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THE STORAGE OF HYDROGEN IN THE FORM OF METAL HYDRIDES
-=- AN APPLiC ION TO THERMAL ENGINES
C. Gales and P. Perroud

Commissariat & l1'Encrgie Atomique, Centre d'Etudes
Nucléaires de Grenoble, Grenoble, France

[Translator's Note: This article included a "summary" which was
translated into German end Dutch as well as English. All versions
conveyed the same content.]

Summary [T*

One of the main problems limiting the use of hydrogen as a
fuel is the difficulty of storing it because it is the lightest of
all gases (90 g/Nm3). There are two ways of storing nydrogen
industrially: in the form of a compressed gas or as a liquid.

The use of metallic hydrides has also been discussed.

Laboratories work primarily with the following comp-unds:
LaNig, ¥eTi, and Mg. The table on the next page gives a comparison
of the perfomances of compressed gas, liquid, and hydride approaches.

This process does therefore have its interest. Froum the point
of view of volume, LaNig incontestably has the best performance with
140 g Hy/1, although with 14 g/kg it is at a disadvantage as regards
mass. FeTi, very similar to LaNig, is no doubt not as costly. /8
As regards on-board systems, the most improtant factor is

weight, and here magnesium comes into its own.

We have studied the kinetics of magnesium hydride from the
point of view of pressure, temperature, granulometry, and purity
of the hydrogen and traced its isothermic pattern. During the

*Numbers in the margin indicate pagination in the foreign text.
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2 bar
gh,/kg | Ne/kg gﬂ,‘/[ N/ | presuure
obtained at
Za Nig Hg ° 14 0.15 | 140 145 20 °C
Fe Ti H2 ° 19 0.2 114 1 e2YH 0 °C
Mg H, ° 77 0.85 | 110 1.2 300 °C
H2 under 200 burs oo 14 0.1% 18 0.2
LH2 at 20’3°K.
1 bar oo Ha 5e5 50 0.5
° includinyg containcer
o pxeludinge containor

charge-discharge cycles, we noticed a phenomenon of aging which
renders the use of pure Mg difficult. The study of MgzCu and
MgoNi showed that this phenomenon can be made to vanish.

We have also given the results of experiments concerning the
tranfer of heat and mass obtained with a tank containing hydrides

and capable of storing several Nm3 of hydrogen.,

Information gathered from various pieces of literature is also
included.

Introduction

Ninety grams per cubic meter! This is the incredibly low
density of hydrogen, foruteen times lighter than air.

The inflammable air discovered by Cavendish is certainly one

of the most studied elements, from its chemical properties to its
quantum mechanics.




Today, at the cawn of a new era of energy production opened up
by nuclear power, hydrogen is on its way to becoming a universal
fuel. Even though world production of hydrogen is already very high
and its applications numerous, a fundamental problem remains to be
solved: its storage.

Two forms are presently in use: compressed hydrogen and
liquid hydrogen.

In its compressed form, this gas is widely used in industry.
The progress that can be experted ie¢ in the performance per unit
mass of the tanks (light allovs, .~ .ped tanks, fiber conglomerates).

In liquid form, the technology has rapidly progressed as a
result of space research. Here again, one can expect progress in
the areas of structural materials and insulators. In addition,
increased efficiency in the liquefaction process will also occur.

Because of the performance per unit mass and volume of these
two forms of storage, a third mode is currently experiencing a
new surge of interest. This is the storage of hydrogen in the
form of metal hydrides.

This technique was already used at the beginning of the century
by aeronauts to fill balloons with hydrogen by hydrolyzing calcium
hydride:

CaH2 + 2 HZO > Ca(OH)2 + 2 Hzf

2. Review of Properties of H, Relevant to its Use as Fuel

We review below some physical and chemical properties of
aydrogen as they compare to two other fuels, methane and propane.

The most interesting property is of course the calorific value /10
of hydrogen, in the neighborhood of 28 Kcal/mole as opposed to
9 to 11 Kcal/mole for fossil fuels.



If the fact that a mole of hydrogen only weighs 2 g is taken
into consdleration, the calorific value cbtained per unit mass is

very high.
density.

