MIXING OF A PASSIVE SCALAR IN ISOTROPIC AND SHEARED hOMDGENEOUS TURBULENCE

by
E. Shirani,
NASA-CR-164938
J. H. Ferziger, and
W. C. Reynolds
Prepared from work done under Grant
NSF--17619
Computational facilities were supplied by NASA-Ames Research Center

LIBRRRY COPY
JUL 271990
Report No. TF-15
MANGLEY RESEARCH CENTER
hiserarry nasa, hampton, va.
Thermosciences Division
Department of Mechanical Engineering
Stanford University
Stanford, California
May 1981

MIXING OF A PASSIVE SCALAR IN ISOTROPIC AND SHEARED

HOMOGENEOUS TURBULENCE

by
E. Shirani, J. H. Ferziger, and W. C. Reynolds

Prepared from work done under Grant NSF-17619

Computational facilities were supplied by NASA-Ames Research Center

Technical Report TF-15

Thermosciences Division
Department of Mechanical Engineering
Stanford University
Stanford, California 94305

May 1981

N82-11394 \#

This Page Intentionally Left Blank

Acknowledgments

The authors gratefully acknowledge the useful comments and discussions of Prof. P. Moin and Drs.W. J. Feiereisen, and A. Cain. Special thanks are due to Dr. R. Rogallo for his suggestions in developing the computer code and for other helpful comments and discussions.

We would like to express our gratitude also to Mr. M. Rubesin and Mr. J. Bardina for their contributions to and discussions of this work and al.so to Prof. Dean Chapman for his critical reading of the manuscript.

This work was supported by the National Science Foundation under Grant NSF-17619, and computer time was provided by NASA-Ames Research Center under Grant NASA-NCC-2-15. One of the authors (ES-C) acknowledges the support of the Government of Iran during 1976-80.

The authors acknowledge the excellent job of typing done by Ms. Ruth Korb.

Abstract

In order to calculate the velocity and passive scalar fields in homogeneous turbulent flows, the three-dimensional, time-dependent equations of motion and the diffusion equation have been solved numerically. The following cases have been treated: 1. isotropic, homogeneous turbulence with decay of a passive scalar, 2. homogeneous turbulent shear flow with a passive scalar whose mean varies linearly in the spanwise direction.

The solutions have been obtained at relatively low Reynolds numbers so that all of the turbulent scales could be resolved without modeling.

The numerical simulations were carried out on the ILLIAC-IV. The computer program used $16 \times 16 \times 16$, $32 \times 32 \times 32$, or $64 \times 64 \times 64$ uniformly spaced mesh points. The pseudo-spectral method was used for space differencing and the second-order Adams-Bashforth method for time differencing.

Turbulent statistics such as integral length scales, Taylor microscales, Kolmogorov length scale; one- and two-point correlations of velocity-velocity and velocity-scalar, turbulent Prandtl/Schmidt number, r.m.s. values of velocities, the scalar quantity and pressure, skewness, decay rates, and decay exponents have been calculated. Also, one-- and three-dimensional spectra of velocity components and scalar quantity, three-dimensional spectra of production, dissipation and transfer terms, pressure, Reynolds stress, and heat flux terms have been calculated. Some of the results are compared with the available experimental results, and good agreement is obtained.

The behavior of the Reynolds stress and the turbulent heat flux have been carefully studied. The conventional models for the turbulent Reynolds stress and heat flux, turbulent Prandtl number, and pressurestrain and pressure-scalar covariances have been tested, and constants for the models have been obtained.

Page
Dedication ii
Acknowledgments iii
Abstract: iv
List of Figures viiii
List of Tables xiii
Nomenclature xv
Chapter
I. INTRODUCTION 1
1.1 General Introduction 1
1.2 Survey of Literature 3
A. Homogeneous Isotropic Turbulence 3
B. Homogeneous Shear Flows 5
l. 3 Motivations and Objectives 6
Tables 8
II. COMPUTATIONAL METHODS 10
2.1 Governing Equations 11
2.2 Numerical Approximations 11
2.3 Initial Conditions 13
2.4 Computation of Homogeneous Isotropic Turbulent Flow with Decay of a Passive Scalar 14
2.5 Computation of Homogeneous Turbulent Shear Flow with a Passive Scalar 15
A. Mean Values of Velocities and Scalar Quantity 15
B. Coordinate l.ransformations 16
C. Governing Equations 16
D. Remeshing 18
E. Computational Details 19
Table 21
Figures 22
III. COMPUTER PROGRAMMING AND CODE TESTING 26
3.1 ILLIAC-IV Computer 26
3.2 The Codes 26
A. The Initial Fields Generator 26
B. The Main Code 27
C. The Data-Reduction Code 27
3.3 Testing the Code 27
A. Conservation Laws 27
B. Comparison with Similar Computed Flow Fields 28
C. Comparison with the Exact Solutions of Navier- Stokes and Diffusion Equations 28
D. Comparison with the Experimental Data 29
3.4 Description of a Computer Run 29
A. The "Developing" Region 2.9
B. The "Developed" Region 30
C. The "Anomalous" Region 30
Table 31
Figures 32
IV. STATISTICAL MODELS OF TURBULENCE 33
4.1 Equation for Turbulent Statistical Quantities 33
4.2 Statistical Models 36
A. Turbulent Reynolds Stress and Heat Flux 36
B. Turbulent Prandtl Number 41
C. Pressure-Strain Covariance 43
D. Pressure-Scalar Covariance 46
V. DECAY OF A PASSIVE SCALAR IN HOMOGENEOUS ISOTROPIC TURBULENT FLOWS 50
5.1 Results from a Typical Run 50
A. The Hydrodynamic Field 50
B. The Scalar Field 52
5.2 Description of the Simulations 53
5.3 Effects of Reynolds and Prandtl Numbers on Some Tur- bulence Statistics 54
A. The Length Scale Ratio 54
B. The Decay Rate 54
C. The Decay-Rate Exponent 55
D. The Velocity Skewness 55
Table 56
Figures 57
VI. RESULTS FOR HOMOGENEOUS TURBULENT SHEAR FLOWS WITH A MEAN GRADIENT OF A PASSIVE SCALAR 65
6.1 Dimensional and Non-Dimensional Parameters 65
6.2 Description of the Simulations 66
6.3 Complete Results for a Typical Simulation 68
A. The Hydrodynamic Field 69
B. The Scalar Field 74
6.4 Statistics of Velocity Fields and Models 76
A. Reynolds Stress Tensor 76
B. Reynolds Shear Stress Correlation 79
C. Reynolds Stress Anisotropy Tensor 79
D. Pressure-Strain Tensor 80
E. Dissipation Anisotropy Tensor 81
6.5 Behavior of the Scalar Fields and Their Models 82
A. The Non-Dimensional Scalar Fluctuations 82
B. Turbulence Heat Flux 83
C. One-Point Velocity-Scalar Correlations 83
D. Turbulent Eddy Diffusivity Tensor 84
E. Turbulent Prandtl Number 85
F. Pressure-Scalar Covariance 86
6.6 Comparison with the Other Flows 88
Tables 90
Figures 102
VII. CONCLUSIONS AND RECOMMENDATIONS 133
7.1 Conclusions 133
7.2 Recommendations 135
Appendix A Linear Stability Analysis 136
Appendix B Coordinate Transformation 140
Appendix C Tabulated Data for the Simulated Flow Fields 142
References 153

List of Figures

Figure Page
2-1. The computational box 22
2-2. Thręe-dimensional initial energy (or scalar) spectrum (32^{3} mesh points) 23
2-3. Coordinate transformation and remeshing 24
2-4. Thrȩe-dimensional initial energy (or scalar) spectrum (64^{3} mesh points) 25
3-1. The computational box with three columns of data in dif- ferent directions 32
5-1. Three-dimensional energy spectra at three different times. 57
5-2. Three-dimensional spectra of the turbulent kinetic energy components at $\mathrm{St}=4.0$ 57
5-3. One-dimensional spectra of the velocity components and scalar fluctuations at $\mathrm{St}=4.0$ 58
5-4. Decay of the turbulent kinetic energy and its components with time 58
5-5. Two-point correlations of velocity components and the scalar fluctuations 59
5-6. Time evolution of the integral length scales of velocity and scalar fields 60
5-7. Time evolution of the Taylor microscale of the velocity and scalar fields 60
5-8. The 3-D spectra of scalar quantity at various times 61
5-9. Decay of scalar intensity as a function of time 62
5-10. Taylor microscale ratio as a function of Reynolds number for various Prandtl numbers 62
5-11. Decay exponent of turbulent kinetic energy as a function of Reynolds number 63
5-12. Decay exponent ratio as a function of Reynolds number for various Prandtl numbers 63
5-13. Velocity skewness as a function of Reynolds number 64
6-1. Nondimensional scalar quantity, $\theta 2$, as a function of time for various runs with different initial values 102
6-2. Integral length scale ratio of the velocity and scalar field as a function of time for various runs with differ- ent initial values 102
6-3. Three-dimensional energy spectra 103
6-4. Three-dimensional spectra of the turbulent kinetic energy components 103
6-5. Turbulent kinetic energy and its components as a function of time 104
6-6. Integral length scales in the x_{1}-direction as a function of time 104
6-7. Taylor microscales in the x_{1}-direction as a function of time 105
6-8. Various length scales as a function of time 105
6-9. Two-point correlations of velocity components, $R_{i j}$, and scalar, $R_{\theta \theta}$, at $S t=0$ 106
6-10. Two-point correlations of velocity components, $R_{i j}$, and scalar, $R_{\theta \theta}$, at $S t=4$ 106
6-11. Two-point correlations of velocity components, $R_{i j}$, and scalar, $R_{\theta \theta}$, at $S t=7$ 107
6-12. One-dimensional spectra of velocity components and scalar in the x_{1}-direction 107
6-13. One-dimensional spectra of velocity components and scalar in the x_{2}-direction 108
6-14. One-dimensional spectra of velocity components and scalar in the x_{3}-direction 108
6-15. Three-dimensional spectra of two components of pressure and total pressure at $\mathrm{St}=0.0$ 109
6-16. Three-dimensional spectra of the components of pressure and total pressure at $S t=4.0$ 109
6-17. One-point velocity correlations as a function of time 110
6-18. Components of Reynolds stress anisotropy tensor as a function of time 110
Figure
6-19. Various terms in the $\left\langle u_{1}^{2}\right\rangle$ equation as a function of time 111
6-20. Various terms in the $\left\langle u_{2}^{2}\right\rangle$ equation as a function of time 111
6-21. Various terms in the $\left\langle u_{3}^{2}\right\rangle$ equation as a function of time 112
6-22. Various terms in the $\left\langle u_{1} u_{2}\right\rangle$ equation as a function of time 112
6-23. Various terms in the turbulent kinetic energy equation as a function of time 113
6-24. Three-dimensional spectra of various terms in the u_{1}^{2} equation as a function of time 113
6-25. Three-dimensional spectra of various terms in the u_{2}^{2} equation as a function of time 114
6-26. Three-dimensional spectra of various terms in the u_{3}^{2} equation as a function of time 114
6-27. Three-dimensional spectra of various terms in the $u_{1} u_{2}$ equation as a function of time 115
6-28. Three-dimensional spectra of various terms in the $u_{i} u_{i} / 2$ equation as a function of time 115
6-29. Components of dissipation anisotropy tensor as a function of time 116
6-30. Three-dimensional spectra of the scalar fluctuations at different times 116
6-31. The scalar-fluctuation intensity as a function of time 117
6-32. One-point velocity scalar correlations as a function of time 117
6-33. Various terms in the $\left\langle\theta^{2}\right\rangle$ equation as a function of time 118
6-34. Various terms in the $\left\langle\theta u_{2}\right\rangle$ equation as a function of time 119
6-35. Various terms in the $\left\langle\theta \mathrm{u}_{1}\right\rangle$ equation as a function of time 119
6-36. Three-dimensional spectra of various terms in the θ^{2} equation 120
Figure Page
6-37. Three-dimensional spectra of various terms in the θu_{2} equation 120
6-38. The angle of the principal axis of the Reynolds stress tensor relative to the computational coordinate as a function of Reynolds number 121
6-39. The angle of the principal axis of the Reynolds stress tensor relative to the computational coordinate as a function of the shear number 121
6-40. The constant for the eddy viscosity model ($C=\nu_{T} / q L$) as a function of the fitting function 122
6-41. Reynolds shear stress correlation as a function of the fitting function 122
6-42. Reynolds stress anisotropy, b_{11}, as a function of the fitting function 123
6-43. Reynolds stress anisotropy, b_{22}, as a function of the fitting function 123
6-44. Reynolds stress anisotropy, b_{12}, as a function of the fitting function 124
6-45. Dissipation anisotropy, d_{11}, as a function of the fitting function 124
6-46. Dissipation anisotropy, d_{22}, as a function of the fitting function 125
6-47. Dissipation anisotropy, d_{12}, as a function of the fitting function 125
6-48. Nondimensional scalar fluctuations as a function of the fitting function 126
6-49. One-point velocity-scalar correlation, $\left\langle\theta u_{1}>/ \theta^{\prime} u_{1}^{\prime}\right.$, as a function of the fitting function 127
6-50. One-point velocity-scalar correlation, $\left\langle\theta u_{2}>/ \theta^{\prime} u_{2}^{\prime}\right.$, as a function of the fitting function 127
6-51. Normalized turbulent eddy diffusivity, $D_{12} / q L$, as a function of the fitting function 128
6-52. Normalized turbulent eddy diffusivity, $D_{22} / q L$, as a function of the fitting function 128
6-53. Turbulent eddy diffusivity, D_{12}, as a function of its model 129
Figure Page
6-54. Turbulent eddy diffusivity, D_{22}, as a function of its model 139
6-55. Turbulent Prandtl number as a function of the fitting function 130
6-56. Test of the Reynolds model of the turbulent Prandtl number 130
6-57. Test of the Wassel model of the turbulent Prandtl number 131
6-58. Test of the Crawford model of the turbulent Prandtl number 131
6-59. Test of the new model of the turbulent Prandt1 number 132
Pable Page
1-1 Description of various experiments on decay of tempera- ture fluctuations in grid-generated homogeneous isotopic flows 8
1-2 Description of various experiments on homogeneous shear flows 9
2-1 Accuracy and stability limits 21
3-1 Details of simulated flow fields 31
5-1 Description of simulated flow fields for decay of a passive scalar in homogeneous isotropic flows 56
6-1 Dimensional parameters for velocity fields 90
6-2 Dimensional parameters for the scalar field 90
6-3 Range of nondimensional parameters 91
6-4 Nondimensional parameters for each flow field 91
6-5 Principal axis angle 93
6-6 One-point correlations of the velocity fields 93
6-7 Pressure-strain model constant for the fast term 94
6-8 Pressure-strain model constant for the Rotta term, Rotta model 94
6-9 Pressure-strain model constant for the Rotta term, modified Rotta model 94
6-10 One-point velocity-scalar correlations 95
6-11 Normalized eddy diffusivity components 96
6-12 Experimental and computed values of normalized eddy diffu- sivity components 96
6-13 Turbulent Prandtl number 97
6-14 Pressure-scalar covariance model constant for the fast term 98
6-15 Pressure-scalar covariance model constant for the fast term, Lumley's model 98
6-16 Pressure-scalar covariance model constant for the Rotta term 98
Table Page
6-17 Comparison of turbulence statistics in homogeneous shear flows and boundary layers 99
6-18 Variation of nondimensional quantities in channel flow 100
6-19 Comparison of turbulence statistics in homogeneous shear flows and free shear layers 101
C-1 Dimensional parameters for each simulation 143
C-2 Reynolds stress tensor 144
C-3 Dissipation tensor 145
C-4 Pressure-strain tensor, the fast term 146
C-5 Pressure-strain tensor, the Rotta term 147
C-6 Scalar fluctuation invariance 148
C-7 Turbulent heat flux 149
C-8 Dissipation in the heat flux equations 150
C-9 Pressure-scalar covariances, the fast term 151
C-10 Pressure-scalar covariances, the Rotta term 152

Nomenclature

English Letters

A Model constant, Eqs. (4-69) through (4-71).
A_{1} Model constant, Eqs. (4-49) and (4-78).
A_{2} Model constant, Eqs. (4-55) and (4-78).
A_{3} Model constant, Eq. (4-56).
$b_{i j}$ Reynolds stress anisotropy tensor, Eq. (4-23).
$B_{i j} \quad$ Tensor similar to $b_{i j}$ for the scalar field, Eq. (4-77).
C Mean scalar quantity.
C Model constant, Eqs. (4-23), (6-11), and (6-18).
$\mathrm{C}_{\mathrm{o}} \quad$ Model constant, Eq. (2-2).
$\mathrm{C}_{1} \quad$ Model constant, Eqs. $(4-25),(4-35)$, and (4-37)-(4-39).
C_{2} Model constant, Eqs. (4-35) and (4-38)-(4-39).
C_{3} Model constant, Eqs. (4-35) and (4-38)-(4-40).
C_{4} Model constant, Eqs. (4-37) and (4-40).
D Molecular diffusion coefficient.
$\mathrm{D}_{\mathbf{i j}} \quad$ Turbulent diffusion coefficient tensor, Eq. (4-26).
$d_{i j} \quad$ Dissipation anisotropy tensor, Eq. (4-57).
E(k) Three-dimensional energy spectra.
$E_{i j}\left(k_{\ell}\right)$ One-dimensional spectrum in ℓ-direction.
$E_{\theta \theta}\left(\mathrm{k}_{\ell}\right)$ One-dimensional spectrum of the scalar in ℓ-direction.
e Turbulent kinetic energy.
G Part of Poisson equation, Eq. (2-22).
$G_{i j p q}$ Fourth-rank tensor, Eq. (4-48).
$\mathrm{g}_{\mathrm{qij}} \quad$ Third-rank tensor, Eq. (4-66).
$H_{i} \quad$ Part of right-hand side of the momentum equation, Eq. (2-21).
h Height of the experinental channel.
h Mesh size.
$k \quad$ Wave number, $k^{2}=k_{i} k_{i}$ 。
$k_{i} \quad$ Components of the wave vector.
L Integral length scale obtained from $\mathrm{R}_{11}\left(\mathrm{x}_{1}\right)$.
$L_{b} \quad$ Length of the computational box.
$\mathrm{L}_{\mathrm{d}} \quad$ Dissipation length scale, Eq. (4-24).
$L_{i j}\left(r_{\ell}\right)$ Length scales in ℓ-direction.
$L_{m} \quad$ Mixing length, Eq. (6-6).
$L_{t r} \quad$ Transfer length scale $\left(\equiv q^{3} / \varepsilon\right)$.
m Decay exponent of scalar intensity, Eq. (5-4).
$\mathrm{N} \quad$ Number of mesh points in each direction.
$\mathrm{N}_{\mathrm{c}} \quad$ Courant number, $\mathrm{Eq} \cdot(\mathrm{A}-20)$.
$N_{D} \quad$ Diffusion stability parameter, Eq. (A-19).
$N_{v} \quad$ Viscous stability parameter, Eq. (A-18).
$\mathrm{n} \quad$ Number of time steps.
P Total pressure.
p Pressure fluctuations.
$p^{(1)}$ Part of pressure which is explicitly associated with the mean velocity, Eq. (4-42).
$p^{(2)}$ Part of pressure which is not explicitly associated with the mean velocity, Eq. (4-43).
$\mathrm{Pe}_{\mathrm{T}} \quad$ Turbulent Peclet number, Eq. (4-39).
Pr Molecular Prandtl number.
$\operatorname{Pr}_{T} \quad$ Turbulent Prandtl number, Eq. (4-36).
q Turbulent velocity, Eq. (4-20).
R Decay exponent ratio, Eq. (5-5).
$\operatorname{Re}_{\mathrm{L}} \quad$ Turbulent Reynolds number based on q and L_{d}, Eq. (2-3).
$\mathrm{Re}_{\mathrm{M}} \quad$ Reynolds number based on mean velocity and mesh size.
$\operatorname{Re}_{\lambda} \quad$ Turbulent Reynolds number based on λ and $q\left(\equiv \frac{q \lambda}{\nu}\right)$.
$R_{i j}\left(r_{\ell}\right)$ Two-point correlations, Eq. (3-3).
$\mathbb{R}_{\theta \theta}\left(r_{\ell)}\right.$ Two-point correlatins of the scalar fluctuations.
$R_{1} \quad A$ parameter which indicates degree of numerical stability and accuracy, Eq. (A-12).
$R_{L} \quad$ A parameter which indicates degree of numerical stability and accuracy, Eq. (A-12).
$S \quad$ Shear rate $\left(\equiv \frac{\partial \overline{\mathrm{U}}_{1}}{\partial \mathrm{x}_{2}}\right)$.
$S_{i} \quad$ Mean scalar gradient $\quad\left(\equiv \frac{\partial \bar{C}}{\partial \mathrm{X}_{\mathbf{i}}}\right)$.
$S_{i j} \quad$ Mean strain, Eq. (4-19).
$S_{k} \quad$ Velocity skewness, Eq. (3-2).
4 Shear number $\left(\equiv \frac{S L}{q}\right)$.
$\mathbb{N}_{\theta i}$ Nondimensional scalar fluctuations $\left(\equiv \frac{\theta^{\prime}}{S_{2} L}\right)$.
T, t Time
$\mathrm{T}_{\mathrm{ij}} \quad$ Transfer term, Eq. (6-9).
$\mathrm{U}_{\mathrm{i}} \quad$ Total velocity in i-direction.
$\bar{U}_{i} \quad$ Mean velocity in i-direction.
$u_{i} \quad$ Velocity fluctuations in i-direction.
$u_{i}^{\prime} \quad$ r.m.s. $u_{i}\left(\equiv\left\langle u_{i}^{2}\right\rangle^{1 / 2}\right)$.
$\mathrm{U}(\mathrm{R}) \quad$ Random-generated velocity components, Eq. (2-13).
$X_{i} \quad$ Laboratory coordinate in the i-direction.
$x_{i} \quad$ Computational (sheared) coordinate the in i-direction.

Greek Letters

$\alpha \quad$ The exponent of Reynolds number in the fitting function, Eqs. $(6-11)$ and ($6-18$).
$\alpha \quad$ Model constant, Eq. (4-39).
$\alpha_{i} \quad$ Angle of the principal axis, Eq. (4-17).
$\beta \quad$ The exponent of the shear number in the fitting function, Eqs. (6-11) and (6-18).
$\Delta t \quad$ Time step.
$\delta_{i j} \quad$ Kronecker delta $\equiv \begin{cases}1, & i=j, \\ 0, & i \neq j .\end{cases}$
$\varepsilon \quad$ Dissipation of turbulent kinetic energy, Eq. (4-58).
$\varepsilon_{i} \quad$ Dissipation of turbulent heat $f 1 u x, E q \cdot(4-14)$.
$\varepsilon_{i j}$ Dissipation of the Reynolds stress tensor, Eq. (4-7).
$\varepsilon_{\theta} \quad$ Dissipation of scalar fluctuations, Eq. (5-7).
$\eta \quad$ Kolmogorov length scale, Eq. (2-1).
γ The exponent of Prandt1 number in the fitting function, Eq. (618).
$\lambda \quad$ Taylor microscale for the velocity field $\equiv \lambda_{11}\left(x_{1}\right)$.
$\lambda_{i j}\left(x_{\ell}\right)$ Taylor microscale for the velocity field in x_{ℓ}-direction.
$\lambda_{u} \quad$ Taylor microscale for the velocity field $\equiv \lambda_{11}\left(x_{1}\right)$.
$\lambda_{\theta} \quad$ Taylor microscale for the scalar field in the x_{1}-direction.
$\nu \quad$ Molecular viscosity.
$v_{T} \quad$ Turbulent eddy viscosity, Eq. (4-21).
$\Omega_{\mathbf{i j}} \quad$ Mean rotation, Eq. (4-34).
$\sigma_{i} \quad$ Magnitude of the principal stresses.
$\theta \quad$ Scalar fluctuations.
$\theta^{\prime} \quad$ r.m.s. scalar fluctuations $\left(\equiv\left\langle\theta^{2}\right\rangle^{1 / 2}\right)$.
$\phi \quad$ Potential function, Eq. (2-13).
$\phi_{i} \quad$ Pressure-scalar covariance, Eq. (4-13).
$\phi_{i j} \quad$ Pressure-strain, Eq. (4-6).
$\Psi_{i j} \quad$ Function of pressure-scalar covariance, Eq. (4-76).

Other Symbols
< > Volume average.
(') Root mean square value (r.m.s.).
() Fourier transfer
(${ }^{(1)}$ Vector.
() Mean value (ensembled average).

Chapter I

INTRODUCTION

1.1 Genera1 Background

For a century, turbulence has been the subject of intensive research, both theoretically and experimentally. Due to its complexity and despite strong efforts, turbulence remains one of the most challenging unsolved problems of the physical sciences. History suggest:s that the road to the general solution of the problem is very long, if not endless.

Turbulence originates in instabilities of laminar flow. Generally, the instabilities produce wave-like structures which can absorb energy from the mean flow. As they grow, nonlinear effects cause energy transfer to other modes, and eventually the noisy patterns that are generally regarded as "turbulence" results. Energy obtained from the mean flow is eventually transferred to smaller-scale structures, where it will be dissipated.

Turbulence contains structures with a wide range of scales. The large-scale turbulent structures differ markedly from one flow type to another, while the small scales tend to be more universal. Since neither experimentalists nor computors have been able to resolve all of the turbulent structures for high Reynolds number flows, approximations have had to be made.

Almost all approaches to the prediction of turbulent flows are based on Osborne Reynolds' idea of averaging the Navier-Stokes equations over an ensemble of identical flows, or some equivalent (time or span averaging) to obtain equations for the mean velocities. Due to the nonlinearity of the Navier-St:okes equations, the averaged equations ace not closed. Therefore, turbulence models are needed to bridge the gap between the difficulty of the equations and our limited computational capability to handle the equations.

Turbulence modeling has made considerable strides in the past two decades. The testing of the models has, until recently, been a highily empirical affair. It is currently impossible to measure all of the
factors needed to test the models experimentally. However, it is possible to use exact numerical solutions of the equations of motion for turbulent flows as the basis for testing models. The difficulty here is that, with the available computers, one can compute only relatively low Reynolds number flows. In addition, only a few simple turbulent flows can be computed with sufficient accuracy. Due to the large range of scales of turbulent structures, we cannot expect to compute high Reynolds number turbulent flows directly with the next few generations of computers. Despite these limitations, one might compute relatively simple flows at moderate Reynolds numbers and extrapolate the results to higher Reynolds numbers.

The simplest type of turbulence is homogeneous isotropic turbulence. This is defined as a flow whose statistical features have no preference for any specific direction or location. Thus a minimum number of quantities and relations are required to describe its structure and behavior. Although it is an idealized flow, its characteristics form a basis for the study of more complex non-isotropic turbulent flows. Moreover, in actual turbulent flows at high Reynolds numbers, the fine structures seem to be nearly isotropic, so the results of isotropic turbulence may be useful for characterizing the small scales of turbulence. Because of its simplicity and importance, extensive theoretical work has been done on this subject and a number of experiments have been carried out.

A somewhat more complex type of turbulent flow is homogeneous shear flow. The role of shear in most turbulent flows is to couple the mean velocity field with the turbulent velocity field. Homogeneous shear flow is a problem of complexity intermediate between unsheared homogeneous and inhomogeneous turbulent shear flows. It has been generated both experimentally and computationally. Its study can provide better understanding of turbulence and can be used in testing the validity of turbulence theories and statistical turbulence models.

It is useful to consider the case in which a scalar quantity is present in a turbulent flow. The scalar may be temperature or enthalpy, or, in a mixture of fluids, species concentration. The study of the scalar field has attracted less attention than the study of the
hydrodynamics itself. However, the investigation of turbulent mixing is an area of great importance. It is required in any situation that includes mass or heat transfer, for example, in the atmosphere. Turbulent mixing is also important in reacting flows and combustion. Prediction of most turbulent reacting and combusting flows is essentially impossible without accurate treatment of mixing. Study of a passive scalar in turbulent flows will help us understand the turbulent mixing processes that occur in these flows.

One of the objectives of the present report is to compute threedimensional, time-dependent solutions for isotropic turbulence and homogeneous shear turbulent flows by numerical methods, and to study the scalar field as well as the velocity field. The results will be used in a number of ways.

1.2 Survey of Literature

The mathematical development of hydrodynamics was started in the eighteenth century. The dynamic equations for inviscid flows were formulated mainly by Euler (1752). The equations of motion for a viscous flow were derived by Navier (1827), Poisson (1831), Saint-Venant (1843), and Stokes (1845). 0. Reynolds (1883) introduced the nondimensional Reynolds number and used it as a criterion to distinguish laminar flows from turbulent flows. Boussinesq (1877) introduced the concept of eddy viscosity. Mixing-length theory was introduced by Prandtl (1925) and von Karman (1930).

A. Homogeneous Isotropic Turbulence

The concept of isotropic turbulence was introduced by Taylor (1935). Von Karman (1937) introduced the use of tensors in isotropic turbulence, while von Karman and Howarth (1938) studied the statistical theory of turbulence. In 1941, Kolmogoroff suggested that the sma11scale components of turbulence are approximately isotropic, while Batchelor and Stewart (1949) showed that large scales of the turbulence generated behind a grid are anisotropic.

Almost all experiments on isotropic turbulence use rigid, uniform grids to generate the turbulence. The first successful attempt to
generate nearly isotropic turbulence was that of Simmon and Salter (1934). They found that at high Reynolds numbers the turbulence far behind a grid is a good laboratory realization of isotropic turbulence. Several other experiments have been carried out for this case, among which that of Comte-Bellot and Corrsin (1971) provides rather complete statistical information. Frenkiel, Klebanoff, and Huang (1979) carried out the experiment in both water and air.

The final stage of isotropic turbulence was studied experimentally by Batchelor and Townsend (1950), Tan and Ling (1963), Lee (1965), and Bennett and Corrsin (1978). Also Tavoularis, Bennett, and Corrsin (1979) studied the velocity skewness of isotropic turbulence at small Reynolds numbers.

