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INTRODUCTION 

Cryogenic  wind  tunnels,  which  use  liquid  nitrogen  (LN2)  as  a  coolant,  can  be 
expensive  to  operate  if  controlled  inefficiently  because  of  the  high  cost  of  LN2.  In 
order  to  minimize  operating  expense, it is  important  that  a  cryogenic  tunnel  be 
equipped  with  a  control  system  which  accomplishes  the  following: 

1. Establishes  steady-flow  conditions  rapidly 

2. Follows  the  most  efficient  transition  path  from  one  steady-flow  setting  to 
the  next 

3 .  Maintains  steady  flow at the  most  efficient  setting  during  dwell  at  steady- 
state  conditions  for  data  acquisition 

Of  great  importance  is  the  need  to  sequence  the  test  conditions  (steady-flow  settings, 
or  set  points)  in  time so that  the  total  energy  consumed  during  state  transitions  is 
minimized  for  all  such  sequences  possible.  This  paper  develops  a  simple,  idealized 
model  of  the  cryogenic-wind-tunnel  process  €or  evaluation  of  state-transition  costs 
and an operational  technique  for  determining  the  least  expensive  ordering  of  set 
points of all  possible  orderings.  Some  minimum-cost  state-transition  control  strate- 
gies  are  identified  and  used  where  applicable  for  cost  evaluation.  Also,  some 
numerical  results  using  National  Transonic  Facility  (NTF)  test  parameters  to  determine 
various  set-point  orderings  are  presented. 

BACKGROUND 

Minimum-energy,  test-direction  strategies  €or  cryogenic  wind  tunnels  have  been 
studied  by  Balakrishna  (ref.  1).  A  technique  is  developed  in  this  reference  for 
sequencing  cryogenic-wind-tunnel  set  points  which  establishes  tunnel  operating  param- 
eters  necessary  for  minimum  coolant  consumption  at  steady  flow.  A  test-direction 
parameter  is  defined  which  enables  minimum-cost  ordering  of  a  sequence of test  points 
based on minimizing  steady-flow  coolant  consumption.  This  paper  develops  an  ordering 
technique  based on transition  dynamics  rather  than  the  static  approach  of  Balakrishna. 
George  Gumas  of  Pennsylvania  State  University,  Middletown,  Pennsylvania,  (private 
communication)  has  investigated  optimum  dynamic-transition  paths  in  cryogenic  wind 
tunnels  which  minimize  consumed  energy  and  transition  times.  Gumas  computes  optimum 
coolant-  and  venting-flow  rates  for  various  linear  transition-path  directions  based on 
a  single-volume  dynamic  model  of  the  cryogenic  thermodynamics.  The  preliminary  work 
of  Gumas  is  extended in this  paper. 

APPROACH TO SET-POINT  ORDERING 

In  this  paper  a  set  point s for  a  cryogenic  wind  tunnel  (to  be  defined  formally 
later) is a  set  of  any  three  functionally  independent  steady-flow  values of the  pro- 
cess  fluid-dynamic  properties  which  uniquely  define  a  steady-flow  operating  state. 
(A  list  of  symbol  definitions  follows  the  references.)  As an example,  let 



where T is  static temperature ,  p is s t a t i c  pressure ,   and  M is  Mach number. A 
c o l l e c t i o n   o f  n se t  p o i n t s  t o  be ordered  is  an  indexed se t  S so t h a t  

= (I, 2, ..., n} 

A t r a n s i t i o n  from set  p o i n t  s i  t o  set p o i n t  s j  is t h e  t i m e  h i s t o r y   o f   t h e  
process  as it is driven  under   external   control   f rom  s teady-f low s t a t e  s i  to  s teady-  
flow s ta te  s,. The t r a n s i t i o n  from si  t o  s j  w i l l  be r ep resen ted   no ta t iona l ly   by  
t h e   o r d e r e d   p a i r  ( i , j ) .  The t r a n s i t i o n  s e t  R of S is de f ined  as t h e  s e t  of a l l  
n ( n  - 1) ordered  pairs of   e lements  of Is so t h a t  

!d = {(i, j ) :  i, j E I, and i f j} 

A c losed   tour  0 o f  S is an ordered  subset of  !d con ta in ing  n o r d e r e d   p a i r s  
( t r a n s i t i o n s )  so t h a t  

such  that   each  e lement   of  I, appears  once  and  only  once,   both as a f irst  element 
and as a second  element  of a p a i r   i n  0. F o r   e a c h   p a i r   i n  0, t h e   f i r s t   e l e m e n t  
equals   the  second  e lement   of   the   preceding  pair .   Thus,  a c losed   tour   represents  a 
s e t  of   t rans i t ions   be tween  the   e lements   o f  S such   t ha t   each   e l emen t   con ta ined   i n  S 
is v i s i t e d   o n c e  a n d   o n l y   o n c e ,   a n d   t h e   f i n a l   t r a n s i t i o n   r e t u r n s   t o   t h e   i n i t i a l  ele- 
ment. An open  tour  Oo, a subse t   o f  i? conta in ing  n - 1 p a i r s ,   v i s i t s   e a c h  s ta te  
once  and  only  once  remaining  in   the  f inal  s ta te  w i t h o u t   r e t u r n i n g   t o   t h e   i n i t i a l  
s ta te ,  as i n d i c a t e d   i n   t h e   f o l l o w i n g :  

For  each  element ( i , j )  o f   t h e   t r a n s i t i o n  set  i? w e  compute t h e   t r a n s i t i o n   c o s t  
between states s i  and s j  (denoted by c i j )  by s o l v i n g   t h e   d i f f e r e n t i a l   e q u a t i o n s  
of  f low  developed  subsequently.  A t r a n s i t i o n   p a t h   g i v i n g   t h e  minimum t r a n s i t i o n  cost 
is used when known. The r e s u l t i n g  set of  c i j  is o r d e r e d   i n t o  a t r a n s i t i o n - c o s t  
mat r ix  C,  f o r  which i denotes  row and j denotes  column. Note . tha t   d iagonal  
e lements   of  C w i l l  be n u l l   s i n c e   t r a n s i t i o n s  from s ta te  i t o   i t s e l f  are no t  of 
i n t e r e s t  . 
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The  cost Jo of  tour 0 is  given  by  the  following: 

The  optimum  set-point  ordering of S then  corresponds  to  the  tour 0" for  which  the 
cost Jo* is  minimum  over  all  possible  tours. 

