NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

K. R. Ramen

Prepared under Contract No.NAS 2-10579

> by

Roman Aeronautics, Inc. 734, Melville Ave.

Pablo Alto, CA.
for

TABLE OF CONTENTS

Acknowledgement 1
Symbols 2
Summary 4
Introduction 5
Experimental Facility and Model 7
Instrumentation 8
Tests 14
Results and Discussion : a) Steady State Measurements 15
b) Dynamic Measurements 16
Conclusions 18
References 20TablesFigures .

ACKNOWLEDGEMENT

I am grateful for all the help I received during the calibration tests of the five hole probe at the U.S. Air Force Academy, Colorado Springs, CO, from Lt. Col. R.W. Gallington and Mr. F. Jaynes. I have enjoyed discussing every phase of the reported work with Mr. D.A. Buell, his guldance and valuable advice are greatly appreclated.

I would also like to thank Mr. J. Bealkowski for hls assistance in reducing all the data through the tedious and intricate spline curve fit program on the HP 9830.

Symbols

M	Mach number CREMAL PAGE IS OF POOR CUA'ITY
P	Static pressure, $\mathrm{N} / \mathrm{m}^{2}$
$\mathrm{P}_{\mathbf{T}}$	Total pressure, $\mathrm{N} / \mathrm{m}^{2}$
9	Dynamic pressure, $\mathrm{N} / \mathrm{m}^{2}$
Re / m	Reynolds number/meter, 1/m
RMS	Root mean square value of the parameter under consideration
T_{T}	Total temperature,deg.K
$\overline{\mathbf{x}}$	Position vector, $(x, y, z), m$
т	Time delay,sec
θ	Angular orientation of five hole probe to $\overline{\mathrm{V}}$, or aft look azimuth angle, deg.
R	Radial distance from the center of Coelostat turret,m
P(j)	Indicated pressure at various ports of the five hole probe, N / m^{2} $j=1,2,3,4$ or 5, represents ports on the probe (see figure 3)
$P_{\text {ave }}$	Average of indicated static pressures from ports $j=2$ to $5,=\sum_{j=2}^{5} p(j) / 4, N / m^{2}$
α	Actual angle of incidence, deg
α_{i}	Indicated pitch angle of probe to the freestream, $\frac{P(3)-P(5)}{q i}$
B	Actual angle of yaw, deg
β_{i}	Indicated yaw angle of probe to the freestream, $=\frac{P(4)-P(2)}{q i}$
γ	Ratio of specific heats, $=1.4$ for alr
q_{1}	Indicated dynamic pressure, $P(1)-P_{\text {ave }}, N / m^{2}$
5	Indicated Mach number, $=\sqrt{5\left[\left(\frac{p(1)}{p_{\text {ave }}}\right)^{V / 2 t}-1\right]}$
V	Velocity vector, (u, v, w) , m/sec
$A_{k}, A_{i k}$	Constants used in Spline curve fit expression, $k=0,1,2 \ldots$. ,
$8_{k}, B_{i k}$	Constants defined in Spline curve flt, k=0,1,2...........
F	Defined as $\frac{H-P(1)}{H-P a v e}$
H	Total pressure at the probe, $\mathrm{N} / \mathrm{m}^{2}$

P. Local density derived from five hole probe, $\mathrm{kg} / \mathrm{m}^{3}$
u Local velocity, $m / s e c$
$P_{T_{1}} \quad$ Local total pressure, $=H \quad$ for $M,<1$

$$
=H\left[\frac{7 M_{2}^{2}-1}{6}\right]^{2.5} *\left[\frac{6 M_{1}^{2}}{M_{2}^{2}+5}\right]^{-3.5}
$$

for
$M_{1}>1$

Subscripts and superscripts.
$\infty \quad$ Freestream condition
$\sim \quad$ Root mean square value of the parameter under consideration

- Steady state value of the parameter under consideration

Local -conditions

SUMMARY

An experimental investigation was carried out in connection with Aero-Opt ics series of tests in the $14 \times 14 \mathrm{ft}$ Ames transonic wind-tunnel at Moffett Field, California on the Air Force Weapons Laboratory's (A:WL) turret model. The aerodynamic parameters measured were steady and unsteady pressures (static and total fluid pressures), local mean velocities and local mean densities at selected locations along the optical beam path for the azimuth look angles of 90,120 and 150 degrees from the turret. Two different instrumentations appropriate for obtaining steady or unsteady fluid parameter measurements are presented.

