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Introduction

The major focus of this raesearch work has been the continuing develop-
ment of "Riccati Iteration," a new numerical tool for the design i¢nd analysis
of linear control systems. This report is arranged into four chapters con-
sisting of two research papers, an extensive 1iterature review, and a
viewgraph summary of directions for future research work. The Masters degree
thesis "Comparison of Algebraic Riccati Equatfon solvers" by Mr. Rasim
Baykan was also supported by tris resaarch grant. An apology must be made
for the fact that the numerical examples in chapters Il and III are taken
from other aerospace applications and computer-generated random cases rather

than aerodynamic flutter models as originally proposed in this research effort.
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POLE PLACEMENT AND ORDER REDUCTION IN TWO-TIME-SCALE
CONTROL SYSTEMS THROUGH RICCATI ITERATION ‘

Leonard R. Anderson*

Abstract

A transformation of variables taken from singular perturbations may
be applied to two-time-scale linear systems in state space form to reduce
the system to block-diagonal form with slow and fast modes decoupled. The
transformation 1{s easily computed by applying the new "Riccati Iteration."
The iteration yields a solution to the nonsymmetric algebraic Riccati equation
obtafned by partitioning the original system matrix A. The numerical pro-

cedure {s initiated with the trivial iterate Lo = 0, and is globally convergent

to the desired unique time scaie decoupling solution.

After transformation, *hr decoupled system may be used in controller
design to achieve exact clused-loop pcle placement in the slow subsystem
without altering the poles of the fast subsystem. The decoupled form may
also be used to reduce system order by sitting a small parameter to zero.
Provided the fast subsystem is stable, the order reduction can be expected
to yield a good approximation to the original system. These methods are
demonstrated using the 16th order linear model of a turbofan engine.

This paper was presented at the 3rd International Conference on Mathematical
Conference, University of Southern California, July 29-31, 1981 and has been
accepted for publication in Mathematical Modeling.

* Assist. Prof., Aerospace and Ocean Eng. Dept., VPI & SU
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1. INTRODUCTION

Large scale 1inear control systems are encountered frequ*n%ly in engineering

problems such as the design of high performance aircraft!,c, larce space

i structures3, or power systems4, A recurring theme in such problems is the

- need to reduce the originally high order of the system to facilitate simula-
tion, eigenanalysis, or control system design studies. The question of order
reduction has bgen widely researched and many order reduction schemes have
been proposedS:6. The method presented here is related to the familiar eigen-
space analysis of linear multivariable systems, but is particularly well suited
to direct numerical implementation for large scale systems, and systems with
“stiff" dynamics.

=

Consider the linear control system

; = Ax + Bu
(1)

w=Cx + Du

where x, u and w are state, control and output variables of dimension n, m
and 1, respectively. As proposed by Chow and Kokotovic’, system (1) will be
classified as two-time-scale if the eigenvalue spectrum of the A matrix,
represented as A(A), can be separated by absolute values into nonempty sets
S and F with n] and n2 = n - n] elements, respectively, such that

S —————

. gt i ? e , SERRERENCW T T~ R A w.mwrm

Isyl << |fj| for all s, in S, and fj in F. (2)

A naturally occurring system small parameter is the eigenvalue ratio

ibinb il Lot Sl S P oS

max|s, |
i i

uaw<<]. (3)

This parameter provides a measure of the system's tine scale separation and
identifies (1) as a singular perturbations problem. This particular small
parameter was also proposed by Kelley8.

More refined partitioning of the spectrum A(A) yielding three or more tine
scales (i.e., eigenvalue groups) may also be considered with two or more
small parameters analogous to (3). The technique described below may be
applied repeatedly for such cases. Only the two-time-scale case will be con-
sidered here.

2. THE LK TRANSFORMATION

Such two-time-scale systems may be con'eniently transformed into decouplied
subsystems by a two step transformatio: to new variables y = ToTy x = Tx

with
I 0
T} = (4)
L I
6
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T= (6)
L I

where the [ are identity matrices of dimension M and ny. If the original
system (1) is partitioned as

X A, ALl [x B
.1 - 11 12 LI 1 u (7)
] A Azl % B

where A] bis ny x ny, etc., then the new system defined by transformation

(4) will be block- triangular provided the n2 x n} matrix L satisfies the
nonsymmetric algebraic Riccati equation (ARE)

LAyy = Agpl - LA L + Ay = 0. (8)
If, in addition the Ny X N, matrix K satisfies the Lyapunov equation
KAgp = Ak + A = 0 (9)
where A]1 = A1y - Ajzl, A2 = A22 + LAy, then (7) is transformed to the
block-diagonal form
} rﬂ,. 0 y‘ B
.1 = 1l - ] + ~1 u (]0)
Y2 0 Ayl |2 B,

where B] = (I+KL) B] + KBZ’ B2 = LBI + 82‘

Such transformations have appeared in singular perturbations workg’m’n and
were introduced into the controls literature by Kokotovicl2. One attractive
feature of transformation T is that it is always nonsingular and has the
explicit inverse

.
L T4

Singe A is similar to matrix A, the eigenvalues of A become the eigenvalues
of A]] and A22’ i.e.

A(A) = A(Ay)) U A(Ayy).

It is well known that ARE has many solutions]3’]4. If we express the A
matrix in spectral form as A = MJQ where M {s a modal matrix, J is diagonal
(assuming A nondefective), and Q=M-1, then solutions to ARE can be expressed
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in terms of partitions of M. MJQ is partitfoned conformably with (7) so that
1, J1 and Q11 have dimensions n1 x n1, etc. It can be shown by matrix
algebra that L is a solution to ARE if

1) M is nonsingular

2) ey, e 07 0y (1)

Also, {f L satisfies (11), then 511 = M11J1H11'I. In general there will be
one solytion to ARE corresponding to each partition of the eigenvalues of
A into Ay and 522.

The solution L of particular interest in two-time-scale systems is the unique
solution tc ARE which ylelds
A(Rn) * S, A(izz) = F (12)

and from here on it is assumed that L sat;sfies ARE and (12). The Lyapunov
equation (9) will have a unique solutionl® provided Ay and Aia have no common
eigenvalues, which is guaranteed by (12). The solutfon K of (9) can also be
expressed in terms of the modal matrix M as

K= MGz = ol .

N

One method of computing L is to compute ny eigenvectors spanning the

1
slow eigenspace and apply (11). However, as rfgently shown, 13,16, L can be
computed as the limit of the Riccati Iteration'® algorithm

= .]

Ligg = (Ryp *+ LiAyp) " (LiAyy * Ay)

initialized with Lo = 0 which is globally convergent to the desired decoupling
L. If we define the residual

Ry = LiAyy = Agly = LAty * Ay
R
Rl

i

Thus L is readily computed for strongly two-time-scale systems (i.e. those
with very small u}.

3. ORDER REDUCTION

then in the limit as i + =, U

The original system (1) can therefore be considered as the decoupled
subsystems

N ® A‘ly] + 61 u (13a)
Y = Rya¥y * By u (13b)
8
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which model the system slow and fast dynamic parts, respectively. The
appropriate inftial condition for (13s, b) is y(0) = Tx(0). The decoupled
form can yield a saving in simulation studies since only the fast subsystem
il3b) need by integrated with a small time step. If the original system

1) is integrated directly, then one must treat the entire nth order system
as fast to obtain accurate numerical solutions.

As noted above, order reduction is often required in the study of large
scale systems, and this may be conveniently done using decoupled subsystems
(13a, b). Using the spectral norm,

llfllLl Su
1Ay |

so we can write (13a, b) in the standard singularly perturbed form

Y1 = Ay t By

L. . (14)
Yy ® Ayt By u
where As -;:A and 52 =y 52 The zeroth order approximation to (14)
obtained by setting the small parameter to zero is then
y1 = An.Y'l + B] (15a)
¥, = -A22 (15b)
vith initial condition
$1(0) = (14KL)x;(0) + K x,(0) (15¢)
and the approximation ; te the original state x is given by
I -K
X 2 ¥+ 7% (15¢)
-L I+LK

If the fast subsystem (13b) has eigenvalues with large negative real part,
i.e.

