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Abstract

The primary focus of this study is the physics of the transition
and early turbulence regimes in the time-developing mixing layer.
Three-dimensional, time-dependent numerical simulations were carried
out. In particular, we deal with the sensitivity of the mixing layer to
the disturbance field of the initial condition. The growth of the
momentum thickness, the mean velocity profile, the turbulence kinetic
energy, the Reynolds stresses, the anisotropy tensor, and particle track
pictures of computations are all examined in an effort to better under-
stand the physics of these regimes. The amplitude, spectrum shape, and

random phases of the initial disturbance field were varied.

In carrying out this study, a new scheme of generating discrete
orthogonal function expansions on some nonuniform grids was developed.
In the present work it allowed us to compute in an infinite domain,
eliminating image-flow problems. The new scheme retains the efficiency
of the fast Fourier transform, but allows the application of more gen-
eral boundary conditions by using a restricted set of mapping functions.
In evaluations using linear test equations, the new scheme employed in
the present work had errors up to six orders of magnitude smaller than
in standard finite—~difference methods (using equal numbers of grid

points) .

Due to computational limitations, all cases address the early or
near field of the mixing layer. The results showed that large eddies
may vary considerably, particularly in the turbulent structure measured
by the anisotropy tensor. An interesting oscillatory behavior of the
width of turbulent kinetic energy profile was observed. The most sig-
nificant result shows that the secondary instability of the mixing layer
is produced by spanwise variations in the straining field of the primary

vortex structures.
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Chapter 1

INTRODUCTION

1.1 Background

Turbulent flows have been extensively studied, both experimentally
and theoretically, for more than 50 years. The results of this effort
still leave much that is unknown about the physics of turbulence, and
our ability to predict its effects is still very limited. The theoreti-
cal difficulties are primarily due to two things: the nonlinearity of
the governing equations and the large range of scales involved in high
Reynolds number flows. The nonlinearity severely limits purely analyt-—
ical solutions. The wide range of scales cannot be handled numerically
by present or foreseeable computers, and hence full 3-D; time-dependent,
computational solutions can be obtained only at very low Reynolds num-

ber.

Large eddy simulation (LES) offers one approach to escape these
difficulties. The LES approach is to mathematically distinguish "large"
and "subgrid"” scale components of a turbulent flow field. The equations
for the "large” scales can be derived by smoothing or "filtering” the
Navier-Stokes equations; but, due to the nonlinearity, "subgrid” scale
terms appear; and these must be modeled. The merit of the LES approach
(which is applicable to high Reynolds number flow) is due to the
concentration of energy in the large scales or, correspondingly, to the
fact that the modeled terms have a relatively small fraction of the

energy and the large eddies do most of tramsport.

LES is conceptually quite different from conventional phenomenolog-
ical turbulence modeling, in which models for all scales of turbulence
are required. See Reynolds (1976) for a review of those approaches. The
limited success of modeling the entire turbulence field is understand-
able when one considers the lack of universality in the large scale
motions, since experimental evidence shows that large scale structures
are very different in different flows. The work of Kline et al. (1959)
on boundary layers and of Roshko (1976) on free shear flows illustrates
this point. It is generally believed that the small scales tend to be

universal in structure and hence should be much easier to model.



It is also generally believed that large-scale structures contain
most of the turbulent energy production and produce most of the impor-
tant effects. The large scales are clearly dominant in transition of
free shear layers (this can be proved analytically) and many researchers
now believe this is also true far downstream (for example; see Browand

and Troutt (1980) and Roshko (1976)).

Large eddy simulation is thus an important tool for obtaining de-
tailed information about the most important turbulent motions. By
examining the results of LES calculations; one can develop a deeper
understanding of the physics of these flows. This insight should be
useful in finding ways of controlling (to some degree) the effects of
turbulence. Thus we believe that the most important aspect of LES goes

beyond prediction and into the domain of control; Liepmann (1979) has

also pointed out the importance of the large structures in controlling
turbulence. LES can also help in guiding the development of simpler
phenomenological models by providing quantitative “"data” for terms that

must be modeled in these theories.

The most impressive LES work to date has been the turbulent channel
flow simulation of Moin and Kim (1981). This work clearly demonstrates
the power of LES in providing both physical understanding and guidance

for model development.

A computational approach related to LES is Full Turbulence Simula-
tion (FTS); in which all of the scales of turbulent motion are computed
in a 3—D; time-dependent calculation. With present computers; FTIS is
limited to low Reynolds numbers; when the large and small scales do not
differ by more than one or two orders of magnitude. Nevertheless, FTS
calculations are very useful, for they provide a testing ground for
subgrid-scale models required in LES simulations; as well as physical
insight and other "data" that are useful in developing phenomenological
turbulence models. Examples of FTIS calculation are Clark et al. (1977),
Shirani et al. (1981); Feiereisen et al. (1981), and Orszag and Patter-
son (1972) and Rogallo (1981)

The present work deals principally with LES computation of a time-

developing mixing layer. This required development of a new numerical
method. The results provide new insight into the physical processes

2



that occur during the transition of this layer from laminar to turbulent

flow.

1.2 Related Work

While the present work deals primarily with the LES approach, we
shall now mention other computational approaches to gain perspective.
In Reynolds' (1976) review, statistical methods are placed in a hier-
archy ranging from algebraic to those in which five differential equa-
tions are used to model the turbulence. Following a discussion of these
statistical approaches, vortex methods will also be mentioned.

Statistical approaches to treating turbulence generally employ a
time average of the Navier-Stokes equations; occasionally other types of
averaging are used. Time averaging the Navier-Stokes equations results
in equations which govern the mean (time-averaged) velocity field.
These equations contain higher-order terms——time-averaged products of
the fluctuating field. By averaging moments of the Navier-Stokes
equations, governing equations for the time-averaged products of the
fluctuating field are obtained. These equations contain averages of
triple products of the fluctuating field. This process always results
in higher-order terms-—more unkunowns than equations regardless of how
many moments one takes. This 1s known as the closure problem of turbu-—

lence.

To close the system of equations, a model or closure assumption
which expresses the highest-order tecrms as some function of the lower-
order terms is required. The lowest-order model, termed a zero equation
model because no differential equations for the turbulence are employed,
algebraicly relates the turbulent stresses (Reynolds stresses) to the
mean flow quantities. Modeling at this level often produces satisfac—
tory results for the mean flow, and calculations require only a few
seconds of computer time. The success at this level is due to the

considerable empirical content.

The next level of modeling--a one-equation model--generally employs
a differential equation_ for the turbulent kinetic energy and a
prescribed length scale or dissipation rate. This level is limited by
the skill of the prescriber.



Two-equation models--some of which use equations for the turbulent
kinetic energy and one which uses a length or dissipation scale--are
very popular. They are still postdictive, as considerable empirical
input is required to obtain good results; but they can be made to work

well for given classes of flows.

Full Reynolds stress models are used on occasion. At this level a
differential equation is used for each component of the Reynolds stress
tensor. While there is hope that such a model could be generally appli-
cable; it is quite complicated. There are many empirical constants, and

it is often hard to evaluate them.

Statistical methods can "predict" the statistical behavior of the
mixing layer. The present study, however; is aimed at better under-
standing of the physics of the flow, and statistical approaches are not

applicable. Approaches which are applicable are now presented.

Ashurst (1979) has used a vortex tracking method to study the spa-
tially developing mixing layer. In this approximation; the vorticity is
discretized into two-dimensional line vortices which are periodically
released at the origin of the mixing layer. The filiments are convected
by use of the Biot-Savart law. A random perturbation of the initial
release of the vortices causes the vortices to coalesce to form large-
scale vortex structures; which pair. An impressive color motion picture
of this process was produced. The discretization approximation used is
reasonable; though the 2-D approximation is quite limiting. The most
ad-hoc assumption is the method of introducing artificial dissipation.
This is necessary to prevent an unphysical growth in the kinetic
energy. This approach is quite simple; fairly costly, and has an
advantage over LES in terms of simplicity of the inflow and outflow
boundary conditions and capability of treating a large region of the

spatially developing mixing layer.

This approach can be extended to three—dimensions; as shown by
Leonard (1980) for a boundary layer. The full three-dimensional
calculations are very costly, and we shall now discuss the vortex in
cell method; which greatly reduces the cost.

Couet and Leonard (1980) used the vortex in cell method to perform

a three-dimensional simulation of the time—developing mixing layer. 1In
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this approach, three-dimensional vortex filaments are tracked. In place
of the costly Biot-Savart method of tracking vortex filaments, the
vorticity is interpolated onto a fixed grid. The grid values of the
vorticity are used as a source for a Poisson equation for the vector
potential whose curl gives the velocity field at the grid nodes. This
velocity field is then interpolated to the vortex filaments' positions,
and the vortex filaments are convected to new locations. The cost is
much lower than that for the Biot-Savart method. Couet and Leonard
(1980) has developed a method of analytically continuing boundary
conditions at infinity onto the edges of a finite grid; which eliminates
image~flow problems (see Appendix D).

Couet's work produced good visualizations of the vortex formation,
the existence of a secondary instability; and vortex pairing. He also
studied the energy history of individual turbulence modes; but there is

concern that the numerical methods used did not treat the conserved

properties correctly.

In an FTS, Metcalfe and Riley (1980) simulated a turbulent mixing
layer. Their full simulation required a 643 grid for adequate resolu-
tion in a stream and spanwise domain the same size as in the present
work. They were restricted to a layer thickening by a factor of five or
six, due to uniformly spaced grid in the gradient direction (the direc-
tion of the mean velcoity gradient). Other than the treatment of the
gradient direction, their numerics are very similar to those of the
present work. Metcalfe and Riley's work demonstrates the capability of
a full simulation to predict reasonably the mean velocity profile;
growth rate, and turbulent energy of a time-developing mixing layer.

Now we shall turn our attention to experimental work on mixing lay-
ers. This is by no means a complete listing; but rather a few works on
different aspects of the mixing layer. Reference to particular results

relevant to the present work are given in Chapter 5.

In a study of nonlinear eigenfunction interactions in transition;

Miksad (1972, 1973) forced a laminar mixing layer at two forcing fre-
quencies. Bradshaw (1966) studied the effect of initial conditions on

the near field of a one-stream mixing layer by altering the geometry.

Good sources of turbulence statistics in a mixing layer include: Spencer
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and Jones (1971); Wygnanski and Fiedler (1970), Patel (1973), and Cham-
pagne et al. (1976). The asymptotic growth rate of the mixing layer is
reviewed by Birch (1980). Visualization of the mixing layer includes
the work of Brown and Roshko (1974), Winant and Browand (1974), and

Chandrsuda et al. (1978),

1.3 Motivation and Objectives

The basic motivation for the present work is the desire to better
understand the importance of large scale structures in free shear flows
through study of accurate; 3~D; time-dependent simulations of the for-
mation of such structures. lMost previous computational work on this
problem was 2-D and often only the linearized equations were -used.

Recently, Metcalfe and Riley (1980) published one of the first three-
dimensional simulations. To compute accurately the transition process

accurately up to the point at which -the energy reaches the experiment-
ally measured levels for "fully developed” turbulence, the full non-
linear equations must be used. Due to the fact, established analytic-
ally, that transition or "near field" turbulence in the free shear layer
is strongly dominated by a relatively small range of scales, this is a

problem well suited to numerical simulation.

To perform a simulation, we require knowledge of the flow field
at the boundaries of the domain of interest. Often; this is a major
stumbling block, as the boundary conditions at one or more boundaries of

the computational region may be unknown.

To illustrate this point, consider the plane mixing layer. In the
laboratory flow (see Fig. 1.3.l), two fluid streams moving at different
velocities are initially separated by a splitter plate. At the end of
the splitter plate the two streams form a free shear layer. This shear

layer thickens with downstream distance.

Experiments and theoretical analysis show that transition occurs
through growth of a primary (Kelvin~Helmholtz) instability. This leads
to the formation of spanwise vortex structures. These in turn create a
strong straining field between adjacent vortices, and in this region a
secondary instability leads to the formation of counter-rotating vorti-

ces aligned with the strain. Pairing of the spanwise vortices is an
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inportant mechanism in the formation of structures of larger scale. Far
downstream the mean velocity profile becomes self-similar; although
quite different rates of growth have been found in different experi-

ments.

To simulate this flow; time-dependent inflow and outflow boundary
conditions need to be imposed. Laboratory experiments never provide
these in sufficient detail. Artificial conditions could be imposed; but
then there would be several grid points near both the inlet and the out-
let where the computed solution would be unphysical. Hence a very long
computational domain would be required; this approach is possible on the

largest computers, but at very great cost.

To avoid these problems with boundary conditions; we have chosen to
treat a simpler problem; namely, the time-developing mixing layer (see
Fig. 1.3.2). In the time-developing mixing layer, two semi-infinite
streams of fluid travel in opposite directions with equal speed. The
shear layer at the interface of these two streams thickens in time.
This flow is statistically homogeneous in planes parallel to the inter—-
face. Hence; periodic boundary conditions can be applied in the two

coordinate directions in the plane of homogeneity.

Because the layer is immersed in an infinite region; gsome means of
handling boundary conditions infinitely far above and below the layer is
required. This could be done by‘applying free-stream conditions at a
large but finite distance from the layer. waever; this introduces
"imaging errors” (Appendix D). Instead, we shall use a method involving
a non-uniform grid that extends to infinity above and below the layer.
This requires the development of a new numerical method; which repre-

sents one of the important contributions of this work.

Let us consider the relationship between this idealized flow and
the laboratory flow. The laboratory flow is characterized by a param—
eter A, defined by

A= (U

where U; and U, are the speeds of the two streams. As A goes

to zero; all streamwise mean gradients become smaller; and the space-
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developing layer becomes more like the time-developing ome. Unfortu—
nately, when X 1is small; the early part of the flow is dominated by
the wake of the splitter plate and is not really a mixing layer flow.
Hence, we cannot make a direct comparison of the simulation with experi-
ments. Nevertheless, we believe that the basic physical processes are
the same in both flows, and hence can be examined by study of the time-
developing flow. The most significant exception is that, in the labora-
tory flow, the downstream flow can affect the upstream flow by creating
pressure fluctuations. This allows "phase 1ocking;" a situation in

which the flow remains in a particular configuration for a long time.

