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AlINOTATION

The basic technical theories of anisotropic plates and shells made
of rigld reinforced plastics are reported in the book. Solutions of
numerous technical problems most often encountered in engineering prac-
tice are obtained, with recommendations on efficient design of elastic
reinforced plastic parts. Some sections are entirely devoted to ques-
tions of seiection of the optimum structure of the material.

The results obtained are valid for thin three ply plates and
shells, 1f appropriate substitution 1s made of the rigidity parameters,
which are among the mcst efficlient stress schemes for reinforced plas-
tic structures.

The book is intended for engineering and technical workers who are
engaged in the development of thin walle¢d reinforced plastic structures.
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FOREWORD

Shells of laminated plastics made on a base of continuous fillers
and various synthetic binders are multiply anisotropic, heterogeneous
elastic systems. Some simplifying hypotheses permit study of deformed,
stressed states of a shell to be reduced to study of bending and deforma-
tion of a surface of reduction. 1In this case, the system of stresses
which develop in normal sections of the shell are replaced by a stati-
cally equivalent system of elagstic forces and moments.

It follows from s.ch a reduction that, to within the assumptions
made, a structurally nonuniform laminated shell can be considered a unl-
form shell, i.e., laminated plastics can be considered uniform materials,
which have some reduced properties which are determined by the properties
of the initial components and the mutual location and orientation of the
reinforcing filler.

Skillful use of the abovementioned properties permits the develop-
ment of extremely efficient laminated plastic structures which, in
many cases, are not inferior in efficiency and technlical character-
istics to excellent structures made of traditional materials. The de-
fects inherent in welded metal structures, which significantly reduce
the critical loads or result in premature destruction, are absent in
thin walled laminated structures.

With the appearance of new structural meterials, fiberglass plas-
tics, the field of use of laminated plastics in engineering broadened
substantially, and the technical and economic advantages of thelr use
increased sharply. The development of methods of calculation of thin
walled laminated plastic structures becomes of great practical impor-
tance in this connection. The attention of investigators was first
drawn to these quostions by the founder of the Soviet School of Aniso-
tropic Plates S.G. Lekhnitskiy, the results of many years of study of
which are reported in his monographs [16, 17].

The laminated plastics used in engineering have symmetrlcal elas-
tic properties in the majority of cases, i.e., they are orthotropilc
materials. However, their principal directions of anisotropy may not
coincide with the directions of the coordinate axes and, consequertly,
it becomes necessary to consider the elasticity relationships which
correspond to the general case of anisotropy. For orthotropic materials,
there are reliable methods of determination of the necessary mechanical
characteristics in two principal directions nf anisotropy. Moreoever,
fundamentally new characteristics of the laminated orthotropic material
must be known, which usually do not have to be dealt with in isotropilc
uniform shells, namely: the shearing strength by layer and the trans-
verse separation strength. These new characteristics of laminated plas-
tics are associated with their structural inhomogeneity and the signif-
jcant difference of the elastic and strength properties under various
types of loads.

This book reports an approximate method of accounting for the

effect of interlayer shear on the stressed, deformed state of laminated
anisotropic plates and shells. 1In selection of simplifying hypotheses
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for study of thin laminated shells, it was considered that the elas-~

tic properties of existing cements and binders are appreclably less

than the corresponding elastic characteristics of the reinforcing fillers
and, consequently, the interlayer shears which develop in the bending

of laminated shells can sBignificantly distort the pattern of the de-
formed state deszribed by the hypotheses of nondeformable normals ex-
tensively used in the theory of shells, especially when the shell op-
erates under heating conditions.

The results of thorough scudies of thin laminated anisotropic
shells, with interlayer shear and transverse deformation taken into ac-
count, are reported in the monograph of S.A. Ambartsumyan [1]. Since
the corresponding rigidity parameters of a laminated sheet differ sig-
nificantly, allowance for transverse deformation gives an extremely
insign‘ficant correction, and we will disregard its effect.

The proposed approximate method of c2lculation of laminated
shells was used 1in study of three ply plates and shells, and 1t showed
satisfactory correspondence with experimental results. Besides the
usual elastic characteristics of a laminated shell, two new ones appear
Kl and K2, which define the connection of the cross forces to inter-

layer shears of the mean surface and characterize the resistance of
the laminated shell to such shears in two mutually orthogonal directions.
Laminated shell rigidity parameters Kl and K2 are determined experimen-

taliy in transverse bending tests of laminated strips and, consequently,
they somewhat compensate the errors which are tolerated by the initial
hypotheses adopted.

The results obtalned in the work are valld for three ply plates
and shells with a light elastic filler, if appropriate rigidity param-
eters are used. This question 18 presented in detall in the last chap-
ter, where some stability problems characteristic only of three ply
plates and shells with elastic fillers also are discussed.

In distinction from the traditional courses on the theory of
shells, the author attempted to discuss problems connected with effi-
clent design of plates and shells made «f reinforced plastics, sub-
Jected to the effects of the loads most frequently encountered in en-
gineering practice. Chapters 8 and 13 are completely devoted to ques-
tions of selection of the optimum structure of the material of cylin-
Arical shells operating under axisymmetric loads.

Tne present work does not cover many questions raised by modern
engineering practice and the needs of machine building. Problems con-
nected with large displacements of the mean surface of a shell, includ-
ing problems of stabllity are not touched on. Nonlinear elastic and
inelastic de’ormations of laminated shells are not discussed, and ques-
tions of nonlinear oscillations are not covered. There 1is no doubt that
they will be treated in the works of other investigators in the near
future.
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LAMINATED ANTSOTROPIC REINFORCED PLASTIC PLATES AND SHELLS
V.I. Korolev

CHAPTER 1. BASIC EQUATIONS OF TECHNTICAL THEORY OF ANISOTROPIC PLATES
AND SHELLS

1. Initial Hypotheses and Basic Relationships

We will consider laminated shells produced on a base of continuous /7%
flillers and synthetic binders &s uniform anisotropic systems, the elas-
tic constants of which are determined by conventional methods.

We use the rectilinear element hypothesis [14] for description of
the deformed state of the srhkell. ™his is satisfactorilily consistent irith
experimental results for three ply plates with a light elastic filller.

Based on this hypothesis and the assumption that the normal stresses
are independent of interlayer shear for the stresses which arise in nor-
mal sections of a shell, we have the following expressions

0y = ¢y (e +2%0) 4 ¢y L2y f:xﬂ*{c“(m—¢23xﬁ:l
Oy = €4y (&) - 2%7) i Cg 1y + 221 4 €4y (w0 4 22%));
T ey (8 - 3%]) g (g - 2%5) A ey (@0 4 22%7),

(1)

where c1J (4,J=1, 2, 3) are the elastic constants of the material; El’

€, w are the relative elongaticn and shear of the mean surface of the

shell; e’ K e’ K € are the effective changes in curvature and torsion
1 2 3

of the mean surface of the shell.

As in [14], for shearing stresses which act between the layers of
the shell, the following expressions can be obtained

3 (-4 3 @Mt (2)

2 ¥y Ty e

“‘:z
In distinction from thin three ply shells with an elastic filler,

shearing through the layers in a laminate. shell chan-e by a parabolic
relationship and disappear at the bounding surfaces z=+§/2,

We will account for the effect of surface load X, Y on the shear- Lg
ing stresses in the membrane solution, on the assumption as in [1],
that the shearing stresses change linearly through the thickness 53¢ the

¥Numbers 1n the margin indicate pagination in the foreign text.



shell.

We will characterize the shearing stresses between the layers which
corresnond to shearing stresses (2) by the maximum shears which arise
in the mean surface of the shell. Like the stresses, shears through the
thickness of the shell change parabolica..y.

By reducing stress system (1)={2) to the statically equivalent
system of elasti: forces Tl’ Tz, 3 and moments Gl, 02’ H, the follow-

ing elasticity relationships can be obtained for a laminated anisotropic
shell

Ty= Bye,+ Byyey + By o;
Ty Byyey+ Byy ey + By

(3)
S.’..Bls’l"*‘B,,!’ ’*‘ B“m; °
Gl e --Dll %: m— Dl:”: —ZDI.“:;
Gy v —Dyyu; — Doy %g — 2D %5 (%)
l’ 33 —-Du u: — D:a”: - 2033,‘;;
Q= —Kyvii Qp = —Kyy,, (5)

where shell rigidity paramn=ters DiJ’ BiJ’ Kl’ K2 (4, J=1, 2, 3), in

the case of a sufficient?r laige number of layers, are determined through
reduced elastic constanty of the material cij(i’ J=1, 2, 3), 013, 623 and

and shell thickness § by the following expressions

Bij=cyd; Dij = qreigb(ivf =1,23); (6)
Ky = $6u8 Ky 3Gy (7)

where 013, 023 are the moduli of elasticity in interlayer sghearing.

The rigidity parameters of a laminated shell also can be determined

from the simplest experiments, which are described schematically in
Section 8.

By solving expressions (3) for the components of deformation, the
known relationships, which will be needed subsequently, can be obtained
: 1
&=5F (84,7 + 0,375 + ayyS);
ey = -‘6- (a“Tl + a”T’ -+ azaS); ( 8)
1
O = = (81,7, + 33T, + a5,S).
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In the general case of anisotropy, elastic constants aij(i' J=1, /9

2, 3) are independent, and they are exoressed through elastic constants
c1J by the expressions

"z."n“";! Coafgy=C1p”
ay, = B e
A ‘ a4
'
", Cr3fas— C1acy
a"::: Ky 2 ’ al! = L A L '
Ce (9)
L vyl )y =
ayy = 1 .gA LI ayy = 1801y A"n‘n :
A =2 €),€04039 + 261415Ce3 — "uc:. -
3 s
= Cu€yy — Casye

The deformed state of a laminated shell is defined by five random
functions: three components of displacement u, v, w in the directions
of coordinate axes Gys Qpy which coincide with the lines of curvature

of the mean surface of the shell, and by the external normals to the
mean surface and by two functions ¢, y which characterize the bending
of the shell without allowance for the effect of interlayer shearing

4 ou v 04, .{,..‘L'_-
&= AT Ta; T WA, Oay G

1 o u 04 W (10)
o g (F:) + Frug (&)
X = Ty
u;:.-};-‘—’“f—ﬁ—j%t{‘;’,;‘j: (11)
2= 4o () + & we ()
{ dw u
““‘P'*'n‘;m‘:“?«ﬁ} (12)
Y==‘P+‘7:;'f%""%

As curvilinear coordinates @y, @, ON che mean surface of the shell,

it is advisable to consider only coordinates which form a rectilinear
regular grid of coordinate lines. Geometrically, this condition 1is re-

duced to t'e requirement that vectors Pyo» To s which are tangent to /10
1 2
coordinate lines Gys Go, not the collinear. For this, it is necessary

analytically that, of the three Jacoblans

g T -



8 (r.y) (v 2) 2 (s, 3)
O(n..u“")" O(G..ﬂ.) d ‘(u.;ﬂ‘) (13)

(whare x, y, z are coordinates in the vector parametric representation
of the surface) at least one be different from zero.

If the coordinate 1lines coincide with the lines of curvature of
the meun surface, the curvilinear coordinate is orthogunal, and we sub-
sequently will use primarily such a coordinate system.

