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THE STORAGE OF HYDROGEN IN THE FORM OF METAL HYDRIDES
-- AN APPLIC..iION TO THERMAL ENGINES

C. Gales and P. Perroud

Commissariat & 1'Enjrgie Atomique, Centre d'Etudes
Nucl6aires de Grenoble, Grenoble, France

(Translator's Note: This article included a "summary" which was

translated into German end Dutch as well as English. All versions

conveyed the same content.]

Summary
	 /7*

One of the main problems limiting the use of hydrogen as a

fuel is the difficulty of storing it because it is the lightest of

all gases (90 g/Nm3 ). There are two ways of storing hydrogen

industrially: in the form of a compressed gas or as a liquid.

The use of metallic hydrides has also been discussed.

Laboratories work primarily with the following compiunds:

LaNi5, reTi, and Mg. The table on the next page gives a comparison

of the perfomances of compressed gas, liquid, and hydride approaches.

This process does therefore have its interest. Frum the point

of view of volume, LaNi 5 incontestably has the best performance with

140 g H 2/1, although with 14 g/kg it is at a disadvantage as regards

mass. FeTi, very similar to LaNi 5 , is no doubt not as costly.	 /8

As regards on-board systems, the most improtant factor is

weigh*, and here magnesium comes into its own.

We have studied the kinetics of magnesium hydride from the

point of view of pressure, temperature, granulometry, and purity

of the hydrogen and traced its isothermic pattern. During the

*Numbers  in the margin indicate pagination in the foreign text.
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charge-discharge cycles, we noticed a phenomenon of aging which

renders the use of pure Mg difficult. The study of M92Cu and

M92Ni showed that this phenomenon can be made to vanish.

We have also given the results of experiments concerning the

tranfer of heat and mass obtained with a tank containing hydrides

and capable of storing several Nm 3 of hydrogen.

Information gathered from various pieces of literature is also

included.

Introduction
	 L

Ninety grams per cubic meter2 This is the incredibly low

density of hydrogen, foruteen times lighter than air.

The inflammable air discovered by Cavendish is certainly one

of the most studied elements, from its chemical properties to its

quantum mechanics.
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Today, at the dawn of a neu era of energy production opened up

by nuclear power, hydrogen is on its way to becoming a universal

fuel. Even though world production of hydrogen is already very high

and its applications numerous, a fundamental problem remains to be

solved: its storage.

Two forms are presently in use: compressed hydrogen and

liquid hydrogen.

In its compressed form, this gas is widely used in industry.

The progress that can be experted i ce: in the performance per unit

mass of the tanks (light allovs, , -,ped tanks, fiber conglomerates).

In liquid form, the technology has rapidly progressed as a

result of space research. Here again, one can expect pr,)gress in

the areas of structural materials and insulators. In addition,

increased efficiency in the liquefaction process will also occur.

Because of the performance per unit mass and volume of these

two forms of storae, a third mode is currently experiencing a

new surge of interest. This is the storage of hydrogen in the

form of metal hydrides.

This technique was already used at the beginning of the century

by aeronauts to fill balloons with hydrogen by hydrolyzing calcium

hydride:

CaH2 + 2 H 2O - Ca(OH)- + 2 H2rL

2. Review of Properties of H 2 Relevant to its Use as Fuel

We review below some physical and chemical properties of

,, drogen as they compare to two other fuels, methane and propane.

The most interesting property is of course the calorific value

of hydrogen, in the neighborhood of 28 Kcal/mole as opposed to

9 to 11 Kcal/mole for fossil fuels.

/10
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If the fact that a mole of hydrogen only weighs 2 g is taken

into consd,.eration, the calorific value obtained per unit mass is

very high. This partly compensates for hydroqen's very low

density.

Table 1

Table 2
Energy Values for Different Fuels [1]

Heat of ( Lust iw:

L {(Itr t J'
11y^1 ► ..yvn 011	 )

(( • II AW)

gasoline Well I,,)

Solid

i
vanadium hydridEk (VA2
coal

I wood

Gas.
hydI L,oen (111)
1I14	 t	 11., lie ((	 II	 )

I	 I:,I /,j 	 I II F.I/C-111 3 ]

12 11.7 S.7
10, 1 15,9
44.3 3:.

J,4 
41.13

1'/.5 14,2	 ---

1'2.4.'1 I	 0.0010
H. 0.0044
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General Properties of Metal Hydrides

Metal hydrides, i.e. metal-hydrogen compounds, are generally

grouped into three families according to the type of metal-hydrogen

bond. Within each family, the physical and chemical properties are

rather uniform (2,3,4,5].

