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^..	 Introduction

The maJor focus of this research work has been the continuing develop-

ment of "Riccati Iteration," a new numerical tool for the design and analysis

of linear control systems. This report is arranged into four chapters con-

sisting of two research papers, an extensive literature review, and a

viewgraph summary of directions for future research work. The Masters degree

lthesis "Comparison of Algebraic Riccati Equation solvers" by Mr. Rasim

Baykan was also supported by tiA s resaarch grant. An apology must be made

for the fact that the numerical examples in chapters II and III are taken

from other aerospace applications and computer-generated random cases rathar

than aerodynamic flutter models as originally proposed in this research effort.
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POLE PLACEMENT AND ORDER REDUCTION IN Ti10-TINGE-SCALE

CONTROL SYSTEMS THROUGH RICCATI ITERATION

Leonard R. Anderson*

Abstract

". transformation of variables taken from singular perturbations may
`	 be applied to two-time-scale linear systems in state space form to reduce
i

	

	 the system to block-diagonal form with slow and fast modes decoupled. The
transformation is easily computed by applying the new "Riccati Iteration."
The iteration yields a solution to the nonsymmetric algebraic Riccati equation
obtained by partitioning the original system matrix A. The numerical pro-
cedure is initiated with the trivial iterate Lo = 0, and is log bally convergent
to the desired unique time scale decoupling solution.

After transfornation, thr decoupled system may be used in controller
design to achieve exact closed-loop pole placement in the slow subsystem

{	 without altering the poles of the fast subsystem. The decoupled form may
1

	

	 also be used to reduce system order by sitting a small parameter to zero.
Provided the fast subsystem is stable, the order reduction can be expected
to yield a good approximation to the original system. These methods are

I,	 demonstrated using the 16th order linear model of a turbofan engine.

L

This paper was presented at the 3rd International Conference on Mathematical
Conference, University of Southern California, July 29-31, 1981 and has been
accepted for publication in Mathematical Modeling.
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1. INTRODUCTION

Large scale linear control systems are encountered frequ¢ntly in engineering
-	 problems such as the design of high performance aircraft i o z , large space

structures3 , or power systems4 . A recurring theme in such problems is the
need to reduce the originally high order of the system to facilitate simula-
tion, eigenanalysis, or control system design studies. The question of order
reduction has been widely researched and many order reduction schemes have
been proposed5 0. The method presented here is related to the familiar eigen-
space analysis of linear multivariable systems, but is particularly well suited
to direct numerical implementation for large scale systems, and systems with
"stiff" dynamics.

Consider the linear control system

x=Ax+Bu
(1)

waCx+Ou

where x, u and w are state, control and output variables-of dimension n, m
and 1, respectively. As proposed by Chow and Kokotovic7 , system (1) will be
classified as two-time-scale if the eigenvalue spectrum of the A matrix,
represented as a , can Be separated by absolute values into nonempty sets
S and F with nl and n2 - n - nl elements, respectively, such that

Is i l << Ifi I for all si in S, and f  in F.	 (2)

A naturally occurring system small parameter is the eigenvalue ratio

maxlsi(

u =

	

 i	 (3)
mi n If « 1. 

	

^	 3

This parameter provides a measure of the systems time scale separation and
identifies (1) as a singular perturbations problem. This particular small
parameter was also proposed by Kelley6.

More refined partitioning of the spectrum A(A) yielding three or more time
scales (i.e., eigenvalue groups) may also be considered with two or more

'	 small parameters analogous to (3). The technique described below may be
applied repeatedly for such cases. Only the two-time-scale case will be con-
sidered here.

2. THE LK TRANSFORMATION

Such two-time-scale systems may be con , -eniently transformed into decoupled
subsystems by a two step transformatiot to new variables y - T2T1 x - Tx
with

	

Tl 
a	

I	 0	

(
L	 I	

4)

6



	

I	 K
T2 =	 (5)

	0 	 I
,r

	

I+KL	 K

T =	 (6)
L	 I

where the I arp identity matrices of dimension n l and n2 . If the original
system (1) is partitioned as

xl	
=	 All	 Al 2"

	

 
xl	

+	 B1 u	 (7)

x2 	 [A21
	 A22	

x2	
B2

where A1l is n l x n 1 , etc., then the new system defined by transformation
(4) will be block-triangular provided the n2 x nl matrix L satisfies the
nonsymmetric algebraic Riccati equation (ARE)

LA
II 	

A22  - LAl2L + 
A21 = 0

'	 (8)

If, in addition the n l x n2 matrix K satisfies the Lyapunov equation

i	 KA	 A11 1 +A =0	 (9)
22 	 12

where A1l = All - Al2L , A22 = A22 + LAl2, then (7) is transformed to the
block-diagonal form

Yl	 = I A 	 Yl	 +	 81 u
(10)

Y2	 l 0	
A22	 Y2	 62

where 8 1 = (I+KL) 61 + KB2 1 62 = L8 1 + B2.

Such transformations have appeared in singular perturbations work 
9110,11 

and
were introduced into the controls literature by Kokotovic 12 . One attractive
feature of transformation T is that it is always nonsingular and has the
explicit inverse

	

I	 -K
T-1 =

	-L 	 I+LK

Singe A is similar to matrix A, the eigenvalues of A become the eigenvalues
of A11 and A22 , i.e.

a(A) = a(A11 ) U a(A22).

j

	

	 It is well known that ARE has many solutions
13,14

	If we express the A
matrix in spectral form as A - MJQ where M is a modal matrix, J is diagonal

{	 (assuming A nondefective), and Q=M- 1 , then solutions to ARE can be expressed

I^.t



S ^+
t

in terms of partitions of M. MJQ is partitioned conformably with (7) so that 	 A

al
M^l, J1 and Qll have dimensions nl x nl, etc. It can be shown by matrix

gebra that L is a solution to ARE if

1) Mil is nonsingular

2) L o 41>l M11 -1 s Q22-1Q21	
(11)

Also, if L satisfies (11), then All n Mll J1 M11 -^• In general there will be
one solution to ARE corresponding to each partition of '^he eigenvalues of
A into All and A22.

The solution L of particular interest in two-time-scale systems is the unique
solution to ARE which yields

a(All) - S,
	 a(A22 ) = F	 (12)

and from here on it is assumed that L satsfies ARE §nd ( 12) .. The Lyapunov

equation (9) will have a unique solution l provided Al l and22 have no common
eigenvalues, which is guaranteed by (12). The solution K of% can also be
expressed in terms of the modal matrix M as

K = MIIQ12 = -M12Q22'

One method of computing L is to compute nl eigenvectors 
M11 spanning the

M21
slow eigenspace and apply ( 11). However, as rg;ently shown, 3,16, L can be
computed as the limit of the Riccati Iteration lu algorithm

1
	L i = (A22 + 

L1A ,12)	
(L All + A21)

initialized with Lo = 0 which is globally convergent to the desired decoupling
L. If we define the residual

Ri j Li All - A22Li - Li Al2
1
i + A21

then in the limit as i -* 	
IIRi+III ^ u.

Thus L is readily computed for strongly two-time-scale systems (i.e. those
with very small u).

3. ORDER REDUCTION

The original system (1) can therefore be considered as the decoupled

L	 subsystems

1.	 Y1 = A11 y1 + 6
1 u	 (13a)

j	
Y2 = A22y2 + 6

2 u	 (13b)
1.

8

•	 1:



I

L

f.

which model the system slow and fast dynamic parts, respectively. The
appropriate initial condition for (13a, b) is y(0) - Tx(0). The decoupled
form can yield a saving in simulation studies since only the fast subsystem
(13b) need by integrated with a small time step. If the original system
(1) is integrated directly, then one must treat the entire nt h order system
as fast to obtain accurate numerical solutions.

As noted above, order reduction is often required in the study of large
scale system, and this may be conveniently done using decoupled subsystems
(13a, b). Using the spectral norm,

All	 S u

11k,11

so we can write (13a, b) in the standard singularly perturbed form

yl = Allyl + 81 ^i
(14)

u Y2 = A22y2 + 8
2 u

where A22 = u A22 and 82 = u 82. The zeroth order approximation to (14)
obtained. by setting the small parameter to zero is then

Y1 = All yl + 8
1 u	 (15a)

Y2 ' -A22-1 8
2 u	 (15b)

with initial condition

Yl ( 0 ) - ( I+KL)xl (0) + K x2 ( 0 )	 (15c)

and the approximation x to the original state x is given by

I	 -K

X =	 yl +y2 .	 (156)

-L	 I+IK

If the fast subsystem (lzb) has eigenvalues with large negative real part,
i.e.

