NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

FINAL TECHNICAL REPORT
on

NASA GRAiJT NSG - 7159
for
"Crustal Deformation and Seismic Measurements in the Region of McDonald Observatory, West Texas"
by

Dr. H. James Dorman *
The University of Texas at Austin
Institute for Geophysics

* Dr. Dorman is now with Exxon Corp., Houston, Tx.

LIST OF PUBLICATIONS

Chan. K.N. (1צ77), Modeling of West Texas Crustal Structure from EA. thquake hata, MS Thesis, The Unaversity of Toxas, 38 p .

Dumats, D. B., H. J. Dorman, and G. V. Latham. A reevaluation of the August 16,1931 Texas Earthquake, Bull. Seism. Soc. Am. 70-4, 1171-1180.

Dumas, D. Seismicsty in the Basin and Range Privince of rexas and Northeastern Chihuahua, Mexico. New Mexico Geological Society Guidebook, Trans-Pecos Region, 1980.

Dumas, D. (1981), Seismicity of West Texas, Ph.D. Dissertation, The U: versity of Texas, 91 p .

SUMMARY OF LOCAL AND
 REGIONAL EARTHQUAKES (S-P330 SEC)
 recorded at The university of texas/
 NATMNAL AERONAUTICS AND SPACE
 ADMINISTRATION (UT/NASA)
 SEISMIC ARRAY

by
David Dumas

The U'niversity of Texas Marire Science Institute Contribution No. 465
Galveston Geophysics Laboratory

Jable of Contents

Page
lintroduction 1
Table of Seismic Stat ions 2
Appendix 1 "lifsting of all published works" 3
Map showing locations of seismic statons and located events 4
Appendix II "Listing of all reco:ded events at MOT (S-p<30)" 5
Appendix $1 / 1$ "lifsting of all located events" 24

Introduction

This report is a sumary of the arrival times of repional and local earthquakes and located earthquakes in the Rasin and Range province and tho adjacent areas of Chihuahua, Mextco from January- 1976 to August 1980 at the UT/NASA selamic array. The seismicity of the area and details of the UT/NASA array have been previously described by Dumas (to be published In 1981). Therefore the reader whould rofer to these for detalls of the arrav and the methods used in the hypocenter locations. Also, a listing of all published works derived from the UT/NASA arrav data 18 given in Appendix 1.

References

Dumas, D.R. (to be published). A. receat seismic study in west Texas. Dumas, N. B. (1980). Seismicity in the Basin and Range province of Texas and Northern Chituahua, Mesitco. Now Mextco Geological Society Guidebook 31st Field Conference, Trans-Pocos Region, 77-81. lee, W.K.K. and J.C. lahr (1975). HYPO-71 (revised) a computer program for determining hypocenters, magnitudes, and first motion patterns of local earthquakes. U. S. Geol. Surv., Open File Rept., 75-311.

Muehlberger. W. (1978). The areal cxtent of Cenozole faultion in TransPecos Texas, Bureau of Economic Geology, Guidebook 19, A. Walter and C. Yenry, Editors, 19-21.

	Station	Lat.	Long.	Elev. (m)
MOT	McDonald Observatory	30.68N	104.01W	2080
BP	Buracho Peak	30.93N	104.39W	1720
EM	Eagle Mountain	30.90N	103.08W	2088
MR	Miller Ranch	30.53 N	104.67W	1584
BR	Brite Ranch	30.27N	104.58W	1584
CLN	Carlabad	32.04N	103.73W	1094
KTX	Kermit	31.53 N	103.29W	847
KT4	Kermit	31.91W	103.32W	948

Listing of all published worke from the UT/NASA array

Dumas, D.B. (1978), Seismicity in and around west Texas, Burean of Economic Geology Guidebook 19, A. Walton and C. Henry, Editera, 22-27.

Dumas, D.. . (1979). Active seiamic focus near Snyder, Texan, Bull. Seis. Soc. Am. . 69, : 295-1299.

Dumas, D.B., H.J. Dorman, and G.V. Latham (1980). A reevaluation of the August 16, 1931 Texas earthquake, Bul1, Seis. Soc. Am., 70, 1171-1180.

Dumas, D.B. (1980). Seismicity in the Basin and Range province of Texas and Northeastern Chihuahua, Mexico, New Mexico Geological Soriety 31st Field Conference,Trans-Pécos Region, 77-81.

Dumas, N.B. (to be publish). A recent seismic study i: west Texas.

Fizure 1. Seismicity map of the Basin and Range province and the adJacent area of Mexico. The stations are indicnted by rriangles (A) and locations and abbreviations ner givon in Tible l. Crosses (+) Indicate epicenters located (Appendix lll) by the five-station seinmic array. Epicenters located by the USGS are Indicated by solid squares (e) and open circles (o) indicate epiconters locnted by the ISC. Abbreviation for structural features are: BG-Black Gap Area, DM-Davis Mountains, DP-Diablo Plateau, MB-Marfa Basin, RR-Rim Rock Fault, SB-Salt Basin Graben, and WM-Wylie Mountains. The dashed line marks Muehlberger's (1979) proposed eastorn boundary of Basin and Range faulting. Earthquakes with the same epicenter are indicated by (M). The town of Valentine (V) is irdicated by the small open square (0).

Appendix II

Arrival times for local and regional earthquaken (S-P<30 nec) recorded at atation Mor from January 1976 to August 1980.

STATION: MCDONALD OBG.. TEXAS CGDE MU' LAT. 30.GAN LONE. ICA.0APU

	D/DA	Phase	time(ut)	PHAS5	TIME (UT)	MAB(LOCAL)
76	17	EP	33317.0	8	33339.0	2.6
76	110	EP	15026.0	5	15046.0	3.1
76	115	EP	204423.0	8	204446.7	2.6
76	121	EP	231144.4	5	23127.4	2.6
76	122	EP	72223.6	8	72244.1	2.9
76	122	EP	204959.0	5	205022.3	
76	123	$1 P$	131344.0	5	131356.7	2.2
76	125	1 P	44854.1	5	44914.9	3.9
76	128	P	20830.0	5	20849.7	2.4
76	26	p	1937.0	5	1940.5	3.9
76	29	p	24051.0	5	24059.0	2.2
76	214	18	53551.1	S	53614.1	2.4
76	217	1 P	1136.3	5	121.6	2.7
76	218	1 P	233347.2	5	233413.4	2.5
76	228	19	214324.3	5	214343.6	2.5
76	224	$1 p$	233045.1	5	233810.0	2.5
76	229	EP	191416.4	5	191417.3	
76	31	EP	84931.0			2.5
76	38	IP	21551.7	S	21654.0	1.9
76	39	P	6506.5			3.5
76	312	P	124015.3			3.1
76	318	EP	195943.4	5	200025	2.6
76	318	EP	225344.1	5	225410.9	2.0
76	318	EP	230730.1	5	23 \%ิ 2.5	
76	319	EP	35056.8	5	35124.4	2.2
76	320	EP	124239.2	S	124249.5	1.9
76	327	1 P	224052.9	5	224116.9	2.8
76	330	EP	235653.6	5	23572.2	2.2
76	43	EP	20418.5	5	204119.9	2.8
76	49	18	20320.7	5	20322.9	
76	412	EP	8036.5	5	80330.0	2.3
76	421	EP	84039.1	5	8413.1	2.4
76	423	EP	3429.8	5	3454.8	2.4
76	423	EP	232710.0	5	232732.2	2.3
76	428	EP	221428.8	5	221453.7	1.9
76	430	EP	19291.3	S	192921.9	2.5
76	53	EP	65338.1	5	6549.4	3.0
76	53	P	80! 6.9	5	80127.6	1.9
76	53	P	11288.1	5	112929.0	2.0
76	55	EP	154937.0	5	154957.8	2.2
76	56	EP	171850.0	5	171911.0	2.1
76	58	EP	11478.5	5	114729.4	1.8
76	511	EP	230513.8	5	2365 35.9	2.9
76	517	IP	123939.8	5	123946.2	
76	520	EP	224726.0	5	224735.6	

BIATION: MCDONALD OBS.. TEXAS CODE MDT LAT.30.GEN LONS. I84.60FU

	10-DA	PMase	TIME (UT)	PHASE	TIME(UT)	MAS(LOCM)
76	521	EP	1318.6	5	131828.9	2.7
76	523	P	92634.8	5	92653.9	
76	523	P	132742.7	5	132757.5	
76	526	p	11534.5	8	115336.2	
76	64	P	20405.0	8	204031.5	2.8
76	67	p	214037.2	8	21410.1	
76	613	p	220522.2	8	220533.8	1.9
76	614	p	200436.7	5	220459.0	
76	614	p	233026.0	5	233049.2	1.9
76	615	P	22028.1	5	22049.8	2.8
76	615	p	33317.3	8	33340.7	
76	615	EP	05049.4	5	85111.3	2.6
76	615	P	148547.0	5	1406 9,3	
76	629	P	50116.8	5	58119.1	
76	630	P	231228.1	5	231259.8	
76	615	F	33317.3	5	33340.7	
76	711	p	105331.9	5	105338.4	
76	714	P	2.13721 .7	5	203746.1	1.8
76	02	P	81328.7	5	81350.9	
76	85	p	22244.5	5	222430.6	2.6
76	日 6	P	210054.0	5	21015.7	
76	B 6	P	21139.8	5	211332.0	2.5
76	810	P	90346.5	5	9049.4	2.4
76	-10	p	9130.2	5	91322.8	2.0
76	810	P	101549.0	5	101511.6	2.4
76	815	$1 P$	152422.8	5	152447.8	
76	8 15	IP	191225.7	5	191243.2	2.8
76	(2) 16	EP	210131.4	5	210154.0	
76	B 25	EP	1068.4	5	10631.5	
76	825	P	11537.0	5	11552.0	
76	- 25	p	12146.0	5	1229.5	2.2
76	825	P	12817.0	5	12829.8	2.0
76	日 26	IP	152248.3	5	15239.6	2.5
76	- 29	IP	194945.1	5	19503.6	2.4
76	830	EP	115152.3	5	115216.8	1.9
76	830	EP	224545.0	5	224610.5	0.0
76	831	IP	124646.8	5	12479.0	2.4
76	93	EP	23259.0	5	232534.8	
76	95	EP	104020.0	5	104045.0	1.8
76	96	EP	65232.4	5	65256.0	1.9
76	96	P	123221.2	5	123243.2	
76	9 E	IP	4323.7	5	4330.2	1.5
76	98	P	572.1	5	578.0	0.4
76	98	$1 P$	11834.7	5	11841.2	1.2
76	98	P	12335.6	S	12342.0	0.6

VRMODD	PHPSE	TIME (UT)	PHABE	TIME(UT)	Man (LOCAL)
				-	
7699	$E P$	25952.8	8	38020.0	
7699	EP	18290.2			-
$76 \quad 910$	$8 P$	231024.1	8	231050.0	1.8
76917	$1 P$	24917.9	8	24840.5	3.8
$\begin{array}{llll}76 & 9 & 17\end{array}$	EP	35655.9	8	35716.9	2.8
76917	EP	153612.0	8	153642.0	1.5
$76 \quad 917$	$8 P$	220744.0	5	22087.9	1.8
76918	EP	234123.6	5	234140.1	1.4
$76 \quad 913$	EP	102333.4	9	102413.0	1.2
769819	$1 P$	124034.3			3.1
76919	IP	10452.5	9	10438.6	0.9
76930	EP	222819.0	5	222044.0	1.5
76102	IP	9571.0	5	$957 \quad 7.9$	1.8
76103	$1 P$	230652.7			2.3
$7610 \quad 8$	EF	134047.0	5	134110.5	2.8
76109	EP	11151.9	5	$112 \quad 13.9$	2.2
761012	EP	32227.5	5	32234.0	1.0
761013	EP	132628.7			
761014	EP	22524.6			
761014	EP	110332.3	5	110355.5	2.3
761010	EP	62248.8	5	62252.0	1.9
761022	$1 P$	50644.3	5	507 0.0	3.4
761023	EPP	12527.5	5	125229.8	2.3
761025	EP	2734.0	5	2756.7	3.0
761025	EP	10531.1	5	105323.9	2.1
761026	EP	$1845 \quad 1.2$	5	184518.1	2.0
76114	EP	17565.1	5	175638.5	2.5
76118	EP	232439.4	5	23255.4	2.5
76115	EP	18059.0	5	180532.8	2.3
76116	EP	225131.0	5	225156.7	2.5
761117	EP	231620.6	5	23175.3	2.5
761125	EP	22251.4	5	222527.8	2.5
761127	EP	51026.7	5	51045.6	2.0
$\begin{array}{lllll}76 & 12 & 12\end{array}$	EP	230042.1	5	23013.0	2.6
$\begin{array}{lllll}76 & 12 & 12\end{array}$	EP	232624.8	5	232647.6	1.9
$76: 215$	EP	85210.8			
	EP	232523.8	5	232549.9	2.3
$76 \quad 12 \quad 17$	EP	213326.0	5	213350.8	
$76 \quad 12 \quad 19$	EP	1212645.0	5	212710.1	2.1
$\begin{array}{llll}76 & 1219\end{array}$	EP	235454.3	5	235517.5	2.4
$\begin{array}{llll}76 & 12 & 19\end{array}$	EP	235719.0	5	235743.5	2.6
761222	EP	23205.0	5	232031.3	2.5
761231	EP	224716.1	5	224741.5	2.5
7716	EP	145921.0	5	145932.1	2.5

8TATION: MCDONALD 088., TEXA8 CODE MOT LAT.30.6eN LONG. 104.007W

MR,TMO/DA		PHASE	TIME(UT)	PHASE	TIME (UT)	MAG(LOCAL)
77	17	EP	192048.0	5	192116.8	2.1
77	129	IP	94052.7	S	94059.0	2.5
77	22	EP	61842.4	5	61853.0	2.0
77	24	IP	74826.3	5	74832.7	2.6
77	24	IP	162240.1	¢	162245.6	2.8
77	210	EP	23321.2	5	23345.0	2.2
77	211	EP	2223 2.0	5	222322.4	2.2
77	3 :	IP	232140.6	5	23224.3	2.5
77	$3: 7$	EP	51444.0	5	5157.0	2.8
77	319	EP	212811.5	5	212830.0	2.1
77	320	EP	75440.9	5	7552.1	2.6
77	321	IP	164518.2	5	164525.7	2.2
77	321	IP	190628.7	5	1545683.1	
77	323	EP	110323.9	5	110344.9	2.2
77	323	EP	2324 54.1	5	232518.2	2.4
77	325	IP	215.0	5	244.6	2.2
77	331	$1 P$	51653.0	5	51613.8	2.3
77	331	IP	54611.2	5	54634.1	
77	47	tP	54611.3	5	54633.0	3.0
77	412	EP	213557.8			1.8
77	412	EP	231851.0			2.6
77	416	EP	64443.0	5	64450.0	2.0
77	416	EP	17266.9	5	1727 27,6	2.3
77	417	EP	214741.0	5	21480.5	2.3
77	418	EP	182345.0			2.3
77	420	EP	101254.0	S	101310.8	1.9
77	423	EP	15126.6	5	15146.4	2.1
77	424	IP	91544.0	5	91610.0	2.2
77	425	1 P	101323.0	5	101346.8	2.4
77	426	IP	90333.5	5	90341.6	3.2
77	428	EP	110634.1	5	110657.9	
77	428	EP	12559.1	S	125531.0	2.4
77	428	EP	125611.0	5	125633.1	2.7
77	428	EP	125650.9	5	125714.0	2.2
77	428	EP	15237.0	5	152329.8	2.6
77	429	EP	31011.7	5	31033.4	
77	53	1 P	231727.0	5	231738.6	1.7
77	55	18	211544.8	5	211613.3	2.2
77	56	1 P	201246.0	S	201315.0	2.4
77	57	$1 P$	205656.7	5	20572.5	2.0
77	59	IP	45215.2	5	45219.2	1.5
77	519	EP	105647.0	5	105658.8	2.0
77	522	EP	163046.0	5	163656.5	1.9

STATION: MCDONALD OBS. . TEXAS CODE MOT LAT. 3E.GEN LONG. IE4.EDTW

STATION: MCDONALD OBS.. TEXAB CODE MDT LAT.30.68N LONG. 104.e日FW

VRMO/DA	PHASE	TIITE (UT)	PHASE	TIME(UT)	MAE(LOCAL)
$77 \quad 1027$	EP	103613.8	5	103627.0	2.4
771027	EP	215017.7			
$77 \quad 1027$	$1 p$	22434.0	5	22.43 .31 .4	2.3
771028	EP	224124.1	5	2241411.4	2.1
771029	$1 P$	4917.8			1.9
771029	EP	2199.0	5	21931.5	2.5
771029	EP	19460.0			
771031	EP	231213.4	5	231236.7	2.5
77111	EP	70820.1	5	70850.7	1.9
77111	EP	71635.8	5	71657.2	2.0
77111	EP	224434.4	5	22451.4	2.2
77112	$1 P$	220613.4			1.8
77113	EP	63814.3	5	63838.0	2.2
77113	EP	100042.3	5	10014.1	2.2
77113	EP	15118.8	5	151131.2	1.9
77113	EP	232310.5	S	232335.2	2.2
77114	EP	14748.3			
77114	EP	1496.0			2.2
77115	EP	122814.1			1.9
77117	EP	202415.3	5	202438.5	1.9
771111	EP	$2315 \quad 5.4$	5	231532.0	2.2
771113	EP	183028.2			
771114	IP	72133.8	5	72150.9	2.8
771114	[P	72648.7			3.1
771114	IP	74616.0	5	74632.4	2.1
771114	EP	23341.5			
771115	EP	122453.6			2.6
771115	EP	232444.5			2.2
771116	EP	132539.3			2.1
771116	EP	233020.4	5	233032.8	1.7
$\begin{array}{lllll}77 & 11 & 17\end{array}$	EP	7530.5	5	75323.1	1.9
771118	EP	225355.0			2.2
771122	EP	22027.0			2.0
771122	EP	2325 57.7	5	232625.0	
771123	EP	65255.8	5	65319.4	1.8
771123	$E P$	151454.8	S	15153.4	
771123	EP	19248.7	5	192431.8	2.6
771123	EP	21336.8	5	213333.7	2.1
771125	EP	175439.9			1.8
771128	IP	14147.3			3.3
77 1128	IP	3017.4	5	30123.3	1.9
771130	EP	103220.0	5	103231.1	1.8
77125	EP	234041.8			2.2
77126	EP	82818.0	S	82840.0	1.9