Isotropic homogeneous turbulence has been studied by computors. Numerical simulation of the decay of two-dimensional, isotropic, homogeneous turbulent flows was carried out by Herring, Orszag, Kraichnan, and Fox (1974), and turbulence theories were tested. The first simulation of three-dimensional, homogeneous, isotropjc turbulence was made by Orszag and Patterson (1971). Schumann (1975) also simulated isotropic turbulence numerically and studied the velocity and pressure fluctuations. Three-dimensional, homogeneous, isotropic, incompressible turbulence has been studied at Stanford University using the large eddy simulation technique. Kwak, Reynolds, and Ferziger (1975), and Shaanan, Ferziger, and Reynolds (1975) simulated isotropic turbulence and obtained very good agreement with the experimental results of Comte-Bellot and Corrsin. Clark, Ferziger, and Reynolds (1977) carried out a direct calculation for the isotropic, homogeneous turbulent flows at low Reynolds number and used it to study subgrid scale modeling.

There is also a series of experiments in heated isotropic turbulence. In all cases the heating was small enough that the temperature could be assumed a passive scalar and density variations neglected. The diffusion of heat from a fixed line source in grid-generated, nearly isotropic turbulence was studied experimentally by Schubauer (1935), Collis (1948), Frenkiel (1950), Townsend (1951), Uberoi and Corrsin (1952), Shlien and Corrsin (1974), and Libby (1975). These experiments studied the downstream development of temperature fluctuations and
measured statistical properties such as length scales, decay rates, velocity-velocity and velocity-temperature correlations, and spectra.

The fluctuating temperature field in isotropic turbulence generated by unfformly heated grids was studied by Kistler, 0^{\prime} Brien, and Corrsin (1956), Mills and Corrsin (19.59), Yeh and van Atta (1973), Sepri (1976), and Warhaft and Lumley (1979). They have presented various correlations, length scales, and spectra of the scalar and velocity fields. Table 1-1 summarizes the basic parameters of the above experiments. Yeh et al. (1974) carried out their experiment at relatively low Reynolds number and studied the spectral transfer of the scalar and velocity fields. Table $1-1$ shows that, unlike the decay exponent of the turbulent kinetic energy, the decay exponent of the fluctuating scalar intensity varies considerably from one experiment to another. Domis (1979) simulated the flow by large eddy simulation and studied the effects of the initial length scales on the decay exponent of the scalar. He concluded that the decay exponent of the scalar is a linear function of the initial length scale ratio. We shall study the effects of Reynolds number and Prandtl number on the decay exponents.

VenKata
Non-uniformly heated grids were used by Wiskind (1962) and Venkela ramail mant and Chevray (1978) to generate a uniform temperature gradient in isotropic turbulence. Measurements of probability and joint probability clensities of velocity and temperature as well as spectra and the other turbulence statistics were obtained in the latter experiment. Cornelius and Foss (1978) measured the diffusion of particles in isotropic turbulence by a unique method.

B. Homogeneous Shear Flows

Reis (1952) studied homogeneous shear flows mathematically. Rose (1966) experimentally generated this flow and studied the behavior of the turbulence intensities. Champagne, Harris, and Corrsin (CHC) (1970), Harris, Graham, and Corrsin (HGC) (1976), Rose (1970), Hwang (1971), and Mulhearn and Luxton (1975) studied this flow at higher Reynolds numbers. These experiments measured the shear stress correlations, various length scales, one- and two-point velocity correlations, spectra, and the kinetic energy of turbulence. Table 1-2 summarizes
some of the basic parameters of these flows. Rose's experiment was carried out at lower Reynolds number and the Harris et al. experiment at higher shear rate.

Numerical simulations of homogeneous shear flows were made by Shannan, Ferziger, and Reynolds (1975) using large eddy simulation. Later, R. S. Rogallo (1977) made direct simulations of Reynolds number homogeneous turbulent shear flows. Similar calculations were done for the compressible case by Feiereisen, Reynolds, and Ferziger (1981).

Temperature as a passive scalar in homogeneous shear flows was studied by Tavoularis (1978). He generated a turbulent homogeneous shear flow with a uniform mean temperature gradient and studied the statistics of the scalar field, as well as the velocity field. The basic parameters of this experiment are similar to those of the Harris et al. experiment and are shown in Table 1-2. He used air (Prandtl number 0.7) and the mean-temperature gradient was $9.5 \mathrm{C} / \mathrm{m}$. We shall compare our computed scalar field results with this experiment. Fox (1964) simulated the heat transfer in a two-dimensional, homogeneous shear flow numerically, and studied the effect of molecular Prandtl number on the turbulent heat flux and the turbulent Prandtl number.

1.3 Motivations and Objectives

Homogeneous shear flow is a flow of complexity between that of unsheared isotropic homogeneous turbulence and inhomogeneous shear flows. Although simple (it does not contain rigid boundaries, laminarturbulent interfaces, or other inhomogeneities), it retains many basic features of sheared turbulence, such as production of turbulent kinetic energy from mean shear and non-zero Reynolds shear stress. This flow has been generated experimentally by several investigators mentioned in the previous section. From this flow, many turbulent statistics can be calculated and turbulence theories and models tested.

The investigation of mixing of a scalar in turbulent flows is of great importance. Turbulent mixing occurs in any flow which includes mass or heat transfer. There are many applications in meteorology and oceanography, as well as engineering. The last includes reacting flows as well as flows in which heat transfer is important.

We shall study mixing of a passive scalar in homogeneous turbulent shear flows and compare the scalar field with the velocity field. This helps us to understand some basic phenomena of turbulence. By means of analogy between the velocity field and the scalar field, we shall study various aspects of turbulent mixing. We shall also test some turbulence models.

Our specific objectives are these:

1. To compute the mixing of a passive scalar in isotropic turbulent flow at relatively low Reynolds number by solving the Navier-Stokes and concentration equations numerically. We shall calculate r.m.s. values of velocity components and the scalar quantity, various length scales, spectra, and the decay exponent ratio between the scalar field and the velocity field. We shall study the effects of the Reynolds and Prandtl numbers on the decay rate of turbulent kinetic energy and the r.m.s. value of the scalar quantity. All of these results will be compared with experiment.
2. To compute the behavior of a passive scalar in a turbulent homogeneous shear flow, with uniform scalar gradient. In this flow we shall calculate one- and two-point correlations, turbulent Prandtl/ Schmidt number, r.m.s. values of velocity, scalar, and pressure, skewness, various length scales, and spectra. We shall study the effects of Reynolds number, Prandtl number, and shear number (a non-dimensional shear rate) on the turbulence statistics. We shall present correlations for many of the turbulence statistics. Special attention will be given to the turbulent Reynolds stresses and the turbulent heat flux. Finally, energy and heat transfer between the various sizes of eddies will be discussed by calculating the spectra of the transfer terms.
3. To test various models for heat/mass flux, Reynolds stress, pressure-strain and pressure-scalar covariences. The validity of the models as well as the constants for each models will be studied.

Table 1-1
Descriptions and Results of Various Experiments and Numerical Simulations on Decay of Temperature Fluctuations
in Grid-Generated Homogeneous Isotropic Flows

	$\operatorname{Re}_{\lambda}{ }^{*}$	$\operatorname{Re}_{\mathrm{M}}{ }^{* *}$	Pr	n	m	$\lambda_{\mathrm{u}} / \lambda_{\theta}$
Yeh \& Van Atta (1973)	60.97	10550	0.725	1.37	1.33	0.718
Sepri (1976)	60.62	10484	0.72	1.39	1.4	$?$
Warhaft and Lumley (1978)	130	10000	0.72	1.34	$.858-1.407$	$.216-0.316$
Domis (1979)	80.97	10550	0.72	0.885	$0.91-2.03$	$0.71-0.93$

${ }^{*} \operatorname{Re}_{\lambda}$ is the Reynolds number based on the Taylor microscale and turbulent velocity.
${ }^{* *} \operatorname{Re}_{\mathrm{M}}$ is the Reynolds number based on the mesh size and streamwise velocity.

Table 1-2

Description of Various Experiments on Homogeneous Shear Flows

Experiment	Shear Rate S (sec $\left.{ }^{-1}\right)$	Reynolds No. Re $_{\lambda}$	Shear No. L** *	Total Shear St
Rose (1966)	13.68	133.0	9.53	3.2
Champagne et al. (1970)	12.90	204.8	7.79	3.2
Harris et al. (1977)	44.0	396.4	8.28	10.81
Tavoularis (1979)	46.8	397.9	14.76	12.65

*The values of $\operatorname{Re} e_{\lambda}$ and A are given at $x_{1} / h=7.5$ for Rose and Harris et al., at $\hat{x}_{1} / h=8.5$ for Champagne et al., and at $x_{1} / h=11$ for Tavoularis.
** The shear number is defined, as $\alpha=S L / q$, where L is integral length scale and $q=\left\langle u_{i} u_{i}\right\rangle^{1 / 2}$.

Chapter II

COMPUTATIONAL METHODS

One of the major difficulties in numerical calculations of turbulent flows is the wide range of length scales in the flow. To capture the large scales of turbulence, the computational box has to be bigger than the largest scale. On the other hand, to resolve the smallest scale of turbulence in a grid-based calculation, the mesh size has to be smaller than the smallest length scale, which is the Kolmogoroff microscale defined as:

$$
\begin{equation*}
\eta=\left(v^{3} / \varepsilon\right)^{1 / 4} \tag{2-1}
\end{equation*}
$$

where ν is the kinematic viscosity and ε is the dissipation rate, i.e., the rate of destruction of turbulent kinetic energy by viscosity. The dissipation is also related to the large scale by the relation:

$$
\begin{equation*}
\varepsilon=c_{o} q^{3} / L_{d} \tag{2-2}
\end{equation*}
$$

where q is the r.m.s. velocity $\left(q^{2}=\left\langle u_{1}^{2}\right\rangle+\left\langle u_{2}^{2}\right\rangle+\left\langle u_{3}^{2}\right\rangle\right), L_{d}$ is a large eddy length scale, and C_{o} is a proportionality constant.

One can find the number of mesh points required to resolve both the large and small scales in a three-dimensional computation by combining the above relations. The number of mesh points required for accurate resolution is approximately

$$
\begin{equation*}
\left(\frac{L_{d}}{\eta}\right)^{3}=\left(\frac{q L_{d}}{v}\right)^{9 / 4}=\operatorname{Re}_{L}^{9 / 4} \tag{2-3}
\end{equation*}
$$

and depends strongly on Reynolds number. Since, from a practical point of view, the number of mesh points is limited by the computational speed and size of the computer memory, computations are currently limited to low turbulent Reynolds numbers. In our case, with 64^{3} cubed mesh points, the Reynolds number has to be less than about 100 .

2.1 Governing Equations

The equations of motion for an incompressible fluid are:

$$
\begin{gather*}
\frac{\partial U_{i}}{\partial T}=-\frac{\partial U_{i} U_{j}}{\partial X_{j}}-\frac{\partial P}{\partial X_{i}}+v \frac{\partial^{2} U_{i}}{\partial X_{j} \partial X_{j}} \tag{2-4}\\
\frac{\partial U_{i}}{\partial X_{i}}=0 \tag{2-5}\\
\frac{\partial C}{\partial T}=-\frac{\partial C U_{i}}{\partial X_{i}}+D \frac{\partial^{2} C}{\partial X_{j} X_{j}} \tag{2-6}
\end{gather*}
$$

where U, P, V, C, and D are velocity, ratio of pressure to density, kinematic viscosity, scalar concentration, and diffusion coefficient, respectively. The summation convention is implied. Note that the scalar quantity can be temperature or concentration of a species.

Instead of satisfying the incompressible continuity equation, we use the Poisson equation. This equation is derived by taking the divergence of Eq. (2-4) and using Eq. (2-5) to eliminate some of the terms. The result is

$$
\begin{equation*}
\nabla^{2} p=-\frac{\partial^{2} U_{i} U_{j}}{\partial X_{i} \partial X_{j}} \tag{2-7}
\end{equation*}
$$

2.2 Numerical Approximations

The governing equations given above do not have analytical solutions for turbulent flows, and numerical approximations must be made. Since the data will be discretized onto mesh points, we must approximate partial derivatives in terms of the data at these points. We use the pseudo-spectral method for this purpose. This method, which is good for problems with periodic boundary conditions, has been analyzed by Lanczos (1956) and has been proposed by Orszag and Patterson (1971) and Kreiss and Oliger (1973) as an approximation method and used by many computors since then. Mansour et al. (1977) used the pseudo-spectral method and compared it with some second-order and fourth-order finite-difference schemes. They showed that use of the pseudo-spectral method improved accuracy considerably. The method is briefly explained below.

Suppose a function of one variable $F(X)$ is periodic with period L. For equally spaced mesh points such a function can be approximated at the mesh points as follows:

$$
\begin{equation*}
F\left(X_{j}\right)=\sum_{n=-N / 2}^{N / 2-1} \hat{F}\left(k_{n}\right) e^{i k_{n} X} j \tag{2-8}
\end{equation*}
$$

where

$$
\begin{align*}
& N=\text { number of mesh points, } \\
& X_{j}=h j, \quad j=0,1,2,3, \ldots, N-1, \\
& h=\text { mesh size, } \\
& k_{n}=\frac{2 \pi}{N h} n, \quad n=-\frac{N}{2} \cdots, 0, \ldots, \frac{N}{2}-1, \text { and } \\
& \hat{F}\left(k_{n}\right)=\frac{1}{N} \sum_{j} F\left(X_{j}\right) e^{-i k_{n} X} j \tag{2-9}
\end{align*}
$$

To compute $\hat{F}(k)$, we use the Fast Fourier Transform (FFT), originally developed by Cooley and Tukey (1963). This algorithm is good for N $=2^{n}$, where n is an integer (see, for example, Bracewell (1965). Newer methods are efficient for other numbers of points but are not needed for our purposes.

If we regard the expansion (2-8) as an interpolation formula and replace X_{j} by a continuous variable X, the derivative of $F(X)$ with respect to X can be approximated by

$$
\begin{equation*}
\frac{d F(X)}{d X}=\sum_{n} \hat{F}\left(k_{n}\right) i k_{n} e^{i k_{n} X} \tag{2-10}
\end{equation*}
$$

Therefore, to compute $\mathrm{dF}(\mathrm{X}) / \mathrm{dX}$, we calculate the Fourier transform of $F(X)$, multiply it by $i k$, and take its inverse Fourier transform.

To advance in time, a second-order Adams-Bashforth (AB) method was used. It has been shown by Billy (1965) that this method is weakly unstable, but its spurious computational production of kinetic energy is small. A fourth-order Runge-Kutta method would be more stable; however, it is more expensive and requires larger computer memory.

The $A B$ method of advancing the solution of $\partial U / \partial t=H$ from the time step n to time step $n-1$ is

$$
\begin{equation*}
U^{n+1}=U^{n}+\frac{1}{2} \Delta t\left(3 H^{n}-H^{n-1}\right) \tag{2-11}
\end{equation*}
$$

where Δt is the time step.
As we see, it is a two-step explicit method and needs a starting method; we use the Euler method to start the calculation. The Euler formula is

$$
\begin{equation*}
U^{n+1}=U^{n}+\Delta t H^{n} \tag{2-12}
\end{equation*}
$$

2.3 Initial Conditions

We start with an initial velocity field that is randomly chosen, but which satisfies continuity and has a given three-dimensional spectrum. To obtain such an initial field, we first use computer-generated random numbers for each component of velocity at each mesh point, $U_{i}^{(R)}$. To this we add the gradient of a potential which will be chosen to make the field divergence-free:

$$
\begin{equation*}
U_{i}^{(S)}=U_{i}^{(R)}+\frac{\partial \phi}{\partial X_{i}} \tag{2-13}
\end{equation*}
$$

To make $U_{i}(S)$ divergence-free, we take the divergence of the above equation and set $\partial U_{i}^{(S)} / \partial X_{i}=0$ to find

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial X_{i} \partial X_{i}}=-\frac{\partial U_{i}^{(R)}}{\partial X_{i}} \tag{2-14}
\end{equation*}
$$

This is a Poisson equation for the potential and is solved by a Fourier transform method. The Fourier transform of Eq. (2-14) is:

$$
\begin{equation*}
k^{2} \hat{\phi}=-i k_{i} \hat{U}_{i}^{(R)} \tag{2-15}
\end{equation*}
$$

From this equation, we calculate $\hat{\phi}$, invert the Fourier transform to get ϕ, and substitute into Eq. (2-13) to get the desired divergencefree field.

Now we take the Fourier transform of the resulting field and multiply each mode by a factor such that the desired three-dimensional
spectrum is obtained. The resulting field is nearly isotropic, divergence-free, and has the desired spectrum.

We use a similar procedure to calculate the initial scalar field. We start with a field of random numbers and take its Fourier transform. Then we multiply each mode by a factor which yields the desired spectrum for the passive scalar.

The initial three-dimensional spectra of the velocity and scalar fields are step functions. The width, location, and height of the spectra determine the initial Taylor microscales, integral length scale, and the r.m.s. values of turbulent velocity components and scalar concentration. All the initial values are non-dimensionalized (the computational box length is 2π) and must be scaled to obtain the dimensional values. The problem contains three dimensional units: length, time, and temperature (or mass in the case where the scalar is concentration). To dimensionalize the results, we need a length, a time, and a temperature or mass, or three independent combinations of these parameters.

2.4 Computation of Homogeneous Isotropic Turbulent Flows with Decay of

a Passive Scalar
In this section we consider a method of computation for simulating a grid-generated isotropic homogeneous flow. The computational box is shown in Fig. 2-1.

The governing equations for this case are Eqs. (2-4), (2-6), and (2-7). The mean values of velocity, pressure, and scalar quantity are set to zero. The initial spectra of velocity and the scalar are given in Fig. 2-2. For all cases we use $32 \times 32 \times 32$ equally spaced mesh points. The accuracy and stability of the numerical method are discussed in Appendix A and will be explained later in Section 3D of this chapter.

The computing time per time step is approximately 3.2 seconds of CPU time on the ILLIAC IV.

2.5 Computation of Homogeneous Turbulent Shear Flow with Decay of a Passive Scalar

In this section we derive governing equations numerically to simulate turbulent homogeneous shear flow with a passive scalar. We also describe the computational details.

A. Mean Values of Velocities and Scalar Quantity

In homogeneous flows, the mean values of the velocity components and scalar concentration may vary with time and/or space. We are interested in mixing a passive scalar in a homogeneous shear flow with the following mean values of velocity, pressure, and concentration:

$$
\begin{align*}
& \overline{\mathrm{U}}_{1}=\mathrm{SX} \\
& \overline{\mathrm{U}_{2}}=0 \\
& \overline{\mathrm{U}_{3}}=0 \tag{2-16}\\
& \overline{\mathrm{P}}=0 \\
& \overline{\mathrm{C}}=\mathrm{S}_{2} \mathrm{X}_{2}
\end{align*}
$$

where an overbar denotes an ensemble average and S and S_{2} are shear rate and mean concentration gradient, respectively. The mean values, as shown above, remain unchanged throughout the simulation.

The fluctuating quantities are defined as follows:

$$
\begin{align*}
& \mathbf{u}=\mathrm{U}-\overline{\mathrm{U}} \\
& \mathbf{v}=\mathrm{V}-\overline{\mathrm{V}} \tag{2-17}\\
& \mathbf{w}=W-\bar{W}
\end{align*}
$$

or

$$
\begin{aligned}
u_{i} & =U_{i}-\bar{U}_{i} \\
p & =P-\bar{P}
\end{aligned}
$$

and

$$
\begin{equation*}
\theta=C-\bar{C} \tag{2-18}
\end{equation*}
$$

B. Coordinate Transformations

If we substitute Eqs. (2-15) and (2-16) into Eqs. (2-4), (2-5), and $(2-6)$, we get the set of equations

$$
\begin{gathered}
\frac{\partial u_{i}}{\partial X_{i}}=0 \\
\frac{\partial u_{i}}{\partial t}=-\frac{\partial u_{i} u_{j}}{\partial X_{j}}-S X_{2} \frac{\partial u_{i}}{\partial X_{1}}-S u_{2} \delta_{i j}-\frac{\partial p}{\partial X_{i}}+\nu \frac{\partial^{2} u_{i}}{\partial X_{j} \partial X_{j}} \\
\frac{\partial \theta}{\partial t}=-\frac{\partial \theta u_{j}}{\partial X_{j}}-S X_{2} \frac{\partial \theta}{\partial X_{1}}-S S_{2} u_{2}+D \frac{\partial^{2} \theta}{\partial X_{j} \partial X_{j}}
\end{gathered}
$$

Periodic boundary conditions cannot be applied to these equations. They are prohibited by the presence of $S X_{2}$ as a coefficient in one term of each of the last two equations. These terms are different at the top and bottom of the computational box, and application of periodic boundary conditions to them would result in numerical errors similar to the Gibbs phenomenon at these two boundaries. We therefore introduce a coordinate transformation which eliminates the non-periodic terms. The new coordinates are

$$
\begin{align*}
\mathrm{x}_{1} & =\mathrm{x}_{1}-\mathrm{Sx} \mathrm{x}_{2} \mathrm{t} \\
\mathrm{x}_{2} & =\mathrm{x}_{2} \tag{2-20}\\
\mathrm{x}_{3} & =\mathrm{x}_{3}
\end{align*}
$$

The new coordinate system moves with the mean flow, as shown in fig. 2-3.

Transforming the equations to the new coordinate is a little complicated and is done by using the chain rule. Details are given in Appendix B. The resulting equations will be given below.

C. The Governing Equations

The governing equations are obtained by applying the transformation (2-20) to equations (2-19). The transformed continuity equation is

$$
\begin{equation*}
u_{i, i}-\text { St } u_{2,1}=0 \tag{2-21}
\end{equation*}
$$

The momentum equations become

$$
\frac{\partial u_{i}}{\partial t}=-\left(u_{i} u_{j}\right), j+S t u_{i} u_{2}-S u_{2} \delta_{i 1}-p_{, i}+v\left(u_{i, j j}-2 S t u_{i, 12}+S^{2} t^{2} u_{i, 11}\right)
$$

The Poisson equation for the pressure is

$$
\begin{equation*}
P_{, i i}-2 S t p_{, 12}+S t^{2} p_{, 11}=H_{i, i}-S t H_{2,1} \tag{2-23}
\end{equation*}
$$

Finally, the scalar equation becomes
$\frac{\partial \theta}{\partial t}=-\left(\theta u_{j}\right), j+\operatorname{St}\left(\theta u_{2}\right), 1-S_{2} u_{2}+D\left[\theta, j j^{-2 S t \theta}, 12^{\left.+S^{2} t^{2} \theta, 11\right]}\right.$

In Eq. (2-22)

$$
\begin{equation*}
H_{i}=-\left(u_{i} u_{j}\right), j+S t\left(u_{i} u_{2}\right), 1-S u_{2} \delta_{i 2}+v\left(u_{i, j j}-2 S t u_{i, 12}+S^{2} t^{2} u_{i, 11}\right) \tag{2-25}
\end{equation*}
$$

The governing equations for turbulent homogeneous shear flow with mixing of a passive scalar are (2-22) through (2-24). The transformed equations admit periodic boundary conditions, which in turn permit the use of spectral methods of computing derivatives.

The Poisson equation for the pressure must be derived such that the continuity equation is satisfied at the following time. The discretized equation for pressure which has this property when we use the AdamsBashforth method for the time differencing has the following form.:
$\left[\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{j}}-S(2 n+1) \Delta t \frac{\partial^{2}}{\partial x_{1} \partial x_{2}}+s^{2} n(n+1) \Delta^{2} \frac{\partial^{2}}{\partial x_{1}^{2}}\right] p^{n}=H_{i, i}^{n}$

$$
\begin{align*}
\mathrm{G}^{\mathrm{n}}= & \mathrm{H}_{\mathrm{i}, \mathrm{i}}^{\mathrm{n}-1}-\mathrm{p}_{, \mathrm{ii}}^{\mathrm{n}-1}+\mathrm{S}(\mathrm{n}-1) \Delta \mathrm{t} \mathrm{p}_{, 12}^{\mathrm{n}-1} \tag{2-27}\\
& -\mathrm{S}(\mathrm{n}+1)\left[\mathrm{H}_{2,1}^{\mathrm{n}-1}-\mathrm{p}_{, 12}^{\mathrm{n}-1}+\mathrm{S}(\mathrm{n}-1) \Delta \mathrm{tp}, 11\right] \Delta \mathrm{t}
\end{align*}
$$

D. Remeshing

There are terms in Eqs. (2-21) through (2-24) which contain $S t$ as a coefficient. As time increases, these terms become large and cause numerical problems. In other words, the x_{1} and x_{2} axes become more nearly parallel as time increases and the equations become stiff. To avoid this problem we use a procedure which was first used by Rogallo (1978). We start the calculation with coordinates orthogonal (Fig. 23a). Then, after a number of time steps (see Fig. 2-3b) we stop the calculation and rotate the $x_{1}=0$ line to the other side of the normal, as shown in Fig. 2-3c, and continue the calculations. This procedure is called remeshing and is exact only if it is done at $\mathrm{St}=$ 0.5 , 1.0 , or 1.5 , etc. for these times, there is no need to interpolate the data to get the information at the new mesh points after remeshing. However, there is an aliasing problem associated with this. To show this, let us assume that the velocity, u, at $S t=$ 0.5, has the form:

$$
\begin{equation*}
u\left(x_{1}, x_{2}\right)=u\left(k_{1}, k_{2}\right) e^{i k_{1} x_{1}} e^{-i k_{2} x_{2}} \tag{2-28}
\end{equation*}
$$

If remeshing is done at $\mathrm{St}=0.5$, then, after remeshing, $\mathrm{St}=$ -0.5 and the new coordinate is:

$$
\begin{gather*}
x_{1}^{\prime}=x_{1}+x_{2} \tag{2-29}\\
x_{2}^{\prime}=x_{2}
\end{gather*}
$$

Substituting (2-29) into (2-28), we find the velocity after remeshing has the following form:

$$
\begin{equation*}
u\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=\hat{u}\left(k_{1}, k_{2}\right) e^{i k_{1} x} e^{-i\left(k_{1}+k_{2}\right) x_{2}} \tag{2-30}
\end{equation*}
$$

If $\quad k_{\rrbracket}+k_{2}$ falls outside the available wavenumber range, the information will appear in lower wave numbers. This problem is called aliasing and can be eliminated by setting the amplitudes of wavenumbers at and above two-thirds of the maximum wavenumber to zero both before and after remeshing.

E. Computational Details

In homogeneous shear flows, the length scales grow indefinitely. Therefore, the assumption of periodic boundary conditions with finite period becomes invalid after some time. However, if we use a relatively large computational box, we are able to study the flow for a limited time, i.e., until the large scales become comparable to the box length. The number of mesh points is limited by the size of the computer memory. The maximum number of mesh points one can use on available computers is $64 \times 64 \times 64$. In most of our computer runs, we were able to carry the computation up to $S t=7.0$, at which time the length scales become too large. The number of time steps for each run depends on the time step and the shear rate, and varies between 182 and 900. The computing time per computational time step is about 68.49 seconds of CPU time on ILLIAC IV.

The acccuracy and stability of the numerical method are discussed in Appendix A and briefly explained below. A two-step method has two roots when applied to the equation:

$$
\begin{equation*}
\frac{d f}{d t}=\left(N_{v}+i N_{c}\right) f \tag{2-31}
\end{equation*}
$$

For the method of Eq. (2-11), these roots are

$$
\begin{equation*}
R_{1,2}=\frac{1}{2}-\frac{3}{4}\left(N_{v}+i N_{c}\right) \pm \sqrt{\frac{1}{4}-\frac{9}{16}\left(N_{v}+i N_{c}\right)^{2}-\left(N_{v}+i N_{c}\right)} \tag{2-32}
\end{equation*}
$$

R_{2} is a parasitic root. For the case when f in Eq. (2-31) is u_{i}, using linear stability analysis (see Appendix A), the Courant number, N_{c}, and the viscous stability parameter, N_{V}, are defined as

$$
\begin{gather*}
N_{c}=\frac{N-1}{2}\left[\left|u_{1 \max }\right|+(1+S t)\left|u_{2 \max }\right|\right] \Delta t \tag{2-33}\\
N_{v}=\left[\left(\frac{N-1}{2}\right)^{2}\left(-3+2 S t-s^{2} t^{2}\right)+\frac{1}{2} S\left|\frac{u_{2 \max }}{u_{1 \max }}\right| \delta_{i 1}\right] v \Delta t(2-34)
\end{gather*}
$$

The values of R_{1} and R_{2} as a function of C_{c} and N_{v} are given in Table 2-1. We chose Δt such that N_{c} and N_{v} and therefore $\cdot R_{1}$ and R_{2} lie in the range where the solution is stable and more accurate. For the isotropic case, $S=0$, we chose the time step, $\Delta t=0.21$, so that both N_{c} and N_{v} are less than 0.3 . For the homogeneous shear flow, the time step is also chosen to give a Courant number of less than 0.3.

The initial three-dimensional spectra of energy and scalar quantity are similar to those used for the isotropic homogeneous case, and are given in Fig. 2-4.

Table 2-1
Accuracy and Stability Limits

N_{ν}	N_{c}	R_{1}	R_{2}
0.0	0.0	1.00	0.00
0.0	0.1	1.00^{+}	0.050
0.0	0.2	1.00^{+}	0.010
0.0	0.3	1.00^{+}	0.150
0.0	0.4	1.01	0.198
0.1	0.0	0.905	0.552
0.1	0.1	0.904	0.0782
0.1	0.2	0.900	0.124
0.1	0.3	0.895	0.177
0.1	0.4	0.888	0.232
0.2	0.0	0.822	0.122
0.2	0.1	0.819	0.136
0.2	0.2	0.812	0.174
0.2	0.3	0.800	0.225
0.2	0.4	0.780	0.287
0.3	0.0	0.750	0.200
0.3	0.1	0.747	0.211
0.3	0.2	0.738	0.244
0.3	0.3	0.721	0.294
0.3	0.4	0.694	0.360

Fig. 2-1. The computational box. L_{b} is the box length and h is the mesh
size.

Fig. 2-3. Coordinate transformation and remeshing.
(a) Coordinate at $S t=0 . \quad$ (before remeshing).
(c) Coordinate at $S t=-0.5$ (after remeshing).

Fig. 2-4. Three-dimensional initial energy (or scalar) spectruin $\left(64^{3}\right.$ mesh points).

In this chapter we describe the construction and testing of the computer code and list the parameters of the flow fields simulated by the code.