The compounds are divided between the saline hydrides (pri-

marily ionic bonding, NaH), the intermediate covalent hydrides

(A1H 3 ), and the hydrides of transition metals (metallic type

bonding, UH3).

Hydride synthesis is exothermic. By virtue of Le Chatelier's

laws concerning chemical equilibrium, production of hydrogen can

be obtained by heating the hydride.

M + 2 H2 ^ MH n + Q < 0

Increasing the temperature displaces the system in the

direction of arrow 2, and therefore towards metal-hydrogen disso-

ciation.

If an easily deceinposable hydride with a high hydrogen content

per unit mass could be synthesized, a "hydrogen sponge" would be

obtained. It would be very flexible in use and its performance per

unit mass would be com?arable if not superior to that obtained

with conventional methods of storage.

Table 3 gives an estimate of the level of hydrogen in some	 /11

hydrides.

However, the chemistry of hydrogen-metal systems is not so

simple. We have only spoken up to this point of binary compounds.

One must also survey the ternary compounds, M1M 2 H x , the

quaternary ones, M 1M 2 M 3 H K , etc.

orv

F
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Table 3
Percentage of Hydrejen in Some Hydrides

(adapted from [7])

i

Hydride	 Percent Hydrogen
by weight

V I,;
t•„^	 ti:,	 I	 I.r.

%r II I 	 i. l

Cc H;	 1,4

Wt. Hydride
Wt. Hydrogen

IG
Ii
nn

un

4/

.1 1

I1

Kinetic and thermodynamic performance varies very rapidly as a

function of the nature of the storage medium.

4. Basic Storage Media under Study

Four main approaches are presently beii.y explored:

- Standard medium, LaNi 5 (Eindhoven., Battelle, DAM, ...)

- Mg medium (BNL, CEA, IFP, Battelle, ...)

- FeTi medium (BNL, CEA, Battelle, ...)

- Other media: VH2, NbH2, ...

4.1. LaNi,, Medium

This clearly defined, ReM5 type compound (Re = rare earth, M =

transition metal), wLs the object of a very large number of

experiments, particularly at Philips in Eindhoven.

Its interest resides mainly in its performance per unit volume

since this compound is very dense and is represented by the formula

LaNi5H6.

Table 4 gives some figures for LaNi 5 and other compounds

6
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( 10 -2b /In 3 [	 [ 10 3 11/

G, -/ 11 I	 111
2,2 2 3G

6,3 25 105

4,2 100 71

9,2 4 153

7,3 2,1 122

5,7 _ —	 2,2 95
4,4 1,4 73

6,5 2,1 108

G,2 1,1i5 101
5,3 1,4 88 J

Compound	 M	 (^

(	 10]	 1 10^ ^1/ u l 3 i
11 2 	0 18 1000
11 2 	 :.' 0 4 943, 1 1841
Liquid	 C1 4 16,0 425

Liquid•	 11 2 2 71
Ti	 112 49,9 3800

Zr	 11 2 93,2 5610
X H^ -- 90 1 9 39511
I.,,	 11 2 1 '0 "1 5120
La H 3 141,9 5350
Ti	 Ye H I , 95 10r3,7 5470
La Ni5 H6 438,5 6225

rich in hydrogen.

Table 4
	

/12
Comparison of Hydrog-n 1-^vel for Some Compounds

[81

[Commas in tabulated material are equivalent t- decimal points.)

Aside from the performance per unit mass of a hydride, the

physical conditions of dissociation remain a basic element in the

choice of medium.

While exploration of all ternary compounds is practically

impossible, a study of the thermodynamic parameters is possible;

particularly of enthalpy of ruction.

The general fromula can be written:	 OZ'SNAL rACZ '$
F POOR

AH(ABnH 2m ) = AH(AHm ) + AH(BnHm ) - AH(ABn)

In the case of LaNi 5H 61 one therefore writes:

AH(LaNi 5 H 6 )	 = AH(LaH 3 ) + AH (Ni 5 H 3 ) - AH(LaNi5)

7
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This compound has a very great advantage from the thermo-

dynamic point of view.

Its dissociation pressure (rtlated to temperature by the

equation log P =^2 + RT) is close to 3 bars at 40°C (figure 1).

C1	 — ----	 --r	

-J
p ^	 140°C

120

L 400 W _—•-----

^7

N	
40

n	 I

Figure 1

Key: a) Hydrogen Pressure (arm)

The hydride is thus very easily usable since it is sufficient to

withdraw the hydrogen in the reservoir at the ambient temperature

to make the system immediately produce more and maintain the

equilibrium pressure.