Re (f 
J
)<< - maxis i l	 for all fj in F	 (16)

then the n i th order approximation x can be expected to yield a good approxima-
tion for x outside of an initial boundary layer where fast, stable dynamics
may predominate.

Note that if one is primarily interested in output variables w rather than
state variables x, the reduced order model (15) may be written in a compact
matrix form similar to (1). Transform and partition the output matrix as

[Cl C2
1 
= C = CT-1

9
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to yield

3

f

Y1 s All yl + B
1 u

w a i
l 

yl+Du

	 (17)

where

D = D - C2A22 -1 B2.

This order reduc$Jon method has been shown to compare favorably with other
standard methods".

4. POLE PLACEMENT

Dynamic systems are often modeled as linear control systems for the purpose
of designing a feedback controller to achieve specific closed-loop eigenvalue
locations. Through application of the LK transformation, an n-dimensional
eigenvalue placement problem can be reduced to separate eigenvalue placement
problems of dimension n l and n2.

It is well known that if a constant linear control system is controllable,
i.e.

	

rank (B AB ... An-1 B) = n,	 (18)

then there exists at least one real m x n dimensional fee0hack matrix H such
that the closed-loop eigenvalues given by

a(A+BH)

can be placed arbitrarily (as long as complex eigenvalues appear in conjugate
pairs). If the original system (1) is controllable, it can be shown by linear
algebra that the slow and fast subsystems (13a, b) are also controllable.
Transfer of observability from the original system to the decoupled subsystems
follows by a dual argument.

The design of a feedback matrix H to achieve a specific closed-loop eigen-
value location then follows directly. Suppose it is desired to relocate the
n slow open-loop eigenvalues S to n1 new eigenvalue locations S'. If one
c1n find"an m x n l feedback matrix A

l 
which satisfies

	

(A11 + BI HI ) = s ' •	 (19)

then system (13a, b) with feedback u = Hl yl becomes

Y1	 A11+61 H1 	0	 Y1	
(20)

Y2. 2 
H
1	 A22	 Y2

Thus the fast eigenvalues F are unchanged and the corresponding feedback
matrix for (1) is given by

H = [H1	 0] T.
	

(21)i

10



If in addition to relocating the slow mode eigenvalues S it is also necessary
to relocate the fast open-loop ei genvalues F to closed-loop valufx F' then
this can be done as follows. After solving for feedback ma crix H1 in (19)
find the unique (assuming S' and F have no common eigenvalues) n2 x nl matrix

P satisfying the Lyapunov equation

P(A11 +81 HI ) - A 22 + '2H1 n 0.

The block-triangular system (20) can then be transformed to a new block-
diagonal form

	

[

Y1	All	 0	 Y1 + 61 u	
(22)

Y'	y2_	 0 	 [Y2	
B2

where Y2 
Pyl + Y2' pll - A11 + B

1 H1 . and B2 - PBl + B2 and u - u - Hlyl.

Now relocate fast eigenvalues F to new values F' by finding an m x n2 feedback
matrix H2 satisfying

a(A22 + B2H2 ) - F'.	 (23)

The appropriate gain matrix for the original system (1) is then given by

u - Hx, H - [(H l + H2P) H2 ] T.
	

(24)

Thus, the block-decoupling transformation T can be used to exactly relocate
both slow and fast eigenvalues via state feedback.

Many variations of this approach are possible to facilitate the feedback matrix
design task. For example,by repeated application of the block-decoupling
transformation either of the decoupled subsystems (13a, b) could be further
transformed into block-diagonal form and a complete eigenvalue relocation could
be achieved in three consecutive design steps analogous to the above two design
steps (19) and (23). In many practical applications, the fast modes are all
stable and well damped so only the slow eigenvalues need be relocated.

5. A TURBOFAN EXAMPLE

The example considered here is the 16th order model of a turbofan engine which
was the theme problem for a recent conference on control of linear multivariabit
systems l . This model is the linearization of a detailed nonlinear simulation
(at the sea level maximum non-afterburner thrust point). The state variables
consist of shaft speeds, temperatures and pressures; the five control inputs
are fuel flow, nozzle area. two vane positions and compressor bleed; and the
five output variables are net thrust, total airflow. a temperature and two

(	 stall margins. For nl - 15, 5 and 3, the resulting small parameters are 0.304,
`	 0.371 and 0.383. Since these %a1.ies are not particularly small relative to

one, we might call this system weakly two-tim:-scale.

Selecting nl - 5, the L and K matrices were computed as described in Anderson13.
The response of the full 16th order system and reduced 5th order system con-
taining the slow dynami;s are compared in Figures i and 2. The response of

r	
11

l

t



total thrust and fan -Rpeed to step inputs in fuel flow rate and inlet guide
vane position demonstrate that good agreement 1s achieved between full and
reduced order response except during an initial boundary layer transient
where fast dynamics are significant. The response to a guide vane step in-
put provides a severe test of the reduced order model since this control
wariaole is located at the front of the engine and some time is required
for its effects to propagate to the net thrust.

Pole placement for this example was carried out with the goal of increasing
the speed of the thrust response. Applying the methods of the previous
section, the three slowest modes -0.65, -1.90 and -2.62 were relocated to
approximately -6.6. Since there are five control inputs in this example and
61 is nonsingular, it was possibl: to shift the above three poles and leave
the eigenvectars of the slow subsystem unchanged. Let the slow subsystem
have spectral form

Ali - Mi1 J1 M11

where J1 - diag (-0.65, -1.90, -2.62, -6.72 * ' 1.31).

Then feedback matrix H 1 was chosen as

H1 - 51 1 Ml 1 
G 

M11 -1

where o - didg (-6, -5, -4, 0, 0) and the model response for the resulting
H (c.f. equation (21)) is illustrated in Figure 3. As expected, the response
is much q!A cker with this feedback.

6.	 CONCLUSIONS

A method of time scale separation based on the block-decoupling LK trans-
formation is proposed. Methods of applying this trirsformation to order
reduction aid pole placement design tasks are described and demonstrated
for a turbofan engine example. As previously shown, the L and K matrices
are easily computed for large scale systems, particularly those systems
with large time scale separation and correspondingly small u.

12
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Numerical Solution of the Symmetric Riccati Equation through Riccati Iteration

Leonard R. Anderson*
Dennis W. Braver**
A. Rasiia•Baykan***

Abstract

This research paper presents a new numerical method for solving the

symmetric algebraic Riccati equation from optimal. control. This algorithm

employs the "Riccati iteration" which has been successfully used to solve

time-scale decoupling problems in structural vibrations. The algorithm is

related to the subspace iteration method, and the rate of convergence to the

solution is governed by the relative separation between the stable and unstable

eigenvalues in the Hamiltonian system of equations. Provided there is adequate

eigenvalue separation and ignoring roundoff error, the algorithm is globally

convergent to the desired Riccati solution. The method is demonstrated for

a set of 8th order random examples. Preliminary accuracy and timing comparisons

with other standard methods of solving the symmetric Riccati equations are

presented.

i
Submitted for presentation at the 1982 American Control Conference, Arlington,

Virginia and for publication in the IEEE Transactions on Automatic Control.
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I.	 Introductionct on

It is well known that In order to solve the infinite-time regulator

problem [1,2] with linear system

A = Ax + Bu	 (1)	 j

and quadratic performance index (the LQR problem)

J = 1/2 O (XTQX + uTRu)dt	 (2)

one must compute the unique positive definite solution S to the symmetric

algebraic Riccati equation

0 - SA + A 
T 
S - SBR-1 8TS + Q.
	

(3)

Here x is an n-dimensional state vector, u is an m-dimensional control vector,

A and B are constant matrices Q and R are positive semi-definite and positive

definite, respectively. Also it is assumed that the matrix pair (A,B) is

controllable, and the pair (A,QI/2 ) is observable and that B has full rank.

Then assuming that any constraints on the size of u(t) are not violated, the

linear feedback control law which minimizes the performance index J is given

by

u - Kx where K - -R -1 BTS .	 (4)

Algebraic Riccati equations similar to (3) also play a fundamental roll in

discrete-time optimal control problems, in optional estimation problems, and

is many other areas of applied mathematics [3-7]. See Jones [8] for basic

necessary and sufficient conditions for solutions of equations of this type.
I

Among the most widely used solution methods for solving algebraic

Riccati equations are the Schur vector method described by Laub [9], methods

employing eigenvectors of the Hamiltonian system [1,2,10,11] and Newton-Raphson

18



methods (1,2,121. The Riccati iteration method differs from these methods

in that neither eigenvalue computation nor solution of equations of the

Lyapunov-type are required. The algorithm 1s suprisingly simple, requiring

only repetitive solution of linear equations of order n. However, caution

must be exercised when applying the method to LQR problems with nearly zero

ei genval ues, or ei genval ues with large imaginary  part.