STATION: MCDONALD 0B3.. TEXAS CODE MOT LAT.30.GEN .ONG. 184.EOTU

			PHASE	TIME (UT)	PHASE	TIME (UT)	MAG(LOCAL)
77	12	6	EP	101553.0	5	101615.4	1.8
77	12	7	EP	17559.7	5	175532.8	2.0
77	12	12	EP	13460.3	5	1346 7.1	1.9
77	12	12	EP	160331.0	5	1603 54.0	1.4
77	12	13	EP	234718.2	5	234743.0	1.9
70	1	14	EP	844 4.0	5	84420.0	1.8
78	1	15	EP	22243.5			2.8
76	1	15	EP	223915.2			2.5
78	1	15	EP	231534.9	5	231557.5	2.3
78	1	16	EP	25854.6	5	25916.6	1.9
78	1	17	EP	12313.4	5	123 20.8	1.8
78	1	17	EP	201750.2			2.1
78	1	18	EP	05340.5	5	85356.2	2.1
78	1	19	EP	34310.9	5	34336.8	2.2
78	1	21	IP	11713.0			3.2
78	1	21	EP	12110.0	5	12119.0	1.5
78	1	21	EP	60633.2	5	60656.0	2.0
78	1	24	EP	142633.1			2.1
78		27	EP	193358.1			
78	1	28	IP	11723.2			3.2
78	2	1	EP	$36 \quad 1.5$			1.5
78	2	1	EP	191720.0			1.8
78	2	1	EP	234418.1	5	234431.5	2.0
78	2	2	EP	2301.2	5	23022.7	2.2
78	2	3	EP	232453.1	5	18027.8	2.0
78	2	4	EP	15519.6	S	155125.4	1.7
78	2	5	EP	104646.2			1.7
78	2	5	IP	14209.0			2.7
78	2	14	P	17561.5			2.6
78	2	14	EP	195027.0			1.7
78	2	14	P	210358.7			2.7
78	2	16	EP	13127.0			2.0
78	2	18	P	142229.6			3.6
78	2	18	p	142941.9			2.5
78	2	18	EP	150436.0			2.0
78	2	18	EP	152958.9			1.8
78	2	18	EP	162059.1			1.8
78	2	18	EP	164426.6			1.8
78	2	18	P	173030.1			2.9
78	2	18	EP	175432.2			2.3
78	2	18	EP	184537.7			2.1
78	2	18	EP	185859.5	5	18593.2	1.5
78	2	18	P	215958.2			2.5
78	2	19	EP	12035.6	5	12042.9	1.5

STATION: MCDONALD OBS., TEXAS CODE MOT LAT.30.68M LONG. 104.007W

YRMO/DA		PHASE	PIME (UT)	PHASE	TIME (UT)	Magrlocal
78	219	EP	14518.0	5	14534.6	1.5
78	219	EP	25318.3			1.9
77	219	EP	70440.8			1.9
78	219	EP	25318.3			1.9
78	219	P	121221.6			2.9
78	219	EP	122236.1			1.7
76	219	EP	153154.4	5	15320.5	1.7
78	219	EP	181610.0	5	181634.5	2.1
78	219	EP	181819.4	5	181842.0	2.4
78	219	EP	221652.0			1.5
78	220	EP	25318.3			1.9
70	220	P	205052.7			2.5
78	221	P	22570.7			
78	32	EP	85822.2			2.5
78	34	EP	193828.0			1.9
78	35	EP	124949.9			1.5
78	35	EP	142029.6	s	142056.3	2.3
78	36	EP	1641.8			1.4
78	36	EP	234717.8			2.3
76	3 B	EP	135547.2			2.5
78	38	EP	213033.0			
78	39	EP	53648.5			1.5
78	39	EP	230132.8			2.4
78	312	EP	759.2			2.6
78	313	EP	230159.0			2.4
78	314	EP	3012.0			2.3
78	314	EP	152056.0			2.4
78	314	EP	173934.3			1.7
78	316	EP	175159.9			2.4
78	316	EP	18440.9			1.5
78	316	EP	193545.8			2.7
78	314	EP	30646.6			2.5
78	317	EP	211629.0			2.2
78	319	EP	104917.1			2.5
78	320	EP	1419.6			1.7
78	322	EP	209349.0	5	200417.1	2.5
78	325	EP	75519.2			2.2
78	331	EP	557.5			1.9
78	331	EP	210153.0			1.8
78	331	EP	235523.5			2.0
78	331	EP	222218.5			
78	41	EP	233510.5	5	233529.2	1.8
78	44	EP	4242.9	5	42430.0	2.3

STATION: MCDONALD 0BS.. TEXAS CODE MOT LAT.30.GON LONG. 1EA.6日TL

KRMOMDA PHASE TIME(UT) PHASE TIME(UT) MAE(LOCAL)

78	4	4	EP	1335	51.0	5	1336	12.0	1.9
78	4	4	EP	2313	1.5	5	2313	21.0	1.8
78	4	6	EP	913	43.9	s	913	55.9	2.6
78	4	6	EP	1959	26:9	5	1959	46.8	1.9
78	4	7	P	58	18.1	5	50	48.0	2.6
70	4	7	EP	1250	15.1	5	1205	35.1	2.2
78	4	12	EP	2305	10.8				1.9
78	4	13	EP	820	29.0	5	820	31.9	1.0
78	4	16	EP	1101	3.5	5	1101	25.8	2.2
78	4	16	IP	1534	26.2	5	1534	29.5	1.4
78	4	26	EP	1158	20.0	S	1150	42.0	2.2
78	5	1	EP	1007	7.1	5	1007	25.6	1.0
78	5	3	P	2336	30.1				3.9
78	5	5	EP	1812	3.0	5	1012	23.0	2.1
78	5	8	IP	2125	22.6	5	2125	49.9	2.5
78	5	9	EP	2121	15.1	5	2121	43.5	2.3
78	5	11	IP	2214	21.0	5	2214	49.9	2.5
78	5	17	EP	1837	59.0				3.0
78	5	17	EP	2304	52.0	5	2305	15.0	2.5
78	5	18	EP	2118	33.3	5	2110	51.0	1.9
78	5	24	EP	523	34.2	5	523	46.0	1.8
78	5	25	IP	1929	34.0	5	1930	3.8	2.3
78	5	35	EP	2359	58.8	S	2359	11.3	1.8
78	5	27	EP	2808	20.6				1.4
78	5	28	EP	446	33.8				1.4
78	5	28	EP	1237	9.0				2.0
78	5	28	EP	1253	28.0				2.2
78	5	29	EP	1908	35.5	5	1908	56.2	2.0
78	5	30	EP	1150	22.4				4.5
78	5	30	EP	1319	0.0				2.2
78	6	3	IP	1140	32.1				2.4
78	6	6	EP	1459	56.3	5	1500	17.9	2.2
78	6	6	EP	2050	12.4				2.2
78	6	7	EP	154	54.4	5	155	15.2	2.5
78	6	7	EP	653	14.3	5	653	36.4	2.2
78	6	9	EP	454	28.0				1.9
78	6	9	EP	459	29.9				1.9
78	6	13	EP	347	6.2	5	347	27.1	2.0
78	6	14	EP	1985	40.8	5	1906	1.8	2.7
78	6	19	EP	1441	38.8				1.8
78	6	22	EP	955	36.8	5	955	58.2	1.8
78	6	27	EP	2317	27.1				2.4
78	6	28	$1 P$	403	45.1				2.6

STATION: MEDONALD OBS.. TEXAS CODE MOT LAT.30.6EN LONG. 184.007W

YR	40 On	PHASE	TIME(UT)	PHASE	TIME(UT)	MAG(LOCAL)
78	628	EP	204638.0			1.7
78	629	EP	8.05917 .0	5	205930.0	2.9
78	630	EP	17594.4	5	175933.4	2.3
78	75	EP	11228.1	5	11258.9	1.5
76	75	EP	24536.8	5	24558.9	2.0
78	75	EP	10411.1	5	104123.5	2.0
78	75	EP	230813.6	5	230041.0	2.8
78	76	EP	118920.0	5	118943.0	1.8
78	76	EP	175346.0	S	175415.5	2.3
78	79	EP	211514.0	5	211535.5	1.8
78	710	$1 p$	15541.9	5	155428.2	2.1
78	710	EP	$1735 \quad 1.5$	5	173525.8	2.6
78	713	EP	43828.0			0.8
78	713	IP	95248.4	5	95254.1	1.7
78	713	$1 P$	95912.6	5	95918.2	1.2
78	713	IP	102534.0	5	102539.5	2.8
78	713	EP	113555.4	5	113558.0	0.4
78	713	IP	121051.0	5	121057.2	1.3
78	713	EP	121241.0	5	121246.2	0.8
78	713	IP	122359.8	5	12244.9	1.3
78	713	EP	132848.0	5	132844.8	0.7
78	713	EP	202710.1	5	202710.2	1.1
78	713	EP	223831.4			1.8
78	714	IP	94420.0	5	94425.5	0.3
78	714	IP	10061.0	5	10056.2	0.8
78	714	1 P	15.5310 .0	5	155315.0	0.5
78	714	EP	142034.0	5	142039.0	1.6
78	717	IP	221539.5			1.7
78	717	IP	223037.5	5	223043.0	1.6
78	717	EP	225043.0	5	225111.9	2.2
78	717	EP	225651.0	5	225657.8	1.4
78	$? 18$	$1 P$	14932.2	5	14937.5	2.1
78	718	IP	4543.9	5	4548.6	1.4
78	718	IP	45443.0	5	45447.0	0.7
78	718	$1 P$	80749.9	5	80754.9	1.2
78	718	$1 P$	120748.2	5	128745.7	2.6
78	724	EP	221244.3	S	2213 3.0	2.0
78	725	EP	235750.0			1.8
78	726	EP	$1826 \quad 6.8$	5	18269.0	1.2
78	726	EP	185114.1	5	185134.2	2.0
78	726	EP	203315.4	5	203332.0	2.0
78	727	EP	115729.7			
78	727	EP	144143.4	S	14422.9	2.0
78	728	EP	180143.6	S	18025.7	2.0
78	728	EP	291040.8	5	201111.8	2.2
78	728	EP	20159.0	S	201537.6	2.0

STATION: MCDONALD OBS.. TEXAS CODE MOT LAT.30.60N LONG. 184.087U

YR, MO/DA		PMASE	TIME(UT)	PHASE	TIME(UT)	Mraslocat)
78	728	EP	222315.8	S	222348.3	2.3
76	729	EP	105043.1	5	105052.8	1.8
78	724	EP	205441.6	5	20551.5	2.0
78	81	EP	173619.2	5	173646.5	2.2
78	81	EP	233240.0	:	23326.0	1.6
70	- 2	EP	223424.7	5	223438.0	2.1
78	04	EP	193720.0	5	193747.0	2.4
76	87	EP	23055.5			2.0
78	B 8	EP	122122.1	5	122148.9	2.2
78	C 9	$1 P$	281023.8	5	201050.8	2.5
78	89	$1 P$	22283.9	5	222831.0	2.4
78	B 14	EP	121827.1			1.4
78	Q 11	$1 P$	192728.9	5	19286.5	2.3
78	8 13	EP	91441.3	5	9153.8	1.8
78	8 13	EP	92758.0			1.6
78	8 13	EP	9330.5	5	93322.8	2.0
78	8 14	EP	5069.5	5	50630.8	2.8
78	-14	EP	133012.1	5	133032.2	2.9
78	(8)14	EP	20223.8	5	202231.0	2.5
78	814	EP	55710.0			2.9
78	Q 15	EP	144718.0	5	144738.1	2.7
78	$\theta 21$	EP	$1038 \quad 12.2$	5	103833.8	1.8
78	821	EP	284827.2			1.8
78	821	$1 P$	22216.0	5	222133.0	2.5
78	Q 21	EP	$2339 \quad 0.5$	5	233927.0	2.0
78	822	EP	$18 \quad 4.5$	5	1822.0	2.4
78	823	EP	142324.1	5	142340.8	2.0
70	825	EP	205146.6			1.7
78	828	EP	203355.9			0.7
78	828	EP	231418.7	5	231445.2	2.8
78	日 31	EP	181947.6			1.7
78	92	EP	71655.4			1.2
78	92	$E P$	205325.0			2.0
78	94	EP	2075.5			0.6
78	911	$E P$	92417.8	5	92440.0	2.2
78	912	EP	199945.5	5	191025.7	2.5
78	913	EP	183353.7			1.7
78	916	EP	141010.0	5	141030.9	2.0
78	917	EP	114644.2	5	11474.2	2.0
78	917	EP	114942.1	5	11504.5	2.0
78	918	IP	23938.9	5	23951.0	1.4
78	929	EP	200811.1	5	200831.8	2.9
78	929	EP	2254 56.8	S	225516.5	2.0
78	930	EP	75244.8	5	75248.2	1.1
78	930	EP	233213.0	5	233232.8	2.2

STATION: MEDONALD OBS.. TEXAS CODE MOT LAT.30.60N LONG. 184.007W

YRAMO-DA			PHASE	TIME (UT)		PHASE	TIME (UT)		Mat(LOCAL)
70	10	2	EP	935	35.8	5	935	55.2	2.3
78	10	2	EP	959	1.4	5	959	22.0	8.1
78	9	18	EP	1008	54.7				0.5
78	9	18	EP	1011	2.0				0.4
78	9	18	EP	1012	6.0				0.6
78	9	18	IP	1156	58.4				0.7
78	9	18	$1 P$	2017	7.9	5	2017	34.7	2.2
78	9	18	IP	2136	35.3	5	2136	48.0	2.2
78	9	19	EP	1849	37.0				1.7
78	9	19	IP	1935	22.7	5	1935	35.0	2.3
78	9	19	EP	1940	6.9	5	1940	35.7	2.0
78	9	22	EP	15	30.5				0.9
78	9	22	EP	819	46.8	5	820	9.9	2.0
78	9	22	EP	1806	32.1	5	1806	53.0	1.7
78	9	28	$1 P$	1121	25.5	S	1121	27.5	0.4
78	9	29	EP	1759	50.6				2.2
78	9	29	EP	2002	26.	5	2002	48.0	1.8
78	10	2	EP	1125	37.3	5	1125	57.0	2.9
78	10	2	EP	2236	24.0				1.t'
78	10	3	EP	612	44.6	5	613	4.5	2.0
78	10	6	EP	1524	17.1	5	1524	37.0	2.8
78	10	10	EP	9'31	45.1				
78	10	10	EP	1444	19.0	5	1144	28.6	2.4
78	10	11	EP	2218	16.8	5	2218	44.4	2.0
78	10	17	IP	831	40.0	5	831	42.9	0.7
78	10	20	IP	307	57.3	5	308	18.0	2.5
78	10	20	EP	742	45.0	5	743	7.0	2.0
78	10	20	[P	2153	15.9	5	2153	45.8	2.2
78	10	20	EP	2220	19.2				1.5
78	10	23	EP	2046	44.0	5	2047	6.0	2.4
78	10	26	IP	412	58.9	5	413	21.4	1.8
70	10	26	EP	175 ¢	8.0	5	1758	36.5	2.3
78	10	29	EP	700	12.0	5	700	30.0	1.7
78	10	30	EP	1721	4.9	5	1721	34.0	2.1
78	10	31	EP	2150	18.2	5	2150	41.7	2.0
78	10	31	EP	2243	21.0				1.7
78	11	3	EP	4	38.2	5	5	6.0	1.8
78	11	7	EP	2346	44.5	S	2347	11.4	1.8
78	11	13	EP	2357	29.1	5	2357	53.8	2.0
78	11	15	EP	1502	28.8				0.9
78	11	15	IP	2007	4.0	S	2007	24.0	1.3
78	11	16	EP	346	7.8	5	346	17.0	1.3
78	11	16	EP	2040	0.0	5	2040	20.8	2.0
78	11	18	EP	2128	7.8	5	2128	34.0	1.8
78	11	19	EP	328	7.1	S	328	24.5	1.6