Here again, however, this is much too simple. It is, as a 	 /13

matter of fact, possible to displace the isotherms in figure 1

practically at will by using compounds of the form LaNi 4M, where

M is a transition metal other than Ni (figure 2).

The attractiveness of these compounds is thus readily apparent.

The pressure can vary from 0.8 to approximately 8 bars at 40°C, as a

function of the nature of M.

1	 a
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1'd	 'o
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t	 --

c	
Co

Fe 
Cr

CL

0	 2

Ruppor t moluire f'2 / Lo Ni g Mb

Figure 2
PressL.re-Composition Isotherm for the Desorption of

Hydrogen at 40°Cfo: the Compound LaNi5 and its Derivatives
with the Formula LaNi 4M (M = Pd, Ag, Cu, Co, Fe, Cr)

Key: a) Hydrogen Pressure (atm)
	

b) Molar Ratio 1-12/LaNi4M

aF
1;100— —

u,
cr

^•.L
20

40

t h^

Z
5

to ^_
N
to

o r

Q)

0	 1

I moluire 112 / U(), ;, l o08N15b

`	 Figure 3
Desorption Isotherm at 40°C for LaNi 5 and its
Derivatives Zr 0.2La 0.8Ni 5 and Th0.2L,,0.8Ni5

Key: a) Hydrogen Pressure (atm)	 b) Molar Ratio 112/R0.2La0.8Ni5
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{	
Similarly (figu=:% 3), the five atoms of Ni can be conserved,

{	 and compounds of the form R0 . 2La0 . gNi5 (R = Er, Y, Gd, Nd, Th,

}	 Zr) could be used.

4.2. Magnesiu Medium

r-1

	

	
Magnesium hydride, MgH 1 , behaves like a "true" chemical

hydride.

The nature of the bond is fairly well determined and the

isotherms are rectangular (figure 4).

M9112 is very attractive from the point of view of mass since	 /15

its hydrogen content is about 7 .7% by weight. The a pplication we

have chosen, a fuel tank on board an automobile, makes this figure

very improtant. Our work has therefore concentrated on magnesi-,.m

and its derivatives [9, 10).

Many experiments, carried out with several grades of maanPsium

and with hydrogen of varying purity (tables 5 and 6) have allowed us

to determine the conditions of s%, nthesis for M911 2 (figures 5, 6, and 7).

Our study documented the problem of aging of the metal storaqe

medium as a result of oxidation (figure 7).

To get around this difficulty and obtain at the same time a

lower enthalpy of reaction (-17.8 Kcal/mole H 2 for MgH 2 ) the

compounds defined as M9 2Cu and M9 2Ni were hydrided.

While the perfomance per unit mass diminished, the behavior

over time turned out to be much improved. We carried out more than

twenty cycleF on Mg 2Cu without observing any degradation (figure 3).

The enthalpy of reaction proved to be more accessible. It

was -15.5 Kcal/mole H 2 for M9 2Cu and -13.8 Kcal/mole li t for M92Ni

(figure 9).

11



Table 5
Sepcifications of Magnesium Powders in Use

(Manufacturer's Data: SA Baudier & Fils, Senecourt, 60 Liancourt)

20/1,0 ',0 /100 DA 2UU 80/2U0

0.8 0.8 0.7 0J,
1 1 0.8 0,7

400 -1000 150-400 70-200 10-80
- - 15 10
- 23UO 3500

< 0 1 05 < 0,05 < 0 .05 < 0.05
< 0,02 < 0.02 < 0.02 < 0.02
< 0.1 <	 011 <0.1 <0.1

97 > 97 > 99 99
.< 11.5 1.5 - -
* 0.1`; <	 0.15 <::,15 <0,15
< 0.2 < 0,2 <0,2 -0.2

J

IV

Powder Reference No.

Apparent Density I	 ^.i/^	 ^^^'	 I

coiipac^ed Density 1y /Cru31

Granulometry [ micron J

Av. Diameter [tricrun I

Specific Surface 2 /91
Moisture I%]
Grease 1%)
Nonmetallic Impurities 1S.1
rig (a]
Al I'*]
02 Ib]
C12r	 Mf g ,	 Si

Table 6
Purity of U and N55 Hydrogen

112	 t	 1)2 112	 0 N2 CH 4	 I D2

1'el I	 li,lnu] I pinn]

1i,im]—

1ppin]

li'i'ul^

N !,5 > 99.99 1) `, 1	 . !, < 2 < 2. <	 U . 1 I	 150

P ^,GE 1'3

Oa^('^^ipR 4`^ pt^JF Pq('
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Figure 5
Influence of Temperature on the Synthesis of Mg112

Degree of Advancement X = f(time)

Key: a) (hours';
b) Initial Pressure a* 20 °C = 65 bar

1	 395 • C
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^ wp	 .N	 CA 200
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Figure 6
Influence of Hydrogen Purity on the Synthesis of MgH2

Degree of Advancement A = f(time)

Key: a) (hours)
b) P at 395 0 C = 115 bar
c) hydridation with U H2
d) hydridation with N55 H2
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4.3. FeTi Medium
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The stoichiometric formula FeTiH 2 exhibits an attractive

rerformance per unit mass, with about 2% hydrogen by weight.