In such a coordinate system, Lame's constants Al’ A2 are du%ermined
by the expressions

=V (3 + () + ()

¥
5y (14)
a=V (55) + (38) + (32)

The equations of continuity of deformation for laminated aniso-
tropic shells are written as in the case of isotropic shells, and they

have the form

QMywg 4 OA%, oA
da, Ay, dag da, !
g @
._1(04”._1 iy M.,)+
da, 1 oay, | dqy !

e — e — Ry — (15)
3 ®©
__1_(0.«!':. ___’_ OA'T _.?A'.g)-*-
Ty \™ oa, A, da, s ?
O (A e\, MW
+ ou,(n. ‘z‘)+ N, Gag 2 0
s O ‘
-&'— ¥e 1 {_2_,_’_ OA.! { o“l 2 04
Rl + )?’ + (‘.l‘. 0“‘ Al dﬂ" - Al 6“' —a—(;l! ! +
s ©
+_:’_._i_(u.e 1 27 a, )}=o
day A, \ ™ oa, A, ~ oa, 9a, '

here €ys €5, w are the components of deformation and shear of the mean /11
surface of the shell determined by expressions (10), and Kys Ky Ko are
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the total changes of curvature and torsion of the mean surface, which
can be determined by the following expressions

e 1 0y vy %4,
=% = A Ta, T A4, oay

1 o ' 0A, .
u,mu:—-z-a-(‘—:-:-——l—ﬁ"h-aa-:-. (16)

=i [ () + 2 A (2]

2. Equations of Equilibrium of lLaminated Shell and Boundary Conditions

If the positive directions of the elastic forces and moments are
selected as indicated in Fig. 1, the equations of equilibrium in the
system of curvilinear orthogonal coordinates selected can be written
in conventional form

a(.;::,r') + o(:a.'s) _Ta%:_l.__*_sgg_; —Aan%:--F
+ 4,4, X =0;
UML), 2GS, TS — A FE MAY =0
6(;;:.74.4_ a(‘;ﬂ‘;'o.) +A,A,(-£:—+-%:~)-— AAZ = O; (17)
Q) | G _ g, %y 2 _ 440, 0
LG LU g S S 44,0, =0

in addition, Tor determination of the normal transverse stress 0, the

following expression can be obtained, which characterizes equilibrium
of the internal and external forces in the normal direction

0; = g [2° (87 + 3022 — 42%) — 27 (8 — 382 + i)l + (18)

4O [3( Ly Ga) o (g )]

where Z+, Zz~ are components of the normal surface load applied to the
upper (z=8/2) and lower (z=-8/2) bounding surfaces of the shell, respec=-
tively.

The boundary conditions for an anisotropic laminated shell, the

detormed state of which is described by the rectilinear element hypoth- /12

eses, differ significantly from the bounaary conditions for shells -thich

rre deformed by the direct normals principle. We subsequently limit our-

selves to cases when the edge of the shell coincides with the coordlnate
lines. In the case of closed shells or shells closed in one directlon,



the boundary conditions are replaced by the corresponding periodicity
conditions, which should ensure well defined movement at any point of
the closed coordinate line.

Fig. 1. Adopted positive directions
of elastic forces and moments.

Variation of the potential energy of a laminated shell 1s ter-
mined by the following expression

OU = [[ (T, 08+ T30ty + S0 — G, 8x] — Gy dx; — 2H by — (19)
—Q8y; — Qady, 4 X du -+ Y v+ Z3w) A A,da,da,.

By substituting relationships (10)=-(12) in Eq. (19), we obtailn

o= [[(ro (2 + i s &) +

+T°(Aax+A;,xr+m)+
+e8[a (%) + 3w (5)]
G )

(e ) - B )

—ms [ () + 2w ()] -
—08(0+ T — ) — 08 (v oy — ) H X (20)
+Yév — pbw} A,A,da,da,.

By partial integration, we obtain /1



QU = [T Adu 1 SA8v — Gyly b — HA 0y — Q, 4, w)3}da, +
4 f1T4A 80 + SA Bu -~ God 0 — HA B¢ — QA Sl day -

+ .’. ﬂ[ o+ M's ~ Ty du' + S M“ - AlAl'?'!"*‘AnAix] du+

DA&
,+[_1m:~ '

[ QA0 g('.(:' + A4y ('%:- + TT,':‘) - A,A,p] bw—

da,

04. — A5 Lot A A | 80—

[ o}‘g(:‘

(21)
208 200 -6, (,,,'+ni’-:-}—A.A.o.]6w-

day

_ [ DAy +- 6.4." —G 004\ +FHS2 6.4' A|A'0‘] 6\‘)} dql du’.

dug

On the strength of the independence of variations of §u, 3dv, 6w,

§¢ and 8Y, the boundary conditions and equilibrium Eq. (17) follow as
a result cf this.

We present the houndary conditions for an edge which 1s bouncded
by the coordinate line al-const. The boundary conditions are decomposed

into boundary conditions for tangential forces and movements and bound-

ary conditions for normal forces, moments, deflection and displacement
functions ¢, V.

The following uniform boundary conditions-can occur for *he tan-
gentlial forces and movements

,.0, $=0; u=0, S=0;
T'=0, v=0;, u=0, v=0, (22)

Correspondingly, for the normal forces, moments, deflection and

displacement functiovns ¢, ¢, the following uniform boundary conditions
(canonical form) can occur

Gi=H=Qi=0 ¢=H=Q,~0;
Gl=—=1{=w=0; q)z;.l{»_;“);'o;

2
Gi=9=0Q,=0; ¢=1v:=0,=0 (23)
G‘—;“p:’_':lvt-lo; (p__;\P;__'u,

In the case of flat plates, conditions (22) and (23) determine /14
the boundary conditions for the two dimensional problem and for bending,
respectively. For shells, boundary conditions (22) and (23) are set,

i.e., when the deformed state of a laminated shell 1s described by the
rectilinear element hypotheses, an extremely great diversity of bound-

ary conditions can occur, namely, 3. different cases of canonical edge
supporting anchors.



Thus, for example:
a. unsupported. edge
Tl-s-Gl
b. rigidly fastened edge

-H-Qlu();

Uusysysdmym(;

¢. edge unsupported in cthe tangential direction and rigidly
fastened in the transverse directinn

T

I-S-w-¢fw-0;

d. an edge rigidly fastened in the tangential direction and
unsupported in the transverse direction

u-v-Gl-H-Ql-O
etc.

There is a diversity cf boundary conditions because, compared with
the undeformable normal hypotheses, the rectilinear element hypotheses
take into account two additional degrees of freedom of movement, which
are characterized by the magnitudes of the interlayer shears in two di-
rections.

3. Laminated Shells of Varlied Orthotropic Structure

As has been noted, laminated shells produced on a continuous filler
base can have diverse structures, depending on the mutual location and
orientation of the filler,

We will assume each unit layer to be uniform and orthotropic, with
elastlic constants El’ E2, G, Vis Vo3 the well known relationship E1v2=
Ezvl occurs here.

1. If the principal axes of anlsotropy coincide with the coordi-
nate axis in production of the shell, the material of the laminated
shell will be crthotroplc, its elastic constants will coincide with the
elastic constaats of the unit layer and basic relationships (3)-(5), /15
which connect the deformed and stressed states of the shell, are sim-
plified and take the form

Ty = By(e, + vy2,);
Ty = By(e, + v&,);

S == Ba m; ( 2“ )
Gy == =D,y (3 + vpy); 25)
Gy = —D, (": + vyl (25
H = —2D,x;;



B e

Q=—Kwi Q= —Ky vy,

(26)

where the rigidity parameters of the shell are determined by the ex-

pressions

=Bb g B8 . p_ e
Bl - "’V|V| ' Bg ‘—V.\" ' B’“ Gb'
Do BB p B
P R2(t—vyw) Y YT 21 —vvy) !
G5

Ds =7

Ky =268 Ky=2Gyuo.

(27)

By solving Eq. (24) for 31,62, @, the following relationships can
be obtained for an orthotropic shell

Fig. 2.

Diagram of
reinforcing of crtho-
tropic plate rein-
forced in directions
not coincident with
the coordinate axes.

where

6 = iz Ty |

! By (1 —wvyvy)

e _Ta—vy Ty |

f2 = By(1—vyvy) *
)

] S e l
)

B;.

(28)

2. If the shell is produced in such a
way that the principal direction of anisotropy
with modulus of elasticity El forms angle ¢

with coordinate axis ay (Fig. 2), the basic re-

lationships which connect the stress and de-
formed states of the shell are defined by general

expressions (3)-(5).

However, since the shell /16

materlal is orthotropic, elastic constants cij

will not be independent, but they will be deter-
mined through four independent, for example,

El’ E2, G, vy by the known expressions

¢y = E cost @+ 2Eysin* cos? ¢ + E,ysint g;
€1 = Eyvy + (B, + Eq — 2E3) sin® gcos? ¢
€pr= E,sind ¢ + 2F,sin? cpfos"'qa + E,cost ¢
e = G+ (E, + E, — 2E;) sin* g cos? q;
€1y = -E,- (E,sin? @ — E, cos® ¢ + Eycos 2¢) sin 2¢;

Cyy = .;-(E'z cos? ¢ — E, sin?¢q — E’; cos 2¢) sin 2,

T E, - Ey
Ei-gmwr B

: E3=2G+ E;v,.

(29)

(30)



Elastic constants 844 (1, J=1, 2, 3) in Eq. (8) also are not inde-
pendent, and they are determined by the formulas

' 1 2v sint
ay, = .E‘l:::._"’_ + (‘&‘ _—E:—) sinfpcostq - -—E.;!-;

¢ { 2 cost
a,,--’-‘-%-‘l +(?——E:L) sindq@costq 4 —L—.-'-"-’-;

g = cos'29 ( 12—"; + -’-{-Xl)sin’Zq)'
-—6-‘-..- u. " 1]
vy 1 1+V| ‘+V| ‘ i ’2 . (31)
an=— [~ (2 + St -7 ) st
= ["2"" _ to'e +._3,-(-('T-25—‘-)c032«p] sin2q;
2 1 - 1}
cost @ sinffgp {/4 2v

3. Still another case of practical
importance can be presented, when the struc-
ture of a laminated plastic ensures that it
has orthotropic elastic properties [14].
With a large number of unit layers which
are cross laid at argles +¢ (Fig. 3), the
laminated plastic can be considered ortho-
tropic.

In this case, the basic relationships
which connect the stressed and deformed states
of the shell are represented by expressions
(24)~-(26). The rigidity parameters of the

shell are determirn~d by Eq. (27), where Ey»
Fig. 3. Diagram of rein-

forcing of orthotropic E2, G, v, are the elastic constants of the

plastic with crossed laminated material.
bilas reinforcing.

If the elastic constants of a unit orthotropic layer of filler
Elo, F2o, GO, vlo are known, the following should be assumed in Eq.

(27)
Ey=c,i Ey=cn G=cy

. L (32)

YV, T e— =
2 1
‘1t !

where Cy3s Cpp» C33s Gy, are determined by relationships (29), i.e.,
they depend on the cross laying angle of the filller.
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CHAPTER 2. CYLINDRICAL BENDING OF RECTANGULAR PLATES

4. General Expressions for Calculation of Bending of Laminated Beams

Some simplest cases of determination of the deformed and stressed /18
states in cylindrical bending of rectancular plates with bending rigid-
ity D and rigidity K with respect tn interlayer shear are discussed in
this chapter. For extremely narrow plates, the Polsson coefficients
in the expressions for D should be considered to equal zero. All the
results obtained below are presented for a strip of unit width.