The test stream Mach numbers considered are $0.55,0.65$ and 0.75 , and the Reynolds number per meter is in the range of 10^{7}. The results indicate that severe optical degradation can be expected at aft look azimuth angles, this degradation in optical performance increases as the azimuth angle is increased. The ratio of rms static pressure to the local mean static pressure peaks in the range of 0.07 to 0.12 , and the ratio of rms total pressure to the local mean total pressure peaks in the range of 0.02 to 0.04 . These values depend on the Mach number and the aft look azimuth angle. The scale lengths obtained from correlation considerations are also presented.

INTRODUCT ION

The performance of an airborne optical system for astronomical research or a laser system for tracking and pointing of moving targets, is critically dependent on the variations of the refractive index in the aerodynamic medium which these electromagnetlc waves have to traverse. Since the index of refraction is directly related to the density field of the medium through the Gladstone-Dale relationship, and since there is no known density monitoring instrument presently avallable, the required data on the density field have to be indirectly terived from a combination of theoretical considerations and measured aerodynamic parameters like mass flux, static and total pressures and temperatures, both mean and root-mean-square values of the fluctuat lons.

For a number of years NASA, Ames Research Center, Moffett Field, CA and Air force Weapons Laboratory at Kirtland Air Force Base, NM have been engaged in a cooperative venture of experimental investigations leading to both qualitative observations and quantitative measurements of varlous fluid parameters surrounding scaled turret models in a wind-tunnel environment. In the "proceedings of the Aero-cptics Symposium on Electromagnetic Wave Propagation from isrcraft" (Ref. 1) the cumulative efforts of several investigators from past years up to Aero Optics iv tests are presented and discussed.

The present report will be concerned with a 0.30 srale "on-gimbal" turret model with a circular aperture. The aperture is surrounded by a porous projected fence. The entire turret model is mounted on a splitter plate in the wind-tunnel test section as sketched in Figure 1. The range of Mach numbers and the Reynolds numbers considered in these tests are comparable to the actual flight environment. The methods of obtaining mass flux measurements using constant temperature hot wire anemometry, and unsteady pressure (static and total
pressures) parameters using a specially designed probe, are discussed by individual investigators Rose and Raman respectively in their articles in reference 1. A good overall review of wind-tunnel tests is given ty Buell in reference 1. These methods will not be discussed in the present paper, nor will we go into the calculation of rms density value using measured mass flux, pressure and temperature along with all the necessary assumptions in such a manipulation. Such a discussion is given by Rose in another article in reference 1.

The new five hole conical probe used in these investigations to obtain mean local Mach numbers (or velocities), local mean total and static pressures, and local mean densities in the near and wake field region of the turret will be discussed. The cone probe requires an extensive calibration procedure in a known flow field to obtain all necessary calibration data.

The correlation coefficients were obtained using two identical pressure probes with known separation distance between them. From these correlation data the scale lergths along the look azimuth direction of parameters under consideration will be derived.

EXPERIMENTAL FACILITY AND MODEL

The wind-tunnel test facility used for these investigations was the $14 \times 14 \mathrm{ft}$ Ames transonic wind-tunnel. A large 0.3 scale model of the Air Force "on-gimbal" turret was installed on vertical splitter plate to avold the unknown wind-tunnel sidewall boundary layer effects on the measurements. A sketch of the experimental set-up is given in figure 1 . The tests covered the following test stream range:

$$
\begin{aligned}
& 0.55 \leq \text { free stream iach number, } M_{00} \leq 0.75 \\
& 9 \times 10^{6} \leq \text { Reynolds number/meter, Re/m} \leq 12 \times 10^{6} \\
& 1.6 \times 10^{4} \leq \text { dynamic pressure, } 9, N / \mathrm{m}^{2} \leq 3.25 \times 10^{4}
\end{aligned}
$$

Figure 1 shows the locations of five surface mounted transducers, P100 to P104, for obtaining the dynamic static pressure data. The azimuth look angle with origin at the center of the turret is show in dashad lines for 90, 120 and 150 degrees.

These tests were carried out for zero elevation of the turret, that is, the axis of.the optical path emanating from the turret along 90,120 and 150 degrees were ali parallel to the plane of the splitter plate. The turret diameter is 42.7 cm and the aperture diameter is 18 cm .

The measurement of steady and unsteady pressure using a special multi-probe was discussed in detail by Raman in an_artichem reference 1. Through the use of two identical multi-prohes mounted on a traverse mechanism designed by P.McQuade of the Air Force,correlation measurements were made. Mean fluid parameter measurements were made along the optical path axis for 90,120 and 150 degrecs with a specially designed conical five hole probe.

In addition Rose used hot-wire anemometry to obtain mass flux measurements, the details and results are discussed in reference 2. Both pressure and mass flux measurements are required to extract information about the density field in the near field and in the wake of the turret. The article ty Rose in reference 1 gives the details about the assumptions made for the calculations and the results. Similar calculations are made using the data from the present tests.

