
NASA Contractor Report 165772

FINAL REPORT

AN INFLUENCE COEFFICIENT METHOD FOR THE

APPLICATION OF THE MODAL TECHNIQUE TO

WING FLUTTER SUPPRESSION OF THE DAST ARW-1 WING

Samuel Pines

Judy McConnell

ANALYTICAL MECHANICS ASSOCIATES, INC.

Hampton, VA 23666

CONTRACT NAS1-15593

November 1981

N/ A
National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23665

https://ntrs.nasa.gov/search.jsp?R=19820003197 2020-03-21T11:33:08+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42858717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SUMMARY

This report describes the methods used to compute the mass_ struc-

tural stiffness and aerodynamic forces in the form of influence coefficient

matrices as applied to a flutter analysis of the DAST ARW-1 wing. The

DAST wing was chosen since wind tunnel flutter test data and zero speed

vibration data of the modes and frequencies exist and are available for

comparison.

The report also contains a derivation of the equations of motion that

can be used to apply the modal method for flutter suppression. A compari-

son of the open loop flutter prediction with both wind tunnel data and other

analytical methods is presented.



INTRODUCTION

Real time, feedback control for flutter suppression is under serious

study and consideration for aircraft (Refs. 1, 2, 3, 4). The modal method

(Refs. 5, 6) is well suited for application in flutter suppression since the

onset of flutter may be adequately described as a linear system instability

(Ref. 7). Previous analyses of the problem have employed generalized

coordinates, based on zero airspeed vibration modes or other fixed wing

deformation shapes, from which generalized aerodynamic forces have been

computed (Refs. 1, 2,4). The contribution of this report is that physical

coordinates of bending and torsion of the wing structure are directly employed,

and that constant influence coefficient matrices are used to describe the struc-

tural, inertial and aerodynamic forces over a wide range of Mach numbers and

airspeed. The aerodynamic influence coefficients were obtained through a

modification of the SOUSSA digital program (Refs. 8, 9) generated with the

assistance of Prof. L. Morino of Boston University, Dr. E. C. Yates and

H. Cunningham of NASA/LaRC. In contrast, the aerodynamic coefficients used

in Ref. 1,4 were obtained using a doublet lattice method (Ref. 10). The method

of Pade'approximants (Refs. 7, 11, 12, 13) was applied to derive the aerodynamic

influence coefficients in the real time domain. The structural influence coef-

ficients were obtained through the use of the SPAR computer program at

NASA/LaRC. Finally, the structural and geometric data of the DAST ARW-1

Wing, at 111 grid points, was supplied by Mr. R. Doggett of NASA/LaRC.

This study was funded by NASA Langley Kesearch Center under Contract

NAS1-15593.
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I. Description of the Win_ Flutter Model

The DAST ARW-1 wing was designed at the Langley Research Center as

a swept back, cantilevered wind tunnel flutter model of a prototype, remotely-

piloted, drone aircraft used to study active control concepts including flutter

suppression. The data used in this report for determining the inertial and

structural characteristics of the wing, as well as the results of vibration and

wind tunnel flutter tests, was furnished by Mr. R. Doggett of NASA/LaRC.

The geometric planform and dimensions of the wing are shown in Fig. 1.

The leading edge has a sweep back angle of 44.32 °. The wing has a taper ratio

of. 392 and an aspect ratio of 6.4. The airfoil is a NACA 65A10 section. The

main structural beam is a single tapered aluminum bar construction with a

cruciform cross section (see Fig. 2). The dimensions of the spar cross section

at various locations along the length are shown in Table 1. The measured stiff-

ness distribution is shown in Fig. 3 in terms of the bending and torsional

stiffness, EI and GJ curves.

The wing is divided into eight pod sections by means of seven ribs oriented

in the stream direction (see Fig. 4). Each section contains concentrated masses

rigidly connected to the main beam to provide realistic mass offsets with re-

spect to the local elastic axis. Each section is covered with balsa inserts and

the aerodynamic shape is maintained by a precured fiberglass cover.