II. The eigenvector solution to the algebraic Riccati equation

Given the linear system (1) and performance index (2), we can form the

control Hamiltonian and apply the necessary conditions for optimal control to

obtain the Hamiltonian system of equations

X	 A -BR71BT x	
x

=	 o	 H	 (5)

Y	 -Q -AT	 Y	 Y

where y is an n-dimensional vector of costate or adjoint variables. The

2n x 2n matrix H has symmetric eigenvalues. That is, if a is an eigenvalue

of H then -a is also an eigenvalue of H.

If matrix H is represented in spectral form

M11 M12	 -Al
	 0	

411 Q12

H	 MAM-1 =

Lm2l M22 L 0	 Al	 Q21 422
where the matrices are partitioned conformally with (5), and Al contains all

the ei genval ues with positive real part ordered as

Al = diag (al, 129 ..., Xn ) with Iai{_{xi+11, 1 = 1, 2 0 ... n-1. (6)

then the desired solution, 5, to the Riccati equation is given by

SM
11 = M21 or 422 S = -Q21 - (7)

19



(8)

(9)

-Mil Al Mil

0

MIIilQ12+M12j2Q22

1
Q22 ^1 Q22

(10)

Todemonstrate  his fa t	 I t similarity transformationt	 c apply he

I

	

I 0	 I 0

j
T =	 ,	 T-1 =

a.
-S	 IJ 	 LS	 I

to the Hamiltonian system to obtain

A - BR-1 6 
T 
S	 -BR-16T

N = THT
-1
 =

ft SA-ATS+SBR-I
BT

S-Q	 - AT+SBR 1BT

or in spectral form

I	 0	 M
l  	 MI 2 " -Al	

0	
Qll	 Q12	 I	

0

H=

	

-M21 M11	 I M21	 M22	
0	

Al	 Q21	 Q22	 -Q22Q21 I

Since the.closed-loop system for feedback law (4) is

is = Ax + Bu = (A-SR-1BTS)x
	

(11)

F.	 AA
I:
	 Ax

ti
the eigenvalues -Al become the eigenvalues A(A) of the closed-loop system.

i
	

Given efficient eigenanalysis software such as EISPACK [13], one can directly

compute the eigenvalues and eigenvectors of the Hamiltonian system (5) and solve

the appropriate system of linear equations (7) for the Riccati solution S.

20
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If -A l includes complex conjugate eigenvalues a j , aj with corresponding complex

f
( '	 conjugate eigenvectors uj - a + is, u^ = a - is, then complex arithmetic

! l	 can be avoided in the set of linear equations ( 7) by replacing uj with a and

u j with s.

As an alternative to computing eigenvectors M11
	 one can compute

^	 M21

the n Schur vectors [9] spanning the stable eigenspace and solve (7) with MW

M21 replaced by corresponding Schur vectors. Schur vectors are defined as

follows. Given any nxn matrix C with eigenvalues a 1 , ..., 1. there exists a

unitary matrix V such that V HCV is upper triangular with diagonal elements

71^,...,11n. The columns of V are the Schur vectors of C. possibly complex,

corresponding to this particular ordering of eigenvalues.

If some of the eigenvalues 
X  

are complex, then one can avoid complex
ti

Schur vectors by employing a (real) orthogonal matrix V such that V AV is

real and nearly upper triangular. The only nonzero subdiagonal elements in

'%M 1%0
will be due to real 2x2 diagonal blocks corresponding to complex eigenvalues

ti
Xi . This is termed the real Schur form of C, and the columns of V are real

Schur vectors.

To return to the problem of computing the solution ( 7) to the symmetric

Riccati equation (3), one can compute the 2n real Schur vectors

IV	 ti

ti
V11	 V12

V	 (12)
ti	 ti

V21	 V22

of the 2nx2n matrix H so that x,11	provides a basis for the eigenspace

V21
corresponding to stable eigenvalues -Al.

The computation is best performed using the subroutine HQR3 [14] with

small modifications. In its standard form, HQR3 orders the eigenvalues of H
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by modulus with Ia1 1sIa2 I_ ... on the diagonal of VTO. The ordering statements

in MQR3 may be modified so that either

1) all stable ( negative real part) eigenvalues are placed in the upper left

^ V	 diagonal block of 
VTR^ 

and unstable eigenvalues are placed in the lower

right block, with no regard to ordering within each block, or
ti

2) the eigenvalues of H are ordered along the diagonal of VTNV by real

part from most negative to most positive.

Only modification (2) is implemented in the numerical examples which

follow.

III. Riccati iteration solution to the algebraic Riccati equation

Before proceeding to the solution of the symmetric Riccati equation (3),

we will first describe in detail the solution of the closely related time-

scale decoupling problem using Riccati iteration [15,16], and then extend

these results to (3).

The time-scale decoupling problem can be stated as follows. Given an nxn

diagonalizable matrix C with eigenvalues

s i t s2 , .06 9 snl , fl , f2 , ....fn2

not necessarily distinct and satisfying

Is l i-02 1 < ... <I sn} I < I fll<I f2I$ ... <Ifn2I,

with	 u	

Ifll	

(13)

r 1:

; if parameter u is small relative to one, we say that the matrix is two-time-

scale [11,18]. Let the diagonalization of C be given by C = EJF

i	 where F=E-1 and J is diagonal with diagonal entries

t =	 s,s.,...,snf,f,...,fn
i	 Z	 1	 1	 2	 2

t!	 22



Partition the matrices C, E, F and J as
r

Cll	 C12	 Ell	 E12

p	 C	 E

l-' C2121	 22	 E2121	 221

F11	
F
12	 J1	 0

F =	 J =

F21 F22,0 J2

where C II I Ell , F III J1 are nl xnl , etc. For k = 0, 1, 2, ... partition the matrix

C  similarly as

Sk Tk

C  =

Uk V 

The Riccati iteration and its convergence properties for the time-scale

decoupling problem [19] are introduced through

Theorem 1. Given u < 1 and Vk nonsingular for k = 1, 2, 3, ..., the iteration

LO = 0	 (14)

Lk+i s (C
22 + LkC12)-1(LkCll + C21)

k = 0, 1, 2, .. .

is well defined and

L
k --.* F22-1F21 

as k --►

with convergence in the sense of matrix norm. For any ixj matrix B, 11811
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r

wi I  be gi von by

11811 • $up 1 IBxl I j
11 x 11 1 s 1

where 11 . 11 i • 11- 1 1 j denote convenient norms on Ri and RJ.

The proof of Theorem 1 1s presented in the Appendix.

Furthermore, the rate of convergence of L k to F22-1F21 is controlled

by tha small parameter u as shown in the Appendix. Convergence would be

expected to be unreasona: -̂ly slow for u close to one.

To apply the Riccati iteration W the symmetric Riccati equation (3)

we need to shift the Hamiltonian matrix (5) as

H n H + As I	 (15)

so that the stable, left half-plane eigenvalues -al, -1129 ..., -An of H
ti

become the slow or small elgenvalues of H analogous to s l , s2 6 •••, 
snl.

We can now state the formal conditions for convergence cf the Riccati

iteration for the symmetric Riccati equation (3) as

Theorem 2. Given the Hamiltonian system (5) and given shift distance

as satisfyingi

1 Note, this redefines u for the sequel, cf. (13).
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max( - ^i + ash

a	 i n1 ... n	
(16)^!	 u	 <min

1

	

i n1,...,n	 ^1 + psi

the Riccati iteration

SO=0

(17)

Si+l	 ( -AT + As 
I - SiBR-1BT)-1(Si(A + Xsl)-Q)

converges to solution (7) with asymptotic rate

11 Si + Q22-1Q2111 < cu 

where the matrix norm is as in Theorem 1, and constant c is independent of k.

The proof of Theorem 2 follows directly from Via proof of Theorem 1 in the

Hamiltonian setting.

The key practical difficulty in implementing iteration (17) is the

estimation of the shift distance as . Two choices for the shift distance are

proposed, namely

Xs	
i

a
1,...,n 1'XiI	

(18)

Xs a max	 1ai1 + m,n	 1ai1
i = 1, ... ,n	 n	 (19)

or

25



^-	 The shifting strategy (19) will in general yield higher rates , of convergence
II	 since the ftabie eigenvalues of H become nearly centered about the origin
L:

in A Shift strategy (18) is recommended for symmetric Riccatl equations with

eigenvalues having large imaginary part, since this minicizes the chances of

no convergence, or convergence to a solution other than the desired solution (7).