STATION: MCDONALD OBS.. TEXAS CODE MOT LAT.30.58N LONG. 104.007W

VRA	MO/D	DA	PHASE	TIME	(UT)	PHASE	TIME	(UT)	MAG(LOCAL)
78		19	EP	1106	14.5	5	1186	37.7	1.8
78		21	IP	2105	47.9				2.8
78		22	EP	234	15.2	5	234	27.4	1.7
78		22	ip	1438	34.5	5	1439	1.8	2.0
78	11	26	EP	1239	40.6				1.7
78	12	1	EP	744	25.6				2.2
78	12	1	EP	836	30.5				2.1
78	12	4	EP	210	35.1				2.2
78	12	10	EP	132	41.5				2.0
78	12	12	EP	1755	34.5	5	1756	2.0	2.0
78	12	15	EP	2209	7.5	5	2209	32.9	2.8
78	12	17	EP	2349	43.6				1.6
78	12	18	IP	1243	2.4				1.4
78	12	18	IP	1932	43.7	5	1933	11.0	2.0
78	12	18	IP	2110	54.1	5	2111	21.4	2.0
78	12	20	IP	131	32.0				1.1
70	12	31	EP	1712	15.6				1.5
78	12	31	EP	1714	11.5				1.7
79	1	1	EP	952	18.0	5	952	37.0	1.7
79	1	1	EP	956	12.0	5	956	30.0	2.0
79	1	3	IP	2244	28.0	5	2244	31.0	0.6
79	1	3	$1 P$	2256	54.2	5	2256	56.0	0.6
79	1	4	IP	303	30.5	5	303	32.4	0.6
79	1	4	EP	1720	25.9	5	1720	53.5	2.0
79	1	5	EP	2108	12.8	5	2108	40.0	1.9
79	1	6	IP	39	42.2	5	39	45.0	0.8
79	1	8	EP	855	27.0	S	855	42.1	1.8
79	1	9	EP	12	11.6	5	12	26.5	1.8
79	1	11	P	348	49.0	5	348	54.5	1.8
79	1	15	P	36	36.9	5	32	54.1	1.5
79	1	19	IP	908	15.3	5	908	31.2	1.8
79	1	26	EP	2110	1.8	5	2110	20.2	2.1
79	1	27	IP	2137	40.0	5	2138	6.5	1.8
79	1	27	EP	2234	53.0	5	2235	7.7	1.6
79	2	1	EP	2110	19.9	5	2110	41.8	2.0
79	2	1	IP	2156	20.6	5	2156	24.1	1.2
79	2	1	IP	927	13.0	S	927	33.4	2.0
79	2	4	EP	1758	46.0				1.6
79	2	8	IP	2222	25.4	5	2222	42.8	
79	2	5	IP	18	12.6	5	18	14.0	2.5
79	2	9	IP	1751	35.5	5	1752	3.9	2.0
79	2	9	EP	2212	48.2	S	2213	7.2	2.1
79	2	10	IP	52	21.4				0.4
79	2	13	IP	1902	27.0	5	1902	36.0	2.0
79	2	13	EP	2232	0.5	5	2232	18.5	1.7

STATION: MCDDNALD OES., TEXAS CODE MOT LAT.30.6EN LONG. 104.807W

MR-TMJ/DA		Phase	time (UT)	PHfse	time(ut)	MAGCLOC
7	84	p	213110.0			1.0
79	215	EP	22400.0	5	224017.0	2.0
79	216	P	235049.8	5	2351 3.1	2.0
79	218	1 P	101717.4	5	101732.7	2.0
79	219	IP	215346.8	5	215414.1	2.0
79	220	EP	212535.8	5	212544.6	1.5
79	221	IP	224933.2			2.0
79	223	IP	51725.7	5	51730.0	0.9
79	227	IP	50157.8	5	50117.0	2.4
79	31	$1 P$	51620.0	5	51634.2	1.8
79	31	EP	54918.4			0.4
79	31	IP	22160.9	S	221629.0	2.2
79	33	EP	210339.9	5	210348.0	1.8
79	311	2 P	125059.7	5	12514.5	1.8
79	311	$1 P$	193738.4	5	193743.0	1.5
79	315	EP	42.0			1.8
79	315	EP	124710.0	5	124718.0	1.4
79	316	IP	195657.0	5	195724.5	2.3
79	317	P	194913.6			1.1
79	323	EP	214022.6	5	214030.5	1.8
79	324	P	145544.7	5	145549.5	1.1
79	327	EP	175323.4	5	175351.0	2.2
79	328	IP	55156.8	5	55211.0	1.9
79	328	EP	145720.5			1.2
79	328	EP	150525.4			2.6
79	329	EP	9367.2			2.5
79	329	EP	135239.8			1.4
79	329	EP	195337.2	S	19543.5	2.2
79	330	EP	34132.0			0.6
79	331	IP	144653.8	5	144656.2	0.4
79	41	EP	133656.9	5	13401.0	0.7
79	41	EP	202536.7	5	202544.4	2.8
79	44	IP	213540.0	5	21368.0	2.2
79	45	EP	192123.4	5	192152.0	2.2
79	48	1 P	15615.9	5	15629.0	1.9
79	410	$\underline{4}$	53929.1			1.6
79	416	IP	234957.8	5	235026.0	2.1
79	417	IP	4044.9	5	4053.0	1.8
79	418	EP	4346.0	5	44 9.\%	1.8
79	418	EP	5915.9	5	5843.0	1.8
79	424	1 P	64856.2			0.4
79	425	$1 P$	205.2	5	2832.3	1.8
79	425	IP	1858 !5.7			0.5
79	428	IP	101.49 .9			3.6

8TATION: MCDONALD OB8.. TEXAS CODE MOT LAT.30.GAN LONG. ICA. HOTW

YRATORA		Phase	tire (ut)	Phase	timesut)	MAG(LOCAL)
79	428	EP	15514.6			1.2
79	428	IP	175525.6	5	153645.4	1.6
79	420	$1 p$	181428.0	5	101437.8	1.3
79	429	EP	153635.2	S	153645.4	1.6
79	430	$1 p$	22464.0	5	2246 0.3	1.3
79	52	$1 P$	233344.6	5	233411.7	1.8
79	515	EP	239622.1	5	230646.0	1.9
79	52.2	EP	2156.0			1.7
79	525	IP	231214.6	5	231222.3	1.5
79	530	EP	035.0	5	058.9	2.0
79	68	EP	545.5	5	69.0	1.8
79	69	EP	1299.0	5	12915.3	1.9
79	69	1 P	170628.9	5	170630.5	1.3
79	610	$1 P$	104757.5			1.7
79	612	$1 P$	74329.9	5	74353.0	2.8
79	614	EP	145528.3			2.\%
79	616	EP	211953.2	5	212016.2	1.8
79	617	$1 P$	1626 17.5	5	162619.0	0.8
79	617	$1 P$	177640.2	5	173647.1	1.7
79	620	IP	120210.0	5	120211.2	0.6
79	621	1 P	103213.3	5	103219.6	1.2
79	622	IP	55826.3	5	55832.5	1.8
79	623	EP	222530.6	2	222532.2	0.2
79	625	$1 P$	172341.7	5	172344.2	1.1
79	628	IP	33723.7	5	33734.2	1.5
77	628	P	19236.4			1.9
79	628	1 P	210114.5	5	210132.0	2.1
79	630	IP	71856.0	5	71918.0	2.0
79	? 1	$1 P$	73227.0	5	73251.0	1.6
79	710	EP	213237.0	5	213243.5	0.9
79	710	EP	214625.5	5	214631.0	0.9
79	710	EP	220032.5	5	220038.8	0.9
79	710	EP	220924.8	5	220930.8	0.9
79	712	EP	33457.0	5	335 5.8	0.7
79	714	EP	2057.2	S	210.1	0.6
79	718	IP	105930.5			0.6
79	722	EP	2749.0			0.5
79	722	IP	145028.5			0.7
79	723	18	20420.0			0.7
79	724	$1 P$	3076.2	5	30712.9	1.7
79	725	EP	21067.0	5	210630.5	1.8
79	726	EP	2552.7	5	261.0	1.7
79	727	EP	12365.6			0.4
79	727	EP	123747.9			0.6

8TATIOY: MCDONALD OAS.. TEXAS CODE MOT LAT.30.CON LUNG. 18A.EATU

	MOPD	Phase	TITE(UT)	Phase	TITE (UT)	MAS(LOCAL)
79	727	EP	12360.0			1.2
79	728	IP	142425.2			0.5
79	730	$1 p$	120232.0	5	120244.0	1.2
79	731	IP	174150.0	S	17419.9	2.0
79	04	IP	213110.0			1.0
79	07	EP	110926.0	s	110920.6	0.6
79	09	EP	125813.0			1.2
79	89	EP	144359.6			1.4
79	811	EP	22386.3	5	223817.0	1.3
79	814	EP	202255.5			1.5
79	Q 14	EP	233134.0			2.0
79	815	EP	214637.5	5	214659.0	1.7
79	816	EP	225654.0	5	225714.5	1.7
79	924	$1 P$	230246.7	5	23031.7	2.0
79	9 25	$1 P$	12248.0	5	12259.5	2.1
79	827	EP	10089.8	5	188825.5	1.5
79	827	EP	11186.5	5	111822.0	1.5
79	827	EP	183717.1	5	183732.2	1.6
79	827	EP	21195.9	S	211913.2	1.4
79	828	EP	234644.4			1.0
79	91	EP	12041.8			1.9
79	92	EP	401 22.1			1.6
79	94	EP	192151.9	5	192159.4	1.4
79	95	EP	81922.0	5	81944.1	1.8
79	96	EP	120649.0	5	120711.8	2.1
79	97	EP	225451.0	5	22551.8	1.7
79	98	EP	233811.0	S	233817.2	1.3
79	911	EP	64559.8	5	64621.8	1.9
79	911	EP	114113.8	5	114136.0	1.3
79	911	EP	120522.8	5	120543.5	2.1
79	915	EP	21537.5	5	2160.5	2.3
79	916	EP	124622.0			1.2
79	919	EP	225936.1			1.7
79	922	EP	61357.0	5	61427.0	2.6
79	922	EP	164714.9	5	164724.1	1.6
79	928	EP	202251.5	5	20238.0	1.4
79	184	EP	11334.0	5	11347.0	1.6
79	10 ?	EP	214242.5	S	214251.2	1.8
79	109	IP	12451.2			
79	1016	EP	170156.1			
79	1825	EP	13331.1	5	133310.5	1.7
79	1029	$1 P$	192510.0			
79	1030	EP	238626.5			1.6
79	1031	EP	205429.5			1.5
79	112	EP	111622.8			1.5

STATION: MCDONALD OAS.. TEXAS CODE MOT LAT. 30.GEN LONG. 184.007W

YRMOADA		PHASE	TIME (UT)	PMASE	TIME (UT)	MPG(LOCAL)
	1128	EP	30141.0	5	3021.0	2.8
79	125	IP	31352.0	5	31354.0	0.5
	1210	EP	224554.0	5	224618.5	2.0
79	1210	$1 P$	234628.4	8	234637.1	1.8
79	$12 \quad 13$	IP	4370.1			1.2
74	$12 \quad 14$	EP	175817.7	5	175836.2	1.9
79	1221	EP	233023.0	5	233828.5	1.4
79	1221	EP	235030.0	5	235046.0	2.6
79	1222	1 P	61542.3	5	61544.2	2.3
79	1223	Eip	163554.5	5	16360.4	1.5
79	1231	IP	12059.5			2.2
80	17	1 P	1:02 32.2	5	110251.0	2.3
80	17	IP	1.:451.0	5	121420.5	2.2
00	17	EP	2003 28.0	5	200348.0	2.1
80	17	IP	225957.0	5	230016.5	2.2
80	18	EP	22306.0			1.6
80	19	EP	53537.0	3	5365.5	2.9
00	19	$1 P$	12413.0	5	12416.0	1.8
80	111	EP	214249.8			0.9
80	112	$1 P$	3824.3	5	3029.2	0.6
80	112	IP	173259.5			
80	113	IP	3025.0			
80	115	EP	18037.5			
80	121	EP	233131.0	5	233i 37.8	1.8
80	122	IP	150022.0			3.6
80	122	IP	233718.1	5	233739.0	2.9
80	37	EP	135752.0	5	13582.1	1.8
80	38	EP	72349.0	5	72410.0	1.9
80	310	EP	928.2	5	953.0	2.1
80	311	EP	1753 32.4	5	17541.0	
80	321	EP	83553.1	5	83615.8	2.4
80	326	$1 P$	3305.8	5	33011.1	1.8
80	329	EP	20.5	5	224.6	1.9
88	41	EP	102131.0	5	102150.0	1.7
80	46	EP	24822.6	5	24841.5	2.9
80	46	EP	30525.4	5	30544.6	1.7
8 B	46	EP	5478.9	5	54726.0	1.6
80	46	EP	70133.1	5	70152.1	2.5
80	48	EP	15217.7	5	152122.5	1.8
80	423	$E P$	132629.2	5	132656.5	2.8
80	428	EP	44511.0	5	44529.0	1.7
80	422	EP	105527.6	5	105549.5	1.9
80	ai 28	$E P$	110545.0	5	11067.0	1.8
85	428	EP	125222.0	5	125244.0	1.6
30	4 ? 9	IP	15530.0	5	15552.0	2.5

STATION：MCDONALD 085．，TEXAS CODE MOT LAT．30．6日N LONG．104．007W

YRAMO－DA		PHASE	TIME（UT）		PHASE	TIME（UT）		MAG（LOCAL）
88	525	IP	1143	4.7	5	1143	11.0	1.0
80	528	EP	1705	42.8	5	1706	1.0	2.2
80	66	EP	2307	35.8	5	2307	49.0	2.0
80	616	EP	2351	37.5				
80	621	EP	1341	17.0	5	1341	39.0	1.8
80	621	EP	2008	22.0	5	2208	44.0	1.7
80	622	EP	302	38.3	5	303	0.8	1.9
80	622	EP	1210	44.7	5	1211	6.0	1.9
80	622	EP	1410	22.5	5	1410	25.0	0.1
80	622	EP	2130	23.3	5	2130	45.6	2.5
80	623	EP	1109	46.7	5	1110	9.0	1.6
00	624	EP	1146	48.0				1.7
80	624	EP	2323	30.5				2.0
$\theta 0$	625	EP	829	47.4	5	830	9.1	2.0
80	627	EP	722	56.1	5	723	18.2	2.4
60	627	EP	1140	39.0	5	1140	59.0	3.1
80	627	EP	1151	4.5	5	1151	11.2	1.2
80	627	EP	1159	51.6				0.7
80	627	EP	1204	47.6	5	1204	54.3	1.3
80	627	EP	1228	3.6	S	1228	10.0	0.7
$\theta 0$	73	EP	353	50.2				0.4
30	73	EP	1943	12.4	5	1943	31.3	2.0
80	78	EP	2308	18．4	5	2308	38.0	2.0
80	7 日	EP	2329	50.0	5	2330	1.0	1.8
80	710	EP	923	21.4	5	923	41.5	2.7
80	717	IP	342	1.2				3.8
80	717	EP	729	49.0	5	730	10.2	1.7
89	717	EP	807	31.1	5	807	51.2	2.6
80	717	EP	847	57．8	5	848	20.0	1.7
80	717	EP	1524	26.1	5	1524	46.2	1.6
83	718	EP	2104	42.4	5	2105	4.5	2.2
80	721	EP	941	1.5	5	941	19.0	1.8
80	728	IP	1639	26.0	5	1639	31.0	1.6
日0	729	［P	1211	49.8	5	1212	5.0	1.7
80	730	EP	0	39.7	5	0	47.7	0.7
80	85	EP	354	12.0	5	354	34.0	2.0

Instrumental locations for earthquakes in the Basin and Range province of Texas and the adjacent area of Mexico. Locations were determined by the use of HYPO-71 (Lee and lahr, 1975). The column headings are as follows:

Date - Year/month/day
Origin lime - This is universal time (UT) and is given to the nearest tenth of a second.

Lat N - Latitude (North) given to the nearest hundredth of a minute. Long W - Longitude (West) given to the nearest hundredth of a minute. Depth - Depth is given in km . (*) indicates depth is constrained to 4 km . Mag - The magnitudes 11 sted are local magnitudes determined from signal durations and are obtained from the following formula (Dumas, In preparation)

$$
m_{1}=2.1 \log t-2.51
$$

MOT, BP, EM, MR, and BR - These are the UT/NASA stations used in the location scheme. The numbers in the columns indicate the number of readings used to locate each event per station. One (1) indicates P-wave arrival only and two (2) indicate both P and S wave arrivals were used.

Dmin - Distance to nearest station in km.
Gap - Largest azimuthal separation in degrees between stations.
RMS - Root mean square error of time residuals in sec.
ERH - Estimated standard error of the epicenter in km. If ERH is blank this means ERH cannot be computed because of insufficient data.

ERZ - Estimated standard error of the focal depth. If ERR is blank this means that ERZ cannot be computed because either the focal depth was fixed in the solution or because of insufficient data.
Q - Quality of the hypocenter aolut ion. This measure is intended to indicote the general relfability of the solut ion (lee and Lahr, 1975).

Comments - The three (3) letter code indicate additional station(s) used in the epicenter locations.