Local steady state flow parameters in the freestream, in the shear layer region or in the disturbed flow region behind the wake of the turret model were measured with a conical tip five hole probe. The prohe was specially designed, and was machined and fabricated at NASA, Ames Research Center after an extensive study of avaliable literature on flve hole probes (Ref. $3,4,5$ and $\epsilon_{\text {: }}$.

The probe tip and the holder are sketched in figure 2. All dimensions arc in millimeter units. The probe itself was tested at the US Air force Academy $1 \times 1 \mathrm{ft}$ trisonic blowdown wind-tunnel facllity at Colorado Springs, co to obtain the necessary calibration data. The range of Mach numbers for these tests were $0.2 \leq M_{\infty} \leq 1.8$, achieved by installation of appioprlate interchangeable nozzle blocks during the tests. The data obtained were analyzed to establish
the required calibration curves and analytic expressions prior to the use of the probe in the $6 \times 6 \mathrm{ft}$ wind-tunnel tests.

The conical tip probe prube provides five pressures, $\mathrm{P}(\mathrm{J}), \mathrm{J}=1,2 \ldots 5$ correspanding to the number of ports as shown in figure 3. The body flxed coordinate system used is also given along with the derivable expressions for u, v, w, the velocity components of velocity vector $\hat{\nabla},($ Ref. 5). Velocities are considered in terms of Mach numbers M and leter converted by multiplying by the speed of sound.

During the calibrationtests the tunnel static pressure, total pressure, total temperature and the Mach number in the test section ore known and the conical tip probe is tested where the angular orientation, θ and ϕ (see figure 3). is varied and th. corresponding pressure $P(J)$ measured. From the known θ and ϕ the corresponding β and α angles can be determined. That is

$$
\begin{aligned}
& \theta=\sin ^{-1}(\sin \theta \sin \phi) \\
& a=\sin ^{-1}(\sin \theta \cos \phi / \cos B)
\end{aligned}
$$

Also, we define the indicated pitch angle, α_{i}, and the indicated yaw angle, Bi. using the measured pressures $P(j), j=1,2 \ldots 5$ as given below

$$
\begin{aligned}
& P_{\text {ave }}=\sum_{j=2}^{5} P(j) / 4 \\
& \alpha_{i}=\frac{P(3)-P(5)}{P(1)-P_{\text {ave }}} \\
& B_{i}=\frac{P(4)-P(2)}{P(1)-P_{\text {ave }}}
\end{aligned}
$$

The indicated angles a_{i} and B_{i} are plotted against the actual angle of incidence, α, and the actual yaw angle, β, respectively, and from these the relationships between $\alpha, \alpha_{i}, \beta$ and B_{i} are established as

$$
\begin{aligned}
& a=40 \tanh \left(0.52 a_{1}\right) \\
& \beta=40 \tanh \left(0.52 \beta_{1}\right)
\end{aligned}
$$

Thus we are in a position to calculate the direction the velocity vector \vec{V} makes with the probe exis.

Now let us define the Indicated Mach number, S, as

$$
s=\left\{\left[\begin{array}{l|ll}
P(1) & 2 / 7 \\
\hdashline--\infty & & -1
\end{array}\right] * 5\right\}^{1 / 2}
$$

This Mach number, S, is compared with the local test section Mach number M_{1}. for each pitch angle, θ. Shrough the use of a spline curve fit program the analytic relationship of parameters S and M_{1} is established. The expression thus obtained is

$$
M_{1}=A_{0}+\left(1+A_{1}\right) S+\sum_{k=2}^{k=18} A_{k}\left(B_{k}-5\right)^{2} \ln \left(B_{k}-S\right)^{2}
$$

where A_{k} are functions of $\boldsymbol{\theta}$ and $\boldsymbol{B}_{\boldsymbol{k}}$ are constants. The values of $\boldsymbol{A}_{\mathbf{k}}$ and $\boldsymbol{B}_{\mathbf{k}}$ are given below. The angle of θ is the actual angle of attitude between the freestream velocity vector and the probe axis and is given as

$$
\theta=\tan ^{-1}\left(\sin ^{2} \alpha+\tan ^{2} B\right)^{\frac{1}{2}} / \cos a
$$

in degrees. Since wr have ottained M_{2}, a and B so far, the velocity and its components can be resolvec completely from the five hole probe pressure data.