Both shifting strategies can be implemented numerically in approximate foam.

The computational algorithm for the symmetric Riccati equation is therefore

Algorithm 1.-

1) Form the Hamiltonian matrix

A	 -BR-IBT

H =

-Q	 -AT

2s, Beginning with the 2n vector

xo = (2n) -1/2
 [1 1... 1]T

perform a few power steps (five or more)

zi+lT = xiT H

Ai+l = xi+l / 1 Ri+1 11, i = 0 , 1 9 ...5

where 11.11 is the Euclidian or Froben i us norm.

3) obtain an initial estimate of the shift distance
t_	 ti

"I - I1xlII

( f 	 r

ai + I I Xi +i ( l
ai+1	 , i = 1,2, ..., 5

2

As,o s,6.

26



4) Estimate a limit for Xxx

111 m t a 1.5 as  0

and partition the vector x6 as

x6 a [u0 UO

with u0 of dimension n.
5) Initialize SO = 0, j = 0, and form the inverse power vector

v0 a (n) -1/2 [1 1...1]T

of dimension n.

6) Form the matrices

H22,j = -AT + as,j I - SjBR-1 BT

Gj s Sj(A + XS ,jI) - Q.

7) Perform a power step and estimate )ma
x-

N j+l = u jT H229j
^Mx,j = no
	 0 , min (alimit, I(uj+l II - xs,j))

u j+1 = u j+1/ I (uj+1 I I

8) Solve the linear system for Sj+1 and vj +l

H22, j [S j+1 tiv j+l _ [Gj v j	 (20)

9) If j > 1, find the relative change in Sj.

d i = iisj+l - Sjll/Ilsjll
27



1I
and terminate the iteration if 61 is less than or equal to some specified

convergence tolerance c, or has reached a minimum value.

10) Normalize the inverse power vector y^+1 and estimate lmin•

i

	

0max ( , min (a	 ,	 1	 -	 j))arming -	 max,,)	 a
{ { Y	

{ (	 s,
i	 J+l

v j+l = J+1 /I Rj+1 { i -

11) Update the shift distance by either

3As +	
J..

As ,J+1	 4(21)

or

6 as + `max + 'mi n
"s,J+l	 8	 (22)

12) Increase 3 by one and go to step 6.

Obviously, if one computes the updated shift distance by the more

conservative (21), then one need not include the inverse power vector v i in

the iteration. The power and inverse power estimates of 
Ami n

 - ( al{ and

XMIX - {1yr ) are based on the fact that the eigenvalue spectrum of 
H2,.3 

converges

to the eigenvalues Al increased by Xs,j.

This iterative technique for solving the symmetric Riccati equation has

similarities to one proposed by Farrar and Di Pietro [201. The methods differ

in that their method is initialized using eigenvectors, and employs iterative

improvement requiring solution of a Uapunov-type equation at each step.

IV. Numerical examples

The eigenvector and Schur vector solution methods and the Riccati iteration

method were evaluated in a limited comparative test. The test consisted of

i^
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sets of linear-quadratic-regulator problems generated as follows. The elements

of the A and B matrices of system (1) were chosen as random integers from a

uniform distribution over the internal [-10, +101, with 25% of the elements

set arbitrarily to zero. The order n of the system was varied between 5 and 20,

and the control dimension m was held at one. The positive samidefinite weighting

matrix Q was constructed from a Choleski factorization

Q = PPT

where P is upper-triangular. The upper-triangular elements of P are also

integers chosen uniformly from the internal [-10, +10], with 25%.of these

elements set to zero. In all cases the R matrix, a scalar, had a value of 2.

All methods were either obtained or coded in the FORTRAN language in

double precision, and executed in batch mode on the VPISSU IBM 370/158 computer.

Table 1 presents the results for a set of ten random cases of order eight

i	 generated as described above and solved by Algorithm 1. The table includes

the theoretical rate of convergence u for each of the shift strategies (18)

i	
and (19), the value of the Riccati residual JjRijj where

Ri = S1 A + ATSi - S i BR-1BTSi + Q	 (23)

for the converged solution S i , the maximum relative error between the

eigenvalues of the closed-loop system (11) and the stable eigenvalues of the

Hamiltonian system (5), the number of iterations in Algorithm 1 to reach a

minimum value of d i , and the corresponding central processor execution time

 in seconds. As noted earlier, the shift strategy (18), (21) is significantly

slower in convergence than (19), (22). However, the faster method (19), (22)

fails to converge for case 8 as expected since u > 1.

To further describe the convergence characteristics of the Riccati

Iteration, the values of log lO ((Ri 11 and log10 1 1 6 i l l versus iteration
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number are plotted in Figures 1 and 2. These figures correspond to cases 2

and 9, and represent the most rapid and the slowest convergence of the ten

cases, respectively. As shown, the theoretical limit u, cf. (15), accurately

Predicts the true rate of convergence of the algorithm for each of the two

shifting strategies. The specific A, B, Q and R matrices for cases 2 and 9

are listed in Tables 2 and 3.

For comparison purposes, the symmetric Riccati equation for these ten

cases is also solved by the eigenvector and Schur vector methods. This data

is listed in Table 4. As in Table 1, we specify the value of the norm of the

Riccati residual 11RIJ corresponding to the computed solution S, the maximum

relative error between the eigenvalues of the closed-loop system and the

Hamiltonian system, and the execution time in seconds. The execution times

include both the time to compute eigenvectors or Schur vectors and the time

to solve the linear system ( 1). The numerical method used tc solve both the

linear systems ( 7) and ( 20) in this study was LU decomposition with partial

pivoting without iterative improvement of accuracy. Specifically, the Fortran

subroutines OECOMP and SOLVE were used, but not the subroutine IMPRUV from the

widely used Forsythe and Moler text [211.

For the eigenvector solution method, all eigenvalues and eigenvectors

of the Hamiltonian matrix were computed using EISPACK subroutines ELMHES,

ELTRAN and HQR2. Then eigenvectors corresponding to stable eigenvalues were

selected to form tly^ real 
M111 

matrix. For the Schur vector solution method, the

real Schur vectors till 	
M21, 

spanning the stable eigenspace were computed

using EISPACK subroui nes ORTHES and ORTRAN, and Stewart's subroutines HQR3

and EXCHNG. The HQR3 subroutine was modified [221 so that the eigenvalues

Mare ordered along the diagonal from most negative to most positive real part.

As shown in comparison of Tables 1 and 4, the Riccati iteration is able to
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produce final Riccati residuals two orders of magnitude smaller on the average

than the eigenvector and Schur vector methods. However, the Riccati iteration

execution times are slower than the eigenvector and Schur vector methods by

a factor of ten, on the average.

The choice of method clearly depends on both the parameter u for the class

of problems under consideration, and the relative importance of minimizing

computer execution time versus software simplicity. In general, as the order

n of the LQR problem increases, the parameter u increases and approaches

or exceeds one. Therefore, the eigenvector/Schur vector algorithms would

still be the method of choice for problems of large order.

V.	 Conclusions

A new numerical algorithm for solving the symmetric Riccati equation from

the linear-quadratic-regulator problem has been presented and compared with

standard methods. A formal proof of convergence for the Riccati iteration is

presented, and numerical examples confirm the theoretical rate of convergence.

The strengths of this new algorithm are its simplicity, accuracy and theoretically

transparent basis. Riccati iteration may be particularly useful for low order

adaptive control algorithms or control system design studies where one must

update the Riccati solution as system matrices or performance index weighting

matrices slowly change. The primary weakness of this method is that it is

slower than standard methods as shown here, and the rate of convergence is

dependent on sufficient stable/unstable eigenvalue separation in the Hamiltonian

system.
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Future research tasks incluee:

finding an appropriate conformal transformation for the Hamiltonian

system to increase stable/unstable eigenvalue separation and/or

decrease the imaginary component of eigenvalues.

Applying a doubling algorithm [23] to this method to increase rate

of convergence.

Appendix - Proof of Theorem l

To prove theorem 1 the following lemma will'be useful.

Lemma: For k = 0, 1, 2, ...

Lk = Vk1Uk.

Proof: We proceed by induction on k:

For k=0

LO=V-1UO=I.0=0

as required. Note that partitioning the product

C 
k 
C = C 0

yields

UkCll + VkC21 = Uk+1

UkC12 + VkC22 = Vk+l.

Assuming the induction hypothesis,

(`'22 + LkC12) = C22 + Vk1UkC12 = Vkl Vk+1

which is nonsingular by hypothesis.