Re (fj) << - m:xlsil for all f, in F (16)

then the nyth order approximation x can be expected to yield a good approxima-
tion for x outside of an initial boundary layer where fast, stable dynamics
may predominate.

Note that if one is primarily interested in output variables w rather than
state variables x, the reduced order model (15) may be written in a compact
matrix form similar to (1). Transform and partition the cutput matrix as

c C I-I .‘l
(¢, cl=c=cr



to yleld
’1'7‘11 ’1*51“

- - (17)
ws C] y1 +Du

where :
D = D - CZAZZ Bzo

This order reduc?)on method has been shown to compare favorably with other
standard methods'/.

4. POLE PLACEMENT

Oynamic systems are often modeled as linear control systems for the purpose
of designing a feedback controller to achieve specific closed-loop efgenvalue
locations. Through application of the LK transformation, an n-dimensional
eigenvalue placement problem can be reduced to separate eigenvalue placement
problems of dimension " and ny.

it is well known that if a constant 1inear control system is controllable,
.e.

rank (8 A8 ... A"'8) = n, (18)

then there exists at least one real m x n dimensional feedback matrix H such
that the closed-loop eigenvalues given by

A(A+BH)

can be placed arbitrarily (as long as complex eigenvalues appear in conjugate
pairs). If the original system (1) is controllable, it can be shown by linear
alyebra that the slow and fast subsystems (13a, b) are also controllable.
Transfer of observability from the original system to the decoupled subsyvstenms
follows by a dual argument.

The design of a feedback matrix H to achieve a specific closed-loop eigen-
value location then follows directly. Suppose it is desired to relocate the
n, slow open-loop eigenvalues S to ny new eigenvalue locations S'. If one
cln find an m x n, feedback matrix Hy which satisfies

(Ayy + ByHy) = ', (19)
then system (13a, b) with feedback u = i1y1 becomes
y Ay 4By H ol [y
1 ~11 1M _ 1 (20)
Y2 BoHy A2] 172

Thus the fast eigenvalues F are unchanged and the corresponding feedback
matrix for (1) is given by

H= [ﬁ] 0] T. (21)

10
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If in addition to relocating the slow mode eigenvalues S 1t {s also necessary
to relocate the fast open-loop eigenvalues F to closed-loop valugs F' then
this can be done as follows. After solving for feedback macrix Hy in (19)
find the unique (assuming S' and F have no common eigenvalues) n2 x nj matrix
P satisfying the Lyapunov equation

The block-triangular system (20) can then be transformed to a new block-
diagonal form

Nl 0 I,
z - -
ARLEEARARE

where ;2 = Py] + ;2. 5]] = A]] + 5151. and 52 = P§1 + 52 and a sy - ﬁ]yl.

<

]
s v (22)

Now relgcate fast eigenvalues F to new values F' by finding an m x ny feedback
matrix "2 satisfying

The appropriate gain matrix for the original system (1) is then given by

u=Hx, Hs= [(ﬁ] + figP) ﬁz] T. (24)

Thus, the block-decoupling transformation T can be used to exactly relocate
both siow and fast eigenvalues via state feedback.

Many variations of this approach are possible to facilitate the feedback matrix
design task. For example,by repeated application of the block-decoupling
transformation either of the decoupled subsystems (13a, b) could be further
transformed into block-diagonal form and a complete eigenvalue relocation could
be achieved in three consecutive design steps analogous to the above two design
steps (19) and /23). In many practical applications, the fast modes are all
stable and well damped so only the slow eigenvalues need be relocated.

5. A TURBOFAN EXAMPLE

The example considere:d here is the 16th order model of a turbofan engine which
was the_theme problem for a recent conference on controi of linear multivariable
systems]. This model is the l1inearization of a detailed nonlinear simulation
(at the sea level maximum non-afterburner thrust point). The state variables
consist of shaft speeds, temperatures and pressures; the five control inputs

are fuel flow, nozzle area, two vane positions and compressor bleed; and the
five output variables are net thrust, total airflow, a temperature and two

stall margins. For n] = 15, 5 and 3, the resulting small parameters are 0.304,
0.371 and 0.383. Since these v2'ues are not particularly small relative to
one, we might call this system weakly two-tima-scale.

Selecting n; = 5, the L and K matrices were computed as described in Andersonla.
The response of the full 16th order system and reduced 5th order system con-
taining the slow dynami<s are compared in Figures 1 and 2. The response of

1



total thrust and fan <peed to step inputs in fuel flow rate and inlet guide
vane position demonstrate that good agreement is achieved between full and
reduced order response except during an initial boundary layer transient
where fast dynamics are significant. The response to a guide vane step in-
put provides a severe test of the reduced order model since this control
varfable 1s located at the front of the engine and some time i{s required
for its effects to propagate to the net thrust.

Pole placement for this example was carried out with the goal of increasing
the speed of the thrust rasponse. Applying the methods of the previous
section, the three slowest modes -0.65, -1.90 and -2.62 were relocated to
approximately -6.6. Since there are five control inputs in this example and
By fs nonsingular, it was possible to shift the above three poles and leave
the eigenvectors of the slow subsystem unchanged. Let the slow subsystem
have spectral form

. -1
Ay = M9y My

where J1 = diag (-0.65, -1.90, -2.62, -6.72 + * 1.31).

Then feedback matrix ﬂ, was chosen as

- - 1
H =8

My 8 My
where A = dia? (-6, -5, -4, 0, 0) and the mode! response for the resulting
on

H (c.f. equat (21)) is 1llustrated in Figure 3. As expected, the response
is much q:icker with this feedback.

6.  CONCLUSIONS

A method of time scale separation based on the block-decoupling LK trans-
formation is proposed. Methods of applying this transformation to order
reduction and pole placement design tasks are described and demonstrated
for a turbofan engine example. As previously shown, the L and K matrices
are easily computed for large scale systems, particularly those systems
with large time scale separation and correspondingly small y.

12
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Numerical Solution of the Symmetric Riccati Equation through Riccati Iteration

Leonard R. Anderson*
A "3121:&::53
Abstract

This research paper presents a new numerical method for solving the
symmetric algebraic Riccati equation from optimal control. This algorithm
employs the "Riccati iteration" which has been successfully used to solve
time-scale decoupling problems in structural vibrations. The algorithm is
related to the subspace iteration method, and the rate of convergence to the
solution is governed by the relative separation between the stable and unstable
eigenvalues in the Hamiltonian system of equations. Provided there is adequate
eigenvalue separation and ignoring roundoff error, the algorithm is globally
convergent to the desired Riccati solution. The method is demonstrated for
a set of 8th order random exampies. Preliminary accuracy and timing comparisons
with other standard methods of solving the symmetric Riccati equations are

presented.

Submitted for presentation at the 1982 American Control Conference, Arlington,
Virginia and for publication in the IEEE Transactions on Automatic Control.

*Assist. Prof., Aerospace and Ocean Eng. Dept., VPI & SU.
Assist. Prof., Mathematics Dept., Univ. of Arkansas.
***Graduate Research Assistant, Aerospace and Ocean Eng. Dept., VPI & SU.