Ifi order to obtain a relationship between local total pressure
$P_{T_{I}}$ and measured $P(J)$ we define F as

$$
F=\frac{H-P(1)}{H-P_{\text {ave }}}
$$

where H is the total pressure at the probe location. For subsonic flow $M_{i}<1, H=P_{T_{1}}$. But in supersonic flow stuations a standing bow shock wave would exist ahead of the conical probe, and H then represents the total pressure behind the bow shock wave. This is the value of H expressed as

$$
H=P_{T_{1}}\left(\frac{6 M_{1}^{2}}{M_{1}^{2}+5}\right)^{3.5}\left(\frac{7 M_{1}^{2}-1}{6}\right)^{-2.5} \quad \text { for } \quad M_{1}>1
$$

By considering F and obtaining an expression for F as a function of θ and M_{1} from our calibration tests, we are in a position to obtain the total pressure H in an unknown flow field from measurements of $P(j)$ and an expression for F. Once H is known, the local total pressure in the flow, that is, ahead of the bow shock wave of the probe, can be established by rewriting for

$$
P_{T_{l}}=H\left[\frac{7 M_{l}^{2}-1}{6}\right]^{2.5} \cdot\left[\frac{6 M_{l}^{2}}{M_{l}^{2}+5}\right]^{-3.5}
$$

Thus we can obtain the actual total pressure from the conical five hole probe measurements. The expression for F is given below and is a function of M_{1} and θ.

$$
\begin{aligned}
F & =\left(1.6004 E-3 * M_{l}+4.5334 E-4 * M_{l}^{2}-7.6139 E-4 * M_{l}^{3}\right) \\
& +\left(-3.7823 E-2 \star M_{l}+4.6857 E-2 * M_{l}^{2}-1.7022 E-2 \star M_{l}^{3}\right) \theta \\
& +\left(2.6922 E-3 * M_{l}-2.3993 E-3 * M_{l}^{2}+6.5168 E-4 \pi M_{l}^{3}\right) \theta^{2} \\
& +\left(-8.5000 E-7 \star M_{l}-1.7070 E-5 * M_{l}^{2}+9.8200 E-6 * M_{l}^{3}\right) \theta^{3}
\end{aligned}
$$

So far the data from the five hole probe and manipulation of the data have ylelded a , B, θ, M_{l} through spline fit curve expressions using A_{k}. B_{K} and S and the total pressure P_{l} using expression $F\left(M_{i}, \theta\right)$. Now, if we assume an adiabatic process and that the wind-tunnel total temperature, $T_{T_{\infty}}$, Is avallable, then we can obtain local mean static pressure, p_{1}. local mean density, ρ_{1}, and local mean velocity, u_{1}, by using the expressions

$$
\begin{aligned}
& P_{1}=P_{T_{1}}\left(1+M_{1}^{2} / 5\right)^{-3.5} \\
& P_{1}=\frac{P_{T_{1}}}{286.86 T_{T_{0}}\left(1+M_{l}^{2} / 5\right)^{2.5}} \\
& u_{1}=20.04 M_{1}\left(\frac{T_{I_{2}}}{1+M_{l}^{2} / 5}\right)^{\frac{1}{2}}
\end{aligned}
$$

since $\gamma=1.4$ for air.

The tests carrled out involved several model changes in orientation of turret look angles θ. The instrumentation changes involved changing the five hole probe or multi-probes on the approprlate probe holders provided on thic traverse mechanism and rout ing all instrument cables to the signal conditionIng and data acquisition station. All standard calibration procedures for all Insiruments prior to each set of tests, were adhered to, and some on-l ine data processing and observation of results as the tests progressed were possible through effective use of desktop calculators, plotters and oscilloscopes.

RESULTS AND DISCUSSION

Steady State Measurements

The mean local measurements of fluid flow paramoters, namely, the local Mach number, M_{1}, the local total pressure, $P_{T I}$, and the local density, p_{1}, along the radial axis of the optical path for azimuth angles 90,120 and 150 degrees are presented in nondimensifinal form of M_{1} / M_{∞}, $P_{T_{1}} / P_{T_{\infty}}$ and ρ_{1} / ρ_{∞} in figures 4,5 and 6. These measurements were used to obtain an analytic expression for $M_{1} / M_{\infty} \quad,\left(=Y_{1}\right)$; $P_{T_{1}} / P_{T_{\infty}},\left(=Y_{2}\right)$ and $\rho_{1} / \rho_{\infty} \quad\left(=Y_{3}\right)$ through the spline curve fit procedure and yielded data for the solid curve shown through the data points in figures $4,5,6$. The constants A_{k} and B_{k} entering in the spline expressions

$$
Y_{i}(R)=A_{i 0}+A_{i 1} R+\sum_{k=2} A_{i k}\left(B_{i k}-R\right)^{2} \ln \left(B_{i k}-R\right)^{2}
$$

where $1=1,2$ or 3 to yield values for $Y_{1}(R), Y_{2}(R)$ or $Y_{3}(R)$, are given in tables 1, 2 and 3. A note of caution is necessary when using the above expression for calculations: always select $R \not B_{1 k}$ values. The analytic expressions for $\boldsymbol{Y}_{1}, \boldsymbol{Y}_{\mathbf{2}}$ and $\boldsymbol{Y}_{\mathbf{3}}$ were useful for normalization of unsteady flow parameter data to their respective local mean parameters. These are presented later in this report.