EnNNHNNNNMNNNONNMMN

R-NNNN-NONN-N-Nー-N

 N-NNMNNNNNNNNNWN

* 0		$0 \times$
$\therefore \stackrel{\circ}{N}$	ON=	M
in 6		010
- M		- M

 ®

 -
$\rightarrow-\operatorname{momNoNNNONNNN}$ $\rightarrow \mathbf{N} \rightarrow N N N N N N N N N N$
 $N N \rightarrow N N N=N N \rightarrow N N N N$

 3

$=$

$\stackrel{\mu}{\boldsymbol{\mu}}$

NNNNNNGNNNNNNNNGNNNNNNNNNNN

SEISMICITY OF WEST TEXAS

by

DOCTOR OF PHILOSOPHY

Page intentionally left blank

ACKNOWLEDCHENTS

】 thank Messrs. John Reynolds, Albert Fay, Clay Miller, and James E. White Jr., for permitting us to place our remote seismic stations on their ranches. The cooperation of Mr. Jess Sorrels, manager of the X Ranch, and Mr. John Herrin, manager of the Eagle Mountain Ranch, is also greatly appreciated. I thank Mr. Curtis Laughlin, superintendent of McDonald Observator, for his generous cooperation, and Mr. Robert Gonzales and Mr. Windell Wiiliams for their invaluable help in operating and maintaining the central station equipment at McDonald Observatory. I would especially like to thank Mr. L. Pakiser and the U.S. Geological Survey for providing much of my personal financial support while undertaking this study. I thank C.A. Frohlich for providing am epicenter location program, along with the Herrin travel-time tables, also for critically reviewing the nianuscript and for helpful comments. I am indebted to W.R. Muehlberger who pointed out that Sellards' intensity data are consistent with other information on the strike of the Valentine Fault and for other useful comments. A.R. Sanford and 0 . Nuttli gave helpful reviews of the paper (Dumas et al., 1980), upon which Part : is based. I also thank R. Buffler and D. McCowan for reviewing the manuscript and for their helpful comments. I thank Drs. B.A. Bolt and R. Uhrhammer for allowing us to examine Byerly's collection of seismograms of the Valentine earthquake. I also thank Drs. J. Dorman and G. Latham for their constant advice and guidance in writing this manuscript.

The West Texas network program was supported by the National Aeronautics and Space Administration Grant NSG-7159.

SEISMICITY OF WEST TEXAS

Publication Nc.

David Byron Dumas, Ph.D. The University of Texas at Dallas, 1981

Supervising Professor: H. James Dorman

A four year seismic study has found the Basin and Range province of west Texas and the adjacent area of Mexico to be more seismically active than heretofore known. A University of Texas five station seismic array around the Marfa Basin has located or detected aporoximately 800 local and regional earthquakes with S-P times of less than 30 sec.

A crustal model for the Basin and Range is derived from natural and artifical sources and contains four 'ayers having velocities of $3.60,4.93$, 6.11 , and $6.60 \mathrm{~km} / \mathrm{sec}$, respectively, overlying a mantle of $8.37 \mathrm{~km} / \mathrm{sec}$. A moderate level of seismic activity has been detected near Van Horn, in the Marfa Basin (particular the eastern side), and along the Texas-Mexico border between latitudes 30° and $31^{\circ} \mathrm{N}$. Five earthquake sequences were recorded, two near the Texas-Mexico boider and three in the Marfa Basin. Four of these sequences showed quiescent periods in foreshock activity preceding the main shock. On the eastern sice of the Marfa Basin a diffuse linear seismic zone may represent an unmapped fault, striking $N 50^{\circ} \mathrm{W}$ that coincides with Muehlberger's proposed eastern boundary of Basin and Range faulting.

A new epicenter for the Valentine, Texas earthquake of August 16, 1931 has been relocated instrumentally at the northern end of this diffuse
zale. Regional and local teleseismic P-wave arrival time anomalies observed for the nearby Gnome underground nuclear explosion of 1961 are used to determine station corrections and thus to locate the new 1931 epicenter at $30.69^{\circ} \mathrm{N}, 104.57^{\circ} \mathrm{W}$. Several estimates of magnitude $\left(m_{b}\right)$ based on intensity data range from 5.6 to 6.4. Fault-plane and composite fault-plane solutions supports Muehlberger's nypothesis that the Basin and Range is undergoing extension in a SW-NE direction.

table of contents

Part 1: A Reevaluation Of the august 16, 1931 texas earthquake
Introduction 1
Revised Epicenter Locations 4
Fault-Plane Solution. 10
Magnitude 13
Foreshocks 14
Conclusion 14
part II: SEISmicity and crustal structure of the basin and range province OF WEST TEXAS
Introduction 15
General Geology and Physiography 15
Historical Seismicity of West Texas and Chihuahua Mexico 19
Seismic Array and Instrumentation 19
Magnitude and Recurrence Time of Earthquakes 24
Crustal Models 30
Seismicity. 45
Focal Mechanisms 68
Tectonics 75
Discussion and Conclusions 78
Apnendix 87
Bibliography 91

part 1. A REEVALUATION OF THE AUGUST 10, 1931 texas earthquake

 INTRODUCTIONOn August 16, 1931, an earthquake occurred in far west Texas near Valentine, which shook most of Texas, New Mexico and the adjacent arias of Mexico. The main shock was preceded by several felt foreshocks and followed by several felt aftersliocks which persisted for a period of at least 3 months (Sánford and Toppozada, 1974; Sellards, 1932). This event is said to have been the largest histcric earthquake in Texas (von Hake, 1977).

Two instrumental locations and origin times have beei: sublished for this earthquake. The USCGS placed the epicenter at $29.90^{\circ} \mathrm{N}$ and $104.20^{\circ} \mathrm{W}$, and the origin time at 11 hr 40 min 15 sec (UTC) (United States Earthquakes, 1931). Byerly (1934a and b) made a detailed investigation of the teleseismic travel times of this earthquake. By placilin the arrival times of the nine nearest stations on a straight line, he found the epicenter to be $30.88^{\circ} \mathrm{N}$ and $104.18^{\circ} \mathrm{W}$ and the origin time to be 11 hr 40 min 21 sec . The problom fused by these contemporary reports is that both epicenters fall outside the area of maximum intensity (Figure 1). Since no surface breakage was reported from any area (Sellards, 1932), the active fault along which the earthquake occurred remained unidentified and the regional tectonic significance of the Valentine earthquake could not be satisfactorily assessed from the conflicting evidence.

This analysis was stimilated by the work of Herrin and Taggart (1962) who found the instrumentally located epicenter of the Gnome underground nuclear explosion, detonated near Carlsbad, New Mexico, on Decenber 10, 1961, fell 16 km east of the explosion site. It was suggested (Herrin and Taggart, 1962) that this was caused by systematic differences between the velocities

Figure 1: Isoseismal (Rossi-Forel) map for the August 16, 1931 Texas earthquake (redrawn from Sellards, 1932). Byerly's epicenter location is indicated by * and the USCGS epicenter by

Figure 1

of P_{n} in the eastern and western United States. A similiar offset must be expected regarding Byerly's epicenter for the Texas earthquake since it lies only 160 km south of the Gnome cite. This paper utilizes the observed residuals from the Gnome explosion to adjust station corrections and obtains a new epicenter based upon Byerly's arrival-time readings. This epicenter satisfies not only the travel-time data, but also coincides with the observed maximum isoseismal to the Texas earthquake and with the newly discovered active seismic trend near Valentine (See Part 11). Thus, the new epicenter is consistent not only with the data of 1931, but also with relevant seismic data that have become available much more recently as well.

revised epicenter location

Local and regional P-wave arrival times listed in Table 1 (Byerily, 1934a) were used in a hypocenter location program. These 19 stations were chosen for the following reasons: (1) their Gnome travel-time rasiduals were available, and (2) the arrivals, as listed by Byerly, were ef sufficient amplitude that they could be read with little uncertainity. Denton, Texas was not used in the i.jpocenter location program because the exact location of the 1931 seismic station could not be obtained. The program utilizes the Herrin earth model (Herrin et al., 1968) to determine hypocentral paranieters by minimizing the observed minus the calculated travel-time residuals, in a weighted least-squares sense. The effect of local structure differing from the Herrin model was removed by subtracting from Byerly's readings the Gnome travel-time residuals (Herrin and Taggart, 1962) as listed in the corrections column of Table 1. Travel-time corrections for distant stations outside the conterminous 48 states were made by subtracting the mean traveltime residuals of station MOT (McDonald Observatory in far west Texas) for

TABLE 1

teleseismic p-wave residuals for the location of the 1931 earthquake

Station	$\begin{aligned} & \text { Delta } \\ & (\mathrm{deg}) \\ & \hline \end{aligned}$	$\begin{gathered} A_{Z} \\ (\mathrm{deg}) \end{gathered}$	Hr	Min	Sec	Residual (sec)	Weight	$\begin{gathered} \text { Corrections } \\ (\mathrm{sec}) \end{gathered}$
Tuc	5.55	286.86	11	41	48.5	-0.72	0.970	1
PAS	12.00	289.50	11	43	18.0	-1.11	0.963	3
TAC	12.24	155.69	11	43	20.0	-1.41	0.980	2
HAI	12.42	298.79	11	43	31.0	4.16	0.915	5
FLO	14.19	51.94	11	43	40.5	-3.12	0.894	-2
SLM	14.20	52.76	11	43	40.0	-3.73	0.809	2
BOZ	15.88	341.41	11	44	10.0	1.02	0.861	1
SCL	15.86	298.88	11	44	15.0	3.19	0.959	4
BRK	16.24	300.27	11	44	16.0	-0.69	0.970	4
CHI	17.57	46.67	11	44	24.0	-1.60	0.966	-4
CSC	60.15	74.84	11	45	01.0	3.60	0.908	-3
PIT	22.20	57.62	11	45	17.0	-1.67	0.965	-4
CTV	22.67	64.48	11	45	26.0	2.59	0.958	-4
VIC	22.87	326.23	11	45	28.0	-2.40	0.980	1
GEO	23.96	62.88	11	45	39.0	2.76	0.953	-4
OTT	26.87	49.03	11	46	07.0	3.71	0.898	-4
CAM	29.15	47.03	11	46	26.0	2.30	0.965	-4
SIT	33.92	329.83	11	46	04.0	-6.76	0.810	1
SJP	36.89	100.55	11	47	33.0	-1.67	0.965	1

earthquakes that are located in the vicinity of these distant statioris. This procedure is valid for correcting the distant station data berause of the near proximity of MOT and the new Valentine epicenter to the Gnome explosion. The residuals listed in Table 1 are those obtained with respect to the new epicentral solution.

Based on the data listed in Table 1, the new epicanter is 30.69° $\mathrm{N} \pm 0.41,104.57^{\circ} \mathrm{W} \pm 0.30$, the depth is $29.1 \pm 25 \mathrm{~km}$, and the origin time is 11 hr 40 n.in $21.9 \pm 2.8 \mathrm{sec}$. The weighted standard error of the travel-time residuals is 2.85 sec . The standard error associated with the travel-time residuals is large and is typica! of the formal uncertainities obtained with early data such as these (Gawihrop, 1978). This reflects the approximation in locations given for many of the older stations and also the less stringent standards of station time-keeping that prevailed in that era. Nevertheless, the revised epicenter location in the Marfa Basin, 42 km southwest of Byerly's epicenter, is closely consistent with the relationship noted between the instrumental and actual epicenters of the Gnome event. The displacement of the earlier epicenter and the azimuth of displacement is also different in the two cases because the azimuthal distributions of stations were different as well.

Examining the problem further, the numerical (least squares) equivalent to Byerly's graphical solution for the 1931 epicenter is calculated by fitting his nine closest data points to a single straight line. As expected, the results agrees precisely with Byerly's; since we merely solved the numerical version of Byerly's graphical problem. In this method, a uniform mantle to the east and to the west is implicit in the assumption of a single P_{n} line.

Gnome results and numerous refraction experiments in the west have shown a strong east-west gradient of mantle velocity across the eastern margin of the Rocky Mountain front and Rio Grande rift in Ne:s Mexico. This is reflected in the separation of the Gnome instrumental epicenter and the actual site of the explosion. Therefore, Byerly's closest readings of the Texas earthquake seismograms are compared directly with data of the Gnome explosion (Romney et al., 1962) which occurred at $32.264^{\circ} \mathrm{N}, 103.866^{\circ} \mathrm{W}$, only 160 km to the north of Valentine. Byerly's closest observations of the Texas earthquake were TUC (Tucson Observatory), 650 km to the west, and Denton (in this paper Denton will be referred to as DTX), 700 km to the east, while during the Gnome experiment there were two recording points near Tucson, and there was a line of stations which passed nuar Denton, Texas. Byerly's 1931 readings are plotted as solid symbols in Figure 2, while the Gnome P_{n} arrivals are plotted as open circles and squares. Clearly, Byerly's Tucson data point would agree better with the Gnome observations if his epicenter were moved 1 sec, or about \& km, closer to Tucson.

Regarding the Denton data, Byerly's first arrival pick would be aligned with the Gnome-Denton line in Figure 2 if his epicenter were displaced by about an equal distance away from Denton. However, the true distance is probably four times as much, since three reasons are seen for questioning Byerly's (1934b) identification of the first arrival. First, he reported the earliest motion as a trace amplitude of 0.1 mm , while an arrival 3 sec later had an amplitude of 0.9 nm . He also reported 2 mm as the amplitude of first motion at Tucson. In the Gnome experiment, the stations around Denton recorded the largest ground anplitudes anywhere, about three times larger than those of the Tucson stations (Herrin and

Figure 2: Reduced travel-time data for the Gnome explosion of December 10, 1961 (Romney et al., 1962) and the Texas earthquake of August 16, 1931 (Byerly, 1934b) recorded near Denton, Texas and Tucson, Arizona. From left to right, the Gnome recording stations are Seymour, Mabelle, Nocomo, Ardmore, Tucson-T, Dallas, Tishomingo, and Volunteer Stations 17 and $\therefore 2$. The question mark identifies the first Denton arrival of 0.1 mun read by Byerly. The arrival 3 sec later was recorded as 0.9 mm in amplitude.

Figure:

Taggart, 1962). While the magnification used at Denton and Tucson in 1931 is not known, it seems probable at this time that the first small motion at Denton might have been spurious noise. Having examined the original seismogran read by Byerly (his collected seismograms of this earthquake are stored at Berkeley), his pick seems credible, but it is nearly as small as any feature that could be seen on this seismogram. Thus, it can be regarded as doubtful. Second, the early pich at Denton leaves a very long $\bar{P}-P_{n}$ interval by comparison with Gnome observations at similar distances. Third, the polarity of the later and stronger arrival is in agreement with other points in the northeast quadrant of the fault-plane solution (Figure 3, DTX), while the earlier urrival is inconsistent on this score. Reyarding \ddot{F}, it is evident that the phase identified by Romney et al., (1962) on the Gnolie records is not the same phase which Byerly called \bar{P}. The present interpretation has allowed for this fact.

Accepting the later pick for Denton, Byerly's epicenter of the Texas earthquake must be moved about 4 sec , or 32 km , away from Denton in order to place the Denton point on the Gnome-Denton line (Figure 2). This, combined with shifting the epicenter 8 km closer to Tucson, moves it southwestward about 35 km . This place the epicenter just north of valentine, Texas and in the area of maximum seismal intensity (Sellards, 1932). This graphical solution is in excellent agreement with the solution obtained above by recomputation based on 19 first arrivals.

FAULT-PLANE SOLUTION
Using the first-motion readings reported by Byerly (1934a; the Denton, Texas polarity used is opposite that given by Byerly), a new faultplane solution of the 1931 Texas earthquake was determined. Figure 3 shows

Figure 3: Fault-plane solution (equal area, lower hemisphere projection) for the 1931 earthquake. Closed circles indicate compression. Open circles indicate dilation. The direction of compression and tension axes are marked by P and T, respectively. The Denton, Texas arrival is indicated by the code DTX and the Tacubaya arrival by TAC. Polarities used in this solution are the readings of Byerly (1934a) except for DTX.

Figure :

an equal area projection of the lower hemisphere of the focal sphere for all arrivals. The nodal planes are

	Elane a	plane B
strike	$N 59^{\circ} \mathrm{W}$	$N 36^{\circ} \mathrm{E}$
dip	$70^{\circ} \mathrm{NE}$	$70^{\circ} \mathrm{SE}$

The strike of nodal plane β is approximately perpendicular to the trend of the Marfa Basin in which the epicenter falls. Therefore, it seems that nodal plane β is the auxiliary plane, and plane α is the fault plane. Thus, the solution indicates a strike-slip fault with right-lateral displacement. The tension and compression axes trend $S 74^{\circ} \mathrm{W}$ and $\mathrm{S} 16^{\circ} \mathrm{E}$, respectively. These directions indicate that elongation is occurring in the direction slightly south of west and north of east.

Using the pclarity data of Byerly, Sanford and Toppozada (1974) obtained a solution indicating normal faulting striking $N 40^{\circ} \mathrm{W}$, dipping $74^{\circ} \mathrm{SW}$. Their solution, however, has more inconsistent points than the one represented in Figure 3. Figure 3 has only one gross inconsistency, a point in the southeast quadrant representing the first motion at racubaya (TAC), All other inconsistent points are near the the nodal planes.

hagiltude

Several previous authors have estimated the magnitude of the 1931 Texas earthquake. Gutenberg and Richter (1949) gave a value of 6.4. The same value was obtained by Sanford and Toppozada (1974) using a method based on the size of the felt area. Nuttli (1976) obtained a magnitude (m_{b}) of 5.6 using the method of intensity gradient as described in detail by Nuttli (1973, 1976) and Nuttli et al., (1979). I reviewed the application of

Nuttli's method using the intensity data of Figure d which is plotted from Rossi-forel intensities reported by Sellards (1932). Allowing for the difference between the Rossi-Forel and Modified Mercalli scales, ore obtains agreement with Nuttii's result by using the spacing of isoseismals (Figure 1) normal to the trend of the valley, which is also normal to the direction of faulting (see fault-plane solution, Figure 3). Parallel to the valley, the spacing of isoseismals is greater, giving a magnitude of 5.9 (m_{b}) by the same method.