DYNAMIC  MODEL  OF FLOW PROCESS 

Model  Requirements 

Accurate  mathematical  representation  of  unsteady  fluid  flow  in  a  tube  of  varying 
cross-sectional  area  requires  computer  solution  of  the  Navier-Stokes  partial  differ- 
ential  equations. A one-dimensional  model  of  the  National  Transonic  Facility  (NTF) 
wind  tunnel  based on the  Navier-Stokes  equations  has  been  developed  by  the  author  for 
an  ultra-high-speed  vector-processing  digital  computer. It requires  an  execution 
duration  approximately 11 times  the  real-time  interval  being  simulated.  Consider  an 
example  having 10  set  points  to  be  ordered  for  which  the  average  transition  time  is 
100 sec. The vector-processing  time  necessary  to  evaluate  the  90-element  transition- 
cost  matrix  using  the  previously  described  model  would  be 27.5 hr.  Gumas  (ref. 2) 
has  developed an eight-volume  lumped  model  of  the  NTF  wind  tunnel  which,  with 
simplification,  could  execute at a  real-time  rate on a  high-speed  serial  digital  com- 
puter.  The  10-set-point  example  would  then  require 2.5 hr of machine  time  for  evalu- 
ation  of 90 transition  costs.  Clearly  neither  of  these  models  could  be  employed in  a 
practical  set-point  ordering  algorithm  because  of  slow  execution  rates.  Drastic 
simplifications  are  required in modeling  of  flow  for  transition-cost  evaluation. 
Simulation  studies  with  both  the  Navier-Stokes  and  the  Gumas  models  with  feedback 
controls  included  show  that  Mach  number  transition  settling  times  are  always  less 
than  15  sec,  whereas  temperature-  and  pressure-transition  times  are  roughly  propor- 
tional  to  the  magnitude  of  the  parameter  change  and  in  most  cases  exceed  15  sec. 
Therefore,  an  ordering  algorithm  which  assigns  priority  to  Mach  number  transitions at 
fixed  pressure  and  temperature  over  pressure  and  temperature  transitions  at  fixed 
Mach  number  would  rarely  incur  serious  inefficiencies.  Furthermore,  since  such  an 
algorithm  would  not  require  cost  evaluation  of  Mach  number  transitions,  Mach  number 
dynamics  could  be  neglected in the  process  model.  As  a  result,  temperature  and  pres- 
sure  dynamics,  which  depend  primarily on global  values  of  mass  and  energy,  could  be 
described  by  a  single-volume  lumped  model.  This  would  permit  the  desired  model 
simplification.  Another  advantage  of  neglecting  Mach  number  dynamics  is  the  conse- 
quent  reduction in the  number  of  set-point  transition  costs  through  which  the  opera- 
tional  ordering  algorithm  must  search.  As  will  be  shown,  search  time  increases 
rapidly  with  the  number  of  set  points.  Although  the  single-volume  lumped  model  and 
analytic  transition  paths  are  idealizations  of  the  real  world,  they  are  adequate  for 
purposes  of  set-point  ordering. 

Equations  of  State 

The  equations  of  state  for  a  single-volume  lumped  model  of  a  cryogenic  wind 
tunnel  are  now  developed. The two  state  variables  are  total  mass  m  and  total 
internal  energy e. A state is defined  as  the  pair  (m,e).  There  are  three  control 
variables : 
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WN LN2 flow rate 

WG gas-vent  flow rate 

P f a n  power 

The d i f f e r e n t i a l   e q u a t i o n s   o f  state are thus  given  by 

m = w  N - wG 

and 

e = hNwN - hGwG + P (9) 

where  hN  and hG are t h e   e n t h a l p i e s   o f  LN2 and  the  vented  gas .   These  equat ions 
account   for   the  accumulated mass and  energy in   t he   c losed   sys t em.  Total i n t e r n a l  
energy e ,  i nc lud ing   gas   i n t e rna l   ene rgy   and   hea t   ene rgy   s to red   i n   t he  metal tunnel 
l i n e r ,  is g iven  by the   fo l lowing:  

e = cvmT + c m T s s  

where 

T a b s o l u t e  s t a t i c  temperature   of   gas   and  l iner  

CV s p e c i f i c   h e a t   o f   g a s  a t  cons t an t  volume 

mS mass o f   t u n n e l   l i n e r  

C S  s p e c i f i c   h e a t   o f   t u n n e l   l i n e r  

Equation (10) i s  based   on   the   assumpt ion   tha t   tunnel - l iner   and   gas   t empera tures  are 
equal,  which is ac tua l ly   t rue   on ly   fo r   s t eady   f l ow.   Equa t ion  (9)  assumes t h a t   t h e  
tunnel  is  i n s u l a t e d  so t h a t   e x t e r n a l   h e a t   t r a n s f e r  i s  negl igible .   Furthermore,   the  
dynamic  component  of t o t a l   e n e r g y  i s  neglected.   For  convenience,  w e  can   de f ine   t he  
v a r i a b l e  a, as the   fo l lowing :  

cs as = - c ms 
V 

Then,  from equat ions  (10) and (ll), temperature may be  expressed  by  the  following as 
a property  dependent  on s ta te  v a r i a b l e s  m and e: 

From the   i dea l -gas  l a w  and t h e   d e f i n i t i o n   o f   e n t h a l p y ,  s t a t i c  p res su re  p and  gas 
en tha lpy  hG are expressed as func t ions  of m and e by 

p = K a -  y - 1  m e  
V m + a  

s 
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and 

h =  Ye 
G m + a ,  

where V is  the   t unne l  volume, y is t h e  r a t io  o f   spec i f i c   hea t s ,   and  Ka is a 
cons tan t .  

G u m a s  (pr ivate   communicat ion) ,   through  experimentat ion,   determined  that  Mach 
number M could be approximated  by  the  fol lowing  empir ical   re la t ion:  

M2 = P 

where I$,, i s  a cons t an t   and   t he   subsc r ip t  t i n d i c a t e s   t h e   t o t a l   v a l u e s  Of p 
and T. Mach number determined by t h i s   r e l a t i o n  w i l l  be i n  error by less than 10 per- 
c e n t   f o r  a fan   speed  of 360 rpm and a temperature  range  of 111 K t o  278 K. With 
little change in   r e su l t s ,   p t   and  Tt may be  replaced by s t a t i c  va lues ,   g iv ing  

which g ives  Mach number as a func t ion   of   the  s ta te  va r i ab le s   and   i npu t   va r i ab le  P. 