The coordinate system and symbols adopted in this chapte: are in-
dicated in Fig. 4., It 18 assumed that one of the principal directions
of elasticity coincides with the x axis. The basic elasticity relation-
ships in sccordance with Eq. (24)=(26) have the form

G=-D¢'; Q=—K(p+w). (33)

v From Eq. (33) and the equilibrium
TYRIRIRRRRRIRERRRRNRY equations
. o . pp—

e

Q'=-p; G'=Q, (34)

general expressions can be obtained
t 2 for determination of the stressed and
deformed states of rectangular strips

in cylindrical bending. Since system
Fig. 4. Coordinate system and of Eq. (33), (34) 1is equivalent to one

basic symbols. fourth order differential equation four
random integration constants appear in the general solution, which are
determined from the boundary conditions

| g

]
Q=—pz4+C;; G= —-’325—+C,z+c,;

=% T 20 T D
(35)
x C\8 c
we—tmt G (k+T) T

~

General Eq. (35) are valid along the entire length of the strip, /19
and only constants Ci(i=1l, 2, 3, 4) differ in sections which differ by
the nature of the loading or by rigidities D or K. To determine the
new random constants with each such section, the conditions of smooth-

ness and continuity of conjugation

Wr =Wrat; Pr="Past; Gr=0GCnqy; ’Qh=0uu- (36)

are added to the boundary conditions.
11
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%, Bending of Cantilever Strip with Concentrated and Uniformly
istributed Loads

a. Bendin of cantilever by concentrated force applied on unsup-
gorted end (fig. B). AZter determination of constants 5 J=1, 2, 3, 1)
rom the Boundary conditions J

w=0; ¢=0 at x=0
G=0; Q=p at x=g;
from Eq. (35), with p=0, we obtain

G:aP(:-—l), Q P

w=w(z’—alz—— K) (37)
....-—i)—(2'-2).
w The maximum deflection of the /20
L7749 naummmmnll strip at the unsupported end
Ryl
v X
. . . . [EPSSUSTINES S 4
/) pis
7 ) wloss =45 439 39
Fig. 5. Diagram cf bending of Here and subsequently, the sym-
cantilever by force applied to bol for the relative give of the
unsupported end. strip by interlayer shearing is in-
troduced

v =2 (39)
;///! 4 Y=%m"
g/ HHHHHH’HH“H ,
“ Correspondingly, the greatest
Z [ values of the normal and shearing

' stress=s are

Fig. 6. Diagram of bending of o oPl 30 3p

cantilever by uniformly dis- Omax = 5 = —5-; Tmx =g = 5. (40)
tributed load.

b. Bending of cantilever by uniformly distributed load (Fig. 6).
By determining the random constants in a manner similar to the preced-
ing from the boundary conditions

w=0, ¢=0 at x=0;
G“O, Q=0 at x‘ﬂ"

we obtain

12
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Q=p(l—2z) G= —-;-(z—z)-;

@ = £ (z* — 3z + 31); (41)
W = (29— 4128 + B8z — 12y (z— 21) 1Y),

The maximum deflection of the unsupported end of the beam is

'w’mu“-g—‘b‘-(i+4y). (42)

6. Bending of Hinge Supported Strip

We consider several cases of loading of a strip which are most
often encountered in various engineering applications.

a. Pure bending of strip (Fig. 7). Integration constants Ci(i- /21

1, 2, 3, 4) can be determined, for example, from these boundary condi-
tions

w=0 Q@=0 G=M, at z =0

(pao at z:.:-%-;

Q=0, G—Mﬂ
M i
=g (=200 (43)
M,
w--=7m‘-' (z —1).
The maximum deflection of the
w center section of the beam
AN N
. X M,n
| lmax == =575 o (4h)

! ' In pure bending, interlayer
shear 1s absent, and the greatest

‘ normal stresses are constant cver
g%‘gét;{ip Diagram of pure bending the length of the strip.
b. Bending of strip by concen-
Qw , trated force applied in middle sec-
l tion (Fig. 8). Because of symmetry,
X the left half of e strip alone can
be consldered OgxgL/2.
b { i Boundary conditions:
P
Fig. 8. Diagram of bending of at =0 w=0 G=0, Q=;
. hinge supported strip by concen- !
trated force applied in center. at z=5 ¢=0.

13



After determination of random constants CJ (J=1, 2, 3, 4), we
obtair

P, p
Q"-z—. G--—é-'-:
@ = g5 (* — da?); (45)

w = o% (42 — 31 24y 1Y),

The maximum deflection in the center of the strip /22
pp
|w|mn-'4'87)‘(1+12\')- (46)
The greatest shearing stresses are constant in each half of the
beam, and the absolute value 1s
Tm.".:—;i—lb-,-, (u7)
The normal stress in the critical section of the beam
‘ 3Pl
Omax = 553 (MB)
c. Bending of strip under uniformly distributed load (Fig. 9).
After determination of the random constants from the boundary condi-
tions
at z=0 w=0, G=0
at z=5 ¢=0, Q=0
we obtain Q=% —22) =L (-2
¢ = g5 (42 — 6l + I');
. (49)
w= —E5 120 — 202® 4+ P+ A2y (L — ) B,
The maximum deflectlor. of the /2

strip in the center

1 4
bhbtbbbbtgibedttettiiy

|wlmax = g (1 + 48Y). (50)

' Bl The greatest shearing stress be-
tween the layers occurs at the ends of

Fig. 9. Diagram of bending of /- strip

hinge supported strip by uni-

formly distributed load. ,mu:z%%” (51)

14




The normal stresses in the critical section

aer = - (52)

7. Bending of Rigidly Fastened Strip

In the case of rigid fastening of the ends in the simplest cases

of loading, it 1s especially easy to obtain expressions for the elastic
forces and deflection.

a. Bending of strip by concentrated force applied in center (Fig.

10).

The boundary conditions

at x=0 ws=0 ¢=0, Q'§;

P S— z
/

. — at X=x ¢=0.

7

After determination of the random

{ constants, we have
Fig. 10. Diliagram of bending p p
of strip with rigidly fasten- Q=-5; G=—@z-1)
¢d ends by concentrated force. Pz
‘P=——5W—‘)¢ (53)
w = 481) —3lz — 24y 1%).
A, HHHHHHLHHHV//

The maximum deflection in the center

ff724 of the strip
|

|w|mu—- 9,1) (1+48Y) (54)

NN
N

Fig. 11. Diagram of bending

of strip with rigidly fasten-

ed ends by uniform loading. The shearing stresses are constant 4g5
over the length

~8r
T (55)
The normal stresses in the critical section
3Pl (56)

Cmax = 745F ¢

b. Bending of strip by uniformly distributed load (Fig. 1l).

The boundary corditions

15
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at x=0 ws0, ¢=0;

at x-% ¢=0, Q=0.

Accordingly, for the elastic forces and deformations of a sheet,
the following expressions can be obtained

0 --f,-(l—f!z); G = — -{;'03’—-01:+l’);

¢ = -E (228 =3z 1) (57)
e = shs 2t (2 — I+ 2y 2 (L= 2) ).
The maximum deflection in the center
lemcxmﬁg‘-‘ﬂ(l+48\’). (58)

The greatest shearing stresses arise at the ends of the strip

3nl (59)

Yo

The normal stresses in the critical center section of the
strip
uar = L. (60)

8. Experimental Determination ¢f Elastic and Rigidity Parameters of
Orthotropic Laminated Shells

For determination of the complete set of rigidity characteristics /25
of a lamlnated orthotropic material, tensile, torsion, clean and trans-
verse bending tests of rectangular strips cut in the principal direc-
tions of anisotropy are required,

With standard specimens under tension, tensile rigidities Bl, 82,

modull of elasticity El’ E2 and Poisson coefficients Vys Vv, are obtained,
which should satisfy the condition E1V2'E2“1'

Flexural rigidities of the laminated shell D1 D2 are determined
3

by Eq. (27), 4if the reduced flexural and tensile and flexural modulil
of elasticity are the same. Otherwise, flexural rigidities must be
determined in clean bending tests of rectangular specimens according
to the symmetrical two cantillever beam system (Fig. 12).

It evidently is advisable to provide for clean bending tests in

the principal directions of anisotropy in all cases, if only as con-
trol tests, the more so that they are the simplest.

16
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If the deflection of a strip in
(gi} the center section measured under

"0-1 ‘ r»ﬂ-q load is L and the width of the strip
is b, the flexural rigidity is deter-
mined by the formula

’ ’

- { - Palt €

Fig. 12. Diagram of clean bend-

ing test. The torsional ~igidity of a

plate D3. shear modulus G and, con-

p sequently, shear rigidity B, are
‘“——‘*71 3

determined by torsion tests or by
transverse btending tests of rectan-
\ gular or square plates loaded with

’ four equal balanced concentrated
forces applied to the corners of the
plate (Fig. 13).

Torsion tests of specimens cut
Fig. 13. Diagram of torsion in the other principal direction of
tests. anisotropy are cont:ol tests,

As the results obtained above show, the effect of interlayer shear- /26
ing of laminated plates in the deformed and stressed states depsnds on
the relative thickness of the plate, the boundary conditions and the
nature of the load. It 18 evident that, for determinetion of the rigid-
ity parameters of a plate, it 1s more advisable to use transverse bend-
ing tests by systems of hinge supported or rigidly fastened beams.

If, for example, the deflection of a hinge supported strip of width
b, measured in transverse bending tests with loading force P applied in
the center of the span is LY the rigidity of the laminated plate with

respect to shearing between the layers 1s determined by the formula

12DP1

K“‘uﬁﬁ&—pu' (62)

By conducting such tests of strips cut in both nrincipal directions
of anisotropy, we obtain rigidities Kl, KE'

In this manner, the simplest mechanical tests of rectangular strips
cut from a laminated plate completely solve the problems associated with
determination of the elastic and rigidity characteristics of laminated
shells.

If a laminated shell is bent in one or both directions, the fabrica-
tion of flat control samples should be provided for, which are cut under
the same technological conditions and g5 through the same heat treatment
as the shell itself.

17
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To obtain control samples, it 1s advisable to provide for tech-
nological margins in the fabrication of an actual structure, which are
then cut into samples for mechanical testing.

18
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CHAPTER 3. AXISYMMETRIC BENDING OF CIRCULAR PLATES WITH CYLINDRICAL
ANISOTROPY

. Egquations of Bending of Circular Plate and General Solution under
Axisymmetric Loading

We consider a circular plate of constant thickness made of a cy-
lindrically orthotropic material (Fig. 14).

It is assumed that the axis of
2 , ) anisotropy passes through the center of
pir) the plate perpendicular to the mean sur-
e face, and that the principal axes of
‘ . >~ elasticity coincide with the axis of
anisotropy, with radial and circular
directions. A load distributed symmet-
rically about the z axis acts on the
b #2a -{ plate normal to the mean surface.

N 2 { S|

In conformance with Eq. (10)-(12),
Fig. l4. Sketch of circular (24), (26), in axisymmetric deformation
plate and basic symbols. of the plate, the basic relationships
which connect the stressed and deformed
states of the plate have the form

T,= B,(u’ +v,-':—-): ’

, 6
T,=B,(%+v‘u'). ( 3)
G,=—D, (‘P' +"a‘%);

o (64)
G.=-—D,(-—'—+v,<p).
Q1= —K,(v' +9). (65)

For determination of radial displacement u, plate deflection w
and deformation function ¢, we have three equations of equilibrium

(66)

(rTl)"-T.=O;
(rG,)’ — G, = ’Qx%}
(r@y) + pr=0.

System of differential equations (66) is decomposed into two
systems relative to u and w, and ¢

u'+-':-'-—-ii,:-u=0; (67)
v, ® Mo G
¥+ == 35 — T r'}
’ pr C: 1 68
Ve TR T (o9
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where C1 is the random integration constant and

Ey
A‘-.E;., (69)

General solutions of Eq. (68) have the form

Q:’*"--J-w-‘i"&-

-Re
——-m_ y +-—,—-———“D 4 C* 4 7™
ot Cyr?

T Ak T (9—53'513 m’-—ﬁ Dy, —
_ — C: M-l pi-h .
-K.-'-lnr ’.+l + A , +Ch

p(34vy)rt (l+v)c‘

Gy = —D, [2(9—1';1). '*'(Ti-:‘)o: + : (70)
+Cah+ ) = Gy (A — v Y]
- (1 +3v) pr? (14 v4) C,

Gy = —Dy [gayai, + e b +

4 Ca(1 + v A 1 Cy (1 ,,_M’)r-au)] .

Integration constants Cl’ 02, C3, C“ are determined from the

boundary conditions at the edges of the plate. In the case of a solid
plate, the boundary condition on the inner profile is replaced by the
condition in the center of the plate with r=0, which 1s reduced to the
requirement of limitation of deflection of the plate or the finite na-
ture of the bending moments, or the cutting force as a function of the
type of load.