Simulation of the time~developing flow requires initial conditions.
The effect of different initial conditions in the time-developing flow

is probably similar to the effect of different upstream conditions in
the laboratory flow. The sensitivity of the near field of the mixing

layer to initial conditions was examined in the laboratory by Bradshaw
(1966). He found the near field to be quite sensitive to changes in the
initial disturbance field. In this laboratory study, the initial dis-
turbance field was altered by geometry changes affecting the boundary

layer of the one~stream mixing layer.

In the computer simulation we can specify any initial field that is
consistent with a few simple constraints; and hence we can examine the
effects of changing specific features of the initial disturbance. All
computational cases will begin with the same mean field; for each case;
a specific disturbance field will be added to complete the initial
condition. Changes in the initial disturbance field to be considered

include: amplitude, spectrum shape, and the set of random phases of the

modes.

After a sufficient period of development; we expect that the mean
(phase—averaged) velocity profile will become self-similar. The rate at
which this occurs; and the degree of self-gimilarity in other turbulence
parameters of the time-developing flow should provide insight into the

self-similarity (or lack thereof) in the laboratory flow.



Summarizing, the objectives of this work are thus:

° To develop an accurate method of differentiation and inte-
gration on a non-uniform grid, suitable for simulating a
time-developing mixing layer.

® To employ the above method in a study of simulations of the
transition and early turbulence domains of a time-developing

mixing layer.

1.4 Summary of Present Work

A new and very accurate numerical differencing and integrating
scheme. for infinite domains is presented. It is based on the use of
Fourier expansions and takes advantage of the computational efficiency
of the fast Fourier transform. The new method is applicable to more
general boundary conditions than the standard Fourier method; due to the
use of mapping functions. (The simplest boundary conditions to imple-
ment are periodicity; or zero, or zero-derivative conditions, or combi-
nations thereof.) However; the allowed mapping functions are restricted

for reasons of efficiency and accuracy. For more detail, see Chapter 3.

Two particular mapping schemes, both for doubly infinite domains,
are implemented. One 1is chosen to handle jet-type flows, while the
other is designed for the mixing layer. Both schemes are applied to
linear test equations having known analytical solutions. The new scheme
is shown to have errors as much as six orders of magnitude smaller than

common finite-difference schemes for equal numbers of mesh points.

The new scheme designed for jet—type flows is used to demonstrate
the influence of finite~domain boundary conditions. The evaluation was
made by use of an array of two~dimensional vortex structures, all with
the same sign of vorticity. If this array of vortices is computed in a
finite domain with no—-stress boundary conditions applied to a surface
parallél to the array, but at a finite distance; image flows are im-
plied. The nearest image flow above is the mirror image (imaged about
the no-stress surface) of the initial vortex array. This image vortex
array and the true vortex array form a near—field jet-type flow, and

their behavior in time was computed using the new infinite—domain



scheme. Comparing a base computation with one in which the image array
was shifted in the streamwise direction (relative to the true array)
showed potentially strong coupling to image flows; depending on vertical

spacing. For details; see Appendix D.

Using the new infinite-domain scheme, a 3-D, time—dependent; large
eddy simulation study of transition and early turbulence in a time-
developing mixing layer was undertaken. The primary focus of this study
concerns the effect of the initial disturbance field on turbulence

development. Effects due to filtering and modeling are also examined.

To sort out the effects of the initial disturbance field, the same
laminar, mean-velocity profile is used as the initial mean field in all
cases. To this mean velocity field; an initial divergence—free distur-
bance field is added. We use nine cases involving seven different ini-
tial disturbance fields. These seven cases examine the influence of the
disturbance amplitude; spectrum shape, and random phase sets on the

resulting early turbulence.

The computations provide the mean velocity profile, the momentum
thickness, the turbulent kinetic energy, the Reynolds stress temsor, the
Reynolds stress anisotropy tensor; and particle tracking pictures.
Examination of these results provides better understanding of the mixing
layer. The central observations from these computations are as follows:

L4 All cases display immediate self-similarity in the mean vel-
ocity profile.

° The momentum—thickness growth rate is strongly influenced by
the initial disturbance-spectrum shape.

L Interesting oscillatory behavior is observed in the kinetic
energy profile width for the small-amplitude initial distur-
bance cases. This oscillatory behavior is not present in
high-~amplitude initial disturbance cases.

® The anisotropy tensor proved to be the most sensitive mea—~
sure of self-gimilarity. Even changing the random phase
distribution in the initial disturbance field produced
enormous differences in the evolution of the anisotropy
tensor.

Probably the most significant aspect of the study was revealed in

the particle-track pictures. While large coherent structures readily
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appeared (some similar to those of Winant and Browand (1974) and others
like Chandrsuda et al. (1978), the mechanism 'for producing the secondary
instability has been identified. It seems to be the result of spanwise
variations in the strength or position of the primary vortex structures,
which give rise to spanwise variations in the straining field stagnation
line. This causes spénwise vorticity to be tilted towards the stream~
wise direction as the vorticity is rolled up by the primary vortices,
and this process leads to the formation of pairs of counter-rotating

vortices aligned with the straining field.

Changing the set of random phases of the initial disturbance field
produced significantly different results, both in the statistical and
structural characteristics of the mixing layer. This is a consequence
of the small sample of large eddies in any given calculation. The im—
plications of this are still very significant; however; as any given
experimental apparatus is likely to produce a given type of large eddy
structure, which locks on. This is due to the likelihood of a fixed
type of initial disturbance being present and also due to pressure feed-
back effects. However, different ekperimental apparatus is likely to
lock onto different large eddy types. There are two and perhaps more
different large eddy patterns which are possible. Thus, large eddy
variation may be small in a given experiment; but significant variations

may occur from experiment to experiment.

Two cases were run to examine the effects of filtering and subgrid
turbulence modeling. We found that filtering delays the onset of non-
linear effects and gives us less than the total picture. However; it
considerably extends the length of time over which the computation is
meaningful. The subgrid-scale model was shown to have very little

influence on the calculations.
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Chapter 2

PROBLEM FORMULATION

2.1 Governing Equations
We shall restrict ourselves to considering the motion of an incom-
The motion of such a fluid is governed by

pressible Newtonian fluid.
A common form of these equations is:’

the Navier-Stokes equations.

du 3(uyu.)
1 i ‘
.s.'_:_-}-_T;{_l.- = -

of important properties the equations

3 2
3§;.+ W, (2.1.1a)

ol

For computational conservation

are written in the form:'
du du du
1 1 i op 2 (2.1.1b)

T + uj 3xj - uj 5;: = - §§I-+ w uy

The equation for comr-

The modified pressure is P = (p/p) + (u1u1/2).
servation of mass of an incompressible fluid is:’
e (2.1.2a)
'éxi sl ela
we take divergence of (2.1.1b) and

For computational convenience
enforce (2.1.2a) to get a Poisson equation for the modified pressure:

9 auj 3u1 du auj 32uj
V'p = -~ + + u (2.1.1b)
Bxi axj Bxi 5xi i axi

Thus, given the velocity of a fluid field at some time to; we may

solve (2.1.2b) for the modified pressure and then find the time rate of
From this; we can find the

change of the velocity field from (2.1.la).

velocity at the next time step.

* : ,
This form allows many differencing schemes to conserve mass, mo-
mentum, and energy (as shown by Mansour et al., 1977).
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2.2 Boundary Conditions

The boundary condition imposed on the time~developing flow in di-
rections of statistical homogeneity is that all variables be periodic:

ui(x,y,z) = ui(x+L1,y,z) (2.2.1a)
uy(x,y,2) = uy(x,y+ly,z) (2.2.1b)

In the direction of inhomogeneity; we can require that the flow become
the unperturbed free stream far from the shear layer, or, alternatively,

we can impose the no-stress conditions:

: 0
'g"z“l (X’y ,Z) |z=i.go = 0 = 'a% (X,y ’Z)|z=.ico H W(X,y ,:tw) = 0 (2.2-1(:)

The no-stress condition 1s advantageous numerically and is employed in

the present work.

2.3 Initial Conditions

The initial velocity field used consists of a laminar field plus
small perturbations. The time-developing laminar mixing layer has
gradients only in the 2z direction; and only the u component of the
velocity field is nonzero. This layer is thus governed by the diffusion

equation:

du 32u
oz

With the no-stress boundary condition and initial condition u(z,0) =
u, for z > 0 and u(z,0) = -y, for z < 0, Eq. (2.3.1) has the
solution

u(x,y,z,t) = u erf(z/v4vt) (2.3.2)

The slope thickness, §,, of a free shear layer is defined as the
velocity difference across the layer divided by the maximum gradient of

the layer. For the laminar layer:
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Gm = vY4mve (2.3.3)
For our study of transition, we shall start our calculation at a time at

which Reg = 2u06w/\) = 60.

The disturbance field is constructed in the following way. First,
a periodic, divergence-free, homogeneous; isotropic field on a 16 x 16
x 16 grid is constructed using the routine writtem by Kwak et al.
(1975). The velocities on five planes of this field are assigned to the
central five planes of the grid used in the present calculation (which
is non-uniform and anisotropic). This field is then smoothed in the
gradient direction by a Gaussian filter; the result is smooth; but not
divergence~free. We obtain a divergence-free field by taking the curl
of this field. The divergence-free velocity field is added to the
error-function profile to give the complete initial field. Further

details of this process are given in Chapters 3 and 5.

2.4 The Computational Domain

The choice of a streamwise and spanwise box length (Ll and LZ,
respectively) 1s critical. Michalke (1965) and Betchov and Criminale
(1967) studied the stability characteristics of a mixing layer with a
hyperbolic tangent profile. While our error function profile is not
identical to theirs, it is sufficiently close that we can use their
results as a guide. Betchov and Criminale considered the linearized
Navier-Stokes equations (valid for small amplitude disturbances) and
searched for eigensolutions growing in time. They found; even in the
limit of infinite Reynolds number; that there is a minimum wavelength

)‘1 in the streamwise direction for which the disturbance is amplified
c
by the mean shear; any disturbance with a shorter wavelength will decay.

In non-dimensional terms at infinite Reynolds number; the shortest

amplified wave has a wavenumber

w8

a, = T.“i = 1.0 (2.4.1)
le

According to Betchov and Criminale, the most amplified disturbance wave

length at infinite Reynolds number corresponds to wavenumber a, = 0.43.
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The effect of finite Reynolds number 18 to decrease the values of o

and o ; at the Reynolds number we shall use, ’am = 0.34. Using these

0
considerations as a guide; we set the computational domain such that the
smallest o supported in the calculation was 0.17. This corresponds to
the longest wave allowed-—-the one whose wavelength is the computational
box length. Since we are using Fourier methods; we have adequate reso-
lution and a large enough domain to study the most amplified waves. At
our initial Reynolds number (Reg = 60) and with a grid spacing in the
span direction equal to the streamwise grid; there are 14 amplified

modes in our discrete approximation (this includes 3-D modes).

2.5 Filtering

In treating a turbulent flow numerically, we may have more scales
of motion than any computer can handle; this depends somewhat on the
flow and Reynolds number. If this is the case, we are forced to filter
the flow field in a way which leaves a range of scales that can be com~
puted. We follow Leonard (1974), who first formalized this approach.

" Since we know from experiments that the largest scales of motion are the
most energetic ones and are responsible for most of the tramsport, we
shall truncate the small scales. We shall symbolize the large-scale

field by ::. For a homogeneous flow; we define it as:’
u(x) = fG(.’S'i') u(x') dx' (2.5.1)

(integration over all space). The small-scale or subgrid (SGS) field is
simply the difference between the full field and the large-scale field.

u' = u-u (2.5.2)

Note that, since W # u, u' # O.
The choice of a difference kermel for the filter function has two

assets. Most 1mportantly; such a filter commutes with differentiation
operators. This means that both the large-scale field u and the
subgrid scale (SGS) field u' will separately satisfy the continuity

15



equation. The second asset of a difference kernel for the filter re-
sults from the convolution theorem. Discrete Fourier methods can be
used in our problem; and the convolution theorem allows a very fast way

of computing wu by means of the Fourier transform. The transform of

u is:

A

u(k) = é(k) ;(k) (2.5.3)

and u is obtained by inverting (2.5.3).
Our choice for G(x~x') is a Gaussian (see Mansour et al., 1977):

nof g \L/2 2,2
G(E:E') = igl iZI) exp [}6(xi-Xi) /A;] (2.5.4)

with Ay = Zhi; where h; is the grid spacing in the ith direction;
and n 1is the number of directions in which we elect to filter. It
should be noted that the discrete transform of (2.5.4) is used in
(2.5.3). This is slightly different from the continuous transform.

We are using a non—uniform grid scheme in the =z or Xq direc~-
tion. Moin et al. (1978) showed that it is difficult to define a filter
for this direction. One can introduce an approximation; but the large
and SGS flow fields would no longer be divergence—free. Thus we do not
filter at all in the x4 direction. If we apply the filter to (2.l.2a)
in only the X and Xy directions (n = Z); we get

du
1 .0 (2.5.5)

axi

Recalling uy = :;; + ui, Eqs. (2.1.2a) and (2.5.5) imply that the
subgrid-scale field 1is divergence—-free as well. This demonstrates the
desirability of a linear filtering operator which commutes with differ-

entiation.

Application of the filter to (2.1.1b) gives

35 oy -
9 - - { - P 2— 3 .
3?“1‘*“1&'37‘“3'5;% - "3::;*"‘7“1‘3;:5*11 (2.3.6)

where
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i1
= 1 Tu +a'u’
Rij ui j + uiuj uiuj

Note that Tij contains subgrid-scale terms and therefore must be mod-

eled.