FORESHOCKS

Sellards (1932) mentioned that foreshocks of the 1931 earthquake were recorded at Denton, Texas and St. Louis, Missouri. Another reliable report of foreshocks was obtained from Mrs. York (personal communication) who lives on the western side of the Davis Mountains, about 25 km east of the new epicenter. She stated that she and her family had slept outside their ranch house during most of the preceding night because they felt several shocks hours before the main shock at 05:40 a.m. (local time).

CONCLUSION

A revised location of the Texas earthquake of 1931 places the epicenter at $30.69^{\circ} \mathrm{N}, 104.57^{\circ} \mathrm{W}$, on a fault striking $\mathrm{N} 59^{\circ} \mathrm{N}$ and with a right lateral strike-slip mechanism. Discrepancies with other data are thereby resolved since the new location falls within the area of maximum seismic intenstites of the 1931 earthquake.

part il. Seismicity and crustal strulture of the basin and range province OF WEST TEXAS

INTRODUCTION

In the sunmer of 1975 the University of Texas and the National Aeronautics and Space Administration (UT/NASA) began a long term geophysical program designed to support the geodetic laser ranging measurements from the McDonald Observatory located in the Davis Mountains of Texas. The purpose of the long rern program is to maintain surveillance of the regional tectonic processes.

This paper describes the seismological results obtained during a four year period. Epicenters were calculated using a crustal model of the Basin and Range province obtained from natural and man-made seismic sources, including the 1960 Gnome underground nuclear explosion in southeastern New Mexico. When the data permitted, fault-plane and composite fault-plane solutions were also obtained. This study shows that the number of earthquakes recorded in Basin and Range province of west Texas and the adjacent area of Chihuahua, Mexico is greater than previously mentioned. None of the local or regional earthquakes detected or located during this study were located by the United States Geological Survey (USGS) or the International Seismological Centre (ISC).
geñeral geology and physiography
Trans-Pecos Texas (T-PT) is separated into two physiographic provinces, the Great Plains and Basin and Range prowinces. Here the Great Plains province is characterized by a belt of plains and low plateaus, 80100 km in width, with no majur geologic changes within the province. West of the Great Plains in T-PT is a region of mountains and intermontane basins
(Basin and Range province, B\&R). A geologic boundary between the northern and southern regions of the $B \& R$:s approximated by Interstate Hignway 10. In the northern region, the rocks are mainly of Mesozoic and Paleozic ages, including extensive Permian limestones and dolomites, Cretaceous limestones and sandstones, and a few scattered outcrops of intrusive volcanics (Barker and Hodges, 1977). The region also contains one of the two exposures of Pre-Cambrian rocks in the state.

The most prominent structural feature of the northern region is the Salt Basin Graben (Figure 4). The graben is bounded on both sides by extensive Quaternary faults. Faults on the eastern side of the graben are short and widely dispersed; on the western side, the faults are more continuous (Muehiberger, 1978).

In the southern region, the rocks are composed mainly of Tertiary volcanic sequences. The Salt Basin Graben extends southward into the southen, rision where it is known as the Marfa Basin. The eastern side of the Marfa Basin exhibits very little surface evidence of faulting, but the western side is bounded by numerous narmal faults, the most prominent being the Mayfield Fault. Most of the basin fill is composed of unconsolidated Quaternary seuiments. Shurbet and Reeves (1977) estinated from gravity measurements basin fill to a depth of at least 2.4 km in the Marfa Basin.

West of the $B \& R$ is a narrow northwest-southeast trending structural depression knowin as the Chihuahua Trnugh. Sediments which accoumulated in the Chihuahua Trough during the late Jurassic and Cretaceous time underwent complex folding and eastward overtnrusting with associated tear faults during the Laramide (Gries and Haenggi, 1970).

Figure 4: Geologic map showing major structural features of Trans-Pecos Texas. The dotted line indicates the boundary between the Basin and Range (southwict.) and the Great Plains (northeast) provinces (Muehlberger, 1978). Station names and locations (A) are identified in Table 2. Orher abbreviations are: ct - Chihuahua Trough, I-10 - Interstate 10, mb - Marfa Basin, mf - Mayfield Fault, pr - Pecos River, sbg - Salt Basin Graben. (redrawn from the Geological Highway map of Texas).

Figure 4

historical seismicity of west texas and chihuahua, mexico

Though there is evidence of minor seismicity in west Texas and Chinuahua, adequate historical information is lacking due to sparse population and poor-instrumental coverage. The first documented earthquake in west Texas occurred near El Paso on March 7, 1923 (Sanford and Toppozada, 1974). Several events have since been located or felt in the El Paso area and other areas of T-PT (von Hake, 1977). The largest ins:-:umentally located earthquake in Texas occurred on August 16, 1931 (Byerly, 1933a and Dumas et al., 1980) near the town of Valentine and aftershocks were felt for a period of three months (von Hake, 1977). The most recently felt earthquake in Valentine occurred on August 1, 1975.

Only recently have seismic studies begun to focus on the seismicity of west Texas. Chan (1977), in a three month study of the B\&R, located 9 events across T-PT; of which three were located in the BüR. Dumas (1979) has noted an active seismic focus near Snyder, Texas. On June 16, 1978 a magnitude 4.6 earthquake occurred in the Snyder area and this earthquake is the largest event to occur in Texas since the 1931 event. Rogers (1979) suggests that local earthquakes recorded at the Kermit, Texas array in the Permian Basin may be associated with the seconda;y recovery of hydrocarbons.

In Chinuahua, the first eartnquake located instrumentally occurred on September 10, 1963 (Earthquake File Tape, National Earthquake Information Service). Since then at least 15 earthquakes have been located ($m_{b}>4.8$) along a diffuse line striking northeasterly across northern Chihuahua.

SEISMIC ARRAY AND InSTRUMENTATION
The UT/NASA seismic array consists of five short-pariod remote stations (Table 2) located in the B\&R of west Texas (Figure 4). The array

Table 2

Station Names, Corrdinates, Elevation, and Station Corr.

	Station	Lat.	Long.	Elev(m)	Corr.
MOT	McDonald Observatory	30.68 N	104.11 W	2080	0.10
RP	(MT1) Boracho Peak	30.93 N	204.39 W	1720	-0.03
EM	(MT2) Eagle Mountain	30.90 N	205.08 W	2088	0.10
MR	(MT3) Miller Ranch	30.53 N	104.67 W	1584	0.06
BR	(MT4) Brite Ranch	30.27 N	104.58 W	1584	-0.13

encloses an area of about $4000 \mathrm{~km}^{2}$, the longest interstation distance is 105.5 km (stations EM and MOT).

Each station consists of a 1 hz vertical-component geophone (Geotech model 18300) situated on bedrock, a pre-amplifier (maximum gain cf 104 db), a 5 hz low pass filter, a voltage controlled oscillator, and 0.25 watt radio transmitter. Each remote station is powered by a solar panel charging a 12 volt battery. The seismic signal is transmitted either directly or relayed to the central station at McDonald Observatory. At the central station the seismic signal from each station can be delayed 10,20 or 40 sec in a digital memory. The selected delay time determines the sampling rate of the analog to digital converter and also determines the ciltoff frequency for the low-pass antialiasing filter. For the west Texas network the 40 sec delay ensures the recording of the onsets of all local events for which late arriving phases "trigger" the array. The delayed signal is then recorded along with the WWV time code on an 8 channel Brush strip chart recorder. The recorder runs continuously at a chart speed of $0.01 \mathrm{~mm} / \mathrm{sec}$; however, the chart speed is automatically increased to $10 \mathrm{~mm} / \mathrm{sec}$ when an event is detected at two, three, or more stations within a prescribed time window. Detection occurs when the instantaneous signal exceeds the average background signal by a selectable ratio. The average background signal is obtained by rectifying and smoothing (time constant 120 sec) the output of the seismonecter. The system operates at a peak magnification of 250,000 (-12 db) at 6 hz (Figure 5). The output of the MOT seismometer, located 1 km from McDonald Observatory, is also recorded on a helicorder at a speed of $1 \mathrm{~mm} / \mathrm{sec}$, thereby ensuring a readable arrival time at MOT for events that are not recorded at $10 \mathrm{~mm} / \mathrm{sec}$. Because of the occasional high winds at EM and BP, peak magnification for these stations is limited to 125,000 .

Figure 5: Magnification curves for the UT/NASA array and the WoodAnderson torion seismoneter. The peak magnification of the UT/NASA system is 500,000 (at the -6db amplifier setting) at 6 hz .

[^0]Figure

Figure 6

magnitude and recurrence time of earthquakes
Local magnitudes (m_{ℓ}) listed in this paper were obtained by multiplying the trace amplitudes recorded at MOT by the ratio of the standard Wood-Anderson magnification curve to the MOT magnification curve. The definition of the local Richter magnitude then becomes:

$$
\begin{equation*}
m_{l}=\log A+\log \left(M_{w a} / M_{4-6}\right)-\log A_{0} \tag{1}
\end{equation*}
$$

where A is the peak recorded amplitude in millimeters at NOT, $M_{w a}$ is the magnification of the Wood-Anderson torsion seismometer (2800), M_{4-6} is the mean magnification of the instrument at station MOT between 4 and 6 hz , and A_{0} is the amplicude of a magnitude zero earthquake in millimeters, recirded on a Wood-Anderson seismometer, as given by Richter (1958). The mean magnification between 4 and $6 \mathrm{hz}(225,000)$ is used because the largest amplitudes in the seismic traces are in this frequency range. The 4 to 6 hz portion of the MOT magnification curve corresponds to the flat portion (2800) of the Wood-Anderson curve (Figure 5). The middle term on the right hand side of equation 1 is equal to -1.91 and varies by less than 0.1 unit of magnitude for the frequency range between 4 and 5 hz .

The magnitudes obtained from equation 1 are plotted against si=nal duration (Figure 6) for 28 events, located by this array and the Kermit array. Local magnitude can then be expressed in terms of duration as:

$$
\begin{array}{ll}
m_{\ell}=2.10 \log \tau-1.52 & (0<\Delta<210 \mathrm{~km}) \\
m_{\ell}=2.10 \log \tau-1.52+0.0009 \Delta & (\Delta>210 \mathrm{~km}) \tag{3}
\end{array}
$$

where Δ is the epicentral distance (km) to station MOT and \mathfrak{r} is the signal
duration measured from the time of the first break (P-wave arrival) to the time when the coda amplitude decays to twice the background noise. A reading error of $\pm 20 \%$ in signal duration corresponds to ± 0.2 magnitudes units. The inclusion of additional data in Figure 6 does not significantly alter wuntions 2 and 3 . The distance correction in equation 3 was estimated by subtracting equation 2 from magnitudes listed for regional earthquakes (Earthquake Data Reports, USGS and Rogers, 1979) farther than 210 km from MOT.

The magnitude data used in the frequency-magnitude curve (Figure 7) were determined from equations 2 and 3. Artifical events near Van Horn (Seismicity Section) that may be included in the data have magnitudes less than 1.5. Since these avents lie along the flat portion of the frequencymagnitude curve their effects on the slope of the curve is minimal. Rogers (1979), indicated that Kermit events with magnitudes greater than 1.9 may be related to hydro-carbon production and this would alter the slope of the frequency-magnitude curve in Figure 7. The 'b' values were computed by least-squares (LS) and maximum likelinood (ML) (Aki, 1965) methods and are given in equations 4 and 5 , respectively:

$$
\begin{align*}
& \log N\left(m_{\ell}\right)=4.85-1.17 \pm 0.03 m 1_{\dot{\chi}} \tag{4}\\
& \log N\left(m m_{\lambda}\right)=4.51-1.04 \pm 0.11 m_{\ell} \tag{5}
\end{align*}
$$

where $N\left(m_{2}\right)$ is the cumulative number of earthquakes above magnitude 1.9. Both ' b ' values are in agreement with Rogers (i979) ' b ' values of 1.28 (LS) and 1.04 (ML; for events near Kermit.

Using equations 4 and 5 , the probability that in the time interval, $(0, T)$ at least one earthquake of magnitude m_{ℓ} should occur is given by

Figure 7: Cumulative number versus magnitude curve for all events recorded between January, 1976 ard December, 1978 at station MOT ($S-P<30 \mathrm{sec}$). Two ' b ' values obtained for the portion of the curve greater than 1.9 are 1.17 and 1.04 by using the least-squares and maximum likelihood methods, respectively.

Figure 7

(Sacuiu and Zorilescu, 1970)

$$
\begin{equation*}
P\left(m_{\ell}, T\right)=1-e^{-N\left(m_{\ell}\right) T / 3.0} \tag{6}
\end{equation*}
$$

Since equation: 4 and 5 were obta:ned over a 3.0 year period the exponent is divided by 3.0 to obtain the mean value for one year. Therefore, the mean recurrence period (in years) for an earthquake is

$$
\begin{equation*}
T_{\text {mean }}=\frac{3.0}{N\left(m_{l}\right)} \tag{7}
\end{equation*}
$$

The most destructive earthquake to occur in the area had a magnitude estimated to be between 5.6 and $6.4 m_{b}$ (The 1931 earthquake). Extrapolating equations 4 and 5 beyond the given range of magnitudes shown in Figure 7 the estimated probability for magnitudes 5.6 and 6.4 earthquakes and their mean recurrence periods are given in Tables 3 and 4. The ML estimate of the mean recurrence based on equation 4 is 61 years for a magnitude 5.6 earthquake.

Although west Texas has beer sparsely populated since the mid-19th century (and still is today), it is highly unlikely that a magnitude 5.6 earthquake would go undetected or unreported. The discrepency between the theoretical recurrence period and the number of earthquakes ($m_{b}=5.6$) actually occurring can be attributed to one or all of the following: (a) uncertainty in the 'b' walue (ML), (b) differences between the local magnitude scale and body wave magnitudes, (c) temporal changes in seismicity, and (d) the 1931 earthquake was larger than 5.6. The other three mean recurrence periods based on wiee ML and LS methods for a 5.6 or 6.4 earthquake are large and cannot be verified on a historical basis.
Table 3

T^{1}	$P(5.6, T)^{2}$ LS	$T(5.6){ }_{\text {LS }}^{3}$	$\mathrm{P}(5.6, \mathrm{~T})_{\text {ML }}^{2}$	$T(5.6){ }_{\text {M }}^{3}$
1	. 007	151	. 016	61
10	. 064		. 149	
25	. 153		. 333	
50	. 282		. 555	
100	. 484		. 802	
LS - Least squares estimate from equation 4. ML - Haximum likelihood estimate from equation 5. 1- (T) Time measured in years. 3 - mean recurrence rate 2-($\left.P\left(m_{\ell}, T\right)\right\}$ Probability of a size m_{ℓ} earthquake occurring in T years (equaiion 6).				
Table 4				
Earthquake Risk and Recurrence Rate				
$P(6.4, T)_{L S}^{2} \quad T(6.4)_{L S}^{3} \quad P(6.4, T)_{M L}^{2} \quad T(6.4)_{\text {HiL }}^{3}$				
	. 001	1303	. 024	419
10	. 008			
25	. 019		. 058	
50	. 038			
100	. 074		. 212	

Crustal models (Figures 8a and b) for T-PT are derived from the data of untimed quarry blasts, the Gnome underground nuclear explosion, and located regicnal and local earthquakes. The $B \& R$ reduced travel-time curve obtained from a large untimed blast in a quarry west of Van Horn, texas (VHB) is shown in Figure 9. Additional smaller blasts with waveforms and arrival time differences similar to those of the larger blast indicate all blasts are at the same location or within a few meters of each other (Nakamura, 1978). Therefore, data from several untimed blasts are used in this time distance plot. The first arrivals at all stations were impulaive and could be read to $\pm 0.05 \mathrm{sec}$. A later arrival that was consistentily seen at stations EM and BP had an apparent velocity of $3.60 \mathrm{~km} / \mathrm{sec}$ and is taken as the direct arrival. The ray path of the direct arrival at these two stations is mostly through sedimentary material. This phase could not be identified at the three remaining stations since the sedinentary layer is not continous from the shot point to these stations. The shot time of the large blasi was estimated from the intercept of the direct arrival time curve extrapolated to the shot point. Using these data a model of the upper crust for the B\&R consists of three layers $3.56,2.39$, and 12.59 km thick, with velocities of $3.60,4.93$ and $6.11 \mathrm{~km} / \mathrm{sec}$, respectively, overlying a $6.6 \mathrm{~km} / \mathrm{sec}$ layer. The $4.93 \mathrm{~km} / \mathrm{sec}$ layer probably represents a volcanic section and the $6.11 \mathrm{~km} / \mathrm{sec}$ layer may be the first indication of basement depth beneath the BAR. Following the first arrival at station $E M$ by 2.3 sec there is a third arrival that could not be identified at the other four stations. This arrival can be interpreted as the reflection from the base of the $6.11 \mathrm{~km} / \mathrm{sec}$ layer because it's travel time agrees well with the calculated travel time for the model in figure 8a. The reflected arrivals from the base of the 3.60 and

Figure 8: Sumnary of all crustal models mentioned in the text. (a) Van Horn Blast, Kermit and Snyder earthquakes, (b) Gnome and natural events around Kermit, (c) Chan, (1977), (d) Stewart and Pakiser, (1962). All models are described in the text. Dashed lines are inferred layer boundaries. (*) indicates a higher apparent velocity (see text for explanation).