This research work was sponsored by NASA research grant NAG-1-80.
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I. Introduction
It is well known that in order to solve the infinite-time regulator
problem [1,2] with linear system

%= Ax + Bu (1)
and quadratic performance index (the LQR problem)
- T T
3= 2§ (T + uThujat (@

one must compute the unique positive definite solution S to the symmetric
algebraic Riccati equation

-1

0=SA+A's-sBR'BIS +Q. (3)

Here x is an n-dimensional state vector, u is an m-dimensional control vector,
A and B are constant matrices Q and R are positive semi-definite and positive
definite, respectively. Also it is assumed that the matrix pair (A,B) is
controllable, and the pair (A,QIIZ) is observable and that B has full rank.
Then assuming that any constraints on the size of u(t) are not violated, the

1inear feedback control law which minimizes the performance index J is given

by -1

u = Kx where K = -R"18'S . (4)

Algebraic‘Riccati equations similar‘to (3) also play a fundamental roll in

discrete-time optimal control problems, in optional estimation problems, and

is many other areas of applied mathematics [3-7]. See Jones [8] for basic

necessary and sufficient conditions for solutions of equations of this type.
Among the most widely used solution methods for solving algebraic

Riccati equations are the Schur vector method described by Laub [9], methods

employing eigenvectors of the Hamiltonian system [1,2,10,11] and Newton-Raphson

.
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methods (1,2,12]. The Riccati {teration method di ffers from these methods
in that neither eigenvalue computation nor solution of equations of the
Lyapunovetype are required. The algorithm is suprisingly simple, requiring
only repeﬁ tive solution of 1inear equations of order n, However, caution
must be exercised when applying the method to LQR problems with nearly zero
eigenvalues, or eigenvalues with large imaginary part.
1I. The eigenvector solution to the algebraic Riccati equation

Given the linear system (1) and performance index (2), we can form the
control Hamiltonian and apply the necessary conditions for optimal control to

obtain the Hamiltonian system of equations

x A -8r-1BT|[ X X
(5)

[ ]
[}
x
-

y -0 A |}y y
where y is an n-dimensional vector of costate or adjoint variables. The
2n x 2n matrix H has symmetric eigenvalues. That is, if A i{s an eigenvalue
of H then -\ is also an eigenvalue of H.

If matrix H is represented in spectral form

of “ * -
MMl -n o] [ o

Ho= MAM! =

M1 M| 0 M) % Q2

o ol

where the matrices are partitioned conformally with (5), and A, contains all
the eigenvalues with positive real part ordered as

Ay = dlag (Ags My cous M) with {2 [<[hpqls 121, 2, 400 =1, (6)
then the desired solution, S, to the Riccati equation is given by
SMyp = Myy or Qpp S = <0y . (7)

19



To demonstrate this fact, apply the similarity transformation

T = R L (8)
s 1 s 1

to the Hamiltonian system to obtain

A - 8R'BS -8r71gT
wr! . (9)
-sA-ATs+saR"18Ts-Q -AT+sgr" g7

H

or in spectral form

T 0 IMy Ml 0 110y Qpf [T 0
=
-1 -1
MMy TDMy Ml L0 AJLQy  Qppd L-0p05 I
1
M R My M1191 422928,
= (10)

-1
0 Q2 & Q2
Since the .closed-loop system for feedback law (4) is
Ax + Bu = (A-BR™'BTS)x ()

O
Ax

X

N
the eigenvalues -A become the eigenvalues A(A) of the closed-loop system.
Given efficient eigenanalysis software such as EISPACK [13], one can directly
compute the eigenvalues and eigenvectors of the Hamiltonian system (5) and solve

the appropriate system of linear equations (7) for the Riccati solution S.

20



If -A; includes complex conjugate eigenvalues Xd. i} with corresponding complex
conjugate eigenvectors uy = a + 1, 63 = q - {8, then complex arithmetic
can be avoided in the set of linear equations (7) by replacing ug with « and

Gj with 8.
M

M
the n Schur vectors [9] spanning the stable eigenspace and solve (7) with "ll’

As an alternative to computing eigenvectors [ ]. one can compute

MZ] replaced by corresponding Schur vectors. Schur vectors are defined as
follows. Given any nxn matrix C with eigenvalues Ays «ees N, there exists a
unitary matrix V such that VHCV is upper triangular with diagonal elements
Al.....xn. The columns of V are the Schur vectors of C, possibly complex,
corresponding to this particular ordering of eigenvalues.

If some of the eigenvalues Xi are complex, then one can avoid complex
Schur vectors by employing a (real) orthogonal matrix V such that VTAV is
real and nearly upper triangular. The only nonzero subdiagonal elements in
VTAV will be due to real 2x2 diagonal blocks corresponding to complex eigenvalues
Aj. This is termed the real Schur form of C, and the columns of V are real
Schur vectors.

To return to the problem of computing the solution (7) to the symmetric

Riccati equation (3), one can compute the 2n real Schur vectors

" N
. Y2
N N
Va1 V22
"
of the 2nx2n matrix H so that |, provides a basis for the eigenspace
v
2]

corresponding to stable eigenvalues “Ay.
The computation is best performed using the subroutine HQR3 [14] with
small modifications. In its standard form, HQR3 orders the eigenvalues of H
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by madulus with |A[s|Ay|< ... on the diagonal of VY. The ordering statements
in HQR3 may be modified so that either
1) all stable (negative real part) eigenvalues are placed in the upper left
diagonal block of VTHV and unstable eigenvalues are placed in the lower
right block, with no regard to ordering within each block, or
2) the eigenvalues of H are ordered along the diagonal of VTﬁV by real
part from most negative to most positive.
Only modffication (2) is implemented in the numerical examples which
foliow. '
III. Riccati iteration solution to the algebraic Riccati equation
Before proceeding to the solution of the symmetric Riccati equation (3),
we will first describe in detail the solution of the closely related time-
scale decoupling problem using Riccati iteration [15,16], and then extend
these results to (3).
The time-scale decoupling problem can be stated as follows. Given an nxn

diagonalizable matrix C with eigenvaluas

Sys Sny eoes S. s Fys Foy cuusf
1* %2 N 1* "2 n,

not necessarily distinct and satisfying
Isyislsgl s «ov sy, I<ifyIsifols ooo slfn, s

“snyl
with u = !

’ (13)
1|
if parameter u is small relative to one, we say that the matrix is two-time-
scale [17,18]. Let the diagonalization of C be given by C = EJF
where Fs£~! and J 1s diagonal with diagonal entries

SI, 52| soay Sn]‘ f], f 9 esse fnzo
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- -
- —

- - .

Partition the matrices C, E, F and J as

‘i G2 e B2
C = , E =
1 C22 B £
Fi F2 o0
F o= , J =
Far  Fa2 0 Ja

where CI],E]],F]],J] are n,xn;, etc. Fork=0,1, 2, ... partition the matrix
Ck similarly as

S% Tk

Y% Y%
The Riccati iteration and its convergence properties for the time-scale
decoupling problem [19] are introduced through

Theorem 1. Given y < 1 and Vk nonsingular for k =1, 2, 3, ..., the itextion

lo =0 ‘ (14)

k = 0, ]’ 2' ese

is well defined and
]

with convergence in the sense of matrix norm. For any ixj matrix 8, ||[B||
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will be given by

|1811 = sup |18xIl,
lIxlly s 1

where |[<[], ||-||J denote convenient norms on R' and R,

The proof of Theorem 1 {is presented in the Appendix.

Furthermore, the rate of convergence of L, to Fzz']Fm is controlled
by tha smll parameter u 2s shown in the Appendix. Convergence would be
expected to be unreasonaily slow for u close to one.

To apply the Riccati iteration to the symmetric Riccati equation (3)
we need to shift the Hamiltonian matrix (5) as

N,
HeH+agl (15)

so that the stable, left half-plane efgenvalues “Aps =225 ees <Ay of H
"]

become the slow or small eigenvalues of H analogous to $10 S20 eees ’n]-

We can now state the formal conditions for convergence of the Riccati

iteration for the symmetric Riccati equation (3) as

Theorem 2. Given the Hamiltonian system (5) and given shift distance
Ag sat‘lsfy‘lng1

1r«::m. this redefines u for the sequel, cf. (13).
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max ' - A1 + Asl
1-1;-.-;0 < ] (]6)

1
T-?.....n | }‘1 + }‘sl

the Riccati iteratfon

S0 0
(17)
Sy = (AT #0215 8R718T) V(s (A + A 0)-0)
converges to solution (7) with asymptotic rate
-1

||51 + sz Qg]ll < Cuk
where the matrix norm is as in Theorem 1, and constant ¢ is independent of k.
The proof of Theorem 2 follows directly from tie proof of Theorem 1 in the
ramiltonian setting.