Equations ( 1 2 )  and (13) may be so lved   s imul taneous ly   for  m and e i n  terms 
of p and T, thus   g iv ing   the   fo l lowing:  

m = -  V P  
KaRT 

and 

where R i s  the   gas   cons t an t .  A se t  p o i n t   d e f i n e d   i n  terms of s ta te  v a r i a b l e s  m 
and e is the   fo l lowing:  

s = ( m , e , M )  

where m and e are s teady-f low  values .   Accordingly,  

i = o  

and 

e = O  



With equations  (12),  (13),  and  (16),  the  set  point  determines  the  value of P for 
steady  flow.  Likewise,  with  equations (8), (91,  (20),  and  (21) , it determines  the 
required  values  of  wG  and wN for  steady  flow. A set  point  may  be  expressed  in 
terms  of  any  three  functionally  independent  properties  such  as  static  pressure pr 
static  temperature T, dynamic  pressure q, Reynolds  number  NRe, or density p.  
The  following  relations  along  with  equations  (12)  and  (13) may.be used  for  determining 
the  values  of  these  properties: 

p = -  P 
KaRT 

and 

where c is  reference  length  and 1-1 is  viscosity. In the  examples  given  later, 
set  points  are  given  in  (T,p,M)  form. 

- 

A state  transition  from  set  point  (ml,el,M1)  to  set  point  (m2?e2,M2)  is  produced 
by a  transition  control  law L as  follows: 

a  triple  of  time  functions  defined  over  some  time  interval  (tl,t2)  such  that 

and 

The  transition  cost JL of  control  law L is  defined  by 
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where r is the   cos t   o f  LN2 r e l a t i v e   t o   f a n - e n e r g y   c o s t .  Note t h a t  L may b e   d i f f i -  
cu l t   t o   de t e rmine   and  may not  be  unique. The values  of wN,  wG, and P a r e   s u b j e c t  
to  the  following  bounds: 

WN WN,max 

- WG - WG,max 
< < 

and 

Pmin - P pmax 
< 

(Upper limits on IwG I ,  and 16 I ,  which a r e  imposed i n  t h e  NTF, a re   neglec ted  
here.)  An optimum c o n t r o l  l a w  L* is  def ined  to  be a con t ro l  (among a l l  c o n t r o l s  
which d r ive   t he   p rocess   f rom  se t   po in t  s1 t o  52 and s a t i s f y   i n e q u a l i t i e s  (30)  
t o  ( 3 2 ) )  which s a t i s f i e s   t h e   f o l l o w i n g :  

J * I J L  L 

f o r  a l l  L. 

A s ta te - t rans i t ion   pa th   under   cont ro l   l aw L €o r   t he   t ime   i n t e rva l  ( t l , t 2 )  
from s t a t e  (m,,e,) t o   s t a t e   ( m 2 , e 2 )  i s  the   locus  of poin ts   descr ibed  i n  t he  two- 
dimensional state space by t h e   s t a t e   v a r i a b l e s  m ( t )  and e ( t ) ,  where 

and 

( 3 3 )  

A s ta te- t ransi t ion  path  produced  by  an optimum c o n t r o l  l a w  is sa id   t o   be   an  optimum 
path.   For  the  remainder of t h e   p a p e r ,   t h e   t r a n s i t i o n  from s t a t e  (ml,el) t o   s t a t e  
(m2,ez) w i l l  fo r   convenience   be   denoted   by   the   o rdered   pa i r  (Am, Ae), where 

Am = m2 - m1 

and 

(36) 

(37) he = e2 - el 

7 



STATE-TRANSITION CONTROLS 

For some c o n t r o l  l a w  L, which  produces a state t r a n s i t i o n  from (ml , e l )  t o  
(m2, e 2 )  , equation  (29) may b e   r e w r i t t e n  as fol lows  by  using  equat ions (8) and  (9) t o  
e l imina te  wN: 

JL = $:' [ & + (r - hN)m + (hG - hN + r ) w d  d t  

Equation  (38) shows t h a t  JL i s  determined by s ta te  increments  (Am, Ae) and 
by w G ( t ) -  I t  fo l lows   t ha t   any   con t ro l  L f o r  which wG = 0 is  optimum s i n c e  Ae 
and Am are f ixed .  

- 

From inequal i ty   (32)   and  equat ion  (35)  , 

t2 
Ae = hN Am + Ll P ( t )   d t  2 hN Am + Pmin A t  

From inequal i t ies   (30)   and   (39)  I 

so t h a t  

A t 2  Am 2 0  
W N , max 

S u b s t i t u t i n g   i n e q u a l i t y   ( 4 2 )   i n t o   i n e q u a l i t y   ( 4 0 )   g i v e s  

(40) 
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Conversely,  let  conditions  defined  by  inequalities (39) and (43) be  satisfied, 
that  is, 

and 

'min 

N , max 
) Am' 

where  the  prime  indicates  particular  values of h n  and  Ae.  Choose  wG = 0 and 
WN = W N , ~ ~ ~ .  From  inequality (39) it  follows  that 

- 

At = 
Am I 

WN , max 

Also  choose  the  following: 

> 
- 'min 

From  the  equation  part  of  inequality (40) it  follows  that 

Ae = hN Am' + (s - h)w N N,max  At = Ae' 

(45) 

(47) 

Thus,  inequalities (39) and (43) are  also  sufficient  conditions  for  state  transition 
(Am',  Ae' ) to  be  realized  with  wG = 0 .  

- 

To summarize,  necessary  and  sufficient  conditions  for  state  transition (Am, Ae) 
to  be  realized  with  wG = 0 and  satisfying  conditions (30) and (32) are - 

and 

'min 
w~ , max 

(39) 

(43) 

It is  shown  in  the  appendix  that  a  transition  control L in  which  wN = 0 is 
locally  optimum  in  the  sense  that  along  a  fixed  transition  path  between  (m1,el)  and 
(m2,e2)  any  positive  variation  6wN(t) about wN = O causes  a  positive  increase  in 

- 

- 
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transition  cost J over 
which  transitions  can  be 
wN = 0. From  inequality - 

its  value  for  wN = 0. The  region  in  state  space  from 
made  to  state  (m,e)  with  wN = 0 is  now  determined.  Let 
(31)  and  equation  (34) , 

- 
- 

t2 
Am = - S, wG(t) dt 5 0 

1 

and  from  equation  (351, 

The  enthalpy  hG  is  bounded  as  follows: 

CpTmin 5 hG  (t) 5 cpTmax 

From  inequalities  (49)  and  (31) I 

At 2 - Am L o  
W~ , max 

(49) 

Thus,  necessary  conditions fo r  state  transition  (Am,  Ae)  to  be  realized  with  wN 0 
are  inequalities (49) and  (53). 