3.1. ILLIAC-IV Computer

The computations are done on the ILLIAC-IV computer. The ILLIAC contains 64 processors which operate in parallel and are controlled by a central managing computer. Elach processor has a rather small memory. The array of processors has access to a large rotating disk on which most of the flow field data reside. Portions of the data are transferred to the computer memory for the actual processing. The computer program and data management must be constructed carefully so that (a) the time spent transferring the data from the disk to the computer memory and vice-versa is minimized, (b) modification of the code and analyzing the results are easily done. We chose the data-management system developed by Lomax (1967). In that system, called the "pencil system," we move a column of data containing $8 \times 16 \times \mathrm{N}$ words, where N is the number of mesh points in a given direction, at a time (see Fig. 3-1). All derivatives in one direction are computed while the appropriate column of data is in the computer memory. To compute all the derivatives, it is necessary to go through the entire flow field three times. This involves a lot of data transfer. However, the time consumed in transferring the data from the disk to the computer memory or vice-versa is a rather small portion of the total time 8.8% for 64^{3} mesh points).

3.2. The Code

The computer program contains three different codes:
A. A code which computes the initial conditions. This code generates and stores the initial fields for both hydrodynamic and the scalar fields (see Chapter II, Section 2.3, for details of this program).
B. The main code, which advances the velocity and scalar fields in time using the Poisson, Navier-Stokes, and diffusion equations, as discussed in Chapter II. This code also stores the velocity and scalar fields on tape at the time when the coordinates are orthogonal (St = 0); in the case of an isotropic homogeneous flow, the flow field is stored every 50 time steps.
C. A code which uses the flow fields to compute various turbulence statistics and one- and three-dimensional spectra of various terms.

We also used IBM 360 and CDC 7600 computers for final data reductions and for plotting the data.

The ILLIAC codes can operate with $16^{3}, 32^{3}$, and 64^{3} mesh points. The run time for each case is given in Chapter II.

3.3. Testing the Code

It is important to make sure that the code is properly constructed. To check the validity of the results, the following items were examined.
A. Conservation Laws

The simulated flow fields satisfy continuity and the energy balance throughout the computations. The relative error for continuity is

$$
\frac{\left(u_{i, i}\right)_{\max }}{q / L}=0.001 \%
$$

and, for the energy balance,

$$
\frac{\frac{\mathrm{dq} / 2}{\mathrm{dt}}}{\text { Production - Dissipation }}-1=\text { few percent }
$$

where the production and dissipation terms are calculated directly, and a second-order approximation is used to calculate $\mathrm{dq}^{2} / \mathrm{dt}$. The errors in the energy balance are mainly due to the time differencing.

B. Comparison with Similar Computed Flow Fields.

The simulated hydrodynamic field is checked against the results obtained by Rogallo (1978) and Feiereisen et al. (1981), who independently developed similar codes to simulate homogeneous turbulent shear flows for incompressible and compressible flows, respectively. The overall behavior of turbulent: statistics for the hydrodynamic field, as will be explained in Chapter VI, are similar in all three simulated flow fields.

C. Comparison with the Exact Solutions of the Navier-Stokes and Diffusion Equations

An exact analytical solution to the Navier-Stokes and diffusion equations for two-dimensional incompressible flow exists. This solution, which is known as the vortex-cell or two-dimensional Taylor-Green solution, represents a flow field consisting of two-dimensional vortices, arranged rectangularly, which decay in strength with time. The solution has the following form:

$$
\begin{align*}
u & =-A \cos k_{1} x_{1} \sin k_{2} x_{2} e^{-\left(k_{1}^{2}+k_{2}^{2}\right) v t} \\
v & =A \frac{k_{1}}{k_{2}} \sin k_{1} x_{1} \cos k_{2} x_{2} e^{-\left(k_{1}^{2}+k_{2}^{2}\right) v t} \\
C & =B \cos k_{1} x_{1} \cos k_{2} x_{2} e^{-\left(k_{1}^{2}+k_{2}^{2}\right) D t} \tag{3-1}\\
P= & -\frac{A^{2}}{4} \cos 2 k_{1} x_{1}+\frac{k_{1}^{2}}{k_{2}^{2}} \cos 2 k_{2} x_{2} e^{-2\left(k_{1}^{2}+k_{2}^{2}\right) v t}
\end{align*}
$$

We set the initial conditions by putting $t=0$ in Eqs (3-1). We obtain the results for several values of k_{1} and k_{2} and for both inviscid and viscous flows. Note that k_{1} and k_{2} must be small to avoid aliasing. The exact results were compared with results obtained from the computer code after 80 time steps. To check the coordinate transformation, we obtained the results for skewed coordinates when St $=0.5$. For all cases the results were obtained using 16^{3} mesh points, and the difference between the exact results and the computer results was less than $1.7 \times 10^{-4} \%$.

D. Comparison with Experimental Data

As mentioned in the first chapter, homogeneous shear flow was generated experimentally by several people, we mainly check our results with the experiment by Tavoularis (1978), because they generated both hydrodynamic and scalar fields. As will be discussed in Chapter VI, our results are in very good agreement with the results obtained from this experiment. However, since the experimental results are obtained at higher Reynolds number than the simulated results, there are slight differences between the results.

3.4. Description and Details of the Computer Runs

We have simulated several flow fields for both isotropic homogeneous turbulence and homogeneous turbulent shear flow. For each run, the computed flow field can be divided into three parts.

A. The "Developing" Region

As described in the last chapter, we start the computations with artificial initial fields. Therefore, there is an initial period in which the simulated flow fields are not true turbulent fields. This is called the "developing" period. In the case of isotropic homogeneous flow, the development is considered complete when the velocity and the scalar derivative skewnesses reach asymptotic values. The skewness is defined as:

$$
\begin{equation*}
S_{k}=\left\langle\left(\frac{\partial u_{i}}{\partial x_{i}}\right)^{3}\right\rangle /\left\langle\left(\frac{\partial u_{i}}{\partial x_{i}}\right)^{2}\right\rangle \quad \text { (no summation) } \tag{3-2}
\end{equation*}
$$

In the shear flow with mixing of a scalar whose mean is linear in space, the criteria by which the end of the development period is judged are:
(1) The shear stress correlation coefficient $\left\langle u_{1} u_{2}\right\rangle / u_{1}^{\prime} u_{2}^{\prime}$ and one point velocity scalar correlation coefficient $\left\langle\theta u_{i}>/ \theta^{\prime} u_{i}^{\prime}\right.$ reach asymptotic values (see Fig. 6-17), where u_{i}^{\prime} and θ^{\prime} are the r.m.s. velocity and scalar fluctuations.
(2) The three-dimensional spectra of kinetic energy and the scalar reach asymptotic shapes.
(3) The ratio of production to dissipation in the turbulent kjnetic energy and r.m.s. scalar fluctuation equations reach asymptotic values.
(4) The rate of change of Reynolds stress anisotropy tensor with time becones small.
B. The "Developed" Region

After the initial period, there is a period in which the simulated flow fields can be regarded as true turbulent flows. In this period, the statistics are extracted from the flow fields. These will be discussed extensively in Chapters V and VI. For all computed runs, the developed region lies between $S t=4$ and $S t=7$, where $S t$ is nondimensional time.

C. The "Anomalous" Region

In both isotropic and shear flows, the scales of motion grow with time, and there is a time at which the scales become too large for the computational box and the periodic boundary conditions are no longer accurate. Beyond this point, the flow fields do not accurately represent homogeneous shear flow (or isotropic flow). Therefore the simulation is stopped. This time is chosen by looking at the two-point correlations of the velocity and the scalar fields. The two-point velocity correlation is defined as

$$
\begin{equation*}
R_{i j}(\vec{r})=\frac{\left\langle u_{i}(\vec{x}) u_{j}(\vec{x}+\vec{r})\right\rangle}{\left\langle u_{i}(\vec{x}) u_{j}(\vec{x})\right\rangle} \tag{3-3}
\end{equation*}
$$

For the isotropic flows, we used 32^{3} mesh points and various values of Reynolds and Prandtl numbers. The results will be discussed in Chapter V.

For homogeneous shear flow, we used 64^{3} mesh points and simulated fourteen scalar fields and six different flow fields. Table 3-1 gives some details of the runs.

Table 3-1
DETAILS FOR EACH S IMULATED FIELD

Run	$\begin{aligned} & \text { Reynolds } \\ & \text { Number } \end{aligned}$	```Shear Number* SL/q```	Prandt1 Number	Symbol
HS64A	44.56	18.55	1.00	\square
HS64B	19.00	23.73	1.00	0
HS64C	19.00	23.73	5.00	∇
HS64D	44.56	18.55	5.00	区
HS64E	44.56	18.55	0.20	*
HS64F	19.00	23.73	0.20	∇
HS64G	60.35	66.88	1.00	Δ
HS64H	60.35	66.88	5.00	0
HS64 I	60.35	66.88	0.20	88
HS64J	24.20	11.23	1.00	+
HS64M	29.16	8.94	1.00	X
HS64N	29.16	8.94	. 20	田
HS640	64.31	6.38	1.00	
HS64P	64.31	6.38	0.20	(4)

Fig. 3-1. The computational box with three columns of data in different directions.

Chapter IV

STATISTICAI MODELS OF TURBULENCE

In this chapter, we present averaged equations for both the hydrodynamic and scalar fields. We are interested in comparing and contrasting the behavior of terms in the equations for two fields. We also present some of the models which have been used for the various terms in these equations. The terms which are modeled can be calculated from the numerical results of the preceding chapter and will be discussed in the following chapters.

The equations are derived for homogeneous shear flow. They can be used for isotropic homogeneous flows by setting $S=S_{2}=0$. In order to avoid complexity, we derive the equations for the case when the coordinates are orthogonal, i.e., St $=0$.

4.1 Equations for Turbulent Statistical Quantities

The equations of motion for homogeneous turbulent shear are Eqs. (2-22) through (2-24). The momentum equation and the convectiondiffusion equation for a scalar quantity have the following forms (note that we set $S t=0$):

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial t}=-\left(u_{i} u_{j}\right), j-S u_{2} \delta_{i 1}-p, i+v u_{i, j j} \tag{4-1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=-\left(\theta u_{j}\right)_{, j}-s_{2} u_{2}+D \theta, j j \tag{4-2}
\end{equation*}
$$

where, as before,

$$
\mathrm{S}=\frac{\partial \overline{\mathrm{U}}_{1}}{\partial \mathrm{x}_{2}} \text { and } \quad \mathrm{S}_{2}=\frac{\partial \overline{\mathrm{C}}}{\partial \mathrm{x}_{2}}
$$

Assuming the boundary conditions for two fields are similar, one sees that there is a close analogy between x_{1}-momentum u_{1} and the scalar θ if $\operatorname{Pr}=\nu / D=1, \quad S=S_{2}$, and $\partial P / \partial x$ is small compared to the other terms. Similarly, if $\partial P / \partial x_{2}$ or $\partial P / \partial x_{3}$ and $S_{2} u_{2}$ are small
(i.e., in the isotropic case), $\operatorname{Pr}=1$ and $S=S_{2}$, then an analogy exists between x_{2} or x_{3}-momentum and the scalar.

The equations describing the three components of turbulent kinetic energy can be derived by taking the volume average of Eq. (4-2) multiplied by u_{i} (no summation):

$$
\begin{align*}
& \frac{\partial\left\langle u_{1}^{2}\right\rangle / 2}{\partial t}=\frac{1}{2} \phi_{11}-\frac{1}{2} \varepsilon_{11}-\left\langle u_{1} u_{2}\right\rangle S \tag{4-3}\\
& \frac{\partial\left\langle u_{2}^{2}\right\rangle / 2}{\partial t}=\frac{1}{2} \phi_{22}-\frac{1}{2} \varepsilon_{22} \tag{4-4}\\
& \frac{\partial\left\langle u_{3}^{2}\right\rangle / 2}{\partial t}=\frac{1}{2} \phi_{33}-\frac{1}{2} \varepsilon_{33} \tag{4-5}
\end{align*}
$$

where

$$
\begin{align*}
\phi_{i j} & =\left\langle p\left(u_{i, j}+u_{j, i}\right)\right\rangle \tag{4-6}\\
\varepsilon_{i j} & =2 v\left\langle u_{i, k} u_{j, k}\right\rangle \tag{4-7}
\end{align*}
$$

and \rangle denotes the volume average. The third term on the right-hand side of Eq. (4-3) is the production term. Through the action of this term, energy is transferred from the mean flow to the fluctuating part of the flow. The pressure-velocity covariance terms, $\phi_{i j}$, transfer energy from $\left\langle u_{1}^{2}\right\rangle$ to $\left\langle u_{2}^{2}\right\rangle$ and $\left\langle u_{3}^{2}\right\rangle$. Thus we expect $\phi_{11}<0$, $\phi_{22}>0$, and $\phi_{33}>0$. Also, $\phi_{11}+\phi_{22}+\phi_{33}=0$, so the sum of these terms neither produces nor destroys turbulent kinetic energy. Thus, these terms merely transfer energy from from one component to another. Since energy is transferred from the mean flow to the large scales of turbulence, we expect the production term and $\phi_{i j}$ to be most important at low wave numbers. $\varepsilon_{i j}$ is the dissipation term. Its trace, $\quad \varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}$, is positive-definite, and is important at relatively high wave numbers. We shall show direct evidence of the spectra of these terms in the following chapter.

The turbulent kinetic energy equation can be obtained by summing Eqs. (4-3), (4-4), and (4-5), and is

$$
\begin{equation*}
\frac{\partial q^{2} / 2}{\partial t}=-\left\langle u_{1} u_{2}\right\rangle s-v\left\langle u_{i, j} u_{i, j}\right\rangle \tag{4-8}
\end{equation*}
$$

The first term represents production and the second, dissipation.
The equation for the rom.s. scalar quantity can be derived from Eq. $(4-2)$ and is:

$$
\begin{equation*}
\frac{\partial\left\langle\theta^{2}\right\rangle / 2}{\partial t}=-\left\langle u_{2} \theta\right\rangle S_{2}-D\left\langle\theta_{, j}^{\theta}, j\right\rangle \tag{4-9}
\end{equation*}
$$

The first term on the right-hand side of Eqs. (4-9) is the production term, and the second is the dissipation term.

The Reynolds stress $\left\langle u_{1} u_{2}\right\rangle$ and turbulent heat flux $\left\langle\theta u_{j}\right\rangle$ equations can be derived in a manner similar to those used in deriving the above equations, and have the following forms:

$$
\begin{align*}
& \frac{\partial}{\partial t}\left\langle-u_{1} u_{2}\right\rangle=\left\langle u_{2}^{2}\right\rangle s-\phi_{12}+\varepsilon_{12} \tag{4-10}\\
& \frac{\partial}{\partial t}\left\langle-\theta u_{2}\right\rangle=\left\langle u_{2}^{2}\right\rangle S_{2}-\phi_{2}+\varepsilon_{2} \tag{4-11}\\
& \frac{\partial}{\partial t}\left\langle\theta u_{1}\right\rangle=-\left\langle u_{2} \theta\right\rangle s-\left\langle u_{1} u_{2}\right\rangle s_{2}+\phi_{1}-\varepsilon_{1} \tag{4-12}
\end{align*}
$$

where ϕ_{12} is defined by Eq. (4.6) and

$$
\begin{equation*}
\phi_{i}=\left\langle p \theta_{, i}\right\rangle \tag{4-13}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{i}=(D+v)\left\langle\theta, k^{u_{i}, k}\right\rangle \tag{4-14}
\end{equation*}
$$

In the above equations, the terms $\left\langle\mathrm{u}_{2}^{2}\right\rangle \mathrm{S},\left\langle\mathrm{u}_{2}^{2}\right\rangle \mathrm{S}_{2}$, and $-\left[\left\langle\mathrm{u}_{2} \theta\right\rangle \mathrm{S}\right.$ $\left.+\left\langle u_{1} u_{2}\right\rangle S_{2}\right]$ are production terms.

It is not obvious whether $\varepsilon_{12}, \varepsilon_{2}$, and ε_{1} help or prevent the growth of the correlations. However, from our results, they are negative and are thus dissipative. The pressure-velocity and pressurescalar covariances also tend to hinder the growth of the correlations. This can be shown by considering the return to isotropy at high Reynolds number. In this case the dissipation terms are negligible; thus the pressure-velocity and pressure-scalar covariance are responsible for destroying the correlations, and must therefore be negative.

The equations given above are exact, but they contain many more variables than there are equations, so the system is not closed. To close the system, it is necessary, to make assumptions about the relationships among the various flows. This is the issue of modeling that will be discussed next.

4.2 Statistical Models

In this section we further consider the production, dissipation, and pressure-velocity and pressure-scalar covariance terms which were discussed in the last section. We review a number of models.
A. Turbulent Reynolds Stress and Heat F1ux

The Reynolds stresses $\left\langle u_{i} u_{j}\right\rangle$ appear in the mean momentum equations, and the heat flux (mass flux if the scalar is concentration) $\left\langle\theta u_{i}\right\rangle$ appears in the mean diffusion equation. If the only mean velocity gradient is $\partial \bar{U}_{1} / \partial x_{2}$, the mean turbulent Reynolds stress tensor takes the following form:

$$
\left\langle u_{i} u_{j}\right\rangle=\left[\begin{array}{ccc}
\left\langle u_{1}^{2}\right\rangle & \left\langle u_{1} u_{2}\right\rangle & 0 \tag{4-15}\\
\left\langle u_{1} u_{2}\right\rangle & \left\langle u_{2}^{2}\right\rangle & 0 \\
0 & 0 & \left\langle u_{3}^{2}\right\rangle
\end{array}\right]
$$

The principal stresses are

$$
\begin{align*}
-\sigma_{1} & =\frac{\left\langle u_{1}^{2}\right\rangle+\left\langle u_{2}^{2}\right\rangle}{2}+\left[\frac{\left(\left\langle u_{1}^{2}\right\rangle-\left\langle u_{2}^{2}\right\rangle\right)^{2}}{2}+\left\langle u_{1} u_{2}\right\rangle^{2}\right]^{1 / 2} \\
-\sigma_{2} & =\frac{\left\langle u_{1}^{2}\right\rangle+\left\langle u_{2}^{2}\right\rangle}{2}-\left[\frac{\left(\left\langle u_{1}^{2}\right\rangle-\left\langle u_{2}^{2}\right\rangle\right)^{2}}{2}+\left\langle u_{1} u_{2}\right\rangle^{2}\right]^{1 / 2} \tag{4-16}
\end{align*}
$$

and

$$
-\sigma_{3}=-\left\langle u_{3}^{2}\right\rangle
$$

The direction of the principal axis in the x_{1}, x_{2} plane relative to the coordinate system is

$$
\begin{equation*}
\alpha_{1}=\frac{1}{2} \tan ^{-1} \frac{2\left\langle u_{1} u_{2}\right\rangle}{\left\langle u_{1}^{2}\right\rangle-\left\langle u_{2}^{2}\right\rangle} \tag{4-17}
\end{equation*}
$$

To close the mean momentum and diffusion equations, the Reynolds stress tensor and the heat flux vector must be modeled. The most common nodels for those terms are Newtonian-like constitutive equations, which is the Boussinesq eddy-viscosity concept. In the most general form the Reynolds stress tensor can be modeled by

$$
\begin{equation*}
\left\langle u_{i} u_{j}\right\rangle=-2 \nu_{T i j p q} s_{p q}+\frac{1}{3} q^{2} \delta_{i j} \tag{4-18}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathrm{S}_{\mathrm{pq}}=\frac{1}{2}\left(\overline{\mathrm{U}}_{\mathrm{p}, \mathrm{q}}+\overline{\mathrm{U}}_{\mathrm{q}, \mathrm{p}}\right) \tag{4-19}\\
\mathrm{q}^{2}=\left\langle\mathrm{u}_{\mathrm{i}} \mathrm{u}_{i}\right\rangle \tag{4-20}
\end{gather*}
$$

and $\nu_{\text {Tijpq }}$ is a fourth-rank eddy viscosity tensor which needs to be defined. We looked at models for $v_{\text {Tijpq }}$ which are linear and quadratic functions of $S_{i j}$, and $\delta_{i j}$. For each case the model was reduced to a simple expression which can be obtained using the following form of the eddy viscosity model:

$$
\begin{equation*}
\left\langle u_{i}{ }_{j}\right\rangle=-2 \nu_{T} S_{i j}+\frac{1}{3} \delta_{i j} q^{2} \tag{4-21}
\end{equation*}
$$

where ν_{T} is a scalar eddy viscosity. This model is not accurate for this flow because it requires $\left\langle u_{1}^{2}\right\rangle=\left\langle u_{2}^{2}\right\rangle$. A more complicated model for $\left\langle u_{i} u_{j}\right\rangle$ was derived by Wilcox and Rubesin (1980). This model is especially good for the log region of the boundary layer when the magnitudes of production and dissipation are close. The model predicts the behavior of $\left\langle u_{1}^{2}\right\rangle,\left\langle u_{2}^{2}\right\rangle$, and $\left\langle u_{3}^{2}\right\rangle$. For Reynolds shear stress, $\left\langle u_{1} u_{2}\right\rangle$, the model reduces to Eq. (4-21). Rodi (1976) also derived an algebraic model for $\left\langle u_{i} u_{j}\right\rangle$ which is nonlinear in $\left\langle u_{i} u_{j}\right\rangle$ and is based on the assumption that $\left\langle u_{i} u_{j}\right\rangle /\left\langle u_{i} u_{i}\right\rangle=$ constant and is
good for high Reynolds number flows. The model (4-21) is used by many people to calculate the Reynolds shear stress $\left\langle u_{1} u_{2}\right\rangle$. We shall use this model for $\left\langle u_{1} u_{2}\right\rangle$ and calculate the eddy viscosity. Modelers have used various forms for ν_{T}. We describe the ones applicable to our flow and specifically exclude models designed to apply only to boundary layers.

The simplest model for v_{T} is based entirely in information from the mean flow.

$$
\begin{equation*}
\nu_{T}=C \sqrt{S_{i j} S_{i j}} L_{m}^{2} \tag{4-22}
\end{equation*}
$$

where C is a constant and L_{m} is a mixing length. Models of this kind are used in boundary layers (for which L_{m} is a function of the distance from the wall) and free shear layers (for which L_{m} is a given fraction of the shear layer thickness).

A more complex model for the eddy viscosity, which involves some information about the fluctuating field, has the following form:

$$
\begin{equation*}
\nu_{\mathrm{T}}=\mathrm{CqL}_{\mathrm{m}} \tag{4-23}
\end{equation*}
$$

where C is constant and the turbulence velocity, q, is obtained by solving the turbulent kinetic energy equation, in which the higher-order terms are modeled (see W. C. Reynolds, 1976, for more details). L_{m} is a mixing length which is prescribed as above. This is known as a oneequation model.

A still more complex model is obtained by using Eq. (4-23) with a length scale defined by

$$
\begin{equation*}
L_{d}=c_{o} \frac{q^{3}}{\varepsilon} \tag{4-24}
\end{equation*}
$$

in place of L_{m}; here, ε is the dissipation or, more correctly, the energy transfer from the large scales to the small ones, and can be obtained from an equation for the dissipation (see W. C. Reynolds, 1976). This is a two-equation model. For the low Reynolds numbers, the dissipation length scale is modified as follows:

$$
\begin{equation*}
L_{d}=C_{o} \frac{q^{3}}{\varepsilon}\left[1+\frac{C_{1}}{\operatorname{Re}_{\lambda}}\right] \tag{4-25}
\end{equation*}
$$

where Re is Reynolds number based on a Taylor microscale and q.
Similarly, the heat flux vector can be modeled as follows:

$$
\begin{equation*}
\left\langle\theta u_{i}\right\rangle=D_{i j} \frac{\partial \bar{C}}{\partial x_{j}} \tag{4-26}
\end{equation*}
$$

where $D_{i j}$ is turbulent eddy diffusivity and is a second-rank tensor. If $\partial \bar{U}_{1} / \partial x_{2}$ is the only nonzero mean velocity gradient, $D_{i j}$ has the following form:

$$
D_{i j}=\left(\begin{array}{ccc}
D_{11} & D_{12} & 0 \tag{4-27}\\
D_{21} & D_{22} & 0 \\
0 & 0 & D_{33}
\end{array}\right)
$$

$D_{i j}$ is not necessarily symmetric. To model this term, we decompose it as follows:

$$
\begin{equation*}
D_{i j}=D_{i j}^{(1)}+D_{i j}^{(2)}+D_{i j}^{(3)} \tag{4-28}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{i j}^{(1)}=\frac{1}{2}\left(D_{i j}+D_{j i}\right)-\frac{1}{3} D_{k k} \delta_{i j} \tag{4-29}
\end{equation*}
$$

is a symmetric trace-free tensor,

$$
\begin{equation*}
D_{i j}^{(2)}=\frac{1}{2}\left(D_{i j}-D_{j i}\right) \tag{4-30}
\end{equation*}
$$

i.s an antisymmetric tensor, and

$$
\begin{equation*}
D_{i . j}^{(3)}=\frac{1}{3} D_{k k} \delta_{i j} \tag{4-31}
\end{equation*}
$$

is a diagonal tensor. The above three expressions for $D_{i j}$ need to be modeled. In general, $D_{i j}$ can be written as:

$$
\begin{equation*}
D_{i j}=D_{i j}\left(b_{i j}, s_{i j}, \Omega_{i j}, \text { scalars }\right) \tag{4-32}
\end{equation*}
$$

where $b_{i j}$ is the Reynolds stress anisotropy and is defined as

$$
\begin{equation*}
b_{i j}=\frac{\left\langle u_{i} u_{j}\right\rangle}{q^{2}}-\frac{1}{3} \delta_{i j} \tag{4-33}
\end{equation*}
$$

$S_{i j}$ is defined by Eq. (4-19), and $\Omega_{i j}$ is the mean tensor defined as

$$
\begin{equation*}
\Omega_{i j}=\frac{1}{2}\left(\bar{U}_{i, j}-\bar{U}_{j, i}\right) \tag{4-34}
\end{equation*}
$$

Note that we do not include the dissipation anisotropy, $d_{i j}$, in the right side of Eq. (4-32), because $d_{i j}$ results mainly from the small scale structures, while $D_{i j}$ is dependent mainly on the large scales.
$\mathrm{D}_{\mathrm{i} j}^{(1)}$ and b_{ij} are both symmetric, trace-free, and have the same zero components. Since the scalar fluctuation is similar to the velocity fluctuations, $D_{i j}^{(1)}$ and $b_{i j}$ are both quadratic functions of the velocity field. Therefore, we assumed $\mathrm{D}_{\mathrm{ij}}^{(1)}$ is a linear function of $b_{i j}$ 。

$$
\mathrm{D}_{i j}^{(1)}=c_{1} \frac{q^{2}}{s} b_{i j}
$$

where C_{1} is a constant and L is a length scale. $D_{i j}^{(2)}$ is an antisymmetric tensor; therefore it must be modeled with the only antisymmetric tensor available, $\quad \Omega_{i j}$. Neglecting higher-order terms, $D_{i j}^{(2)}$ should have the following form:

$$
\mathrm{D}_{\mathrm{ij}}^{(2)}=\mathrm{C}_{2} \frac{\mathrm{q}^{2}}{\mathrm{~s}^{2}} \Omega_{\mathrm{ij}}
$$

where C_{2} is a constant.
Finally, $\mathrm{D}_{\mathrm{i} j}^{(3)}$ can be written as follows:

$$
D_{i j}^{(3)}=c_{3} \frac{q^{2}}{S} \delta_{i j}
$$

Therefore, Eq. (4-28) becomes

$$
\frac{D_{i j}}{q^{2} / S}=C_{1} b_{i j}+C_{2} \frac{1}{S} \Omega_{i j}+C_{3} \delta_{i j}
$$

where C_{1}, C_{2}, and C_{3} may be functions of ${ }^{\frac{10}{1 / 2}}$ Reynolds shear, Prandtl numbers, and invariants of the above-mentioned tensors.
B. Turbulent Prandtl Number

The conventional turbulent Prandtl number (or turbulent Schmidt number if passive scalar is concentration) is defined as
or

$$
\begin{equation*}
\operatorname{Pr}_{T}=\frac{\nu_{T}}{D_{22}} \tag{4-36}
\end{equation*}
$$

The turbulent Prandtl number measures the degree of analogy between momentum and heat transport in turbulent flows and is required for heat transfer calculations. For flows involving mixing of chemical species, the important transport property is the diffusivity and the counterpart of the turbulent Prandtl number is turbulent Schmidt number. Reynolds (1885) proposed the Reynolds analogy, and Prandtl (1925) gave his mixing-length theory, both of which assume that $\operatorname{Pr}_{T}=1.0$. However, this assumption has been challenged by experimental results. Several models have been suggested (see, for example, A. J. Reynolds (1974)).

We shall consider models which are recommended by several authors or used by many people in this field. The models we shall look at are:
a) A. J. Reynolds proposed an empirical model based on experiments in wall flows, free turbulence, and core flows. $\operatorname{Pr}_{\mathrm{T}}$ should depend on the molecular Prandtl number and a Reynolds number based on local turbulence intensity. The latter can be replaced by ν_{T} / ν, which is assumed to be a function of this Reynolds number. Based on these observations, he suggested that Pr_{T} be modeled as follows:

$$
\begin{equation*}
\operatorname{Pr}_{T}=C_{1} \exp \left[-C_{2} \operatorname{Pr}^{C_{3}}\left(\frac{\nu_{T}}{\nu}\right)^{C_{4}}\right] \tag{4-37}
\end{equation*}
$$

where C_{1}, C_{2}, C_{3}, and C_{4} are positive constants.
b) Wassel and Catton (1973) used mixing-length theory and assumed that eddies are spheres which move normal to the mean flow and have a radius proportional to the mixing length. Their model, based on this assumption, is

$$
\begin{equation*}
\operatorname{Pr}_{T}^{-1}=\left(C_{1} \operatorname{Pr}\right) \frac{1-e^{-C_{2} /\left(\operatorname{Pr} \frac{{ }_{T}}{\nu}\right)}}{1-e^{-C_{3} /\left(\nu_{T} / \nu\right)}} \tag{4-38}
\end{equation*}
$$

C_{1}, C_{2}, and C_{3} are parameters, and they suggest the values $C_{1}=$ $1.05, \quad C_{2}=5.25$, and $C_{3}=5$.
c) A model which simulates the idea that an eddy tries to equilibrate with the surrounding fluid has the following form:

$$
\begin{equation*}
\operatorname{Pr}_{T}=\left[\frac{\alpha^{2}}{2}+\alpha C_{1} P e_{T}-\left(C_{1} P e_{T}\right)^{2}\left(1-e^{-\left(\alpha / C_{1} P e_{T}\right)}\right)\right]^{-1} \tag{4-39}
\end{equation*}
$$

where Pe_{T} is the turbulent Peclet number,

$$
\operatorname{Pe}_{T}=\frac{\nu_{T}}{\nu} \operatorname{Pr}
$$

and α and C_{1} are constants. Crawford (1976) suggested $\alpha=1.08$ and $\quad C=0.2$.
d) Using the models for turbulent eddy diffusivity, Eq. (4-35), and turbulent eddy viscosity, Eq. (4-21), the turbulent Prandtl number becomes:

$$
\begin{equation*}
\operatorname{Pr}_{\mathrm{T}}=\frac{1}{\mathrm{C}_{3} \frac{\left\langle\mathrm{u}_{2}^{2}\right\rangle}{\mathrm{q}^{2}}+\mathrm{C}_{4}} \tag{4-40}
\end{equation*}
$$

where C_{3} and C_{4} are constants. They may be functions of Reynolds number, shear number and Prandtl number, and invariants of various tensors.