Figure o

VAN HORNBLASTS. KER:AT, ANO SNYDER EARTHOUAKES	$\begin{aligned} & \text { GNOME } \\ & \text { AND } \end{aligned}$ NATURAL EVENTS	CHAN (1977)	STEWART el di (1962)
0 km	0 km	0 km	0 km
4 km - 360	440	4.90	$4 \mathrm{~km}-4.93$
$6 \mathrm{~km}-4.93$	5 km		6.17
	5.95	9 km	
		6.70	
	16 km		
$19 \mathrm{~km}-6.60$	6.75		$19 \mathrm{~km}-6.72$
			31 km
			$7 \cdot 10$
$42 \mathrm{~km}-_{8} \cdot \overline{3} 7^{\pi}-$	$42 \mathrm{~km}$ \qquad	$42 \mathrm{~km} \ldots-10$	
			$51 \mathrm{~km}-8.23$
(a)	(b)	(c)	(d)

Figure 9: Arrival time data used to derive the model in figure 8 a recorded at stations MR, MOT, $B P$, and $B R$ from a large explosion iocated at $104.959^{\circ} \mathrm{W}$ and $31.100^{\circ} \mathrm{N}$. EM points were plotted on the same scale by using the time difference between EM and BP arrivals from smaller explosions at approximately the same source location.

$4.93 \mathrm{~km} / \mathrm{sec}$ layers at EM have approxinately the same travel time as the first arrival from the respective layer, and therefore these phases could not be identified.

First arrivals from earthquakes about 190 km away near Kermit, Texas cross the UT/NASA array with an apparent velocity of $6.7 \mathrm{~km} / \mathrm{sec}$. The first arrival form the June 16, 1978 Snyder, Texas earthquake (Dumas, 1979) had an apparent velocity of $8.37 \mathrm{~km} / \mathrm{sec}$ (epicentral distance $\sim 420 \mathrm{~km}$) and a secondary arrival had an apparent velocity of $6.7 \mathrm{~km} / \mathrm{sec}$. The $6.7 \mathrm{~km} / \mathrm{sec}$ arrivals from the Kermit and Snyder areas are compatiable with the $6.60 \mathrm{~km} / \mathrm{sec}$ arrival from the VHB. Using the results from Figure 9 and the apparent velocities from the Kermit and Snyder earthquakes, we obtained a crustal model for the B\&R that is summarized in Figure 8a. This model consists of four layers overlying a $8.37 \mathrm{~km} / \mathrm{sec}$ mantle. The $8.37 \mathrm{~km} / \mathrm{sec}$ velocity may be slightly higher than the actual mantle velocity beneath the B\&R because at the epicentral distance of the Snyder earthquake the ray path pentrates deeper into the upper mantle thereby resulting in a higher apparent velocity. The data used to obtain this model were recorded entirely at the UT/NASA array.

To refine model 8a, an attempt was made to detect possible additional layers in the Marfa Basin using secondary arrivals observed from shallow earthquakes $(<8 \mathrm{~km})$. The epicentral distances for these events are between 20 and 56 km . The problem in using earthquakes is that they occur at various depths which will result in different travel times. However, we are interested only in the arrival tine intervals between later arrivals in the seismic record and not the actual travel times. Since all the first arrivals were refracted from the $6.11 \mathrm{~km} / \mathrm{sec}$ layer they were plotted on the same $6.11 \mathrm{~km} / \mathrm{sec}$ curve regardless of depth. This has the effect of placing all focii on the same datum plane and, because the events were shallow,
time corrections for a change in focul depth may be neglected. Thus, later arrivals from various earthquakes refracted from a given horizon fall roughly along the same time-distance curve. Layer thicknesses can be calculated from the difference between intercept times of the arrival refracted fom the $6.11 \mathrm{~km} / \mathrm{sec}$ layer and any later arrival. The interval between intercept times are insensitive to focal depth provided both ray paths in question are refracted arrivals. This produces a crustal model in which revised epicenters may be obtained. This proceciure is repeated until the R.M.S. residuals of the earthquakes no longer decrease. Using this procedure a $6.11 \mathrm{~km} / \mathrm{sec}$ half-space gave the smallest residuals. This may be understood by considering that the seismograph stations are located on hard rock (mountainous areas) which may have a velocity of nearly $6.11 \mathrm{~km} / \mathrm{sec}$. Later arrivals may nevertheless define shallower layering. Figure 10 a is the reduced travel time curve based on epicenters located in a $6.11 \mathrm{~km} / \mathrm{sec}$ half-space.

For the Marfa basin events, the $6.11 \mathrm{~km} / \mathrm{sec}$ arrival and a later arrival representing a deeper layer could be seen at all stations. However, there was little correlation between later phases on seismograms from opposite sides of the array. The scatter of these data (Figure 10a) suggests lateral inhomogeneities and discontinuous layering above the $6.11 \mathrm{~km} / \mathrm{sec}$ layer. Therefore, the time distance curves in Figure l0a were drawn for ray paths to the western and eastern sides of the array. The model for the western side of the array consists of two layers above the $0.11 \mathrm{~km} / \mathrm{sec}$ layer with velocities of 3.50 and $4.26 \mathrm{~km} / \mathrm{sec}$. The $3.55 \mathrm{~km} / \mathrm{sec}$ arrival identified at stations $M R$ and $B R$ represents the direct wave through sedimentary material and the $4.26 \mathrm{~km} / \mathrm{sec}$ arrival as being refracted from a deeper layer. The time interval between the intercepts of the 3.56 and $4.26 \mathrm{~km} / \mathrm{sec}$ curves is 0.1

Figure 10a. Reduced travel time curve using travel times for local earthquakes based on a $6.11 \mathrm{~km} / \mathrm{sec}$ half-space. The first arrivals at each distance (not shown) were constrained to fall on the $6.11 \mathrm{~km} / \mathrm{sec}$ line. Closed triangles and circles indicate arrival times to stations on the western and eastern sides of the array, respectively. Open symbols indicate S-wave arrivals (Δ - we: $七, 0$ - east). Numbers at the right are the velocities associated with the respective time distance curve.

Figure 10a

sec. Assuming a point source this wouid place the events in the sedimentary section just above the $4.26 \mathrm{~km} / \mathrm{sec}$ layer. Considering the ray paths shown diagramatically in Figure 10 b and the time interval between the intercepts of the 4.26 and $6.11 \mathrm{~km} / \mathrm{sec}$, indicate that the $4.26 \mathrm{~km} / \mathrm{sec}$ layer is 1.9 km thick.

On the eastern side of the array only a $4.00 \mathrm{~km} / \mathrm{sec}$ arrival was detected above the $6.11 \mathrm{~km} / \mathrm{sec}$ layer. The $4.00 \mathrm{~km} / \mathrm{sec}$ velocity is an intermediate velocity between 3.50 and $4.26 \mathrm{~km} / \mathrm{sec}$ velocities observed on the western side of the basin. A velocity between 3.56 and $4.26 \mathrm{~km} / \mathrm{sec}$ would be expected of the direct arrival if the source is located in the second layer. Using the intercept times of the 4.00 and $6.11 \mathrm{~km} / \mathrm{sec}$ curves the epicenters are located 1.2 km abo:e the $6.11 \mathrm{~km} / \mathrm{sec}$ layer. However, the total thickness of the shal!ower layers can not be determined. The complexities in the seismograms for the two stations located in the Davis Mountains (BP and MOT), made an unbiased selection of later arrivals difficult. This suggests that the Davis Mountains are very heterogencus.

The time interval between the intercepts of the $0.11 \mathrm{~km} / \mathrm{sec}$ and $6.30 \mathrm{~km} / \mathrm{sec}$ curves indicates the $6.11 \mathrm{~km} / \mathrm{sec}$ layer is 10.2 km thick. This is in good agreement with the 12.6 km obtained from the ViB for the same layer considering the uncertainties associated with the use of earthquakes as a source for a refraction profile. If the differences between the two calculated depths are not due to observational errors then this suggest the Marfa Basin is dipping sligitly $\left(2.2^{\circ}\right)$ towards the northwest. Figure $10 b$ sumbarizes the crustal model for the Marfa Basin obtained from local earthquakes. Local events indicate non-honogenous and discontinuous layering above the $6.11 \mathrm{~km} / \mathrm{sec}$ layer and that the eastern side of the Valentine fault is structuraliy higher

Figure 10b. Schematic crustal model (not drawn to scale) for the Marfa Basin derived from Figure 10a. Number at the right in each layer is the layer velocity and to the left is the layer thickness. There is no basis for estimating thickness of shallow layering in the east model. Abbreviations are: DM - Davis Mountains, SV Sierra Vieja Mountains, and VF - Valentine Fault zone (see Seismicity section). Asterisk indicates average focal depth of local events with respect to the 6.11 $\mathrm{km} / \mathrm{sec}$ layer. Refracted ray paths are indicated by small arrows, inverted triangle is a seismic station in the mountainous area.

Figure 10b

than the western side. Depth to each :ayer in Figure 100 is not given because the exact depth of the events are not known. However, layer thicknesses between refracting horizons are given along with velocities. Shurbet and Reeves (1977) estimated from gravity measurements that the sedinentary material in the Marfa Basin is at least 2.4 km thick.

In any case, we can obtain only limited information about such thin shallow layers using a large netweok and epicenters which are few and widely scattered. Thus, local earthquake data do not add sufficient information to refind the model of Figure 8a obtained from the VHB.

Travel-time data from the Gnome underground nuclear explosion (Romney et al., 1962) and well located natural events (GNE) recorded by many stations in the Great Plains and by two stations in the B\&R, represent a regional travel-time curve (Figure 11) for west Texas. Interpreting these unreverse refraction data, we obtained a crustal model (Figure 3b) consisting of three layers totalling about 42 km , overlying an $8.13 \mathrm{~km} / \mathrm{sec}$ mantle.

The BER model in Figure 8a differs from the model aerived by Chan (1977) (Figure 8c) from the Gnome underground nuclear explosion and local earthquakes (not located by the USGS). Chan's (1977) model consists of a layer 9 km thick with a velocity of $4.9 \mathrm{~km} / \mathrm{sec}$, overlying a $6.7 \mathrm{~km} / \mathrm{sec}$ layer. The $6.0 \mathrm{~km} / \mathrm{sec}$ layer was undetected by Chan, probably because of the smaller amount of data available to him. If he had been able to detect the $6.0 \mathrm{~km} / \mathrm{sec}$ layer, then the calculated depth to his $6.7 \mathrm{~km} / \mathrm{sec}$ layer would have been greater than shown in Figure Bc. Thus, the upper crust may be nearly the same in all models in Figure 8. This represents an alrost uniform crustal

Figure 11: Travel-times for Gnome and natural events across west Texas. The Gnome data were recorded at temporary stations in west Texas (Romney et al. 1962) and the natural events were recorded at stations in the Kermit array (Keller, personal communications) and at the UT/NASA array. The travel-times indicate a three layer crust overlying a $8.13 \mathrm{~km} / \mathrm{sec}$ half-space.

structure throughout T-PT.
Comparing the models shown in Figure 8, we find a 6.6 or $6.7 \mathrm{kmi} / \mathrm{se}$. layer common to all models and a $6.0 \mathrm{~km} / \mathrm{sec}$ layer common to three models. The west Texas models contrast notably with Stewart and Pakiser's New Mexico model by the absence of the $7.1 \mathrm{~km} / \mathrm{sec}$ layer in the west Texas models. The addition of a $7.1 \mathrm{~km} / \mathrm{sec}$ layer, which was unidentified in west Texas possibly because of sparse data would make those models nearly the same as the New Mexico model. On the other hand, west Texas models, as shown without the $7.1 \mathrm{~km} / \mathrm{sec}$ layer in Figure 8 have shallower mantles than the New Mexico model. This alone could account for the differences in mantle depths between west Texas and New Mexico modcis.

SEISMICITY

Seismicity is low, yet detectable in the B8R and the northeastern part of Chihuahua, Mexico. Approximately 800 earthquakes with S-P intervals of less than 30 sec were detected and 10% of these were located. Hypocenter locations were obtained from P and S-wave arrivals, using the computer program HYPO 71 (Lee and Lehr, 1975) and the crustal model described in the previous section (Figure Ba). S-wave velocities were computed using a Poisson's ratio of 0.25 . Station corrections (Table 2) were obtained by subtracting the theoretical arrival tines of the large explosion (mentioned in the previous section) from the observed arrival times.

Whenever possible, arrival times from Carlsbad, New Mexico and/or the Kermit, Texas, network were also used in epicentral locations. Figure 12 shows that earthquakes in the B\&R within 120 kIn of MOT and with magnitudes . greater than 1.5 were within the locating capability of the UT/NASA network. Seismicity is best documented either inside or near the network in: 1) The area west to southwest of Van Horn; 2) The Rarfa basin (particular the eastern

Figure 12: Local magnitude vs. distance from MOT for small located events. Earthquakes with magnitudes of 1.5 could be located at least 120 km from MOT. The smallest event located by the network has a magnituće of 0.7 .

Figure 13: Seismicity map of the B\&R and the adjacent area of Mexico. The stations are indicated by triangles (4). Crosses ($($), solid squares (Σ), and open circles (\bigcirc) indicate epicenters located by this array, the USGS, and the ISC, respectively. Abbreviations for structural features are: Bla - Black Gap, DM - Davis Mountains, DP - Diablo Plateau, MB - Marfa Basin, RR - Rim Rock Fault, SBG-Salt Basin Graben, SPP - Sierra Pilares and Pinosa Ranges, and WM - Wylie Mountains. The broken line marks Muehlberger's (1979) proposed eastern boundary of B\&R faulting. Multiple earthquakes at the same epicenter are indicated by (M). The town of Valentine (V) is indicated by the small npen square (a).

Figure 13

side; and 3) The Texas-Mexico Border area. A few earthquakes have also been located in the Salt Basin Graben (SBG) and in the area north of the Black Gap.

Seismicity of Van Horn Area
The first instrumentally located earthquake ($m_{b}=3.5$) in the Van Horn area occurred on March 6, 1962 at $31.2^{\circ} \mathrm{N}$ and $104.8^{\circ} \mathrm{W}$ (Sanford and Toppazada, 1974). Frequent quarry blasts west of Van Horn can be confused with natural seismicity. The quarries are located in an area characterized by numcrous thrust, normal, and strike slip faults striking in a northwesterly direction (King, 1935). Since the dates and times of the blasts could not be obtained, all located events (natural and artifical) have been plotted in Figure It is known that most of the blasts occur between 2130 and 2400 UT (1630-1900 local time). While the number of natural events is uncertain, events that occur outside of the 2130 to 2400 UT time interval are believed to be earthquakes. Whether these events were triggered by mining operations is still undetermined.

Southwest of Van Horn and east of station EM, a few events have been identified as earthquakes. These events may indicate an active northern branch of the Rim Rock Fault, which is locally the western boundary of the Marfa Basin.

Seismicity in the Marfa Basin
The area north of Valentine, Texas (Figure 13), has the greatest known seismic activity in the $38 R$. Here seismic activity is concentrated at the end of a northwesterly striking diffuse zone (Figure 13). This zone is thought to be an active fault or faults and is referred to as the Valentine Fault zone. Surface faulting has not been found; however, it is likely that the thick alluvium in the Marfa Basin covers the fault scarp. The revised
epicenter of the 1931 Texas earthquake is located at $30.69^{\circ} \mathrm{N}$ and $104.57^{\circ} \mathrm{W}$, at the northern end of this diffuse zone (Dumas et al., 1980).

One of the largest earthquakes in our list occurred on July 18, 1978 in the Valentine Fault zune. This earthquake was preceded by 18 foreshocks with magnitudes (m_{l}) between 0.7 'd 2.1. The ' b ' (LS) value of $0.65 \pm .48$ for the frequency-magnitude curve (Figure 14) is less than the b value for the regional seismicity (equation 4). Foreshock activity began on July 13, 1978 with a 1.7 (m_{ℓ}) event and culminated on July 18, 1978 with the $2.6\left(m_{\ell}\right)$ main shock (Figures 15a and 15b), following which no aftershocks were detected. Though this sequence was recorded only on the $1 \mathrm{~mm} / \mathrm{sec}$ helicorder at station MOT, epicenters for these events were estimated to be at or near $30.5^{\circ} \mathrm{N}$ and $104.5^{\circ} \mathrm{W}$ by comparing seisnlugrans and S-P times for these events to those of located events in the Marfa Basin. This places the sequence along the newly found Valentine Fau!t zone. The first motion at MOT for each event in this sequence was compressional.

The July 18, 1978 sequence was one of three ($m_{l}>2.5$) that occurred in the Marfa Basin. Figures $16 \mathrm{~A}, \mathrm{~B}$, and C illustrate the time history of these foreshock sequences. Evison (1977) described sequences terminating in large earthquakes ($m_{b}>4.9$) which follow a pattern similar to those of the Marfa Basin sequences. He identified four successive stages of: a) normal seismicity; b) precursor swarm: c) precursor gap; and d) main event, which are illustrated in. Figure 16. Sekiya (1977) and Kodama and Bufe (1979) described a similar pattern for earthquakes in Japan ($m_{b}>4.1$) and Central California ($3.5<m_{b}<5.7$), respectively. Aggarwal et al. (1975) noted variations in V_{p} / V_{s} ratios preceding a $2.5\left(m_{b}\right)$ event at Blue Mountain Lake in New York. However, they made no mention of the temporal variations in foreshock activity preceding the main shock. To the author's knowledge this is

Figure 14: a) Frequency-magnitude curve for the July 18, 1978 Marfa Basin sequence (Δ). The least-squares estimate of the ' b ' value is 0.65 for magnitudes greater than 1.0. b) Frequencymagnitude curve for the February 18, 1978 Texas-Mexico sequence (©). The least-squares estinate of the ' b ' value is 0.59 .