From the data in figures 4,5 ard 6 one is able to obtain the magnitude of the shear layer and the gradients of M_{1} and p_{1}. These are given in table 4. Cne can even obta in the pressure gradients from figures 4, 5 and 6. The shear layer is thin and the gradients of M_{1} and ρ_{1} are large for an azimuth angle of 90 degrces. As the azimuth angle is increased, the shear layer thickness increases and the magnitude of the local density gradients decreases
for a given Mach number. Also, for a given θ, the local Mach number gradients Increase with an Increase in Mach number. The Increase in shear layer dafines the optical path length, L, variations as a function of θ. Along this path the optics performance characteristics degrade through the shear layer turbulence.

Dynamic Measurements

In flgures 7 and 8 the unsteady static and total pressure measurements obtelned by the combination probe are presented in normalized quantitles. The appropriate local mean static or total pressures are used as the normalizing pressures of the unsteady data presented. The peak unsteady static pressures fall in the range of 7 to 12% of their local mean pressures for both $\theta=120$ and $\theta=150$ and for all Mach numbers. Some of these unexpectedly higt values of unsteady static pressures may be due to varlatlons In the local straam direction as it approaches the static pressure port. Only through simultaneous flow visualization during the static pressure measurements can this reasonoble conjecture be substantiated. The maximum unsteady total pressure data fall within 4% of its local mean pressure for all Mach numbers and azimuth angles. The correlation function measuraments of the unsteady pressures for varlous Mach numbers and azimuth engles ware carried out using two identical multiprobes (detalls of the probe are described in the article by Raman in reference 1), varying the separation distance between these two protes. In figure 9 the cross correlation function for an azimuth angle of 120 degrees and for Mach numbers $0.55,0.65$ and 0.75 is presented for various separat lon distances while one probe was held at the radial location, $R=28 \mathrm{~cm}$. In figure 10 similar data are presented for $\theta=150$ and $R=30 \mathrm{~cm}$. In both figures

9 and 10 the static and total pressures were considered. In table 5 the scale lengths obtained from several of these correlation measurements are presented for $\mathrm{R}=30 \mathrm{~cm}$ for different Mach numbers.

For an az imuth angle of 120 degrees and radial location around 30 cm the scale lengths are smaller in magnitude than for the azimuth angle of $\mathbf{1 5 0}$ degrees and $R=30 \mathrm{~cm}$ for both static and total pressures presented here. An examination of flgures 5 and 6 indicates the different regions that are being explored in these measurements. When $\theta=120$ degrees and $R=30 \mathrm{~cm}$, the initial start of the shear layer region is considered, while for $\theta=150$ degrees and $R=30 \mathrm{~cm}$ the wake region is exemined. This difference in regions explored could account for the large differences in scale lengths observed in the data presented in table 5.

In figures 11 and 12 the cross correlation functions are presented for a fixed separation distance between the probes as a function of radial location, R. Thase figures shed some light on the decay of the pressure signature observed in the explored regions. The decay rate in the shear region (figure 11) is much greater than that observed for the wake reglon (figure 12). Please note che scale differences in abscissa in figures 11 and 12.

CONCLUSIONS

From the results of the present experimental investigation on the turrat model in the $14 \times 14 \mathrm{ft}$ transonic wind-tunnel at Ames Research Center, the following conclusions can be made:

1) The five hole conical probe, once completaly calibratad, can be successfully deployed to ylald information on mean flow parameters in an unknown flow. This instrument gives local Mach number, the direction of flow and the total pressure. From these values and the adiabatle assumption all other flow parameters can be derived.
2) The unsteady pressures and correlations can be measured using the multiprobes. The maximum of RMS static pressure occurs around the radial distance of $R=31 \mathrm{~cm}$ for an azlmuth angle of 120°, this is the region where maximum pressure gradients occur, see figure $5(\mathrm{a}, \mathrm{b}, \mathrm{c})$. The same conclusions can be drawn for the azimuth angle of 150° and radial distance of around 46 cm .
3) The scale lengths obtained from the correlation measurements of static pressures are around 3 cm in the shear layer region for an azimuth angle of 120° and seem to be dependent on Mach number M_{∞}. In the wake region with an azimuth angle of 150° the scale lengths vary from $8-15 \mathrm{~cm}$ and seem to depend on Mach number M_{∞}.
4) One obtains an understanding of the relative decay of turbulence by examining figures 11 and 12. The decay rate seems to be more pronounced in the shear layer (figure 11) than in the wake region (figure 12) when one examines the peak correlations for a given separation distance as they progress along the radial path. Note that the saparation distance in figure 11 is $\Delta P=0.5 \mathrm{~cm}$ while $\Delta^{\circ}=2 \mathrm{~cm}$ for figure 1?. In spite of this difference the decey indi-
cated in figure 12 is slower than that in figure 11.
5) The static pressure fluctuations combined with velocity fluctuations contributes to density variations in the flow. This is pointed out in reference 2.