A control surface is provided along the trailing edge, equipped with an

electro-hydraulic servo-actuator. The surface hinge line is located at 80% of

the local streamwise chord. The reaction torques of the actuator are con-

strained by a link to the main structural beam in the control surface pod section.

A Cartesian coordinate system is used in the analysis. The origin of the

system is at the intersection of the wing root chord and the wing leading edge.

The x-axis is positive forward in the streamwise direction. The _.-_axis is

positive down, and the y-axis forms a right hand system. (See Fig. 4). The

structural axis of the beam defines the y' coordinate, rotated at an angle of

40.7 ° with respect to the y axis. The origin of the x' , y' , z' system is at

(-. 372364, 0. , 0. ).
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Thus

where

siney' = e cos

z' 0

e = 40.7 °.

li + "372364 1

(i)

in the air stream direction,

control surface hinge line,

15 x 1 vector given by

The dynamical coordinates are located along the y' axis (see Fig. 5).

These consist of seven vertical deflections, h (y'i) (i = 1, 7), seven rotations

(y'i) (i = 1, 7), and a single rotation about the

8 • Thus the dynamical coordinates form a

[w} =

" "N
h 1

h2

h 7

%
8 j

(2)

The equations of motion will be generated in terms of the forces and moments

affecting these 15 degrees-of-freedom. The center line_ or root section, is

constrained to maintain zero deflection in the vertical direction and in stream-

wise rotation. Thus h (0) = _(0) = 0.

-3-



II. Structural Influence Coefficients

The structural influence coefficients were computed utilizing the SPAR

computer program at the LRC computer facility. The SPAR program re-

quires that the wing be decomposed into a series of grid points. At each

point, six degrees-of-freedom are permitted. There are three translations

along, and three rotations about each of the three axes. A finite element

method is employed to compute the linear relationships between the defor-

mations of the grid points with respect to one another and the resulting forces

and moments resisting these deformations. For the DAST wing, a grid

decomposition of 111 was used, resulting in 666 degrees-of-freedom. (See

Figure 6). Of these, points 103 through 109 correspond to the concentrated

masses which undergo rigid motions without relative structural deformations.

Point 111 is the control surface linkage constraint for rotation about the hinge line.

To produce the structural influence coefficients for the 15 degrees-of-

freedom defined by the dynamical coordinate vector, w, we constrained 7

points in 2 degrees-of-freedom (vertical deflection and rotation in the flight

direction) and the 15th degree-of-freedom to be a pure rotation about the

hinge line. All other degrees-of-freedom in the original SPAR deformation

are left unconstrained except for the root section grid points (97, 100 and 102)

which are constrained in three directions. (See Figure 7). The SPAR program

solves a static equilibrium problem for which one coordinate of w is set equal

to unity, and the other twenty-three are constrained to be zero. The forces

and moments at the 24 locations are computed by solving a set of 24 equations

of equilibrium. Thus, we have

_.4xl

K15x15

k16, J

k24,J

t

Ik.
I 1,16"ki,24

.3

_4x24

0 t24xl

(3)
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where the _th element of w , w_,, = 1 and all other elements, including

h(0) and 0t(0), are set equal to zero. The forces, F0, 4 , and the moments,

M0, _ , are the reactions at the root section required to hold the root section

undeformed.

The elements of the _th

are given by

column of the influence coefficient matrix (K)

15xl

(3a)

The deflections at the remaining 642 grid points are left unconstrained.