Figure 15: a) Helicorder record from station NOT showing 5 fortshocks of the July 18, 1978 Marfa Basin Sequence which occurred 5 days before the main shock. b) Helicorder record of the magnitude 2.6 main event (*). Solid arrows point to foreshocks and open arrows to time marks.

Figure 15

ORICNAR PAGE IS OF FOOR QUALITY

(${ }^{\circ}$)

(b)

Figure 10: Temporal variation in seisnicity preceding the main shocks (∇) of four sequences. Each sequence is characterized by: a) normal background seismicity; b) precursory swarm; c) precursor gap; and d) main shock. Sequences A, B, and C occurred in the Marfa Basin and D is the Chihuahua 1980 sequence.

Figure 16

2

the first report of temporal variations in foreshock activity preceeding small shocks ($m_{\ell}<3.7$). The low-level of background seismicity in the B\&R makes small sequences more conspicuous than in more active areas where they may be masked by the higher background seismicity.

If we assume that earthquakes are completely independent from each other then the probability that r earthquake(s) will occur in time T is given by a Poisson's distribution (Sacuiu and Zorilescu, 1970)

$$
P(r, T)=\frac{(\bar{N} T)^{r} e^{-N T}}{r!}
$$

where \bar{N} is the mean number of earthquakes per unit time. A property of the Poisson process is that the expected number of earthquakes in the time interval T is $N T$. The mean number of earthquakes at MOT ($S-P<8.5$) is 2.42 events/ 30 days. The minimum number of events in Figure 16 (part b) for a 3 day interval is 4 events. The expected number of events for a 3 day interval is . 242 and the probability of a swarm of this size occurring within a radius of $S-P<8.5 \mathrm{sec}$ of MOT is 1.12×10^{-4}. The probability of all events having the same epicenters is even lower. This suggests that based on a Poisson's cistribution the events in Figure 16 are not spatially and temporally independent.

Evison (1977) also found a linear relationship df.tween the magnitudes of the largest foreshock and the main event. In this study, no correlation was found between the magnitudes of the largest foreshock and main event. This is not unique for the small shocks observed here; Papozachos (1975) also found that for Greek earthquakes the magnitude of the main shock ($m_{b}>4.7$) to be independent of the largest foreshock for events. It thus appears that the reldtionship between magnitudes of foreshocks and main shock
is dependent on the locale. There were however, six other events occurring In the Marfa Basin with local magnitudes greater than $2.5 m_{\ell}$ that were not preceded by foreshock activity. Therefore, in terms of prediciting the size of an earthquake for the $B \& R$, the magnitude of the largest foreshock in the swarm (if a swarm does occur) will give no indication of the size of the main shock.

The seismicity on the western side of the Marfa Basin is lower than on the eastern side. Five events located south of station MR and $B R$ are probably associated with the southern section of Rim Rock fault systen (Figure 13).

Four events larger than 1.5 were located along the eastern boundary of the Salt Basin Graben (Figure 13). Figure 12 indicate that small events $\left(<1.5 m_{Q}\right)$ on the western side of the SBG are below the location capabilities of the network. By comparing the total number of recorded earthquakes to the total number of located earthquakes, it is estimated that the number of earthQuakes occurring in the SBG is 1.0 to 1.5 ord s of magnitude higher than Figure 13 indicates.

Approximately 10 earthquakes with S-P times between 1 and 3 sec , and magnitudes less than 0.3 were detected only at station BR. These events are located between 8 and 25 km from station $B R$ and may be associated with the Rim Rock fault system. Numerous small events with S-P times less than 2.5 sec (epicentral distance less than 20 km) were also detected at stations MOT and EM; however, because of the numerous faults in the Davis and Eagle Mountains, these events cannot be assigned to a particular fault.

Seismcity along the Texas-Mexico Border
The epicenters located in the study and plotted in Figure 13 for this area are accurate within 8 km , even though they lie outside the array. Most of them fall on a north-south line coinciding with the Sierra pilares
and Pinosa Ranges. Pre-1975 events located by the U.S.G.S. appear to foris a trend striking in a northeasterly direction, approximately prependicular to the local structural trend. The locations of these pre-1975 events (Figure 13) may not be reliable, because of the sparse seismograph coverage in the area at the time.

One of the largest earthquakes $\left(3.6 m_{\ell}\right)$ located instrumentally by the UT/NASA array occurred on February 18, 1978 approximately 50 km SSW of Van Horn, Texas and was followed by 23 aftershocks (1.3 to $2.9 \mathrm{~m}_{\ell}$) within two days. The main event was located at $105.10^{\circ} \mathrm{W}, 30.67^{\circ} \mathrm{N}$, origin time was $14^{h} 22^{m} 22.10^{s}$. A few WWSSN stations recorded weak emergent P phase of the main shock and therefore, the hypocenter obtained from these readings had very large solution errors. The inability of the WWSSN network to detect and locate small events in northern Mexico implies that this region may be more seismically active than previously cbserved. The 'b' (LS) value of $0.59 \pm .36$ for the frequency-inagnitude curve of the aftershock sequence (Figure 14b) is less than that for the regional seismicity (Figure 7). The flatting of the curve at lower magnitudes indicates that many of the smaller events of the sequence may have gone undetacted.

Close examination of Figure 17 shows that a foreshock preceded the main s ck by 12.5 sec . This is seen from the consistent time difference in the iwo P-arrivals (foreshock and main shock) at all stations, regardless of epicentral distance, which implies that phase 'a' (Figure 17) is associated with a different event and is not a later arrival of the same event. Figure 18 shows the close waveform similarities between seismograms for five events including the foreshock (*) at station EM. Similar seismograms are also found at the other recording statior, as well. Figure 19 shows the ratios of S / P amplitudes are approximately constant for six events recorded at

Figure 17: Seismograms of the foreshock (P-arrival indicated by ' P ') and the main shock (P-arrival indicated by ' a ') for the February 18, 1978 Texas-Mexico sequence. The arrival times for $6!1$ high speed playouts are delayed 40 sec.

Figure 18: Seismograms of five events from the Texas-Mexico sequence recorded at station EM illustrating the close similarties in waveformi. The (*) indicates the one foreshock and the other seismograms are aftershocks.

Figure 18

Figure 19: Ratios of S-wave to P-wave amplitudes (S / P) versus the S wave amplitudes at station EM for the Texas-Mexico 1978 sequence. Tha open circle represents the foreshock and the circles represent aftershocks. The S/P ratios remained constant for all events that did not exceed the dynamic range of the recorder.

station EM that did not exceed the dynamic range of the recorder. Thus, all the data suggest that the same focal mechanism is responsible for all events and that their epicenters must lie within a fraction of a wave length of each other. Reexamining the MOT helicorder records for the month preceding the main shock revealed no other foreshocks.

Another Chihuahua sequence began on June 22, 1980. It was located approximately 100 km south of the above mentioned sequence and 103 km southwest of $B R$, along the southern section of the Sierra Pinoza Range. The main shock $\left(3.8 m_{l}\right)$ occurred on July 17,1980 at $29.50^{\circ} \mathrm{N}$ and $105.18^{\circ} \mathrm{W}$, and the origin time was $3^{h} 41^{m} 31.3^{s}$. Unlike the previous Mexican sequence this one contained 10 foreshocks and 4 aftershocks. The temporal variation in seismicity preceding the main shock is similar to that of the Marfa Basin sequences (Figure 160). The ' b ' values for the foreshocks and aftershocks are $.51 \pm .38$ and 1.08 ± 2.7, respectively (Figure 20). The large uncertainity in the ' b ' value for the aftersiocks is attributed to the sinall amount of data available and not to the quality of the data itself which was quite good. The higher 'b' value for aftershocks relative to the foreshocks has been noted by Rikitake (1976). The S/P amplitude ratios for 6 foreshocks (Figure 21) that did not exceed the dynamic range of the recorder and with readable P-arrivals are approximately constant with one exception ($p \sim 19.3 \mathrm{~mm}$). The latter suggests that the focal mechanism did not remain constant during the entire foreshock sequence.

Numerous Mexican events outside the area of Figure 13 were also recorded. The larger events had magnituces between 3.0 and 3.5 (m_{χ}) with clear P and S-wave arrivals. Location errors for these events are large due to the poor station distribution. None of these Mexican events were located or detected by local or regional WWSSN stations. Smaller events inside the area of Figure 13 had emergent P and S arrivals and could not be located.

Figure 20: Frequency-magnitude curve for foreshocks (x) and aftershocks (0) for the June, 1980 Chihuahus sequence.

Figure 21: S/P amplitude ratios for the Chinuahua, Mexico 1980 sequence. With the exception of the P-wave data point near $19 \mathrm{~mm}, \mathrm{~S} / \mathrm{P}$ ratios are almost constant.

Figuric $\leq C$

Figure 21

FOCAL MECHANISMS

Focal mechanisms were determined from fault-plane and composite fault-piane solutions (Figures 23, 24, and 25, Table 5) based on first motion data. Since the point at winch the ray amerces from the focal sphere depends on the crustal model, inaccuracies of the model distort the faultplane solution. Also, the quality of the fault-plane solution reflec.s the number and distribution of recording stations with respect to the hypocenter. The nodal plane selected as the fault-plane is the one that agrees with: 1) the strike of the local geology, and/or 2) the direction of the seismic trend. Because of the limited number of stations and the limited crustal information the solutions are only rough approximations of the focal mechanisms.

The Valentine Fault Zone
The composite first motion plot of impulsive first arrivals from 15 events located in the Valentine Fault Zone is shown in Figure 22. Attempts were made to plot the first arrivals by varying the hypocenter depths, since the uncertainty in hypocenter depths allows some flexibility in changing the angle at which the ray emerges from the focal sphere. Thus by increasing or decreasing the hypocenter depths, the data outside the inner chicle of points will move inwards or outwards on radii of the focal sphere projections, respectively. Varying detphs did not however, remove the inconsistences in Figure 22. The composite fault-plane solution for the Valentine Fault zone (Figure 23) was obtained subjectively by small adjustments of the nodal planes of the 1931 Texas earthquake on Figure 22 (See Part I) and by removing earthquakes for which the number of inconsistent points

Figure 22: Composite first motion plot of all events located on the Valentine fault. See figure 23 for explanation.

Figure 23: Fault-plane solution (equal-area, lower hemisphere projection) for the Valentine Fault zone. Closed cricles indicate compression and open circles indicate dilatation. The projection of the tensional and compressional axes are indicated by T and P, respectively. Dashed lines represent the 1931 fault-plane solution (Part l, Figure 3). The fault-plane is indicated by a. Hatched area indicates the range of uncertainity in the fault plane solution.

Figure 22

Figure 23

Table 5

Figure	Location N. Lat. H. Long.		Nodal Plane a Strike Dip	Nodal Plane 6 Strike Dip	P axis Strike Plunge	T axis Strike Plunge
$23^{\text {a }}$	$30.69{ }^{\circ}$	104.57°	N $59^{\circ} \mathrm{WH} 70^{\circ} \mathrm{WE}$	(1) $36{ }^{\circ} \mathrm{E} 70^{\circ} \mathrm{SE}$	S $15^{\circ} \mathrm{E} \quad 14^{\circ}$	S $74^{\circ} \mathrm{W} \quad 14^{\circ}$
$24^{\text {b }}$	30.67°	105.10°	$N 45^{\circ} \mathrm{E} 30^{\circ} \mathrm{NH}$	1. $70^{\circ} \mathrm{E} 65^{\circ} \mathrm{SE}$	(1) $05^{\circ} \mathrm{E} \quad 67^{\circ}$	S $35^{\circ} \mathrm{E} \quad 22^{\circ}$
25	30.40°	$104.64{ }^{\circ}$: $100^{\circ} \mathrm{ki} 45^{\circ} \mathrm{H}$	H $03{ }^{\circ} \mathrm{E} 45^{\circ} \mathrm{E}$	H $05^{\circ} \mathrm{H} 80^{\circ}$	S $85{ }^{\circ} \mathrm{H} 05^{\circ}$
23	-30.50°	-104.40°	N $57^{\circ} \mathrm{W} 75^{\circ} \mathrm{SE}$? $411^{\circ} \mathrm{E} 60^{\circ} \mathrm{E}$	~ $05^{\circ} \mathrm{W} 20^{\circ}$	S $80^{\circ} \mathrm{W} 20^{\circ}$

[^1]exceeds the number of consistent points with respect to a final adjusted solution. By this criterion a population of 10 events remained to fit to a single solution. It appears several other orientations are needed to fit all the data for the 5 events removed. The nodal planes of the 1931 earthquake and of the composite solution, which includes inconsistent points, strike in northwesterly and northeasterly directions. The strike of two northwesterly planes of the composite solution is approximately equal to that of the 1931 fault plane. Hc.rever, the 1931 fault plane dips towards the NE (Figure 3), whereas the dip of the composiie solution nodal planes range between $75^{\circ} \mathrm{NE}$ to $75^{\circ} \mathrm{SW}$. Considering the available data, any nodal plane in the hatched area of Figure 23 that strikes in the NW direction could be selected as the fault-plane. The differences in the two solutions are attributed to the uncertainities in the crustal model used in this study.

Texas-Mexico Border Area

A composite first motion plot (Figure 24) combines data from four pre-1975 earthquakes located in the northeasterly striking zone that was mentioned in the seismicity section and the main shock of the February 18 , 1978, sequence. Stations BP and MR had impulsive dilatational and compressional arrivals respectively, whereas MOT and EM had emergent compressional arrivals. The strike of the left hand nodal plane ranged between $N 12^{\circ} \mathrm{E}$ and $N 64^{\circ} \mathrm{E}$ with dips of $40^{\circ} \mathrm{NW}$ and $20^{\circ} \mathrm{Nh}$, respectively. The southeastward dipping nodal plane is poorly constrained by compressional and dilatational points in the eastern part of the projection and was drawn to coincide with the southwesterly line of earthquakes which provided the first miotion data. Although numerous nodal planes are possible, especially

Figure 24: Composite fault-plane solution for the February 18, 1978 sequence and four events located in northern Mexico by the USGS (Earthquake File Tape). The first-motion data fur the four pre-1975 events are from Tucson, Albuquerque, and Junction (USGS, micro-film library). See Figure 23 for explanation.

Figure 25: First motion plot of the event of June 3, 1978 that occurred on the Rim Rock Fault. See Figure 23 for explanation.

Figure 25

ORIGINAL PAGE IS
OF POOR QUALITY
nodal planes dipping towards the NW (1... cooed area indicates the range of acceptable solutions), the solid lines represent the most favorable solution. Regardless of the nodal plane chosen as the fault-plane, figure 24 indicates northeasterly striking normal faulting. The fault-plane solution implies, at least locally, extension in a NW-SE direction. Except for the February 18, 1978 event, which lies at the intersection of two trends, none of the earthquakes located on the north-south line had clear impulsive first arrivals needed to obtain a fault-plane solution.

The Rim Rock Fault

Only one event located on the Rim Rock fault had sufficiently large P-wave amplitudes to determine a fault-plane solution (Figure 25). Although the solution is poorly constrained, it is consistent with the local geology. Figure 25 indicates a normal fault striking $N 10^{\circ} \mathrm{N}$ and dipping $45^{\circ} \mathrm{W}$ and the tension axis is oriented $\mathrm{S} 85^{\circ} \mathrm{W}$. Except for the Texas-m.xico solution, the other three solutions indicate the tension axes are oriented in a SW-NE direction.

TECTONICS

Fault -plane solutions of Figures 23,24 , and 25 (Table 5) indicate that strike-slip faulting and normal faulting are occurring in the eastern and western sides of the Maria Basin, respectively. These solutions indicate that the B\&R is undergoing extension in a west-southwest and east-northeast direction. In Chihuahua (figure 26), the tension axis is oriented ina southeasterly-northwesterly direction. The strike of the tension axis in that area (Figure 26) is almost orthogonal to the strike of the tension axes for the previously mentioned solutions. Thus, it appears that all obtainable fault plane solutions represent tensional fracturing or crustal spreading, though the 75

Figure 26: Map of study area showing fault-plane solutions. Large arrow heads indicite the direction of the tension axes. The number by each solution corresponds to the figure rumbered in Table 5. See Figure 13 for meaning of initials. Solid triangles indicate seismic stations.

direction of the tension axes differ in different parts of the region. DISCUSSION AND CONCLUSIONS

The seismicity map in Figure 13 indicates that earthquakes in the B\&R of Texas and Chihuahua, Mexico, occur along linear trends. Some of these trends appear to be associated with previously mapped faults which have been thought to be inactive, while o.hers cannot be correlated with any visible structural features. In this section each seismic trend will be discussed separately as it relates to the inmediate area in which it occurred. The data are insufficient to support a statement concerning the overall relation between the trends. At this time each trend appears to be independent of the others.

The seismic patterns in northern Chihuahua are oriented in a north-south and northeast-southwest direction. The seismic events, located by the UT/NASA array in the Chihuahua Trough, appear to be associated with the Sierra Pilares and Pinosa Ranges. Gries and Haenggi (1970), suggested that the tilting of the evaporites to the east during the time of Laramide Jeformation produced the thrust faults in the Chihuahua Trough. They also suggested that tilting was caused by broad arching from the center of the Chinuahua Trough and perhaps some minor basement deformation.