~N
rn
\O

General soclutions (70) permit various cases of symmetrical loading
of the plate to be considered with diverse boundary conditions.

10. Bending of Solid Circular Plate by Uniform Load

Let a solid circular plate be bent by normal pressure uniformly
distributed over the upper boundary of the plate (see Fig. 14).

In this case, by virtue of the finite nature of the deflection in

the center of the plate and the absence of rotation of the normal,
Cl 03—0 and, consequently,

b ). ~
G' - ___Dl [.(A‘+vl),’ +C'(l+\'3) rl !J ;

2(0—2%) D,
F(1+3 : A-1]
Gy = —Dy [SEBIEL ¢y (14 av) 1 11)
et C: At .
w"'ak."su»-v)n.”'x+3 A

wzuovw +c7

20
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a. Edge of Plate Hinge Supported

By determining constants 02, Cu from the boundary conditions with

r=a, w=0, Gl-O, we obtain

Ww =

pat (A—3) (A4 44 vy) r\¢
uw-xnu.[(x+ﬁux+u (70 +

+ ot (7)) + 2R (F - 1)]:

S (5~ 4 ()] &

= TE=0D,; ¥ v

6.~ B3 [(5)'~ ()"

oSSR () - B ()

The maximum deflection in the center of the plate is determined
by the expression

_ pas (A4 44 vy) pa* |
1 |max = B(AF3) (A Fvp (A +1) D, + 4K, ' (73)

and, at the edge of the plate (r=a)

o _ PaAR(1—vvy) (74)
Ci=0; Gy= s rvaticar

In the center of the plate, bending moments G1=G2=O if a1, or

they increase indefinitely if A<l, 1.e., the stressed state depends
essentlally on the nature of the anisotropy.

b. Edge of Plate Rigidly Fastened

In this case, we obtain

a‘ _r_ A#l_ 1
W=g0= mo+nmt*”3+4( )

v+ 1)( ZY]) + £ "Z,}',“"

T ;ﬂD ( ( )]‘ (75)
G, = — (3 +vs) pa? (_[_) Atve (_'_)""] .

2(9—2Y) a By, \a .
{
6=~ (2 - R ()T

The greatest deflection in the center of the plate

pa pa?

[l = s OTO5 TR (76)
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The bending moments at the edge of the plate

pal

Gla---z"/:’.‘_;‘) ' G,zv,Gl. (77)

In this case, the stressed state of the plate depends essentlally
8t the nature of the anisotropy. If 12>1,‘the maximum stresses develop

at the edge of the plate. If A2<l, the stresses in the center increase
indefinitely.

Thus, 1f a laminated, cylindrically orthotropic, circular plate
operates under uniform normal pressure, the modulus of elasticity of
the material in the circular direction should be greater than the mod-
ulus of elasticity of the material in the radial direction. It is ad-
visable to use laminated plates which do not satisfy this condition for
the manufacture of circular parts. If, for some reason, a plate should

be made of a material, for which A2=E2/E1<1, the center of the plate

must be reinforced with an absolutely rigld disk, i.e., a disk the
flexural rigidity of which is considerably greater than the flexural
rigidity of the plate.

1l._ Bending of Solid Circular Plate by Concentrated Force

Let a solid circular plate made of a cylindrically orthotropic
laminated plastic be bent by normal concentrated force P applied to the
center of the plate (Fig. 15). 1In this case, p=0, Cl=-P/2w, C3=0 must /31

be set in Eq. (70). We then obtain

P(A+vy) -1,
Gl = Dg [23 ()‘1_1)'0‘ Cl ()'+ v,)r" ] ’

PU+v) r-t1,
Gy=Dy [ty — Gt P

Pr Pinr Cy rl.+i+c‘; (78)

W= An (M—1{) D, + 23K, A+

Pr %
P= =3 —1) D, + 6

a. Edge of Plate r=a Hinge Supported

The stressed, deformed state of the plate 1s determined by the

expressions
P4V [, (r\-17, ]
6= gemyy 1 (£) 7]
G. = P(14v)M\ [1 _d+vidd+avy) (_r_)k—l] .
LT YL} r+vg(1+v) \ i

v~ — = [(5) — e (5)']: (79)
] ] Aot
v =gz, [(5) — wewary (5) -
PlnL
a

+ 2n K,

(h—1) A4-24-vy) ]
(A t+vy (A1)
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’ The deflection in the center of the
plate reverts to infinity. Consequently,

PO B in transmission of the force, distribution
K 44;, AN of the load over a definite area must be
A f—’ easured, or a rigid disk must be incorpo-

-
S~ s

rated in the center of the plate,

- b. Edge of Plate Rigidly Fastened

In this case /32

Fig. 15. Diagram of bend-
ing of circular plate by
force applied to center.

6, £ [1- S ()]
6= gy [~ (5) '] (80)

@ =~ gy [(5) - (5)']

= “””*‘T&+4)u.[(k*‘i>(f)’”
l’ln-‘:—

"‘2<f)l‘k"(k"”J T2XK,

In this case, the load also should be transmitted through a rigid
disk in the center or it should be distributed over a certain area in
the center of the plate.

Relative to stress distribution, the same conclusions are valid
as those made in the preceding section. For the fabrication of circular
plates operating under locally distributed load applied in the center of
the plate, it is advisable to use plates the modulus of elasticity in
the radial direction of which 1s greater than the modulus of elasticity
in the annular direction, i.e., A<1.

It 1s of interest to note that precisely such anisotropy of elastic
properties develops in circular disks strengthened with radial stiffen-
ing ribs. However, radial ribs which converge in the center of the
disk form a rigid hub. For more favorable stress distribution in the
reinforced disks, annular strengthening ribs should be provided.

12. Bending of Circular Plate with Rigid Disk in Center by Uniform
Pressure

We now consider a circular plate made of cylindrically orthotropic
laminated plastic, subjected to uniformly distributed normal precsure.
The inner profile of the plate 1s rigidly fastened to a massive disk /33
located in the center (Fig. 16).

In this case, we have Cl=0’ Q=-pr/2 and, consequently,
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2? POOR QUALITY

(5 -1) _re(5e)
4K, TT8O-MD;,
et [(2) 7] | ()
- A1 + A —1 ;
P - Eﬁ% +C."'+C.r'“;
Gu= =D, [3GEm + Calh+w) P —
— Cy (A —v,) ,.-(Ml)] :

G, := —D, ['%;'_—3;'.)7%’7’ +Co(1 + A"l)","‘ +
+Ca(t —hv)rm 0]

W =

(81)

a. Edge of plate r=a hinge sup-
orted (see Fig. 1b). By satisfying

boundary conditions w=0, G,=0, we obtain

} L] {

Cooe— P2  O—v)o** 434y,

NS YT 20D 0w P Aty

..E:’é}‘:g:\:ss‘:,:.':“'.;‘.“._ C; = P 34wy [ (1 +vy) (82)
olete e 0:0’.’:::’;m. 2(8~—-2%) D, (A—vy) 02). + A4 vy

.. o, OO
.:’;\. 3 where (Q = -'3-) .

CC ]
a

@,
OO OO
Ao,

At edge r=a of the plate, the bend-
ing moments

Fig. 16. Diagram of bending | (83)
of hinge supported circular _ Ao oht8 g
plate with rigid disk in cen- G,=0,6G,=— Pa’;':éi.;;,'v') (H;:-)_o“ 32:':_;_;:}' 2.
ter by uniformly distributed e '
pressure,

At the edge of the plate around the
the inner disk

Gy = — 2 x
1= T T—

(A=v) B=N **—22 B+ v * 3+ (A+3) (A+va)
X 7w
(A—va) @** + L+,
G. = V.Gl.

' (84)

b. Edge of plate r=0 rigidly fastened (Fig. 17).
3-5

Com pa !_Qma .
s = 2(9—A%) D, i—QM ’
pr.;a ‘_Qk—a
Ca“—" - 2(0—2a3) Dy I—Q”' ' (85)

where p=b/a.
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:

At the edge of plate r=a, bend-

/0 c ing monents
: R o pet (h—3)— 200"V (0 13)
v/ 7 T =y 1ot " (86)
e Gy = v,G,
sl

Correspondingly at the edge r=b,
Fig. 17. Diagram of bending of we obtain
circular plate with rigidly fas-
tened rim and disk in center by
uniformly distributed pressure.

- pbt  A+3—2h 34+ (A1) o™t |
Gl = 2 (90— A% ‘_02), ' ’ (87)
G’ - V'Gl.

In both cases considered, the greatest tangential stresses arise
on the outer profile of the plate

+

Tinax = 320 . (88)

13. Bending of Circular Plate by Forces Applied to Rigid Disk in Center

Let a circular plate fastened in an absolutely rigld disk be load-
ed by an axisymmetric system of normal forces applied to the disk. If
the resultant equals P, C1=-P/2n and, consequently, according to Egq.

~N

(70), with =0, the bending moments and deformation are determined by
the following expressions

P(r*—a) n » 1"..'..__ (v’(rkol__a)ul)
4n(p3—14) D, 2a Kk, a A1
C_‘(f‘-,'-—ﬂ'-,') .
S = B

Pr Y -\,
== mwonp, TGN O

P4y A-t
a,:—.D,[-,E,‘_(-{T;{;—’E‘-—C,(Hv,)r + (89)

+ Cy(h =) "V

W =

Ga= Dy [gittid — ot +hv) ! -

(M —1) D,
- Ca(l - }s\'l) r'("’ ”] '
P
Q= =57

a. Rim r=0 hinge supported (Fig. 18),

Pa--1 1+v.+(k—\')01”
Cy=- Y ;
3= AM=1)Dy (A=) g*F + A4V, oo
o PP Adui (vt
. .

T W=Dy vy P Aty
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On the outer profile of the plate, bend-
ing moments

-----

O
.'o:-\."o'-.o.o:c:-:v

.....

‘%...;'....I".

:-:\ﬁ:.'-ﬁo' G. - Pas “—-V;V.) J.(_;._._"Qzl_mlol-..’._“ ( 1)
L] 2n(AS—1) (h—vt)0ﬂ+3+\'o ' 9

Correspondingly, on the protfile of the /36
rigid disk, we obtain
Fig. 18. Diagram of bend-

ing of hinge supported

circular plate with rigid Pl =._._.¥L_Tx
disk in center by forces (1) (A \,Q;+4A::x:;&4) O 1) (0 +v3)
applied to disk. b 1L okl 1L s = =
PP X v e (92)
G’=V.G’-
b. Rim of plate r=a rigidly fastened (Fig. 19). In this case,
the following can be obtained
Pa-=-1) i__olol i
Cﬂm 2“(’“_')0‘ ’_th ]
Ca- por i 1__0’--1 (93)

WD, §_gB

The respective bending moments on the outer and inner profiles of
the plate

— p (L+|)Qzl_219k¢l+1_1.
G,*"'zn(v-u 1=t i Gy=vyGy (94)
P (=P Aty
Gl = 2“(1""” ( )Q ’_03\ M G-. =: Vg GI’ (95)

In hoth of the boundary condition

p cases consldered, the greatest shearing
stresses arise on the inner profile of
;V the plate
3p
A // tm‘=4“56' (96)
o320 —o
92a -l 14,

.,__Bending of Annular Plate by Load
Uniformly Distributed Over inner Profile

Fig. 19. Diagram of bend-

Let an annular plate made of cy-
ing of clrcular plate with lindrically orthotropic laminated plas-
rigidly fastened rim and tic be loaded with load P=27b 17
rigid disk in center by forces i cdiet :g : dw gﬁ 1 Toq unfigrm-
applied to disk. y stributed over e inner pro e

(Fig. 20). With different fastenings /37
of the outer profile of the plate, the
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elastic forces and deformastions are de-

920 —~ termined by general expressions (89).
a. Rim of plate r=a hinge supported.
’ p In this case, It is easy to ogtain
- pla \ P“+V.)l‘ -3 lol)
iﬂ(x"-ﬁva(x'i'"n.‘ (t—¢ )
Fig. 20. Diugram of bending C, = P (44 vq) A+ [ ') (97)

of annular plate with hinge T W=D, (V) U—q

supported outer rim by forces

uniformly distributed over The bending moments on the inner
inner profile. and outer profiles of the plate are de-
termined by the following respective
expressions
G;”O;
— P A (1 —v,vy)
G = 28 (M= 1) (=) (98)
(x+v.’(7~+i)q’“~—23~(l+w)o""-(’v~i)(’-""-)
1—¢?
G, =0;
C.— — P At (1 —v,vy)
P ma-n(-y) (99)
A=) =) P+ 2 1+ v) P =t ) At ve) |
1—¢

b. Iim of plate r=a rigidly fastened (Fig. 21). In this case,
the following can be obtained

Pal-®  A—vg+(1 4V )QMl

Ca= TR D, (h—va)+ (At va) @
Pb’o#’ ‘+\"—'(A+vl’Ql-‘ (100)
C= w0 =ND; h—vet AtV

On the inner profile of plate r=a, the bending moments

P
Gl-"'—'—,—;—('—,—:-’TX
¢ (1) Ot vp) P4 -'u+~->o“'—<>—~.m—n (101)
I~V¢+(A+V,)Q2L
G, =v,G,.

