- Concluded.
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(a) Basic wing.

Figure 8.- Helium—bubble flow visualization.
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(b) Plain vortex flap.

Figure 8.- Continued.
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L-81-224

(c) Tabbed vortex flap.

Figure 8.~ Concluded.
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Figue 21.- Effect of tabbed-vortex-flap configuration on lateral-

directional stability characteristics.
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