Therefore Lk+1 = (C22 + LkCl2 )-1(LkCll + C21)

(Vk+1Vk)(Vk1C11 + C21)

1	 1	 1= Vk+l VkVk Uk+l '= Vk+1Uk+l

This completes the proof of the lemma.
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Proof of Theorem 1

Since C - EJF, where F-E -1 , we have C  - (EJF) k - EJkF.

Partitioning the product EJkF yields

Uk - E21 J1 
k F

li + E22J2 
k 
F21

I	 Vk s E21J1 
k F

12 + E22J2 
k 
F22

where J1 and J2 are diagonal matrices with diagonal entries s l , s2 , ..., sn
1

and fl , f2 , ..., fn 
2 

respectively. Therefore, by the lemma

Lk - (E2111kF12 + 
E22J2 kF22) - l (E21J1 kF11 + E22J2kF21)

for k=0,1,2,...

For brevity let

Dk = ( E21 J 1 kF12 + E22J2kF22),

An easy computation shows that

Dk 1 	(I-DkI(E21J1kF12))(E22J2kF22)-l2

therefore

Lk 	(I - Dk1E21 J1 kF
12 )(E22J2kF22 )(E21 J 1 kF11 + E2212kF21)

1

(I - Dk1E21 J 1 kF12 )(E22J2 -kE22E21 J1 kF11 + F22F21).

Hence,

1	 -1 -k -1	 k
Lk - F22 F21 - E22J2 E22E21 J1 F11

-(DklE21J1kF12)(F22J2-kE22E21''ik'll)

-(DklE21J1kF12)(F22F21).

Note that I I J 1 I I< I snl I and I I J2-i
 

11 	 1 "I'

so I 1 J2-k 11 11 Jl k I I	 s^	 uk•
I fl1
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furthermore,

Dk 1E21 J1 kF12 ` (E21 J 1 kF12 + E22J2kF22)-1E21J1kF12

= FZZJ21 E22(I + E21J1kF12F22-1J2-kE22)-1E21JlkFl2 .

I	 now I I (I + T) - 1 
11 < (1-I ITI I)

-1 if I I
T I 1 < l•

1`.
(	 so IIOk1E21J1kF12II -< au=k

^	 1 - auK

for sufficiently large k,

where a- i i F22-'11 I I E22-1 11 I I E21 I I I I F12 I I•

Combining these estimates yields

IILk-F22-1F21 II	 5	 1 k	
+	

a k	
II F22- 1F21II

u

where b - aIIF11II/IIFI2II'

Since u < 1, U  --+ 0 as k --► a*. This estimate completes the proof.
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Q s

R =

Table 2 System and performance index matrices for case f2

F

L

A

-8 -8 6 -4 -7 4 0 0

-2 -10 -6 -4 0 -3 1 1

-5 9 2 5 -6 8 0 -7

-7 -4 -4 10 5 2 0 -3

3 5 -1 2 1 -10 0 6

-8 2 -7' -9 -8 4 -8 0

-7 -1 -6 9 -10 -8 -6 7

-4 7 0 4 0 6 -1 2

BT s	 [ 0	 -7	 -7	 5 - 6	 -7	 -2	 0.1

48	 18	 7 -3	 -5 -10	 6 -9



Table 3 System and Performance index matrices for case X19

-8 -8 -7 0 -4 10 -9 0

4 -9 -6 -4 7 0 -4 -7

1 7 -10 -1 -3 0 10 -2

0 6 10 0 0 9 2 -10

A	 s
0 0 0 0 0 0 3 0

7 -2 -3 2 -4 -6 2 0

8 -8 8 0 0 0 0 -8

L	 5 0 0 0 -2 -1 -5 -6

8T =	 [ 0	 5	 8 6	 0	 0	 0 -6 ]

4

44 7 -6 15 17 -7 -12 6

7 20 8 7 7 -11 -4 -2

-6 8 21 6 -4 -4 4 -4

15 7 6 29 11 -7 -6 4

i7 7 -4 11 14 -7 -10 4

-7 -11 -4 -7 -7 17 2 4

-12 -4 4 -6 -10 2 8 -4

6 -2 -4 4 4 4 -4 4,

R s 2
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l:	 A Literature Review of Robust Controller Design Methods

{	 Alok Das*
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Lf	 Abstract

This paper presents a literature survey on the methods available for

designing robust controllers. A number of methods for reducing the trajectory/

performance index sensitivity in linear regulators are described. It is shown

with the help of an example that decrease in system sensitivity to variation

in parameters is obtained at the cost :	 higher value for the perfonmance

index. A method for reducing the eigenvalue sensitivity is also discussed.
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Introduction

The design of a controller for a system requires a mathematical model of

the system. In most cases some of the parameters of the system will change

with time. The changes in the parameters could occur due to a variety of

reasons for example, aging of components, environmental changes, etc. It has

been found that for some systems even small changes in certain key parameters

could appreciably degrade the performance of the control system. Hence, it

is very important to estimate the effect of changes in the system parameters

on its overall performance and to use controllers which minimize this degradation

in performance.

The problem then is, given a specified structure of the controller, to

find the particular controller which yields a system with minimum sensitivity

to variation in system parameters. Such controllers are usually called robust

or insensitive controllers. The robust controllers with constant feedback

gain matrix will be considered. Adaptive controllers provide an attractive

alternative to the problem of varying system parameters. We will not discuss

adaptive controllers here.

A large amount of literature is available on robust controller design

using both classical and modern control theories. A brief literature survey

is presented here and some of the more important methods are described. In

the analysis, the system parameters are assumed to take an unknown but constant

value around their known nominal value.

Appendix A	 contains a bibliography on robust controllers containing 113

references. The bibliography covers the following journals and conference

proceedings from 1910 to 1980.

Allerton Conference on Circuit and System Theory
IEEE Transactions on Automatic Control
International Journal of Control
Joint Automatic Control Conference
IEEE Decision and Control Conference
IFAC Symposium on System Stability and Adaptivity (1968, 1913)

Automatica

NOW
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Some other important references are also included.

Parameter Sensitivity Reduction in Linear Regulators:

A considerable amount of work has been done on the parameter sensitivity

reduction in linear regulators. Most of the literature on this topic falls

in one of the following categories:

a) . Trajectory sensitivity reduction

b) Performance index sensitivity reduction

In both of these approaches to sensitivity reduction, the main objective

is to achieve a trade off between optimality in the nominal performance and

sensitivity to small parameter variations. In a recent paper Yedavalli and

Skelton (1] treat the problem of trajectory sensitivity and performance index

sensitivity in a unified way. We will now discuss the trajectory sensitivity

reduction and combined trajectory and performance sensitivity reduction.

Trajectory sensitivity reduction. In this approach a quadratic trajectory

sensitivity term is included in the integrand of the performance index. One

of the initial papers on this is by Kahne (2]. This paper served as a starting

point for a number of research efforts. Kahne implements the control in an

open loop manner.

Let the linear time invariant system be given by:

x(t) - Ax(t) + Bu(t), x(o) - xo 	 (l)

where x(t) is the state vector of dimension n

u(t) is the control vector of dimension m

A and B are the state and control matrices of appropriate dimensions.

a is a time invariant parameter of the system x, A may depend on a. B

and u are taken to be independent of a.

In the linear regulator problem we dete nnine the optimal control vector

u*(t) which minimizes the performance index (subject to system eq. (1)).
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t l^

T
J =	 x (T) Fx(T) + j Lx (t) Q( t) x(t) + u (t) R(t) u (t)] dt	 (2)

o	 (2)

where T is the final time.

F and Q(t) are positive semidefinite nxn matrices

and R(t) is positive definite mxm matrix.

To incorporate the trajectory sensitivity into the design, consider the

traj ectory sensitivity vector

= ax
°	 as a = a nominal

Differentiating (1) with respect to a gives

a = A° + ax, °(o) = 0
	

(3)

where A - aA
CL	 as

A trajectory sensitivity term is incorporated in the performance index

and the problem becomes:

find u(t) that minimizes

J =	 XT(T)Fx(T) + 2 fT
I XTQX + u

TRu + °T s°} dt	 (4)

e

subject to

x = Ax + Bu, x(o) 	 xo	
(5)

a - A° + axI °(o) 0

Kahne solved this problem in the standard way.

This method has two major drawbacks:

For each parameter considered the order of the system of equations to

be solved increases by n. Kahne showed that this order could be somewhat

reduced by using the fact that the feedback matrix obtained in symmetric.

47



i

r•

2) The more important problem is that in a closed loop implementation, as

is usually the case, o(t) no longer represents the trajectory sensitivity.