C. Pressure-Strain Covariance

The pressure-strain covariance, $\phi_{i j}$, is defined by (4-6). $\phi_{i j}$ i.s responsible for exchanging energy between the various Reynolds stresses.

The equation for the fluctuation pressure is obtained from the Navier-Stokes equation, as explained in Section 2-1. For the homogeneous shear flow, the equation has the following form:

$$
\begin{equation*}
p_{, i i}=-2 u_{i, j} \bar{U}_{j, i}-u_{i, j} u_{i, j} \tag{4-41}
\end{equation*}
$$

The right-hand side of this equation contains two parts. The first part is proportional to the mean strain, $\bar{U}_{i, j}$, and given a sudden change of $\overline{\mathrm{U}}_{i, j}$, it changes rapidly. On the other hand, the second term on the right of Eq. (4-41) does not depend explicitly on the mean strain, and it takes some time to change after a sudden change of the mean strain. Therefore, the two terms behave differently and need to be considered separately. We let $p=p^{(1)}+p^{(2)}$, where

$$
\begin{align*}
p_{, i i}^{(1)} & =-2 u_{i, j} \bar{U}_{j, i} \tag{4-42}\\
p_{, i i}^{(2)} & =-u_{i, j} u_{j, i} \tag{4-43}
\end{align*}
$$

Following Lumley and Khajeh-Nouri (1974), for homogeneous flows $p^{(1)}$ can be defined in terms of the Fourier transform of the velocity field. By definition,

$$
\begin{equation*}
p^{(1)}(x)=\int \hat{p}^{(1)}(k) e^{i k x} d k \tag{4-44}
\end{equation*}
$$

In homogeneous flows, the mean velocity gradient is constant, so Eq. (4-42) gives

$$
\begin{equation*}
\hat{p}^{(1)}(k)=i 2 \hat{u}_{i} U_{j, i} \frac{k_{j}}{k^{2}} \tag{4-45}
\end{equation*}
$$

where $k^{2}=k_{i} k_{i}$. The part of the pressure-strain covariance associated with $p^{(1)}$ is

$$
\begin{equation*}
\phi_{p q}^{(1)}=\left\langle p^{(1)}\left(u_{p, q}+u_{q, p}\right)\right\rangle \tag{4-46}
\end{equation*}
$$

which can be reduced to (Lumley and Khajeh-Nouri, 1974):

$$
\begin{equation*}
\phi_{p q}^{(1)}=2 \bar{U}_{j, i} \iint \frac{k_{j}}{k^{2}} \hat{u}_{i}(k)\left[\hat{u}_{p}^{*}\left(k^{\prime}\right) k_{q}^{\prime}+\hat{u}_{q}^{*}\left(k^{\prime}\right) k_{p}^{\prime}\right] d k^{\prime} d k \tag{4-47}
\end{equation*}
$$

The double integral on the right-hand side of the above equation is a fourth-order tensor, so we can write

$$
\begin{equation*}
\phi_{\mathrm{pq}}^{(1)}=2 \overline{\mathrm{U}}_{j, i} \mathrm{G}_{\mathrm{ijpq}} \tag{4-48}
\end{equation*}
$$

From continuity, $G_{i i p q}=0 ;$ also $G_{i j j q}=\left\langle u_{i} u_{q}\right\rangle$. This tensor cannot be simplified and must be modeled. Following Lumley's argument, $G_{i j p q}$ should be linear in the Reynolds stress, and it can also be a function of scalar invariants of the mean strain and Reynolds stress anisotropy tensor. The most general form of the pressure-strain term consistent with the above is:

$$
\begin{align*}
\phi_{\mathrm{pq}}^{(1)}= & \frac{2}{5}\left(1+\mathrm{A}_{1}\right) S_{\mathrm{pq}} q^{2}-\frac{3}{2} A_{1}\left[R_{\mathrm{pk}} S_{\mathrm{kq}}+\mathrm{R}_{\mathrm{qk}} S_{\mathrm{kp}}-\frac{2}{3}\left\langle u_{i} u_{j}\right\rangle \bar{U}_{i, j} \delta_{\mathrm{pq}}\right] \\
& -\frac{4}{5}\left[\frac{5}{3}+\frac{7}{12} A_{1}\right]\left[R_{\mathrm{pk}} \Omega_{\mathrm{kq}}+\mathrm{R}_{\mathrm{qk}} \Omega_{\mathrm{kp}}\right] \tag{4-49}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
s_{p q}=\frac{1}{2}\left(\bar{U}_{p, q}+\bar{U}_{q, p}\right) \text { is the mean strain, } \\
R_{p q}=\left\langle u_{p} u_{q}\right\rangle \text { is the Reynolds stress, } \\
=\frac{1}{2}\left(\bar{U}_{p, q}-\bar{U}_{q, p}\right) \text { is the mean rotation tensor, }
\end{array}\right\}(4-50)
$$

and A_{1} is constant. The value suggested for this constant by different workers varies between -1.23 and -2.5 (see W. C. Reynolds (1976) for more details).

The above model for our case, where $\overline{\mathrm{U}}_{\mathrm{i}, \mathrm{j}}=0$, except for $\overline{\mathrm{U}}_{1,2}=\mathrm{S}$, has the following form:

$$
\begin{align*}
& \phi_{11}=\left\langle\mathrm{p}^{(1)} \mathrm{u}_{1,1}\right\rangle=\frac{2}{3}+\frac{2}{15} A_{1} \mathrm{~S}\left\langle\mathrm{u}_{1} u_{2}\right\rangle \\
& \phi_{22}=\left\langle\mathrm{p}^{(1)} \mathrm{u}_{2,2}\right\rangle=-\frac{2}{3}+\frac{1}{3} A_{1} \mathrm{~s}\left\langle\mathrm{u}_{1} u_{2}\right\rangle \tag{4-51}\\
& \phi_{33}=\left\langle\mathrm{p}^{(1)} \mathrm{u}_{3,3}\right\rangle=\frac{1}{5} A_{1} \mathrm{~s}\left\langle u_{1} u_{2}\right\rangle
\end{align*}
$$

and

$$
\begin{align*}
\phi_{12}= & \left\langle p^{(1)}\left(u_{1,2}+u_{2,1}\right)\right\rangle=\frac{1}{5}\left(1+\mathrm{A}_{1}\right) \mathrm{sq}^{2}-\left(\frac{2}{3}+\frac{8}{15} \mathrm{~A}_{1}\right) \mathrm{s}\left\langle\mathrm{u}_{1}^{2}\right\rangle \\
& +\left(\frac{2}{2}-\frac{1}{15} \mathrm{~A}_{1}\right) \mathrm{s}\left\langle\mathrm{u}_{2}^{2}\right\rangle \tag{4-52}
\end{align*}
$$

The part of pressure-velocity covariance associated with $p^{(2)}$ is

$$
\begin{equation*}
\phi_{i j}^{(2)}=\left\langle p^{(2)}\left(u_{i, j}+u_{j, i}\right)\right\rangle \tag{4-53}
\end{equation*}
$$

and the total pressure-strain term is

$$
\begin{equation*}
\phi_{i j}=\phi_{i j}^{(1)}+\phi_{i j}^{(2)} \tag{4-54}
\end{equation*}
$$

Rota (1951) proposed the following model for $\phi_{1}^{(2)}$:

$$
\begin{equation*}
\phi_{i j}^{(2)}=-A_{2} \varepsilon b_{i j} \tag{4-55}
\end{equation*}
$$

where $b_{i j}$ is the anisotropis part of the Reynolds stress tensor and defined by Eq. (4-33), and A_{2} is constant.

Lumley (1978) suggested including the dissipation anisotropy in the model, so

$$
\begin{equation*}
\phi_{i j}^{(2)}=2 \varepsilon d_{i j}-A_{3} \varepsilon b_{i j} \tag{4-56}
\end{equation*}
$$

Here

$$
d_{i j}=\frac{2 v\left\langle\begin{array}{c}
u_{i}, k_{j}^{u}, K \tag{4-57}\\
\left.u_{i, j, j_{j, i}}\right\rangle
\end{array}\right.}{\varepsilon}-\frac{1}{3} \delta_{i j}
$$

is the anisotropy of the dissipation tensor and

$$
\begin{equation*}
\varepsilon=2 \nu\left\langle u_{i, j} u_{i, j}\right\rangle \tag{4-58}
\end{equation*}
$$

is the dissipation. Using the dynamical equation for $b_{i j}$, it can be shown that A_{3} must be bigger than 2. The term $\varepsilon d_{i j}$ acts to interchange energy among components of turbulent kinetic energy, but neither creates nor destroys total energy. Lumley also included a second-order anisotropy tensor in the model; however, the model (4-56) seems to work quite well for homogeneous flows (see next chapter). Lumley (1978) also argues that the proportionality constant A_{3} in the model (4-56) is a function of Reynolds number and first-, second-and third-order invariants of the anisotropy tensor.

D. Pressure-Scalar Covariance

The pressure-scalar covariance, ϕ_{1}, is defined by Eq. (4-13). This term, which appears in the $\left\langle\theta u_{i}\right\rangle$ equation, is responsible for destroying the velocity-scalar correlation. Following the procedure used in the last section, we divide ϕ_{i} into two terms. $\phi_{i}^{(1)}$ involves the mean shear explicitly, and $\phi_{i}^{(2)}$ is the remainder.

$$
\begin{equation*}
\phi_{i}=\phi_{i}^{(1)}+\phi_{i}^{(2)} \tag{4-59}
\end{equation*}
$$

Let us first consider $\phi_{i}^{(1)}$. From Eq. (4-13), we get

$$
\begin{equation*}
\phi_{i}^{(1)}=\left\langle p^{(1)_{\theta, i}}\right\rangle \tag{4-60}
\end{equation*}
$$

From Eq. (4-45), the Fourier transform of the pressure is

$$
\begin{equation*}
\hat{p}_{, i}=-2 \bar{U}_{q, j} \frac{k_{q} k_{i}}{k^{2}} \hat{u}_{j} \tag{4-61}
\end{equation*}
$$

Let us multiply both sides by θ^{*} and add to the conjugate of Eq. (4-61) multiplied by θ and integrate over Fourier space.

$$
\begin{equation*}
\int\left(\hat{p}_{, i} \hat{\theta}^{*}+\hat{p}_{, i} \hat{\theta}^{*}\right) d k=-2 \bar{U} q_{i j} \int \frac{k_{q} k}{k^{2}}\left(\hat{u}_{j}^{*} \hat{\theta}+\hat{u}_{j} \hat{\theta}^{*}\right) d k \tag{4-62}
\end{equation*}
$$

By definition, the integral on the left is the volume average of $p, i \theta$. On the other hand, in a homogeneous flow,

$$
\begin{equation*}
\left\langle p_{, i} \theta\right\rangle=-\langle p \theta, i\rangle \tag{4-63}
\end{equation*}
$$

Using Eqs. (4-49) and (4-52), Eq. (4-51) becomes

$$
\begin{equation*}
\phi_{i}^{(1)}=-2 \bar{U}_{q, j} \int \frac{k_{q}^{k} i}{k^{2}} \hat{u}_{j} \hat{\theta}^{*} d k \tag{4-64}
\end{equation*}
$$

The integral on the right-hand side of (4-64) is a third-rank tensor. It cannot be computed analytically and needs to be modeled. Let us define $\phi_{i}^{(1)}$ as follows:

$$
\begin{equation*}
\phi_{i}^{(1)}=-2 \bar{U}_{q, j} g_{q i j} \tag{4-65}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{q i j}=\int \frac{k_{q} k_{i}}{k^{2}} \hat{u}_{j} \hat{\theta}^{*} d k \tag{4-66}
\end{equation*}
$$

A model for $g_{q i j}$ must satisfy the following conditions:

- From continuity, $g_{q i q}=0$.
- From the definition of $g_{q i j}, g_{q q j}=\left\langle\theta u_{j}\right\rangle$.
- From symmetry, $g_{q i j}=g_{i q j}$.

By analogy to the assumptions applied to the pressure-strain model, Eq. (4.49), we assume $g_{q i j}$ is a linear function of θu_{i}. The following model satisfies all of the above assumptions:

$$
\begin{equation*}
g_{q i j}=\frac{2}{5}\left[\delta_{i q}\left\langle\theta u_{j}\right\rangle-\frac{1}{4} \delta_{i j}\left\langle\theta u_{q}\right\rangle+\delta_{q j}\left\langle\theta u_{i}\right\rangle\right] \tag{4.67}
\end{equation*}
$$

Thus the model for the fast term, $\phi_{i}^{(1)}$, is

$$
\phi_{i}^{(1)}=-\frac{4}{5}\left\langle U_{q, j}\right\rangle\left[\delta_{i q}\left\langle\theta u_{j}\right\rangle-\frac{1}{4} \delta_{i j}\left\langle\theta u_{q}\right\rangle+\delta_{q j}\left\langle\theta u_{i}\right\rangle\right]
$$

For our case, where $U_{q, j}=0$, except for $U_{1,2}=s$, the model has the following form:

$$
\begin{align*}
& \left\langle p^{\left.(1)_{\theta, 1}\right\rangle=2 S A_{o}\left\langle\theta u_{2}\right\rangle}\right. \tag{4-69}\\
& \left\langle p^{\left.(1)_{\theta, 2}\right\rangle}=-\frac{S A_{o}}{2}\left\langle\theta u_{1}\right\rangle\right. \tag{4-70}
\end{align*}
$$

where $A_{0}=2 / 5$. Comparing the above equations with Eq. (4-40), we see great similarity between the models for the hydrodynamic field and the corresponding models for the scalar field.

Lumley (1978) argues that, as $\left\langle\theta_{u_{i}}\right\rangle \rightarrow 0, \phi_{i} \rightarrow 0$. He constructed an expression for $\phi_{i}^{(1)}$, which satisfies all the above conditions:

$$
\begin{equation*}
\phi_{i}^{(1)}=-2 A_{o} \bar{u}_{q, j}\left[\delta_{q i}-\frac{\left\langle\theta u_{q}\right\rangle\left\langle\theta u_{i}\right\rangle}{\left\langle\theta u_{k}\right\rangle\left\langle\theta u_{k}\right\rangle}\right]\left\langle\theta u_{j}\right\rangle \tag{4-71}
\end{equation*}
$$

where $A_{o}=1 / 2$.
For our case, this model becomes

$$
\begin{align*}
& \left\langle\mathrm{p}^{\left.(1)_{\theta, 1}\right\rangle=2 A_{\mathrm{o}} \mathrm{~S} \frac{\left\langle\theta \mathrm{u}_{2}\right\rangle^{2}}{\left\langle\theta \mathrm{u}_{1}\right\rangle^{2}+\left\langle\theta \mathrm{u}_{2}\right\rangle^{2}}\left\langle\theta \mathrm{u}_{1}\right\rangle}\right. \tag{4-72}\\
& \left\langle\mathrm{p}^{\left.(1)_{\theta, 2}\right\rangle=-2 A_{\mathrm{o}} \mathrm{~S} \frac{\left\langle\theta \mathrm{u}_{1}\right\rangle\left\langle\theta \mathrm{u}_{2}\right\rangle}{\left\langle\theta \mathrm{u}_{1}\right\rangle^{2}+\left\langle\theta \mathrm{u}_{2}\right\rangle^{2}}\left\langle\theta \mathrm{u}_{2}\right\rangle}\right. \tag{4-73}
\end{align*}
$$

Now let us consider the second part of the pressure-scalar covariance,

$$
\begin{equation*}
\phi_{i}^{(2)}=\left\langle p^{\left.(2)_{\theta, i}\right\rangle}\right. \tag{4-74}
\end{equation*}
$$

This term appears in the heat flux equation and tends to destroy the velocity-scalar correlation. The average heat flux equation in the absence of a mean scalar gradient is:

$$
\begin{equation*}
\frac{\partial\left\langle u_{i} \theta\right\rangle}{\partial t}=-\left\langle p^{(2)_{\theta}}, \mathbf{i}\right\rangle-(\nu+D)\left\langle\theta_{, j} u_{i, j}\right\rangle \tag{4-75}
\end{equation*}
$$

Both terms on the right side of the above equation tend to destroy the $\left\langle u_{j} \theta\right\rangle$ correlation. To model these terms, let us define $\psi_{i j}$ by

$$
-\psi_{i j}\left\langle\theta u_{j}\right\rangle \frac{\varepsilon}{q^{2}}=\left\langle p^{\left.(1)_{\theta, i}\right\rangle-\left\langle(v+D) \theta_{, k} u_{i, k}\right\rangle \quad(4-76) ~}\right.
$$

Lumley argues that the principal axes of $\psi_{i j}$ are aligned with the principal axes of $\mathrm{B}_{\mathbf{i j}}$, where

$$
\begin{equation*}
B_{i j}=\frac{\left\langle u_{i}^{u_{j}}\right\rangle}{q^{2}}-\frac{\left\langle\theta u_{i}\right\rangle\left\langle\theta u_{j}\right\rangle}{\bar{\theta}^{2} q^{2}} \tag{4-77}
\end{equation*}
$$

Therefore, $\psi_{i j}$ must be a function of $B_{i j}$.
Assuming a linear relation, we get

$$
\begin{equation*}
\psi_{i j}=A_{1} \delta_{i j}+A_{2} B_{i j} \tag{4-78}
\end{equation*}
$$

where A_{1} and A_{2} are functions of anisotropy invariance.
Assuming $A_{2}=0$, the model for our flow will have the following form:

$$
\begin{equation*}
\left\langle\mathrm{p}^{(2)}{ }_{\theta, 1}\right\rangle-\left\langle(v+D) \theta, \mathrm{k}_{1, k}\right\rangle=A_{1} \frac{\varepsilon}{\mathrm{q}^{2}}\left\langle\theta \mathrm{u}_{1}\right\rangle \tag{4-79}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\mathrm{p}^{(2)} \theta_{, 2}\right\rangle-\left\langle(v+\mathrm{D}) \theta_{, k} \mathrm{u}_{2, \mathrm{k}}\right\rangle=\mathrm{A}_{1} \frac{\varepsilon}{\mathrm{q}^{2}}\left\langle\theta \mathrm{u}_{2}\right\rangle \tag{4-80}
\end{equation*}
$$

The above model in fact is very similar to Lumley's model for the Rotta term, Eq. (4-56).

Chapter V

DECAY OF A PASSIVE SCALAR IN HOMOGENEOUS ISOTROPIC TURBULENT FLOWS

In this chapter we present results for decay of the velocity field and a passive scalar in isotropic homogeneous flows. The decay rates, various length scales, two-point correlations, and one- and threedimensional spectra of various terms are presented and discussed for both the hydrodynamic and scalar fields. The effects of the Reynolds and Prandtl numbers on the decay rates, microscales, and skewness are also considered. All of the results presented in this chapter were obtained using $32 \times 32 \times 32$ mesh points, so the Reynolds number range is 1imited to $\operatorname{Re}_{\lambda}<25$.

5.1 Results from a Typical Run

In this section, we present the results obtained for a typical run (IH32-2). This run has the following initial values:

Reynolds number $\operatorname{Re}_{\lambda}=\frac{q \lambda}{\nu}=11.00$.
Integral length scale ratio $L / L_{\theta}=1.30$.
Taylor micro-scale ratio $\lambda / \lambda_{\theta}=1.23$.
Integral length scale $L=0.82$.
Taylor micro-scale $\lambda=0.23$.
Time step $\Delta t=0.0210$.
Computational box length $\mathrm{L}_{\mathrm{b}}=6.28$.
Initial turbulence velocity $q=0.02$.
Molecular Prandt1/Schmidt number $\operatorname{Pr}=v / D=1.00$.
The results are shown in Figs. 5-1 through 5-13 and discussed below.
A. The Hydrodynamic Field

Figure 5-1 shows the evolution of the three-dimensional energy spectrum. The 3-D energy spectrum is obtained by summing the energy in spherical shells of inner radius k and outer radius $k+\Delta k$, where
k is the magnitude of the wavevector and Δk is the difference between the magnitudes of the two nearest wavenumbers. As stated in Chapter II, the initial 3-D spectrum is a square wave. The 3-D spectrum evolves from the artificial square wave inertial condition to a realistic low Reynolds number energy spectrum. Since the Reynolds number is small, there is no inertial subrange. At low wavenumbers, the slope becomes 4 at long times--an expected result. The energy at wave numbers higher than $2 / 3$ of the maximum wavenumber is set to zero to avoid aliasing.

Figure 5-2 shows the 3-D spectra of the components of the turbulent kinetic energy at the final time step. As can be seen, the flow is slightly anisotropic at low wavenumbers and isotropic at high wavenumbers. This, too, is expected, especially as there are only a few low wavenumbers.

The lateral and longitudinal one-dimensional spectra of the velocity field are shown in Fig. 5-3. The $1-\mathrm{D}$ spectrum of the velocity field in the k_{1} direction is defined as

$$
\begin{equation*}
E_{i j}\left(k_{1}\right)=\iint \hat{u}_{i}(\vec{k}) \hat{u}_{j}^{*}(\vec{k}) d k_{2} d k_{3} \tag{5-1}
\end{equation*}
$$

As shown, velocity field is isotropic, $E_{22}\left(k_{1}\right)=E_{33}\left(k_{1}\right)$, as expected.
Figure 5-4 shows the time evolution of the turbulent kinetic energy and its three components in $\log -10 g$ coordinates. As can be seen, neglecting the "developing" region (defined in Chapter II), the turbulent kinetic energy is a straight line. If $e(t)$ is the turbulent kinetic energy at time t, then

$$
\begin{equation*}
e(t)=A t^{-n} \tag{5-2}
\end{equation*}
$$

where n is the decay exponent. In this particular run, $n=2.4$. The decay of the turbulent kinetic energy has been observed in many experiments. It has been shown analytically that the exponent, n, for very low Reynolds numbers is 2.5. It has been shown both experimentally and analytically that the decay exponent for high Reynolds numbers is 1.20 .

Figures 5-5 show the lateral and longitudinal two-point correlations at initial time and the final time. The two-point correlations of the velocity are defined as

$$
\begin{equation*}
R_{i j}(\vec{r})=\left\langle u_{i}(\vec{x}+\vec{r}) u_{j}(\vec{x})\right\rangle /\left\langle u_{i}(\vec{x}) u_{j}(\vec{x})\right\rangle \tag{5-3}
\end{equation*}
$$

As shown in Fig. 5-5a, the initial two-point correlations oscillate sinusoidally. This is due to the narrow band nature of the initial spectrum. This effect vanishes with time.

The integral length scale, $L_{i j}\left(r_{\ell}\right)$, is defined as twice the distance at which $R_{i j}\left(r_{\ell}\right)$ first reaches 0.1 . This differs from the standard definition of the integral length scale, which is the integral of the two-point correlations. However, since the two-point correlation can have negative values at large r, the standard integral length scale may behave poorly. The time evolution of the integral length scales is shown in Fig. 5-6.

The Taylor micro-scales are shown in Fig. 5-7. The Taylor microscale, $\lambda_{i j}\left(r_{\ell}\right)$, is defined as the inverse of curvature of a two-point correlation at $r=0$. Both the integral and Taylor micro-scales increase with time. However, the integral length scales increase faster.

B. The Scalar Field

Figure 5-8 shows the time evolution of the 3-D spectrum of the scalar quantity. It is very similar to the 3-D energy spectrum. However, the scallar fluctuation spectrum is slightly higher at high wavenumbers. This is also observed experimentally for the flows with Prandtl number close to 1 . It suggests that the dissipation in the velocity field is lower than dissipation in the scalar field.

The one-dimensional spectrum, two-point correlations, integral- and micro-scales of the scalar quantity are also similar to those for the velocity field. They are shown in Figs. 5-4 through 5-7, along with corresponding values for the velocity fields.

The decay of the scalar intensity $\left\langle\theta^{2}\right\rangle$, with time is shown in Fig. 5-9. As can be seen, its behavior is similar to that of the turbulent kinetic energy history and can be fit by:

$$
\begin{equation*}
\left\langle\theta^{2}\right\rangle=B t^{-m} \tag{5-4}
\end{equation*}
$$

where m is the decay exponent of the scalar and B is a constant. In this particular run, $m=2.25$, which is within the range obtained from the experimental results. The behavior of $\left\langle\theta^{2}\right\rangle$, Eq. (5-4), is also observed experimentally. The magnitude of m obtained from several experimental results (see Table $1-1$, also Lumley and Warhaft (1978), and Domis (1979) for more details) varies between 0.87 to 3.0 , depending on the initial length/scale ratio, $\lambda / \lambda_{\theta}$, and scalar intensity; the Prandtl number was 0.7. There are no experimental results for m at low Reynolds numbers or other Prandtl numbers.

5.2 Description of the Simulations

Nine simulations of isotropic homogeneous flow were made. The simulations were obtained for various Prandtl numbers and a limited range of Reynolds numbers. The initial micro- and integral-length/scale ratios for all of the runs are fixed: $\lambda / \lambda_{\theta}=1.23$ and $L / L_{\theta}=1.30$. Table 5-1 shows some statistics for the various runs. In this table, $\operatorname{Re}_{\lambda}$ in the third column is the Reynolds number at the final time step. R is the ratio of the decay exponents:

$$
\begin{equation*}
\mathrm{R}=\mathrm{m} / \mathrm{n} \tag{5-5}
\end{equation*}
$$

The decay exponent ratio, R, is an important parameter. It is the ratio of characteristic time scales of the velocity and scalar fields:

$$
\begin{equation*}
R=\frac{q^{2} / \varepsilon}{\left\langle\theta^{2}\right\rangle / \varepsilon_{\theta}} \tag{5-6}
\end{equation*}
$$

where ε is the rate of dissipation of kinetic energy and ε_{θ} is half the rate of the dissipation of the scalar intensity, and is defined as

$$
\begin{equation*}
\varepsilon_{\theta}=\frac{1}{2} D\left\langle\theta_{, j} \theta, j\right\rangle \tag{5-7}
\end{equation*}
$$

In the following section we shall discuss the effects of Reynolds and Prandt1 numbers on the decay-rate exponents.

5.3 Effects of Reynolds and Prandtl Numbers on Some Turbulence Statistics

As explained in the previous section, flow fields at various Reynolds and Prandtl numbers wexe generated. In this section we examine the behavior of the various turbulence statistics.

A. The Length Scale Ratio

Figure 5-10 shows the behavior of the microscale ratio, $\lambda / \lambda_{\theta}$, as a function of Reynolds number for various Prandt1 numbers. As can be seen, the microscale ratio increases with $\operatorname{Re}_{\lambda}$ when $\operatorname{Pr}<1$, and i.t decreases with $\operatorname{Re}_{\lambda}$ when $\operatorname{Pr}>1$. On the other hand, at high Reynolds numbers, the length scale ratio is independent of Prandtl numbers. Ironically, as $R e_{\lambda}+0$, the length scale ratio reaches a constant. This constant depends on the Prandtl number.
B. The Decay Rate

Figure 5-11 shows the decay exponent n vs. Reynolds number. As can be seen, at very low Reynolds numbers n reaches 2.5. This has been shown analytically (see Batchelor (1948)). As the Reynolds number increases, the decay exponent n decreases. At high Reynolds numbers, however, it reaches an asymptotic value. W. C. Reynolds (1976) argues that the asymptotic value is 1.2. The experimental values for n at high Reynolds numbers, obtained by Warhaft and Lumley (1978) and ComteBellot and Corxsin (1971), is 1.25 ± 0.06. As shown in Fig. 5-11, the experimental value for n obtained from Tavoularis et al. (1978) is very close to our simulated results. The Bennett and Corrsin (1978) result, however, does not agree with our results. This may be due to the difference in origin of the decay rate.
C. The Decay Rate Exponent Ratio

The decay exponent ratio, R, defined by Eq. (5-5), is shown in Fig. 5-12 as a function of Reynolds number for various Prandtl numbers. As can be seen from the figure, R increases with Reynolds number at $\operatorname{Pr}<1$, and it decreases with Reynolds number at $\operatorname{Pr}>1$. At high Reynolds number, R asymptotically reaches a constant. This constant depends on the Prandtl number. As $R e_{\lambda} \rightarrow 0$, however, it seems that the decay exponent ratio reaches a constant. This constant is independent of Prandtl number.
D. The Velocity Derivative of Skewness

Velocity derivative skewness is defined by Eq. (3-2). Figure 5-13 shows the skewness vs. Reynolds number. The results shown in this figure were obtained from a $16 \times 16 \times 16$ mesh point code and various numerical and experimental results. As can be seen, skewness has a maximum value of approximately 0.5 at $\operatorname{Re}_{\lambda}=20$. For $\operatorname{Re}_{\lambda}>20$, skewness decreases and it seems to reach a constant at about $\operatorname{Re}_{\lambda}=$ 100. At low Reynolds numbers $\left(\operatorname{Re}_{\lambda}<20\right)$, the skewness decreases and $S k \rightarrow 0$ as $R e_{\lambda} \rightarrow 0$.