The key practical difficulty in implementing iteration (17) is the

estimation of the shift distance J\s. Twa choices for the shift distance are

proposed, namely

A,y max [
s 2 1‘]’...'" 1 (]8)
or
is1,...,n F9Y ... ,0 (19)
T2
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The shifting strategy (19) will in general yield higher rates of convergence
since the stable eigenvalues of H become nearly centered about the origin
in. K. shift strategy (18) {s recommended for symmetric Riccat! equations with
eigenvalues having large imaginary part, since this mininizes the chances of
no convergence, or convergence to a solution other than the desired solution (7).
Both shifting strategies can be implemented numerically in approximate form.

The computational algorithm for the symmetric Riccati{ equation is therefore

Algorithm 1.
1) Form the Hamiltonian matrix

A -8rlgT

Q -AT

2) Beginning with the 2n vector

xg= @)V )T

perform a few power steps (five or more)

¥ T T
Y =% H

4 'N s
tiap ® Kgap/ | Xgaqlls 120, 1, .05

where ||-|| 1s the Euclidmnor Frobenius norm.
3) Obtain an initial estimate of the shift distance
ay = 11%1]

01 + “}’14.]”

2

Q1+] = q1 '1,2, ....5

As,0 * %"
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4)

§)

6)

7)

8)

9)

Estimate a 1imit for Amax

and partition the vector xg as

6 = L 1"

with Uy of dimension n.

Initialize SO =0, j =0, and form the invarse power vector
Yo © m 12 ar

of dimension n.

Form the matrices

= AT - 1,7
HZZ,J A+ As,jl SjBR B
Gj = Sj(A + As’jl) - Q.
Perform a power step and estimate Amax'

AT T
a1 = Yy Mo 5

n, \
"]
Sojve the linear system for Sj+l and Vel

If j > 1, find the relative change in Sj.

6‘1’”53'...]'53”/“53” |
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.

and terminate the iteration {f § j is less than or equal to some specified

convergence tolerance ¢, or has reached a minimum value.

10) Normalize the inverse power vector Vjﬂ and estimate “min‘

Mnn,g = max (0 , min ()‘mx.d‘ As,J))

SO
I I'\\l'm |
VJ+~| . IVJ*.]/' l%j*‘] 'l.

11) Update the shift distance by either

M, +A
N e (1)

or

6A831+ )Vmgjj * )‘min.,j_

A it = (22)

12) Increase j by one and go to step 6.

Obviously, if one computes the updated shift distance by the more
conservative (21), then one need not include the inverse power vector vJ in
the iteration. The power and inverse power estimates of Ay . = |X| and

ma
to the eigenvalues l\1 increased by )‘s j*

Arax * IA"I are based on the fact that the eigenvalue spectrum of Hyo j converges

This iterative technique for solving the symmetric Riccati equation has
similarities to one proposed by Farrarand DiPietro [20]. The methods differ
in that their method is initialized using eigenvectors, and empioys iterative
improvement requiring solution of a Lyapunov-type equation at each step.
IV, Numerical examples

The eigenvector and Schur vector solution methods and the Riccati iteration

method were evaluated in a limited comparative test. The test consisted of
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sets of 1inear-quadratic-regulator problems generated as follows. The elements
of the A and B matrices of system (1) were chosen as random integers from a
uniform distribution over the internal [-10, +10], with 25% of the elements
set arbitrarily to zero. The order n of the syst;m was varied between 5 and 20,
and the control dimension m was held at one. The positive semidefinite weighting
matrix Q was constructed from a Choleski factorization
Q= PPl
where P is upper-tr}angular. The upper-triangular elements of P are also
integers chosen uniformly from the internal [-10, +10], with 25% of these
elements set to zero. In all cases the R matrix, a scalar, had a value of 2.
A1l methods were either obtained or coded in the FORTRAN language in
double precision, and executed in batch mode on the VPI&SU IBM 370/158 computer.
Table 1 presents the results for a set of ten random cases of order eight
generated as described above and solved by Algorithm 1. The table includes
the theoretical rate of convergence u for each of the shift strategies (18)

and (19), the value of the Riccati residual ||R1|| wnere
T, ~1aT.

for the converged solution S,. the maximum relative error between the
eigenvalues of the closed-loop system (11) and the stable eigenvalues of the
Hamiltoniaﬁ system (5), the number of iterations in Algorithm 1 to reach a
minimum value of &, and the corresponding central processor execution time
in seconds. As noted earlier, the shift strategy (18), (21) is significantly
slower in convergence than (19), (22). However, the faster mathod (19), (22)
fails to converge for case 8 as expected since u > 1,

To further describe the convergence characteristics of the Riccati

iteration, the values of ‘0910||R1|| and 1og]0||61|| versus {teration
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number are plotted in Figures 1 and 2. These figures correspond to cases 2
and 9, and represent the most rapid and the slowest convergence of the ten
cases, respectively. As shown, the theoretical limit u, cf. (15), accurately
predicts the true rate of convergence of the algorithm for each of the two
shifting strategies. The specific A, B, Q and R matrices for cases 2 and 9
are listed in Tables 2 and 3.

For comparison purposes, the symmetric Riccati equation for these ten
casas is also solved by the eigenvector and 3chur vector methods. This data
is listed in Table 4. As in Table 1, we specify the value of the norm of the
Riccati residual ||R|| corresponding to the computed solution S, the maximum
relative error between the eigenvalues of the closed-loop system and the
Hamiltonian system, and the execution time in seconds. The execution times
include both the time to compute eigenvectors or Schur vectors and the time
to solve the linear system (7). The numerical method used to solve both the
linear systems (7) and (20) in this study was LU decomposition with partial
pivoting without iterative improvement of accuracy. Specifically, the Fortran
subroutines DECOMP and SOLVE were used, but not the subroutine IMPRUV from the
widely used Forsythe and Moler text [21].

For the eigenvector solution method, all eigenvalues and eigenvectors
of the Hamiltonian matrix were computed using EISPACK subroutines ELMHES,
ELTRAN and.HQRZ. Then eigenvectors corresponding to stable eigenvalues were
"]
MZ]J spanning the stable eigenspace vere computed
using EISPACK subroxg]nes ORTHES and ORTRAN, and Stewart's subroutines HQR3
and EXCHNG. The HQR3 subroutine was modified [22] so that the eigenvalues

selected to form the real matrix. For the Schur vector solution method, the

v
real Schur vectors|,ll

VW are ordered along the diagonal from most negative to most positive real part.

As shown in comparison of Tables 1 and 4, the Riccati iteration is able to
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produce final Riccati residuals two orders of magnitude smaller on the average
than the eigenvector and Schur vector methods. However, the Riccati iteration
execution times are slower than the eigenvector and Schur vector methods by

a factor of ten, on the average.

The choice of method clearly depends on both the parameter u for the class
of problems under consideration, and the relative importance of minimizing
computer execution time versus software simplicity. In general, as the order
n of the LQR problem increases, the parameter u increases and approaches
or exceeds one. Therefore, the eigenvector/Schur vector algorithms would
still be the method of choice for problems of large order.

V. Conclusions

A new numerical algorithm for solving tﬁe symmetric Riccati equation from
the linear-quadratic-regulator problem has been presented and compared with
standard methods. A formal proof of convergence for the Riccati iteration is
presented, and numerical examples confirm the theoretical rate of convergence.
The strengths of this new algorithm are its simplicity, accuracy and theoretically
transparent basis. Riccati iteration may be particularly useful for low order
adaptive control algorithms or control system design studies where one must
update the Riccati solution as system matrices or performance index weighting
matrices slowly change. The primary weakness of this method is that it is
slower thaﬁ standard methods as shown here, and the rate of convergence is
dependent on sufficient stable/unstable eigenvalue separation in the Hamiltonian

system.
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Future research tasks incluce:

- finding an appropriate conformal transformation for the Hamiltonian
system to increase stable/unstable eigenvalue separation and/or
decrease the imaginary component of eigenvalues.

- Applying a doubling algorithm [23] to this method to increase rate

of convergence.