Next,  let  the  conditions  defined  by  inequalities (49) and  (55)  be  satisfied, 
that  is, 

Am' I o 

and 

'mi, 

G , max W 

P =  ( c T -  p &)wG,max - > 'mi, -t (T - Tmin)WG,max ' 'min 

(54) 

(55) 

(56) 
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From inequal i ty   (54)  , 

a m 1  

G , max 
A t  = - 

W 

and  from  equation  (35) 

Ae = L12 [ -cpmG , max + (cpT - wG ,max 3 = ' 

Thus, inequal i t ies   (49)   and   (55)  are s u f f i c i e n t   c o n d i t i o n s   f o r  s ta te  t r a n s i t i o n  
(Am' ,  A e l )  t o   b e   r e a l i z e d   w i t h  wN = 0. - 

Summarizing,  conditions  for state t r a n s i t i o n  (Am, Ae) t o   b e   r e a l i z e d   w i t h  
wN = 0 and sa t i s fy ing   condi t ions   (31)   and   (32)  are  as fol lows:  

- 

Am50 

and 

'min 

G , max W 

'mi n 

G I  max W 

(57) 

(49) 

( 5 3 )  

(55) 

I n e q u a l i t i e s  (49)  and (53)   t aken   toge ther   cons t i tu te   necessary   condi t ions ,   whereas  
i n e q u a l i t i e s  (49)  and ( 5 5 )   t a k e n   t o g e t h e r   c o n s t i t u t e   s u f f i c i e n t   c o n d i t i o n s .  

I t  has   no t   been   proven   tha t   cont ro ls   wi th  wN 1 0 are  g l o b a l l y  optimum over  
the i r   r eg ions   o f   admiss ib i l i t y .  However, computational  experience  did  not  reveal  any 
c o n t r o l s   l e s s   e x p e n s i v e   t h a n   t h o s e   w i t h  wN G 0 f o r  a g i v e n   t r a n s i t i o n .   I n   o r d e r   t o  
deve lop   the   curves   in   f igure  1, i n e q u a l i t i e s   ( 3 9 )  , (43) , (49) , and  (55) are r e w r i t t e n  
i n  terms of ml,  e l f  m 2 ,  and e2. For wG = 0,  

- 

- 

ml I m2 

and 

'mi, el I e2 + (. + WN,max 
(ml - m 2 )  

(59) 
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MASS, m 

Figure 1.- Transition-path  regions in mass-energy  plane. 

ml 2 m2 

and 

The  regions  defined  by  inequalities (59) to (62) appear in figure 1, in which  point C 
represents  terminal  state  (m2,e2)  in  the  mass-energy  plane. The shaded  area  labeled 
wG = 0 represents  the set of initial  states  (m1,el)  from  which  state  (m2,e2)  can  be 
reached  with  controls  having  wG E 0 (defined  by  inequalities (59) and  (60) ) . 
Similarly,  the  area  labeled wN = 0 represents  the  set of initial  states  from  which 
(m2,e2) can  be  reached  with wN.- 0 (defined  by  inequalities  (61)  and (62)). 
Figure  2  shows  the  regions of figure 1 mapped  into  the  temperature-pressure  plane. 

- 

- 
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Figure 2.- Transition-path  regions  in  temperature-pressure  plane. 

Outside  the  optimum  and  locally  optimum  regions of figures  1  and 2, precise 
determination of optimum  controls  would  require  the  use  of  techniques  such  as  the 
minimum  principle  or  dynamic  programming  (ref. 3 ) ,  involving  extensive  computational 
requirements.  After  preliminary  investigation of the  minimum  principle  did  not  dis- 
close  any  simple  optimum  control  strategies  for  the  cases  which  require  its  applica- 
tion,  numerical  parametric  studies  were  performed  to  experimentally  discover  the 
best  transition  paths,  which  led  to  the  following  strategies: 

Case I - decreasing  temperature  and  increasing  pressure.  As  shown  in  path  ABC of 
figure 2, cool  the  tunnel at constant  pressure  to  the  boundary of the  wG = 0 region, 
then  cool  and  pressurize  with wG = 0 to  the  terminal  set  point  C.  Additional  reduc- 
tion  in  transition  cost  is  obtained  along  path  AB'C.  However,  the  pressure  decrease 
along  segment  AB'  followed  by  a  pressure  increase  along  segment  B'C  would  be  undesir- 
able  in  actual  wind-tunnel  operations.  Therefore,  path  ABC  is  preferred  to  AB'C. 

- 
- 

Case I1 - decreasing  temperature  and  decreasing  pressure.  Since  experimental 
numerical  studies  did  not  reveal  any  preferred  paths  in  this  region,  arbitrary 
straight  lines  are  followed in the  temperature-pressure  plane  for  convenience,  as 
illustrated  by  path  FC in  figure 2. 

13 



For  computational  convenience  linear  paths  are  also  followed  in  the wG E 0 
- and wN = 0 regions,  as  shown  by  paths  DC  and  EC  in  figure 2. Paths  ABC,  FC, DC, 

and EC mapped  into  the  mass-energy  plane  are  shown in  figure 1. Controls  actually 
used in  an  automated  cryogenic  wind  tunnel  may  be  substituted  for  those  developed 
herein. 

The  control  logic  required  to  follow  a  direct  path  in  the  temperature-pressure 
plane  between  initial  state  (T1,pl)  and  final  state  (T2,p2)  is  now  presented.  The 
equation  of  a  linear  path  is 

p = p l - ~ T 1 + ~ T = a + A T  AP  AP 

where 

a = p l - -  AP AT T1 

and 

Substituting  equation  (63)  into  equations  (17)  and (18) gives  the  following 
expressions  for  m  and  e  as  functions of T: 

m = -  (a + AT) 
KaRT 

and 

Differentiating  equations (66) and  (67)  gives 

m = -  Va 

KaRT 2 
.i. 

and 

Equatjons ( 8 )  , (9) , (68) , and (69) are  solved  simultaneously  to  eliminate m,  e, 
and TI giving  wG as a  function  of wN, PI and T as  follows: 

WG = WN + ['"" 
G T ~  + c T - cpT)wN P + 

(66) 
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where 

Al t e rna t ive ly ,  wN may be   ob ta ined  as a func t ion   o f  wG, P,  and T t o   g i v e  