All the experiments carried out so far are only for zero elevation of the turret.

REFERENCES

1. Proceedings of the Aero-Optics Symposium on Electromagnetic Wave Propagation from Alrcraft. NASA CP 2121, April 1980.
2. Rose, W.C. ot al. Nearfield Aerodynamice and Optloal Propagation Characterlatice of a large-scale Turret Nodel. APWL TR -162, May 1981.
3. Breyer, D.W. and Pankhurst, R.C. Prescure Probe Nothods for Determining Wind speed and Direction.. London, Her Majesty's Statlonary Office, Nat lonal Physical Laboratory, 1971.
4. Chue, S.H. Preasure Probes for Fluid Nearuremente. Prog.Aarospace Scl. 1975, v.l6 no.2, pp 107-122. Pergamon Press.
5. Barker, K., Gallington, R.W. and Minster, S. Calibration of Five-fole Probes fer On-Line Data Reduction. Aeronaut ics Digest - Spring 1979. USAFA-TR-79-7, USAF Acedemy, Colorado. July 1979.
6. Dudinski, T.J. and Krause, L.N. Flow Dizection Measuremente with Fixed-Position Probas in Subsonic flow over a Range of Reynolds Number. NASA TMX-1904, N69 40059.

Aslmuth angle - 90

Freentrean: Nach No. $=0.55$

$k \quad 101 \quad$| $\boldsymbol{A}_{2 k}$ |
| :--- |
| 102 |

0	2.880E-1	7.1618-1
1	5.1048-2	2.3318-2
2	1.7728-2	2.6538-3
3	-2.1598-2	2.0685-3
4	-3.2768-2	-6.137\%-3
5	-2.6278-2	-2.2775-2
6	8.7425-2	2.0615-2
7	-2.1995-2	-3.3748-3
8	-2.68415-3	-8.8935-4
9	-8.463E-4	-1.9435-4

Fresatrean: Mach No. $=0.65$
Total Prescure $N / \pi^{2}=2.02 * 10^{5}$

Total Pressure, $N / m^{2}=1.01 * 10^{5}$ Density, $k g / m^{3}=0.979$

Mensured values using ifve hole probe
1-3
8.2165-1 5.9368-3

$3.9305-4$	20.48	0.18752	0.76031	0.87848
$2.8198-3$	21.79	0.20620	0.76234	0.88082
$-3.8308-3$	22.40	0.36699	0.77574	0.87989
$-5.2021-3$	23.09	0.71869	0.83711	0.89637
$5.8528-3$	23.72	1.06557	0.94418	0.92746
$5.7201-4$	25.00	1.12585	0.99064	0.95687
$-1.5598-4$	27.56	1.09289	0.98962	0.96354
$-5.95515-5$	35.31	1.04927	0.99180	0.97916

Y_{3}
$s_{1 k}$
Y_{1}
y_{2}

0.97916

1.6108-1	6.2905-1	7.5601
5.5058-2	1.7128-2	7.6305
1.7885-2	4.2798-3	1.4955
-1.157E-2	-1.9415-3	-1.7265-
1.7805-3	3.3998-3	3.5408-3
-4.692\%-2	-6.651E-3	-5.4518-
-3.0398-2	-5.0748-2	-2.9015-
9.3685-2	3.6208-2	4.0895
-2.205s-2	-3.008E-3	1.7438
-1.501E-3	-2.2838-3	-7.1235
-9.0498-4	-2.582E-4	-7.7218

20.46
0.17230
0.17544
0.22681
0.38402
0.71351
1.07253
1.12865
1.10931
1.06656

0.68986	0.82954
0.68061	0.82905
0.68462	0.83142
0.70461	0.83428
0.77753	0.85714
0.91515	0.89142
0.98920	0.93714
0.98931	0.94571
0.99096	0.96571

Freestream: Mach No. $=0.75$
Total Pressure, $N / M^{2}=1.02 * 10^{5}$
Density.kg/mºn 0.825

$2.826 E-1$	$5.379 E-1$
$5.459 E-2$	$2.360 E-2$
$2.190 E-2$	$5.225 E-3$
$-1.018 E-2$	$-2.518 E-4$
$-2.013 E-2$	$4.787 E-3$
$-5.563 E-2$	$-2.858 E-2$
$4.863 E-2$	$-4.912 E-3$
$4.210 E-2$	$3.635 E-2$
$-2.512 E-2$	$-1.163 E-2$
$-6.815 E-4$	$-6.183 E-4$
$-8.943 E-4$	$-3.721 E-4$