The matrix of influence coefficients is given in Table 2. The units are in

Newtons per meter of deflection, Newtons per radian, Newton-meters per

meter of deflection and Newton-meters per radian arranged as follows:

wtons/meter (7x7) I Newtons/rad (7x8)

...... I ...... (4)
_, Newton-meter/meter ] Newton-meter/tad /

(8x7)I (Sx8)/
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III. Mass Data

The SPAR program carries out a vibration analysis of the DAST wing

by solving an eigenvalue problem utilizing the input mass and stiffness data at

the 111 grid points. Of the 666 degrees-of-freedom, 18 at the root section

(grid points 97,100 and 102) are constrained to be fixed, and 42 correspond

to the 7 rigidly attached concentrated masses (103 through 109). For the

purposes of this study, the number of degrees-of-freedom has been reduced

to 15 plus 9 fixed, root degrees-of-freedom. In order to produce a simulation

in which the significant vibration modes are well represented, it is necessary

to compute a set of lumped masses at the c. g. 's of the seven sections, which,

together with the rigid concentrated masses and the 15x15 influence coefficient

matrix, will reproduce the significant low-order vibration modes.

To accomplish this, the distributed beam and plate masses have been

summed in 7 sections and are listed in Table 3. The concentrated masses are

listed in Table 4.

The combined masses acting at each of the sections' c.g. 's form the

diagonal elements of the mass matrix (in units of kilograms in the mks

system). The off-diagonal elements are obtained from the static unbalance

due to the offset of the concentrated masses from the coordinate c. g. 's (see

Table 4). M, the desired mass matrix used in the equations of motion, is

listed in Table 5.
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IV. Frequencies and Modes

To ensure that the SPAR representation of the DAST cantilevered

wing is a valid simulation of the wind tunnel model, a comparison of the first

four computed and measured vibration modes was carried out using the full

111 grid-point model. Figure 8 contains the results of the vibration test fur-

nished by R. Doggett of NASA/LaRC. Figures (9a), (9b), (9c), and (9d) are

plots of the same modes with the SPAR program using all of the 111 grid

points. The comparison is seen to be good. Figures 10 and 11 contain the

next two highest modes obtained by the SPAR program for which no vibration

data is available.

Finally, in order to test the validity of the reduced 15 degrees-of-

freedom model, an eigenvalue analysis using the mass, M , and influence

coefficient, K, matrices was carried out. The results of the analysis are

shown in Figures (12a), (12b), (12c), and (12d) for the first four modes. The

agreement is seen to be good. The 15 degrees-of-freedom eigenvalues are

shown in Table 6 together with the vibration test frequencies and those fre-

quencies obtained with the full 666 degrees-of-freedom.
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V. Ec_uations of Motion

The forces acting on the wing in the air speed region containing the

flutter speed are assumed to consist of the following:

(a) inertia

(b) unsteady aerodynamic forces

(c) structural restraint to wing deformation

(d) random aerodynamic forces due to wind gusts

(e) a stabilizing feedback torque acting on the control response

(f) aerodynamic forces due to the control surface deflection

To simulate these forces, assuming small deflections, we require the dynamic

coordinate vector, w , its first and second time derivatives, v¢ and _ , the

unsteady lift and moment vector, Xp 15xl ' its time derivative vector, Xp ,

three scalar gust variables (XlD, X2D and w ), and the scalar control torque,g

u A •

The equations of motion are given by

d w qlM -_- -- -D

-H3 'p4/sx4_ p_45x45 _XpJ45xl 1 H2 F x

+ B u A +

5xl

and

_XlD_ _+2

d =

_x2_2xl ) g21D

(6)

45xl

v + 565 q
(.13 T q XlD " "c"X2D)

c

gv12D_ _XlD_ +

e g22D_/2x2 _X2D_ 2xl

(_ (6a)

gJ2xl
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where

I = 15x15 identity matrix

D = 15x15 structural damping matrix (see Table 8)
w

M = 15x15 matrix of masses

K = 15x15 structural influence coefficient matrix from the

SPAR program

H 1 , H 2 , H 3 are constant 15x15 aerodynamic influence coefficient

matrices obtained by Pade Approximates from the SOUSSA

output. (See Table 71o, c, d)

= 15xl vector of O's except at the points of application of the

feedback torque, u A , where b13= -1 and b15 = 1.