Correspondingly, on the inner profile, we obtain
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A R SR A AP R T IRT:

G‘ b 0;
G =PIy 0= -2kt 1.(102)
VUt h—vy+ O +ve) 03

In both cases considered, the great-
est shearing stresses arise on the inner
profile of the plate

& o
RO R )
Solels e e

2SOSH]
'.'.‘:'.‘.'0

3P
Ty =2 TIr R ( 10 3)

It 1s easy to determine thet 1. is
advisable to make annular plates with a

esmall opening in the center of laminated
plastics, the modulus of elasticity in the
radial direction of which 18 greateir than

Fig. 21. Diagram of bend- the modulus of elasticity in the annular
ing of annular plate with direction.
rigidly fastened outer rim

by forces uniformly ap- 15. Bending of Circular Plates with
plied over inner profile. Annular ber Reinforcing

L8
'

Fig. 22. Cir-
cular plate with
annular fiber
reinforcing.

A characteristic example of the practical use
of circular cylindrically orthotropic laminatecd plates
is circular plates made of synthetic polymers and re-
inforced in the annular direction with a fiver filler,
fiberglass, for example. As has been noted, rein-
forcing of the plate only in the annular direction
permits more efficient anisotropy of properties and,
consequently, a more favorable distribution of stresses
to be produced.

We consider a circular plate reinforced in the /3
annular direction with uniformly placed fibers of cir-
cular cross section (Fig. 22).

If the reinforcing fibers are located at uniform
distance 2 in each layer, the basic relationships
which connect the stressed and deformed states of the
plate can be presented in the form

G —Dy(¢ + v E);
Gy = — Dy (£ + ') (104)
O = — K, (@ +¢).

Flexural rigidities of the plate in the radial and annular direc-

tions Dl’ D2 and Polsson coefficients Vis V
lowing expressions
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D, =D s P
U T T U

Mo, ast—n) Eul _ "
D.;.,.I)Ll-}--——.-,-r—-’i-‘e"] D(l+")o (105)

where EH’ EC are the moduli of elasticity of the fiber reinforcing and

binder; v is the Poisson coefficlent of the binder; ; 1s the cross sec-
tion radius of the reinforcing fiher; 2 1s the distance between the
reinforcing rings.

Such plates have a favorable elastic property anisotropy, since
the following relationship occurs

AoV ) TR, (106)

Thus, for the calculation of laminated circular plates with uni-
form annular reinforcing, all the formulas obtained in the preceding
sections are applicable. In the loading of such plates, both continuous
and with an opening in the center, concentration of stresses and im-
permissible increase in deflection do not occur.

Simultaneous reinforcing of a plate in the annular and radial
directions obviously is inadvisable with respect to stress distribution
and complexity of production.

The basic difference of laminated circular plates reinforced only /40
radially 1s that the anisotropy of thelr elastic properties changes
radially.

16, Bending of Circular Plates with Radial Fiber Reinforcing

We consider a circular annular laminated plate obtained by bond-
ing layers reinforced radially with a fiber filler (Fig. 23).

Evidently, the packing density of the fiber filler satisfles the
relationship

Oﬁns%'p' ’

where t is the cross section radius of the fiber filler.
The aperture angle of the fiber reinforcing a=2n;/b. The baslc

relationships which connect the stressed and deformed state of such a
cylindrically orthotropic plate can be presented in the form

G =—D,(N¢ —DvE;

¢ ’,
Gy =~ D} — Dy’ (107)
O‘=——K'(w'+q>)'
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3
E_ ¢
where D'Igff"57 is the flexural rigidity of the
-V

unreinforced plate; Ec’ v are the modulus of elas-
ticity and Polisson coefficient of the binder; K1

is the rigidity of the laminated plate with respect
to interlayer shearing; EH is the modulus of clas-

ticity of the fiber filler; D, is the radial flex-
ural rigidity of the plate.

1

If the Ec/EH ratio is disregarded compared

with unity, the following expression for rigidity
% can be obtained

Fig. 23. Circular D,=D(1+4). (108)
plate with radial
fiber reinforcing.

where

k-..;z:i.!'_:.!!).%, (109)

2a

By substituting Eq. (107) in plate equilibrium Eq. (66), we obtain
the following system of differential equations, which describe the bend-
ing of the circular plate with radial reinforcing

(r+8¢ +¢ —3 =-—-9,-,‘-5:]

‘-—-—__-—o —— .
w A (110)
pr Cy

The following expressions also can be found for the bending moments
and deformations

G,=-D,{r€-[4(1+v+i;.)_£_“_’t”.).+
+(14v+ £)Im ) 4+ 20 x

r

fnax§

P TONT
+ Sz (5]

30

N



"-'—D{-fr[4“+v)+(t+v)lnL#_
_*|(t’-+'2r+k|]+%§2( ”..v-o-t( R
-b'z( -5t ( )} (111)
'P--,;r[Ar-k-i-rln"“‘ %”',g%('z')“‘

C\k —{)"/r\»
- zb 2 n- (T) !
neJ
’ua&t"-.—..-‘:!- —
u iK; X inr

- 2,‘, [Ar® —kr 4 P — k) In(r -+ k) =rinr) —

.___Ps_l;;_ m‘x‘g)i:('ir?)m"*'%i{. )'(r)nol’* 5.

naad N

Integration constants A, B, C, Cl are determined from the boundary /42
conditions on the inner and outer profiles of the plate.

17. General Relationships and Differential Equations of Asymmetric
Bending of Circular Anisotropic Pilates

Let a circular plate made of laminated
cylindrically orthotropic material be bent
by a transverse load, which is distributed
symmetrically about the polar axis of the
plate x. This is practically the most fre-
quently encountered case of loading.

We place the origin of the r, 8, 2z
cylindrical coordinate system at the pole
of anisotropy, ard we direct the z axis
along the axis of symmetry of elastic prop-
Fig. 24. Acnrepted coor- erties (Fig. 24).
dinate system for circu-
lar plate,. A transverse load distributed symmetri-

cally about the polar axis can be expanded

in the trigonometric series

® (112)
P _-.-"gal’,. (r)cosn @,

The general elasticity relationships are written in the form
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G0 [ (4 55+ 3
G.u-o,(.:..‘“';+_;+\.'%_); (113)
He- (3Lt

R ACERCAR
0.--3.(¢+-‘,_-,‘;.). (114)

In accordance with Eq. (17), with A =1, A,=*r, the plate equilib- /43

rium equations are written in the form

a(rQy) My )
200 1 S0

a(rG,) oH .

awi t(,,m—G.uo,r, (115)
A ’ .

T = T H =0

Since bending of the plate will be symmetrical about the polar
axis, the elastic forces and displacement can be sought in the trigo-

nometric series

® = X @a(r)cosn?;
fnc=()

(116)

=X Pa(r)sinn0;
nas(

W = Zow,, (r)cosn @,
“iﬂ
G, = X G; (r)cosn O,
nax(
G, = XOG: (r)cosn O;
H =X H"(r)sinn 9,
"%o (r)sinn (117)

) = 20(): (r)cosn @,

Q: = X Qr(r)sinn 0.
=0

—-ﬂ
In accordance with Eq. (113), (114), the coefficilents of expansion

of the forces are connected to the coefficients of expansion of displace-
ments ¢n’ wn’ W by the following relationships
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G} (r) = —D, e + 22 (1 Y+ 90) ;]
61() = =Dy [3 ¥at+ 52 +v]

Wy = =2 [ -2 Bl (118)
Q7 (r) = — Ky(ga+w0)i

Qy(r) =— K,(‘Pa - ."lw”),

By substituting Eq. (117) in the equilibrium equations with Eq.
(118) taken into account, we obtain differential equations of asym-
retric bending of circular plates

o S (B ) g

-+ .’.‘.!.‘i’.'_r.";‘.’!.)_ ¥n - .".i‘.‘.’.!:'.‘" ) Yn = kxwm

onpn + 2200 — (22 4 k) o —

ale ’ | (119)
- n(w.’ vi) P — n(«)::- ) qa..=—nk,-"lr"-:
PO A4+ g Y = — R —rw, —

where
Dy 45, D G (1 —w1vs)
oM B TR e l
D _GH=vv) _,. (120)
Dy — Ey ¥
K Ky K _Gn_p
D, = ki -D—l'_k" Ky = G &

If the load is distributed skew symmetrically about the polar axis,
all the relationships are obtained by substitution of cos né by sin n®é
and vice versa, with corresponding changes of signs of n.

In the most general case of asymmetric loading, the solution is
found by summing the asymmetric, symmetric and skew symmetric solu-
tions. 1In conclusion, we note some identity relationships between the
coefficients introdnced above

k
g7 =M Moy =oy (121)
Al +Av) =AM+ v,
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CHAPTER 4., BENDING OF RECTANGULAR PLATES BY NORMAL LOAD

18, Differential Equation of Bending of Anisotropic Rectangular Plates

We consider a rectangular plate macde of laminated anisotropic
material and loaded by forces which are normal to the mean surface of
the plate before deformation.

We select the x, y, 2z rectangular coordinate system as indicated
in Filg. 25.