Gries and Haenggi (1970), showed that most of the tear faults in the Chihuahua Trough extend to a depth of less than 3.0 km . Therefore, these earthquakes are probably shallower than 3.0 km . The seismic activity we observe today along the Sierra Pilares and Pinosa Ranges may reflect. continuing arching or basement deformation.

Figure 27 is a regional seismicity map for eastern Arizona, New Mexico, west Texas and northern Mexico for the time interval between 1960
and 1978. The seismicity associated with the Rio Grande Rift system in New Mexico appears to terminate at the United States/Mexico border. Activity is again observed in the Chihuahua Trough approximately 200 km southeast of where the Rio Grande Rift seismicity terminates and this appears to be the most active area in northern Mexico outside the Gulf of California. Figure 27 indicates no discernable seismic patterns for events occurring in the region, furthermore the events cannot be correlated with any structural surface features in the area.

The seismicity data from Mexico reveal little about a possible extension of the Rio Grande Rift system in Chihuahua. Only through detailed geophysical investigations in Mexico will this problem be solved.

In discussing the structural and tecionic implications of the B\&R we begin by examining the section north of Interstate 10. Seismicity in the northern section, as mentioned earlier, is observed on the eastern side of the SBG and the area west to southwest of Van Horn. We cannot report that the western side of the SBG north of Van Horn is inactive but that the network is incapable of locating any small events which may have occurred in the area. Because of the confusion about natural and artifical sources near Van Horn we could only speculate on possible tectonic implications of these events.

Repeated leveling traverses examined by Brown et al. (1973), indicate the Diablo Plateau (which forms the western boundary of the SBG) is presently undergoing uplifting at a constant rate of $5 \pm 1 \mathrm{~mm} / \mathrm{yr}$, relative to the surrounding areas. This seems tectonically compatible with the SBG seismic activity reported in this study.

The SBG has the morphology of an active rift. However, Decker and Smithson (1975) reported normal heat. flow (1 HFU) in the graben. Therefore,

Figure 27: Regional seismicity map (redrawn from Stover, 1977) for a purtion of the southwestern linited States and northern Mexico bctween 1960 and 1978. Epicenter locations are from the U.S.G.S., I.S.C., Sanford and Toppozada, (1976), and events located during the study with magnitudes greater than $2.5 \mathrm{~m}_{2}$. The rectangle indicates the area enclosed by Figure 13.

a feature of rifts such as the Rio Grande and East African rifts is lacking in the SBG.

South of the SBG (south of Interstate 10), the seismicity alony tha eastern side of the graben terminates. Activit.y is again observed immediacely south of the Wylie Mountains in the eastern side of the Marfa Basin along the Valentine fault zone. The importance of this active zone derives from the revised epicenter of the 1931 earthquake which lies at its northwestern end. Also, the zone coincides closely with part of the proposed eastern boundary of B\&R faulting (Muehlberger, 1978). Thus, this zone may be the site of future earthquakes similar to the 1931 event.

Muchloerger's (1978) proposed eastern limit of B\&R faulting extends from the Black Gap area, northwest through the Marfa Basin, past Valentine where it turns northwards and foms the eastern boundary of the SBG (S3e broken line Figure 13). However, field evidence of surface breakage is not visible in the alluvium in this section of the Marfa Basin. The northwest trendirig portion of the fault zone corresponds to the fault-plane solutions in Figure 23.

Hae-Roe (1975) and Nuehlberger et al., (1973) have mapped a fault striking approximately $N 15^{\circ} \mathrm{W}$, and dipping $72^{\circ} \mathrm{E}$ just east of the Wylie Mountains (East Wylie Fault). This faul: may continue southward to join the Valentine fault zone in the area of greatest seismic activity, just north of Valentine. This area also coincides with the locus of maximum seismic intensity for the 1931 earthquake.

Based on the pattern of Quaternary fault scarps, Huehiberger et al., (1978) suggest the B\&R of west Texas is undergoing extension in a $S 80^{\circ} \mathrm{W}$ direction. This is in agreement with the orientation of maximum extension from the seismic data in this study and by Dumas et al., (1930).

The new findings about the :331 earthquake (Dumas et al., 1980) and the nature of active seismicity in the eastern siae of the Marfa Rasir. suggest the possibility of forecasting/predicting an earthquake from short term precursor (foreshocks). In the 1931 earthquake sequence and in several small earthquake sequences reported above, the main shocks were preceded by foreshocks. We have an eyewitness report that foreshocks of the 1931 earthquake were felt just hours before tie main shock. Thus it seems probable that imperceptiable foreshocks occurred for days, weeks, or even months before the main event. Contemporary reports do not provide a detailed history of foreshocks activity for the 1931 event, but data on temporal behavior of the Marfa Basin foreshocks sequences derived from Figure 16 may be combined with the precursory time data taken from Evison, (1977) and Ohtake et al., (1977) as in Figure 28. Here the precursor tille measured from the start of the anomalous foreshock activity to the main event is plotted against the magnitude of the main shock. The anomalous foreshock period from Evison (1977) and Figure 16 begins with the precursor swarm (Figure 10 , part b), whereas the anomalous foreshock period from Ohtake et al., (1977) begins with a decline in activity before the main shock. The data in Figure 28 are approximated by the line

$$
\begin{equation*}
\log T=0.564-0.60 \tag{8}
\end{equation*}
$$

This investigation indicates the $B \& R$ is a very complex area. On a broad scale, the $B \& R$ consists of four crustal layers, having seismic velocities of $3.60,4.93,6.11$ and $6.60 \mathrm{~km} / \mathrm{sec}$, overlying a possible $8.37 \mathrm{~km} / \mathrm{sec}$ mantle velocity. Except for the uncertainity about the presence of a 7.1
 layering between the Great Plains and the B\&R in west Texas. Thus, it appears that the B\&R crust is simply an area of Great Plains crust disrupted ty volcanism and young faults, some presently active. The data support

Figure 28: Time interval: between the beginning of anomalous foreshock activity and main events plotted against the main shocks magnitudes. Crosses and circles from Evison (1977) and Ohtake et al. (1977), respectively. Δ 's are from Figure 16.

Muenlberger's (1978) proposed eastern boundary of Basin and Range faulting which coincides with an active fault zone in the eastern side of the Marfa Basin. The 1931 earthquake occurred along this zone and only a few of our localized epicenters are east of this inne. It appears that this active trend consists of a possible spreading axis in the SBG which bends sharply into a right lateral transform fault along the active Vaientine trend.

Appendix

instrumental locations for ear :hquakes in the Basin and Range province of Texas and the adjacent area of Mexico. Locat' ins were determined by the use of HYPO-71 (Lee and Lahr, 1975). The column headings are as follows:

Date - Year/month/day
Origin Time - This is universal time (UT) and is given to the nearest tenth of a second.

Lat N - Latitude (North) given to the nearest hundredth of a minute.
Long W - Longitude (West) given to the nearest hundredth of a minute.

Depth - Depth is given in km. (*) indicates depth is constrained to 4 km .

Mag - The magnitudes listed are local magnitudes determined from signal durations and are obtained from the following formula

$$
m_{\ell}=2-\log \tau-2.51
$$

MOT, BP, EM, MR, and BR - These are the UT/WASA stations used in the location scheme. The numbers in the columns indicate the number of readings per station used to locate each event. One (1) indicates P-wave arrival only and two (2) indicate both P and S wave arrivals were used.

87

Dmin - Distance to nearest station in km .
Gap - Largest azinuthal separation in degrees between stations. RMS - Root mean square error of time residuals in sec.

ERH - Estimated standard error of the epicenter in km. If ERH is blank this means ERH cannot be computed because of insufficient data.

ERZ - Estiniated standard error of the focal depth. If ERZ is blank this means that ERZ cannot be computed because either the focal depth was fixed in the solution or because of insufficient data.

Q - Quality of the hypocenter solution. This measure is intended to indicate the general reliability of the solution (Lee and Lahr, 1975).

Comments - The three (3) letter codes indicate additional station(s) used in the epicenter locations.

ORIGINAL PAGE IS OF POOR OUALITY PUALITY

BIBLIOGRAPHY

Aggarwal, Y., L. Sykes, D. Simpson, and P. Richards, (1975). Spatial and temporal variations in t_{s} / t_{p} and in P wave residuals at Blue Mountain Lake, New York: Application to earthquake prediction, J. Geophys. Res. 80: 718-732.

Aki, K., (1965). Maximum likelihood estimate of b in the formula $\log N=a-b m$ and it's confidence limits, Bull. Earthquake Res. Inst., Toyko, Univ., 43: 237-239

Barker, D., and F. Hodges, (1977). Minerology of intrusions in the Diablo Plateau, northern Trans-Pecos magmatic province, Texas and New Mexico, Geol. Soc. An. Bull. 88: 1428-1436.

Brown, L., R. Reilinger, and J.R. Hagstrum, (1978). Contemporary uplift of the Diablo Plateau, west Texas, from leveling measurements, J. Geophys. Res. 33: 5465-5471.

Byerly, P., (193Aa). The Texas Earthquake of August 16, 1931, Bull. Seism. SOC. All. 24: 81-99.

Byerly, P., (1934b). The Texas Earthquake of August 10, 1931, Bull. Seisn:. Soc. Ain. 24: 303-325.

Chan, K.N., (1977). Nodeling of west Texas crustal structure from earthquake data, The University of Texas, MS Thesis, 33p.

Decker, E.R., and S.B. Smithsun, (1975). Heat flow and gravity interpretation across the Rio Grande Rift in southern New Mexico and west Texas, J. Geophys. Res. 30: 2542-2552.

Dumas, D., (1979). Active seismic focus near Snyder, Texas, Bull. Seisn. Soc. Am. 69: 1295-1299.

Dumas, D.G., H.J. Dorman, and G.V. Latham, (1990). A reevaluation of August 16, 1931 Texas Earthquake, Bull. Seism. Soc. Am. 70: 1171-1180.

Earthquake File Tape, National Earthquake Information Service (NEIS).

Evison, F., (1977). The precursory earthquake swarm, Phys. Earth and Plan. Int. 15: P19-P23.

Gawthrop, W., (1978). The 1927 Lompoc, California earthquake, Bull. Seism. Soc. Aill. 68: 1705-1716.

Gries, J., and W. Haenggi, (1970). Structural evolution of the eastern Chihuahua tectonic belt: Symposium in honor of Professor R.K. DeFord. West Texas Geological Society, Ken Seewald and Dan Sundeen, Editcrs, 119-137.

Gutenberg, B. and C.F. Richter, (1949). Seismicity of the earth and associated phenomena, Princeton University Press, Princeton, N.J.

Hae-Roe, H., (1957). Geology of the Wylie Mountains and vicinity, Culberson and Jeff Davis Ccunties, Texas; The University of Texas, Bureau of Economics Geology, Geologic (Uuadrangle, Map 21.

Herrin, E. and J. Taggart, (1962). Regional variation in Pn velocity and the ir effect on the location of epicenters, Bull. Seism. Soc. Am. 52: 1037-1046.

Herrin, E., E.P. Arnold, B.A. Bolt, G.E. Clawson, E.R. Engdahl, H.W. Freednan, D.N. Gordon, A.L. Hales, J.L. Lobdell, O. Nuttli, C. Ronney, J. Taggart, and W. Tucker, (1908). Seismological tables for P phases, Bull. Seism. Soc. Am. 58: 1196-1220.

King, P., (1935). Outline of structural development of Trans-Pecos Texas, Am. Assoc. Pet. Geol. 19: 221-261.

Kodama, K.P., and C.G. Bufe, (1979). Foreshock occurrence in Central California, Eq. Notes. 50: 9-20.

Lee, W. and J. Lahr, (1975). Hypo-71 (revised), a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, U.S. Geol. Surv., Open File Rpt., 75-311.

Muehlberger, W., R. Belcher, and L. Goetz, (1978). Quaternary faulting in Trans-Pecos Texas, Geology 6: 3.37-340.

Muehlberger, W., (1978). The areal extent of Cenozoic faulting in TransPecos Texas, Bureau of Economic Geology, Guidebook 19, A. Walter and C. Henry, Editors, 19-21.

Nakamura, Y., (1978). A moonquakes: Source distribution and mechanism, Proc. Lunar Sci. Conf. eth: 3589-3607.

Nuttli, 0.W., (1973). Seismic wave attenuation and magnitude relations for eastern North America, J. Geophys. Res. 78: 876-885.

Nuttli, 0.W., (1976). Comments on "Seismic intensity, 'size' of earthquakes, and related parameters", by Jack F. Evernden, Bull. Seism. Soc. Am. 66: 331-338.

Nuttli, O.W., G.A. Bollinger, and D.W. Griffith, (1979). On the relation between Modified Mercalli intensity and body-wave magnitude, Bull. Seism. Soc. Am. 69: 893-909.

Ontake, M., T. Matumoto, and G. Latham,. (1977). Temporal changes in seismicity preceding some shallow earthquakes in Mexico and Central America, Bul. Inter. Inst. Seis. Eq. Eng., 15: 105-123.

Papozachos, B.C., (1975). Foreshock and earthquake prediction, Tectonophysics 28: 218-226.

Richter, C., (1958). Elementary Seismology, W.H. Freedman and Co., New York, 786p.

Rikitake, T., (1976). Earthquake Prediction, Elseviser Scientific Pub. Co., New York, 357p.

Rogers, A., (1979). A study of earthquakes in the Permian Basin of Texas-New Mexico, Bull. Seism. Soc. Am. 69: 843-865.

Romney, C., B.G. Brooks, R.H. Mansfield, D.S. Carder, J.N. Jordan, and D.A. Gordon, (1962). Traveltimes and amplitudes of principal body phases recorded from Gnome, Bull. Seism. Soc. Am. 52: 1057-1074.

Sacuiu, 1. and D. Zorilescu, (1970). Statistical analysis of seismic data on earthquakes in the area of the Vrancea focus, Bull. Seism. Soc. Am. 60: 1089-1099.

93

Sanford, A., and T. Toppozada, (1974). Seismicity of proposed radioactive waste disposal site in Southeastern New Mexico. New Mexico Bureau of Mines and Mineral Resources, Cir. 143.

Sekiya, it., (1977). Anomalous Seismic Activity and Earthquake Prediction, J. Geophys. Res. (Supplement) 25: 85-93.

Sellards, E.H., (1932). The Valentine, Texas earthquake. In contribution to Geology, University of Texas Bull., 3201: 113-138.

Shurbet, D.H., and C.C. Reeves Jr., (1977). The fill in the Marfa Basin, Texas, Am. Assoc. Pet. Geol., 61: 612-615.

Stewart, S., and L. Pakiser, (1962). Crustal structure in eastern New Mexico interpreted from the Gnome explosion, Bull. Seism. Soc. An. 52: 10171030.

Stover, C., (1977). Seismicity map of the conterminous United States and adjacent areas, 1965-1974, United States Geol. Survey.

United States [earthquakes (1931). Coast and Geodetic Survey, U.S. Department of Commerce, 10-13.
vo Hake, C., (1977). Earthquake history of Texas, Eq. Info. Bull. 9: 30-32.

David B. Dumas was born
the second son of Mr. and Mrs. Dumas. After completing his work at Central High School, Galveston, Texas, in 1965, he entered Texas Southern University, Houston, Texas. He then entered active duty with the Navy in 1967, serving two years in and out of Vietnam. He returned to Texas Southern University in < 969 and received the degree of Bachelor of Science with a major in physics in May 1973. He then entered the Graduate School of Rice University, Houston, Texas. He was awarded the degree of Masters of Arts for Geophysics in May 197t. :While working towards the degree of Ductor of Philosphy from the University of Texas at Dallas he has author or co-authored the following articles:

Geopnysical Investigation of Salt at the University of Texas Geophysical Laboratory, Salt Dome Symposium, Louisiana State University, 1976 (Coauthor).

Seismicity in and around west Texas, Presented at the Conference of Cenozoic Geology of the irans-Pecos Volcanic Field, 1979.

Active Seismic Focus near Snyder, Texas, Bull. Seis. Soc. Am., 1979.

The Seismicity of the Guli of Mexico, EOS, vol. 61, 1io. 17, 1980 (Coauthor).

A reevaluation of the August 16, 1931 Texas Earthquake, Bull. Seis. Soc. Ani., 1980 (Coauthor)

Seismicity in the Basin and Range province of Texas and northeastern Chihuahua, Mexico, New Nexico Geological Society Guidebook, 3lst Field Conrerence, Trans-Pecos Teads, 1980.

Summary of local and regional earthquakes ($S-P, 30 \mathrm{sec}$) recorded at the University of Texas/National Aerunautics and Space Administration (UT/NASi.) seismic network, UT Marine Science Institute, Contribution No. 465, 1981.

```
Permanent address: }\quad3918\mp@subsup{\textrm{M}}{2}{
    Galveston, Texas 77550
```

This dissertation was typed by Jemifer Jackson.

Copyright 1981

David Byron Dumas
All Rights Reserved
l

6

[^0]: Figure $6:$ Pichter local magnitude versus signal duration curve for local events. Magnitudes were determined from equation 1. Signal duration is measured in seconds from the time of first break until the signal amplitude decays to twice the background noise.

[^1]: ${ }^{\mathrm{a}}$ Solution of the 1931 earthquake
 ${ }^{\text {Either nodal plane can be selected as the fault plane. }}$