However, we are confronted with a transition metal. On the

one hand,nonstoichiometric problems appear. On the other, the isotherms

are not as rectangular as for magnesium, for example (figure 10).

Be that as it may, the thermodynamic characteristics of this

system make it the leader for the design of storage containers

[11, 12, 13, 14).

:igures 10 to 12 were taken form the publi^ations cited above

and reveal the sensitivity of these systems, just as was shown for

LaNiS.

First of all, the oxygen content can displace an isotherm,

by 1 bar, for example (figure 11).

Then, it is possible to introduce transition elements such as

Cr, Mn, and Cc into the FeTi. This changes the form of the isotherms

considerably, as depicted in figure 12.

Here again, the curve can be displaced by a decade when

shifting fi:om FeTi to TiFe0.gN10.l.

5. Problems Posed by a Hydride Storage Container

We have experimented with two hydrogen-generating hydride

reservoirs (Project G2H).

The first, containing 0.3 Nm 3 of hydrogen, used SmCO 5 (an

isotype of LaNi5).

Its design, which was very simple made it not very practical.

16
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Figure 10
Pressure-Composition Isotherms for the FeTi-H 2 System

Key: a) Dis3ociation Press>re, atm H2
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Effect of 0 2 Content on the FeTi + H 2 System
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The second reservoir, containing 3 Nm 3 of hydrogen, was filled

with 20 kg of I,aNi 5 (figure 13). It functioned satisfactorily, The

problems wich arose were the following:

- dead space in the reservoir,

- effect of settling,

- diffus i on of hydrogen in the powder,

- thermal exchanges,

- aging of medium in the course of the charge-discharge

cycles.

As an example, a characteristic curve for charging is given in

figure 14.

Studies are in progress for constructing a reservoir resolving

these problems and capable of storing 10 kg of hydrogen using FeTi.

In addition, a reservoir containing 2 kg of hydrogen by means of

Mg and its alloys is under development.

6. Combustior. of Hydrogen Generated by Hydrides in Thermal Engines

one obvious application is the use of hydrogen as a fuel for

pr-'pulsion, particularly on the ground.

This problem has two aspects: First of all is the design of 	 122

the on-board tank. TFen there is the combustion itself in conventional

thermal machines.

An automotive hydride container has to meet certain criteria

(weight, bulkiness, autonomy, safety, recharging, etc.) which make its

development almost impossible before the final choice of hydride

is made.

That is why we are interested in the second part: "combustion

of hydrogen".

Our experiments were performed first on a single cylinder

"Bernard" engine, then on a Renault R4 automobile, and finally on a

20
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Schematic of a Hydride-Based Hydrogen Generator
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b) Dead Space
c) Coil for Circulation of water (Heating, Cooling)
d) Hydrides
e) Porous Tube
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liydrDger. Generator, 20 kg LaNi 5 , Loading Curve (Fifth Hvdridation)

Key: a) Temperature of Powdez	 c) Empty
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250 hp turbine built by the Societe des Bennes rlarrel.

6.1. "Bernard" Engine

This is a single cylinder engine originally designed for use

with a gasoline-air m-?.xture. Reference measurements were made

with gasoline. -the maximum power was 2.35 hp (1.73 kw).

Hydrogen was directly injected into the combustion chamber

by means of an injector placed on the cylinder head (water-cooled).

(See photograph 1.)

Ignition was performed by the storage battery -coil -distributor

circuit. This network allowei very fine adjustments to be made

(photograph 2). Different ertjine timin g s were tried out. Optimum

performance was obtained with the diagram below:

NF - E 5°
AA 9°	 PMH

AOA 28.E

i

'	 I

F I S0°	 - - --- -I \I <AUE 58.5°

RFA 12.301 	 'DI 1b"

PM©

PMH = Top Dead Center

AOE = Exhaust Opening Advance

DI = -Injector On

PMB = Bottom Dead Center

RFA = Intake Closing Lag

FI = Injector Off

AOA = Intake Opening Advance

AA = Ignition Advance

RFE = Exhaust Closing-Lag

The range of engine speeds was from idle to 3600 rpm. The

power collected by the dynamo-brake (Photograph 3) was dissipated in

a field of incadescent lights.