Table 5-1

DESCRIPTION OF COMPUTER RUNS FOR DECAY OF A PASSIVE SCALAR IN ISOTROPIC HOMOGENEOUS TURBULENT FLOWS

Simulations	$\left(\operatorname{Re}_{\lambda}\right)_{o}^{*}$	$\operatorname{Re}_{\lambda}$	Pr	$\lambda_{\mathbf{u}} / \lambda_{\theta}^{* *}$	n	m	r
IH32-2A	11.00	3.00	0.20	0.634	2.40	3.00	1.25
IH32-3A	22.30	10.00	0.20	0.703	1.70	3.00	1.76
IH32-4A	44.40	22.00	0.20	0.830	1.50	2.90	1.93
IH32-2	11.00	3.00	1.00	1.27	2.40	2.25	0.94
IH32-3	22.30	10.00	1.00	1.23	1.70	1.70	1.00
IH32-4	44.40	22.00	1.00	1.19	1.50	1.61	1.07
IH42-2B	11.00	3.00	5.00	1.68	2.40	0.75	0.31
IH32-3B	22.30	10.00	5.00	1.40	1.70	0.50	0.29
IH32-4B	44.40	22.00	5.00	1.26	1.50	0.34	0.23

${ }^{*}\left(\operatorname{Re}_{\lambda}\right)_{o}$ is the initial turbulent Reynolds number.
** The initial microscale ratio for all of the flow fields is the same, and its value is $\left(\lambda_{u} / \lambda_{\theta}\right)_{0}=1.23$. The initial lateral integral length scale ratio for all flow fields is $\left(L u / L_{\theta}\right)_{0}=1.30$.

Fig. 5-1. Three-dimensional energy spectra at three different times.

Fig. 5-2. Three-dimensional spectra of the turbulent kinetic energy compo-
nents at $\mathrm{St}=4.0$.

Fig. 5-4. Decay of the turbulent kinetic energy and its components with tine.

Fiy. b-5(a) two-point correlations of velocity comonents and the scalar fluctuations at $S t=U . U$.

Fiy. 5-6. Time evolution of the integral lenyth scales of velocity and scalar fields.

Fig. 5-7. Time evolution of the Taylor microscale of the velocity and scalar fields.

Fig. 5-8. The 3-D spectra of scalar quantity at various times.

Fig. 5-9. Decay of scalar intensity as a function of time.

Fig. 5-11. Decay exponent of turbulent kinetic energy as a function of Reynolds number.

Fig. 5-12. Decay exponent ratio as a function of Reynolds number for various Prandt] numbers.

Fig. 5-13. Velocity skewness as a function of Reynolds nunber.

Chapter VI

RESULTS FOR HOMOGENEOUS TURBULENT SHEAR FLOWS WITH A MEAN GRADIENT OF A PASSIVE SCALAR

In this chapter the results for both the velocity and the scalar flows in a homogeneous turbulent shear flow with a passive scalar, whose mean is linear, are presented and discussed. Six velocity and fourteen scalar fields were generated. The flow fields are obtained for various Reynolds, Prandtl, and shear numbers. In this chapter a complete set of results for one of the simulated flows is presented. Also, the effects of the parameters on various turbulence statistics are discussed and models for Reynolds stress, heat/mass flux, pressure-strain, and pressure-scalar covariances are tested and their validity is discussed.

6.1 Dimensional and Non-Dimensional Parameters

The important dimensional parameters of this flow are presented in Tables 6-1 and 6-2. The dimension of the scalar, θ, in Table 6-2, is (a) degrees if the scalar is temperature and (b) mass if the scalar is species. The integral and microscales are defined in the previous chapter.

From the parameters in the tables, the following nondimensional parameters can be formed:
$\operatorname{Re}=q \lambda / \nu$, Reynolds number.
$Q=S L / q$, shear number.
$\operatorname{Pr}=v / D$, Prandtl number.
$\operatorname{tog}_{2}=\theta^{\prime} / S_{2} L$, nondimensional scalar fluctuations.
$L / L_{\theta}=$ length scale ratio.
St $=$ nondimensional time.
Note that L / λ depends on Reynolds number and therefore is not included above. The shear number \mathcal{L} can be written as

$$
\begin{equation*}
O=\frac{L / q}{17 S} \tag{6-1}
\end{equation*}
$$

which is the ratio of the time scales of the large scale structures and the mean flow. Assuming $L=q^{3} / \varepsilon, \mathcal{N}$ can be written in the following form:

$$
\begin{equation*}
A=\frac{\mathrm{Sq}^{2}}{\varepsilon} \tag{6-2}
\end{equation*}
$$

which is proportional to the ratio of the production to dissipation of turbulent kinetic energy.

The parameter α_{2} is analogous to the inverse of \mathbb{N}. It is approximately the ratio of the production to dissipation of the scalar fluctuations.

Some of the nondimensional parameters mentioned above are related through the dynamics of the flow, that is, they are not independent. The results obtained from a set of $32 \times 32 \times 32$ mesh point computer runs show that the length scale ratio, L / L_{θ}, and the nondimensional scalar quantity, $\mathcal{N}_{\theta 2}$, are dependent parameters. Figure 6-1 shows \mathcal{A}_{2} as a function of time for four different runs. The initial Reynolds, shear, and Prandtl numbers and length scale ratios are the same for all runs, but the initial $\frac{\Lambda^{2}}{\theta 2}$ is changed from one run to another. As shown in the figure, the final value of $\mathcal{S}_{\theta 2}$ is independent of its initial value. In other words, $A_{\theta 2}$ is a function of Reynolds, shear, and Prandt1 numbers, i.e., a dependent parameter.

Similarly, as shown in Fig. 6-2, the final value of the length scale ratio L / L_{θ} is independent of its initial value, i.e., L / L_{θ} is a dependent parameter. Therefore, the only nondimensional parameters we need to deal with are Reynolds, shear, and Prandtl numbers. The scalar field is determined by the velocity field and the Prandtl number.

6.2 Description of the Simulations

Six simulations of the hydrodynamic field and fourteen simulations of the scalar field have been performed. All of the simulations used $64 \times 64 \times 64$ mesh points. The results presented in the rest of this chapter are from these simulations.

As discussed in Chapter III, the simulations use an artificial initial field. There is also a time at which the turbulent structures become large compared to the size of the computational domain, and the periodic boundary conditions no longer hold. The results are not acceptable after that time. According to the criteria mentioned in Chapter III, the period in which the data are acceptable lies between $\mathrm{St}=4$ and $S t=7$ for all of the simulations.

The simulated flow fields are stored on tape, and the turbulence statistics are calculated only when $S t$ is an integer. This is done mainly because, when $S t$ is an integer, the coordinate is Cartesian and the calculations of the turbulence statistics involving derivatives are easier.

Thus, four flow fields (at $S t=4,5,6$, and 7) are available from each simulation. Consequently, a total of 24 hydrodynamic fields and 56 scalar fields are available. The available flow fields cover a rather large range of Reynolds, shear, and Prandtl numbers. Table 6-3 shows the range of these nondimensional parameters in our simulations and from the available experimental results.

As can be seen from the table, the range of Reynolds number covered is lower than the available experimental values. We are limited to low $\operatorname{Re}_{\lambda}$ because there is a maximum $\operatorname{Re}_{\lambda}$ beyond which we are not able to resolve the full range of scales of turbulence. As will be shown in the following sections, we are mainly interested in turbulence statistics which depend on the large structures and which may be only weakly Reynolds number dependent, so the Reynolds number limitation may not be very serious. This will become clear in later sections, where we compare our low Reynolds number results with the experimental results.

As can be seen from Table 6-3, we have covered a rather large range of the shear number. Near the upper limit the nonlinear and viscous terms in the Navier-Stokes equations (Eq. (2-18)) become negligible, and one can apply rapid distortion theory. At lower values of the shear number, the flow becomes isotropic (the results for this case are discussed in the previous chapter).

The only available experimental data for the scalar field, obtained for $\operatorname{Pr}=0.7$, were taken by Tavoularis and Corrsin (1978). We have covered a significant range of Prandtl number (from 0.2 to 5.0).

At very high Prandtl numbers $(\operatorname{Pr} \gg 1)$, the diffusion equation (2-20) becomes:

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}+\frac{\partial u_{j} \theta}{\partial x_{j}}=0 \tag{6-4}
\end{equation*}
$$

Therefore, the results are independent of Prandtl number (we assume viscosity is fixed). On the other hand, for very low Prandtl numbers (Pr << 1), the effect of shear becomes negligible and the diffusion equation is

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=D \frac{\partial^{2} \theta}{\partial \mathbf{x}_{j} \partial \mathbf{x}_{j}} \tag{6-5}
\end{equation*}
$$

and the results are discussed in the previous chapter.
For the region between these two extremes, where $\operatorname{Pr} \approx 1$, there is no analytical solution. The effect of the Prandtl number on the various turbulence statistics in this region is studied and discussed, using our simulated results, in the following sections.

Table 6-4 shows the nondimensional parameters for each simulation in the "developed" region. In Appendix C, we have provided a set of tables which give the raw data and various turbulence statistics from each simulation. These tables may be helpful to the readers in further investigations.

6.3 Complete Results for a Typical Simulation

In this section, we present the results obtained for a typical run (Run HS64J), which has the following initial values:

Reynolds number $\operatorname{Re}_{\lambda}=20.00$.
Shear number $\alpha=3.30$.
Nondimensional scalar fluctuation $\frac{\alpha_{\theta 2}}{-1}=3.20$.
Prandtl number $\operatorname{Pr}=1.00$.

Integral length scale ratio $L / L_{\theta}=1.40$.
Taylor microscale ratio $\lambda / \lambda_{\theta}=1.29$.
Integral length scale $L=0.71$.
Taylor micro-scale $\lambda=0.22$.

The above values are non-dimensionalized, as explained in Section 2.3. The results will be discussed for both hydrodynamic and scalar fields in the following sections.
A. The Hydrodynamic Field

A-1. Three-Dimensional Energy Spectrum
Figure 6-3 shows the evolution of the three-dimensional energy spectrum. The initial 3-D energy spectrum is a square wave. At a later time, the $3-D$ energy spectrum has a slope of 4 at low wavenumbers, as expected. No inertial subrange with slope of $-5 / 3$ appears in the $3-1$ energy spectrum because the Reynolds number is low. Figure 6-4 shows the $3-D$ spectra of the three components of the turbulent kinetic energy at $S t=4$. As can be seen, there are anisotropy effects at low and moderate wavenumbers. The $3-1$ spectrum of u_{2}^{2} has more energy at low wavenumbers and less at moderate wavenumbers, whereas u_{1}^{2} has more energy at moderate wavenumbers and less at low wavenumbers. These are effects of the applied shear.

A-2. Turbulent Kinetic Energy History

The time evolution of turbulent kinetic energy and its three components are shown in Fig. 6-5. At St $=0$, the flow field is nearly isotropic. At later times, however, the flow becomes anisotropic. The streamwise component of the kinetic energy becomes the largest while the normal component is the smallest. This is also observed experimentally in both homogeneous shear flows (Champagne et al. (1970) and Harris et al. (1976)) and boundary layers (Klebanoff (1955), Bradshaw (1967)).

As shown in Fig. 6-5, the turbulent kinetic energy first decreases with time and then increases. This is because the production of turbulent kinetic energy is small at early times. The production increases
with time, and there is a time after which the production is larger than the dissipation and the energy begins to grow. This effect can be seen from the experimental results obtained by Harris et al. (1976) and Tavoularis (1979). The experimental results obtained by Champagne et al. (1970) and Rose (1970), however, do not show the increase in the turbulent kinetic energy. Their measurements did not go far enough downstream.

From our computed results and the experimental results of Tavoularis (1979), the flow fields seem to be going toward some kind of structural equilibrium. Statistical equilibrium is a state in which the components of the Reynolds stress anisotropy tensor, $b_{i j}$, reach asymptotic values. As noted before, we were able to carry out the simulations only up to $S t=7$ and did not reach an equilibrium region. Rogallo (1981) simulated this flow with $128 \times 128 \times 128$ mesh points. He was able to continue the computation to $S t=16$ and found that the rate of change of components of $b_{i j}$ with time decreases, but it does not become zero.

A-3. Length Scales

Figures 6-6 and 6-7 show the evolution of integral and Taylor microscales in the streamwise direction, respectively. The length scales were obtained from the two-point correlations in the manner explained in the previous chapter. Figure $6-8$ shows the Kolmogorov scale, the mixing-length scales, and the transfer (or dissipation) length scale, where the Kolmogorov length scale, η, is defined by Eq. (2-1) and the mixing length is defined as

$$
\begin{equation*}
L_{m}=\frac{\sqrt{\left\langle u_{1} u_{2}\right\rangle}}{\partial \bar{U} / \partial x_{2}} \tag{6-6}
\end{equation*}
$$

and the transfer length scale, $L_{t r}$, is defined as

$$
\begin{equation*}
L_{t r}=q^{3} / \varepsilon \tag{6-7}
\end{equation*}
$$

As can be seen, all length scales increase with time. As shown in the figure, the mixing length is nearly constant, while L_{d} and η
increase with time. The Kolmogorov length scale is the smallest, and transfer length scale is the largest length scale. Thus the mixing length cannot be correlated with any of the other length scales.

A-4. Two-Point Correlations

Figures 6-9 through 6-1.1 show the two--point correlations of the velocity (Eq. (5-3)) in the streamwise direction at three different times. As can be seen, the two-point velocity correlations, $\mathbf{R}_{\mathbf{i j}}(\mathrm{r})$, at $S t=0$, are nearly zero at large r, i.e., there exist only small eddies in the computational box. However, at later times, the results show that the velocities become well correlated in the computational box. As discussed before, there is a time after which the large eddies become comparable with the box length (in other words, $R_{i j}(r)$ becomes large at large r), and the computation has to be stopped. In most of our results, $R_{i j}(r)$ is less than 0.3 at $r=L_{b} / 2$ at the end of the computation, where L_{b} is the computational box length.

A-5. One--Dimensional Spectra

Figures 6-12 through 6-14 show the 1-D spectra of the velocity components in three directions. The difference between the three components of the velocity spectra show the anisotropy at various eddy sizes. As can be seen, even at high wavenumbers the three components are different, i.e., the small scales are anisotropic. This may be because the Reynolds number is low. The anisotropy at high wavenumbers will be discussed in more detail in Section 6-5D. The fluctuations of the spectra at the low wavenumbers are due to the small number of samples at which spectra are calculated.

A-6. Three-Dimensional Pressure Spectrum

As discussed in Section 4-2C, the pressure consists of two parts. $p^{(1)}$ is proportional to the mean shear, whille $p^{(2)}$ does not depend explicitly on the mean flow. Figures $6-15$ and $6-16$ show the $3-\mathrm{D}$ spectra of each component, as well as the $3-\mathrm{D}$ spectrum of the total pressure at various times. Understanding the behavior of each component helps in modeling the pressure-strain and pressure-scalar covariances. As shown
in Fig. 6-16, $p^{(1)}$ is larger at low wavenumbers, i.e., it depends mainly on the large scale structures. On the other hand, $p^{(2)}$ is larger at high wavenumbers, i.e., it depends mainly on the small scale structures. We also see that the $3-D$ spectrum of $p^{(1)}$ has a slope of -5 at high wavenumbers. This is observed in all of the simulated flow fields. Also, the k^{-5} part of the spectrum is observed to become more important with time; the peak in the spectrum moves upward and to the left as time goes on.

A-7. One-Point Correlations

The one-point correlations of the velocities are defined as

$$
\begin{equation*}
c_{i j}=\frac{\left\langle u_{i} u_{j}\right\rangle}{u_{i}^{\top} u_{j}^{\top}} \text { (no summation) } \tag{6-8}
\end{equation*}
$$

Note that $C_{i i}=1$. Figure $6-17$ shows the one-point velocity correlations as a function of time. The only non-zero component for (i $\neq j$) is $\left\langle u_{1} u_{2}\right\rangle / u_{1}^{\prime} u_{2}^{\prime}$, which starts from zero and reaches an asymptotic value of about -0.6. Similar values were obtained from computed flow fields by Feiereisen (1981) and Rogallo (1981). The experimental value lies between -0.4 and -0.5 . The reason for this difference may be the Reynolds number difference between the computed and the experimental results.

The one-point correlation, C_{12} is Reynolds number dependent, because $\left\langle u_{1} u_{2}\right\rangle$ depends mainly on the large scale structures and is therefore not strongly Reynolds number dependent, whereas u_{1} and u_{2}^{\prime} depend on both the large and small scales and are thus more Reynolds number dependent. Therefore, as the Reynolds number decreases, $\left\langle u_{1} u_{2}\right\rangle / u_{1}^{\prime} u_{2}^{\prime}$ increases. The effect of Reynolds number on this quantity is given later in this chapter.

A-8. Reynolds Stress Anisotropy Tensor

The Reynolds stress anisotropy tensor, $b_{i j}$, is defined by Eq. (4-44). Figure 6-18 shows $b_{i j}$ as a function of time. If the components of $b_{i j}$ reach asymptotic values, the flow has reached structural equilibrium. As shown in the figure, $b_{i j}$ start from zero, indicating
that the initial velocity field is isotropic, and change with time. At early times the $b_{i j}$ change rapidly; later, however, the variation of $b_{i j}$ is smaller. It seems that the flow might reach a state of equilibrium if the computation were continued.

A-9. Dynamical Reynolds Stress Equations

The volume-averaged equations for the Reynolds stress, 〈' $\left.u_{i} u_{j}\right\rangle$, are given by Eqs. (4-3)-(4-5) and (4-10) and discussed in Chapter IV. The equations contain production, pressure-strain, and dissipation terms. Transfer terms do not: appear in these equations because the volume averages of these terms are zero. Figures 6-19 through 6-22 show the values of each term in the various stress equations as a function of time. As can be seen, the pressure-strain term is negative in the $\left\langle u_{1}^{2}\right\rangle$ equation and positive in the equations for the other components of the Reynolds stress. That: is, energy is transferred from $\left\langle u_{1}^{2}\right\rangle$ to the other components of $\left\langle u_{i} u_{j}\right\rangle$ through the action of the pressurestrain terms.

Figure 6-23 shows the terms in the volume-averaged turbulent kinetic energy equation (4-8). No pressure-strain term appears in this figure because, by continuity, $\left\langle\mathrm{p} \frac{\partial u_{i}}{\partial \mathrm{x}_{i}}\right\rangle$ is zero.

Figures 6-24 through 6-28 show three-dimensional spectra of various terms in $\left\langle u_{i} u_{j}\right\rangle$ equations at $S t=4$. The production and pressurestrain terms are concentrated on the large scales, whereas the dissipation terms mainly come from the small scales, as expected. As can be seen in Fig. 6-25, unlike its behavior in the other equations, the pressure-strain term, $\left\langle\mathrm{p} \frac{\partial \mathrm{u}_{2}}{\partial \mathrm{~s}_{2}}\right\rangle$, in the $\left\langle\mathrm{u}_{2}^{2}\right\rangle$ equation is not only a source term but it acts as a transfer term, too. That is, $\left\langle\mathrm{p} \frac{\partial u_{2}}{\partial \mathrm{x}_{2}}\right\rangle$ takes energy from moderate-sized eddies and transfers it to the small and large eddies.

The transfer terms have the following form:

$$
\begin{equation*}
T_{i j}=u_{i} \frac{\partial u_{j} u_{k}}{\partial x_{k}}+u_{j} \frac{\partial u_{i} u_{k}}{\partial x_{k}} \tag{6-9}
\end{equation*}
$$

The 3-D spectrum of $T_{i j}$ is defined by

$$
\begin{equation*}
\hat{T}_{i j}=\hat{u}_{i}\left(\frac{\partial u_{j} u_{k}}{\partial x_{k}}\right)^{*}+\hat{u}_{i}^{*}\left(\frac{\partial u_{j} u_{k}}{\partial x_{k}}\right)+\hat{u}_{j}\left(\frac{\partial u_{i} u_{k}}{\partial x_{k}}\right)^{*}+\hat{u}_{j}^{*}\left(\frac{\partial u_{i} u_{k}}{\partial x_{k}}\right) \tag{6-10}
\end{equation*}
$$

As can be seen from Figs. 6-24 through 6-28, the transfer term transfers energy from both small and large scales to the medium-sized eddies, except for the transfer term in the $\left\langle u_{2}^{2}\right\rangle$ equation, which transfers energy from large eddies to the small eddies. These effects, which are somewhat surprising, have been observed in all the calculated flow fields. McMillan and Ferziger (1978) have also found that the transfer term is negative at high wavenumbers when the shear is high. These results were obtained at high Reynolds numbers.

A-10. The Dissipation Anisotropy Tensor

The dissipation anisotropy tensor, $d_{i j}$, is defined by Eq. (4-47). Figure 6-29 shows $d_{i j}$ as a function of time. It has generally been assumed that the small scales in turbulent flows are isotropic, i.e., the dissipation anisotropy is nearly zero. However, as can be seen, the components of $d_{i j}$ start from zero and vary with time. d_{11} increases while d_{22} decreases in the developing region. It also can be seen that d_{33} is an order of magnitude smaller than the other components and is therefore not significant. Furthermore, as we shall see later, $d_{i j}$ seems not to be very Reynolds number dependent, and this result is of considerable significance in turbulence modeling. Also note that the dissipation anisotropy is very similar to the Reynold stress anisotropy (Fig. 6.18); its components behave in the same way with time.
B. The Scalar Field

The length scales, two point-correlations, and one-dimensional spectra of the scalar fluctuations behave in a manner similar to those of the velocity field. They are shown in Figs. 6-7 through 6-14. From the two-point correlations and the $1-D$ spectra of the scalar and velocity fields, it can be seen that the scalar quantity behaves very much like the streamwise velocity.

The time evolution of the 3-D spectrum of the scalar fluctuations is shown in Fig. 6-30. As can be seen from the figure, the behavior of the 3-D spectrum of the scalar quantity is similar to that of the 3-D energy spectrum. The scalar-fluctuation intensity as a function of time is shown in Fig. 6-31. The scalar intensity increases with time in the developed region. Its behavior with time is similar to the behavior of $\left\langle u_{1}^{2}\right\rangle$, i.e., they both increase at the same rate in the "developed" region.

The one-point velocity-scalar correlations as a function of time are shown in Fig. 6-32. As can be seen, there are two non-zero components:

$$
\frac{\left\langle\theta u_{1}\right\rangle}{\theta^{\prime} u_{1}^{\prime}} \text { and } \frac{\left\langle\theta u_{2}\right\rangle}{\theta^{\prime} u_{2}^{\prime}}
$$

This suggests that there are heat/mass fluxes in both the streamwise and normal directions. The one-point correlation with the streamwise velocity reaches a value of 0.75 . The experimental value for this term, which was obtained by Tavoularis (1979), is about 0.6. The one-point correlation for the normal direction reaches a value of $\mathbf{- 0 . 5 2 ;}$ the corresponding experimental value is -0.4 . The difference between our computed results and the experimental results for these terms is probably due to the Reynolds number difference, as discussed in Section 3A-7 of this chapter.

As can be seen from Fig. 6-32, the streamwise velocity and the scalar quantity are well correlated. This is consistent with the Prandtl mixing-length theory, which is based on the assumption that the streamwise velocity component acts as a scalar which is transported vertically.

The volume-averaged equations for the scalar intensity and the heat/mass flux are given by Eqs. (4-9), (4-11), and (4-12) and are discussed in Chapter IV. Figures 6-33 through 6-35 show the time evolution of each term in these equations. As can be seen, the pressurescalar covariances for both $\left\langle\theta \mathrm{u}_{1}\right\rangle$ and $\left\langle\theta \mathrm{u}_{2}\right\rangle$ equations are such that they tend to destroy the correlations. This effect is similar to that of the analogous terms in the Reynolds shear stress, $\left\langle u_{1} u_{2}\right\rangle$, equation.

Figures 6-36 and 6-37 show the $3-\mathrm{D}$ spectra of each term in the θ^{2} and θu_{2} equations. The transfer terms behave in a manner similar to that of the transfer term in the $u_{1} u_{2}$ equation.

6.4 Statistics of the Velocity Fields and Models

As stated above, 24 velocity fields were produced at various Reynolds and shear numbers. In this section, the effects of these nondimensional parameters on various turbulence statistics will be tested and their validity will be examined. To do this, we use a power law of the nondimensional parameters to fit the data. The accuracy of the fit can be judged by r.m.s. relative error obtained from the simulated data and the power law.
A. Reynolds Stress Tensor

The values of the Reynolds stress tensor components, $\left\langle u_{i} u_{j}\right\rangle$, are given in Appendix C. Their behavior is particularly important, because they appear in the mean momentum equations and are modeled most of ten.

The angle of the principal axis of the Reynolds stress tensor relative to the computational coordinate system (cf. Eq. (4-17) is given in Table 6-5. As can be seen, the principal axis angle varies between 11.5 and 26 degrees, depending on the shear and Reynolds numbers. The behavior of this angle as a function of the Reynolds and shear number is shown in Figs. 6-38 and 6-39, respectively. As shown in these figures, the principal axis angle is Reynolds- and shear-number dependent. It decreases with both $\operatorname{Re}_{\lambda}$ and A. At high Reynolds numbers, however, the angle seems to reach an asymptotic value. This value is shear number dependent.

The most common model for $\left\langle u_{i} u_{j}\right\rangle$ is based on the Boussinesq eddy-viscosity concept, Eq. (4-21), i.e., $\left\langle u_{i} u_{j}\right\rangle$ is proportional to the mean shear. The problem with this model is that it requires $\left\langle u_{1}^{2}\right\rangle$ $=\left\langle u_{2}^{2}\right\rangle=\left\langle u_{3}^{2}\right\rangle$ for the shear flows. On the other hand, the angle of the principal axis of the mean strain, $S_{i j}$ (cf. Eq. (4-19)) is 45 degrees, while the angle of the principal axis of $\left\langle u_{i} u_{j}\right\rangle$ varies
between 11.5 and 26 degrees in our flow fields. Thus this model cannot represent the Reynolds stress tensor.

A modified version of this model was suggested by Wilcox and Rubesin (1980). Their model has the following form:

$$
\begin{equation*}
\left\langle u_{i} u_{j}\right\rangle=\frac{1}{3} q^{2} \delta_{i j}-2 \nu_{T} S_{i j}-C \frac{q^{6}}{\varepsilon^{2}}\left(S_{i m} \Omega_{m j}+S_{j m} \Omega_{m i}\right) \tag{6-1.0}
\end{equation*}
$$

The last term in this model is designed so that $\left.\left.\left\langle u_{1}^{2}\right\rangle\right\rangle\left\langle u_{3}^{2}\right\rangle\right\rangle\left\langle u_{2}^{2}\right\rangle$ in a shear flow such as the one we have treated; it makes no contribution to $\left\langle u_{1} u_{2}\right\rangle$ in these flows and this model is identical to Eq. (4-21) for this term. For the other components of $\left\langle u_{i} u_{j}\right\rangle$, the model has the following form:

$$
\begin{align*}
&\left\langle u_{1}^{2}\right\rangle=\frac{1}{3} q^{2}+\frac{C}{2} \frac{q^{6} s^{2}}{\varepsilon^{2}} \\
&\left\langle u_{2}^{2}\right\rangle=\frac{1}{3} q^{2}-\frac{c}{2} \frac{q^{6} s^{2}}{\varepsilon^{2}} \tag{6-11}\\
&\left\langle u_{3}^{2}\right\rangle=\frac{1}{3} q^{2}
\end{align*}
$$

Wilcox and Rubesin suggested that the coefficient C, for boundary layers, is 1.23. From our results, however, the coefficient C is found to vary between 0.00022 and 0.0145 , depending on the Reynolds and shear numbers; the variation of C does not exhibit any clear-cut pattern. This suggests that this model is not good for homogeneous shear flows.

A more complicated model for ${ }^{\text {Reynolds }}$ stress tensor was derived by Rodi (1976). Rodi's nonlinear algebraic model is based on the assumption that $b_{i j}$ is time-independent and is derived for high Reynolds number flows. It has the following form:

$$
\begin{equation*}
\left\langle u_{i} u_{j}\right\rangle=q^{2}\left[\frac{1}{3} \delta_{i j}+\frac{1}{2} \frac{(1-\gamma)}{c_{1}} \frac{\left(\mathcal{P}_{i j} / \varepsilon-\frac{2}{3} \delta_{i j} \mathscr{P} / \varepsilon\right)}{1+\frac{1}{c_{1}}(\mathscr{P} / \varepsilon-1)}\right] \tag{6-12}
\end{equation*}
$$

where

$$
\bigoplus_{i j}=-\left\langle u_{i} u_{j}\right\rangle \frac{\partial \bar{U}_{j}}{\partial x_{k}}-\left\langle u_{j} u_{k}\right\rangle \frac{\partial \widetilde{U}_{i}}{\partial x_{k}}
$$

and

$$
P=\frac{1}{2} P_{i i}
$$

C_{1} and γ are model constants. Although the values of γ and C_{1} are constant, this model requires $\left\langle u_{2}^{2}\right\rangle=\left\langle u_{3}^{2}\right\rangle$ in our flow, which is not true.

For the Reynolds shear stress, $\left\langle u_{1} u_{2}\right\rangle$, Eq. (4-21) has the following form:

$$
\begin{equation*}
\left\langle u_{1} u_{2}\right\rangle=-\nu_{T} \frac{\partial \bar{U}_{1}}{\partial \mathrm{x}_{2}} \tag{6-13}
\end{equation*}
$$

where the eddy viscosity, ν_{T}, itself needs to be modeled. Models for ν_{T} are discussed in Chapter IV. Using the results for each of the fourteen simulated flow fields and Eq. (4-23), $\nu_{T}=C q L$, and Eq. (6-13), we calculate the constant C in Eq. (4-23) and correlate it with the nondimensional parameters. (Note that the length scale used here is the integral length scale, L.) The fitting function used for this purpose has the form:

$$
\begin{equation*}
F=C \operatorname{Re}^{\alpha} A^{\beta} \tag{6-14}
\end{equation*}
$$

where α, β, and C are determined using least-squares fitting. The results are shown in Fig. 6-40. The straight line in this figure represents a perfect fit, and the symbols are our simulated results. The r.m.s. error shown in the figure indicates the deviation of the data from the fit. It is defined as the average of the squares of difference between our computed data and the fitting function normalized by the average of the data. The solid points are the experimental results of Tavoularis (1978). As shown in the figure, $\nu_{\mathrm{T}} / \mathrm{qL}$ is nearly Reynolds number independent (the exponent α in Eq. (6-14) is -0.08), and is approximately proportional to the shear number.

$$
\begin{equation*}
\frac{\nu_{\mathrm{T}}}{\mathrm{qL}} \simeq 0.265 \operatorname{Re}_{\lambda}^{-0.08} \alpha^{-1.07} \tag{6-15}
\end{equation*}
$$

From this relation, one gets

$$
\begin{equation*}
\frac{\left\langle u_{1} u_{2}\right\rangle}{q^{2}} \simeq-0.265 \operatorname{Re}_{\lambda}^{-0.08} \not \alpha^{-0.07} \tag{6-16}
\end{equation*}
$$

Note that the above relation is good only for $\mu>1$. As can be seen, $\left\langle u_{1} u_{2}\right\rangle / q^{2}$ is nearly constant in homogeneous shear flows and does not depend heavily on Reynolds and shear numbers.