6.4505-1
1.1268-2
1.1975-3 $20.45 \quad 0.22715$

0.59069	0.75937
0.59203	0.76131
0.60161	0.76323
0.64060	0.77500
0.79576	0.81250
0.98095	0.86562
0.99210	0.89966
0.99112	0.91509
0.99077	0.94968

Astanth ande $=120$

Proestreans Mach No. $=0.55$

Total Presaure, N/HF $-1.01 * 10^{5}$
Density.kg/m300.979

Freestream: Mach MO.00.65

-1.046	$2.232 E-1$	$6.267 E-1$
$6.642 E-2$	$1.953 E-2$	$6.793 F-3$
	$4.260 \Sigma-3$	$1.335 E-3$

Freestreams Mach No. $=0.75$ Total Pressure, $10 / m^{2}=1.01 \pm 10^{5}$

Denselty, kg/miso. 928

$-2.009 E-1$	$3.394 E-1$
$5.147 E-2$	$1.039 E-2$
$3.752 E-3$	$1.272 E-3$
$-6.055 E-3$	$-1.724 E-4$
$-2.749 E-3$	$-1.538 E-3$
$-7.310 \Sigma-3$	$-7.324 E-3$
$1.331 E-2$	$7.372 E-3$
$5.114 E-3$	$2.129 E-3$
$-4.179 E-3$	$-5.766 E-4$
$-5.699 E-4$	$-5.143 E-4$
$-2.661 E-4$	$-3.152 E-4$
$-7.499 E-5$	$6.028 E-5$
$-9.705 E-4$	$-3.934 E-4$

```
\begin{tabular}{rrr}
\(5.0958-1\) & & \\
\(6.8038-3\) & & \\
\(3.4498-4\) & 26.67 & 0.15482 \\
\(1.1678-4\) & 28.79 & 0.25990 \\
\(-1.0385-3\) & 30.48 & 0.51834 \\
\(-1.1575-3\) & 31.75 & 0.80852 \\
\(2.6118-3\) & 33.02 & 1.13291 \\
\(-1.2705-3\) & 34.29 & 1.27200 \\
\(5.6938-4\) & 35.56 & 1.27285 \\
\(1.4508-5\) & 36.83 & 2.26133 \\
\(-1.7 C 75-4\) & 38.10 & 1.24835 \\
\(8.7428-5\) & 10.64 & 1.21814 \\
\(-1.0918-4\) & 43.18 & 1.20160
\end{tabular}

Table 3

Astmuth angle en 150

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{k} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{i=1 \({ }_{\text {dik }}\)}} & & \multicolumn{4}{|r|}{Neasured values using five hole probe} \\
\hline & & & 103 & \({ }^{81 k}\) & \(X_{1}\) & \(\mathrm{r}_{2}\) & \(\boldsymbol{Y}_{3}\) \\
\hline 0 & -5.877E-1 & 4.1945-1 & 6.9148-1 & & & & \\
\hline 1 & 1.8685-2 & 5.4445-3 & 2.2615-3 & & & & \\
\hline 2 & 3.0138-4 & 3.6275-5 & -5.1695-6 & 25.40 & 0.19255 & 0.74314 & 0.85677 \\
\hline 3 & -1.0018-4 & 1.4328-5 & 3.7058-5 & 30.48 & 0.17653 & 0.74470 & 0.95937 \\
\hline 4 & 1.1475-4 & \(1.0155-4\) & 0.0395-5 & 35.56 & 0.16330 & 0.74041 & 0.05340 \\
\hline 5 & 2.3148-4 & -3.7598-4 & -5.3038-4 & 40.64 & 0.24878 & 0.73893 & 0.84816 \\
\hline 6 & 2.3:28-3 & -1.4198-3 & -1.7743-3 & 45.12 & 0.56672 & 0.77530 & 0.85564 \\
\hline 7 & 1.1998-3 & -6.3068-4 & -9.6905-4 & 50.80 & 0.92831 & 0.86436 & 0.87926 \\
\hline 8 & 6.4298-4 & 3.5028-4 & 1.69 15-4 & 55.88 & 1.12014 & 0.94177 & 0.90814 \\
\hline 9 & -6.2162-4 & -1.3205-4 & -2.17415-6 & 60.71 & 1.14363 & 0.97139 & 0.93157 \\
\hline 10 & -1.3258-3 & 1.3415-3 & 2.8525-3 & 48.26 & 0.74290 & 0.83621 & 0.89210 \\
\hline 11 & -2.7542-3 & 6.9918-4 & 1.1518-3 & 43.18 & 0.34786 & 0.75852 & 0.86315 \\
\hline
\end{tabular}

Preestream: Nach No. \(=0.75\) Total Preasures \(/ \mathrm{m}^{2}=10^{5}\)
Densfty,krg/m3=0.825