This was pointed out by Kreindler [3].

t

	

	 We will now formulate the problem for a closed loop implementation. In
^.r

this case u and B will depend on the parameter a. Then eq. (1) gives

	

au	 6
o Aa x+Ac+Bau+B 

8a 
0(0) 0	 ( )

Using the linear feedback law

	

u = Kl (t)x + K2 (t)c	 (7)

we get

	

au _ac	 (8)
as	 3a+ K2 8a

Substituting in eq. (6),

o = (Aa + B. K1 )x + (A + Ba K2 + BK1 )a + BK2 as , 
a(o) - o	 (9)

The second order derivative as is neglected because the only way it can
be obtained is by differentiating eq. (9) with respect to a, this introduces
2

a
- 0 term and so on. The solution of eq. (9) with a neglected will provide

an approximate trajectory sensitivity vector p(t).

If p(t) is used in the feedback law, then u = K  x + K 2p	 (10)

and substituting in eq. (1) we get

x = (A + BK l )x + BK2p, x(o) = x0	(11)

Differentiating (11) with respect to a (neglecting R and letting 
8a = p)

gives

p = (Aa + BaKI )x + (A + BKl + BaK2 )P- P(0) = o	 (12)

Exact differentiation of (11) yields

_ (Aa + BaKI )x + BaK2p + (A + BKl )a + BK2	p(o) = o	 (13)
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where lk can be obtained from
aCL

(Aa + B
a Kl )a + (A + BKl + Ba Y,) 2R, 2R (o) - o
	

(14)

The difference between p and c can be reduced by taking u - W1 x + ^p

where t1 and 
^2 are chosen so as to reduce the difference between p and a.

Then,

is - (A + Bkl ) x + B^2 p	 (15)

P - (Aa + 8a I )x + (A + Blkl + Ba ^K
2 )p. p ( 0 ) - 0	 (16)

and 2i _ 
(Aa + BO ^l )a + (A + Bkl + Ba) a' 

as 
o	 0	 11

A number of authors have used this formulation to solve the problem of

closed loop trajectory sensitivity. Some of the important works will now

be discribed.

Kreindler [3] used the approximate trajectory sensitivity vector p(t)

in his formulation. Using equations (1) and (16) he constructed an augmented

system of order 2n.

Take Z =I pI

then

t = AZ + '9u. Z(0) = Zo 	(18)

A	 0

where A = (Aa + 8a k1 ) (A + Bkl + Ba)	
= o

LOo
and Zo=

also u	 1 YZ

The augmented problem solved by Kreindler was to find k l and	 so as to

minimize

J = J 
T

(ZT ^Z + uTRu)dt
0

(19)
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subject to (18)

Where

ro0 S

r

Q and S are positive semidefinite nxn matrices and R is a positive

definite mxm matrix.

This is now a standard linear regulator problem and the solution is given by:

K = [K1 K21 _ -R 1 if ^	 (20)

where ^ is the solution of the matrix Riccati eq.

=AT
 +Y 

-
 
IWO I

T^+iT, 5(T) =o	 (21)

As an initial estimate for ^1 and ^2 , Kreindler takes them to be K1 and K2,
f

but then eq. (21) is no longer one of the Riccati type because A depends on Kl.

6 vertheless he chooses K 1 and K2 to satisfy eqs. (20) and (21).

This apprr-ach works well as long as p does not differ much from the true

trajectory sensitivity vector c.

Rao and Soudack [4] modified the above procedure so that one can ;het a

better approximation for c. They also use p in the cost functional but use a

generalized version of Eq.(16).

p = Cx + Dp, p(o) = o	 (22)

Matrices C and D contain as many parameters as one may consider necessary

to get a close approximation for v by the procedure described below. From eq.

(22) we get

= Ca + D a$ a (o) = o	 (23)

In this case the augmented system of equations are

0
Z = AZ + Nu, Z(o) = Zo	 (24)
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where

A + BKI
A = Aa + Be Kl

Aa + Be Kl

0

9 I:

P J . where

XO

A 0 g = B and Zo a 0
C 0	 0

The procedure is to choose a set of values for the parameters in C and D

l '	 and with the new expression for A to find a r by solving eqns. (20) and (21).

This will minimize J given by (19). With this K, the parameters in C and D are

varied so as to minimize J
2

 flip - a11 2 dt

For this, eqns (11), (13), (22) and (23), have to be integrated simultaneously

afor a = nominal' The new values of C and D are used to again solve the Riccati

equation to get a new K. This procedure is repeated until J 2 reduces to an

acceptable level.

This procedure may give better results than Kreindler's procedure, but

its computational complexity is far greater than that of the latter.

Fleming and Newmann [5] use the exact trajectory sensitivity vector o

in the performance index but use the approximate trajectory sensitivity vector p

in the feedback law. They define the augmented state vector Z as

p
Z= a

a

Using eqns. (11), (12), (13) and (14) the augmented eqns can be written

as (of order 4n)

(25)Z = AZ, Z(o) = Zo

BK2	0
A+BKI 

+BeK2	
0

Be K2	A + BKI
0	 Aa + Be Kl

0	 -
0

BK2

A+BKI +Be K2
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Ix0

0
and	 Zo

0

0

l.:	 The performance index is

LJ =I 
T 

(x TQx + J
s. 

+ uTRu)dt

This can be written as

J = T ZT (17 + ET KT RKE)Z dt	 (26)1
where

Q 0 0 0

0 0 0 0

	

= 0 0 5 0	 E _ ^ I2n 02n, and K = [K1 K23

0 0 0 0

The problem then becomes to choose K so as to minimize J subject to (25).

Clearly this is not a linear regulator problem in its standard form and the

authors describe a few computational methods of solving it.
I

In the three approaches given till now, one either neglects the second

i	 order derivative term 
ea 

or uses successive minimization techniques. In

Ii

an interesting correspondence Byrne and Burke [6] use a slightly different

f	 approach. They use the optimal control for the regulator problem without
1.

sensitivity constraints as an initial approximation to the optimal control with

sensitivity constraints. Let the optimal control for the problem without

trajectory constraints be

i^	 u = Kx	 (27)

where K is given by

K = -R-18 T	 (28)

1.
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and I is the solution of the Riccati sq.

	

P1 + PP+ ATPI + Q - P1BR l BT 1 = 0, P(T) = 0	 (29)

Differentiating u with respect to parameter a gives

I^	 au
8a ' Ka + Ka x	 (30)

i	 where Ka = aK/aa

and differentiating (28) with respect to a gives

K 
= -R"16T^ -k l Ba P1 	(31)

aP1
where	 as

Differentiating (29) with respect to a

+ 1:(A-BR -1 BTP^ + (A-BR-I BTP^ TI: + 
(Pfa + Aa Pl)

-P1(8 R-18T + BR-l Ba) P1 = 0, ' (o) = 0	 (32)

This equation is solved to give 	 Substituting eq. (30) in eq. (6), we get

	

J = (A + BK) a + (Aa + BK.) x + Bain a(o) = o	 (33)

Then using the augmented vector Z = IaI , the augmented system becomes

Z = AZ + Su, Z(o) = Z0	 (34)

where

A	 0	 -	 "B	 x0

A =	 , IF :	 , Z =0
.Am +SKa A+BK.	Ba	 o

f
	 The problem is now to minimize the performance index given by (19) subject

l
	

to (34). This is a standard 'regulator problem and the solution is

ti

	 u = A-1 IF 7	 (35)

53



where Jr. is the solution of the equation

+ Ir. A+AT fr. +	 Ir-bIFlIT7.0, 1(T)-a	 (36)

A number of comparisons have been made between these methods and the

results of these depend very much on the problem at hand. But if one was to

use a comparison index of some sort composed of reduction in sensitivity per

unit increase in cost and the numerical effort required, the:i the routine of

Kreindler and Byrne and Burke would probably come out aihead.

Combined traJectory and performance index sensitivity reduction: The

parameter sensitivity of the performance index is important because the optimal

control is obtained by minimizing the given performance index. Yahagi [7]

worked on this problem and gave necessary conditions for an optimal output

feedback control with reduced performance index sensitivity.

Yedavalli and Skelton [1] established relationship between the trajectory

and performance index sensitivities. They exploit this relationship to present

a unified way of reducing trajectory (output or state) sensitivity and performance

index sensitivity. Their method also considers control sensitivity, something

which is ignored by must authors. Although Yedavalli and Skelton developed their

method for the general case of r parameters, we will describe it for the case

of one parameter only. This somewhat reduces the notational complexity.