Taking the divergence of Eq. (2.5.6) and enforcing Eq. (2.5.5)

gives a Poisson equation for the filtered modified pressure:’

vF = aaja:;i+’6 -3-2-5 m B (2.5.7)
's'x:’&'{j‘ Jaxij T{‘&‘j‘ ij

Since filtering is a linear operator and all boundary conditions
are linear, we arrive at the following boundary conditions on the large-

scale field:

ug(x,y,2) = uy(x+ Ly,y,2) (2.5.8)
uy(x,y,2) = uy(x,y + Ly,2) (2.5.9)
o - o, oo
-a'z" (x,y 92) = 0 = 3z (x’y’z) H w(x,y @) = 0 (2.5.10)
z=F® z=}®

2.6 Subgfid Modelimi

Since Ti4 contains subgrid-scale terms; it must be modeled. The

history of how we came to the model eventually used is of some interest.

In a preliminary phase of this work, we explored the fully tur-
bulent mixing layer. We solved the vorticity equations using the vor-
ticity model developed by Mansour et al. (1978). We also used the
primitive equations with the following model; due to Smagorinsky (1963):

T = - ZvT §;

i3 3
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Sij

of =

?fz_a‘j +.5.f{_31 (2.6.1)
i

vy = (e (2§ij‘s'ij)1

In (2.6.1), A 1is the filter width and C, is a constant, approxi-
mately 0.2. Runs with the same initial conditions-—-one using the prim-
itive equations and Smagorinsky's model and another using the vorticity
equations and Mansour's model—-had turbulent statistics which were
essentially identical. In both runs; however; the mixing layer thick-
ened much faster than the experimental layer. In an attempt to under-—
stand why, we then used Smagorinsky's model in a calculation of an
initially laminar mixing layer with no disturbance added, and found that
the layer grew between two and three times as fast as the experimental
turbulent layer. This erroneous behavior provided the clues needed to
modify the model, and led to an improved model that we used in the

transition studies.

One reason for the improper behavior in laminar flow arises because
the model "turns on" too quickly. The models are supposed to account
for the effects of unresolved turbulence, but the eddy viscosity con~-
tains a significant contribution from the mean field. Hence, in a
laminar flow with no turbulence, these models incorrectly provide eddy
viscosity and hence subgrid stresses. A model that allows the subgrid
stresses to build up slowly with the turbulence field can be made by
redefining Vq as

' 2 - - _ _ 1/2
Vp = (C AT 2(8, 5~ <8, 25,4 - <5y >)] (2.6.2)

where the < > denotes an average over a plane of constant z.

All model calculations reported here use Vg given by (2.6.2).
Another modeling concept is presented in Appendix C; work by Bardina et
al. (1980) suggests that this new model is very promising.

The problem with too-rapid growth of the turbulent layer was also
related to the grid layout. The stability considerations discussed in

Section 2.4 require a grid spacing that is very large in the streamwise
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and spanwise directions (the only directions in which we filter); in
fact; the spacing is large compared to the thickness of the layer, and
hence the filter width was much larger than the layer thickness. Phe-
nomenological models typically use length scales for the large eddies
that are about one~tenth the shear layer thickness; this is far shorter
than our filter width. Hence; we limited our length scale A to a max~

imum of one-tenth of the shear layer thickness Ai = min(2hi,6w/10).

2.7 Summary

In summary; in the mixing layer transition study we solve the equa-
tion for the filtered field u (2.5.5 and 2.5.6) using the subgrid
model (2.6.1) with vy from (2.6.2). The filter (2.5.4) was used, and
its width Ai was 2h;. The boundary conditions (2.5.8-10) were ap-
plied. The initial velocity field consisted of a laminar mean field
(2.3.2) with Reg = 60; plus a divergence-free random perturbation (see
Chs. 3 and 5). The computational domain was chosen to allow a number of
the amplified modes of the laminar instability to appear in the solu-
tion; including the most rapidly growing mode.

At this point; the global problem formulation is complete. We now

proceed to the details of the numerical method used.

19



Chapter 3

NUMERICAL METHODS

3.1 Preview

Some familiar and some new numerical methods are used in this work.
To orient the reader, we shall briefly preview the methods to be dis-

cussed in this chapter.

Our choices of numerical methods were guided by the objectives of
this study. Desirable methods preserve as much of the physics as pos-
sible, and this requires accurate numerical representation of the spa-
tial derivatives. Fourier methods provide the most accurate differ-
entiation for a given number of grid points; hence we used them wherever

possible.

Since periodic boundary conditions are applied in two directioms,
(xl and xz); we can use the standard Fourier scheme (described in the
next section) to treat spatial derivatives in those directions. ' The
gradient (x3) direction requires special consideration; we were con-
cerned about the influence of image flows; which are discussed in Appen-
dix.D. To avoid imaging problems; we chose to compute the solution over
infinite Xy For reasons of accuracy we wanted a discrete orthogonal
function expansion method which could treat an infinite region. Since
no existing method was known; we developed a mapping scheme which re-
tains the efficiency of the fast Fourier transform (FFT) and is ideally
suited to our problem as well as several others. This method is de—

scribed in Sections 3.3 and 3.4.

New measures of spatial resolution and statistical validity in
Fourier methods were developed (Section 3.5) and used to quantify the
adcuracy and statistical validity of the calculations. These are de-

scribed in Section 3.5.

To aid the understanding of the physics, computational flow visual-
ization is used. The visualization is achieved by tracking the inter-
sections of a freely deforming grid. While this is similar to particle
tracking, it differs in that the identity of the individual particles is
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retained. Interpolation of the velocity field is required for tracking
the intersections, and this is presented in Section 3.6.

Recall that the initial field consists of a laminar mean field
plus a random disturbance. The method of constructing the initial

divergence-free disturbance velocity field is described in Section 3.7.

Three time-advance schemes were used in parts of this study. The
transition problem has a disturbance velocity field which grows by
orders of magnitude during the simulation. For this reason, a time-
advance scheme which allows the time step size to change continually
will be advantageous. To maintain accuracy, we want an explicit scheme
of fairly high order. The fourth-order Runge-Kutta method (Appendix
B.2) 1is dideal. It satisfies the above conditions and has excellent
stability characteristics as well. All of our numerical studies of
transition used this method for time-advance of the velocity field.

To advance the particle positions in time, we require less accu-
racy, since this 1s used for visualization purposes only. We still
require a scheme which allows continual adjustment of the time step and
has moderate accuracy. The second-order Runge—Kutta scheme (Appendix

B.3) was chosen for this problem.

In addition, some computational experiments discussed in Appendix D

were carried out u‘sing the second-order Adams-Bashforth method for time

advance (Appendix B.l).

3.2 Standard Fourier Methods

The discrete Fourier transform is defined for any number of grid

points; however, efficient algoritims usually limit the number of points
to particular integers. In the most popular routines due to Cooley and
Tukey (1965), this number must be a power of two; the Winograd (1976)
method allows other numbers to be used, but has not yet seen extensive

application. Thus, we consider only variations of the Cooley~Tukey
algorithm.

If we have a function defined on a set of uniformly spaced grid
points, say x, = {n-1)/N, the discrete Fourier transform can be de-

fined by: "’
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N N ik2'ﬂxn
£, = :z: £(x ) e (3.2.1)

n=1
We shall assume N = 2B, There is a great deal of freedom in the choice
of wavenumbers k used in Eq. (3.2.1). (This formulation gives inte-
ger wavenumbers). So long as we are interested only in representing the
function on the grid points, the choice (within the allowed bounds) is
irrelevant. However; when we use the fast Fourier transform (FFT) as a
means of obtaining derivatives we are regarding Eq. (3.2.1) as an inter-
polation, and it is important to choose the wavenumbers which give the
smoothest: interpolation possible. For an even number of grid points,

there are two equally good choices:

N N N
k = —'Z, "'-2-+1 g veo ,-2—-1
or
N N N
k = -E"'l. > —7+2 g oo ,'z'

Either of these choices means that the wavenumber |k| = N/2 is
represented only by a single waveform, whereas all other wavenumbers
have two waveforms, i.e., + k. As a result, we have incomplete informa-
tion about the highest wavenumber component, in fact; we know neither
its phase nor its amplitude. Consequently, we cannot differentiate it.
Most workers set 1its derivative equal to zero to avoid the problem.
(This problem does not occur with odd-point transforms.) The derivative

is thus:

i ) N/2-1 . dk2mx
——— = —— ' v L] ]
dx xn N }E: 2nik fk e (3.2.2)
k==N/2
where
k' = k Ikl # N/2
k' = 0 ; Ikl = N/2
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3.3 PFourier Transforms on Non~Uniform Grids

The usual method of dealing with an infinite region involves map-

ping it onto a finite region. Mappings are also commonly used to modify
the geometry such that the function is smoother in the transformed coor-

dinate system. Mappings invariably complicate the equations to be
solved, but they offer the important advantage that numerical methods

are both more easily applied and more accurate in the transformed coor-

dinate system. These advantages almost always outweigh the disadvan-
tages, and coordinate transformations are a standard part of numerical

methods today. Indeed, the development of better mappings 1s a major

field of research.

In describing the new method, we shall restrict our attention to
one~dimensional problems. Suppose that =z 1s the physical coordinate

and we introduce the computational coordinate 4 by means of the

mapping

z = h(g) (3.3.1)

The derivatives in the two coordinate systems are related via the chain

rule:
df _ df dg _ 1 df
dz  dt dz h" dg (3.3.2)

Now, suppose that we choose to represent the function in the trans—
formed coordinate system in terms of its values on a uniformly spaced
grid I;j = jAz. This function can be represented in terms of its
Fourier transform in the manner described in the previous section.

Thus, we can write:’

N/2-1
- ik2wg .,
- 1 J
f(cj) = ¥ E £ e (3.3.3)
k=-N/2

We could use this Fourier transform to compute the derivative
df/de that appears in Eq. (3.2.2). One could then substitute the
result into Eq. (3.3.3) and compute df/dz. The difficulties with this
approach are (1) that, in general, the result contains a considerable

aliasing or truncation error, and (2) that the resulting operator cannot
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be inverted when the number of points used is even. Thus we must seek

further improvements.

To look into this more deeply, we begin by noting that 1/h'(Z),
which appears in Eq. (3.3.2), can itself be represented as a discrete
Fourier series similar to the one in Eq. (3.3.3). 1In general, N terms
will be needed and; when this series is multiplied by the one represent-
ing df/dg, the result will contain 2N wavenumbers, -N, ... , N-l.

Truncating the result to N terms produces the truncation error alluded
to above.
The problem can be avoided by restricting the allowed mapping func-

tions to those which contain only a few Fourier modes with small wave-

numbers. Thus, we can write:

m
1 o dk2w N
Gy " E:ake *y m«gy (3.3.4)
k=-m

When this is substituted into Eq. (3.3.2), the result contains N + 2m
wavenumbers. By making m small and truncating the modes whose wave-
numbers are less than -N/2 + 1 or greater than N/2 - 1, we produce a
small, acceptable amount of truncation error; doing this accurately re-
quires that the multiplication of 1/h' and df/dg be carried out in
Fourier space. It is possible to take the product in configuration
space; however, the result will be aliased and will populate the <+ N/2
modes and thereby make the inverse of the differentiation operator sin-
gular. Defining the derivative via the truncated transform-space prod-
uct allows us to construct an integral operator which is the “exact
inverse” of the differentiation operator. By "exact inverse" we mean
that the derivative 6f the integral of f 1is exactly f. Note that

these are alias-free operators.

We now apply these ideas to two mappings suitable for free shear
layer problems in fluid mechanics. The problems of interest are best
treated in infinite domains.” For example, in the computation of plane

jet flow the region of interest is doubly infinite in the gradient

* :
See Appendix D for a demonstration of the danger of using a finite
domain to study vortex pairing.
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direction, the boundary conditions are identical at & «, and we would
like the grid points to cluster near the origin. The cotangent is a

suitable mapping function for this purpose; 1.e.;

z = h(g) = -a cotan(wl) ; 0<g<K1l, =<z (3.3.5)

This gives the metric

i2wg ~-127g
1 _ 1 2 - 1 _ (e + e ) :
Ul 3, &in (mz) 7ma |} > (3.3.6)

Recalling Eq. (3.3.4), we see that m = 1 and the Fourier coeffi-

cients of the metric are:

-~ ~ _ _ 1 ”~ _ l
a = a,; = e a, = iz (3.3.7)
We thus have grid clustering near the origin and a minimum of truncation

‘error, since m = 1. An estimate of the error in the derivative of

f(z) 1is given by

2 N ~ -~
o ——  — - 3. .
€ 5 ’211 (2 l)alfN/Z-l (3.3.8)
This error will be small if the Fourier series for £(z) converges
rapidly. The mapping above is applied to a vortex-pairing problem in
Appendix D. It is also useful in treating time-developing plane jet
flow.

The problem of interest in this work is the time-developing mixing
layer. The main difference between this case and the previous one is
that the boundary conditions are no-stress rather than periodic. A var-
iation of the mapping given in Eq. (3.3.5) is suitable for this case,

namely,
z = W) = - a cotan(2m) |, Oici%, —o <z <o (3.3.9)

As indicated, the domain O < § < 1/2 is the image of the physical
region =~ ® { z { » wunder this mapping. However, the boundary condi-
tions are such that the problem is not periodic in this domain. We

shall therefore let ¢ range from zero to unity in the computation.
The data are made periodic in this domain by defining the solution for
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1/2 < t < 1 by reflection about £ = 1/2. This means that in z-space
we are considering two Riemann sheets, i.e., we are essentially doing
the problem twice. The difference between this method and the previous
one is equivalent to using a Fouriler sine or cosine expansion in place
of an exponential Fourier tramnsform in a finite domain; in either case,
twice the work is required. The choice of sine or cosine transform

depends on the nature of the function being expanded.' The metric re-

sulting from this mapping is:’

‘ 12(2m) | -12(27z)
L= L sinf@m) = L [-(e -2 ):l (3.3.10)

T Tma 47a

2; and the Fourier coefficients

From Eq. (3.3.4), we now have m

of the metric are:

) _ :N _ _1 . ~ . -~ - . ~ - 1
,az = 11_2 81a ° 8_1 al 0 H ao Z-T-r—a- (3 03011)

The truncation error is again small; an estimate for the maximum

error in the derivative of £ 1in this case is:

e = 2tla,l [lfN_ll + IfN_2|_| (3.3.12)

Equations (3.3.5) and (3.3.9) are mappings of an infinite physical
domain onto a finite domain with grid points clustered near the

origin. Equation (3.3.5) is suitable for periodic boundary conditions,

Eq. (3.3.9) is suitable for no-stress conditions, and was used in our

free shear layer simulations.