B. Reynolds Shear Stress Correlation

The values of the Reynolds shear stress correlation, $\frac{\left\langle u_{1} u_{2}\right\rangle}{u_{1}^{\prime} u_{2}^{\prime}}$, obtained from the simulated flow fields, are given in Table 6-6. As can be seen, $\frac{\left\langle u_{1} u_{2}\right\rangle}{u_{1}^{\prime} u_{2}^{\prime}}$ varies from -0.54 to -0.74 , depending on the Reynolds and shear numbers and time. Assuming that it depends only on $\operatorname{Re}_{\lambda}$ and \mathcal{A} we use the function (6-14) to correlate $\frac{\left\langle u_{1} u_{2}\right\rangle}{u_{1}^{1} u_{2}^{1}}$ with the nondimensional parameters. The results are shown in Fig. 6-41. As shown, the correlation decreases slightly with the Reynolds number and increases with the shear number. This is expected, as discussed in Section $3 A-7$ of this chapter. The dependence on Reynolds number is very weak. The result is

$$
\begin{equation*}
\frac{\left\langle u_{1} u_{2}\right\rangle}{u_{1}^{\prime} u_{2}^{\prime}} \simeq-0.515 \operatorname{Re}_{\lambda}^{-0.043}{ }^{-0} 0.134 \tag{6-17}
\end{equation*}
$$

The experimental results of Tavoularis (1979), which obtained at $\mathrm{St}=$ 8 to 11 , are also shown in this figure. They lie slightly below our computed results. This may be because the Reynolds shear stress correlation is time-dependent and/or the fitting function is not exact.

C. Reynolds Stress Anisotropy Tensor

The Reynolds stress anisotropy tensor, $b_{i j}$, is defined by Eq. (4-33). It is a symmetric and trace-free tensor, which is zero in isotropic flows. To determine the effects of $\operatorname{Re}_{\lambda}$ and \mathcal{A} on the compo-
nents of $b_{i j}$, we again use function (6-14) and least-squares to fit the results. The results are shown in Figs. 6-42 through 6-44. As can be seen, $b_{i j}$ is almost independent of Reynolds number. A has a rather strong effect on b_{11} and b_{22}, but does not have much effect on b_{12}. b_{33} is an order of magnitude smaller than the other components of $b_{i j}$ and is negligible. It can also be seen from the figures that the function does not fit the data well, i.e., there is considerable scatter. It may be because (a) the fitting function is not suitable for $b_{i j}$, or (b) $b_{i j}$ is time-dependent. The latter seems more reasonable, since the data figures belonging to one flow fall in a line which is not parallel to the fit line.

D. Pressure-Strain Terms

As discussed in Chapter IV, the pressure-strain term $\phi_{i j}$, which is responsible for transferring energy from one component of the turbulent kinetic energy to another, can be divided into two distinct parts, the fast term and the Rotta term. The magnitudes of each part of the pressure-strain tensor are given in Appendix C. Since the fast and Rotta terms behave differently, each requires a different model. In this section, we test models which were introduced in Chapter IV for these terms.

D-1. The Fast Term

The part of the pressure strain which is proportional to the mean shear is called the fast term (Eq. (4-46)). A model for this term is given by Eq. (4-49). This model, which was introduced by Hanjalic and Lumley (1974) and W. C. Reynolds (1976), has only one constant A_{1}. The constant is computed for each component in each flow. A_{1} changes only slightly from one flow field to another; the effects of Reynolds and shear numbers are very small. However, the constant A_{1} obtained for $\phi_{11}^{(1)}$ is very different from the constants for the other components of
$\phi_{i j}^{(1)}$. The average value of the constant for each component is shown in the first column of Table 6.7. The constant was also fit with the function (6.11), and the results are shown in the last three columns of this table. The Gibson-Launder model is a simplified version of the
above model. It assumes $\phi_{22}^{(1)}=\phi_{33}^{(1)}$, which is found to be incorrect in our flow; therefore this model is poor compared to the more general model, Eq. (4-49).

D-1. The Rotta Term

The part of the pressure strain which is not explicitly dependent on the mean flow, $\phi \mathcal{Y}_{j}^{2}$, is the Rotta term (Eq. (4-53)). As shown in Table C-5, the magnitude of $\phi_{3}(2)$ is very small compared to the magnitude of the other components. For this reason, this component is not considered in this section.

Two models for $\phi_{i j}^{(2)}$ are given in Chapter IV. The Rotta model, Eq. (4-55), assumes that the pressure-strain tensor is proportional to the Reynolds stress anisotropy. The constant A_{2} for this model is calculated using our simulated results and is given in Table 6-8. The constant A_{2} obtained fron each component of $\phi_{i j}^{(2)}$, is fitted by a function of the form (6.11). The results are given in the table. As can be seen, A_{2} varies very much from one flow to another and is not well fit as a function of the nondimensional parameters. This suggests that this model is not likely to be useful.

Table 6-9 shows the constant A_{3} and its invariants obtained usjing the modified Rotta model, Eq. (4-56). As shown, A_{3} has less variation and is nearly constant for all of the components. The variation of A_{3} with $\operatorname{Re}_{\lambda}$ and \mathbb{A} is obtained using least-square fitting, and the results are given in Table 6-9. The constant A_{3} increases with the Reynolds number and decreases with the shear number. If a constant value for A_{3} is to be used, our results suggest $A_{3}=2.7$.

E. Dissipation Anisotropy Tensor

The dissipation anisotropy tensor, $d_{i j}$, is defined by Eq. (4-57). Its magnitude can be calculated from the dissipation tensor, given by Table c-3. $d_{i j}$ is a symmetric, trace-free tensor. The dissipation is frequently assumed isotropic at high Reynolds numbers, and we expect $\left|d_{i j}\right|$ to decrease with Reynolds number. On the other hand, $\left|d_{i j}\right|$ is zero in isotropic flows when $\mu=0$, and one expects it to increase with the shear number. We use a least-squares fit to our simulated
data, using function (6-11) to study the behavior of $d_{i j}$ as a function of A and $\operatorname{Re}_{\lambda}$. Figures 6-45 through 6-47 show the results. Note that d_{33} is very small, so its behavior is not shown here. As can be seen from the figures, all of the components decrease with $\operatorname{Re}_{\lambda}$ and increase with A. This is expected, as discussed above. However, the effect of Reynolds number is smaller than expected, suggesting that the dissipation may remain anisotropic even at quite high Reynolds numbers. This is contrary to the assumption made by many people that the dissipation is isotropic at high Reynolds numbers.

6-5. Behavior of the Scalar Fields and Their Models
In this section, the effects of Reynolds, shear, and Prandtl numbers on various turbulence statistics obtained from 56 generated scalar fields will be studied. Models introduced in Chapter IV for these terms will be tested, and their validity over the range of $\operatorname{Re}_{\lambda}, \mathcal{A}$, and Pr will be examined. The constant(s) for each model will be calculated, and their behavior as functions of the non-dimensional parameters will be discussed. We use least-squares fits to correlate the results.
A. The Non-Dimensional Scalar Fluctuations

The non-dimensional scalar fluctuation, $\mathcal{A}_{\theta 2}=\theta^{\prime} / S_{2} L$, is a dependent parameter, as discussed in Section 6-1. Therefore, we suspect A A_{2} to be a function of Reynolds, shear, and Prandtl numbers. We use the following power-law function to determine its dependence on $\operatorname{Re}_{\lambda}$, A, and $\operatorname{Pr}:$

$$
\begin{equation*}
F=C \operatorname{Re}_{\lambda}^{\alpha} \alpha^{\beta} \operatorname{Pr}^{\gamma} \tag{6-18}
\end{equation*}
$$

where C, α, β, and γ are determined by least-squares fitting. The results, along with the experimental results, are shown in Fig. 6-48.

As can be seen, the experimental results behave very similar to the simulated results. It can also be seen that \mathcal{A}_{62} is almost independent of $\operatorname{Re}_{\lambda}$. The result is

$$
\begin{equation*}
\mathscr{L}_{\theta 2} \simeq \operatorname{Re}_{\lambda}^{-0.021} \mu^{-0.955} \operatorname{Pr}^{0.172} \tag{6-19}
\end{equation*}
$$

Substituting the definitions of $\mathcal{A}_{\theta 2}$ and $\mathcal{N}_{\text {in }}$ the above equation, t he above relation can be approximated as:

$$
\begin{equation*}
\frac{\theta^{\prime}}{\partial \overline{\mathrm{C}} / \partial \mathrm{x}_{2}} \simeq \frac{q}{\partial \widetilde{\mathrm{U}}_{1} / \partial \mathrm{x}_{2}} \operatorname{Pr}^{0.172} \tag{6-2.0}
\end{equation*}
$$

so the ratio of the r.m.s. scalar fluctuation to the mean scalar gradient is proportional to the ratio of the turbulence velocity to the mean velocity gradient.
B. Turbulence Heat Flux

The magnitudes of the turbulence heat fluxes, $\left\langle\theta \mathrm{u}_{1}\right\rangle$ and $\left\langle\theta \mathrm{u}_{2}\right\rangle$, obtained from the simulated scalar fields, are given in Appendix C. Note that $\left\langle\theta u_{3}\right\rangle=0$. As can be seen from Table $C-7$, the heat flux ratio, $\left\langle\theta \mathrm{u}_{1}\right\rangle /\left\langle\theta \mathrm{u}_{2}\right\rangle$ varies from l to 4 , depending mainly on the shear number. This is expected because, as increases, the flow becomes more anisotropic and $u_{1}^{\prime} / u_{2}^{\prime}$ increases. Therefore, $\left\langle\theta u_{1}\right\rangle /\left\langle\theta u_{2}\right\rangle$ increases with

C. One-Point Velocity-Scalar Correlations

The velocity-scalar correlation is defined as $<\theta u_{i}>/ \theta^{\prime} u_{i}^{\prime}$ (no summation). There are two non-zero components, $<\theta u_{1}>/ \theta^{\prime} u_{1}^{\prime}$ and $\left\langle\theta u_{2}\right\rangle / \theta^{\prime} u_{2}^{\prime}$. They are given in Table 6-10. The magnitudes of these terms change only slightly from one flow to another. To correlate these terms with the independent parameters of the flow, we use function (6-18). The results are shown in Figs. 6-49 and 6-50. They have the following form:

$$
\begin{equation*}
\frac{\left\langle\theta u_{1}\right\rangle}{\theta^{\top} u_{1}^{\prime}}=0.417 \operatorname{Re}_{\lambda}^{0.021} \not L^{0.138} \operatorname{Pr}^{0.012} \tag{6-21}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left\langle\theta u_{2}\right\rangle}{\theta{ }^{r} u_{2}^{\top}} \simeq-0.561 \operatorname{Re}_{\lambda}^{0.066}<0.139 \operatorname{Pr}^{-0.061} \tag{6-22}
\end{equation*}
$$

Comparing these with Eq. (6-17), we see the one-point velocity-velocity and velocity-scalar correlations are very similar. They all increase
with the shear number at the same rate and have very weak dependence on Reynolds number.

D. Turbulent Eddy Diffusivity Tensor

The turbulent eddy diffusivity tensor, $D_{i j}$, is defined by Eq. (4-26). It is non-symmetric. Only two components D_{12} and D_{22} can be calculated from our 56 simulated scalar fields. The other components can be computed when $\partial \bar{C} / \partial x_{1}$ and $\partial \bar{C} / \partial x_{3}$ are not zero and will be discussed later. Let us consider the behavior of D_{12} and D_{22}. Then we study the behavior of the other components using the results obtained from two particular runs with non-zero $\partial \overline{\mathrm{C}} / \partial \mathrm{x}_{1}$ and $\partial \overline{\mathrm{C}} / \partial \mathrm{x}_{3}$. Figures 6-51 and 6-52 show $D_{12} / q L$ and $D_{22} / q L$ as power law functions of the non-dimensional parameters. The results obtained by using least-squares fitting have the following forms:

$$
\begin{align*}
& \frac{\mathrm{D}_{12}}{\mathrm{qL}} \simeq 0.259 \mathrm{Re}^{-0.014} \alpha^{-0.72} \mathrm{Pr}^{0.19} \tag{6-23}\\
& \frac{\mathrm{D}_{22}}{\mathrm{qL}} \simeq-0.487 \mathrm{Re}_{\lambda}^{-0.132} \alpha^{-1.1} \mathrm{Pr}^{0.11} \tag{6-24}
\end{align*}
$$

Using the definition of $D_{i j}$ and \mathcal{A}, and Eq. $(6-16)$, the above relations are approximately

$$
\begin{align*}
& \frac{\left\langle\theta u_{1}\right\rangle}{q^{\theta^{\prime}}} \simeq 0.478 \tag{6-25}\\
& \frac{\left\langle\theta u_{2}\right\rangle}{q^{\theta^{\prime}}} \simeq 0.248 \tag{6-26}
\end{align*}
$$

These are very similar to the relation for the one-point velocityvelocity correlations, Eq. (6-16). This suggests that the eddy viscosity and diffusivity behave similarly. This is also seen from the experimental results (Tavoularis (1979)).

In Chapter IV, we derived a model for the eddy diffusivity tensor. The models for D_{12} and D_{22}, Eq. (4-35), have the following forms.

$$
\begin{equation*}
\frac{D_{12}}{q^{2} / S}=\left[C_{1} \frac{\left\langle u_{1} u_{2}\right\rangle}{q^{2}}+\frac{C_{2}}{2}\right] \operatorname{Re}_{\lambda}^{\alpha} \not \beta^{\beta} \operatorname{Pr}^{\gamma} \tag{6-27}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D_{22}}{q^{2} / \mathrm{s}}=\left[\mathrm{c}_{1}\left(\frac{\left\langle\mathrm{u}_{2}^{2}\right\rangle}{q^{2}}-\frac{1}{3}\right)+\mathrm{C}_{3}\right] \operatorname{Re}_{\lambda}^{\alpha^{\prime}} \alpha^{\beta^{\prime}} \operatorname{Pr}^{\gamma^{\prime}} \tag{6-28}
\end{equation*}
$$

The magnitudes of the constants in the above relations were obtained using least-squares of our computed results. The results are shown in Figs. 6-53 and 6-54. As shown, the magnitudes of the constants are $C_{1}=1.20, C_{2}=0.99$, and $C_{3}=0.569$; the constant C_{1} is fixed for both D_{12} and $D_{22^{\prime}}$. The constants are nearly independent of Reynolds number and are proportional to $\mathrm{Pr}^{0.17}$. This model fits the data quite well.

So far, we have discussed only the two components of $D_{i j}$ that participate when $\partial \bar{C} / \partial x_{2}$ is the only non-zero mean scalar gradient. To obtain the other components of $D_{i j}$, we ran two further cases. Each run used the same hydrodynamic field and initial conditions, but one had non-zero $\partial \bar{C} / \partial x_{1}$ and the other was for non-zero $\partial \bar{C} / \partial x_{3}$. Table $6 \cdots 11$ shows the components of $D_{i j}$ obtained from these simulations. As can be seen, D_{11} has the largest value. This is expected because D_{11} is proportional to u_{1}, which is the largest velocity component. D_{22} and D_{21} have the smallest values, for similar reasons. Only a few components of $D_{i j}$ are experimentally determined. Table 6-12 shows the values of $D_{i j} / D_{22}$ obtained from the experimental results of Corrsin (1980) and the present results. The experimental results are obtained at $\operatorname{Re}_{\lambda}=396$ and $\mathbb{A}=12.76$.

Note that the diffusion equation $(2-20)$ is linear, so the θ obtained from different runs can be added or subtracted. Results for a case in which the mean scalar gradient is non-zero in all three directions can be obtained from three runs, each of which has a mean gradient in one direction. However, the θ fields are not uncorrelated, because the same velocity field is the same. Then, $\left\langle\theta_{1} \theta_{2}\right\rangle$ is not necessarily zero when θ_{1} and θ_{2} are results from two different runs.

E. Turbulent Prandt1 Number

The turbulent $\operatorname{Prandtl}$ number, Pr_{T}, is the ratio of eddy viscosity to eddy diffusivity (Eq. (4-36)). The magnitude of turbulent Prandt
number for each flow field is given in Table 6-13. Its behavior as a function of Reynolds, shear, and Prandtl numbers is shown in Fig. 6-55. As can be seen, Pr_{T} is almost independent of $\operatorname{Re}_{\lambda}$ and A. It decreases when molecular Prandtl number increases, and vice versa. The result of least-squares fitting of the data is:

$$
\begin{equation*}
\operatorname{Pr}_{T} \simeq 0.528 \operatorname{Re}_{\lambda}^{0.05} \mathcal{L}^{0.036} \mathrm{Pr}^{-0.105} \tag{6-29}
\end{equation*}
$$

The values of
Pr_{T} obtained from 56 simulated flow fields were used to test models described in Chapter IV. The results are shown in Figs. 6-56 through 6-59.

The first three of these figures test Reynolds', Wassel's, and Crawford's models, given by Eqs. (4-37) through (4-39), respectively. All of the models behave similarly and fit the simulated results rather poorly. The suggested values for the model constants suggested in the literature are different from the constants obtained from our simulated results.

Figure 6-59 tests the model derived in Chapter IV, Eq. (4-40). This model fits the data much better than the models mentioned above. The model can be approximately simplified to:

$$
\begin{equation*}
\operatorname{Pr}_{T}=\frac{0.38}{\alpha^{0.2}{ }_{\operatorname{Pr}^{0.12}}\left(1.20 \frac{\left\langle u_{2}^{2}\right\rangle}{q^{2}}+0.169\right)} \tag{6-30}
\end{equation*}
$$

F. Pressure-Scalar Covariance

Like the pressure-strain, the pressure-scalar covariance contains two parts. The magnitudes of each part of the pressure-scalar covariance computed from our simulated flow fields are given in Appendix C. In this section we examine the pressure-scalar covariance models introduced in Chapter IV.

F-1. The Fast Term

The part of the pressure-scalar covariance which is proportional to the mean velocity gradient $\phi_{i}^{(1)}$ is called the fast or rapid term (Eq. (4-60)).

Let us consider the model given by Eqs. (4-69) and (4-70). The constant A_{o} in this model is $2 / 5$, according to the assumptions made in Chapter IV. In this section we use our simulated results and calculate A_{0}. The behavior of A_{o} as a function of the nondimensional parameters is obtained using the least-squares fitting and function (6-21). The results are shown in Fifer-6-70 tor 71 and Table 6-14. As shown, the value of A_{0} changes very slightly throughout the 56 flow fields (i.e., the variance of A_{0} is small) and has small dependency on $\operatorname{Re} \lambda, \mathbb{A}_{\lambda}$ and Pr. This suggests that much of the important physics is captured by the model. On the other hand, the computed value of A_{o} is less than one-half of the expected value. This suggests that the assumptions (mentioned in Chapter IV) made in deriving the model are not sufficient, and a more complicated model may be needed to get better results.

Let us now consider lunley's model, Eqs. (4-72) and (4-73). This model satisfies all of the conditions of the previous one plus a new condition mentioned in Chapter IV. The constant A_{o} in this model is predicted to be $1 / 2$. The values of A_{0} and its behavior as a function of Re, A, and Pr for the two components of $\phi_{i}^{(1)}$. are given in Table 6-15. As shown, the variation of A_{0} over 56 flow fields is small, and therefore the model captures much of the important physics. However, the magnitude of the constant is different from $1 / 2$, and varies from one component to another.

F-2. The Rotta Term
The second part of the pressure-scalar covariance, $\phi_{i}^{(2)}$, is defined by Eq. (4-74). This part does not explicitly depend on the mean flow. Equations (4-79) and (4-80) represent a model for this term. The model is analogous to the modified Rotta model used for the pressurestrain covariance. The constant A_{1} obtained by using our simulated results is given in Table 6-16. The behavior of A_{1} as a function of
$\operatorname{Re}_{\lambda}$ and \mathbb{N} are also given in the table. As we see, the constants for both components of $\phi_{i}^{(2)}$ are nearly the same and have very small variation due to the $\operatorname{Re}_{\lambda}$, \mathbb{R}^{\prime}, and Pr. This is similar behavior to that of the modified Rotta model for the pressure-strain terms.

6.5 Comparison with the Other Flows

Nearly all turbulent flows in nature are inhomogeneous, i.e., the shear varies through the flow. The homogeneous flows may be structurally different from their inhomogeneous counterparts; the two kinds of flows might require different types of models, and thus our results and discussion for mixing of a passive scalar in homogeneous flows might not be valid for inhomogeneous flows. We shall briefly compare some of our results with those for inhomogeneous flows.

Table 6-17 compares non-dimensional quantities obtained in the logarithmic region of a boundary layer and in one of our runs. These values are nearly constant in the logarithonic region but differ in the outer region.

The shear number was found to play an important role in homogeneous flows. Its value as a function of y^{+}in the boundary layer is given in Table 6-18. It is nearly constant in the logarithmic region but changes rapidly in the other regions. In this region, the agreement with our results is quite good. In the inner region, the shear number changes rapidly and the wall has a very strong effect on the behavior of the turbulence. Both of these effects make the flow very different from a homogeneous flow, and our results cannot be applied. Clearly, specific models which account for these effects are needed and are, of course, in common use. In the outer (wake) region of the boundary layer, the shear number rapidly becomes small and there are again inhomogeneity effects which make comparison with our results very difficult. The interaction with the irrotational outer flow also has a strong effect.

Table 6-19 shows the variation of some of the turbulence statistics through a turbulent free shear layer and compares them with our homogeneous shear flow results. The turbulence statistics are nearly constant for $-0.5<\eta<0.5$. In this region the shear rate, $\partial \overline{\mathrm{U}}_{1} / \partial \mathrm{x}_{2}$, is
nearly constant and the results, as expected, are comparable to our homogeneous shear flow results. The shear number is also nearly constant in this region and is of the same order of magnitude as in boundary layers. In the region where $|n|>0.5$, the interaction with the irrotational flow causes strong inhomogeneity effects and the comparison with our flow is difficult.

Table 6-1

VELOCITY FIELD

Parameter	Notation	Dimension
Turbulence Velocity	$\mathrm{q}=\left\langle\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right\rangle^{1 / 2}$	$\mathrm{~L} \mathrm{~T}^{-1}$
Kinematic Viscosity	ν	$\mathrm{L}^{2} \mathrm{~T}^{-1}$
Integral Length Scale	L	L
Taylor Microscale	λ	L
Time	t	T

Table 6-2
SCALAR FIELD

Parameter	Notation	Dimension
Turbulent Scalar Intensity	$\theta^{\prime}=\left\langle\theta^{2}\right\rangle^{1 / 2}$	θ
Diffusion Coefficient	D	$\mathrm{L}^{2} \mathrm{~T}^{-1}$
Mean Scalar Gradient	$\mathrm{S}_{2}=\frac{\overline{\partial \mathrm{C}}}{\partial \mathrm{x}_{2}}$	$\theta \mathrm{~L}^{-1}$
Integral Length Scale	L_{θ}	L
Taylor Microscale	λ_{θ}	L

TAELE 6-3
Range of Non-Dimensional farameters

Parameters	Present IIata	Experimental Data
Fe	$10-120$	$130-400$
Δ	$5-70$	$3-14.8$
Fr	$0.2-5$	0.7
St	$0-7$	$0-12$

TABLE 6-4
Non-Ilimensional Farameters For Each Flow Field

Simulations	Farameters	$\mathrm{St}=4$	$s t=5$	St $=6$	$5 \mathrm{t}=7$
HS64A	Re	44.560	52.057	59.215	66.762
	\star	18.549	18.983	19.485	19.993
	Fr	1.000	1.000	1.000	1.000
HS64B	Fe	18.996	21.840	24.545	27.175
	α	23.727	25.178	26.790	29.397
	Fr	1.000	1.000	1.000	1.000
HS64G	Re	60.348	75.711	92.476	10.080
	N	66.879	69.205	68.924	68.878
	Fr	1.000	1.000	1.000	1.000
HS64J	Re	24.202	27.626	31.233	35.222
	\sim	11.228	12.617	14.493	16.328
	Fr	1.000	1.000	1.000	1.000
HS64M	Re	29.156	34.132	39.054	44.550
	\sim	8.936	10.333	11.987	13.853
	Pr	1.000	1.000	1.000	1.000
HS640	Fe	64.310	71.840	78.990	86.910
	N	6.376	7.120	7.738	8.236
	Pr	1.000	1.000	1.000	1.000
HS64C	Re	18.996	21.840	24.545	27.175
	∞	23.727	25.178	26.790	29.397
	Pr	5.000	5.000	5.000	5.000

TABLE 6-4 Continued

Simulations	PArameters	$5 t=4$	$\mathrm{St}=5$	$5 t=6$	$5 t=7$
HS64D	Re	44.560	52.057	59.215	66.762
	A	18.549	18.983	19.485	19.993
	Pr	5.000	5.000	5.000	5.000
HS64E	Re	44.560	52.057	59.215	66.762
	s	18.549	18.983	19.485	19.993
	Fr	0.200	0.200	0.200	0.200
HS64F	Re	18.996	21.840	24.545	27.175
	s	23.727	25.178	26.790	29.397
	Pr	0.200	0.200	0.200	0.200
HS64H	Re	60.348	75.711	92.476	10.080
	α	66.879	69.205	68.924	68.878
	Pr	5.000	5.000	5.000	5.000
HS64I	Re	60.348	75.711	92.476	10.080
	Δ	66.879	69.205	68.924	68.878
	Pr	0.200	0.200	0.200	0.200
HS64N	Re	29.156	34.132	39.054	44.550
	S	8.936	10.333	11.987	13.853
	Fir	0.200	0.200	0.200	0.200
HS64P	Re	64.310	71.840	78.990	86.910
	Δ	6.376	7.120	7.738	8.236
	Pr	0.200	0.200	0.200	0.200

TABLE 6-5
Frincipal Axis Ansle (Radians)
Equation 4-17

Simulation	ST $=4$	ST $=5$	ST $=6$	ST $=7$
HS64A	0.31886	0.27182	0.23674	0.22285
HS64B	0.32776	0.27180	0.22677	0.20689
HS64G	0.26261	0.21147	0.17420	0.15333
HS64J	0.40883	0.34481	0.29152	0.26612
HS64M	0.43080	0.37272	0.32677	0.30371
HS640	0.45910	0.42296	0.40323	0.39940

TAELE 6-6

One-Foint Correlations of the Velocity Field

$$
\left\langle u_{1} u_{2}>/ u_{1}^{\prime} u_{2}^{\prime}\right.
$$

Simulation	$S t=4$	$S t=5$	$S t=6$	$S t=7$
HS64A	0.68350	0.67890	0.68780	0.67250
HS64B	0.67680	0.67560	0.70390	0.69340
HS64G	0.72830	0.73470	0.76240	0.74390
HS64J	0.62960	0.63344	0.63720	0.61760
HS64M	0.61800	0.61666	0.60490	0.59520
HS640	0.54260	0.54720	0.54800	0.54280

TABLE 6-7
Constant For the Fressure-Strairi Model, Ea. 4-49
The Fast Term

Fittins Function $A_{1}=C \operatorname{Re}^{\alpha} \not \mathcal{L}^{\beta}$

Equation	A_{1}	C	α	β	$r . m .5$ error
$i=1, j=1$	-6.94 ± 0.519	9.75	-0.028	-0.082	0.038
$i=2, j=2$	-1.83 ± 0.400	1.55	0.038	0.008	0.060
$i=3, j=3$	-1.57 ± 0.380	6.82	-0.185	-0.282	0.093
$i=1, j=2$	-1.52 ± 0.077	2.01	-0.082	0.010	0.032

TAELE 6-8
Constant For the Firessure-strain model, Ea. (4-53)
Fotta Model

Fitting Function $A_{3}=C \operatorname{Re}^{\alpha} \varepsilon^{\beta}$

Equation	A	C	α	B	$r, m, 5$, error
$i=1, j=1$	0.673 ± 0.599	1.143	0.678	-1.195	0.15
$i=2, j=2$	0.673 ± 0.570	0.734	0.715	-1.075	0.13
$i=1, j=2$	0.679 ± 0.452	0.238	0.813	-0.776	0.15

TAELE 6-9
Constant For the Fressure-Strain Mordely Ea. (4-56)
Modified Fiotta Model

Fittins Finction $A_{3}=C \operatorname{Re}^{\alpha} \mathscr{L}^{\beta}$

Eavation	A_{3}	C	α	B	$r+m .5 . \operatorname{error}$
$i=1, j=1$	2.862 ± 0.349	3.342	0.144	-0.225	0.045
$i=2, j=2$	3.080 ± 0.428	4.200	0.119	-0.245	0.048
$i=1, j=2$	2.472 ± 0.426	1.633	0.330	-0.266	0.085

TAELE 6-10
One-Foint Velocity-Scalar Correlation

$$
\left\langle u_{i} \theta^{\prime}>/ u_{i}^{\prime} \theta^{\prime}\right.
$$

Simulation	I	$S t=4$	$S t=5$	$S t=6$	$S t=7$
HS64A	1	0.6674	0.6513	0.6351	0.5822
	2	0.7064	0.6742	0.6370	0.5891
HS64B	1	0.6504	0.6130	0.5726	0.5197
	2	0.7476	0.7302	0.7072	0.6410
HS64G	1	0.7949	0.7541	0.7041	0.6583
	2	0.7803	0.7746	0.7765	0.7320
HS64J	1	0.8552	0.8236	0.7709	0.7102
	2	0.6890	0.6542	0.5878	0.5197
HS64M	1	0.7721	0.7662	0.7687	0.7244
	2	0.6570	0.6134	0.5570	0.5222
HS640	1	0.8131	0.8058	0.8031	0.7564
	2	0.5682	0.5506	0.5195	0.4999
HS64C	1	0.7877	0.7464	0.6871	0.6524
	2	0.6674	0.6513	0.6351	0.5822
HS64D	1	0.7090	0.6724	0.6291	0.6078
	2	0.6504	0.6130	0.5726	0.5197
HS64E	1	0.6561	0.6806	0.7051	0.7414
	2	0.7949	0.7541	0.7041	0.6583
HS64F	1	0.6054	0.6129	0.6282	0.6706
	2	0.8552	0.8236	0.7709	0.7102
HS64H	1	0.7315	0.7887	0.8301	0.8614
	2	0.7721	0.7662	0.7687	0.7244
HS64I	1	0.7306	0.7770	0.8099	0.8366
	2	0.8131	0.8058	0.8031	0.7564
HS64N	1	0.5949	0.6310	0.6506	0.6805
	2	0.7877	0.7464	0.6871	0.6524
HS64P	1	0.5495	0.5793	0.5991	0.6198
	2	0.7090	0.6724	0.6291	0.6078

TAELE 6-11
Components of Nomalized Eddy Iliffusivity Tensor

$$
D_{i j} / q L
$$

Equation	$S t=3$	$S t=4$	$S t=5$	$S t=6$
$i=1, j=1$	-0.08770	-0.09750	-0.10690	-0.09810
$i=2, j=2$	-0.03200	-0.02530	-0.01792	-0.01200
$i=3, j=3$	-0.03430	-0.03325	-0.03335	-0.02590
$i=1, j=2$	0.04645	0.04786	0.04696	0.03910
$i=2, j=1$	0.03253	0.03026	0.02462	0.01910

TABLE 6-12
Experimental and Computed Values of Normalized Turbulent Eddy Diffusivity

$$
D_{i j} / D_{22}
$$

Equations	Computed Values at St=3	Experimental Fesults (Corrsin (1980))
$i=1, j=1$	-6.00	$*$
$i=2, j=1$	1.40	$*$
$i=1, j=2$	2.30	2.20
$i=2, j=2$	1.00	1.00
$i=3, j=3$	-1.60	-1.60

* The experimental values are not available.