Appendix - Proof of Theorem 1 X
To prove theorem 1 the following lemma will be useful.
Lenma: For k=0,1, 2, ...
-1
Proof: We proceed by induction on k:
Fork =0
-1
Lo = VO Uo =[.0=0
as required. Note that partitioning the product
ckc - Ck+l
yields’

Uelyy * Yilor = Uy
Uelyz * Yiloz = Yk
Assuming the induction hypothesis,

1

) . - el
(oo * Lia) = Cop + Vi Uy = Vi Vi

which is nonsingular by hypothesis.

-1
Therefore Lk*l = (C2? + chli) (ch]] + CZI)
a N < = -]

Vit ViV Yker = VY -

This completes the proof of the lemma.
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Proof of Theorem 1
Since C = EJF, where F=E~ ', we have K a (EJF)k = gakF.
Partitioning the product EJkF yields

1

, - k k
1 E - Yy 521J1kF11 * Ezz“sz21
" Vi = Eq1dy Frz * Bl Py
) where J] and Jz are diagonal matrices with diagonal entries S1» Sps eees sh]
and f], fz, cees fhz respectively. Therefore, by the lemma
. k k -1 k k

L = (Ejpdy Fra * Egpdp Faa) ™ (Exqdy 'y + Eppldy Foy)
for k=0,1, 2, ...

For brevity let

K S
B = (Expdy Frp *+ Eppdy Fpp)-

An easy computation shows that

a -1 K Ko -l
B (1-Dy (Expdy Fia) ) (Egpdy Fap) s

therefore

-1 k

K K K
Ly = (1= D By Fia)(Expdy Fop)(Exqdy "Fyq + Eppdy Fpy)
-1 1

ke rc-1y -k K A
= (1= D Epydy F)(Fopdp "EgpBpqdy Fry * Faafay).

Hence,

R IR g
Ly = Faafaq = Fapda Eapfnyd;
1

A Lk Ay keelo ke
=(Dy Eydy Fyp)(Fpdy “Egpbaqdy Fiy)

K
Fi1

(05 gy 1) (EpgFyy)-
-1 1
Note that |[J;[] < |sn1| and []d,7"|] < AL

Sny 1k
so 113711 LinHils LLE = ok

1
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I~

Furthermore,
R k ke =l 1 K
Dg Egqdy Frp = (Egqdy Fyg + Eppda Faa) 'Eppdy Fy2
JR I K <1, eke=lyele o k
2292 Ega(1 # Epqdy Frafan™ 0,7 Ega) ' Byydq Fpp
Now [[(1+ 1)V | < Q=TI aE T <
-1 k auk
0 [I0g Endy Frall & TR
for sufficiently large k,

where a = |1Fp," || 11657 11 En Il 1IFp,l1.

Combining these estimates yields
k

-1 k a -1
hef Fall = B v B lfp Fall
where b = a“F"]H/“F'lz”'

k

Since y < 1, u° =+ 0 as k=+ =, This estimate completes the proof.
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Table 2 System and performance index matrices for case #2

-7

-4

4 -4 10

-7

-8
-7
-4

-6
-1

-10

-6

-1

0]

-2

-7

-10 -9 7

-3
n
-6
33

18

27
-10

-10

18

-5

30
-6

11

-4

-3
10

-3
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Table 3 System and Performance index matrices for case #

8 -8 <7 0 -4 10 <9 07
4 -9 -6 -4 71 0 <4 -7
1 7 -10 -1 =3 0 10 -2

0O 6 10 0 0 9 2-10
A= 0o 0 00 0 0 3 0
7 2 -3 2 -4 -6 2 0
8 -8 8 0 0 0 0 -8
ls 0 00 <2 -1 -5 -6
gl = [0 5 8 6 0 0 0 -61]
44 7 -6 15 17 -7 <12 6]
7 20 8 7 7 -1 -4 -2
6 8 21 6 -4 <-4 4 -4
5 7 62 1N -1 -6 4
¢ 7 7 -4 1 1 -7 -0 4
7 -4 -7 -1 U2 4
2 4 4 -6 -10 2 8 -4
| 6 -2 -4 4 4 4 -4 4]
R = 2
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A Literature Review of Robust Controller Design Methods

Alok Das*

Abstract

This paper presents a literature survey on the methods available for
designing robust controllers. A number of methods for reducing the trajectory/
performance index sensitivity in 1inear regulators are described. It is shown
with the help of an example that decrease in system sensitivity to variation
in parameters is obtained at the cost 2: & higher va} ue for the nerformance

index. A method for reducing the eigenvalue sensitivity is also discussed.

* Graduate Research Assistant, Aerospace & Ocean Eng. Dept., VP! & SU
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Introduction

The design of a controller for a system requires a mathematical model of
the system. In most cases some of the parameters of the system will change
with time. The changes in the parameters could occur due to a variety of
reasons for example, aging of components, environmental changes, etc. It has
been found that for some systems even small changes in certain key parameters
could appreciably degradelthe performance of the control system. Hence, it
is very important to estimate the effect of changes in the system parameters
on its overall performance and to use controllers which minimize this degradation
in performance.

The problem then is, given a specified structure of the controller, to
find the particular controller which yields a system with minimum sensitivity
to variation in system parameters. Such controllers are usually called robust
or insensitive controllers. The robust controllers with constant feedback
gain matrix will be considered. Adaptive controllers provide an attractive
alternative to the problem of varying system parameters. We will not discuss
adaptive controllers here.

A large amount of literature is available on robust controller design
using both classical and modern control theories. A brief literature survey
is presented here and some of the more important methods are described. In
the analysis, the system parameters are assumed to take an unknown but constant
value around their known nominal value.

Appendix A contains a bibliography on robust controllers containing 173
references. The bibliography covers the following journals and conference
proceedings from 1970 to 1980.

Allerton Conference on Circuit and System Theory

1EEE Transactions on Automatic Control

International Journal of Control

Joint Automatic Control Conference

1EEE Decision and Control Conference
IFAC Symposium on System Stability and Adaptivity (1968, 1973)

Automatica
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Some other important references are also included.

Parameter Sensitivity Reduction in Linear Requlators:

A considerable amount of work has been done on the parameter sensitivity
reduction in linear regulators. Most of the literature on this topic falls
in one of the following catagories:

a) . Trajectory sensitivity reduction

b) Performance index sensitivity reduction

In both of these approaches to sensitivity reduction, the main objective
is to achieve a trade off between optimality in the nominal performance and
sensitivity to small parameter variations. In a recent paper Yedavalli and
Skelton (1] treat the problem of trajectory sensitivity and performance index
sensitivity in a unified way. We will now discuss the trajectory sensitivity
reduction and combined trajectory and performance sensitivity reduction.

Trajectory sensitivity reduction. In this approach a quadratic trajectory

sensitivity term is included in the integrand of the performance index. One
of the initial papers on this is by Kahne {2]. This paper served as a starting
point for a number of research efforts. Kahne implements the control in an
open loop manner.

Let the linear time invariant system be given by:

x(t) = Ax(t) + Bu(t), x(0) = x, (1)

where x(t) is the state vector of dimension n

u(t) is the control vector of dimension m

A and B are the state and control matrices of appropriate dimensions.

a is a time invariant parameter of the system x, A may depend on a. B
and u are taken to be independent of a.
In the Tinear regulator problem we determine the optimal control vector

u*(t) which minimizes the performance index (subject to system eq. (1)).
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(2)
where T is the final time.
F and Q(t) are positive semidefinite nxn matrices
and R(t) is positive definite mxm matrix.
To incorporate the trajectory sensitivity into the design, consider the
trajectory sensitivity'vector

X

03 —

3a |a = a nominal

Differentiating (1) with respect to a gives

3= Ag+Ax, of0) =0 (3)

= JA
where Aa ™

A trajectory sensitivity term is incorporated in the performance index
and the problem becomes:

find u(t) that minimizes

T

TTox + u

J=%Juwun+%f Ru + o'sa} dt (4)
Q

subject to

X = Ax + Bu, x(o0) = X,
§=Ac +Ax o0) =0

(5)

Kahne solved this problem in the standard way.
This method has two major drawbacks:
1) For each parameter considered the order of the system of equations to
be solved increases by n. Kahne showed that this order could be somewhat

reduced by using the fact that the feedback matrix obtained in symmetric.
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2) The more important problem is that in a closed Toop implementation, as
is usually the case, o(t) no longer represents the trajectory sensitivity.
This was pointed out by Kreindler [3].
We will now formulate the problem for a closed loop implementation. In

this case u and 8 will depend on the parameter a. Then eq. (1) gives
5 £ -a-g s .
g=A x+tAs+Bu+BZ olo) =0 (6)
Using the linear feedback law

u = Ky(t)x + Ky(tdo (7)
we get
3o = Ko+ Ky 5o (8)

Substituting in eq. (6),
5= (A +B_ K)x+ (A+B_ K +BK)o+BK &, olo) =0 (9)

The second order derivative %g'is neglected because the only way it can

be obtained is by differentiating eq. (9) with respect to a, this introduces

2
3—§ term and so on. The solution of eq. (9) with %E-neglected will provide
3 o

an approximate trajectory sensitivity vector p(t).