Figures 15 to 21 give the principal results obta4-ned.
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Figure 15
Corrected Power Curves

Power = f(speed, injection pressure)

Key: a) power (kw)	 b) speed (rpm)
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Figure 16
Injection Pressure = f(power)

Key: a) Injection Pressure (bars) b) Power (kw)
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Figure 17
Exhaust Temperature = f(speed, infection pressure)

	

Key: a) Exhaust Temperature (°C)	 b) Speed (rpm)
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Figure 18
Torque = f(speed, injection pressure)

Key: a; Torque (mkg) 	 b) Speed (rpm)
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Figure 19
Efficiency = f(speed, injection pressure)

Key: a) Efficiency M	 b) Speed (rpm)

Figure 20
Iniec,or Characteristics

Injection Pressure = f(hydrogen flow)

Key: a) Injection Pressure (bars' c) Range of [illegible]
b) Hydrogen Flow (Nm3/h)
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Photograph 1
"Barnard" Engine Adapted for Direct Hydrogen Injection

Z/12 5
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Photograph 2
Partial View of Set—ip

in the foreground is the ignition coil and distributor, then
the engine with the injector on top, and finally in the rear is
the dynamo-brake and, at right, the electric starter.
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Photograph 3
Measurement Stand
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Figure 21
Specific Fuel Consuption = f(injection pressure)

Key: a) Specific Fuel Consumption (gihp/h)
b) Injection Pressure (bars)

Note that the specific fuel comsumption is close to 200 g/hp/h 	 /27

at 3.5 bars. When hydrogen's calorific value per unit mass is taken

into account, this figure might appear high. In fact, when the

Ongine ran on gasoline, a specific fuel consumption of 540 g/hp/h was

observed. These two values are well within the ratio of calorific I'

values (2.7). The overall efficiency of the engine was therefore

not degraded. It remained very low (figure 19) since it attained 	

Ionly 15%.

6.2. Renault R4 Automobile

We have built a hydrogen-air supply system for an automobile

with a four cylinder, 35 hp engine.

The only two modifications concerned the carburator and the

engine timing.

The Hydrogen-air mixture was supplied by an "Impco" gas

carb>>retor. The exhaust gas was recirculated so as to impoverish

the mixture (photograph 4). In addition, nitrogen plays an

inhibitory role in hydrogen-air mixtures.
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Hydrogen Powered "h`nault 4L"
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The engine timing was changed simply by shifting the rocker

arm clearances. There was no thought of adapting a fuel injection

system to an already very complex cylinder head.

Also, the performance remained quite low, 60 km/h.

6.3. Hydrogen Turbine

In collaboration with the Societe des Bennes Darrel, we

undertook the construction of a fuel supply for a gas turbine

built by the company. We first of all supplied only one of the

turbine's two burners (figure 22 and photograph 5).

The recorded results were very satisfactory. Turbine operation

required a maximum flow of 5.6 g H 2 /sec for a turbine of 250 hp

without heat exchanger.

Since this experiment was undertaken only as apreliminary test,

no measurement of power was made.

7. Conclusion

The storage of aydrogen in the form of metallic hydrides is

presently confronted with two problems.

one completely metallurgical problem is the preparation of

very high purity binary or ternary compounds (necessary for having

complete control of the reactions). This problem becomes even more

del 4.cate when large production runs are concerned.

A technical problem is the design of the storP.ge containers,

which can rapidly become heavy and complicated: filters, heat

exchangers, accelerator pump, heating systems, stirring, etc. It is

unlikely that recharging can occur outside the factor.,' iexchange of

tank) because of the Energy involved and the time required to exchange

that energy.
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Finally, a problem concerning energy policy can be cited since

hydrogen is intimately tied to nuclear power.
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Figure 22
General Schematic Drawing of Experimental Setup

Ke; :	 a) Flarne i) Litton Flowmeter
b) Burner j) Compressor
c) Exit Pressure k) Air Intake
u) Exit Temperature 1) Bypass
e) Chamber m) Rotameter
f) Burner Pressure n) Pressure and Temperature
g) Burner Temperature of Hydrogen Flow
h) Pressure and Temperature	 o) Hydrogen Intake

of Air Flow
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Photograph 5
Test of the Burner in the "Bennes-Marrel" 250 hp Hydrogen Turbine
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