In accordance with Eq. (4), (5) and
(11), (12),

[ 8
Gx""Dn%g"Dn‘?;"'Du(';}'*'%):

(3
o )
/ G, :‘:"'Dua - Dn '0 Du(o—t'*"a%')i (122)
L~ . 0
7 ur——ol,-,——v..w,,— — Dy (G +35);
ow
Fig. 25. Coordinate system Q,————K,(q;-{-?;-);
and basic symbols. ow (123)
Q=—Ki(v+5)-
By substituting Eq. (122), (123) in the ejuilibrium equatlons
4G
T‘l‘+ % =OIO
00- o
% T =0 (124)
001 + oo '-:',—"pu

we obtain a system of differential equations of bending of rectangular
anisotropic plates

» dw J J
1\,(«)+ duz) Du dxl'*qD '_a“:“"""""Dss‘(Zq—'*‘

13 "9z oy dy?
4‘”“09 +C aﬁy+lkszﬁ' (125)
K’("”*‘W) D“ (:9:“; +C d.zdy + Das 3:(‘; +
l)” - 2Dy owy-} D,,%‘i; (126)
K (G + Zl“:)+ Ky(G +g7) = (127)

Eq. (125 and (126) can be reduced to the following symmetrical
form

34

/45

146



't
Ly(9) = DK, 53 + (2DuK, — D4K,) 3{,':;” +
+ (Duky — CK) 5750 — Dok, - — KK, 22 (128)

Ty ’
Ly($) = DK, 25 4 (2D 3Ky — DyK,) 20 4.
o 0z Oy

+ DuKy — CK\) 33x, — Dik, 35 — KiK, 32, (129)
where
C-:’SD|2+D”. (130)

. .
Li( ) =(DuDs — D},) = +2(DyyDyg + DDy — CI3,y) ey +
+ (D:a + 2DuDsa + Dy Dyy — C‘) ";,:%;T +
4 2(D33Dsy 4- DyyDyy — CD,) '0_,%",7; +

+ (PyDs — D) 555 — (DyK, + DK ) 2 —

— 2 (DK, + Dza’\’l)mf}r"(paf{r}-D”K,)-g:T + K\K,. (131)

By multiplying Eq. (127) by operator L&() and with Eq. (128), /47

(129) taken into account, a differential equation of bending of a lami-
nar anjsotropic rectangular plate can be obtained with interlayer shear-
ing taken into account

] Yy ogr O 8y
(D, Dyy — D:,,} l‘l o -2 (Dan — Dy,D,,) K, afl‘;y +
X [Kx (D:a -+ zf,)."D” -+ DnDn - C’) + Ka (DnDaa - D:a)] x
w »
X gzvagy T 21K (DyaDyg — DyyD,y) +

+ Ko (DyDys — Dy,D )] ";,‘%% +

+ [K, (D}, +2D,,D s + DD, — C*) + K, (D,D,, — D,)] o+
oy
+ 2(DyyD\3 — D,yD,4) K’b_.':%‘;_"_ +
T N

+ (Dy,Dy, ~- D:a) K.'%?’u‘.‘ — R,K’ e

a4 | I

X [Du 5+ 4Dus ;,—,%y— + 2(C + Dy) a_ﬁ_gy_, +
o4 P L

+4D,,,a“;:, + Doy o;: ] =Ly (p). (132)

For brevity, we introduce the following designations

1
P D,0,=D,, du = 201Dy —DygD,y) |
o= — 31 = Py '
D:a'*‘anDn""DnDu_C’ ..
Gy = = guw ;
die = 2(D33Dyy— DyyDyy) v = 2(Dy3Ks+ DgyKy) | (133)
13 = ab3 ’ n - ab '
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-— D

ao‘ = _‘L'!B%——D-'l—; a.‘ = _"'-_SD K'+'-."K-l ;
a” == D“K':-D K i Goo 1“‘K|;

o = K (D“D:’—-D! ).; aye = K (0 ,D,,—D}) ; (133)

oy = 2K, (D“D.!i—-DnD. s Gy = 2K, (D,!D.,,‘-D..Dﬂ .

Gy = (K, (D} + 2DyDys + DDy — c*) +
+ K, (DD — D:.)' ';.1573
0 = 2 Ky (DuDis — DiaDis) -+ Ky (DuDia = DD}
Gy = lK. (D:l + 2DuDu + Dan - C') +

+ K, (DyDy — D)) ¢‘b‘ i

DysKy __ DuKs, Dy

=" hh=—F— 1=}
o = zx,v::‘;;z).,x; { Pom HeDu—Duly .y Ly
gy = DukiCke g Duks—Cly, o, ~2CtDn)
o, = 2l By = 2, v.=i,’-’,;?-; (134)

K. K K.\K D
a, = 10:; Ps = IbI; Y "

Then, in dimensionless coordinates E=x/a; n=y/b, system of dif-
ferential equations of bending of an anisotropic plate (132), (128),
(129) is written in the form

Ly (w) = Li(p); (135)
Li(p) =la o -+ a2 0w M ow
15 “taasonT Uy agan.—arﬁ:"al'o-i‘;
FL
Lo(®) = By 5o + Ba g+ Bs guge — Bo 5o — B ey, (136)

where the following differential operators are written through L¢ 0),
L, ()
y

o a¢ (4
Li( ) =8 555 + 0 gy + %a -5a.—.5;lr+

..
+ %W"'.au oo + a, a:;“l +¢003%:'_
_ o [ 8¢
%o(?x;’gr+vam+’?aw+w3£§+w ::0 )3 (137)
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Lu( ) = 0w g + O ggvgm + O g5vgr -+ O gy +
+%0%—%':§r—ﬁ11%n‘—%1£r+%r (138)

19. General Equations of Bending of Orthotropic Rectangular Plates

If a laminated plate 1s made of an orthotropic material, the
resulting general relationships and differential equations are simpli-
fied when the principal axes of anlsotropy coincide with the coordi-
nate axes, since Dl3-D23=0.

By replacing D,y by 0, D,, by D,, D33 by D3 and D,, by Dv, or /4
D2V1’ for an orthotropic rectangular plate, we obtain

(]
C,=—D.(%+v,%%—); (139)
(24
01=—K1(W+!—2§‘);]
o= —Ka(v+57) (140)

System of differential Eq. (127)=-(129) takes the form

(2]
L(9) = DtKlz‘:"l‘(D!Kl CKl)W leﬁ—;;‘; ‘

o (141)
Li(¥) =D5K37,T+( D,K,— CK, )Z)%%"le"ﬁ;
2 42) 4 K2+ 55) - (o

where Lu() is a differential operator in up to fourth order partial
derivatives

L, ()=D\Dy5 ¥ + (DD, + Dy "C) a:'av +
+D'D’——~—(D Kg'*‘Dst) 3, -
_(D,K|+D,K.) +KK| (143)
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Differential equation of bending of an orthotropic plate (132)
takes the form

D\D,K, 3¢ + D, (D,K, + D,X)) + K, (D} — ") T:.'.':—,r +

+ 1D, (DK, + D,K,) + K, (D} — C") gzvgz- + DDK, 55 —
— KKy [Dy 5% +2(C + D) 5vger + Dy 5| = Fulp). (104)

System of differential equations of bending of an orthotropic plate
(135), (136) is simplified, since D13-D23=0 and, consequently,

G = Gy = O13 == Oy = Gy = Q)3 = Qg = @y =
=P =P¢=1ys=1vy=0. (145)

In dimensionless coordinates g=x/a, n=y/b, the system of equa- /50
tions has the form

X P )
Fud) = B2 + o s, 22 (146)
Fo(w) = Fy(p), (147)

where F6(), Fu() are the following differential operators in partlal
derivatives

a¢ 9% 56
Fo() == aoo’az‘.‘ + ag FRY™ + ag, oaaoano +

L g a° , ¢ o4 , ;Y

+ e~ o (g -+ e 35 + Ve ) (148)
2 - a4 8¢ a4

14()—040—65:;+a22w+a045;‘7—

P 9
— @y T T g7 + gy

(149)
Coefficients a,, Bys vy (1=1, 3, 5) a,y are determined by Eq.

(133), (134); with Dy3=D,;3=0, Dyy=Dy, Dpy=Dy, D33=D3, we have
DD, )
ado""‘%.q"; ao;=£;';n’—;
p.D +D}—C" DL K
Gy =~ At a:o=£3"%i'£“; (150)
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Ggy = 'E'_D"'EI"ML; g = K\Ky;
3 DyD

a, = [K,(D,D, + D} — €*) + DDK,| —ir ;

ay = [K,(D,D, + D;— C') + DIDOKI] _.1!5'{';

Qizr..g-!f_'.' pl=£%f-.-. Y1 = D.
’ a '
a K\Dy—CK, , By = KyD, ~CK, , _2(C+D,),
L _—T— 8™ —aib ¢+ Yo="gp
o = Kk . K\Kq D, (151)
=G Bo ==

Yiz’"bT‘-

20. Energy of Deformation of Anisotropic Rectangular Plate

In the majority of cases of solution of specific engineering
problems, an exact solution cannot successfully be obtained. There-
fore, various approximate methods of analysis must be used. In the
theory of shells, variation methods based on the principle of the de-
formation energy minimum are most widespread. If an anisotropic plate
is bent by normal load p, the potential energy of bending i1s determined
by the well known expression

1 . ) e,
U=— :.,—j‘f(G,nl + Gony + 2H %y + Q\y, + Q,y,) drxdy. (152)
By using the Hooke's law relationships, we obtain

U= -;- ff {D"n:‘ + 2D, %{x; + I)“x + 3D jxi%g +
+ 3D,y %% + 4Dy, % + K, ' + K, ! dzdy. (153)

By substituting «

(153) btai s |<Be’ Yys Y, from Eq. (11), (12) in Eq.
y We O ain

e
1 * K2
o=t [on () +an it S 0a(3)

+D.u(i’3’—+" )+ D22 ("_"4--_).;.
D
K(wq-—-)]dd% (154)

In this manner, while a possible deformed state of the plate is
determined by functions ¢, y, w, the actual deformed state differs from
all the kinematically possible states, i.e., those which satisfy the
boundary conditions given, insofar as, for the actually deformed state,
the functional
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abahhal haa

Ainteiat ok

Vet [ [Du(52) +204 ST 5% +Du(5E)' +
+ Du (5L +52) 4-—0..—3’-(-1 +5%) +
V10 (5 ) e (os )

+ Ky(v - ) — 2pw) dedy

(155)

has the minimum value.

The integral is taken over the entire surface of the plate. If
the plate 1s orthotropic and the directions of coordinate uxes x, y
coincide with the principal directions of anisotropy, Eq. (155) is
significantly simplified and takes the form

V=—Lfm-¥)+mh£3%f+m( )+
+D,(-‘§,§;+-"-‘£)'+ K (o+50) +

+ Ky (v +157 )" — 2pw] dzdy. (156)

The simplest alternate version of use of the principle of possible
displacements, which is called the Ritz method, 1s as follows. Desired
functions ¢, ¢y, w are assigned which satisfy the assigned boundary con-
ditions at any values of random parameters CJ(Jsl, 2,. « .,n) and cor=-

respond as well as possible to the physical essence of the problem

Q= ‘P(Z'v I’ C]v an Cav veay Cn);
\p:\{’(z. y; Cl' Cll Caa---vcn);

IR (157)
w w(.‘l.’, 1’8 C‘, C‘, C,, .o ..Cn).

By substituting these values in Eq. (155) for an anlsotropic plate
or in Eq. (156) for an orthotropic plate, after integration over x and
y within limits which correspond to the entire surface of the plate,
we obtain

V=V(Cl, Cos C3" . e Ch)‘ (158)

We select constants Cl’ C2,. . ey Cn in such a way that the energy

of the system has the least value, i.e.,

Ez—éa=...=-éa‘-=o. (159)
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Values of random constants Cl’ C2,. . .Cn result from solution of

the system o0i' n equations, which determine the desired solution of the
problem with the required degree of approximation. 1In the limit, as
n+=, an exact solution can be obtained. The accuracy of the solution
depends on how successfully functions ¢, y, w are selected.

21. Bending of Orthotropic Plate by Concentrated Force

Let a concentrated force applied at the point with coordinates X

Yo act on an orthotropic rectangular plate, the principal axes of ani-)-

tropy of which coincide with the x, y coordinate axes (Fig. 26).

We will assume the sides of the
plate to be supported and satisfy the
following boundary conditions

w-Gl-W-O at x=0, x=a;
w-02-¢-0 at y=0, y=b.