If p(t) is used in the feedback law, then u = Ky x + Kop (10)
and substituting in eq. (1) we get

X = (A + BKy)x * BKp, x(0) = x, (11)

Differentiating (11) with respect to a (neglecting %5 and letting %§-= p)
gives

p= (Acl + BGK])x * (A + 8K + BGKZ)p, p(o) = o (12)
Exact differentiation of (11) yields
5= (A +B.K)x +BKp+ (A+BK)o+BK 2, po) =0 (13)
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where %E-can be obtained from

P p 3 .
ac = (A, +B K)o+ (A+BK +8 Ky) 3 2 (o) =0 (14)
The difference between p and ¢ can be reduced by taking u = k] x +¥p

where k] and Rz are chosen so as to reduce the difference between p and o.
Then,

x=(A+eRy) x+8p (15)
b= (A, +8 k])x + (A + Bk] +8_ kz)p' 0(0) = 0 (16)
and %E-. (A, + 8, kI)o *(A+ Bk] + Bakz) %23 %gggl_s 0 (17)

A number of authors have used this formulation to solve the problem of
closed loop trajectory sensitivity. Some of the important works will now
be discribed.

Kreindler [3] used the approximate trajectory sensitivity vector p(t)
in his formulation. Using equations (1) and (16) he constructed an augmented

system of order 2n.

i

then
2 =R+ Bu, 2(0) = Z, (18)

A 0
where & = [(Aa +8, k) (A +BR) + 8, ké)] . B= [g]
and Zo = [:0]
also u = {k] kZJZ

The augmented problem solved by Kreindler was to find kl and kz so as to

minimize
T 1 T
J =f (Z' QL + u'Ru)dt (19)
()

49

e



subject to (18)

el

Q and S are positive semidefinite nxn matrices and R is a positive

Where

definite mxm matrix.

This is now a standard linear regulator problem and the solution is given by:

K= [k k1= R B'R (20)

where'ﬁ is the solution of tne matrix Riccati eq.

R AR+ RE- RERT ER T T = o (21)

As an initial estimate for K, and ¥,, Kreindler takes them to be K, and K,,
but then eq. (21) is no longer one of the Riccati type because A depends on K].
fwovertheless he chooses Ky and K, to satisfy egs. (20) and (21).

This apprrach works well as long as p does not differ much from the true
trajectory sensitivity vector o.

Rao and 3oudack [4] modified the above procedure so that one can jet a
better approximation for ¢. They also use p in the cost functional but use a
generalized version of Eq.(16).

p=Cx+Dp, p(o) =0 (22)

Matrices C and D contain as many parameters as one may consider necessary
to get a close approximation for ¢ by the procedure described below. From eq.
(22) we get

P . ap 3p (o) ,
Eeco +0 L2 0 (23)

In this case the augmented system of equations are

7=k +3Bu, Z(o0) = Z, (24)
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where . [2 o]' 5 [Z] and Z, [:;l

The procedure {is to choose a set of values for the parameters in C and D
and with the new expression for A to find a V by solving eqns. (20) and (21).
This will minimize J given by (19). With this K, the parameters in C and D are

varied so as to minimize JZ '.£¢|!P - O‘IZ dt

For this, egns (11), (13), (22) and (23), have to be integrated simultaneously

for a = The new values of C and D are used to again solve the Riccati

%nominal’
equation to get a new K. This procedure is repeated until Jz reduces to an
acceptable level.

This procadure may give better results than Kreindler's procedure, but
its computational complexity is far greater than that of the latter.

Fleming and Newmann [5] use the exact trajectory sensitivity vector o
in the performance index but use the approximate trajectory sensitivity vector p

in the feedback law. They define the augmented state vector Z as

Using eans. (11), (12), (13) and (14) the augmented eqns can be written

as (of order 4n)

Z=%, 2(0) = Z, (25)
where
(A + BK, BK, 0 0 ]
As AQ"BQK] A"'BK]"’BQKZ 0 0
Ay + B,y K] B, K2 A+ Bl(.I BK2
0 0 A, + 8, K] A+ BKl + qa Kz
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and ls=

The performance index is

.
Js L (xTQx + o'sc + uTRu)dt

This can be written as

T
J .{ 27 (T + €7 KT RKE)Z dt (26)
where
Q 0 0 0
0 0 0 0
T=1o o 5 of *E" [IZnOZn] and K = [K3 K]
0 0 0 0

The problem then becomes to choose K so as to minimize J subject to (25).
Clearly this is not a linear regulator problem in its standard form and the
authors describe a few computational methods of solving it.

In the three approaches given till now, one either neglects the second
order derivative term %& or uses successive minimization techniques. In
an interesting correspondence Byrne and Burke [6] use a slightly different
approach. They use the optimal control for the regulator problem without
sensitivity constraints as an initial approximation to the optimal control with
sensitivity constraints. Let the optimal control for the problem without
trajectory constraints be

U= Kx (27)
where K is given by

K=-RT8'R (28)
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and g is the solution of the Riccati eq.
B+ PA+ATR +Q- PBR™ BTP =0, P(T) = 0 (29)
FRREAR PR BR=0. 5

Differentiating u with respect to parameter a gives

u .
% Ko + Ka X (30)

where Ka = 3K/ 3a

and differentiating (28) with respect to a gives

1.7 1T
K, =-R"'8'2 -R B, A (31)
3P,

wherezt-sa

Differentiating (29) with respect to o
: 1,7 1gTo T T
2+ 2(A-BRT'B'R) + (A-BRT'B'P) T+ (PA + A P
1,7 =157
-A(B, R"'8" +BR7'B,) R =0, (o) =0 (32)
This equation is solved to give ). Substituting eq. (30) in eq. (6), we get

G=(A+BK) o+ (A +BK)x+Bu, alo) =0 (33)

Then using the augmented vector Z = [ﬁ] » the augmented system becomes

1K + Bu, (o) = Z, (34)
where
A 0 T (B X |
Ka , B= A
A +8K A+8BK B 0
a a a

The problem is now to minimize the performance index given by (19) subject

to (34). This is a standard regulator problem and the solution is
u= -5’ (35)
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where P, is the solution of the equaticn
F+RE+ R P+ T-FER B F=0, BT =0 (36)

A number of comparisons have been made between these methods and the
results of these depend very much on the problem at hand. But if one was to
use a comparison indox of some sort composed of reduction in sensitivity per
unit increase in cost and the numerical effort required, then the routine of

Kreindler and Byrne and Burke would probably come out uhead.

Combined trajectory and performence index sensitivity reduction: The

paramet:r sensitivity of the performance index is important because the optimal
control is sotained by minimizing the given performance index. Yahagi [7]
worked on this problem and gave necessary conditions for an optimal output
feedback control with reduced performance index sensiiivity.

Yedavalli and Skelton [1] established relationship between the trajectory
and performance index sensitivities. They exploit this relationship to present
a unified way of reducing trajectory (output or state) sensitivity and performance
index sensitivity. Their method also considers control sensitivity, something
which is ignored by must authors. Although Yedavalli and Skelton developed their
method for the general case of r parameters, we will describe it for the case
of one parameter only. This somewhat reduces the notational complexity.