3.4 Derivative and Integral Operators

It is important in numerical analysis to use integral and deriva-
tive operators that are exact inverses of one another, i.e., that are
"consistent.” With the results of the last section, we can define a
consistent set of derivative and integral operators. Using the mapping
(3.3.9) and recalling Eqs. (3.3.2)'and (3.3.4), we have

B i2(27z.) -12(2u;j) N/2-1 ik21r;j

af _ 1 2- (e I+ e Y1 -
@, " | % 7 N 2Tkt e
3 : k=-N/2+1
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Truncating the above expression to include only the wavenumbers k

between =~N/2 + 1 and N/2 - 1 gives the definition of the first de-

rivative operator:

N/2-1
~ ~ S iZ'lTkC R
s£l 1 ' _i(k-2) 5 1(k+2) i
52| T 7 2 : [ikfk e (3.4.1)
% k=-N/2+1

The prime on the summation indicates that any term whose subscript has

magnitude greater than (N/2 - 1) is zero.

The second derivative operator is obtained by a second application

of the first derivative operator, giving:

5 N/2-1
8°f . 1 E' ik ik; _ i(k-Z)jf _ i(k+2); :l
522 |2 2a 2a k T2 k=2 T2 Tk+2
j k=-N/2+1

i(k-2) [ - i(k-4) ik 2 7]
< Za _i(k-Z) tk—'z - =y fk—4 v fk_ (3.4.2)

[~ ~ ~ -~ 'Zﬂkl; .
i(k+2) ik 4 i(kH) TS
B el RGNV 1 T sl WV P

We also a need a fast and accurate Poisson solver for infinite

domains. The Poisson equation

V2p = g (3.4.3)

may be solved by use of the three-dimensional Fourier transform. For
the standard case of a function periodic in all three directions and a
grid uniformly spaced in each direction, we may find the Fourier coeffi-
cient E(E) by dividing the corresponding Fourier coefficient 6(5) by
the negative square of the magnitude of the wave vector k. One then
inverts the Fourier transform to get P itself. This is a very effici-
ent and accurate method of solution. If we use a non—uniform grid in
one direction (but uniformly spaced in the other two directions), the
solution procedure is only slightly more complicated. For illustrative
purposes, we use the mapping (3.3.9) which leads to the second deriva-
tive operator givem by (3.4.2). Equation (3.4.3) may be solved by con-

sidering the linear algebraic system:
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A[P] = [Q] (bt

The non-zero elements of A are:’

_ (k=2) (k-b)

a -
k k=4 16a2
2
- k(k-2) (k~2)
. == +
%K k=2 ) "
2
’ ba 16a l6a
& . k(k+2) + (k+2)2
Jk+2 8a2 8a2
a - (k+2)(kﬁ£L
k k+4 16a
In this case, kl and k2 are the wavenumbers in the uniform

grid directions, while k is the Z-wavenumber in the non-uniform direc-
tion. Also; in (3.4.5) any factor whose magnitude is greater than (/2
- 1) 1is set to zero. (The problem for uniform grids in all three
directions can 'be viewed as solving (3.4.4) when A 1is a diagonal
matrix.) The solution to pentadiagonal system (3.4.4) can be quickly
and easily solved on the computer. Note that; because of the differen-
tiation/integration consistency, this formulation results in a Laplacian
identical to the divergence of the gradient operator. This condition is
necessary to maintain a divergence-free velocity field, as Kwak et al.

(1975) have pointed out.

3.5 Resolution and Statistical Validity

This section will present measures that will help assess the valid-
ity of the calculations. We shall wuse discrete orthogonél function ex-
pansions in each spatial direction. This is the most accurate approach
available. However, the nonlinear terms in the governing equations make
the issue of accuracy difficult to deal with. The product of two vari-
ables that can be represented using N modes requires 2N modes for
complete accuracy. Since we take the product in configuration space;

the result is aliased. Aliasing is the pollution of the low wavenumbers
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due to high wavenumber information masquerading as low wavenumber infor-

mation when the grid is too coarse.

To obtain a measure of the accuracy of a configuration space

product, we first define the energy spectrum:

E(k, k,,2) = Z_%F G(k K, ,2) o Tk, ky ) (3.5.1)

T NN

The asterisk denotes the complex conjugate. In (3.5.1) we have Fourier

transformed only in the plane of homogeneity, since the grid is non-
uniform in z. Consider the central plane (z = 0) and note that the

highest fully resolved mode in the ith direction is the Ni/2 -1

mode. In the product of ug with itself; if all non-zero modes have a

wavenumber magnitude Ikil satisfying
lk; | < Ny/4 (3.5.2)

then the product is also fully resolved with no aliasing on a grid with
N; points. The fraction of the flow computed with full resolution is

Z' Zu Bk ok ’0)/2 Z E(k ,k,,0)  (3.5.3)
ok kK,

The double prime on a summation indicates that |k1| < Ni/4. We note

therefore

further the alias~free fraction of the energy is given by

Z m Zu' E(kl ,k2 ,0) /Z ZE(k1 ,k2 ,0) (3.5.4)
k) Ky k, Kk,

The triple prime on the summation indicates the sum over all Ikil <
Ni/4. One further comment is appropriate, namely, the above are sums
over squares in k space.

We now take up the issue of sampling. 1In a computation of tran—
sition in a mixing layer, large, coherent structures are formed. Not

all are identical, and thus we desire a measure of how many large

structures we capture. We define an energy-weighted measure of the

sample size:’
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Z Zmax(lkll ,1) max(lkzl »1) E(ky ,ky,0)
ky Kk

n =
8 N\
Z" Zk , B(k, ,k, ,0)

The sample size ng tells us ﬁow m%ny effective full Fourier waves the

total energy has in the computational domain. It is essentially the

(3.5.5)

ratio of the area of the computational domain to the product of length
scales in two coordinate directions; the definition of the length scales
is implicit in Eq. (3.5.5).

For a given number of grid points, one may choose a fine mesh so
that Ny and Npp @are very near one, but the sample Ngs will be
small. Conversely, with a coarse grid ng 1is large, but we sacrifice
accuracy. In other words, we may compute the behavior of one large eddy
accurately, or compute several large eddies crudely. The choice depends
on one's objectives. Values for Nps Naps and ng are presented with

the computational results in Chapter 5.

3.6 Interpolation

To gain further insight into the physical nature of transition in
the mixing layer, we shall track particles using computer graphics.
Af ter compufing the flow field, we know the velocity field at the grid
points, and we must interpolate to find the velocity at the location of
each particle. For maximum accuracy and consistency, we should use
Fourier interpolation. However, the cost of Fourier interpolation is
excessive for this purpose. We chose to use a three-point interpolation
scheme (three points in each direction, or a 27-point box). In the uni-
form grid directions, the function is represented as

f(x) = <, + ¥ + c2x2 s - %f_ x_<_%— (3.6.1)
The origin 1s always taken to be the nearest grid point (which we call
xi) and the distance between grid points is taken to be unity. At the

nearest grid point the value of the function is fj and we have

¢ = fi
e, = (fi—l - Zfi + fi+l)/2
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The interpolation in the 2z direction (non4uniform grid) 1is simi-
lar, but more complicated. It is based on a Taylor expansion; and the
first and second derivatives are evaluated using the formulas given in
Appendices A.l and A.3. Also, rather than using the nearest grid point
as the origin in the =z direction; we use the grid point for which
h'(zi)lz -Azil is smallest. If =z is the nearest grid point above

p
z and 2z the nearest grid point below 2z, then zy = z, if (zp-z)
X h'(zp) < (z-zm) x h'(zm), or zy =z, if (z-zp ) X h'(zy) < (zp-z) x
h'(zp). Note that h' 1is the inverse of the mapping metric given by

Eq. (3.3.10).

3.7 Generating a Smooth, Divergence-Free Initial Disturbance Field

Kwak et al. (1975) developed a scheme for producing a divergence-
free flow field with any desired three~dimensional energy spectrum.
This scheme uses random numbers to select the phases of the Fourier co-
efficients of the velocity field on a (16)3 uniform cubic grid. The
Fourier coefficient vector is in the plane whose normal is the wave~
vector, but with randomvphase. The orthogonality of the Fourier coef-

ficient and the wavevector ensures that the field is divergence-free.

We used Kwak's routine with three different sets of random numbers
(designated 1,2,3), and two different spectrum shapes were used. In all
but Case 11;* we used the homogeneous isotropic turbulence spectrum of
Comte~Bellot and Corrsin (1971) and applied the Gaussian filter (2.5.4)
to give a spectrum we could adequately resolve. For Case 1l we used a
"white noise" energy spectrum (all modes excited at equal energy) as
input to Kwak's routine. We then zeroed the Fourier coefficients of all
modes with |k;| > 4 or Iky| > 4. Thus we retained only 24 of the
longest wavelength modes (in horizontal planes) in our initial distur-

bance field in Case 1ll1.

Kwak's scheme generates (16)3 disturbance fields on a uniform cubic
grid. From these fields we extract five planes of data and deposit them

on the five central planes of the nom—uniform anisotropic grid used in

*See Chapter 5.
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the mixing layer computations. On the new grid, the disturbance field is
discontinuous and no longer divergence-free. We first eliminated the
discontinuity by apﬁlying a Gaussian convolution filter, as given by
Eqs. (2.5.3) and (2.5.4) in the x3 direction (across the mixing
layer). Note that this smoothing is applied to the initial conditions
and therefore there are no difficulties of the kind discussed in Section
2.5.‘The filter width used was A, = V48 hy, where hy is the computa-~
tional grid spacing (AZ). Thus the filter is non-uniform in physical
space. We then multiplied each velocity component wu; by a weight
factor a; such that the final field has approximately equal rms amp-—

litudes for all three components.

Finally, we obtained the divergence-free initial disturbance field

u, by two different procedures.. The first, used for all but Case 11,
was to take the curl of smoothed and weighted field. In Case 1l we
again took the curl, but called this the disturbance vorticity and
solved the Poisson equation for the vector potential whose curl is then
the divergence-free velocity field which is then used in the calcula-

tion.
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Chapter 4

METHOD VALIDATION

4.1 Convection

In this section we shall assess the new Fourier method described in
the last chapter by applying it to a one-dimensional convection problem.
We shall compare it to the finite-difference methods given in Appendices
A.,l and A.2, The solutions are all computed on grids of 33 points and
compared with the analytical solution.

The grid used is defined by Eq. (3.3.9) with
a = 32/n and Cj = (j1)/64
The one~dimensional convection equation to be used as a test is:

9

and has the exact solution
u(z,t) = f£(z-ct) (4.1.2)

which just says that any initial waveform propagates towardbincreasing

z with a uniform speed c¢. We used a Gaussian waveform initial condi-

tion, for which the exact solution to Eq. (4.l.1) is:
a(z,t) = expl - [1.6651(z—ct)/61/2]2} (4.1.3)

In the problem we solved, we took 51/2 =4 and c¢ = -l1. The half-
width 61/2 is the width of the waveform at half its peak value.

We used the mapping (3.3.9) which is appropriate for functions
which vanish at & infinity. Although the appropriate Fourier method for
this problem is the complex exponential transform; we used an equal

combination of sine and cosine transforms.
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Another way of looking at this is to use the Riemann sheet perspec-
tive of Section 3.3. A cosine expansion implies a waveform imaged sym—
metrically about infinity onto a second Riemann sheet. Similarly; using
a sine expansion implies an antisymmetric reflection of the physical
waveform onto the second Riemann sheet. The physical and image wave-
forms will propagate towards one another with equal speed and meet at

infinity at infinite time. If we use the combination

du _ 1du Su
Tz 2|3z 8z
sin cos

no image waveform appears on adjacent Riemann sheets, and we obtain
periodicity of the waveform over two Riemann sheets. All waveforms are

identical and propagate with equal speed in the same direction.
The time advance method was the well-known fourth-order Runge-Kutta

scheme with very small time step. The Courant number was taken to be:

Atlc]|
z

01
min
The time step was chosen small so that the error is dominated by that of

the spatial~differencing scheme.

The scheme given by Eq. (A.l)* is second-order in physical space
and slightly more accurate than Eq. (A.Z); which is second-order in
computational space but first-order in physical space. (In the limit Aj
> Aj—l’ Eq. (A.2) is also second-order in physical space.)

Figure 4.1.1 shows the grid points relative to the initial waveform
and also shows the computed solutions at' T = ct/Gl/z = 2.0 obtained
using Eq. (A.l) (denoted F.D.) and the new Fourier scheme (denoted
N.F.). The maximum error in the solution of the one-dimensional wave
equation is .34 using Eq. (A.l1), 40 using Eq. (A.2), and .0032 for the
new Fourier scheme. Therefore; we conclude that the new Fourier method

is vastly superior to finite-difference calculation in its handling of

convection.

*See Appendix A, Eq. (A.1).
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4.2 Diffusion

We shall now assess the new method on a diffusing problem. Using

the same grid as for the convection problem, we solved the heat equation

du 9"u
3 \)S;T | (4.2.1)

The fourth-order Runge~Kutta scheme was used for the time advance
(the time was small enough that spatial differencing errors dominated).

The dimensionless time step was

VAt - 05625

We used two finite-difference schemes for the second spatial deriv-—
ative. The first scheme is two consecutive applications of (A.l); the
second finite~difference scheme is given by (A.3). The (A.3) scheme is
a three~point scheme and 1is first—-order; it becomes second-order as

A‘j—l +Aj.