Such boundary conditions satisfy a
possible deformed state, which ‘s de-

Fig. 26. Diagram of bending termined by the expressions

of hinge supported rectangu-
lar plate by concentrated

force. o -
(p="§“§‘ Amn cos 222 sin-"—’é‘i;
33 g,
V= Bmnsin 22 Z cog 20V, .
Mafne| (160)
W= 2 z Cmnsin =22 sin———":” .
M=l nei )

In accordance with Eq. (156), the functional of the elastic energy of

the system
ed W (D s
V._..;.H{D,[EEAM i 222 g 22|
Mol nei

+2D1V.(Z 2 Amu m‘“ Sln m:‘z sin ﬂgy) b 4

Mei nwi
g; )
X(LZBMR n: sin m:’ sin ":")-}-
Mufnmt
oo o 2
N QO Rx n
2[,;-’ ';tijmn Nlll’—T—- In——-g—u—] -f« (161)
co. w] 2
4‘""\""" (Y 1r -’1.-1_"..
P O
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L s Al

o oD s
+ Kl[ 2 E (Amn+cvun m.n )005 m:g-ﬂin ’””‘) -4

b
Mwi nel
o s (161)
+ K, y 2 Bmn + Cnm—r) sin = cu\—“-g—v-) }dzdy..
Mol Rwi
—Pm;‘ §'Cm-\ sin "':”‘ sin "'2”‘ .

Because the integrals of the product of the trigonometric func- /54
tions discussed differ from zero only in the quadratic terms, we have

o0

JB

= %b- —: [ ( Amn + 2D, v ,-1—?-':- AmnBoin +
Mef ne
+D, (S2) ,,.,.+D,(A,,..,-——+B...n 2) +
+ Ky (Amn +:'7"_) + Ky (Bmn + Con 2 )'] =
—-ng" ;2‘:‘ Cmn Sin "':" sin "I""’ . (162)

The minimum of functional (162) is realized under the conditions

Ame [Dy(Z2)'+ D (52) + Ko +

+ Brn(Dy ¥y ++ D) 2 4 Connly 2 = 0

Awn (D, g + Dy) -"—"i’l + Ban [Dy(22) +
+D,( ) + K,] + ConK s 5 = 0; (163)

.—--+(m.[K,(m: y?k

LR 4P mnazy, . NBAYe
+ K, ——).l .—_-:—;b—-Slﬂ a s

maz

Amqu

for my, n=1, 2, 3,. .+ .

By solving system of En. (162), we find /55

— 4P Aym o o maAZTy . MAYa

Amn = % o sin —— sin ——;
. AP A . maxy . ANY

Bun == — —5= 32 sin — = sin—=; (164)
AP Aym . o mRT, . RAYa

Conn = — A Sin ——= sin —p=,

(myn=1,2,3,..)

where
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Bim = KiDy (22 )+ (KD, — KiC) 22 (52) + |
+ KKy
Bym = KDy (52) + (KD — KO (FF) 5 +
+ KKy T
Bom = DDy (22 )" 4 (DD, + Dy — ) (ZE) () +
+ DDy (52)" + (DK, + DK (Z2) +
+ (DK, + D) () + KiK. (165)
Bm = DyDyK, (22 )"+ Dy (DK, + Do)+
+ K, (D ._c](““) )4JD“DKV+DJQ+
+ K (D} —C") (__-) (--) + DD, (52 +

+ KKy [Dy(2)" + 20+ D) (B 2) () +

+ 04 ()]

C = D‘V'+D. ED,V"""DN

for m, n=1, 2, 3,. .

The bending moments and cutting forces are determined by the ex- /56

pressions
o [ m n
G B‘PD.:‘ (A.MT+A'MTV')X
H ab Ly
Mef Nmf

X sin —2%e gip "’;y“ sin

maz,. ARy,
a kl‘ 6 !

o0 O n m
G. o 4P 1D, Sim Ftvidin
= abd

Am X
Mui Ney
X sin —220 oo "’;V‘ sin m:' sin ":":

H - 4,::1)’ 2{1 (Alm '?""'Almbl)

pape Am X (166)
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T THRRSRET e

sy oy

e en MR N HREY

mazy ﬂﬂvb
x sin =22 sin cos — coo-—‘-!

0, = APK: E; “"‘“"" "_')

mn T, AR LX.XJ ARy
L LR _Th Rl ;
X 8in ——sin cos ——sin ——~

P “"‘::'*” x

LEXN ARy maz nay
x sin - sin ) sin cos —— .

(166)

22. Bending of Orthotropic Plate by Uniformly Distributed Load

Let an orthotropic hinge supported rectangular plate with sides
a, b be bent by a uniformly distributed load of intensity p. We select
the coordinate system as indicated in Fig. 26.

We will seek a solution of Eq. (1l46), (147) in the binary trigo-
nometric series

P = o "% Amncosma sinn ay;
Y= m}:l = Bumnsin mag cos n ay; (167)

W = :\.a Zcmsmmniainnnn

We represent load p in the form of the binary trigonometric series

(168)
i lmz_,‘"g Pun sin m xg sin n ay,
where
Prp == “,"m (mn=1,3,5,...). (169)

By substituting Eq. (167), (168) in bending Eq. (146), (147), we
obtain

moa

DS L Amn (74 (a,gm* + azym?n® + dynt) +

Meainey

+ 1% (ay3m® + @44n?) + ay) cosm aE sinn n = (170)
= — 3‘ 2 Comn |72 (@ m® + ay;mn?) +71a, m) X

m-ln-:

Xcosm n§ sinn vy,

by



S‘ B.... [ (aum? 4 agym®n® + agint) +

-::l':;..m P - Gegnt?) +- agl Sin M it cOB R AN =
R - .§| ng Cmn (32 (B3 % + Pam®n) + nPyn)X
xsinm nd cos n nn;
= S S Conlnt (0um + 0mtnt + ayimtnt + seent) +

mer{ 'l-

+ a‘a.,(v,m‘ 4+ yamint 4 yynY)sinmatsinnnn =
-3 2 Pu (4 (aum® + am'n® + aon4) +

Mmei fe|

4- 1% (apyn® + 0yyn’) + Gglsin m at sinn Ay,

According to Eq. (169), coefficients Ann» an, C

zero only at odd values of indices m, n=1, 5, 3,. .

(170)

m differ from
. therefore, we

will not subsequently stipulate thls, and we will understand that

summing is carried out only over the odd indices.

We introduce the following designations

i, n
reo

- (aggn® - aym'n® . agm'n’ + aouni’)
- abag (yym i yamn® - yynt)
= atlagm' -~ azgm’n’ - agn') +
- A% (ag® - apn®) i oo |
9-;“' "aat (01 m’ e "m’) 1 Aggm;
mere nt (yn’ - Pam'n) 4 aAPen

for m, n=1, 3, 5,. . .

In accordance with Eq. (170), we obtain

vmn ,mn
al
Lmn""Pmnm""—,“ Amn wPmn om, byl
v % *o
cm n
B'“'=p"‘";ml'

(171)

(172)

and, consequently, the solution of Eq. (146), (147) has the form

L5

NN
\J
[0 <]



3
t ]
L
3
]

¢-.'-,“1§-‘:S—L——slnm1’cosuan. )
(173

8
3

16p
W - _-5,-2 —:Wsinmagsinnnn.

MimiAem]

The maximum deflection in the center of the plate

min-2
® oo oA didond 2

I [ 1(-—0 4 c',""'
lone = 8 3 3 ' (174)

The bending moments, torques and cutting forces are determined /59
by the following expressions

“,n mn
6pb) \ mEVely :
. M :2 2 ) 1ty sinm ag sinn ay;

mn
it mnc .

. 0 . m, ﬂ
Ganm,;l),zyt AL sinmnisinnan:

cm Fl
Mmef ey

.m,
H - "‘"D H"’ cusm:técosnnn;
S
. (175)
—2,—“ Vf':!._____..z_ cosm at sinn xy;

-m
m,n
mn |
m-l n- vy

(- «©
6 n
(),;!..'1!“'_'_2 2.—.!.———-—;.-—-..8{“";35(;05"1"

The maximum shearing stresses on the edges of the plate (x=0,
x=a and y=0, y=b) arise in the middles of the sides, and they are de-
termined by the expressions

-mn

2% Sy
o220 § 00
mn;""‘

Mefnet

2k S mr e g (176)
T, -l 3 .____.__.___" >3
s max n3Y m."‘ﬁ mn C;" n [
where Com,n. Clm,n. czm n c3m,n are determined bty Eg. (133), (134) and

(171).

A solution in the form of binary trigonometric series is inconven-
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ient for practical use. Therefore, 1t 18 advisable to conslder a solu-
tion presented in single series.

23. Bending of Orthotropic Rectangular Plate with Two Supported Edges
by Uniformly stributed Load

Let the principal axes of anisotropy of the plate be parallel to
the sides. We select the coordinate system as shown in Fig. 27.

We will assume the edges of the
plate x=0, x=a to be supported and to
satisfy the following boundary condi-
tions

w=Gy=y=0.

In this case, solution of plate /60
bending system of differential Eq. (1u46),
(147) can be sought in the form of sin-
gle trigonometric series of the follow-
ing type

Fig. 27. Coordinate system
selected.

¢= "2‘% (M) cos Ayt;

w=§%mmum
" (177)

W= "gl’ Wy (n) sin AL,

where
(An =n ﬂ).

We expand the uniformly distributed load in the trigonometric
series
(178)

pP= “}3’ Ansin AL,
where
An=!’,ffor n=1,3,5,... (179)

By substituting Eq. (177), (178) in bending Eq. (146), (147), we
obtain

\

n_? s [aoc A (An ags + Go3) Pn + (Aaeo +

+ Mn Gz + Boy) Pn) COS A = 23[""""”:"‘ (180)
= An (7‘:“1 + a,) w,.] cosALk:

o

S Lo ¥ = (g ) i (b0 N g+

+aw) vl vt = 3 [pL — (1 +

b7



+ Ba) wa) sin Aek;
-J [ao.w,. — (M85 + Vi Goo) wh' + An (Anayy +

(180)

+ Y3 Goo) Wa — An (AR Geo -+ ¥ 80) w,.] 8in At =

== i n(An Gyg -+ An Gy + Ggg) 8in Ant.

Here and subsequently, summing is carried out only by odd indices /61
(n=1, 3, 5,. . .).

System of Eq. (180) 1is satisfied if, for each n=1l, 3, 5, . .
there 1s a solution of the following system of conventional differential
equations

Bu9n' — (An gy + Gog) @ + (Ah G4g + A 820 + o) P =
= A3t — A (A 0y -+ ay) wp:

8oy Pn" — (An 83 + Gga) Yn + (Anayo + bntize +80) Y =

= Pywn — (ks + Bs) wn; (181)

agaw"" — (A Bau+ Vs 8oo) WhY + An (AR Gy + Y 8go) wr -

- ,":‘ (,": Qg = }'l aoo) Wy = %‘f‘:"(}w'\ (7 + A:; Qg + aoo).

We present system of Eq. (181) in canonical form, doing them cor-
respondingly by coefficients a,,, a,¢ which, according to Eq. (150),

are different from zero

] 2)
‘Pn eﬁ') Pn + e("2) Pn = ﬂn )wn — In Wn
2 .
‘pr'\v—en‘)ipn +¢$:)‘pu = ’(n”wn - A wm

. 8
w¥ — o0l + 0 wo — 0 wa = B (183)

(182)

N
o
N

for n=1, 3, 5, 7,. . ., where

2
e L. hnagh gy 42
"o [ DDy

+ 8D, + K,D]- (184)

"‘ .;" ;'C ;"
¢ o 2ofeotIntatdey e [ T DiDy+ 55 %

"o Qo4 = "DyDy

X (K.D, -+ K\Dy) + KIK:];

[—E—(DD&D —C") +

L8




Eaali At )

SRR A

e A NS

'),-—« ’."ﬂ_‘ [ ’w » 0y .
n - deq = ‘_D’.‘i)"; —.l(hll)' - ZLK'),

Mo (dma,+ @ Y'Y (;‘: )
12 = ( %: ‘):;: l),u,"f‘ = Dy + K,) Ky
3 _ B Kb,
R gt o
;:\ﬂ 4P b A,:‘ i ) )
,(“”7‘; :00 s = DDy [—:i— (A’D‘—_:”C"l) ‘* le' H
o) — ";"u’*'\'a"oox
Sos
bt o (184)
= "DyDyK, {’ZT |DyDsK, + Ko (D\Dy + D) —C")) +
+ DK Ky
o' = M (An 949+ Y3 o) b
n Gon =g DKy
M

X

a?