WN = WG - [' hN - cpT) WG + 1 (72) 
GT2 + hN 

Equations  (70)  and  (72) are i n  a form su i t ab le   fo r   imp lemen t ing  a s t a t e -va r i ab le   f eed -  
back   cont ro l  l a w .  For  example, i f  wN is  to   be   the   independent   cont ro l   var iab le ,  it 
is c h o s e n   a r b i t r a r i l y   w i t h i n   t h e  bounds of i n e q u a l i t y   ( 3 0 ) .  Mach number M ,  a l s o  
chosen   a rb i t r a r i l y ,   mus t  be s u c h   t h a t  P remains  within  the  bounds  of   inequal i ty   (32) .  
Since s t a t e  v a r i a b l e s  m and e are known f o r  a l l  times during a c o n t r o l l e d  s t a t e  
t r a n s i t i o n ,  T i s  obtained  from  equation ( 1 2 ) .  A t  each   s tage  of t h e   c o n t r o l l e d  
t r a n s i t i o n   t h e   r e q u i r e d   v a l u e   o f   c o n t r o l   v a r i a b l e  P is  obtained  from  equations ( 1 2 1 ,  
(13) ,   and  (16), and the   r equ i r ed   va lue   o f  wG is computed  from equat ion   (70) .  
S i m i l a r l y ,   i f  wG is the   i ndependen t   con t ro l   va r i ab le ,  it must s a t i s fy   i nequa l -  
i t y   ( 3 1 ) .  The r equ i r ed   va lues   o f  wN are then  obtained  f rom  equat ion  (72) .  

For   t rans i t ions   occur r ing   wi th in   the   shaded   reg ion  of f i g u r e  2 l abe led  wG 0 
( o r  wN = 0 ) ,  wG ( o r  wN) i s  s e l e c t e d  as the   independent   cont ro l   var iab le  and se t  
t o   z e r o .  The r equ i r ed   va lue   o f  wN ( o r  wG) i s  computed  from equat ion   (72)   (or  
eq. (70 ) ) .   Ou t s ide   bo th   shaded   r eg ions  of f i g u r e  2 ,  wN i s  s e l e c t e d  as the  inde- 
pendent   control   var iable   and is  made as l a r g e   a s   p o s s i b l e   t o  minimize t r a n s i t i o n  t i m e  
wh i l e   ma in ta in ing   i t s e l f   and  wG w i t h i n   t h e  bounds  of   inequal i t ies   (30)   and  (31) .  
I f   i n e q u a l i t y   ( 3 1 )  i s  v i o l a t e d ,  wG i s  se l ec t ed   a s   t he   i ndependen t   con t ro l   va r i ab le  
in s t ead .  Mach number i s  chosen  large (0.8)  f o r   t r a n s i t i o n   d i r e c t i o n s   o f   i n c r e a s i n g  
energy  and small (0 .3)   for   direct ions  of   decreasing  energy,   a lso  to   minimize  t ransi-  
t i on   t ime .  

- 

Equations  (70)  and ( 7 2 )  are i n v a l i d   f o r   c o n s t a n t - t e m p e r a t u r e   t r a n s i t i o n s   s i n c e  
the   s lope  1 becomes i n f i n i t e .   F o r   i n c r e a s i n g   p r e s s u r e  a t  cons tan t   t empera ture ,  
WG is  se t  to   zero   and  wN is  computed using  the  fol lowing:  

P 
c T - h N  V 

WN = 

which is  obta ined  by d i f fe ren t ia t ing   equat ions   (17)   and  (18), s e t t i n g  T t o   z e r o ,  
and  e l iminat ing m and e as w a s  done f o r   e q u a t i o n s  ( 7 0 )  
p re s su re  a t  cons tan t   t empera ture ,  wN is  made independent 
and wG i s  computed  from the   fo l lowing:  

( 7 3 )  

and  (72) .   For   decreasing 
(set  t o   z e r o  when p o s s i b l e )  

(hN - cVT)wN + P 

RT 
WG = (74) 
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OPTIMUM  TOUR  GENERATION 

The  Traveling  Salesman  Problem 

Consider  a set S of n set points. From this we can  generate  a  transition- 
cost  matrix C by  using  the  dynamic-flow  model  and  transition-control  logic 
developed  previously,  with  the  diagonal  elements set to  infinity. The problem is 
to  determine  the  optimum  tour @* having  the  least  cost J@*. This  problem is 
identified in the  mathematical  programming  literature as the  "traveling  salesman 
problem"  (TSP),  wherein  a  salesman is to  visit  each of n  cities  only  once,  begin- 
ning  and  ending at the  same  city.  The  problem  involves  the  order in which  he  should 
tour  the  cities  to  minimize  the  total  distance  traveled.  Since  there  are  (n - l)! 
possible  tours,  enumeration is  a  feasible  method of solution  only  for  small n. 

The  TSP  is  termed  symmetric or asymmetric  depending on whether C is  symmetric 
or asymmetric.  Various  techniques  for  exact  solution of both  symmetric  and  asymmetric 
TSP's  appear  in  the  literature,  including  dynamic  programming,  integer  programming, 
and  branch  and  bound  methods. In addition,  numerous  approximate  methods  exist  which 
are  not  considered  here. 

Dynamic-programming  algorithms  (described in ref. 4) perform  well  for  small  n 
(less  than  13).  However,  computer  storage  requirements  become  excessive as  n 
increases. 

The  TSP  may  be  cast  as  a  linear-programming  problem  having  integer  values 0 and 1 
and  Zn-l - 1 constraints.  Various  techniques  based on this  approach  have  been 
developed.  According  to  Bellmore  and  Nemhauser  (ref. 4) the  performance of integer- 
programming  algorithms  varies  widely  from  problem  to  problem.  Execution  time  grows 
rapidly  with  increasing  n. 

The branch  and  bound  methods  appear  to  offer  the best performance.  Earlier 
versions of branch  and  bound  developed  by  Little et al.  (ref. 5) and  Shapiro  (cited 
in  ref. 4) are  reviewed  favorably  by  Bellmore  and  Nemhauser  (ref. 4 ) .  Little's 
method,  which is simple  to  program,  is  used in the  work  reported  herein. It offers 
adequate  performance  without  excessive  storage  requirements  for  n < 40, although 
reference 5 cautions  that  solution  time  increases  exponentially  with  n.  Later 
extensions of branch  and  bound  methods  such as the  restricted  Lagrangian  approach of 
Balas  and  Christofides  (ref. 6 )  provide  superior  performance for large  n. For 
example,  this  method  solves  a  375-node  problem  in  less  than 82 sec,  whereas  a 
100-node  problem  executes in  an average of 0.7 sec on a  large  serial  digital  com- 
puter.  Such  a  high-performance  algorithm  might  be  employed in  a  production  version 
of a  set-point  ordering  package,  but it was  not  required  for  the  study  reported 
herein. 