{

Air, by Volume

Air by Volume

Air

Flame Speed

Ignition Temperature
Ignition Energy

Flame Temperature in

Standard Boiling Point | °K]
Flamability Limits in [%]

Explosive Limits in [+]

4,1 - 14,8

16,0 - 49,0

[°K] 850
[ mJ) 0,02
[°K ] 2400
[cn/s ) 275
Table 2

C Hy
111,7
5.3 - 15,0

6.3 - 13,5
807
0,3
2190

37

Energy Values for Different Fuels [1]

fimedsd
hydrogen (H5)
metiianol (CHi 3011)

| gasoline (Callyn)

| Solid -

| vanadium hydride (\.,)
coal

‘ wood
Gas:

| hydrogen (115)

|
methane ((‘” )

1 J

o

This partly compensates for hydrogen's very low

C3 Hg

230.8

2,3 - 9,5

736
0.25

2200

Heat of cuorbustion
[ Kazg ] , [KJ/cm?)
124,7 8,7
20,1 15,9
44 .3 30,9 4
TP | 28,4 i
12,2 11,8
12,5 14,2
I _—
1247 00,0010
61,1 0,0044
. [
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General Properties of Metal Hydrides

Metal hydrides, i.e. metal-hydrogen compounds, are generally
grouped into three families according to the type of metal-hydrogen
bond. Within each family, the physical and chemical properties are
rather uniform [2,3,4,5].

The compounds are divided between the saline hydrides (pri-
marily ionic bonding, NaH), the intermediate covalent hydrides
(AlH3), and the hydrides of transition metals (metallic type
bonding, UH3).

Hydride synthesis is exothermic. By virtue of Le Chatelier's
laws concerning chemical equilibrium, production of hydrogen can
be obtained by heating the hydride.

n 1
M+}-H25Mﬂn+o<0

Increasing the temperature displaces the system in the
direction of arrow 2, and therefore towards metal-hydrogen disso-
ciation.

If an easily decomposable hydride with a high hydrogen content
per unit mass could be synthesized, a "hydrogen sponge" would be
obtained. It would be very flexible in use and its performance per
unit mass would be comparable if not superior to that obtained
with conventional methods of storage.

Table 3 gives an estimate of the level of hydrogen in some

PSS
—
—

hydrides.

However, the chemistry of hydrogen-metal systems is not so
simple. We have only spoken up to this point of binary compounds.

One must also survey the ternary compounds, MiMpH,, the
quaternary ones, M|M,M3H., etc.
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Table 3
Percentage of Hydrcgjen in Some Hydrides
(adapted from [(7])

Hydride Percent @ydrogen Wt. Hydride
by weight Wt. Hydrogen
V b 31 20
Mg o 1,6 13
S — £.:5 o SR 10 - -
U Hy 1, g0
Zr Wy 2.1 a7
Ca iz 4,7 21
LiH 12,06 8
Ce Hy 1.4 n

Kinetic and thermodynamic performance varies very rapidly as a

function of the nature of the storage medium.

4. Basic Storage Media under Study

Four main approaches are presently beiiy explored:

- Standard medium, LaNig (Eindhover, Battelle, DAM, ...)
- Mg medium (BNL, CEA, IFP, Battelle, ...)

- FeTi medium (BNL, CEA, Battelle, ...)

- Cther media: VHp, NbHp, ...

4.1. LaNig Medium

This clearly defined, ReMs5 type compound (Re = rare earth, M =
transition metal), was the object of a very large number of
experiments, particularly at Philips in Eindhoven.

Its interest resides mainly in its performance per unit volume
since this compound is very dense and is represented by the formula

LaNisﬂs.

Table 4 gives some figures for LaNig and other compounds
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rich in hydrogen.

Table 4 /12
Comparison of Hydrog.n I[~vel for Some Compounds
(8]

Compound M N 3 W I

[g/nole] 110* q/u®} | [10°"/m?) [10% g/m?)
Hz O 18 1000 6,7 11 111
Hz SO, 98,1 1841 2,2 2 36
Liquid CH, 16,0 425 6,3 25 105
Liquid il 2 71 4,2 100 71
Ti Hjp 49,9 3800 9,2 4 153
Zr H; 93,2 5610 T3 2,1 122
X H2 90,9 3958 Dy e 2,2 - 95‘-——1r___
La Hp 140,9 5120 4,4 1,4 73
La Hj 141,9 5350 6,5 2:) 108
Ti Fe Hygs 105,7 5470 6,2 1,85 101 |
La Nig Hg 438,5 6225 5,3 1,4 88

— S _______”___J

[Commas in tabulated material are equivalent t~ decimal points.]

Aside from the performance per unit mass of a hydride, the

physical conditions of dissociation remain a basic element in the

choice of medium.