The initial condition used was an error function; giving the ana-

lytical solution:
u(z,t) = erf [z/ﬂivt]

We set to =25 and Vv = .06; and we advanced the computation until

Figure 4.2.1 shows the time history of the maximum normalized error

defined by

E o (uc—uA max
n (uo— A)max

as a function of dimensionless time. E ~ is the maximum error in the
computed solution normalized by ‘the maximum change from the initial
condition. We see that the new Fourier scheme has errors six orders of
magnitude smaller than the finite-difference method at early times and
three orders of magnitude smaller at later times. Thus the new Fourier

method is far superior in its treatment of diffusion.
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4.3 Taylor-Green Problem (2-D)

The previous two tests were both on one-dimensional problems and
pertained to the infinite domain Fourier method. 1In order to test the
Navier-Stokes aspects of the final program; we checked the accuracy of
the code by computing the solution of the 2-D Taylor-Green problem and
comparing it with the analytical solution. The 2-D Taylor-Green problem
is a stable configuration of counter-rotating vortices whose amplitude

decays by viscous effects. The initial condition for this problem is

u(x,y,z,0) = cos(kx) sin(kyy)
v(%,¥,2,0) = -(k;/ky) sin(k;x) cos(kyy) (4.3.1)
w(x,y,2,0) = 0

The analytical solution to this problem is

_ —(kf+k§)vt
u(x,y,z,0) e

u(x,y,z,t)

ﬂ | - (kHZ) vt
v(x,y,z,t) = v(x,y,2,0) e

w(x,y,2,t) = O

In our calculation we used Vv = 1.36, ky = ky = 7/39.6, and At =
6.26, which gives

-(kf+k§)vAt
e = .8983775

The fourth-order Runge—Kutta method gives the first five terms of a Tay-—
lor expansion of the exponential, giving an error of .0000011 by analy-

sis. Exactly the same error was found in the computation.

Since the error in the computation matches the analytical error es-
timate; we conclude the code is functioning properly in two dimensions.
This test showed that the pressure; convection, and diffusion are

properly advanced in time; at least for two—dimensional flows.
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Chapter 5

RESULTS

5.1 Overview of Effects Studied

The primary focus of this study concerns the sensitivity of the
nixing layer to initial conditions. We shall examine the growth of the
momentum thickness, mean velocity profile, kinetic energy, Reynolds
stresses, anisotropy of the Reynolds stresses, shear stress correlation
in the center of the layer; and particle track pictures. These data
will allow us to aésess the mixing layer's sensitivity to the amplitude,
spectrum shape, and relative phases of the initial disturbance field.
We shall also examine the influence of the subgrid scale model on the
computed large-scale field, as well as the influence of filtering. It
must be remembered that, due to computational limitations, all computa-

tions cover only the developing near field of the mixing layer.

5.2 Case Descriptions

Nine cases of mixing layer transition were studied in detail. In
Sections 2.3 and 3.7 we discussed the way in which the initial condi-
tions were constructed. In this section we shall give a detailed case-
by-case description. Thus the various cases will be freshly in mind

later in the chapter; allowing a better understanding of the results.

The initial conditions of the various cases are defined by their
disturbance fields, as the initial mean field is the error function in
all cases. Each initial disturbance field is characterized by the
energy spectrum and random number set used by Kwak's routine; the method
by which it is adapted to the nonuniform grid; and the amplitude. The
description for each case is given in Table 5.1. The terms are defined

in Table 5.2.

In addition to the effect of initial conditions, we also checked
the sensitivity of our results t6 the subgrid scale model described in
Section 2.6 and the influence of the filtering the governing equations.
The subgrid scale model is given by Eq. (2.6.1) with the eddy viscosity
given by (2.6.2). Whether the model and/or filtering were used is
indicated in the last two columns of Table 5.1. Case 9 was an attempt
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to resolve the full field without filtering, but the resolution measures
described in Section 3.5 suggest that, by dimensionless time T = 130
or 9/9o = 2.4, the resolution is marginal. The initial condition of
Cases 5, 9, and 10 are identical. Comparing Case 5 with Case 10 shows

the model influence, while Cases 9 and 10 assess the influence of

filtering.
Table 5.1
Descriptions of Cases Run
Input Random Initial
Case No.| E(k) Amplitude No. Set |Field Type | Model Filtering
2 Cc-B-C. High 1 1 Yes Yes
4 " Low 1 1 " "
5 " Medium 1 1 " "
6 " Low 2 1. " "
7 " Medium 2 1 " "
8 " High 2 1 " "
9 " Medium 1 1 No No
10 ” Medium 1 1 " Yes
11 Box Medium 3 2 " "

Table 5.2
Definitions of Terms Used in Table 5.1
Quantity Descriptor Significance
E(k) C~-B-C Comte-Bellot & Corrsin spectrum.
Box White Noise spectrum.
Amplitude Low (q%/2) gy = 3.2 x 1076,
Medium (q2/2)p,, = 3.2 x 1074,
High (q%/2) 0 = 3.2 x 1072
Random No. Set 1,2,3 Seed for random number generator.
Initial Field Type 1 Curl used as initial velocity.
2 Curl used as initial vorticity.
Model Yes, No Subgrid scale model used?
Filtering Yes, No Filtering used during simulation?
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Before discussing the results, we shall comment on the length of
the various runs. Initially, all runs were given enough computational
time to ensure at least a fourfold thickening of the layer. Since the
time step was varied continuously in all cases, the final times of the

runs differed significantly; Following this initial set of runs; three

cases (5;6;7) were run until the layer was at least eight times its
initial thickness. We thereby explored several effects; using a few
runs to the limit of our grid without excessive computer cost. (Each of

the various cases required from 1.5 to 5 hours of CDC 7600 computer

time.)

5.3 Mean Velocity Profiles

The mean velocity normalized by the velocity difference across the
layer was plotted at various dimensionless times T = AUt:/ﬁo against

the scaling variable Z = z/0, where © is the momentum thickness

® <u>Y
6 = 14 - (S22 | e (5.3.1)

where < > denotes a planar average. As nearly all of the profiles
were found to be self-similar throughout the simulations, we show only
one case here; Case 6, the case that departs most significantly from

self-similarity.

Figure 5.3.1 presents the mean velocity profile in terms of the
non-dimensional variables defined above for Case_ 6; a low-amplitude
initial field case which was run for a long time. It is clear that the
mean velocity profile remains self-similar for a long time--a non-—
dimensional time of the order of 400. At the last time shown (T =
554); self-similarity breaks down; and this is a clear indication that
the numerical simulation is no longer faithful to the physics of the
flow. The calculation clearly has to be stopped at this point. Note
that the layér was more than ten times its initial thickness at this

time.
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5.4 Momentum Thickness

In this section we shall discuss the growth of the momentum thick-
ness. Before looking at the numerical simulations, we shall discuss
some experimental results. To compare the experimental spatial growth
rate, de/dx, with the growth rate of the time-developing layer,
(d6/dt) /AU, we introduce the parameter
U, -0,

U1 + U2

(5.4.1)

where U; 1is the high speed and U, 1s the low speed in the experi-
ment. By Taylor's hypothesis, the time rate of growth of the momentum
thickness in the time-developing mixing layer is related to the spatial

growth rate by:

de/dc 1 dé
Dide . L2 (5.4.2)

The experimental d6/dx are converted using (5.4.2) to allow com—
parison with the computational results. For a mixing layer to be self-
similar, © must grow linearly in time or space, but the shear layer
need not be self-similar except in the developed, far-downstream state.

Whether there is a unique state for all shear layers is not known.

Mansour et al. (1978) in Table 1.1 gave a list of the growth rates
for several different experiments. The experimental data for the
momentum thickness were fit with straight lines to give values of the
growth rate; the resulting values of (d6/dt)/Aﬁ vary between 0.015 and
0.022. We cannot expect a precise comparison with the experimental data,
due to differences between a time and spatilally developing layers, as
discussed in Section 2.2. The differences are likely to be greater in
the early or near field. 1In the spatially developing case, there is a
feedback due to the pressure that is absent in the time-developing
case. The measurements of Winant and Browand (1974) gave (d6/dt)/AU =
0.035 in the near field, while farther downstream (d6/dt)/AU = 0.019
for the experiment with laminar boundary layers at the edge of the

splitter plate.
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Figures 5.4.1 through 5.4.3 show 6/6, versus T = tAU/6_ for the
various cases. We shall now discuss the effects of initial conditions,
the subgrid scale model, and filtering on the development of the momen—-

tum thickness.

A. Initial Conditions

First we shall examine the effect of the different random phases of
the initial disturbance fields. The different phases were obtained by
starting the random number generator with a different "seed."” The small
initial disturbance cases (4,6) differ only in their initial random
phases. Figure 5.4.1 shows that the time required to attain a signifi-
cant growth rate can vary; but Fig. 5.4.4 shows that, once a significant
growth rate is attained, the initial random phases have little effect.
A similar behavior 1s observed in Cases 5 and 7, whose initial distur-
bance fields are 102 times as energetic as Cases 4 and 6, respec-
tively, but are otherwise identical. We again see in Fig. 5.4.2 that
the case (7) with seed #2 grows sooner than the case (5) with seed
#1. This suggests that the random phases produced by seed #2 are more
closely aligned with the phase distributions of the most amplified
eigenfunctions. Moving to Figs. 5.4.3 and 5.4.6, we.again increase the
initial disturbance energy by 102. In these two high-amplitude initial
disturbance cases (2 and 8), the initial phases have a very minor role

with seed #2, once again showing a higher early growth.

In conclusion, we note that the initial random phases affect early
growth of the momentum thickness, with diminishing influence on later
growth. We also note that the influence is greatly dimihished for high
initial disturbance amplitudes.

We now examine the effect of the spectrum shape of the initial con—
dition on the growth of the momentum thickness. Cases 10 and 11 differ
in the spectrum of the initial field with the energy content of Case 11
concentrated in the amplified and most slowly decaying modes relative to
Case 10. (Note that both Cases 10 and 11 are run without a subgrid
model.)

As Figs. 5.4.2 and 5.4.5 show, the initial concentration of energy
in the most amplified modes results in a significantly higher momentum
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thickness growth rate. Though the present computations do not establish
the duration of this higher growth rate, it is fair to say that a sig-
nificantly higher growth rate due to concentrating the initial distur-
bance energy in the most amplified modes will persist for at least a

sixfold thickening of the layer for the case of a medium amplitude

initial disturbance.

Turning odr attention to the effect of the initial disturbance
amplitude; we now examine Figs. 5.4.7 and 5.4.8. Cases 4, 5, and 2
(Fig. 5.4.7) all have the same initial spectrum shape and random phases,
but differing initial disturbance amplitudes. We note that the small
and medium amplitude Cases 4 and 5 display nearly the same behavior as
each other; the low-amplitude case is slightly delayed in its growth.
The high initial disturbance amplitude (Case 2) shows a differing trend.
It first reaches a growth rate two to three times as large as the asymp—
totic value of the spatially devloping mixing 1ayer; and then plummets
to the observed range of the asymptotic spatially developing layer. The

behavior of Cases 6; 7, and 8 is similar to the behavior observed in

Cases 4, 5; and 2; respectively.

We conclude that; at low initial amplitude, different initial amp-
litudes lead to the same momentum thickness growth rate; at high initial

amplitudes, the growth rate may dramatically overshoot its final value.

B. Subgrid Scale Modeling

The effect of a subgrid model is seen by comparing Cases 5 and
10. In Fig. 5.4.2; one sees that the model slows the growth of the
momentum thickness only very slightly. Figure 5.4.5 emphasizes that the
effect is indeed slight; even at later times. Thus the effect of the
subgrid scale model is not very important in simulation of these flows;
more evidence will be given later. We shall also see later that the

differences that do exist are in the small scales, as expected.

It appears that the model has little influence on the growth of the
momentum thickness. waever; the observation may be due to cancellation
of two effects; the model destroys the small scales, making the flow

less energetic; but it also increases the diffusion of momentum.
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C. Filtering

Next; we look at the effect of filtering by comparing Cases 10 and
9. TFor Case 9, which has no filtering, the growth rate of its momentum
thickness is quite erratic after T = 130 or 9/9o = 2.5. As we shall
see later, this case is behaving unphysically after this point.

Thus filtering the field is very effective in keeping energy from
piling up at the high wavenumbers. Indeed, filtering is more important
than the subgrid scale model in this respect.

5.5 Turbulent Kinetic Energy at the Center of the Mixing Layer

To examine the energy of the disturbance field, we have plotted the

1 ~ o~ ~ — —
turbulent kinetic energy, 7-( uiui>, (u1 =u, - < uy >) at the center
of the mixing layer, normalized by the square of the velocity difference
across the layer (AU)Z, against both dimensionless time T and dimen-
sionless momentum thickness. These curves display some important fea-

tures that we shall now discuss.

An interesting effect is a tendency for the (normalized) energy to

overshoot the value expected based on the experiments. Fig. 5.5.1 shows

the time history of the normalized kinetic energy at the center of the
mixing layer, for Cases 4 and 6, the small-amplitude initial distur-
bance casgses. While the overall behavior of the two cases is similar;
they begin to diverge somewhat around T = 50; but later rejoin. By T
= 300; both are very near 0.037, the far-downstream value of the nor-
malized kinetic energy reported by Wygnanski and Fiedler (1970). How-—
ever, both cases exhibit overshoot; Case 6 reaches a peak about 60%

higher than the final experimental value.

Although the calculations cannot be carried sufficiently far to
reach the asymptotic state of the mixing layer; we believe this over-
shoot 1is real, because it has also been seen in experiments. Bradshaw
(1966) reported an experiment with a shear layer generated from a lami-
nar boundary layer. In his results, the gradient component of the
disturbance field < 32 > overshoots its far-downstream value by 100%
(rms) and the streamwise component overshoots by 15%Z. His results are
shown in Figs. 5.5.2 and 5.5.3. Thus the overshoot we find is consis-

tent with the experimental data.
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The computed results appear to have a longer overshoot time scale
than the experiment; this may be due to the difference between the
time~ and space-devloping layers, or it may be a Reynolds number effect.
Although not shown, the kinetic energy of Case 6 begins to decline at T
= 450 and continues to descend toward the far-downstream value until
the computation is stopped at T = 554. However, the resolution is
marginal from T = 450 on. In Fig. 5.5.4, the normalized kinetic energy
of Cases 4 and 6 is plotted versus the dimensionless momentum thickness
e = 9/60. In these coordinates the two cases are remarkably similar,
and this indicates that the increase in kinetic energy is more related
to the thickness of the mixing layer than to the time. Bence, we shall

plot (q2/2)/(AU)2 VS . 6/6o in the remainder of this section.