Branch  and  Bound  Algorithm 

A  brief  description of Little's  branch  and  bound  method is now  given.  The  pro- 
cedure  is  to  partition  the set  of  all tours  by  constructing  a  binary  tree  structure, 
each  node of which  represents  a set  of tours  either  containing or excluding  some  par- 
ticular  transition.  We  then  compute a lower  bound on the  costs  of  the  tours  contained 
in each  node. At each  stage of the  decomposition,  the  node  whose  omission  would  be 
the most expensive is decomposed  and  new  lower  bounds  are  computed  €or  the  decomposi- 
tion. It is  shown in figure 3 that  from  the  root of the  tree,  which  represents  the 
set  of  all  tours,  there  are  two  branches:  Node 1 (to  the  left)  represents  the set  of 
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OPTIMUM 
TOUR 

Figure  3.- Branch  and bound decomposition. A bar   over   an   o rdered  
p a i r   i n d i c a t e s   e x c l u s i o n   o f   t h a t   p a i r .  

t ou r s   exc lud ing   t r ans i t i on  (i, j )  , denoted by (i, j ; node 2 ( t o   t h e   r i g h t )   r e p r e s e n t s  
t h e  se t  o f   t o u r s   c o n t a i n i n g   t r a n s i t i o n   ( i , j ) .  (The l e t t e r  symbols  used i n   t h i s  
f i g u r e   r e p r e s e n t   i n t e g e r s . )  Node 3,  t h e   l e f t  subnode  below  node 2 ,  r ep resen t s   t he  
se t  o f   t ou r s   con ta in ing   t r ans i t i on  ( i , j )  and   exc lud ing   t r ans i t i on  ( k , R ) .  Node 4 
r e p r e s e n t s   t h e  se t  o f   t o u r s   i n c l u d i n g   t r a n s i t i o n s  ( i , j )  and ( k , R ) .  The decomposition 
c o n t i n u e s   i n  a l i k e  manner as i l l u s t r a t e d   i n   t h e   f i g u r e .  A node i s  t e r m i n a l   i f  no 
more t r a n s i t i o n s  may be excluded;  the s e t  o f   t r a n s i t i o n s   c o n t a i n e d   i n  a te rmina l  node 
r ep resen t s  a s ingle   tour .   Terminal   node n i n   f i g u r e  3, f o r  example,  contains 
t r a n s i t i o n s  (i, j ) ,  (k,!?,), (p ,q) ,   (m,n) ,  ( r , s ) ,  a n d   ( t , u ) .  A pa th  is pursued  only as 
long as i ts  cur ren t   lower  bound  remains less than  a l l  o the r   l ower   bounds   i n   t he  tree.  
Otherwise,   the   path is  abandoned  and  the  search  resumes a t  t h e  node having   the  least  
lower  bound. An optimal  tour  has  been  found when a t e rmina l  node is  reached whose 
t r u e   c o s t  is  less than  or  equal  to  every   o ther   lower  bound  computed i n   t h e  tree.  

A lower  bound  on  the  costs of t h e  set of a l l  t o u r s  is obta ined  by reduct ion   of  
t h e   t r a n s i t i o n - c o s t   m a t r i x  c .  A r o w  (or column) is reduced  by  subtract ing i t s  small- 
es t  element  from  each  element i n   t h e  row (or   column).  A mat r ix  is reduced i f  all 
elements are nonnegat ive  and  i f   each r o w  and  each  column  contain a t  least  one  zero.  
The sum of   e lements   requi red  t o  reduce  every r o w  and column i n  C is a lower  bound 
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on the  costs of  the  set of all tours.  Suppose  the  search  has  reached  node  (i,j). 
Based on decision  logic  described  later,  a  branch is constructed  from  node  (i,j)  to 
node  (k,R),  and  row  k  and  column  are  deleted  from C to  form  a  new  matrix C ' .  
Matrix  C' is then  reduced,  and  the  lower  bound at node (k,R) equals  the  lower  bound 
at (i,j)  plus  the  sum of the  reducing  elements of C ' .  The  lower  bound  of  node  (k,k), 
equals  the  sum of the  lower  bound at (i,j)  and 8 ( k , R ) ,  defined as the sum of the 
smallest  cost  in row  k  and  the  smallest  cost in column 2 .  To determine  (k,k), 
@(k,R)  is computed  for  each  position in  C'  and  a  branch is made  to  the  node (k,R) 
for  which 8 ( k , R )  is  the  largest.  This  strategy  favors  transitions  whose  exclusion 
would  increase  the  cost of  a  tour  most  rapidly. 

- 

At each  step of the  branching  process  transitions must be  excluded  from  a  path 
which  would  produce  subtours,  that  is,  transitions  to  any  state  already  included in 
the  partially  constructed  tour.  Such  transitions  are  eliminated  by  setting  their 
transition  costs to infinity in the  reduced  cost  matrix. Thus, many  potential  dead- 
end  search  paths  are  eliminated.  A  complete  tour  has  been  determined  when  C is 
reduced  to  a 2 by 2 matrix. 

Little's  algorithm is explained  fully in reference 5 .  An  example of  a branch  and 
bound  solution  to  the  TSP  is  given  in  Whitehouse  and  Wechsler  (ref. 7). More  formal 
expositions of branch  and  bound  algorithms  appear in Henley  and  Williams  (ref. 8) and 
in  Garfinkel  and  Nemhauser  (ref. 9). 

NUMERICAL  PERFORMANCE OF SET-POINT-ORDERING  ALGORITHM 

Digital  Computer  Program 

A  digital  computer  program  has  been  written  which  combines  a  single-volume  fluid- 
flow  model,  transition-path  control  logic,  and  a  branch  and  bound  tour-generating 
algorithm,  all as previously  described,  into  a  set-point  ordering  package. It  was 
found  that  a  variable-order,  variable-step-size  Adams  method  (ref. 10) for  integrating 
the  differential  equations is ideal.  After 6 to 10 starting  steps  during  the  first 
second  of  simulated  time,  the  variable  step  size  increases  rapidly  to as much as 
several  hundred  seconds.  Most  test  cases  involving  simulated  time  durations  up  to 
2000 sec  execute  in 25 steps or less. As a result,  the  total  execution  time  required 
for  transition-cost-matrix  evaluation  is  a  fraction of  that  required  by  the  branch 
and  bound  algorithm. 