While exploration of all ternary

compounds is practically

impossible, a study of the thermodynamic paramet2rs is possible.

particularly of enthalpy of reaction.

The general fromula can be written:

AH(ABnHZm)

= AH\AHm) 2y AH(BnHm) - AH(ABn)

In the case of LaNisﬂﬁ, one therefore writes:

AH(LaNiSHG)

- AH(LaH3) + AH(Ni5H3) = AH(LaNiS)

ORIGINAL PAGE 1S
OF POOR 0 av TY
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This compound has a very great advantage from the thermo-
dynamic point of view.

Its dissociation pressure (r¢ lated to temperature by the

AE

equation log P = 3¢ %%) is close to 3 bars at 40°C (figure 1).
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Figure 1

Key: a) Hydrogen Pressure (atm)

The hydride is thus very easily usable since it is sufficient to
withdraw the hydrogen in the reservoir at the ambient temperature
to make the system immediately produce more and maintain the

equilibrium pressure.

N
w

Here again, however, this is much too simple. It is, as a

matter of fact, possible to displace the isotherms in figure 1
practically at will by using compounds of the form LaNigM, where
M is a transition metal other than Ni (figure 2).

The attractiveness of these compounds is thus readily apparent.
The pressure canvary from 0.8 to approximately 8 bars at 40°C, as a
function of the nature of M.

P R W ———_
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Figure 2
Pressure-Composition Isotherm for the Desorption of
Hydrogen at 40°C for the Compound LaNis and its Derivatives
with the Formula LaNi4M (M = Pd, Ag, Cu, Co, Fe, Cr)

Key: a) Hydrogen Pressure (atm) b) Molar Ratio Hz/LaNi4M
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Desorption Isotherm at 40°C for LaNig and its
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Similarly (figur> 3), the five atoms of Ni can be conserved,
and compounds of the form Ry, pLap,gNis (R = Er, Y, Gd, Nd, Th,
Zr) could be used.

4.2. Magnesiu:' Medium

Magnesium hydride, MgH,, behaves like a "true" chemical
hydride.

The nature of the bond is fairly well determined and the
isotherms are rectangular (figure 4).

MgH; is very attractive from the point of view of mass since /15
its hydrogen content is about 7.7% by weight. The application we
have chosen, a fuel tank on board ar automobile, makes this figure
very improtant. Our work has therefore concentrated on magnesium
and its derivatives [9, 10].

Many experiments, carried out with several grades of magresium
and with hydrogen of varying purity (tables 5 and 6) have allowed us
to determine the conditions of synthesis for MgH, (figures 5, 6, and 1)

Our study documented the problem of aging of the metal storage
medium as a result of oxidation (figure 7).

To get around this difficulty and obtain at the same time a
lower enthalpy of reaction (-17.8 Kcal/mole H, for MgH,) the
compounds defined as Mg,Cu and Mg;Ni were hydrided.

While the perfomance per unit mass diminished, the behavior
over time turned out to be much improved. We carried out more than
twenty cycles on Mg,Cu without observing any degradation (figure 8).

The enthalpy of reaction proved to be more accessible. It

was -15.5 Kcai/mole H, for Mg,Cu and -13.8 Kcal/mole Hy for Mg)Ni
(figqure 9).

11
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Table 5
Sepcifications of Magnesium Powders in Use
(Manufacturer's Data: SA Baudier & Fils, Sénécourt, 60 Liancourt)

Powder Reference No. 20/50 50/100 DA 200 | 80/200
Apparent Density l l_|/t.'lll: l 0.8 0,8 0.7 0,6
Compac*ed Density ly/cm”] 1 1 0.8 0,7
Granulometry [micron] 400-1000 | 150-400 | 70-200 | 10-80
Av. Diameter [micron] - - 15 10
Specific Surface [em® /g ) - : 2300 3500
Moisture le] < 0,05 < 0,058 <0.05 <0.05
Grease [%] < 0,02 < 0,02 <0,02 <0,02
Nonmetallic Impurities [¢] < 0,1 < 0.1 <0,1 <0,1
Mg (%] 2 97 > 97 299 299
Al [%] < W5 < 1,5 - -