Let us now look at the overshoot in the medium amplitude cases.
Figure 5.5.5 shows the normalized turbulent kinetic energy as a function
of dimensionless momentum thickness for the medium—amplitude disturbance
cases. The initial disturbance kinetic energy is slightly more than two
orders of magnitude smaller than the far—-downstream turbulent kinetic
energy . In the two cases (5 and 7) run furthest in time, we see an
overshoot followed by a gradual decline. The overshoots are approxi-
mately the same size as in the low initial disturbance cases. Case 9
differs most from the rest of this group. This is the case with no
filtering or subgrid model. After reaching a peak amplitude roughly 45%
higher than the far-downstream experimental value; the kinetic energy
begins to decline. Unfortunately the numerical resolution of this case

is questionable after T = 130 (0= 2.4).

A striking observation is that the overshoot behavior at high ini-
tial amplitudes differs from that expected from experiments. The two
high-amplitude cases (2 and 8) are shown in Fig. 5.5.6; these cases
might represent the mixing layer produced from turbulent boundary. lay-
ers. In these cases the initial energy is roughly 10%Z lower than the
far-downstream experimental value. Both of these cases show a quick
rise of the kinetic energy to roughly 60%Z more than the far-downstream
value of the laboratory layer; at the time of the peak in the energy,
the mixing layer has thickened by a factor of 2.5. Following this, the
turbulént kinetic energy for Case 2 decreases, but it is still about 35%

above the fully developed turbulent mixing layer laboratory value at the
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end of the run. Case 8 shows no sign of a decline in the turbulent

kinetic energy at the time the run was stopped.

The most significant aspect of these two high-amplitude runs is
that the energy and growth rates significantly overshoot the expected
fully developed values. However, the experimental mixing layer does not
exhibit this behavior when the splitters~plate boundary layers are turbu-
lent. The most probable reason for this disérepancy is that the bound-
ary layer turbulence has a longer characteristic streamwise wavelength
and much higher obliqueness (Kim, 1981) than the mixing layer can amp-
1lify or sustain, while the initial disturbance used in the simulation
contains more of the highly amplified wavelength components. We must
also consider the possibility that the time~developing mixing layer 1s
more energetic than the spatially developing layer.

The effect of the subgrid model on the centerline kinetic energy is
seen by comparing Cases 5 and 10 ,which are identical in all aspects,
except that no model is used in Case 10 in FIg. 5.5.5. The model re-
sults in roughly a 10% reduction in the energy, which is smaller than
the effect produced by varying the initial conditions (compare Cases 5
and 10 with Cases 7 and 11).

5.6 Profiles of the Turbulent Kinetic Energy

In the previous section the turbulent energy at the center of the
layer was presented. That information is sufficient to gain an overall
perspective of the turbulence intensity. In this section, we shall

check for similarity in the turbulent energy profile.

In Fig. 5.6.1, the turbulent kinetic energy, norﬁalized by the
value at the center of the layer, is plotted versus distance across the
layer normalized by the momentum thicknesses for Case 4; a low initial
amplitude case. Case 6 is quite similar and is not shown. In the time

interval covered in the figure, initial momentum thicknesses grew by

between 3.5 to 4.0.

In the small disturbance cases, the initial profile was much too
broad. At T = 83 we find a narrow profile characteristic of the

eigenfunctions of the linearized equations. The profile then begins to
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broaden until, at T = 246, -‘the energy profile is somewhat broader
than the "fully developed turbulence” case of Spencer and Jones (1971).
At the latest time, the profile is close to that of Spencer and Jones.
To see whether this profile persists, we ran Case 6 out much further in
time. The profiles remain close to the experimental one; at the final
time the layer is more than ten times as thick as it was initially and
the numerical accuracy is deteriorating, due to the coarseness of the

grid at the outer edges of the shear layer.

In Fig. 5.6.2, the normalized turbulent energy profile is given for
a typical medium—amplitude case; Case 1l1; the others are similar. We
again note that the initial condition profile was much too broad. At
approximately T = 66, these cases exhibit the "narrow" profile char-
acteristic of the eigenfunctions of the linearized equations. At later
times all cases show profiles characteristic of fully developed turbu-
lence without the oscillatory behavior of the profile width found in the

small~amplitude cases.

In Fig. 5.6.3, we give the kinetic energy profiles of a high
initial-amplitude case (Case 2); Case 8 1is quite similar. In these
cases the profile exhibits a self-similar shape by T = 32.8. While the
shape reaches self-similarity very quickly, we must remember that the
maximum intensity overshoots the final value due to the long wave char-

acter of the initial condition.

In summary; we note that the profile of the turbulent kinetic en~
ergy profile always progresses from the broad initial profile to the
self-similar experimental profile. The approach is oscillatory when the
initial energy is low and monotonic if the initial energy is high.

5.7 Reynolds Stresses

In the previous sections, we have learned something of the behavior
of the mean velocity profile, the momentum thickness; and the turbulent
kinetic energy. With this in mind, we shall now look at profiles of the
Reynolds stress tensor. The discussion will proceed from the small-
amplitude to large—amplitude initial disturbances with the effects of
modeling and filtering included in the medium-amplitude initial distur-

bance cases.
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In Figs. 5.7.1 through 507.7; the profiles of the Reynolds stresses
for a small-amplitude case (6) are presented. Because the absolute
values of the quantities increase répidly; the results are presented as

< EiGj '>/q2 (z=0) vs. z/6. The first figure shpws the initial
conditions. The maximum value of each normal stress is nearly the
same. The double peaks in the normal stresses < 32 > and < ;2 > are

*
due to the way the initial condition are constructed.

At T =83 (Fig. 5.7.2), the stresses are those characteristic of
the eigenfunctions of the linearized equations. By T = 165; nonlinear
effects are becoming important and the dominance of < G? > is dimin-
ishing; see Fig. 5.7.3. At T = 246 (cf. Figs. 5.7.4); we see that the
gradient component of the normal stress; < %2 >; has become strongly

dominant.

A physical explanation of this can be offered with the aid of the
visualizations that are presented in Section 5.11. At T = 246; the
shear layer has rolled up into vortical structures. If these were
straight two-dimensional vortices; as Brown and Roshko (1972) suggested
they might be, < ;2 > would be double peaked, < 32 > would be single
peaked and larger than < 32 > in the lcenter; and < ;2 > would be
zero., This picture explains much of what is seen in Fig. 5.7.4. ‘The
differences are due to the vortices not being straight; which introduces
streamwise vorticity; causing < ;2 > to be non-zero, and reduces

< G? > Bradshaw (1966) found the same effect in the laboratory. In
fact, his data show a stronger effect; in some cases the gradient stress

was three times the streamwise stress.

At T = 328; Fig. 5.7.5 shows the onset of significant asymmetry.
This is not surprising as there are only two or three large eddies in
the computational domain. The strong dominance of the gradient compo-
nent of the normal stress is greatly diminished at T = 328. Figures
5.7.6=7 show later profiles for Case 6. Although the streamwise compo-
nent becomes the dominant normal stress at T = 554; the results are

marginal at this time due to insufficient resolution at the edges of the

* _ .
The initial field is defined by 30 =V x 38, vé varles rapidly
with 2z near the edges of the layer.
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shear layer. The double peak of the streamwise component is probably
due to the existence of a strong vortex with some curvature in the plane

of homogeneity (see Section 5.11).

Finally, we note that < 32 > 1s dominant at the outer edges of the
layer at late times but not in the initial condition. This is consis-
tent with experimental observations and; as Phillips (1954) has shown
analytically, < 32 > =X 52 >+ < ;2 > in the irrotational portions of
the flow. This remark applies to other cases as well. The other small-
amplitude case (4) is similar to Case 6, but most of the effects ob-

served above are weaker.

Let us now turn our attention to the medium—amplitude cases (5, 7,
9; 10; 11). The initial conditions are shown in Fig. 5.7.8-10. It is
apparent that the method wused to generate Case 1l results in much

smoother stress profiles and probably should be preferred.

Figures 5.7.11-14 show four of the profiles at T = 66. At this
time the profiles have the characteristic shape corresponding to the
eigenfunctions of the linearized equations. All cases are now very
similar; in contrast to the initial conditions. The symmetry is appar-
ent, as is the dominance of the streamwise normal stress. Cases 5 and
10 (not shown) are nearly indistinguishable, showing that the subgrid
model has little influence on the stresses; this accords with what we
found earlier about the need for the model. The "full simulation” (Case
9) yields rounder profiles for < ;2 > and < 32 > than the filtered

calculations.

In Figs. 5.7.15-18, we see immense differences between cases devel-
oping as we move into the strongly nonlinear domain at T = 131l. Cases
5 and 10 (not shown); which differ only by the absence of a subgrid
model in Case 10, again display very little difference. However,
comparing Cases 5 and 10 with Case 9, we note a large influence of
filtering. At T = 130, Cases 5 and 10 are only roughly half as
energetic as Case 9 at T = 130, At T = 180-190, Cases 5 and 10 are
as energetic as Case 9 at T = 130, If Fig. 5.7.17 is compared with
5.7.19, it is found that they are quite similar. This suggests that the
influence of filtering is to delay the time required to reach the
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strongly nonlinear domain. Case 9 is generally closer to the physics of

the laboratory flow; as might be expected.

The difference between Cases 5 and 7 at T = 131 1is amazing; since
the two cases differ only by the set of random numbers used to generate
the initial conditions. Figs. 5.7.19—22; give the stress profiles at T
= 197. Cases 5 and 10 are again nearly identical. Cases 5 and 7 are
much more similar than at the previous time but; as we shall see below;
this is probably coincidental. Case 9 is significantly different from
Cases 5 and 10; but Case 9 has marginal resolution at T = 197, so cau-
tion is needed. The breakdown of the resolution is hinted at by the
jaggedness of the curve; better evidence of breakdown will be given
later; cf. Sections 10 and 1l. Case 1l is now quite different from the
others. Once again; this demonstrates the ability of nonlinear pro-
cesses to cause a large divergence of solutions which were close to one
another (compare Cases 10 and 11 at T = 131 with the same cases at T
= 197). Figure 5.7.23 shows that Case 5 has nearly reached the asymp-
totic state at T = 295; no further significant changes were observed
at later times. On the other hand; Figs. 5.7.24-25 show that Case 7
takes a long time to reach the far-downstream state. In Section 5.8 we

shall present stronger evidence of this.

Next, we shall compare the medium initial amplitude cases with the
corresponding low initial amplitude cases; Cases 4 and 5 and Cases 6 and
7 have the saﬁe initial fields except for the magnitude of the distur-
bance field. Comparing the latter pair of cases; we find very similar
behavior, but the medium initial case (7) develops on a faster time
scale than the low initial amplitude case (6). The same is true of

Cases 4 and 5.

Let us now turn to the high initial amplitude cases (2 and 8). The
initial profiles are the same as those for Cases 4 and 6, respectively.
At T = 33; Figs. 5.7.26-27 show that in Case 2 the streamwise nor-
mal stress is more dominant than in Case 8. Both of these cases show
stronger dominance of the streamvise component than that observed
experimentally with turbulent boundary layer(s) on the splitter plate;
they also differ from the experiment in other respects, as we have seen

earlier and shall see again. Figures 5.7.28-30 show stress profiles of
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roughly the experientally observed relative magnitudes,indicating that
these cases develop more quickly tham the low amplitude ones. Figure
5.7.29 shows that the gradient normal stress becomes dominant for Case 8
at T = 66; this is not observed in experiments having turbulent bound-
ary layers. Fig. 5.7.30 shows that Case 2 has considerable asymmetry in
the spanwise normal stress; this reflects the small sample size. All of
the differences between our computations and experimental results for
the high initial amplitude cases (except the asymmetry) show the compu-
ted results to be in the direction of the experimental results for

laminar boundary layers.

We thus conclude once again that the experimentally observed near-
field differences between mixing layers generated from laminar and tur-
bulent splitter plate boundary layers are due more to the characteristic
wavelengths of boundary layer turbulence than they are to the distur-
bance amplitude. Additionmal conclusions about the Reynolds stress evo-

lution will be drawn at the end of the next section.

5.8 The Reynolds Stress Anisotropy Tensor

In this section we shall discuss the Reynolds stress anisotropy

i3
zontal plane. If there were enough points in each horizontal plane,

tensor. We define < Gi;j > as the average of u,u, over a hori-

< Eiﬁj > would be equivalent to the ensemble average of ;igj’i'e"
the Reynolds stress tensor. However, as there are only 256 points in
each horizontal plane and the velocities are not statistically indepen—
dent, this identification needs to be made cautiously. The anisotropic

component of this "Reynolds stress” is:

< uu, >
b, = — 13- (5.8.1)

ij ~ o~

1
< uzu2> 3

6ij

In the time developing{mixing layer; bij is a function of =z
and t. As the Reynolds stresses are functions of 2z and there are
asymmetries, we shall consider an  energy-weighted average of the

anisotropy tensor (5.8.l1) to characterize the turbulence
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-] (-4

By =/ <ugug > 440 de / <ugug > dz (5.8.2)

This will limit the number of figures required to present the results

and carries most of the important information.

We shall begin examining the energy—wéighted anisotropy tensor by
looking at the small—-amplitude cases. Next; the medium—amplitude cases
will be considered; and here the effects of modeling and filtering are
examined, as well as initial condition influence. Finally; the high
initial disturbance amplitude cases are considered. In Figs. 5.8.1
through 5.8.9 the Bij for the nine cases studied are plotted versus

time.

The Bij for the small-amplitude cases (4 and 6) shown in Figs.
5.8.1-2 are similar, but not identical. The streamwise normal stress
dominates at early times, while the gradient component dominates at
intermediate times. The shear (313) and span (322) ts have similar
character, and both are primarly negative. For the shear component,
this is as expected. The span component is the smallest of the normal
stresses, which 1is different from most observtions of the asymptotic
state. Even at T = 550; at which time the layer is 10 times its ini-
tial thickness; the anisotropy tensor of Case 6 is far from the asymp-

totic one.