B

[ _ _ISxl = (H0)ISxI5

"0 "_

0

0 l
0 I
0

0

0

1

1

1
l

I

1 +

1
t

1

J
15xl

(6b)

H
O

C

q

V

p

b

.@
g

15x15 steady state lift and moment distribution matrix

obtained from SOI_SA (See Table 7a)

half the mean aerodynamic chord (. 2524379 m)

1 v 2D (dynamic pressure)

air speed

density

reference length used in the SOUSSA program (b = 1 inch)

scalar random wind gust

-9-



To facilitate the transformation to modal coordinates, the matrix con-

taining M and

-_iM-1K

-H 3 M-1K

I
-1

-M D
W

H2-H 3 M-1D
W

H 3 may be inverted. The, Equation 6 becomes

0 ){qM -1

F +qH 3P

(6c)

+

_l B 1
3 M-I

IM- _,I v + 565 Cl

UA + I_ (.13_qx1D • c X2D)

H 3 M-I c

To obtain a good model for the structural damping matrix, Dw , we

make use of the approximation that the structure provides approximately. 5%

of critical damping.

Thus, let

M -I K = U (_i 2) U -I (6d)

2
where the matrix U is the matrix of eigenvectors of M -1 K and _0. is

1

the diagonal matrix of the eigenvahes. We have as a good approximation of

D ,
W

D = .01(M) U (_0i) U -I (6e)
W

where _.
1

Eq. (6d).

is a diagonal matrix of the square roots of the eigenvalues of

The matrix D is given in Table 8.
W
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VI. The SOUSSA Program and the Pade Approximants

The SOUSSA digital program (Refs. 8, 9) computes generalized aero-

dynamic forces for a wing of given planform executing sinusoidal oscillations

in a fixed wing deflection mode shape. The generalized forces are computed

at a given Mach number, m , for a given non-dimension frequency, k = _b
V

V

a characteristic length, b , and a non-dimensional time variable T = _- t .

The generalized forces are given in terms of the force per unit dynamic pres-

sure, q. Thus we have

where J = _ and W(J W) is the non-dimensional deflection mode shape

oscillating at the sinusoidal frequency, W •

In the application we seek in this study, we desire to obtain the aero-

dynamic forces in influence coefficient form. To obtain this, a pre-processor

was developed by Prof. L. Morino to generate 17 unit impulse function modes for

_V(J W) corresponding to each of the 15 coordinates of our dynamical state w ,

plus the root section degrees-of-freedom, h (0) and _(0). Thus, for the ith unit

impulse function mode we have unit deflection for the ith element and zeroes

for the other fourteen elements.

We obtain the ith column of the desired aerodynamic influence coefficient

matrix from Eq. (7)

-'U'ji - qii

The SOUSSA coordinate system is positive deflection upward, and a

positive angle of attack is trailing edge upward. Consequently, we have
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By choosing the characteristic length b to be unity, we have

(gb)

The SOUSSA generalized force is positive upward, and the generalized

moment is positive for a positive (upward) force acting aft of the rotation

axis. Thus, wehave

(9c)

Finally, we have from the relation between time, t, and T

(I0)

and

02 0--- 0 = - (_---) -- (jw
dt 2 dT 2

m

The resulting unsteady lift, Xp (j 0_), for the non-dimensional sinusoidal

(j W) vector is given by the Laplace transform of the last fifteen (15) rows

of the matrix Eq. (6),

v v +_, _)(iW = - (j _-k I-Fp) :x.H1 +j _kH 2 ( (11)

and from Eq. 's (7) and (9c) we have

(12)

It then follows that

v -I(H v _ v0 _ k I-Fp) 1 + j -_-k H 2 (-_-k)2H = QR(m,k) + J Qi(m,k) (13)
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To determine the desired constantmatrices, independentof time and fre-

quency, we haverecourse to the Pade_Approximantsof Ref. 's 7, 11,12,13.

In what follows below, we lean heavily on the work of Edwards in Ref. 12.