The  program  accepts set points  in  the  form of equation (l), that  is, 

For  each  combination  of  temperature  T  and  pressure p,  all  associated  values of Mach 
number  M  are  ordered in ascending  order. As discussed  previously,  transition  costs 
are  evaluated  only  for  temperature-pressure  transitions.  Diagonal  elements of 
matrix  C  are set to  infinity. 

Closed-Tour  Performance 

Several  test  examples  based on NTF  parameters  are  now  discussed.  Figure 4 shows 
six  set  points  numbered in the  temperature-pressure  plane  to  indicate  the  ordering 
of an optimum  closed  tour  (example 1). The  arrows  between  the  points,  which  in  some 
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cases  are  schematic  rather  than  actual  transition-path  loci,  are  labeled  where  appli- 
cable  to  indicate  optimum  transitions  with wN = 0 or  wG = 0 .  Note  that  the  tour, 
a  simple  closed  figure,  contains  four  optimum  transitions.  The  significantly  lower 
cost of transitions  with  wN = 0 causes  their  high  frequency of occurrence  in  all 
the  cases  studied. 

- - 

- 

A nine-set-point  closed  tour  is  shown  in  figure 5 in the  same  format  (example 2). 
Note  that  the  convoluted  shape  of  the  tour  produces  a  preponderance  of  optimum  transi- 
tions,  six out  of  nine  in  this  example.  These  set  points  were  chosen  to  fill  a  rec- 
tangular  region of the  temperature-pressure  plane  rather  than  a  realistic  operating 
envelope. 

A 12-set-point  closed  tour  (example 3 )  is  shown  in  figure 6. Nine of the 
12 transitions  are  optimum,  with  wN = 0 in  each  of  the 9 and  wG  are  zero  in 
transition ( 8 , 9 ) .  Each of the  three  examples  indicates  that  depressurization  at 
constant  temperature  is  highly  favored  by  the  algorithm  because  it  is  achieved  with 
zero  coolant  consumption. 

- 

0 
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Figure 4.- Six-set-point  optimum  closed  tour. 
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Figure 5.- Nine-set-point optimum  closed tour. 
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Figure 6.- Twelve-set-point optimum  closed tour. 
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Open-Tour  Performance 

Two  optional  modes  are  provided in the  program  which  generate  optimum  open 
tours  as  follows: 

1. Determination of the  best  open  tour  with  a  free  terminal  set  point 

2. Determination of the  best  open  tour  with  a  fixed  terminal  set  point 

Mode 1 is  implemented  by  setting  the  first  column  of  matrix C to  zero  prior  to 
execution  of  the  branch  and  bound  algorithm.  This  modification  removes  the  cost  of 
the  final  transition  to  set  point 1 from  the  computation.  The  resulting  closed  tour 
is  equivalent  to  the  least  expensive  open  tour. 

To  understand  mode 2 operation,  let  set  point k be  the  selected  fixed  terminal 
set  point  for  an  open  tour.  All  of  the  elements of column 1 of C are  set  to  infin- 
ity  except  element (k,R) which  is  set to  zero.  This  forces  the  final  transition  of 
an  optimum  closed  tour  to  be  from  set  point k to  set  point 1 at  zero  cost,  which  is 
equivalent  to  an  optimum  open  tour  terminating  at  set  point k.  

The  nine-set-point  optimum  open  tour  with  free  terminal  set  point  for  example  2 
data,  shown  in  figure 7, has  the  same  ordering  as  the  optimum  closed  tour.  Its  cost 
is  only  slightly  less  than  that  of  the  closed  tour.  Figure 8 shows  the  optimum  open 
tour  for  the  same  data  ending  at  set  point 2 (222 K, 6.0 atm),  which  forces a complete 
reordering of the  set  points at considerably  greater  cost. 

Figures 9 to 11 illustrate  open  tours  €or  the  12-set-point  data  of  example 3. 
The  12-set-point  optimum  open  tour  with  free  terminal  set  point,  shown  in  figure 9, is 

8 

7 

6 

5 

- E 
0 4  
W 
U 
3 
0 3  
v) 
W 
U 

.. 

a 2  

I 

5 2 

I I I I  
I50 200 250 300 

TEMPERATURE, K 

Figure 7.- Nine-set-point  optimum  open  tour  with 
free  terminal  set  point  (mode  1) . 
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Figure 10.- Twelve-set-point optimum open tour  with 
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slightly  reordered  from  the  optimum  closed  tour.  Figures 10 and 11 show  open  tours 
with  fixed  terminal  set  point  for  the  same  example.  Since  the  tour  of  figure 10 
terminates  at (167 K, 6.0 atm)  (the  point  of  maximum  pressure  and  minimum  tempera- 
ture),  the  algorithm  is  unable  to  take  advantage  of  three  transitions  of  decreasing 
pressure at constant  minimum  temperature,  which  results  in  a  20-percent  increase  in 
total  cost  over  the  optimum  open  tour  with  free  terminal set point  of  figure 9. The 
open  tour  of  figure 11 with  fixed  terminal  set  point at (167 K, 4.7  atm)  is  less 
expensive  than  that  of  figure 10 because  of  the  two  decreasing-pressure,  constant- 
temperature  transitions  from  (167 K, 6.0 atm)  to  (167 K, 5.3  atm)  and  then  to 
(167 K, 3.3 atm)  with wN = 0, even  though  the  final  transition  is  from (167 K, 
3.3 atm)  back  up to (167 K, 4.7 atm) . These  runs  demonstrate  that  open  tours  with 
fixed  terminal  set  points  should  be  selected  carefully  to  avoid  significantly  higher 
operating  costs. 