Using the notation developed earlier, the linear time invariant system is

x - Ax + Bu, x(o) - xo	(37)

l	
y - Cx	 (38)

'

where

y is a k dimensional {.utput vector and C is the output matrix.

i
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Z=Az+Au +Wua,Z(o)=Zo

W=zZ

(45)

(46)

The performance index of the unperturbed problem is

J = (yTQY + uTRu)dt
	

(39)

0

where

Q and R are symmetric positive definite matrices. The standard solution of

this is

u=Kx
	

(40)

	where K = - R-1 8T11	(41)

and Pl is the unique positive definite solution of the matrix Riccati equation

PP + ATP, - PPR 
1671, + C

TQC = 0	 (42)

Let a be the uncertain parameter and A, 8, C. x and y are continuous functions

of a. The sensitivity vectors are

State trajectory sensitivity vector a = ax/3a

Output trajectory sensitivity vector ya =

Control trajectory sensitivity vector ua =au

and performance index sensitivity Ja = aj

From equations (31) and (38) we get

= Ax + Au + B  u + Bua, a(o) = o	 (43)

	

Y  = .Cax + Ca	 (44)

Where the subscript a denotes partial derivative with respect to a

	

Using Z = CX and W = IY the augmented system is
CF] 	 Ja
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where

c

4

I

A 0' B 0

Aa A Ba B

C 0

	

	
x 

and Z  =

Ca C	 o

The authors define a new performance index which in addition to the output

sensitivity term also contains control sensitivity term.

a*

Js = J IyTQy + yaQlya + ua Rl ua + uTRu dt	 (47)

0
where Q l and Rl are positive definite matrices.

The normsyTa Ql ya , uaRlua and JkJa I are functions of time. They showed

that J s is an upper bound to these three norms.

where

k l is a nonzero scalar such that the matrix
i

S	 +aS

Sc	is positive definite

+asT	"s

with S = block diagonal [Q, R]

S = block diagonal [QI,y

They also showed that if 2 and 
3
2

U are zero, then,

2

(Ya QI Ya
 + uaT 

Rl ua) dt = B	 (4$)

0

This relates the trajectory sensitivity terms y (,Qi ya and ua Rl ua in (47) with

the performance index sensitivity Ja.

All this implies that minimization of J s achieves a trade-off between
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unperturbed optimal cost J and the sensitivities (output, control and performance

index). Although Ja is not included in the performance index J s , performance

►	 index sensitivity reduction is obtained as a "byproduct".

t	 Using equation (38) and (44)

jj	 yT Qy + Ya Ql ya = xTCTQCx + (xTCa + QTCT)Q (Cax + Ca)

l_

then Js becomes

m

	

(CTQC + CaTQI Ca) CaTQ1 C x	 R 0 u

Js =	 [XT 6T1	 [uTUTa

a	 C Va	 C	

]	 t

TTQ 1C 	 Q	 0 R ua

.. (49)

t	 ^.
The above expression requires ua. Since the desired control law

1	 u = kl x + k2Q	 (50)

is not available, the authors use the control for the unperturbed problem

(given by eqs. (40), (41) and (42)) to obtain an approximate ua.

Then the approximate control sensitivity u aa is given by

uaa = kp

where p is the approximate trajectory sensitivity.

Substituting equation (51) in eq. (43),

p=Aax+(A+BK)p+Bau

X

Defining Za = P , we get

Za = A1 Za + Bl u, Za (o) = Zao

u =^Z
as	a

^	 4

f

(51)

(52)

(53)

(54)
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where

A 0	 B	
X 

Al 	B1	 Zaa nd k _ CO K]

Aa (A + BK)	 Ba	 °	 o

:L

The performance index J S becomes

Js = (Za Ua Za + uTRu) dt

0

(CTQC + CT Ca)
where Ua =

CTQI Ca

(using uaa for ua)

(55)

CaTQ C

(CTQ C + KTR K)

The problem is to minimize J s subject to equation (53). This is a standard

regulator-.problem and the solution is

u = RZa = I x +R2 p	 (56)

where R - -R -1 B^ P1	 (57)

Pl is the positive definite solution of the Riccati equation

P^1 + A^ Pl - P161 R 1 B^ Pl + Ua = o	 (58)

So the steps in the Yedavalli and Skelton procedure are

(a) Compute K given by egns. (41) and (42)

(b) Form the matrices Al , B1 and Ua

(c) The desired control is given by equations (56), (57) and (58).

As pointed earlier, results of comparisons between the various methods

depends on the problem used. Keeping this in mind we will now use a first

order example for the comparison of the methods described above. This example

has been used by a number of authors for this purpose.
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The first order plant is

x = a2 x+u, x(o) =1

where a is the parameter with a nominal value of 1. The objective is to minimize
i

^.'	 the trajectory sensitivity.

The performance index is given by

m

J = f (x2 + u2) dt
0

To aid in the comparison of the various methods, the sensitivity integral,

S, is also evaluated along with J for each of the methods. S is given by

S = f

cc

a, 
2 
dt

0
The results of this are given in table 1. 	 Clearly for all the algorithms

a comparison with the simple regulator reveals that the decrease in sensitivity

measured by S is obtained at the expense of a higher cost given by J. The best

method would be the one which for the least increase in J will give the maximum

decrease in S. The method of Byrne and Burke is the best for this example.

The methods of Rao and Saudack and Fleming and !Newman require much more

computation than the other methods.
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Eigenvalue Sensitivity

F	

Besides the trajectory and performance index (cost) sensitivities there

is another important means of estimating the sensitivity of the system to

j;

	

	 variations in its parameters. This is through the use of eigenvalue/eigenvector

sensitivity. It should be mentioned here that eigenvalue/eigenvector sensitivity

provides a less direct measure of the system sensitivity than trajectory

a	 or cost sensitivity. Designers working with classical design techniques tend
Ir

to use eigenvalue sensitivity.

Crosby and Porter [8] developed expressions for eigenvalue and eigenvector

sensitivities for linear time invariant systems. Reddy [9] also worked on

the problem of determining the effects of variation in system parameters on

eigenvalues. Although they provided explicit expressions for the sensitivity,

these authors do not suggest a method of reducing the eigenvalue/eigenvector

sensitivity. In an interesting paper Gourishankar and Ramar [10] combine the

problems of reducing eigenvalue sensitivity and closed loop eigenvalues (pole)

placements for a linear time invariant multivariable system. We will now discuss

their approach in some detail.

It has been known for a long time that using complete state feedback

the closed loop poles can be assigned to any desired location. It is also

known that for multiinput systems a number of feedback matrices give the desired

closed loop pole locations. These controllers will in general give different

time responses. Designers usually use this freedom to obtain other desired

characteristics in the system response. Gourishankar and Ramar use this

freedom to minimize the sensitivity of the closed loop eigenvalues to the variation

in the system parameters without effecting their desired location. In the

following development, the closed-loop poles are taken to be distinct.
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Using the notation of the previous chapter, the linear time invariant

system is given by

x=Ax+Bu	 (1)

and the feedback law is

u = kx	 (2)

where K is mxn time invariant feedback matrix.

The closed loop system is then given by

x = (A + BK)x	 (3)

Keeping in mind that n elements of the mxn feedback matrix are sufficient

to place the n closed loop poles to their desired location, we subdivide

the feedback matrix into two parts as follows

T TT	 T	 TT
K = [k l k2 ... ki-1 ki+l ---km]

and k = ki

where k  is the jth row of the K matrix, j = 1, 2, -- m

A
The vector k is used to obtain the desired pole locations while the

elements of the matrix K are chosen to reduce the eigenvalue sensitivity.

Define

Tu = [ul u
2 

---- 
ui-1 u

i+l ----um]

and u=ui

Eq. (2) becomes

u = fcx	 (4)

'	 and

u - kx	 (5)
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We can now write eq. (1) as

x = (A + $ R)x + b u	 (6)

where

.	 _ [bI b2 ----bi-1 bi+l ----bm] and b = bi

bb 's being the columns of the matrix B.
1.

Eq. (6) represents a single input system (u = u i ) and the feedback vector
A

k in eq. (5) can be designed to place the closed loop poles in their specified
A

location. This can always be done as long as the pair (A + B K, b) is completely

controllable. Since A + B R depends on R, care has to be taken while selecting

K so as to maintain the above mentioned pair completely controllable. The

authors have mentioned that this is not a serious limitation as almost any R

satisfies this requirement.

Substituting  eq. (5) in (6) yields the closed loop system

A A
x=(A+	 +b Ox
	

(1)

It is to be noted that the feedback vector k depends on A + B K and hence

on K.