03 [« < 0,15 < 0,15 <0,15 <0,15
Clz, Mn, Si [=] <0,2 < 0,2 <0D,2 <0.2 '
—a S S (e ] — S [POSeY |
Table 6
Purity of U and N55 Hydrogen
! |
| w2+ o2 03 Ha O N, CHy, D,
i [+l ' [ ppu) [ ppm) [ppm] (ppm] [ppm]
| | i e
U | >99,995 ? b < b < a0 -
CONSH | >99,9995 ¥ <1,5 < <2,% < 0.1 l “ 150
‘ I 1 R | N
¢ 3
Loy

of
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Influence of Temperature on the Synthesis of MgH,
Degree of Advancement \ = f(time)
Key: a) (hours)
b) Initial Pressure at 20°C = 65 bar
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Influence of Hydrogen Purity on the Synthesis of MgH,
Degree of Advancement A = f (time)
Key: a) (hours)

b) P at 395°C = 115 bar
c¢) hydridation with U Hj
d) hydridation with N55 H)
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4.3. FeTi Medium

The stoichiometric formula FeTiH, exhibits an attractive
rerformance per unit mass, with about 2% hydrogen by weight.

However, we are confronted with a transition metal. On the

one hand, nonstoichiometric problems appear. On the other, the isotherms

are not as rectangular as for magnesium, for example (figure 10).

Be that as it may, the thermodynamic characteristics of this
system make it the leader for the design of storage containers
(11, 12, 13, 14].

rigures 10 to 12 were taken form the publi~ations cited above
and reveal the sensitivity of these systems, just as was shown for

LaNisg.

First of all, the oxygen content can displace an isotherm,

by 1 bar, for example (figure 11).
Then, it is possible to introduce transition elements such as
Cr, Mn, and Co into the FeTi. This changes the form of the isotherms

considerably, as depicted in figure 12.

Here again, the curve can be displaced by a decade, when

shifting from FeTi to TiFeo.gNio.l.

5. Problems Posed by a Hydride Storage Container

We have experimented with two hydrogen-generating hydride
reservoirs (Project G2H).

The first, containing 0.3 Nm3 of hydrogen, used SmCog (an

isotype of LaNig).

Its design, which was very simple made it not very practical.

16
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Figure 10

Pressure-Composition Isotherms for the FeTi-H2 System

Key: a) Dissociation Pressure, atm H,
b) Atomic Ratio H/(Fe + Ti)
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The second reservoir, containing 3 Nm3 of hydrogen, was filled
with 20 kg of LaNig (figure 13). It functioned satisfactorily, The
problems wich arose were the following:

- dead space in the reservoir,

- effect of settling,

- diffusion of hydrogen in the powder,

- thermal exchanges,

- aging of medium in the course of the charge-discharge
cycles.

As an example, a characteristic curve for charging is given in
figure 14.

Studies are in progress for constructing a reservoir resolving
these problems and capable of storing 10 kg of hydrogen using FeTi.
In addition, a reservoir containing 2 kg of hydrogen by means ot
Mg and its alloys is under development.

6. Combustion of Hydrogen Generated by Hydrides in Thermal Engines

One obvious application is the use of hydrogen as a fuel for
pr.pulsion, particularly on the ground.

This problem has two aspects: First of all is the design of /22
the on-board tank. Tren there is the combustion itself in conventional
thermal machines.

An automotive hydride container has to meet certain criteria
(weight, bulkiness, autonomy, safety, recharging, etc.) which make its
development almost impossible before the final choice of hydride
is made.

That is why we are interested in the second part: "combustion
of hydrogen".

Our experiments were performed first on a single cylinder
"Bernard" engine, then on a Renault R4 automobile, and finally on a

20
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Hydroger Generator, 20 kg LaNis, Loading Curve

c) Empty

Key: a) Temperature of Powde:
d) Time (min)

b) Pressure of Hydrogen
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250 hp turbine built by the Société des Bennes Marrel.

6.1. "Bernard" Engine

This is a single cylinder engine originally designed for use
with a gasoline-air mixture. Reference measurements were made
with gasoline. The maximum power was 2.35 hp (1.73 kw).

Hydrogen was directly injected into the combustion chamber
by means of an injector placed on the cylinder head (water-cooled).
(See photograph 1.)

Ignition was performed by the storage battery - coil -distributor
circuit. This network allowei very fine adjustments to be made
(photograph 2). Different ernjine timinags were tried out. Optimum
performance was obtained with the diagram below:

RFE 5°
AA 9° PMH PMH = Top Dead Center
AOA 285°_— AOE = Exhaust Opening Advance

DI = Injector On

PMB = Bottom Dead Center

RFA = Intake Closing Lag

FI = Injector Off

AOA = Intake Opening Advance
AA = Ignition Advance

RFE = Exhaust Closing ‘Lag

Fl S0

RFA 12.3°‘/'

PMB

The range of engine speeds was from idle to 3600 rpm. The
power collected by the dynamo-brake (photograph 3) was dissipated in
a field of incadescent lights.