Next; let's look at the medium—-amplitude cases. The Bij for the
medium~amplitude cases (5,7,9,10,11), are shown in  Figs. 5.8.3 through
5.8.7. Comparison of Figs. 5.8.1 and 5.8.3; which represent cases with
the same initial field except for the amplitude, are quite similar,
except that in the case with higher initial amplitude (5); the gradient
component of the normal stress never becomes dominant. The case shown in
Fig. 5.8.4; which is a higher amplitude version of the case shown in
Fig. 5.8.2, does display dominance of the gradient component at later
times, but the dominance is not as strong as in the low initial distur-
bance level case. Thus is appears that increasing the amplitude of the
initial disturbance decreases the dominance of the gradient component of
the normal stress; this will be further verified when we consider the

high amplitude cases below.
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Figures 5.8.3 and 5.8.6 represent two cases which are identical
except that the latter one does not have a subgrid scale model. As can
be seen; the effect of the model on Bij is quite small; this is consis—
tent with what we have observed about the effect of the model earlier.
The case (9) shown in Fig. 5.8.5, which 1s identical to Case 5 just
considered except for lack of filter and model; is similar to the other
two; the most significant difference is that the spanwise normal stress
plays a more important role at earlier times in the unfiltered case.
This behavior is closer to what has been observed in the laboratory than
the other two cases. The shear stress is also smaller and closer to the
experimental data in this case. It seems that a significant portion of
the spanwise stress resides in the small scales; further evidence of
this will be given later. waever; the small scales seem to destroy the
shear stress. Unfortunately; in this case the numerical method became
unreliable at a much earlier time; and we could not follow the devel-
opment as long as in the other two cases with the present code. The
solution to this difficulty lies in constructing a code with a greater
number of grid points in the horizontal directions; and we recommend
that this be done. The case (11) shown in Fig. 5.8.7, with initial con-
ditions which are relatively deficient in small scales, produces greater
dominance of the streamwise normal stress at early times and of the gra-
dient stress at later times. Also; the high shear stress is maintained
longer; this is a reflection of the more rapid growth of the layer in

this case.

Finally, we examine the high-amplitude cases. Figures 5.8.8 and
5.8.9 show the Bij for the high amplitude cases (2 and 8). The changes
noted in going from the lowest amplitude to the medium amplitude are
even more obvious in these cases. Relative to the case shown in Fig.
5.8.3, which has the same initial condition except for amplitude, Fig.
5.8.8 shows less dominance of the streamwise normal stress at early
times and of the gradient stress at later times; all of the stresses
show less variation with time; and the asymptotic state seems to be
reached more quickly. The same effects are seen in comparing Figs.

5.8.4 and 5.8.9, but the change is perhaps less dramatic.
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In summary; in some cases the components of Reynolds stress ani-
sotropy tensor appear to reach asymptotic values after the layer has
thickened only by a factor of four. In other cases no asymptotic value
is in evidence after a thickening by as much as a factor of 10. This
illustrates the enormous sensitivity of the Reynolds stress anisotropy
tensor to the initial disturbance field. This sensitivity is more
strongly coupled to the phase relationships of the initial conditions
than to their amplitude or spectrum shape. The fact that we have only a
couple large eddies in our computation increases this sensitivity; it
also shows that large eddies can vary considerably, though variations

may be small in a given laboratory experiment, due to phase locking.

5.9 Correlation Coefficient at the Center of the Mixing Layer

In this section we shall examine the correlation coefficient of the

Reynolds' shear stress. It can be defined at the center of the layer as

~ e ~  oln2 ~ gl
c(uw) = <U(x,y,°)W(x,y,0% <[(u(x,y,0):] ><l:(w(x,y,o)) :I >

The correlation coefficient can range between -1.0 and 1.0. In most
shear flows studied in the laboratory it has a value of -0.45 £+ 0.05.
Ibwever; Shirani et al. (1981) found values as large as =-0.75 in a sim—

ulation of a homogeneous shear flow.

The correlation coefficients for the seed #1 cases are shown in
Fig. 5.9.1, and those for seed #2 are shown in Fig. 5.9.2. The collapse
of the data 1is remarkable. The values also seem realistic for the

mixing layer, particularly in the near field.

/

Next., we shall iook at the effect of changing the seed while main-
taining constant initial amplitude. The correlation coefficients for
the three amplitudeé used are shown in Figs. 5.9.3-5. For the low and
medium amplitude cases; the collapse of the results is considerably
poorer than is the case when the seed is held constant and the amplitude
varied. The exception is the high amplitude set of cases; for which an

excellent collapse of the data is found.

Thus we find that the phases in the initial conditions have a
stronger effect on the correlation coefficient than do the amplitudes in
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the low to medium initial-amplitude cases. For high initial amplitude

cases, the initial phases are not very important.

5.10., Resolution and Statistical Validity

In Figs. 5.10.1 through 5.10.5, the accuracy parameter ™n,, the
alias-free fraction nAF; and sample number ng defined in Section 3.5

are plotted.

Comparison of the sample number of case 5 (Fig. 5.10.2) with that
of case 10 (Fig. 5.10.3) shows that the subgrid scale model extracts

most of its energy at the higher wavenumbers, as it should.

Recalling that cases 5; 9, and 10 all have the same initial condi-
tion, we note that case 9 (no filtering or subgrid model), shown in Fig.
5.10.4; shows a‘strong increase in the sample number, and resolution is
questionable after; say; T = 140. On the other hand; the Case 10 (no
model) results are nearly the same as those of Case 5. Filtering thus

has a much larger influence than does the model.

In contrast to general decline of Ng in the small and medium-
amplitude cases, Figs. 5.10.4-5 show that in the high-amplitude initial
disturbance cases; Ng hardly changes at all. In general; the effects

of initial amplitude on these parameters are not large.

The figures show that, with the exception of Case 9; there is good
spatial resolution in the central horizontal plane. Again, except for
Case 9, two to four "characteristic” large eddies are captured in the
computations. This is a very small sample; so extreme care is needed in
comparing the results of these computations with those of experiments

which are averages over many large eddies.

5.11. Particle-Tracking Visualizations

To complement the quantitative information given in the previous
sections flow visualization pictures are presented in this section. The
flow visualization pictures were obtained by tracking the intersections
of the grid shown in Fig. 5.12.,1. Plan views are views along the =z
axis; with the mean flow in the horizontal direction. One can consider

the grid lines as dye or smoke lines put into the flow. For Cases 5
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through 11, this grid (5.12.1) was placed in the horizontal midplane of
the mixing layer at the initial time. The intersections move with local
fluid velocity; the numerical method for doing this is described in
Section 3.6. For the small (4 and 6) and medium (5,7,9,l0, and 11)
amplitude initial disturbance cases; the vertical lines in Fig. 5.11l.l
are essentially vortex lines because the vorticity of the disturbance
field is weak compared to the mean flow vorticity in these cases. For
the high-amplitude disturbance cases; the vertical lines are only a
crude approximation to vortex lines; as the initial disturbance
vorticity is no longer negligible compared to the vorticity of the mean
field.

In order to help the reader understand the visualizations; we shall
now present some basic background on shear-layer instability. The pri-
mary instability of a time~-developing mixing layer 1s the Kelvin-
Helmholtz instability. The most amplified eigenfunction according to
linear stability theory is spanwise uniform and, if acting alone; would
ultimately result in a vortex array which is uniformly spaced in the

streamwise direction (see Betchov and Criminale, 1967).

In the computations presented here; broad spectrum; random phase;
finite-amplitude; 3-D initial disturbance fields are introduced. This
random disturbance can be expressed as a linear combination of the
eigenfunctions of the linearized equations and the eigenfunctions which
grow most rapidly in time will become dominant if the initial distur-—
bance amplitude is sufficiently small. In the low amplitude initial
disturbance cases; a numbér of the eigenfunctions of the linearized
equations grow rapidly so that the flow is not dominated by the single
most amplified 2-D eigenfunction; i.e.; the 3-D eigenfunctions are

important.

The time development of the marker lines for Case 6 1is shown in
plan view in Figs. 5.11.2 through 5.11.7. In Fig. 5.11.2; we see the
roll-up of the vorticity layer into two more or less coherent spanwise
vortex structures (similar to what the primary Kelvin-Helmholtz insta-
bility would produce). A mechanism of secondary instébility is also
suggested by this figure. The Secondary instability 1is caused by the

straining field created by the primary vortex structures. To see how
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this occurs, let us consider the spanwise view of the mixing layer;

shown below.

O

The nearly two 2-D vortex structures (A + B) produce straining field or
stagnation line flow midway between them as indicated by the arrows.
Vortex A will entraim irrotational fluid from quadrant A'; while B
entrains from quadrant B'. Also note that; if the vortex structures
have spanwise variation in strength or position; the stagnation line

will not be straight. A plan view of plane C-C 1is shown below.
| .
|

A ! B
|

| >

<

The wavy solid line represents the stagnation line, and the dashed
line might represent a vortex line in the "braid" between vortices A and
B. Due to the waviness of the stagnation line, the vortex line will be
pulled in the directions shown by the arrows. This will turn the vortex
line, aligning it with the flow. Eventually, most of the vorticity in
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the secondary vortices will be aligned with the stretching direction of
the straining field. We refer to this turning and alignment process as

"secondary instability.”

The secondary instability produces streamwise and gradient
component:s of the vorticity. This completed state has been observed at
Caltech by Konrad (1976) and Roshko (1980). The secondary instability
is a very efficient mechanism for entrainment of irrotational fluid from
the outer part of the flow into the primary vortex structure. Roshko
(1980) shows that the secondary instability increases the mixing in the
shear layer and that d6/dt increases by 10%4. A similar mechanism of

entrainment was proposed by Corcos (198l).

With this mechanism for formation of the secondary vortices in
mind, let's now discuss the other cases. The discussion proceeds from

the small to the large amplitude cases.

In Case 6, the primary and secondary vortex structures are clearly
delineated and are well formed by T = 200 (Fig. 5.11.3). The primary
vortices each have slightly less than half the total circulation. The
part of the secondary vortex marked a-b in Fig. 5.11.3 contains three
vortex lines suggesting that it has a circulation of approximately 30%
of the circulation of the primary vortices; this is larger than the
value suggested by Roshko (1980). There is also a weaker secondary
vortex forming in the center of Figs. 5.11.2-3, but it is harder to
see. In Figs. 5.11.455; the two primary vortex structures are moving
closer together and beginning to pair; and Figs. 5.11.6-7 show a span~
wise view of this process. It should be noted that; while the primary
vortices are not straight, they ére nonetheless pairing in an essen-

tially uniform fashion along the length of the vortex structures.

Interesting effects are seen near the centers of the two primary
vortices. The one on the right hand side of these figures is more
curved in the early stages of the rollup. The streamwise component of
the vorticity resulting from the curvature apparently enhances the
entrainment of irrotational fluid into the center of the vortex. This
does not happen in the straighter vortex‘on the left. When the vortices
begin to pair; the fatter section of the right hand vortex is heavily
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strained and is torn apart. This appears to be another mechanism for

the creation of streamwise vorticity.

Case 7, which is identical to Case 6 except that the initial
disturbance energy is two orders of magnitude larger; behaves in a
qualitatively similar way to Case 6. Fig. 5.11.8 is quite similar to
Fig. 5.11.4 and we see that increasing the amplitude has caused the
development to take place faster but has not produced any important

structural changes.

Case 8; which has an initial disturbance energy two orders of mag-
nitude greater than Case 7; behaves in a more chaotic manner. Recall
that in this case the vertical marker lines of Fig. 5.11.1 are not vor-
tex lines. Fig. 5.11.9 shows that there is a tendency for the markers
to agglomerate in this case but the pattern is different. The develop-

ment is also more rapid.

Cases 5 and 10 have identical initial conditions; the only differ-
ent is that Case 10 has no model. They develop in a very similar manner
and only Case 10 will be presented here. These cases differ from Case 7
only in the set of random phases in the initial condition. At T = 76
(Fig. 5.11.10), it is immediately apparent that Case 10 does not roll up
into a pair of well defined vortices. The vortices are inclined and
branch in a complicated manner not seen in Case 6; local (rather than
uniform) vortex pairing is taking place. The distinction between local
and uniform pairing is probably the key to reconciling the Bradshaw and
Browand-Roshko models of the development of the shear layer. In
Chandrsuda et al's (1978) visualization; there is local (in Bradshaw's
terminology, helical) pairing, while in Winant and Browand's (1974)
visualization there is essentially uniform pairing along the entire span
of the vortices. Uniform pairing may persist 1ndefinitely; as Browand's
experiments suggest; if three dimensional perturbations can be excluded
in the early stages of development; the strong two dimensional vortices
will not be modified greatly by weak three dimensional perturbations
after rollup has been completed. On the other hand; if the near field
has local or helical pairing; it will probably break down into the

chaotic state normally associated with turbulence. The development of
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Case 10 is shown in Fig. 5.11.10 through 5.11.15. The local or helical
pairing is immediately apparent.

When filtering is eliminated, as in Case 9; the initial rollup is
not very different (compare Figs. 5.11.10 and 5.11.6). However, the
later development is much more irregular as can be seen by comparing
Figs. 5.11.14 and 5.11.17 and Figs. 5.11.15 and 5.11.18. It is diffi-
cult to be certain of the reasons for this but it appears that the dif-
ference may be due to the fact that filtering tends to remove (or, at
least, diffuse) kinks in the vortices. Since highly kinked vortices are
very energetic; they are capable of producing the chaotic pattern seen
in Figs. 5.11.17 and 5.11.18. Also recall that the numerical methods

lose their accuracy after about T = 140 in this case.