Morgan [11] gave the expression for the sensitivity of the closed loop

eigenvalues to the variations in the elements of the system matrix A.

Sit	 aai	 ag s / as / =	
trace LR(s i ) as ]	 (8)

it	 s si	 it

where

`	 Sit is the sensitivity of the eigenvalue S i to a small variation in the element

aj, of the system matrix A,

g(s) is the characteristic polynamial of the closed loop system,

R(Si )- adjoint (S i I - ^)
A A

and s = A+ g K+b k

F 
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The authors choose the elements of the matrix R so as to minimize the

performance index

	

J = 1	 1	 (sit)2	 (9)

i=1 Jul tal

If only the alt element is changing, the performance index becomes

J	 I ( Sit) 2	(10)

i=1

The authors mention that transforming to phase-variable form facilitates in

the minimization of J.

The procedure can be summarized as follows

(a) Choose R so as to minimize J

(b) With this value of K find k which assigns the closed loop poles to the

desired location.

Any row of matrix K can be used as k. One could take the rows of K as

k one at a time and calculate Jminimum 
each time. Then choose that row of R

as k for which the lowest 
Jminimum 

was obtained. This is usually not done as

the amount of computation increases enormou;il

Tne design procedure is illustrated by tt ,e following linear time invariant

second-order system with two inputs and two outputs,

x = Ax + Bu

where

all	 a12	
1	 1

A =	 , B =

a21	 a22	
0	 1

The nominal values of 
a11' a12 , a21 and a

22 are 0, 1, 0 and 0 respectively.

t

i `	 64



_(1 + k12 + k22)

(s - k22)

(s-k11 -k21)
oint

(aL1 + k21)

and R(s) = Ad3

1

s
Yf

(s - k22 )	 (1 + k12 + k22)

_

(a21 + k21) (s - k
ll - k2l)
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Only a21 varies from its nominal value. The desired location for the closed

loop poles is S1 = -2 and S2 = -3. The feedback matrix is

a

ri

B = [b B]

and 	 I 0
	 1^	

1	 (k
2l
	 l

	21 22]
	 [k	 k

11 121

	

a21	
O	 I 1	 0

(k 11 + k 21 ) 	 (1 + k 12 + k22)
_

(a21 + k 21 ) 	k22

This gives

	

A	 0

	

aa21	 1



cc •	 Ic	 cc • - C 	 ci'	 ,,

Now trace R(s) A = M e
21

=(1+k12

g(s) _ ( s - k11 - k21) (s '

as

s) 
= 2s - (k11 + k21 + k22)

The eq. (8) now gives

as
S21 =

S = •2

-(1 + k12 + k22)
_	 (kll + k21 + k2.. + 4)

S21 = 
a

S=•3

-(1 + k12 + k22)

(kl l + k2l + k22 + 6)

The performance index becomes

J = (5
21 )2 + (S22)2

_ (1 + k12 + 
k22) 2	 1	 +	 1

I(k
ll + k21 + k22 + 4)2
	

(kll + k21 + k22 + 6)

We have to choose k so as to minimize J. J takes its minimum value 0 if

k22 = -(1 + k12)

k11+k21+k22+4#0

and k
ll + k21 + k

22 + 6 t 0

i,v
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f
Take k21 = 0

For a21 = 0, we get

a	 g(s) r s2 -s(k11
 + 

k21 + k22 ) + kll k22 - k21 ` k12 k21
';	 a

Substituting the values of k21 and k22 in the abcve expression,

g ( s ) = s2 -s(kll - k12 
- 1) - k11 0 + k12)

kll , k12 have to be chosen so as to get the desired characteristic polynomial

(s+2 ) (s+3)'s2+5s+6

Equating the two polynomials, we get

k11 - k12 - 1 = -5

and k11 (1 + k12 ) 	 -6

Solving for k12,

f

	

	
(k12 - 4) (l + k12) _ -6

or k1 2 -3 k12 + 2 = 0

or (kl2 - 2) (kl2 - 1) = 0

k12 = 2, 1.

	

	
k 1 = -2, -3

k22 = -3, -2

k21 = 0

This gives the desired feedback matrix as

-2 2 -3 1

K or

0 -3 0 -2

l
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ROBUST CONTROLLER DESIGN FOR LARGE PARAMETER VARIATIONS

Leonard R. Anderson*

ASSUMPTIONS

1) The physical process depends on a few key parameters ap ..., aN.

(For wing flutter suppression these would be dynamic pressure, fuel

load in wings, etc). N would not typically be larger than 2 or 3.

2) These N parameters vary c---r limits that are either specified, or to

be determined in the design process.

	

ai	 < ai < ai	 i = 1, ..., N
	min	 max

The range of each parameter is divided into a grid of a small number

of equally spaced points, e.g., 3-7 points.

[0 , min; 
aimax I

 _ [ail ; ai2 ; ....... ; 
aiMi]

with a•	 = a•	 QL i 	= a.
imin	 ^l	 A max	 imi

The set of Ea of possible parameter values, therefore has N a = Ml	 M2 ...MN

elements.

3) For each element a e Ea the physical process can be modeled by a system

of linear constant coefficient O.D.E.'s. For example, consider a wing

flutter model.

*Assist. Prof., Aerospace and Ocean Eng. Dept., VPI & SU.
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x = A(a)X + B(a)u + G(a) , ^eR	 RmW u 
_h.	 A.
	 yeRp

ACTUATORS	
AERO/STRUCTURAL/	

SENSORS
VEHICLE DYNAMICS H

u	 y
DIGITAL/ANALOG	 I
FLIGHT COMPUTER,
CONTROL LAW

Z - Act + Bcy

u = Kl t+ K 2

Typical Parameters that would vary might be

Actuators: Gain, Phase Error
Vehicle : Dynamic Pressure, Geometry
Sensors : Gain, Offset Error

4) The structure of the control law is specified, but values of constants

in the control law are to be determined in the design process.

For example, suppose the sensor signals consist of accelerations, yi,

measured at various points on the vehicle/wing, and the control law is:

Zli	
0	 1	 Zli	 0

	

I =
	 +	 i, i - 1, ...P

Z2i J	 L Cl i	 C21 J ,,Z2i 	 1

u = Kl -f+ K2y

Let the elements of matrices K l , K2 and C
ll , C21 ' C12 1 '22' .. be

represented by the design vector k.

5) If we choose a parameter vector a and a design vector k, we have a

well defined closed-loop linear system

	

x	 x	 G^	
I0

= A (x,1	 +	 w +	 v

	

z	 'z j	 o	 LIB
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6) For one design point k there are Na closed-loop system matrices

A(k^al )^ ...^ A(k,aN )
•	 a

corresponding to the possible discrete values of the parameters

+	 .i .i	 J

al , a2 , ...,
 ON

We can compute the eigenvalues of each of these Na closed-loop system

k matrices as

a (A(k,ai))

and collect them all into one set that depends only on the design

point k as

A (k) = JX(A(k

_
,al)) ..., a(A(k

_
 , aN ))

a

7) Also, for specified initial state and noise covariance matrices, we

can compute the RMS values of actuator signals, structural degrees

of freedom, or other linearly related parameters for any given closed

loop system A(—k,—a).

If the number N a were not unreasonably large, we could find the maximum

RMS values of these variables for the N a closed-loop systems

A(k,al ), ..., A(k,aN )
a

8) Then, applying either random pattern search strategy (Bekey '81) or

nonlinear programming without gradient evaluation, we can search over

the space zk of possible design points to achieve any of the following

design objectives:

a) minimize RMS values of actuator signals while requiring the set

A(k) to remain in some favorable region of the complex plane.

b) maximize the range ai min' ai max while constraining both RMS

values of actuator signals, and location of A(k) in the complex plane.
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L

}
c) for specified limits on actuator signals and parameter ranges, move

A(k) as far to the left in the complex plane as possible.

IMPLEMENTATION PROBLEMS:

1) One must be able to effectively generate the linear models A(a),

B(a^, G (a] corresponding to the specified parameter ranges. This is

probably not possible on-line, but will require these arrays of arrays
r

be stored on disk before the controller design study is initiated.

2) It may be difficult to avoid local minima in the search for an optimal

k, and alternate starting points should be considered.

3) One must religiously avoid the curse of dimensionality and reduce the

number of parameter points N . to an absolute minimum (i.e., 9 or 15).

4) Care must be taken to construct a well-posed problem in which none of

the design variables k may go to infinity.

REF: G. A. Bekey, "Modeling and Identification of Nonlinear Systems

with Hysteresis", 3rd Int. Conf. on Math. Modeling, U . C.L.A., July

29-31, 1981.
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