TAELE 6-13
Turhulent Firandtl Number
Evuation (4-36)

Simulations	St = 4	$S t=5$	$S t=6$	$S t=7$
HS64A	0.6617	0.7089	0.7850	0.8585
HS64B	0.5984	0.6173	0.6766	0.7550
HS64G	0.6589	0.6950	0.7445	0.7945
HS64J	0.5800	0.6125	0.7006	0.8010
HS64M	0.6093	0.6602	0.7321	0.7950
HS640	0.6143	0.6386	0.6917	0.7269
HS64C	0.5302	0.5452	0.5900	0.6522
HS64D	0.6129	0.6538	0.7192	0.7870
HS64E	0.8609	0.9190	1.0280	1.1200
HS64F	0.8769	0.8910	0.9996	1.1310
HS64H	0.6461	0.6790	0.7241	0.7695
HS64I	0.7217	0.7716	0.8417	0.9125
HS64N	0.8584	0.8722	0.9208	0.9710
HS64F	0.7482	0.7712	0.8166	0.8335

TEALE 6-14
Constant for Firessure-Scalar Covariarice Model, Eqs. (4-69) and (4-70)
The Fast Term

Fittins Function $A_{0}=\operatorname{CRe} \mathcal{A}^{\alpha} \operatorname{Pr} \gamma$

Equation	A_{0}	C	α	β	γ	$r+m \cdot 5 \cdot$ errar
$(4-69)$	0.229 ± 0.079	0.543	0.025	-0.341	-0.096	0.17
$(4-70)$	0.144 ± 0.066	0.312	-0.018	-0.287	-0.148	0.11

TABLE 6-15
Constant for Firessure-Scalar Covariance Model, Eq. (4-71)
Lumles's Model for the Fast Term

Fittins function $A_{0}=C \operatorname{Re}^{\alpha} \mathbb{1}^{\beta} \operatorname{Pr} \gamma$

i	A_{0}	C	α	β	γ	$r \cdot m \cdot s \cdot \operatorname{error}$
1	0.676 ± 0.081	0.754	0.014	-0.059	-0.043	0.17
2	0.276 ± 0.103	0.085	-0.035	0.401	-0.018	0.18

TABLE 6-16
Constatrit for the Fressure-Scalar Model
The Fotta-Like Term

Fittins Function $A_{1}=c \operatorname{Re}^{\alpha} \mathcal{A}^{\beta} \operatorname{Pr}{ }^{\gamma}$

Ea山ation	A_{1}	C	α	β	r	$r \cdot m_{1}, 5$, error
$(4-79)$	-1.580 ± 0.677	1.031	0.170	-0.128	-0.307	0.16
$(4-80)$	-1.789 ± 0.730	0.744	0.461	-0.333	-0.157	0.14

Table 6-17
Comparison of Turbulence Statistics in Homogeneous Shear Flows and Boundary Layers

Quantity	Homogeneous Shear Flow Run HS64J at St $=7$	Boundary Layer*
$\frac{\left\langle u_{1} u_{2}\right\rangle}{q^{2}}$	-0.147	-0.130
$\frac{\left\langle u_{1} \theta\right\rangle}{q^{\theta^{\top}}}$	0.547	0.50
$\frac{\left\langle u_{2} \theta\right\rangle}{q^{\theta^{\top}}}$	-0.160	-0.20
$\frac{\mathrm{Pr}_{\mathrm{T}}}{\mathrm{D}_{12}}$	0.80	1.05
D_{22}	-2.30	-2.40
Johnson (1959)		

Table 6-18
Variation of Non-Dimensional Quantities in Channel Flow ${ }^{\dagger}$

$$
\operatorname{Re}_{\delta}=\frac{u_{c} \delta^{* *}}{\nu}=13800
$$

y^{+}	$\mathrm{Re}_{\mathrm{L}}{ }^{*}$	f	
3.85	747.8	1117.90)
16.09	2200	111.63	
38.18	2190	27.47	Sublaye
77.18	1496	9.50	
143.4	1540	3.95)
248.9	961	2.13	Log-region
440.7	770	1.79	
590.1	528	0.348	Centerline
```'Moin (1981). * Re integral length scale.```			
** ${ }_{\delta}$ is channel half-width.			
$u_{c}$ is mean velocity at the centerline.			

Table 6-19

Comparison of Turbulence Statistics in Homogeneous Shear Flow
and Free Shear Layers*

Quantity	Free Shear Layer**							Homogeneous Shear Flow, Run HS64J at $\quad$ St $=7$
	$n=-1.0$	$n=-0.75$	$n=0.5$	$n=0.8$	$n=0.5$	$n=0.75$	$n=1.0$	
$-\frac{\left\langle u_{1} u_{2}\right\rangle}{u_{1}^{\prime} u_{2}^{\prime}}$	0.312	0.38	3.45	0.50	0.40	0.28	0.16	0.62
$\frac{\left\langle\theta u_{2}\right\rangle}{\theta^{\prime} u_{2}^{\prime}}$	0.55	0.59	0.60	0.65	0.42	0.332	0.23	0.520
$\mathrm{Pr}_{T}$	0.60	0.62	0.65	0.82	0.79	0.70	0.56	0.80
	0.987	1.16	1.25	1.58	2.00	1.82	1.82	16.00
$\mathrm{Re}_{\mathrm{L}}$	6231	8107	9340	9262	8936	7678	6234	140

${ }^{*}$ Batt (1977).
${ }^{* *}$ The values obtained at $x_{1}-x_{10}=18.5^{\prime \prime}$ for $\bar{U}_{1}=23 \mathrm{ft} / \mathrm{sec}$ and $\bar{U}_{2}=0.0$.
$\eta \equiv \frac{12\left(x_{2}-\left(x_{2}\right)_{0.5}\right)}{x_{1}-x_{10}}, \quad \operatorname{Re}_{L} \equiv \frac{\bar{U}_{1} L}{\nu}, \quad$ where $L$ is integral length scale


Fig. 6-1. Nondimensional scalar quantity, $\mathcal{L}_{\theta 2}$, as a function of time for various runs with different initial values.


Fig. b-i. Inteyral lenyth scale ratio of the velocity and scalar field as a function of time for various runs with different initial values.


Fiy. b-3. Three-dinensional energy spectra.


Fig. 6-4. Three-dimensional spectra of the turbulent kinetic energy components.


Fig. 6-5. Turbulent kinetic energy and its components as function of time.


Fig. 6-6. Integral length scales in the $x_{1}$-direction as a function of time.


Fig. 6-7. Taylor microscales in the $x_{1}$-direction as a function of time.


Fig. 6-8. Various lenyth scales as a function of tine.




Fig. 6-12. One-dimensional spectra of velocity components and scalar in the $x_{1}$-direction.



Fiy. 6-14. One-dimensional spectra of velocity components and scalar in the $x_{3}$-direction.


Fig. 6-15. Three-dimensional spectra of two components of pressure and total pressure at $\mathrm{St}=0 . \mathrm{U}$.


Fig. 6-16. Three-dinensional spectra of the components of pressure and total pressure at $S t=4.0$.


Fig. 6-17. One-point velocity correlations as a function of time.


Fig. 6-18. Components of Reynolds stress anisotropy tensor as a function of time.


Fiy. 6-19. Various terms in the $\left\langle u_{1}^{2}\right\rangle$. equation as a function of time.


Fig. 6-20. Various temins in the $\left\langle u_{2}^{2}\right\rangle$ equation as a function of time.


Fig. 6-<l. Various terms in the $\left\langle u_{j}^{2}\right\rangle$ equation as a function of tine.


Fiy. 6-22. Various tems in the $\left\langle-u_{1} \mathrm{H}_{2}\right\rangle$ equation as a function of time.


Fig. 6-23. Various terns in the turbulent kinetic eneryy equation as a furction of tine.


Fig. 6-24. Three-dimensional spectra of various terms in the uid equation as a function of $t$ ime.


Fig. 6-25. Three-dimensional spectra of various terms in the $u_{2}^{2}$ equation as a function of time.


Fig. 6-26. Three-dimensional spectra of various terms in the $u_{3}^{2}$ equation as a function of time.




Fiy. 6-29. Components of dissipation anisotropy tensor as a function of time.


Fig. 6-30. Three-dimensional spectra of the scalar fluctuations at different times.


Fig. 6-31. The scalar-fluctuation intensity as a runction of tivie.


Fig. 6-32. Une-point velucity scalar currelations as a function of tine.


Fig. 6-33. Various terms in the $\left\langle\theta^{2}\right\rangle$ equation as a function of time.


Fig. 6-34. Various tems in the $\left\langle\theta u_{2}\right\rangle$ equation as a function of time.


Fig. 6-35. Various terms in the $\left\langle\theta u_{1}\right\rangle$ equation as a function of tiume.


Fig. u-36. Three-dinensional spectra of various terms in the $\theta^{2}$ equation.


Fig. 6-37. Three-dimensional spectra of various tems in the $\theta u_{2}$ equation.


Fig. 6-38. The angle of the principal axis of the Reynolds stress tensor as a function of Reynolds number ( $\mathrm{Re}_{\lambda}$ )


Fig. 6-39. The angle of the principal axis of the Reynolds stress tensor as a function of shear number


Fiy. 6-40. The constant for the eddy viscosity model ( $c=v_{T} / q L$ ) as a function of the fitting function.


Fiy. 6-41. Reynolds shear stress correlation as a function of the fitting function.


Fig. 6-42. Reynolds stress anisotropy, $b_{11}$, as a function of the fitting


Fig. 6-43. Reynolds stress anisotropy, $b_{c 2}$, as d function of the fitting function.


Fig. 6-44. Reynolas stress anisotropy, $b_{12}$, as a function of the fittiny function.


Fig. 6-45. Uissipation anisotropy, $d_{11}$, as a function of the fitting


Fig. 6-46. Oissipation anisotropy, $d_{22}$. as a function of the fittiny
function.


Fig. 6-47. Dissipation anisotropy, $d_{12}$, as a function of the fitting
function.


Fig. 6-48. Nondimensional scalar fluctuations as a function of the fitting


Fig. 6-49. One-point velocity-scalar correlation, $\begin{aligned} & \text { function of the fitting function. }\end{aligned}$ function of the fitting function.


Fig. 6-bu. One-point velocity-scalar correlation, $\left\langle\theta u_{z}>/ \theta^{\prime} u_{L}^{\prime}\right.$, as a function of the fitting function.



Fig. $b-52$. Nomalized turbulent eddy diffusivity, $\mathrm{D}_{2 \mathrm{z}} / \mathrm{qL}$, as a function of
the fitting function.


Fig. 6-53. Turbulent eddy diffusivity, $D_{12}$, as a function of its model.


Fig. 6-54. Turbulent eddy diffusivity, $U_{22}$. as a function of its model.


Fig. 6-55. Turbulent Prandtl number as a function of the fitting function.


Fiy. b-56. Turbulent Prandtl number as a function of the Reynolds model.


Fiy. 6-57. Turbulent Prandtl number as a function of the Wassel model.


Fig. 0-58. Jurbulent Prandtl number as a function of the Crawford liodel.


Fig. 6-59. Turbulent Prandtl number as a function of the new model.

### 7.1 Conclusions

In this work we have numerically solved the three-dimensional, time-dependent equations of motion and the diffusion equation for two cases, homogeneous isotropic turbulence and homogeneous sheared turbulence. In order to do this, we were required to work at rather small Reynolds numbers. The results obtained have been compared with available experimental results, and good agreement was obtained.

For the homogeneous isotropic flows, it has been found that the Reynolds and Prandtl numbers (within the range considered) have strong effects on the decay rates and the length scale ratios. The decay exponent of the turbulent kinetic energy, $n$, decreases with increasing Reynolds number (from 2.5 at $\operatorname{Re}_{\lambda}=0$ to 1.2 at $\operatorname{Re} \lambda_{\lambda} \sim 25$ ). The decay exponent of the scalar fluctuation intensity, m, decreases with both Reynolds and Prandtl numbers. Both the decay exponent ratio, $R$, and the length scale ratio, $\lambda_{u} / \lambda_{\theta}$, increase with the Reynolds number when $\operatorname{Pr}<1$ and decrease with the Reynolds number when $\operatorname{Pr}>1$. The absolute value of the velocity derivative skewness, $S k$, has maximum value of 0.5 at $R e_{\lambda} \simeq 20$. $S k$ is zero at $\operatorname{Re}_{\lambda}=0$ and reaches an asymptotic value of approximately 0.4 as $\operatorname{Re}_{\lambda}$ approaches 100 .

In homogeneous shear flows, unlike homogeneous isotropic flows, the initial conditions, such as the initial length scale ratio, $\lambda_{u} / \lambda_{\theta}$, and the initial non-dimensional scalar fluctuation do not affect the scalar field. Many of the turbulence statistics are nearly independent of the Reynolds number. The shear number has the most important influence in this flow. In homogeneous shear flows, the length scales grow faster than in the isotropic flows. The behavior of the dissipation (or transfer) length scale and integral length scales are similar, but the mixing length seems to behave differently. The turbulent kinetic energy first decreases and then increases. Due to the shear, the flow is anisotropic; the streamwise velocity fluctuations are the largest, while the vertical velocity fluctuations are the smallest. The dissipation
tensor is very anisotropic and does not become isotropic even at rather high Reynolds numbers. This is contrary to the assumptions made by many people. The behavior of the scalar fluctuation intensity is very similar to that of the streamwise turbulent kinetic energy components; they are well correlated, and their spectra are similar. It is unclear whether this flow reaches statistical equilibrium. Our results show that $\left\langle u_{1} u_{2}\right\rangle / q^{2},\left\langle\theta u_{1}\right\rangle / q^{\prime}$, and $\left\langle\theta u_{2}\right\rangle / q^{\prime}$, are nearly constant in this flow. However, the other components of $b_{i j}$ slightly change with time.

From the three-dimensional spectra of the production, dissipation, pressure-strain, and the transfer terms, it is found that influence of the transfer term is very small compared to that of the other terms. In sheared turbulence, this term, contrary to a common assumption, transfers energy from both large and small eddies to the moderate-sized eddies.

The three-dimensional spectra of the components of pressure field ( $p^{(1)}$ and $p^{(2)}$ ) have been studied. It has been found that the part of pressure which is explicitly associated with the mean flow dominates at the large scales and has $a k^{-5}$ shape at moderate wave numbers. The second part of the pressure is important at the small scales. The relative magnitude of the two parts of the pressure depends on the shear rate.

The turbulent Prandtl number is almost independent of the Reynolds number, and decreases as the molecular Prandtl number increases. A new model for the turbulent Prandtl number seems to correlate the data better than a number of other models.

Several models for various turbulence statistics were tested, and the following conclusions made:

The eddy viscosity model fits the turbulent shear stress quite well, but is incapable of predicting the diagonal components of the Reynolds stress accurately. The parameter in the model is proportional to the inverse of the shear number. Rodi's algebraic model for the Reynolds stress is also incapable of predicting the diagonal components of the Reynolds stress in this flow, but its coefficient is relatively
constant for the turbulent shear stress. Eddy diffusivity models behave similarly to the eddy viscosity model. Their parameters are nearly proportional to the inverse of shear number and depend slightly on Prandtl number.

The Rotta model for the pressure-strain term correlates the data rather well. The modified Rotta model correlates the data even better. The constant for this model is about 2.7. Similarly, the model similar to the modified Rotta model for the pressure-scalar covariance fits the data very well. The model.s for the fast term are not good and need to be improved.

### 7.2 Recommendations

In this work, we have assumed the scalar is passive; therefore, we have neglected the effects of buoyancy. It would be interesting to study the effects of buoyancy in these flows. Our simulated flow fields have provided "exact" results for the flow fields. We have used these results to check some of the models for various volume-averaged turbulence statistics. We suggest using the "exact" results to obtain some models for the subgrid scales of the scalar fields.

Finally, it should be possible to extend this work to simulate the reacting flows.

LINEAR STABILITY ANALYSIS

In this section we study the stability and accuracy of numerical methods of solving the equations of motion (2-18) and the diffusion equation (2-20).

For the sake of simplicity, let us assume that the problem is twodimensional. In two dimensions, the Fourier transform of the linearized equation (2-18) has the form:

$$
\begin{align*}
\frac{\partial \hat{u}_{\ell}}{\partial t}= & -u_{o j} i k_{j} \hat{u}_{\ell}+S t u_{o 2} i k_{1} \hat{u}_{\ell}-\hat{S u}_{2}(k) \delta_{\ell 1}-i k_{\ell} \hat{p}+S t i k_{1} \hat{p}_{\ell 2} \\
& +v\left(-k k_{j}+2 S t k_{1} k_{2}-s^{2} t^{2} k_{1}^{2}\right) \hat{u}_{\ell} \tag{A-1}
\end{align*}
$$

where $u_{o i}$ is assumed to be constant. In component form, this becomes:

$$
\begin{align*}
\frac{\partial \hat{u}_{1}}{\partial t}= & \hat{u}_{1}\left[\left(-u_{o j} k_{j}+S t u_{o 2} k_{1}\right) i+\nu\left(-k_{j} k_{j}+2 S t k_{1} k_{2}-s^{2} t^{2} k_{1}^{2}\right)\right] \\
& -i k_{1} \hat{p}-S \hat{u}_{2}  \tag{A-2}\\
\frac{\partial \hat{u}_{2}}{\partial t}= & \hat{u}_{2}\left[\left(-u_{o j} k_{j}+S t u_{o 2} k_{1}\right) i+\nu\left(-k_{j} k_{j}+2 S t k_{1} k_{2}-S^{2} t^{2} k_{1}^{2}\right)\right] \\
& -i k_{2} \hat{p}+S t i k_{1} \hat{p} \tag{A-3}
\end{align*}
$$

Let us define
$\alpha=\left(-u_{o 1} k_{1}-u_{o 2} k_{2}+S t u_{o 2} k_{1}\right) i+v\left(-k_{1}^{2}-k_{2}^{2}+2 S t k_{1} k_{2}-S^{2} t^{2} k_{1}^{2}\right)$ (A-4)
which is simply a known function of the wavenumber. Then the equations ( $\mathrm{A}-2$ ) and ( $\mathrm{A}-3$ ) become

$$
\begin{align*}
& \frac{\partial \hat{u}_{1}}{\partial t}=\hat{u}_{1} \alpha-i k_{1} \hat{p}+S \hat{u}_{2} \\
& \frac{\partial \hat{u}_{2}}{\partial t}=\hat{u}_{2} \alpha-i k_{2} \hat{p}+S t k_{1} \hat{p} \tag{A-5}
\end{align*}
$$

Following the standard linear stability analysis for Navier-Stokes equations, since the dynamics of the pressure is totally dependent on the dynamics of the velocity field, we consider the following equations.

$$
\begin{gather*}
\frac{\partial \hat{u}_{1}}{\partial t}=\hat{\alpha u_{1}}+\hat{S \hat{u}_{2}}  \tag{A-6}\\
\frac{\partial \hat{u}_{2}}{\partial t}=\alpha \hat{u}_{2} \tag{A-7}
\end{gather*}
$$

The solution of the above equations using the Adams-Bashforth method (2-11) is

$$
\hat{u}_{2}^{\mathrm{n}+1}=\hat{u}_{2}^{\mathrm{n}}+\frac{1}{2} \Delta t\left(3 \alpha \hat{u}_{2}^{\mathrm{n}}-\alpha \hat{u}_{2}^{\mathrm{n}-1}\right)+\frac{1}{2} \Delta t \delta_{i 1}\left(3 \hat{u}_{2}^{n}-\hat{S u}_{2}^{n-1}\right) \quad(A-8)
$$

Let us assume

$$
\begin{equation*}
{\hat{u_{2}}}^{\mathrm{n}+1}=\hat{\mathrm{Ru}_{2}^{\mathrm{n}}} \tag{A-9}
\end{equation*}
$$

First let us consider the stability of the $\hat{u}_{2}$ equation. From (A-9) and (A-8), for $i=2$, one can get:

$$
\begin{equation*}
R=1+\frac{1}{2} \Delta t 3 \alpha-\frac{\alpha}{R} \tag{A-10}
\end{equation*}
$$

or

$$
\begin{equation*}
R^{2}-\left(1+\frac{3}{2} \Delta t \alpha\right) R+\frac{\Delta t}{2} \alpha=0 \tag{A-11}
\end{equation*}
$$

or

$$
\begin{equation*}
R_{1,2}=\frac{1}{2}-\frac{3 \Delta t}{4} \alpha \pm \sqrt{\frac{1}{4}-\frac{9}{16} \Delta t^{2} \alpha^{2}-\alpha \Delta t} \tag{A-12}
\end{equation*}
$$

where $\alpha$ is defined in ( $A^{-4}$ ).

We can write the maximum value of $\alpha$ as

$$
\begin{equation*}
\alpha=\left(i N_{C}+N_{D}\right) / \Delta t \tag{A-13}
\end{equation*}
$$

where ${ }^{N} C$ is the Courant number and is defined as

$$
\begin{equation*}
N_{C}=\left(\left|u_{j}\right|_{\max } k_{j \max }+S t\left|u_{2}\right|_{\max } k_{1 \max }\right) \Delta t \tag{A-14}
\end{equation*}
$$

and $N_{\nu}$ is the viscous stability parameter

$$
\begin{equation*}
N_{v}=\left[-k_{j \max } k_{j \max }+2 \text { St } k_{1 \max } k_{2 \max }-s^{2} t^{2} k_{1 \max }^{2}\right] v \Delta t \tag{A-15}
\end{equation*}
$$

Fior our problem the maximum wavenumber is

$$
k_{1 \max }=k_{2 \max }=k_{3 \max }=k_{\max }=\pi / \Delta
$$

where $\Delta$ is mesh size. Note that the computational box length is $2 \pi$, so $\Delta=2 \pi /(N-1)$, where $N$ is the number of mesh points in each direction. Therefore, $k_{\max }$ becomes:

$$
\begin{equation*}
k_{\max }=\frac{\mathrm{N}-1}{2} \tag{A-16}
\end{equation*}
$$

From $(A-14),(A-15)$, and $(A-16)$, the values of $N_{c}$ and $N_{\nu}$ are

$$
\begin{equation*}
N_{C}=\frac{N-1}{2}\left[\left|u_{1}\right|_{\max }+(1+S t)\left|u_{2}\right|_{\max }\right] \Delta t \tag{A-17}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{v}=\left(\frac{N-1}{2}\right)^{2}\left[-3+2 S t-s^{2} t^{2}\right] \nu \Delta t \tag{A-18}
\end{equation*}
$$

and are time dependent. (Note that $S t$ varies between $-1 / 2$ and $1 / 2$ ).
Following the same procedure, one can set the following $N_{c}$ and $N_{v}$ for the $u_{1}$ equation:

$$
\begin{equation*}
N_{v}=v \Delta t\left[\left(\frac{N-1}{2}\right)^{2}\left(3-2 S t-s^{2} t^{2}\right)+\frac{1}{2} s \frac{u_{2}}{u_{1}} \quad \max \right] \tag{A-19}
\end{equation*}
$$

and $N_{c}$ is the same as before, Eq. (A-14). The magnitudes of $R_{1}$ and $R_{2}$ of Eq. (A-12) depend on the magnitudes of $N_{c}$ and $N_{\nu} . R_{1}$ is the physical root and $R_{2}$ is the spurious root. It should be noted that the method is stable even if $|R|>1$, because in shear flows the velocities increase with time. The limit on $R$ is obtained by comparing Eq. (A-9) and the analytical solution of Eqs. (A-6) and (A-7).

The magnitudes of $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ for various $\mathrm{N}_{\mathrm{c}}$ and $\mathrm{N}_{\nu}$ (Eqs. ( $A-12$ ) and ( $A-13$ ) are given in Table 2-1.

For the diffusion equation (2-20), we follow a similar procedure, and the important parameter governing stability is:

$$
\begin{equation*}
N_{D}=D \frac{(N-1)}{2}\left(-3+2 S t-s^{2} t^{2}\right) \Delta t \tag{A-20}
\end{equation*}
$$

For the three-dimensional case, the Courant number is defined as

$$
N_{C}=\frac{N-1}{2}\left[\left|u_{1}\right|_{\max }+(1+S t)\left|u_{2}\right|_{\max }+\left|u_{3}\right|_{\max }\right] \Delta t \quad(A-21)
$$

Stability is affected by St and $S\left|u_{2} / u_{1}\right|_{\text {max }}$, but as we keep $|S t|<0.5$, the effect is small. Also, as we increase $S$, $\left|u_{2} / u_{1}\right|$ becomes small and therefore $S\left|u_{2} / u_{1}\right|_{\max }$ is always small compared to the other term in Eq. (A-19).

The time step at which the results are reasonably accurate and stable is chosen by using Table 2-1. We chose $N_{c}=0.1$ to 0.3 and $N_{\nu}=$ 0.1. Note that $N_{D}=N_{v} / \operatorname{Pr}$.

## Appendix B

## COORDINATE TRANSFORMATION

In this section, we consider the coordinate transformation which was used to eliminate the non-periodic terms in the equations of motion and the diffusion equation.

The transformed coordinates are

$$
\begin{align*}
x_{1} & =X_{1}-S X_{2} T \\
x_{2} & =X_{2} \\
x_{3} & =X_{3}  \tag{B-1}\\
t & =T
\end{align*}
$$

where $X_{1}$ and $T$ are the physical (laboratory) variables. As shown below, the tranformed coordinate moves with time.



Using the chain rule, the derivative of any function with respect to $X_{i}$ and $T$ can be obtained as follows:

$$
\begin{gather*}
\frac{\partial}{\partial x_{1}}=\frac{\partial}{\partial x_{1}}  \tag{B-2}\\
\frac{\partial}{\partial x_{2}}=\frac{\partial}{\partial x_{2}}-\operatorname{St} \frac{\partial}{\partial x_{1}}  \tag{B-3}\\
\frac{\partial}{\partial x_{3}}=\frac{\partial}{\partial x_{3}} \tag{B-4}
\end{gather*}
$$

$$
\begin{gather*}
\frac{\partial}{\partial T}=\frac{\partial}{\partial t}-S x_{2} \frac{\partial}{\partial x_{1}}  \tag{B-5}\\
\frac{\partial^{2}}{\partial x_{1}^{2}}=\frac{\partial^{2}}{\partial^{2} x_{1}}  \tag{B-6}\\
\frac{\partial^{2}}{\partial x_{2}^{2}}=\frac{\partial^{2}}{\partial^{2} x_{2}}-2  \tag{B-7}\\
\text { St } \frac{\partial^{2}}{\partial x_{1} \partial x_{2}}+s^{2} t^{2} \frac{\partial}{\partial x_{1}^{2}} \\
\frac{\partial^{2}}{\partial x_{3}^{2}}=\frac{\partial^{2}}{\partial^{2} x_{3}}
\end{gather*}
$$

The above relations were used to transform the non-periodic equations (Section 2.5b) into Eqs. (2-17) through (2-20).

## Appendix C <br> TABULATED DATA FOR THE SIMULATED FLOW FIELDS

In this appendix, we present a set of tables containing various information, raw data, and turbulence statistics obtained from 24 simulated homogeneous shear flow fields and 56 scalar fields.

The initial values used in all of the simulations are:

```
Turbulence velocity, q}=0.600
Integral length scale, L = 0.71.
Taylor micro-scale, }\lambda=0.22
r.m.s. scalar fluctuations, 回 = 0.600.
Integral length scale of the scalar field, }\mp@subsup{L}{0}{}=0.51
Taylor microscale of the scalar field, }\mp@subsup{\lambda}{0}{}=0.17
```

The above parameters are nondimensionalized, as stated in Section 2.3.

The following table shows other parameters used for each simulation.

TABLE C-1
Dimensional Farameters For Each Simulation

Simulation	Shear Riate   S	Viscosity   V	Diffusivity   D	Mean Scalar   Gradient
HS64A	8.851	0.00500	0.00500	8.500
HS64A	B.851	0.01000	0.01000	8.500
HS64G	42.890	0.00500	0.00500	42.500
HS64J	2.860	0.00525	0.00525	2.860
HS64M	1.716	0.00350	0.00350	1.716
HS640	2.230	0.00175	0.00175	2.230
HS64C	8.851	0.01000	0.00200	8.500
HS64II	8.851	0.00500	0.00100	8.500
HS64E	8.851	0.00500	0.02500	8.500
HS64F	8.851	0.01000	0.05000	8.500
HS64H	42.890	0.00500	0.00100	42.500
HS64I	42.890	0.00500	0.02500	42.500
HS64N	1.716	0.00350	0.01750	1.716
HS64P	2.230	0.00175	0.00875	2.230

TABLE C-2
Components of the Feynolds Stress Tensor

Simulation	Equation	$5 t=4$	$5 \mathrm{t}=5$	$5 \mathrm{t}=6$	$5 \mathrm{t}=7$
HS64A	$\mathrm{i}=1, \mathrm{j}=1$	0.27469	0.32620	0.37760	0.42920
	$i=2, j=2$	0.05271	0.04726	0.04150	0.04369
	$i=3, j=3$	0.11650	0.13095	0.14270	0.14600
	$\mathrm{i}=1, \mathrm{j}=2$	-0.08224	-0.08429	-0.08610	-0.09209
HS64B	$\mathrm{i}=1, \mathrm{j}=1$	0.15980	0.17530	0.18870	0.20080
	$\mathrm{i}=2, \mathrm{j}=2$	0.03265	0.02558	0.01842	0.01689
	$\mathrm{i}=3, \mathrm{j}=3$	0.07240	0.07840	0.08198	0.07798
	$\mathrm{i}=1, \mathrm{j}=2$	-0.04889	-0.04524	-0.04150	-0.04038
HS64G	$i=1, j=1$	0.49410	0.64560	0.80250	0.96740
	$\mathrm{i}=2, \mathrm{j}=2$	0.06029	0.05133	0.04100	0.04025
	$\mathrm{i}=3, \mathrm{j}=3$	0.17620	0.19430	0.21100	0.21700
	$i=1, j=2$	-0.12570	-0.13374	-0.13829	-0.14679
HS64J	$i=1, j=1$	0.07135	0.07475	0.07931	0.08491
	$i=2, j=2$	0.02326	0.01816	0.01428	0.01361
	$i=3, j=3$	0.04360	0.04696	0.04753	0.04428
	$\mathrm{i}=1, \mathrm{j}=2$	-0.02565	-0.02334	-0.02144	-0.02099
HS64M	$i=1, j=1$	0.04595	0.04829	0.05160	0.05602
	$i=2, j=2$	0.01663	0.01380	0.01211	0.01187
	$i=3, j=3$	0.03022	0.03129	0.03168	0.03097
	$\mathrm{i}=1, \mathrm{j}=2$	-0.01708	-0.01592	-0.01512	-0.01535
HS640	$i=1, j=1$	0.11160	0.11920	0.12920	0.14100
	$\mathrm{i}=2, \mathrm{j}=2$	0.04978	0.04680	0.04717	0.05120
	$i=3, j=3$	0.07717	0.08100	0.08603	0.09166
	$i=1, j=2$	-0.04044	-0.04087	-0.04278	-0.04612

TABLE C-3
Dissifation Tensor
Equation (4-7)

Simulation	EQUATION	$5 \mathrm{t}=4$	$5 t=5$	$5 t=6$	St=7
HS64A	$i=1, j=1$	0.43040	0.49920	0.55380	0.60440
	$i=2, j=2$	0.05560	0.05220	0.05204	0.05352
	$i=3, j=3$	0.18396	0.18280	0.18514	0.18714
	$i=1, j=2$	-0.10240	-0.10040	-0.09895	-0.09735
HS64B	$i=1, j=1$	0.40380	0.41180	0.42000	0.43420
	$i=2, j=2$	0.04466	0.03322	0.02662	0.02350
	$i=3, j=3$	0.19286	0.17758	0.16624	0.16634
	$\mathrm{i}=1, \mathrm{j}=2$	-0.09403	-0.07925	-0.06819	-0.05889
HS64G	$i=1, j=1$	0.90380	1.17700	1.44540	1.73120
	$i=2, j=2$	0.05318	0.04346	0.03804	0.03522
	$i=3, j=3$	0.35980	0.35300	0.35480	0.35740
	$i=1, j=2$	-0.17890	-0.18600	-0.19080	-0.19480
HS64J	$i=1, j=1$	0.07158	0.06688	0.06488	0.06400
	i=2, $j=2$	0.01742	0.01299	0.01071	0.00953
	$i=3, j=3$	0.05168	0.04582	0.04146	0.03740
	$i=1, \quad j=2$	-0.01863	-0.01485	-0.01229	-0.01054
HS64M	$i=1, j=1$	0.02746	0.02486	0.02398	0.02374
	$\mathrm{i}=2, \mathrm{j}=2$	0.00940	0.00680	0.00564	0.00508
	$i=3, j=3$	0.02304	0.01943	0.01726	0.01545
	$i=1, \quad j=2$	-0.00725	-0.00568	-0.00465	-0.00401
HS640	$i=1, j=1$	0.06126	0.05868	0.05822	0.05858
	$i=2, j=2$	0.02830	0.02500	0.02374	0.02418
	$i=3, j=3$	0.05148	0.04666	0.04562	0.04522
	$i=1, j=2$	-0.01565	-0.01432	-0.01387	-0.01310

TABLE C-4
Fressure-Strain; Fast Teras
Equation (4-46)

Simulation	Eauation	$5 t=4$	$5 t=5$	$5 t=6$	$s t=7$
HS64A	$\mathrm{i}=1, \mathrm{j}=1$	-0.17800	-0.15840	-0.12280	-0.12870
	$i=2, j=2$	-0.02782	-0.04524	-0.03911	-0.04536
	$i=3, j=3$	0.20590	0.20370	0.16200	0.13340
	$\mathrm{i}=1, \mathrm{j}=2$	0.27786	0.24533	0.16045	0.13980
HS64B	$\mathrm{i}=1, \mathrm{j}=1$	-0.12380	-0.10185	-0.06916	-0.06710
	$\mathrm{i}=2, \mathrm{j}=2$	-0.01748	-0.03175	-0.02452	0.00236
	$i=3, j=3$	0.14134	0.13360	0.09368	0.06474
	$i=1, j=2$	0.20186	0.16937	0.09913	0.07299
HS64G	$\mathrm{i}^{1}=1, \mathrm{j}=1$	-1.08190	-1.00550	-0.76612	-0.81830
	$i=2, j=2$	-0.16999	-0.21173	-0.19234	0.06255
	$i=3, j=3$	1.25190	1.21730	0.95850	0.75580
	$i=1, j=2$	1.77020	1.61540	1.12534	1.00770
HS64J	$i=1, j=1$	-0.02569	-0.02006	-0.01378	-0.01316
	$i=2, j=2$	-0.00394	-0.00732	-0.00458	-0.00070
	$i=3, j=3$	0.02962	0.02736	0.01835	0.01386
	$\mathrm{i}=1, \mathrm{j}=2$	0.04423	0.03468	0.02242	0.01839
HS64M	$i=1, j=1$	-0.01037	-0.00865	-0.00671	-0.00599
	$i=2, j=2$	-0.00147	-0.00205	-0.00171	-0.00101
	$i=3, j=3$	0.01184	0.01070	0.00842	0.00700
	$\mathrm{i}=1, \mathrm{j}=2$	0.01707	0.01482	0.01130	0.00960
HS640	$i=1 ; j=1$	-0.03178	-0.03053	-0.03006	-0.03238
	$i=2, j=2$	-0.00386	-0.00462	-0.00295	-0.00332
	$i=3, j=3$	0.03565	0.03515	0.03302	0.03570
	$i=1, j=2$	0.06338	0.05923	0.05570	0.05798

TABLE C-5
Fressure-Strain; Rotta Terms
Equation (4-53)

Simulation	Equation	$5 t=4$	$S t=5$	$S_{t}=6$	$5 t=7$
HS64A	$i=1, j=1$	-0.04969	-0.06133	-0.07108	-0.07963
	$i=2, j=2$	0.03892	0.04890	0.05630	0.06261
	$i=3, j=3$	0.01073	0.01238	0.01475	0.01699
	$i=1, j=2$	0.06990	0.08400	0.09830	0.11640
HS64B	$i=1, j=1$	-0.01629	-0.01727	-0.01722	$-0.01736$
	$i=2, j=2$	0.01338	0.01506	0.01543	0.01586
	$i=3, j=3$	0.00291	0.00221	0.00179	0.00150
	$i_{i=1}, j=2$	0.02320	0.02340	0.02240	0.02330
HS64G	$i=1, j=1$	-0.03234	-0.04556	-0.05800	-0.06822
	$\mathrm{i}=2, \mathrm{j}=2$	0.02912	0.04139	0.05148	0.05567
	$i=3, j=3$	0.00322	0.00417	0.00651	0.01255
	i $=1, j=2$	0.05210	0.06800	0.07730	0.08730
HS64J	$\mathrm{i}=1, \mathrm{j}=1$	-0.00698	-0.00715	-0.00691	-0.00676
	$i=2, j=2$	0.00627	0.00688	0.00679	0.00644
	$\mathrm{i}=3, \mathrm{j}=3$	0.00072	0.00068	0.00013	0.00013
	$i=1, j=2$	0.01002	0.00975	0.00992	0.01096
HS64M	$\mathrm{i}=1, \mathrm{j}=1$	-0.00348	$-0.00369$	-0.00378	-0.00396
	$i=2, j=2$	0.00320	0.00343	0.00373	0.00377
	$i=3, j=3$	0.00027	0.00025	0.00005	0.00019
	$i=1, j=2$	0.00587	0.00568	0.00555	0.00620
HS640	$\mathrm{i}=1, \mathrm{j}=1$	-0.01549	-0.01716	-0.02000	-0.02358
	$i=2, j=2$	0.01393	0.01606	0.01869	0.02144
	$i=3, j=3$	0.00155	0.0011	0.00130	0.00214
	$i=1, j=2$	0.03340	0.03152	0.03267	0.03784

TABLE C-6
Scalar Fluctuation Invariance

$$
\left\langle\theta^{2}\right\rangle
$$

Simulation	$S t=4$	$S t=5$	$S t=6$	$S t=7$
HS64A	0.54163	0.60711	0.65946	0.69973
HS64B	0.33816	0.36453	0.37910	0.38215
HS64G	0.97368	1.18150	1.37179	1.55312
HS64J	0.17704	0.18678	0.18985	0.18687
HS64M	0.10957	0.11203	0.11355	0.11522
HS64D	0.27862	0.28854	0.30051	0.31448
HS64C	0.54059	0.58781	0.61802	0.62865
HS64D	0.74447	0.86420	0.97217	1.06741
HS64E	0.25490	0.28871	0.31474	0.32945
HS64F	0.12294	0.13980	0.14577	0.13915
HS64H	1.03400	1.26380	1.47800	1.69150
HS64I	0.76096	0.90115	1.02008	1.12416
HS64N	0.03820	0.04333	0.04716	0.04942
HS64F	0.11670	0.13284	0.14692	0.16191

TABLE C-7
Turbulent Heat Flux

Simulation	I	$5 \mathrm{t}=4$	$S_{t}=5$	$5 t=6$	St $=7$
HS64A	1	0.3641	0.4099	0.4482	0.4512
	2	0.1688	0.1615	0.1490	0.1457
HS64B	1	0.2138	0.2191	0.2166	0.2036
	2	0.1111	0.0997	0.0836	0.0728
HS64G	1	0.7797	0.9314	1.0448	1.1412
	2	0.2674	0.2698	0.2604	0.2588
HS64J	1	0.1359	0.1376	0.1338	0.1265
	2	0.0625	0.0539	0.0433	0.0371
HS64M	1	0.0775	0.0797	0.0832	0.0823
	2	0.0397	0.0341	0.0292	0.0273
HS640	1	0.2028	0.2113	0.2238	0.2253
	2	0.0946	0.0905	0.0875	0.0897
HS64C	1	0.3274	0.3388	0.3318	0.3278
	2	0.1254	0.1129	0.0958	0.0848
HS64D	1	0.4534	0.5049	0.5390	0.5818
	2	0.1822	0.1752	0.1627	0.1587
HS64E	1	0.2455	0.2954	0.3438	0.3943
	2	0.1303	0.1246	0.1138	0.1117
HS64F	1	0.1200	0.1357	0.1473	0.1585
	2	0.0766	0.0697	0.0565	0.0487
HS64H	1	0.7394	1.0075	1.2785	1.5583
	2	0.2726	0.2760	0.2676	0.2673
HS64I	1	0.6336	0.8381	1.0363	1.2338
	2	0.2463	0.2451	0.2323	0.2275
HS64N	1	0.0352	0.0408	0.0454	0.0506
	2	0.0281	0.0258	0.0232	0.0223
HS64P	1	0.0887	0.1031	0.1167	0.1324
	2	0.0764	0.0750	0.0741	0.0783

TABLE C-8
Dissifation in the Heat Flux Equations EQuation (4-14)

Simulations	i	$5 t=4$	$\mathrm{St}=5$	$5 t=6$	$5 t=7$
HS64A	1	0.4079	0.4862	0.5546	0.6103
	2	-0.1290	-0.1102	-0.0983	-0.0891
HS64B	1	0.3906	0.4213	0.4421	0.4686
	2	-0.1274	-0.0965	-0.0768	-0.0611
HS64G	1	0.9269	1.2450	1.5495	1.8530
	2	-0.2409	-0.2307	-0.2229	-0.2192
HS64J	1	0.0619	0.0732	0.0661	0.0670
	2	-0.0272	-0.0201	-0.0116	-0.0082
HS64M	1	0.0214	0.0221	0.0227	0.0234
	2	-0.0117	-0.0069	-0.0040	-0.0028
HS640	1	0.0386	0.0406	0.0431	0.0448
	2	-0.0294	-0.0241	-0.0201	-0.0172
HS64C	1	0.3207	0.3566	0.3829	0.3965
	2	-0.0996	-0.0770	-0.0622	-0.0512
HS64D	1	0.3223	0.4053	0.4426	0.4967
	2	-0.1061	-0.0877	-0.0763	-0.0646
HS64E	1	0.5024	0.5364	0.5924	0.5717
	2	-0.1808	-0.1458	-0.1322	-0.1116
HS64F	1	0.4374	0.4493	0.4537	0.4498
	2	-0.1807	-0.1380	-0.1111	-0.0925
HS64H	1	0.5809	0.7876	0.9889	1.1932
	2	-0.1500	-0.1450	-0.1415	-0.1405
HS64I		2.2700	2.9279	3.5175	4.0632
	2	-0.6073	-0.5607	-0.5225	-0.4965
HS64N	1	0.0264	0.0265	0.0269	0.0280
	2	-0.0192	-0.0137	-0.0106	-0.0092
HS64P	1	0.0645	0.0669	0.0700	0.0737
	2	-0.0571	-0.0489	-0.0431	-0.0407

TABLE C-9
Pressure-Scalar Covariance; Fast Term
Equation (4-60)

Simulation	i	St=4	$S_{t=5}$	St=6	St=7
HS64A	1	-0.5182	-0.4350	-0.2959	-0.2565
	2	0.1842	0.1986	0.1740	0.0768
HS64B	1	-0.3897	-0.3136	-0.1923	-0.1448
	2	0.1414	0.1592	0.1369	0.0597
HS64G	1	-3.2060	-2.8110	-1.9854	-1.7207
	2	1.6390	1.6950	1.5810	0.9050
HS64J	1	-0.0832	-0.0630	-0.0400	-0.0309
	2	0.0227	0.0274	0.0207	0.0096
HS64M	1	-0.0310	-0.0254	-0.0194	-0.0164
	2	0.0078	0.0076	0.0063	0.0042
HS640	1	-0.1044	-0.0981	-0.0932	-0.0932
	2	0.0188	0.0179	0.0151	0.0145
HS64C	1	-0.3353	-0.2312	-0.1194	-0.0816
	2	0.1297	0.1209	0.0871	0.0333
HS64D	1	-0.5344	-0.4475	-0.3061	-0.2662
	2	0.1938	0.2040	0.1759	0.0751
HS64E	1	-0.4605	-0.3923	-0.2641	-0.2283
	2	0.1501	0.1763	0.1614	0.0741
HS64F	1	-0.3174	-0.2618	-0.1565	-0.1165
	2	0.0966	0.1230	0.1085	0.0442
HS64H	1	-3.2840	-2.8303	-2.0009	-1.7348
	2	1.6716	1.7254	1.6090	0.9296
HS64I	1	-3.1525	-2.7229	-1.9157	-1.6583
	2	1.4977	1.5639	1.4650	0.8042
HS64N	1	-0.0234	-0.0205	-0.0161	-0.0140
	2	0.0055	0.0063	0.0059	0.0042
HS64P	1	-0.0865	-0.0831	-0.0786	-0.0796
	2	0.0155	0.0168	0.0155	0.0144

TABLE C-10
Pressure-Scalar Covariance; Fotta Term
Equation (4-74)

Simulation	i	$5 t=4$	St=5	$5 t=6$	St=7
HS64A	1	-0.1209	-0.1231	-0.1258	-0.1314
	2	0.1816	0.1936	0.1964	0.2082
	1	-0.0444	-0.0379	-0.0324	-0.0300
HS64B	2	0.0687	0.0635	0.0542	0.0522
HS64G	1	-0.0812	-0.0865	-0.0946	-0.1062
	2	0.1502	0.1664	0.1573	0.1694
HS64J	1	-0.0222	-0.0193	-0.0169	-0.0144
	2	0.0296	0.0281	0.0269	0.0268
HS64M	1	-0.0123	-0.0115	-0.0096	-0.0085
	2	0.0157	0.0158	0.0146	0.0136
HS640	1	-0.0601	-0.0612	-0.0648	-0.0692
	2	0.0711	0.0696	0.0732	0.0772
HS64C	1	-0.0467	-0.0352	-0.0254	-0.0205
	2	0.0731	0.0590	0.0437	0.0343
HS64D	1	-0.1417	-0.1473	-0.1538	-0.1625
	2	0.2125	0.2303	0.2381	0.2678
HS64E	1	-0.0678	-0.0664	-0.0673	-0.0707
	2	0.0997	0.1010	0.0981	0.1009
HS64F	1	-0.0176	-0.0141	-0.0124	$-0.0110$
	2	0.0257	0.0217	0.0175	0.0142
HS64H	1	-0.0839	-0.0902	-0.0988	-0.1114
	2	0.1547	0.1727	0.1635	0.1767
HS64I	1	-0.0693	-0.0710	-0.0771	-0.0859
	2	0.1298	0.1383	0.1297	0.1370
HS64N	1	-0.0055	-0.0054	-0.0047	-0.0043
	2	0.0061	0.0065	0.0063	0.0062
HS64P	1	-0.0365	-0.0378	-0.0450	-0.0458
	2	0.0426	0.0425	0.0465	0.0500

## References

1. Batchelor, G. K., The Theory of Homogeneous Turbulence, Cambridge University Press (1952).
2. Batchelor, G. K., and Townsend, A. A., "Decay of Turbulence in the Final. Period," Proc. Roy. Soc., 194, 527 (1948).
3. Batchelor, G. K., and Stewart, R. W., "Anisotropy of Spectrum of Turbulence at Small Wave Numbers," Quart. F. M. Appl. Math, 3, 1 (1950).
4. Batt, R. G., "Turbulent Mixing of Passive and Chemically Reacting Species in a Low-Speed Shear Layer," J. Fluid Mech., 82, Prt 1, 5395 (1.977).
5. Bennett, J. C., and Corrsin, S., "Decay of Nearly Isotropic, GridGenerated Turbulence at Small Reynolds Numbers in a Straight Duct and a Slight Contraction," submitted for publication in the Physics of Fluids.
6. Boussinesq, J., "Essai sur la théorie des eaux courants," Mém. Présentés par Divers Savants á 1'Acad. des Sciences, 23 (1877).
7. Bracewe11, R. Fourier Transform and Its Applications (1965).
8. Bradshaw, P., Ferris, D. H., and Atwell, N. D., J. Fluid Mech., 28, No. 593 (1967).
9. Champagne, F. H., Harris, V. G., and Corrsin, S., "Experiments on Nearly Homogeneous Turbulent Shear Flow," J. Fluid Mech., 41, 81 (1970).
10. Clark, R. A., Ferziger, J. H., and Reynolds, W. C., "Evaluation of Subgrid-Scale Turbulence Models Using a Fully Simulated Turbulent Flow," Report TF-9, Mech. Engrg. Dept., Stanford Univ. (1977). Also, J. Fluid Mech., 91, 1 (1979).
11. Collis, D. C., "The Diffusion Process in Jurbulent Flow," Rept. A55, Aero Div., Australian Council Sci. and Indus. Res. (1948).
12. Comte-Bellot, G., and Corrsin, S., "Simple Eulerian Line Correlation of F'ull- and Narrow-Band Velocity Signals in Grid-Generated 'Isotropic' Turbulence," J. Fluid Mech., 48, 273 (1971).
13. Cooley, J. W., and Tukey, J. W., "An Algorithm for the Machine Calculation of Complex Fourier Series," Math. Comput., 19, 90, 297-301 (1965).
14. Corrsin, S., private communication (1980).
15. Crawford, M. E., and Kays, W. M., "STAN5--A Program for Numerical Computation of Two-Dimensional Internal and Extenal Boundary Layer Flows," NASA CR-2742 (1976).
16. Domis, M. A., "Large Eddy Simulation of a Passive Scalar in Isotropic Turbulence," QMC P 6037, Imperial College, London, England (1979).
17. Feiereisen, W. J., Ph.D. thesis, Mechanical Engrg. Dept., Stanford University (1981).
18. Fox, J., "Turbulent Temperature Fluctuations and Two-Dimensional Heat Transfer in a Uniform Shear Flow," NASA Tech. Note D-2511 (1964).
19. Frenkiel, F. N., "On Turbulent Diffusion," Rep. 1136, 67, Symp. on Turbulence, Naval Ord. Lab (June 1949).
20. Frenkiel, F. N., Klebanoff, P. S., Kuaitg, T. T., "Grid Turbulence in Air and Water," Phys. Fluids, 22, No. 9 (Sept. 1979).
21. Harris, V. G., Graham, J. A., and Corrsin, S., "Further Experiments in Nearly Homogeneous Turbulent Shear Flow," J. Fluid Mech., 81, 657 (1977).
22. Herring, R., Orszag, S. A., Krachman, R. H., and Fox, D. G., "Decay of Two-Dimensional Homogeneous Turbulent Flow," J. Fluid Mech., 66, P3, 417-444 (1974).
23. Hwang, W. S., "Experimental Investigation of Turbulent Shear Flows," Ph.D. dissertation, Univ. of Virginia (1971).
24. Johnson, D. S., "Velocity and Temperature Fluctuation Measurements in a Turbulent Boundary Layer Downstream of a Stepwise Discontinuity in Wall Temperature," J. Applied Mechanics, Sept. 1959, 325-336.
25. Kármán, T. von, "The Fundamentals of the Statistical Theory of Turbulence," J. Aero. Sci., 4, 131 (1937).
26. Kármán, T. von, and Howarth, L., "On the Statistical Theory of Isotropic Turbulence," Proc. Roy. Soc. London A, 164, 192 (1938).
27. Kistler, A. L., $0^{\prime}$ Brien, V., and Corrsin, S., "Double and Triple Correlations Behind a Heated Grid," J. Aeronaut. Sci., 23, 96 (1956).
28. Klebanoff, P. S., "Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient," NACA Report 1247 (1955).
29. Kolmogoroff, A. N., "Energy Dissipation in Locally Isotropic Turbulence," Duklady AN SSSR, 32 (1), 19 (1941).
30. Kreiss, H. O., and Oliger, S., "Methods for Approximate Solution of Time--Dependent Problems," GARP Publications, Series No. 10, WMO, Geneva (1973).
31. Kwak, D., Reynolds, W. C., and Ferziger, J. H., "Three-Dimensional Time--Dependent Computation of Turbulent Flows," Report No. TF-5, Mech. Engrg. Dept., Stanford Univ. (1975).
32. Lee, D. A., "Spectrum of Homogeneous Turbulence in the Final Stage of Decay," Phys. of Fluids, $\underline{8}, 1911$ (1965).
33. Libby, P. A., "Duffusion of Heat Downstream of a Turbulence Grid," Acta Astronautica, 2, 867-878 (1975).
34. Lilley, D. K., "On the Computational Stability of Numerical Solutions of Time-Dependent Nonlinear Geophysical Fluid Dynamics Problems," Monthly Weather Review, 93, No. 1, 11-26 (1965).
35. Lomax, H., "An Operational Unification of the Finite Difference Method for the Numerical Integration of Ordinary Differential Equations," NAS TR-R-262 (1967).
36. Lumley, J. L., "Computational Modeling of Turbulent Flows," Advances in Appl. Mech., 18, 123-176 (1978).
37. Lumley, J. L., and Khajeh-Nouri, B., "Modeling Homogeneous Deformation of Turbulence" (1974). Unpublished; superseded by Lumley (1975).
38. Mansour, N. N., Moin, P., Reynolds, W. C., and Ferziger, J. H., "Improved Methods for Large Eddy Simulation of Turbulence," Proc. Symp. on Turbulent Shear Flows, Penn. State Univ. (1977).
39. Mills, R. R., and Corrsin, S., "Effect of Contraction on Turbulence and Temperature Fluctuations Generated by a Warm Grid," NASA Memo 5-5-59W (1959).
40. Moin, P., private communication (1981).
41. Mulhearn, P. J., and Luxton, R. E., "The Development of Turbulence Structure in a Uniform Shear Flow," J. Fluid Mech., 68, 577 (1975).
42. Orszag, S. A., and Patterson, G. S., "Numerical Simulation of ThreeDimensional Homogeneous Isotropic Turbulence," Phys. Rev. Lett., 28, Part 2, 76 (1972).
43. Poisson, S. D., Mémoire sur les équations générales de l'équilibre et du mouvement des corps solides elastiques et des fluides, Journal de 1'Ecole Polytechnique, 13 (1831).
44. Prandtl, I., "Bericht uber Untersuchungen zur ausgebildeten Turbulenz, "Zs. angew. Math. Mech., 5, 136 (1925).
45. Reis, F. B., "Studies of Correlation and Spectra in Homogeneous Turbulence," Ph.D. dissertation, MIT, Cambridge, Mass. (1952).
46. Reynolds, A. J., "The Prediction of Turbulent Prandt1 and Schmidt Numbers," Int. J. Heat Mass Transfer," 18, 1055-1069 (1974).
47. Reynolds, 0., "An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Should Be Direct or Sinuous and of the Law of Resistance in Parallel Channels," Phil. Trans. Roy. Soc., London, 174, 935 (1883).
48. Reynolds, W. C., "Computation of Turbulent Flows," Ann. Rev. Fluid Mech., 8, 183-208 (1976).
49. Rodi, W., "A New Algebraic Relation for Calculating the Reynolds Shear Strsses," Mechanics of Fluids, SAMM 56, T-219-T-221 (1976).
50. Rogallo, R. S., "An ILLIAC Program for the Numerical Simulation of Homogeneous Incompressible Turbulence," NASA TM-73, 203 (1977).
51. Rogallo, R. S., private communication (1981).
52. Rose, W. G., "Results of an Attempt to Generate a Homoteneous Turbulent Shear Flow," J. Fluid Mech., 25, 97 (1966).
53. Rose, W. G., "Interaction of Grid Turbulence with a Uniform Mean Shear," J. Fluid Mech., 44, 767 (1970).
54. Saint-Venant, B. de, "Note á joindre au Mémoire sur la dynamique des fluides," Comptes Rendus des Séances de l'Academie des Sciences, 17 (1843).
55. Schubauer, G. B., "A Turbulence Indicator Utilizing the Diffusion of Heat," NACA Rep. 524 (1935).
56. Schumann, U., and Patterson, G. S., "Numerical Study of Pressure and Velocity Fluctuations in Nearly Isotropic Turbulence," J. Fluid Mech., (1975).
57. Sepri, P., "Two-Point Turbulence Measurements Downstream of a Heated Grid," Phys. of Fluid, 19, 1876-1884 (1976).
58. Shaanan, S., Ferziger, J. H., and Reynolds, W. C., "Numerical Simulation of Turbulence in the Presence of Shear," Rep. No. TF-6, Mech. Engrg. Dept., Stanford Univ. (1975).
59. Schlien, D. J., and Corrsin, S., "A Measurement of Lagrangian Velocity Autocorrelation in Approximately Isotropic Turbulence," J. Fluid Mech., 62, 255 (1974).
60. Simmons, L. F. G., and Salter, C. "Experimental Investigation and Analysis of the Velocity Variations in Turbulent Flow," Proc. Roy. Soc., London A, 145, 212 (1934).
61. Stokes, G. G., "On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids," Trans. Cambridge Philos. Soc., 8 (1845).
62. Tan, H. S., and Ling, S. C., "Final Stage Decay of Grid-Product Turbulence," Phys. Fluids, $\underline{6}$ (12), (1963).
63. Tavoularis, S., "Experiments in Turbulent Transport and Mixing," Ph.D. dissertation, Johns Hopkins Univ. (1978).
64. Tavoularis, S., Bennett, J. C., Corrsin, S., "Velocity-Derivative Skewness in Small Reynolds Number in Nearly Isotropic Turbulent Flow," J. Fluid Mech., 88, Part 1, 63-69 (1978).
65. Townsend, A. A., "The Structure of the Turbulent Boundary Layer," Proc. Cambridge Phil. Soc., 47, 375 (1951).
66. Uberoi, M. S., and Corrsin, S., "Diffusion of Heat from a Line Source in Isotropic Turbulence," NACA Tech. Note 2710; also NACA Rep. 1142 (1952).
67. Venkataramani, K. S., and Chevray, R., paper submitted for publication (1977).
68. Warhaft, Z., and Lumley, J. L., "Study of the Decay of Temperature Fluctuations in Grid-Generated Turbulence," J. Fluid Mech., 88, Pt. 4, 659-684 (1978).
69. Wasse1, A. T., and Catcon, I., "Calculation of Turbulent Boundary Layers over Flat Plates with Different Phenomenological Theories of Turbulence and Variable Turbulent Prandtl Number," Int. J. Heat Mass Transfer, 16, 1547-1563 (1973).
70. Wilcox, D. C., and Rubesin, M. W., "Progress in Turbulence Modeling for Complex Flow Fields, Including Effects of Compressibility," NASA Technical Paper 1517, April, 1980.
71. Wiskind, H. K., "A Uniform Gradient Turbulent Transport Experiment," J. Geo. Res., 67, 3033 (1962).
72. Yeh, I. I., and Van Atta, C. W., "Spectral Transfer of Scalar and Velocity Fields in Heated-Grid Turbulence," J. Fluid Mech., 58, 233 (1973).

## End of Document