Sincethere are four(4) unknownmatrices to be determined, we can, at most,

satisfy only four (4) conditions. For the first condition, we chooseto satisfy

Eq. (13)atk=0. We have

H 1 = -F QR (m,0) (14)P

For the second condition, we choose to determine /¢I3 from the real part of

Eq. (13) giving

b 2

= vk QI (re,k) (15)

As k increases beyond bound, we have the piston theory limit (Ref. 14)

b

H3 = _v Qpiston (m) (b = 1. ) • (16)

The nonzero elements of Qpiston' qij ' are given by (i = I, 7)

c 2\
4{_ " - "

4_ - Ci+ -2

qi,i+7 m 3 "2"

qi+7,i = qi,i+7

__Ci 4- C z._
4_ i+1 2

qi+7,qi+7 = m _ - (1-3Xo +3xo )

q6,15 m (1 - Xl) - Xo)

(16a)

-13-



i

q13, 15

4 {_ 64 7 Xl 3

-T- 2 (xo + x 1) + XoXl(1 - Xl)_

q15,6 = q6,15

q15,13 = q13,15

q15,15 = -

4 4 3

C6 - C7 1 - X1

4 3 (16a)

where

Co

1

X

O

Xl=

1. 9431

.8764016 - .. 3431794

wing chord in stream direction at the start of the ith section

elastic axis in Toof chord ........ (. 4231)

hinge line axis in Toof chord (. 80)

The values of the C. are
1

i C. (meters)

1 .8353

2 .7534

3 .6784

4 .6087

5 .5390

6 .4697

7 .4205

8 .3432
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We chooseas our third condition to match the imaginary part of Eq. (13) to

the SOUSSAoutput for the flutter-reduced frequency, k . Thus we havef

F Qi(m,

H 2 = QR(m,kf) - P kf kf) (-'_')V (17)

Finally, we choose for F
P

homogenous differential equation for the x
P

bref

b 1

_V
F -

P bre f

a diagonal matrix to provide stable poles for the

variable. We choose for F
P

when b I , b 2...b 7

which the 15 coordinates are defined.

0

• bre f

b 7

bref

b 6

!

bref

b 7

bref

b I --

are the local semi-chords of the seven Yi stations at

The semi-chord used for the control

(18)

surface (i = 15) is the semi-chord corresponding to the sixth (6) wing panel.

In order to determine the best value of ff, a one dimensional search

was undertaken to determine the open loop flutter analysis for the homogenous

matrix differential equation (Eq. (6e)) at a dynamic pressure of q = 5.36 kPa,

a roach number of. 897, and a v of 136 meters/sec. The best value of

proved to be {/= +2. 249•
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VII. Open Loop Flutter Analysis

The results of the open loop flutter analysis of the DAST wing using

the influence coefficient method was carried out by determining the eigen-

values of the homogenous part of the differential matrix equation (6c).

d -1 K

I

_M-ID
W

H2-H3M-1D w

for different values of the dynamic pressure, q,

(In =. 897) and fixed airspeed ( v = 136 m/sec).

for a fixed Mach number

The results of the study, shown in Figure 13, are to be compared to a

similar plot taken from Ref. 1 shown in Figure 14. In order to illustrate a

more detailed comparison of the pertinent flutter modes, we have Fig. 15

which is a plot of the frequency and damping versus dynamic pressure for the

open loop system.

The wind tunnel results as obtained from R. Doggett were

(19)

m = .897

q - = 5.36 kPa

v = 136 m/sec

_¢ = 8.0 Hz
(20)

The comparison is shown to be good with both the wind tunnel data and

the analytical prediction of Abel (Ref. 1).
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TABLE 1 SPAR GEOMETRY DETAILS

DISTANCE
ALONG

ELASTIC AXIS
METERS

0

.17145

.393192

.78232

1.117346

1.452118

1.787398

2.122424

2.426208

A

METERS

• 0331216

.021082

.01905

.017018

.015748

.014097

B

METERS

.0722122

.059436

.055372

.050038

.044196

• 03937

C

METERS

• 212344

.201422

.182372

:,17526

.150368

.128524

,

METERS

.00508

.00508

.00508

•00381

.013208

°010922

.03302

.031242

.10287

.094488

.00381

.00381

.00381

.00381

B

!
!
I

Fig. 2 Sketch of spar cross section along elastic axis
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Fig. 4 Coordinate System
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Fig. 5 Dynamical coordinate system
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NOTE:

Grid points 103 thru 109 are not

shown (lumped mass locations)
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Figure 6. SPAR Model
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NOTE:

All grid points shown were restrained

in DOF 3 and 5. Grid point 100 was
also restrained in DOF 4.

Point 111 is the location of the con-

straint to the actuator torque.

Points 97, 100 and 102 are constrained

in DOF 3, 4 and 5.

97

Figure 7. Grid Points Constrained in Reduced SPAR ModeI

102 I00 -25-
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TABLE 3

COMBINED BEAM AND PLATE ELEMENT MASS PROPERTIES

Section Mass Iy' Iv, IZ,=I Z Ix 22 2) (Kgm-m)No. (kgm) (kgm-m) (kg (kgm-m 2)

0 7.1088 .0262 .0654 .0913 .0487

1 2.5310 .0048 .0343 .0382 .0218

2 1.8328 .0026 .0199 .0220 .0126

3 1.3659 .0017 .0128 .0142 .0081

4 1.1339 .0012 .0107 .0116 .0066

5 .9982 .0010 ,0095 .0103 .0059

6 .7266 .0002 .0058 .0061 .0034

7 .3341 .0001 .0023 .0024 .0014

(k_Y-m 2)

.0429

.0173

,0100

.0064

.0052

.0046

.0026

.0011

16. 0313

_, ...

5_ ...

Compares with 15.8773 kgm calculated by SPAR
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TABLE 4

CONCENTRATEDMASSPROPERTIESIN X-Y COORDINATESYSTEM

Section Mass Pitch Yaw Roll

No. Inertia Inertia Inertia

Iy I Z IX

2 n_ (kgrn_m 2)(kgm) (kgm-m) _-gm-m 2)

_ AY

(m) (In)

Pitch

Inertia

Iy(grid point)

(kgm-m 2)

1 1.6556 .0734 .0801 .0134 -.0051 +.0152

2 1.0342 .0430 .0443 .0044 +.0147 +.0053

,
3 1.1975 .0333 .0344 .0042 +.0239 +.0036

,
4 1.1612 .0267 .0280 .0034 .0201 .0028

5 1.0161 .0177 .0192 .0027 .0218 .0041

6 1.4198 .0200 .0206 -.0047 .0285 .0000

7*** .6350 .0101 .0127 .0021 -.0521 -.0112

7*** .5534 .0056 0 .0056 .2070 -.0210

7*** .4627 0 0 0 0 0

.0734

.0432

.0340

.0272

.0182

.0211

.0118

.0293

0

9.1355

Iy(grid point) = Iy + m
AX 2

These values were altered to agree with SPAR computer model

AX - Mass offset from grid point in X direction

AY - Mass offset from grid point in Y direction

These masses were added to cause flutter within the available wind tunnel dynamic pressure.
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MODE 1. - 5.22 hertz

w •

Fig. 8 Measured nodal patterns and frequencies
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MODE 1. - 5.456 hertz

(i2a) _ "

(12b)

MODE 3. - 24.880 hertz

(12c) _ .

Fig. 12 First Four Normal Modes of Reduced Dynamical System at

Zero Airspeed

-37-



TABLE 6

COMPARISONOF VIBRATION MODES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Vibration

Test

Freq.

5.22

19.44

26.04

45.96

N/A

(Hz)

SPAR

666 DOF

5.279

18.90

26. O1

44.34

60.19

73.87

84.96

93.18

Reduced

Model

15 DOF

5.456

18.54

24.88

42.13

61.67

68.42

93.02

105.45

126.12

135.01

146.70

204.40

297.65

420.15

894.27
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