In Case 11; the initial condition is richer in the large scales
and leaner in the small scales; relative to the other cases. Neverthe-
less, the development of this flow is not greatly different from those
presented above. At the relatively early time shown in Fig. 5.11.19
there are three vortices. The first two are close tbgether at the upper
left while the other two are close at the center right of the figure.
It is not surprising that this arrangement leads to local pairing of the
center vortex with the left one at the top and with the right one near
the center. Fig. 5.11.20 clearly shows this to be the case; also note
that the left vortex has devéloped a considerable amount of curvature at
the time corresponding to this figure. To understand what happens next
it is important to remember that the boundary conditions are periodic
and the flow actually being computed can be constructed by repeating the
figure to the left and right (and above and below) itself to form an
infinite array. The center of the left vortex now begins to pair with
the center of the right one. This causes the left vortex to become
still more curved and the resulting streamwise vorticity pushes the part
of the right vortex closest to it downward. This produces a downward
kink in the right vortex and the marker points seem to be drawn together
in the spanwise direction when viewed from above. The result is shown
in Fig. 5.11.21. The spanwise view of this flow is shown in Figs.
5.11.22 and 5.11.23.
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The figures and arguments presented in this section provide insight
into the nature of the processes that occur in mixing layers. The ini-
tial layer always seems to rollup into a configuration in which the
spanwise vorticity is more concentrated than it was initially. The pre-
cise structure of the rolled up layer seems to depend on the initial
disturbance field in a way that would be hard to predict simply knowing
the spectrum. It is possible to produce layers with straight two-
dimensional vortices; ones with curved vortices; and ones with vortices
arranged in a 'fishnet' pattern. The subsequent dynamics of the layer
depends very much on the configuration produced by the initial rollup.
Pairing seems to play an important role in the later development; but it
may take the form of either simple uniform pairing of two vortices or
local pairing in which different parts of the same vortex palr with
parts of different neighboring vortices. Local pairing leads to much
more three dimensionality than does simple uniform pairing, but it looks
as if there will always be large regions of concentrated vorticity in

the mixing layer and that these will grow by agglomeration as the layer

develops.

Finally; we should note that all of these results are for the time-
developing mixing layer. In the spatially-developing mixing layer
studied in the laboratory there are important feedback effects. Pres-
sure fluctuations created in the downstream part of the flow can influ-
ence the upstream development strongly. It is quite possible that this
feedback can cause the layer to 'lock on' to a particular structure

which is then maintained for a long time.
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Chapter 6

CONCLUSIONS

This study of the mixing layer has focused on the physics of tran-
sition and early turbulence in a time-developing mixing layer. The
effort was concentrated on the effect of initial disturbance field on

the later character of the turbulence.

Concern about the possible influence of image flows (which are
implied by the boundary conditions) on the computations led to the de-
velopment of a new infinite domain orthogonal function expansion. Use
of the discrete form of this new method in the computations eliminates
the influence of image flows by keeping them an infinite distance from

the flow of interest.

This new and very accurate numerical differencing and integrating
scheme for infinite domains was presented. It is based on the use of
Fourier expansions and takes advantage of the computational efficiency
of the fast Fourier transform. The new method is applicable to more
general boundary conditions than the standard Fourier method, due to the.
use of mapping functions. (The simplest boundary conditions to imple-
ment are periodicity; or zero; or zero—derivative conditions; or combi-
nations thereof.) waever; the allowed mapping functions are restricted

for reasons of efficiency and accuracy. For more detail; see Chapter 3.

Two particular mapping schemes; both for doubly infinite domains,
were implemented. One was chosen to handle jet-type flows; while the
other was designed for the mixing layer. Both schemes were applied to
linear test equations having known analytical solutions. The new scheme
was shown to have errors as much as six orders of magnitude smaller than

common finite-difference schemes for equal numbers of mesh points.

Using the new infinite-domain scheme; a 3-D, time-dependent; large-
eddy simulation study of transition and early turbulence in a time-
developing mixing layer was undertaken. The primary focus of this study
concerned the veffect of the initial disturbance field on turbulence

development. Effects due to filtering and modeling were also examined.
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To sort out the effects of the initial disturbance field, the same
1aminat; mean-velocity profile was used as the initial mean field in
all cases. To this mean velocity field; an initial divergence-free
disturbance field was added. We used nine cases involving seven differ-
ent initial disturbance fields. These seven cases allowed us to examine
the influence of the disturbance amplitude; spectrum shape, and random

phase sets on the resulting eérly turbulence.

The computations provided the mean velocity profile, the momentum
thickness; the tﬁrbulent kinetic energy; the Reynolds stress tensor; the
Reynolds stress anisotropy tensor; and particle tracking pictures.
Examination of these results provided new understanding of the mixing

layer. Key results of this work are summarized below:

® Self-similarity in the mean velocity profile develops very
quickly; the self-similar profile is independent of initial

conditions.

L The momentum—thickness growth rate is strongly influenced by
the initial disturbance—spectrum shape.

L] Interesting oscillatory behavior occurs in the width of the
kinetic energy profile for the small-amplitude initial dis-
turbances. This oscillatory behavior is not present if the
initial disturbance is large.

® The anisotropy  tensor 1is a very sensitive measure of self-
similarity. Even changing the random phase distribution in
the initial disturbance field produces enormous differences
in the evolution of the anisotropy tensor.

Probably the most significant aspect of the study was revealed in
the particle—~track pictures. Large coherent structures readily appeared
(some similar to those of Winant and Browand (1974) and others 1like
Chandrsuda et al. (1978). More important; the mechanism for producing
the secondary vortices was identified. These vortices develop as a
result of spanwise variations in the strength or position of the pri-
mary vortex structures, which give rise to spanwise variations in the
straining field stagnation line. This causes the formation of pairs of

counter-rotating secondéry vortices aligned with the straining field.
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The statistical and structural characteristics of the mixing layer
are very sensitive to the phases of the initial disturbance. This may
explain the differences that have been observed among different exper-

imental setups, each of which produces a given type of large eddy struc-

ture. Thus; large eddy variation may be small in a given experiment;

but significant variations may occur from experiment to experiment.

Two cases were run to examine the effects of filtering and subgrid
turbulence modeling. We found that filtering delays the onset of non—
linear effects and gives us less than the total picture. However; it
considerably extends the length of time over which the computation is
meaningful. The subgrid-scale model was shown to have very little

influence on the calculation of the early stages of transition.

63



Appendix A

FINITE DIFFERENCE METHODS
For non—uniformly spaced data, we may define

Aj = xJ-_"_l - Xj

and use the three-point finite-difference approximation

Su _
3§~x = auj_1 + buj + cu:H_1 (A.1)
h|
where
T T A : VR zZ/A PoobmoTene
+ +
173 j-1 j I

From a Taylor series, expansion (A.l) can be shown to be second-order

accurate in Aj. On the other hand, thé two-point formula

Su = au, . + bu (A.2)

with

is first-order accurate and becomes second-order accurate as Aj-l * Aj‘
For the second derivative, the approximation:
§32 = + bu, + cu (A.3)
P auyp T PUy T CUy ’
x :

h|
with

a = 2/[841(8y+ By p)]
b o= - 2/AA4,
¢ = 2/By (85 + Ayy)

\
is first-order accurate and becomes second-order accurate as Aj—l > by
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Appendix B

TIME~INTEGRATION SCHEMES
Given dy/dt = £(y,t), the second-order Adams-Bashforth scheme is
L = yB 4 Ae(1.5£® - 0.5£71) (B.1)

The fourth-order Runge-Kutta scheme is

ntl 1 1 *ntl/2 - nt+l/2
y = y'+ac [—6- £(y7,tN + 5 £y /2 em1/2)
(B.2)
1 **ntl/2  ntl/2 1 *mbl okl /2
+ 5o R Ty L Lt |
where
*mt+1/2 At
y y' 5 £(r7,D)
*%nt1/2 n , At *ntl/2 ntl/2
y 2 y 5 £y / ot / )
* %k
v o+l _ yn + At £(y rﬂ-l/2,tn+1/2)
tn+1/2 t® 4 AL/2
The sedond-order Runge-Kutta method is
*
(B.3)
%
yTHZ o gt aei2) £(57,eY
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Appendix C

SUBGRID MODELING

C.l fiJNew Model

Recall from Section 2.5 that subgrid scale field is the difference
between the velocity wu; and filtered velocity, denoted ;;. While we

refer to ui as "subgrid scale;" it in fact has some components in the
resolved domain. A new modeling concept involves exploiting this fact.

We use the following decompositions:

uy = ;; + uj

(C.1.1)
uj = uj+ ui'!
where
. u'i'(k) H k < k.
' =
uy (k) .
(117 .
ug (k) ; k> k,
k., 1is the highest computed wavenumber. Therefore
wigy = LG g,
G(k)
We propose that
where
— - (1] "t -— T
Tij = uiqj + uiuj + uiuj (C.1.3)
and
T .
L =



- 1 - -
S.ij = -2--[:(u:l - < u, >),j + (uj - < uj >),i:|

Using the high wavenumber spectrum of Comte-Bellot and Corrsin (1971)
D(k) = 062/3 k—5/3 exp [} %-a(kn)4/§] (C.1.5)

We evaluate this expression for the highest computed wavenumber kc

using the experimental value, o = 1.5, to get

E(k) = Bk—5/3 exp [} g.a(kn)éléj

5/3
(k)>"% Bk

exp [— %— a(kcn)4/3:]

where the Kolmogorov microscale n = (V/q3)1/4. This gives C; as

/‘1/n
E(k) dk
k

c
C = (C.1.6)
1 < Tii >

since m, = 0. To evaluate Cz, we use Lumley's expression for the

energy transfer spectrum:

0.57 .5/2

(k) = %575 K 1/2 ) (C.1.7)
a

E(0.4k) E

and therefore

¢ - T(kc) - < uiTij,j >
2 <u >

m .
i 713,35

This model is for hombgeneous flow and therefore was not used in the
present work. With more development, it may be used in flows with homo-
geneity in two directions. .Jorge Bardina is testing models using simi-

lar ideas and is getting very promising results.
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Appendix D
IMAGE FLOWS

In solving problems in fluid mechanics, boundary conditions are
often applied at finite boundaries. If this is done for a flow which
actually extends to infinity, tﬁe boundary conditions imply artificial
image flows. If one is not careful, the image flows may render the
results meaningless. The new Fourier method described earlier puts the

image flows infinitely far away, thus eliminating this difficulty.

Suppose we want to compute the flow due to two vortices of the same
sign. If we were to use discrete cosine and sine expansions on a finite
uniform grid, we would be applying a no-stress boundary condition at
some finite distance from the vortices. This implies an infinite array
of pairs of vortices with alternating signs of vdrticity. In oxder to
assess whether the image flows (a finite distance away) affect the com—
puted solution, we performed the following numerical experiment. First
we placed two pairs of vortices of opposite sign a distance d/2 above
and below the x axis, as shown in Fig. D.l. The vortices had ellipti-
cal Gaussian distributions of vorticity and a separation of distance
c. The upper vortices will rotate about one another in a clockwise
manner, while the lower pair will rotate counterclockwise. If the pairs
are far enough apart not to affect each other, we should be able to
shift the location of the lower pair by a distance <¢/2 in the x
direction and get identical results. In performing this calculation, we
used the mapping given by Eq. (3.3.5). We used the standard Fourier
method for differentiating in the x direction and the second-order
Adams-Bashforth scheme for the time advance. We used 16 grid points in
the x direction and 128 in the 2z direction. The vortex pairs were
centered at grid points 59 and 71 in 2z, and grid points 5 and 11 in
x. The coefficient of the mapping function a was a = 192/7n (this
gives Az = 1.5 near the origin); the x coordinates were x4 = 2( j-
1); the dimensionless time step was selected so that (umax/Ax +
w __[Az

mnax min
equation:

) At = .3. We did this calculation by solving the vorticity
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%E‘w + gg-uw + gz-ww = vV?w (D.1l)
and the vector potential given by
vy = “w | (D.2)
to get
u=-§—z-w;.w=§;¢ (0.3)

We computed until the dimensionless time T = umaxt/c = 1.0, at
which point we compared the "turbulent” kinetic energy in the full do-
main of the computation (with turbulence defined as the local deviation
from an average in the x direction). For the case shown in Fig. D.l,
the turbulent kinetic energy was the same at T =1 and T = 0. How-
ever, when the lower pair of vortices was shifted by c¢/2, the kinetic

energy at T =1 was double the energy at T = 0.

We thus conclude that a computation in a domain of height 1.5 times
the spacing between a pair of vortices would suffer tremendously from
the influence of image flows. We also did the same calculation with

d/c = 4 and found no significant image flow influence.
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Fig. 5.11.1.

Plan view of particle tracking grid for
all cases at T = O.

Fig. 5.11.2.

Plan view of particle tracking grid for
Case 6 at T = 161.
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Plan view of particle tracking grid for

Case 6 at

Plan view of particle trécking grid for

Case 6 at T = 200.

Fig. 5.11.4.

5.11.3.

Fig.

T = 280.
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Span view of particle tracking grid for

Fig. 5.11.6.

Plan view of particle tracking grid for

Case 6 at T = 342.

Fig. 5.11.5.

T = 200.

Case 6 at



R

\,\.ﬂ\v K

\

v,

4

116

Plan view of particle tracking grid for:

Case 7 at T = 177.

Fig. 5.11.8.

Span view of particle tracking grid for
T = 342.
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Fig. 5.11.



Fig. 5.11.9. Plan view of particle tracking grid for ‘Fig. 5.11.10. Plan view of particle tracking grid for
Case 8 at T = 76. ‘ Case 10 at T = 76.
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Fig. 5.11.11. Plan view of particle tracking grid for

= 151.

Fig. 5.11.12. Plan view of particle tracking grid for:
iCase 10 at T

Case 10 at T = 97.



119

Fig. 5.11.13. Plan view of particle tracking grid for

T = 231.

Fig. 5.11.14. Plan view of particle tracking grid for
Case 10 at

Case 10 at T = 171.
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Fig. 5.11.15. Span view of particle tracking grid for
Case 10 at T = 231.

Fig. 5.11.16. Plan view of particle tracking grid for
Case 9 at T = 76.
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Fig. 5.11.17. Plan view of particle tracking grid for
Case 9 at T = 220.

Fig. 5.11.18. Span view of particle tracking grid for
Case 9 at T = 220.
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Plén view of particle tracking grid for

Fig. 5.11.19.

Fig. 5.11.20. Plan view of particle tracking grid for

151.

T =

Case 11 at

T = 97.

Case 11 at
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Fig. 5.11.21. Plan view of particle tracking grid for

Case 11 at T = 231.

‘Fig. 5.11.22 Span view of particle tracking grid for

Case 11 at T = 171.
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Fig. D.l Schematic view of vortex pairing, image
flow study.
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