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0 & -1.608 & -4.1785-1 & 3.5148-1 & & & & \\
\hline 1 & 2.943E-2 & 1.2975-2 & 4.3205-3 & & & & \\
\hline 2 & 2.7938-4 & 1.2568-4 & 5.1178-5 & 29.21 & 0.22096 & 0.56094 & 0.72274 \\
\hline 3 & 3.2418-4 & 4.3605-5 & 3.6005-5 & 35.56 & 0.21266 & 0.55240 & 0.71076 \\
\hline 1 & -8.110E-4 & -6.9918-5 & -8.9985-5 & 10.64 & 0.20772 & 0.54397 & 0.70061 \\
\hline 5 & -1.2448-5 & 4.6695-5 & 1.0468-4 & 45.72 & 0.39306 & 0.57008 & 0.71296 \\
\hline 6 & -8.2515-4 & -3.7658-4 & -2.8105-4 & 48.26 & 0.53938 & 0.60287 & 0.72530 \\
\hline 7 & 9.849E-4 & 5.0418-6 & 3.7915-5 & 50.80 & 0.72323 & 0.66331 & 0.75233 \\
\hline 8 & 6.8268-5 & 2.8358-4 & 3.0835-4 & 53.34 & 0.67222 & 0.73524 & 0.78086 \\
\hline 9 & -2.2278-4 & -6.6468-A & -4.8385-4 & 55.88 & 1.00467 & 0.80785 & 0.80246 \\
\hline 10 & 2.148E-4 & 6.1698-4 & 3.1458-4 & 57.91 & 1.20882 & 0.87990 & 0.82972 \\
\hline
\end{tabular}

Table 4. Shear Layer Thickness and Local Density Gradients.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{- 90} & \multicolumn{3}{|c|}{- 120} & \multicolumn{2}{|r|}{- 150} \\
\hline & \(M=0.55\) & \(M=0.65\) & \(M=0.75\) & \(M=0.55\) & \(M=0.65\) & \(M=0.75\) & \(M=0.55\) & \(M=0.75\) \\
\hline Shear Laye Thickness, cm. & 4.0 & 5.5 & 6.0 & 9.0 & 10.0 & 9.5 & 19.0 & 19.0 \\
\hline \(\mathrm{dM} / \mathrm{dk}\) & 0.120 & 0.150 & 0.230 & 0.150 & 0.170 & 0.185 & 0.040 & 0.050 \\
\hline \(d \rho / d R\) & 0.220 & 0.205 & 0.190 & 0.024 & 0.018 & 0.014 & 0.010 & n.nne \\
\hline
\end{tabular}

Table 5. Scale lengths Obtained from Correlation Consider \({ }^{\text {Stions }}\)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Stat ic Pressures } \\
1_{r}, \mathrm{~cm} \\
\hline
\end{gathered}
\] & M & degree & \[
\begin{gathered}
\text { Total Pressures } \\
I_{r}, \mathrm{~cm}
\end{gathered}
\] \\
\hline 2.80 & 0.55 & 120 & 0.97 \\
\hline 2.92 & 0.65 & 120 & 1.01 \\
\hline 2.97 & 0.75 & 120 & 0.42 \\
\hline \(9.7{ }^{\circ}\) & 0.15 & 100 & 3 Of \\
\hline 9.17 & c. 65 & 150 & 2.18 \\
\hline 14.50 & 0.75 & 150 & 5.32 \\
\hline
\end{tabular}

Figure 1. Sketch of turret model in the \(14 \times 14 \mathrm{ft}\) wind-tunnel.
ORIGINAL PAGE IS
OF POOR UUALITY



Figure 3. Body Fixed Coordinate System



\[
\begin{array}{lll}
2^{8} & a^{8} & a^{8} \\
\Sigma^{-} & a^{-} & a^{-} \\
0 & 4 & \square
\end{array}
\]
(4)

\[
\begin{aligned}
& \frac{8}{5} \\
& \circ \triangleleft \square
\end{aligned}
\]






Figure 11. Cross Correlation coefficient versus radial location. -شว \(\varepsilon 5 \cdot 0=\) asuejs!p uo!zededas \(\quad 0 Z 1=\theta\) -شว \(\varepsilon 5 \cdot 0=\) asuejs!p uo!zededas \(\quad 0 Z 1=\theta\)
Radial Location, cm
Radial Location, cm Radial Location,
```