Figures 15 to 21 give the principal results obtained.
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Figure 15
Corrected Power Curves
Power = f(speed, injection pressure)

Key: a) power (kw) b) speed (rpm)
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Fiqure 16
Injection Pressure = f (power)

Key: a) Injection Pressure (bars) b) Power (kw)
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Figure 17
Exhaust Temperature = f (speed, injection pressure)

Key: a) Exhaust Temperature (°C) b) Speed (rpm)
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Figure 18
Torque = f(speed, injection pressure)

Key: a) Torque (mkg) b) Speed (rpm)
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Figure 19

Efficiency = f(speed, injection pressure)

Key: a) Efficiency (%) b) Speed (rpm)
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Figure 20
InjeciLor Characteristics
Injection Pressure = f (hydrogen flow)

Key: a) Injection Pressure (bars' «c¢) Range of [illegible]
b) Hydrogen Flow (Nm3/h)
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Photograph 1
"Bernard" Engine Adapted for Direct Hydrogen Injection
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Photograph 2

Partial View of Setup
in the foreground is the ignition coil and distributor, then

the engine with the injector on top, and finally in the rear is
the dynamo-brake and, at right, the electric starter.
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Photograph 3
Measurement Stand
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Figure 21
Specific Fuel Consuption = f(injection pressure)

Key: a) Specific Fuel Consumption (g/hp/h)
b) Injection Pressure (bars)

Note that the specific fuel comsumption is close to 200 g/hp/h /217
at 3.5 bars. When hydrogen's calorific value per unit mass is taken
into account, this figure might appear high. In fact, when the
engine ran on gasoline, a specific fuel consumption of 540 g/Lp/h was
observed. These two values are well within the ratio of calorific
values (2.7). The overall efficiency of the engine was therefore
not degraded. It remained very low (figure 19) since it attained
only 15%.

6.2. Renault R4 Automobile

We have built a hydrogen-air supply systemfor an automobile
with a four cylinder, 35 hp engine.

The only two modifications concerned the carburator and the
engine timing.

The hydrogen-air mixture was supplied by an "Impco" gas
carburetor. The exhaust gas was recirculated so as to impoverish
the mixture (photograph 4). In addition, nitrogen plays an
inhibitory role in hydrogen-air mixtures.
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Photograph 4
Hydrogen Powered "Kenault 4L"
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The engine timing was changed simply by shifting the rocker
arm clearances. There was no thought of adapting a fuel injection
system to an already very complex cylinder head.

Also, the performance remained quite low, 60 km/h.

6.3. Hydrogen Turbine

In collaboration with the Société des Bennes Marrel, we
undertook the construction of a fuel supply for a gas turbine
built by the company. We first of all supplied only one of the
turbine's two burners (figure 22 and photograph 5).

The recorded results were very satisfactory. Turbine operation
required a maximum flow of 5.6 g Hy/sec for a turbine of 250 hp

without heat exchanger.

Since this experiment was undertaken only as apreliminary test,
no measurement of power was made.

7. Conclusion

The storage of aydrogen in the form of metallic hydrides is
presently confronted with two problems.

One completely metallurgical problem is the preparation of
very high purity binary or ternary compounds (necessary for having
complete control of the reactions). This problem becomes even more
delicate when large production runs are concerned.

A technical problem is the design of the stni¢nge containers,
which can rapidly become heavy and complicated: filters, heat
exchangers, accelerator pump, heating systems, stirring, etc. It is
unlikely that recharging can occur outside the factory {(exchange of
tank) because of the energy involved and the time required to exchange
that energy.
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Finally, a problem concerning energy policy can be cited since
hydrogen is intimately tied to nuclear power.
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General Schematic Drawing of Experimental Setup
Ke;: a) Flame i) Litton Flowmeter
b) Burner j) Compressor
c) Exit Pressure k) Air Intake
d) Exit Temperature 1) Bypass
e) Chamber m) Rotameter
f) Burnexy Pressure n) Pressure and Temperature
g) Burner Temperature of Hydrogen Flow
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Photograph 5
Test of the Burner in the "Bennes-Marrel" 250 hp Hydrogen

Turbine
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