Using the notation developed eariier, the linear time invariant system is
x ® Ax + Bu, x(0) = Xq (37)

y = Cx (38)

where

y s a k dimensional sutput vector and C is the sutput matrix.
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The performance index of the unperturbed problem is

J= ﬁyTQy + uTRu)dt (39)

o

where
Q and R are symmetric positive definite matrices. The standard solution of
this is

u = Kx (40)

where K = - R™18Th ' (41)

and ﬁ is the unique positive definite solution of the matrix Riccati equation

PA + ATR - PBR™'BTR + CTqC = 0 | (42)

Let o be the uncertain parameter and A, B, C, x and y are continuous functions
of a. The sersitivity vectors are

State trajectory sensitivity véctor o= X/

Qutput trajectory sensitivity vector Yo © %é

Control trajectory sensitivity vector U, = %g

and performance index sensitivity Ja =-%§

From equations (37) and (38) we get
a= AX+Ao+B, u+Bu, a(o) =0 B (43)
=C,x+ Co (44)

Ya

Where the subscript a denotes partial derivative with respect to a

Using Z = [;] and W = [; ] the augmented system is
Qa

L=R +Bu+¥u, 2) = Z, (45)

W={z (46)
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where

[A 0 B 0
A 2 » g =2 s 3 -
A, Al B, B
c 0 Xo
. C = and Z, =
¢, C. 0

The authors define a new perfcrmance index which in addition to the output

sensitivity term also contains control sensitivity term.

L

T T T T
Jg =f{.¥ Qy + yaQ]ya *uy Ryu, *tu Ru} dt (47)

o]
where Q] and R1 are positive definite matrices.
The norms yl Q,ya, ulR]ua and lkdal are functions of time. They showed
that JS is an upper bound to these three norms.
where

k] is a nonzero scalar such that the matrix

S +as

SC = is positive definite
jusT 5

with S = block diagonal [Q, R]
S = block diagonal [Q] ,P‘]

¢ azu
They also showed that if %ai-and 27 are zero, then,

2
r@’: Q]‘Ya + uaT R]ua) dt = -]2- g %JJ- (48)
0

This relates the trajectory sensitivity terms yz Q] Yy and ul R]ua in (47) with

the performance index sensitivity Ja'

All this impiies that minimization of Jg achieves a trade-off between
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unperturbed optimal cost J and the sensitivities (output, control and performance
index). Although Ja is not included in the performance index Js, performance
index sensitivity reduction is obtained as a "byproduct".

Using equation (38) and (44)
vy + ) Q= xTeTaex + (x6] +6'C)Q (Cx + Co)

then Js becomes

. T T T
(c'qC + €,'qC,) €, %C] [ R 0] [u
TT T7T
Js = [x' ¢'] [u "a] t
o

T T
c'q,C, CQe Jlo 0 Ryl [uy
(49)
The above expression requires Uy Since the desired control law
us= k]x + kzc (50)

is not available, the authors use the control for the unperturbed problem
(given by eqs. (40), (41) and (42)) to obtain an approximate Uy

Then the approximate control sensitivity Usa is given by

Uga = kP (51)
where p is the approximate trajectory sensitivity.

Substituting equation (51) in eq. (43),

p=AX+(A+BKp+8u (62)
X
Defining Za = » we get
P
Za = AZ, * By, Za(o) =L (53)
Uy, = Kz, (54)
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where

Q
A = . By = , 1 = and X = [0 K]
A, (A +BK) B 0 o

The performance index Js becomes (using Usa for ua)

8 T T
Jg _an U, Z, + u'Ru) dt (55)

0

T T T
(cac + cTac) ¢ Tqc
where Ua =
c'qc, (cTqc + KTRy K)

The problem is to minimize JS subject to equation (53). This is a standard

regulator-problem and the solution 1is
u=K Za =K x+Kp ‘ (56)
where R = -R"18] P | (57)
ﬁ is the positive definite solution of the Riccati equation

5 T 1T .
PAy * AR - BBRTBR+ U =0 (58)

So the steps in the Yedavalli and Skelton procedure are
(a) Compute K given by egns. (41) and (42)
(b) Form the matrices A, B; and U,
(¢) The desired control is given by equations (56), (57) and (58).

As pointed earlier, results of comparisons between the various methods
depends on the problem used. Keeping this in mind we will now use a first
order example for the comparison of the methods described above. This example

has been used by a number of authors for this purpose.

58



The first order plant is

2x +u, x(o) =1

X=a
where o is the parameter with a nominal value of 1. The objective is to minimize
the trajectory sensitivity.

The performance index is given by

J = f(xz + uz) dt
[o]

To aid in the comparison of the various methods, the sensitivity integral,

S, is also evaluated along with J for each of the methods. S is given by

The resultg of this are given in table 1. Clearly for all the algorithms

a comparison with the simple regulator reveals that the decrease in sensitivity
measured by S is obtained at the expense of a higher cost given by J. The best
method would be the one which for the least increase in J will give the maximum
decrease in S. The method of Byrne and Burke is the best for this example.

The methods of Rao and Saudack and Fleming and Newman require much more

computation than the other methods.
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Eigenvalue Sensitivity

Besides the trajectory and performance index (cost) sensitivities there
is another important means of estimating the sensitivity of the system to
variations in its parameters. This is through the use of eigenvalue/eigenvector
sensitivity. It should be mentioned here that eigenvalue/eigenvector sensitivity
provides a less direct measure of the system sensitivity than trajectory
or cost sensitivity. Designers working with classical design techniques tend
to use eigenvalue sensitivity.

Crossby and Porter [8] developed expressions for eigenvalue and eigenvector
sensitivities for linear time invariant systems. Reddy [9] also worked on
the preblem of determining the effects of variation in system parameters on
eigenvalues. Although they provided explicit expressions for the sensitivity,
these authors do not suggest a method of reducing the eigenvalue/eigenvector
sensitivity. In an interesting paper Gourishankar and Ramar [10] combine the
problems of reducing eigenvalue sensitivity and closed loop eigenvalues (pole)
placements for a linear time invariant multivariable system. We will now discuss
their approach in some detail.

It has been known for a long time that using complete state feedback
the closed loop poles can be assigned to any desired location. It is also
known that for multiinput systems a number of feedback matrices give the desired
closed 100b pole Tocations. These controllers will in general give different
time responses. Designers usually use this freedom to obtain other desired
characteristics in the system response. Gourishankar and Ramar use this
freedom to minimize the sensitivity of the closed loop eigenvalues to the variation
in the system parameters without effecting their desired location. In the

following development, the closed-loop poles are taken to be distinct.
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Using the notation of the previous chapter, the 1inear time invariant

system is given by

x = Ax + Bu (1)
and the feedback law is

u = kx (2)

where K is mxn time invariant feedback matrix.

The closed 1oop system is then given by
x = (A + BK)x (3)

Keeping in mind that n elements of the mxn feedback matrix are sufficient
to place the n closed loop poles to their desired location, we subdivide

the feedback matrix into two parts as follows
= T.T T T T.T
K= [ky kp ===kj_j Kipq ===kpl
and k = ki
where kj is the jth row of the K matrix, j =1, 2, == m
The vector ﬁ is used to obtain the desired pole locations while the

elements of the matrix K are chosen to reduce the eigenvalue sensitivity.
Define

G = o up === Uy ugyy =yl

and y = Uy

Eq. (2) becomes
u = kx (4)

and
u = kx (5)
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We can now write eq. (1) as

x=(A+BRx +bu (6)
where

B = [by by ===-b;_; b4y ----b,] and b = b,

bj's being the columns of the matrix B.

Eq. (6) represents a single input system (G = “1) and the feedback vector
ﬁ in eq. (5) can be designed to place the closed loop poles in their specified
location. This can always be done as long as the pair (A + B K, G) is completely
controllable. Since A + B R depends on K, care has to be taken while selecting
K so as to maintain the above mentioned pair completely controllable. The
authors have mentioned that this is not a serious limitation as almost any R
satisfies this requirement.