- 

CONCLUDING  REMARKS 

An  algorithm  for  minimum-cost  set-point  ordering  in  a  cryogenic  wind  tunnel  has 
been  developed.  Efficient  evaluation of state-transition  costs  is  accomplished  by 
means  of  a  single-volume  lumped  model  of  wind-tunnel  flow  dynamics  and  the  use  of  a 
high-performance  numerical  integration  technique.  Some  idealized  minimum-cost  state- 
transition  control  strategies  have  been  determined  which  provide  the  lowest  attain- 
able  transition  cost  between  set  points.  An  operational  set-point  ordering  proce- 
dure,  which  solves  the  "traveling  salesman  problem,"  is  employed  to  determine  the 
least  costly  ordering  (tour) o f  a  prespecified  set of operating  set  points.  These 
procedures  have  been  organized  into  a  preliminary  software  package  €or  set-point 
ordering  which  is  set  up  for  National  Transonic  Facility  wind-tunnel  operating  param- 
eters.  This  software  package  has  options  €or  generation  of  optimum  closed  tours, 
open  tours  with  free  terminal  set  points,  and  open  tours  with  fixed  terminal  set 
points.  Numerical  studies  show  that  transitions  which  consume  no  liquid  nitrogen 
coolant  are  highly  favored  because  of  their  low  cost. It is  also  shown  that  open 
tours  with  fixed  terminal set points  may  be  excessively  costly  and  should  be  avoided. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton,  VA  23665 
September 1, 1981 
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APPENDIX 

LOCAL OPTIMALITY O F  ZERO-COOLANT TRANSITIONS 

The s t a t e - t r a n s i t i o n  cost J L  de f ined  i n  equat ion  (29)  as a func t iona l   o f   t he  
c o n t r o l  l a w  L(wN,wG,P) is 

It i s  t o   b e  shown t h a t   i f  a t r a n s i t i o n   a l o n g  a f ixed  path  between s ta tes  ( m l , e l )  and 
h 2 , e 2 )  can be e f f e c t e d   w i t h  wN 0 then  J ( w N  0)  is  l o c a l l y  minimum a l o n g   t h a t  
path.  L e t  6wN denote  a p o s i t i v e   v a r i a t i o n   i n  wN about  wN = 0. I t  w i l l  be shown 
tha t   t he   co r re spond ing   va r i a t ion  6 J  is  p o s i t i v e .  

- 

L e t  g(m)  be a d i f f e r e n t i a b l e   f u n c t i o n   r e p r e s e n t i n g  a t r a n s i t i o n   p a t h   p a s s i n g  
through  points  (ml,  el) and (m,, e21 f o r  which wN 0 i n   t h e  (m,  e )  plane.   Since m 
decreases  monotonically wi th  WN = 0 ( i n e q u a l i t y   ( 4 9 ) )  it f o l l o w s   t h a t  g(m)  must  be 
a s ingle-va lued   func t ion .  Along g (m) equa t ions  (8) and (9) are 

m = w  N - WG 

and 

e = g M = h N w N - h w  m G G  + P  

where 

and M is a func t ion   of  m and e.  The t r a n s i t i o  
t ions  (29)   and (A2)  as 

In c o s t  is o b t  ained  from  equa- 
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APPENDIX 

Equations (A2) and (A3) are so lved  to  o b t a i n  wG i n  terms of wN, hG,  and  P, 
r e s u l t i n g   i n   t h e   f o l l o w i n g :  

Subs t i t u t ing   equa t ion  ( A 8 )  i n t o   e q u a t i o n  (A7) g ives  

Equation (A9) now p r o v i d e s   t h e   t r a n s i t i o n   c o s t   a l o n g   t r a n s i t i o n   p a t h  e = g(m) as a 
f u n c t i o n a l  of wN independen t   o f   t he   t r ans i t i on  t i m e  limits tl and t 2 .  The 
v a r i a t i o n  6J of J ( w N )  about  wN = 0,  ob ta ined  by e l imina t ing  terms of   o rde r  2 and 
g r e a t e r  from the  increment  

- 

AJ =z J (wN + 6wN) - J ( W N )  

is found  to   be 

Set  wN = 0 i n   e q u a t i o n s  (8) and (9)  and d iv ide   equa t ion  (9)  by (8) t o   o b t a i n   t h e  
fo l lowmg : 

- 

- de 
g m ” =  dm hG - - < hG 

P 

WG 

Since 6wN, r ,  hG,  and P are p o s i t i v e  and hN  and Am are negat ive ,  it fol lows 

from  equation ( A l l )  and   inequal i ty  (A121 t h a t  6 J  i s  p o s i t i v e .  
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SYMBOLS 

y - in t e rcep t  of l i n e a r   f u n c t i o n ,   d e f i n e d   i n   e q u a t i o n  (64) 

= (cs/cv) m, (eq. (11) 1 

t r ans i t i on -cos t   ma t r ix  

re ference   l ength ,  m 

t r a n s i t i o n   c o s t  from s ta te  si t o  s ta te  s 

s p e c i f i c   h e a t  of gas  a t  constant   pressure,   kJ /kg-K 

s p e c i f i c   h e a t   o f   t u n n e l   l i n e r ,   k J / k g - K )  

s p e c i f i c   h e a t   o f   g a s  a t  cons t an t  volume,  kJ/kg-K 

t o t a l   i n t e r n a l   e n e r g y ,   k J  

j 

s ingle-va lued   func t ion   of  m 

f i r s t   d e r i v a t i v e   o f  g (m)  , 7 
enthalQy of vented   gas ,  kJ/kg 

enthalpy  of LN2, kJ/kg 

i n d e x   s e t  

dg (m) 

t r a n s i t i o n   c o s t  

t r a n s i t i o n   c o s t  of c o n t r o l  L 

t o t a l   c o s t   o f   t o u r  0 

constant ,   9 .87 X atm/kPa 

cons t an t ,  374.2 kW/atm. K1l2 

t r a n s i t i o n   c o n t r o l  

Mach number 

t o t a l  mass , kg 

mass o f   t u n n e l   l i n e r ,  kg 

Reynolds number 

f a n  power, kW 

28 



P s ta t ic   pressure,  atm (1 atm = 101.3 kPa) 

9 dynamic pressure, kPa 

R gas  constant , kJ/kg - K 

r r a t io  of LN2 cos t   to  fan-energy cost ,  7.886 X l o 6  kJ/kg 

S s e t  of se t   po in ts  

S set   point  

T s t a t i c  temperature, K 

t time,  sec 

V volume of  tunnel, m 3 

W 
G 

gas-vent  flow ra te ,  kg/sec 

LN2 injection flow ra te ,  kg/sec W N 

Y r a t io  of specific  heats 

A increment 

6 variation 

0 closed  tour 

00 

x slope  of  linear  function,  defined i n  equation (61) 

?J viscosity,  N-sec/m 

P density, kg/m 

R t rans i t ion   se t  

open tour 

2 

3 

Subscripts : 

IELX maximum 

min m i n i m u m  

t to t a l  value 

1 i n i t i a l   s t a t e  

2 f i n a l   s t a t e  

A dot  over a symbol indicates  differentiation w i t h  respect  to time. A prime 
denotes a particular  value  of a variable. A n  asterisk  denotes an  optimum function  or 
value. 
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