Substituting eq. (5) in (6) yields the closed loop system

X= (A+BR+DKx (7)

It is to be noted that the feedback vector i depends on A + B K and hence
on K.

Morgan [11] gave the expression for the sensitivity of the closed loop
eigenvalues to the variations in the elements of the system matrix A.

trace [R(Si ) -&-] (8)

3‘jz

s . a8t . 1

Y4 3, (99(s)/38)/ g0 4
where
sz is the sensitivity of the eigenvalue S1 to a small variation in the element
°j£ of the system matrix A,
gf{s) is the characteristic polynamial of the closed loop system,
R(S;)= adjoint (S5 I - K)
and K=A+BR+bk
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The authors choose the elements of the matrix K so as to minimize the

performance index

n n
g1 1T s (9)
fal gu1 g1 Ot

If only the ‘jz element is changing, the performance index becomes

AL (10)
1=
The authors mention that transforming to phase-variable form facilitates in
the minimization of J.
The procedure can be summarized as follows
(a) Choose K so as to minimize J
(b} With this value of K find ; which assigns the closed 1oop poles to the
desired location.
Any row of matrix K can be used as Q. One could take the rows of K as

; one at a time and calculate J each time. Then choose that row of K

min{imum

as i for which the lowest J was obtained. This is usually not done as

minimum
the amount of computation increases enormous:;

Tne design procedure is illustrated by ti2 following linear time invariant

second-order system with two inputs and two cutputs,
X = Ax + Bu (1)
where
a2 1 1
2 %2 ° 1

The nominal values of a110 342 A and a,, are 0, 1, 0 and O respectively.
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| Only a5 varies from 1ts nominal value. The desired location for the closed

loop poles {s S] = <2 and S2 sz =3, The feedback matrix is

kr k2 k
. K = =
ARY) R
then
B = [bB)
‘ [o 17 f1 1
: and K - (kyy kppl (kg K21
; a3 0 L 1 0
:
| (kyq * ko) (1 + kyp + kpp)
(ag) + kyy) K22
This gtves
0 0
X . ]
| Ja
21 -

P—
. .

(s = kyy = kyp)  =(1 +kyp + kpp)
and R(s) = Adjoint

- (3 * k) (s - kpp)

(s - k) (1 +kpp * kpp)

(ag) + k7)) (s = kg = ky)

Gl -l - e e
H
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(Vekyp*hp) 0

Now trace R(s) %%:; = trg o

(s=kyy-ky) 0
UL PREY
9(s) = (s = Kqy = Kky) (s = kgp) = (1 + Kyp * kgp) (3 * k)
L . 2s - (kg + gy *gy)

. * as

The eq. (8) now gives

o1 . 3 L 0+ kg + kop)
21 * 3oy

2 s . (kyy * kgy + kpp * 4)
s2 - B _ o+ kyp + kgp)

5&

2 s 2.3 (kyy * gy + kop *+ 6)

The performance index becomes

J = (52})2 + (Szf)z

2 1 ]
= {1+ kg + kyp) { 7 * g
+ 4) (k1 * kpp * kyp + 6)
We have to choose K so as to minimize J. J takes its minimum value O if

Kjp * kg *kyp 440

and kyy * kyy *kyp + 640
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Take k2] =(

For 9 * 0, we get

9} 7 5% =slkyy ¥ Ky * kyp) + Ky kg = Ky = Ky Ky
Substituting the values of kZI and kzz ia the abcve expression,
k‘], “12 have to be chosen so as to get the desired characteristic polynomial
(s +2) (s +3) = s+ 65 +6

Equating the two polynomials, we get

kjy = kg = 1= -5

Solving for klZ’

(k]z -4) (1 + k]z) = -6

2 =

or (kyp = 2) (kyp = 1) =0

k12 =2, 1
k]] = ‘2’ ’3
kg * =3, -2
k21 = (

This gives the desired feedback matrix as
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ROBUST CONTROLLER DESIGN FOR LARGE PARAMETER VARIATIONS

» Leonard R. Anderson*

ASSUMPTIQNS
- 1) The physical process depends on a few key parameters aps eees Ay
(For wing flutter suppression these would be dynamic pressure, fuel
load in wings, etc). N would not typically be larger than 2 or 3.
2) These N parameters vary ¢ -2r limits that are either specified, or to

be determined in the design process.

a S a: £ a; i=1, ..., N
imin 1 Tmax

The range of each parameter is divided into a grid of a small number

of equally spaced points, e.g., 3-7 points.

[o s a: 1= [og 3 G Secevenes a; ]
lnin Tmax ', i

vith aimin ) ail; aimax ) aiMi
The set of Z, of possible parameter values, therefore has Na = M] . MZ ...MN
elements. _
3) For each element ae E the physical process can be modeled Ly a system
of linear constant coefficient 0.D.E.'s. For example, consider a wing

flutter model.

*Assist. Prof., Aerospace and Ocean Eng. Dept., VPI & SU.
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s A3)X + B(3)U + G(3) W, ReR", U R

X
37= HX + V yeRp

o AERO/STRUCTURAL/

=i
<}

DIGITAL/ANALOG
FLIGHT COMPUTER, pe
CONTROL LAW

Z=al+8Yy
u =K+ K,y
Typical Parameters that would vary might be
Actuators: Gain, Phase Error

Vehicle : Dynamic Pressure, Geometry
Sensors : Gain, Offset Error

4) The structure of the control law is specified, but values of constants
in the control law are to be determined in the design process.

For example, suppose the sensor signals consist of accelerations, y;.

measured at various points on the vehicle/wing, and the control law is:

- - o - - -

Ly o 1 Zy; 0

[}
+

yi’ .l = ], o..p

Z2i) Y Gy LRi] L1

-

us Kl 7+ K2 y
Let the elements of matrices Kl’ K2 and C]], CZI’ 012’ 522, .. be

represented by the design vector k.

5) If we choose a parameter vector a and a design vector K, we have a

well defined closed-ioop linear system

[f}=k(£ﬂ[x]+ F1W+ p]?
7 7] o_l [1_,-



6)

7)

8)

For one design point'z'there are NOl closed-loop system matrices
N Vo
A(k'uI), ses ey A(k’aN )
o

corresponding to the possible discrete values of the parameters

Qe s Ans ceey &
1° 72 Na

We can compute the eigenvalues of each of these Nq closed-lo0p system
matrices as

r (K(K,3y))
and collect them all into one set that depends only on the design

point K as

LR = PEEI) o MAR )

Also, for specified initial state and noise covariance matrices, we

can compute the RMS values of actuator signals, structural degrees

of freedom, or other linearly related parameters for any given closed

loop system X(’E,E) .

If the number N were not unreasonably large, we could find the maximum

RMS values of these variables for the Na closed-loop systems

RSy o AR )

Then, applying either random pattern search strategy (Bekey '81) or

nonlinear programming without gradient evaluation, we can search over

the space z;~of possible design points to achieve any of the following

design objectives:

a) minimize RMS values of actuator signals while requiring the set
A(?) to remain in some favorable region of the complex plare.

b) maximize the range % min® while constraining both RMS

i max
values of actuator signals, and location of A(F) in the complex plane.

n



- ¢) for specified 1imits on actuator signals and parameter ranges, move

A(K) as far to the left in the complex plane as possible.

IMPLEMENTATION PROBLEMS:

1)

One must be able to effectively generate the 1inear models A(SD,

8(3), G(K) corresponding to the specified parameter ranges. This is
probably not possible on-1ine, but will require these arrays of arrays
be stored on disk before the controller design study is initiated.
It may be difficult to avoid local minima in the search for an optimal
f; and alternate starting points should be considered.

One must religiously avoid the curse of dimensionality and reduce the
number of parameter points N, to an absolute minimum (i.e., 9 or 15).
Care must be taken to construct a well-posed problem in which none of

the design variables f'may go to infinity.
REF: G. A. Bekey, "Modeling and Identification of Monlinear Systems

with Hysteresis", 3rd Int. Conf. on Math. Modeling, U.C.L.A., July
29-31, 1981.
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