A.
- {"a_:’ [K,D{Ds + K‘ [DlD‘ “*—‘ D; — C'] +
+2(C+ Dy KKy :
msla) —- ;‘i‘ll')“:l ﬂm-{-\" am) .
4o
DK, M M :
= T‘B‘r*(* s ’*-) =

_4p b M
Qo = An D3D.K, [F D.D; +

"i
+ = (KsD, + K\D;) + K,K.]

for n=1, 3, &, .

After finding the general solution for plate deflection Wp s for
aeformation functlons b Vpos partial solutions of Eq. (182) are taken.

In this manner, the soluticn of system of differential Eq. (182), (183)
1s determined by the roots of tiie characteristic equation

K — ol k4 0 K — w0 (185)

Eq. (185) always has two real roots. The remaining roots are
determined by coei.'icients mn(J (3=1, 2, 3).

We consider the most general case of complex roots, 1l.e., we will
assume that the roots of characteristic Eq. (185) are

+ k. _-L-(s,‘;tr"‘) . (186)

49

~

KW



The general solution of differential Ej. (183) can then be present-
ed in the following form (for brevity, we wlll omit index n of coeffi-
clents Cy, A,y By, kyy 8y, ri)

wn -,--—-—-{ Cychkn 4 Ca®y(n) + Cs Py (n) -+
m

4 Cyshky -+ Cy @y () + Co Py () (187)

where the well known functions of V.Z. Vlasov are designated by
01(71) (1=1, 2, 3, W)

M, (n) = chsycoesry; My(n) = shsycusry;
My(n) = shsasinrn; @ (n) =chsnysinry. (188)

There are the following relationships for these functlons

D =Py —rd; B =s®—rd,; )
B, = s Dy 41y O, =sDy L rdy;
Q’; = (5' -— r') O, — 2rs (g,
@, = (5" — ') D, 4 2rs Dy;
@] = (s' = ) @y — 2rs Dy
O, = (' — ') D, 1 2rsDy;
(S'—-dr)d) r(r' —3s") @,
= s(s'—3r)(p‘_.,-(, — 3s")
(
(

=s(s"=3")D, {r(r—3s

)
s(s" =3V, —r (P — 3«') O

]

&D“ st —6r's"+r —4rs(s'—-r’)®,;

- (s o
Ol = (s —6r's" + ') @, + 4rs (s’ —ro,; (189)
_yy r) |
‘)

(I)l\ 4 4

' —6r'" 4 r) @y —drs(s' — ') Dy
(D’v=(s‘ 6r's’ 4 r ®.+4rs(< ——r)d),

A table of functions ¢

¢2, ¢3, @u [15] is presented in the ap-
pendices.

1,

In the coordinate system selected with a uniformly distributed
load, solution of system of Eq. (182), (183) should be even relative to
¢n’ W and odd relative to wn, i.e., the solution must be sought 1n the

form
Pn(N) = @ + Aschkn 4 A, D, (n) + 4, D5 (n);

Yn(n) = B, sh kn + By @y (M) + By @ (n);

n (190)
wa(n) = — 505 4 Cyehkn + €y @y (m) + €y @y ().
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By substituting Eq. (190) in differential Eq. (182), we obtaln

AgSchkn + Ag[(sb — 08 +r4) Dy (v) —
— 4rs (88 — 1) @, ()] + A, [(s — 6r%® + r4) Dy (n) +
+ 4rs(s® — ) O, (n)] — ek’(Ak* chkn +
+ Agl(s* — r3) D, (n) — 2rs Dy (n)) +
+ Agl(s® — r*)®,(v) + 2rs @, (n)}} +
+ 6P (@o+ Aych b+ Ay Dy () + A3 Dy (n)] =
= fV{chPchk n + Cy [{— ) Oy (n) —
— 25Dy (W)} + Ca 1(8* — 7%) Dy (n) + 218 Dy ()] —
— [P wy + Creh kn+ Cy®y (n) + Cs Py ()
B kS sh kn + By [(8% — 6r%® + ré) Dy (n) —
— 4rs(s* — rY) @y (n)] 4 Byl(s¢ — 6r3s® 4+ r$) @y(n) +
+4rs (& — %) @y (n)] — e {Bik¥ shkm +
+ By |(8* — r?) @y (n) — 2rs D ()] +
+ By [(s* — r?) @y (n) + 2rs O, ()} +
+- 3&2"[51 shk n + By ®y(n) + B, Dy =
= (Ck shky + C,[s(s* —3r) Dy (n) +
4 r (Pt — 383) O ()] + Cs (s (s* — 3r*) Dy () —
—r(r*—35") @y ()] — fa (Ciksh ke n-+
4 C, 18Dy (n) — r ()] + C3[s Dy (n) 4+ 7 Py ().

(191)

Since equality (191) occurs witn any values of n, on the assumption /6"
that ku-en(l)k2+en(2)#0, the following expressions can be obtained for
coefficlents Ay, B, (1=1, 2, 3)

_ ,$\2) Q, . )
=@ G
1ok — 12 k(PRI (192)

== [N, S . S —
Al Cl k‘___e(ni)k'l.{_e("g) ] Bl Cl k._es‘”kg_*‘e(“z'f‘ 1

Ay = ADC, + APCs; By = AYC, + AWCs;
Ay= —APC,+ AVCy;  By= —AYC, +80C,
[ ,(“l)(‘z_,a)_,ﬁ‘z)] {‘4_6,2‘2_*_"__4‘1) (2 —r®) +
[(‘6_6".": +r8) — el (5 —r) +,(“2)12j_‘
+¢(“2)] —-ér’cilg’ [es,”—-‘.! (‘2_'2)] )
+,"2‘: [e(”i)__z(;:__'z)lz '
o [:‘ — 62 4 e (%) +
[(:‘-—Grzs’ +r8) =D (s —r%) +
D] [ 2 (=] [AD () — A2

where AN
n -

AP = 2rs

DT rars [ 2 (@ )2 ‘
M‘s) (s*~3r%) — fﬂ [:‘——6:"’+ b)) (2—=r®)+ (193)

3
A =5

[ orm 4 )~ ) e [E+
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where coefflcients Ajn

el ot [l =20 )] [AD (-3 + A1)
+‘,‘,‘\ ) 2(. l)lz
2t [ =200~ )] [AD (P —3r") — (9] -
ol D @)+
— [0 (=36 + 1] [ —0rtr el (42— %) o D)
+f("’j +4r08 [ —r (88— %) 2

A("‘) [

Thus,

@ == % lq)o -+' Alnch k"" + A...Q)m(l‘) + ."3'\(1)37;(“)] cos m;
-

n={,3

§ = § (B,nshkan + Byn @gn(n) + Byn @0 ()] sin Ank;

n=tf,3

W = z[— -(-?-(%-) + Cinchkan + anmln('\) +
+ Can Do ()] 8in Ank,

acteristic Eq. (18%).

Correspondingly, the following expressions can be obtalned for the

bending moments and forces

- 52

Gl D 2 [ N’o -+ AmCh kn N+ Aunq)pl ('\) -

+ Aa" m’“(")l - 1;" lknBlnCh knn +

+ Byn @30 (0) + By ;1 (v])]] sin A,k

G,~—D, Z + [knBinchkan + By @3 (n) +

ﬂ-l

+ Ban m‘ﬂ (“ ] - ,q;v‘ (Wo + ¢4|n ch k"'] -*-'

+ Agn @y (1) -+ A Dy (1) sin Aok

o0

’ *
H = —-Ds 2 {T [A‘nanh knﬂ + A'n(blﬂ (n) +

nei

+ Agm ‘I"zn ('1)] + ‘,:;"" [Bynsh kp v 4+ Bya @y (n) +
+ Bsn @4 (‘l)l} cos ’mgi

(193)

(194)

B n (J=1, 2, 3) are expressed through random
constants C n (J=1, 2, 3) by Eq. (192), and kn is a real root of char-

(195?
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0‘ = _K‘ E{lqﬁ.+ Ap.Ch ku‘] + Alﬂ‘pl'\(") +
nw|
+ Agn @y () '*'—,:“[—"—?{3'7 + Cinchkan +
n

+ ConDyn () + Con Dyn (q)} cos Ank;

Qs ==Ky Y (IBinshkan + B ®yu(n) +

+ Bn @n (W) + ';,' [Cinknsh kn N+ ConPin(n) +
+ Con @30 ()]} sin k.

For each number n=}, 3, 5, random constants Cln' C2n are determined /67
from the boundary conditions at the edges of the plate n=+1/2.

In conformance with conditions (22), the boundary conditions for
the edge B=const have the form

unsupported edges
02-H=Q2=0;
rigidly fastened
yrd=w=0; (196)

loosely supported
w=G2=H-0; w=H=Q2=0;

w=¢=02=0; Yy=w=H=0;
w=¢-Q2=0‘
Besides these conditions, there can be different fastening of both
edges, 1.e., any pair combination of the boundary conditions written
above. However, in these cases, the deformed and stressed states of

the plate will not be symmetrical about the x axls and, consequently,
all six random constant remain necessary in sclution of (187}.

24, Case of Different Real Roots of Characteristic Equation

Bicubic Eq. (185), by the known substitution

k= km
can be reduced to canonical form
k3+3pk+2q=0, (197)

where
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ol ol @
308 (i1

p== " (198)

The number of real roots of Eq. (197) depends on the sign of dis-

criminant D-q2+p2

' ] »
ol2) o oDallB (@ @B

D= — + — DY R 11" S S (199)

Consequently, a case of three_different real roots can be visual- /68
ized. Let these roots be El’ Ez. E3. The roots of bicubic Eq. (185)

will then be in the form +k,, +k,, *ik;. We will assume that edK4n
(1=1, 2, 3) are not solutions of uniform Eq. (182), i.e.,

K — kel + e - 0

(i=1,2,3).

The solution of system of differential Eq. (182), (183) can then
be presented in the following form

(M) = ¢+ Aychkyn+ Ajchkyn -+
+ Agcos by + Agshk v - Ayshkyn - Agsinkyy;
Yu(n) = Bechk,n + Bychkyn + Bgcoskyn +
+ Bysh kyn+ B,shk,n + Bysinkyw; (200)
w0, (1) = —:‘fgy 4 Cyehkyn + Cychkyn+

+ Cycos kyn) +- Cysh by n -+Cyshkyn + Cqsin kyn.

In this case, it is easy to obtain a solution for the general case
of asymmetric boundary conditions.

By substituting Eq. (200) in system of Eq. (182), we obtain

Ak ehk, 4+ Ayt chky - Akycoskyn +
+ Ak shk n+ Akyshk y 4 Adkysink,n —

—eh

[Ak bk, n -+ Ak chk,q — AKdcosk,n + (201)
+Agishk - AR shk,n — Akl sink,q] +
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e (o + Aychkyn + Agch kgn + Aycos kyy +
+ A sh k,n+ A shk,n + A sin k,n)]
= f[C Kkl chk, n + C,kich kn — Ckycosk, v +
+ C kel shk, v + C ki shk,y —Ckysink, ] —
-/ [—'%f"" + Cychkyn 4 Cychkyn + Cyconkyn +

+C.shkxn+C.shk.n+C.slnkm]:

Bkyshk, w + Bk shk, n -+ Bk, sink,n -
S BK ehk nt Bkychk n+ Bk cos kyn —
— oV Bk sh k, n - Bk shk, n— Bykysinkyn -
+ Bk chk w + Bkl chk, w — Bk coskyn] +
+ 2 [Byshkyy + Byshkgn - Bysinkyn +
- Bychkyn + Bych kyn -+ Bgcoskyn) =

a2 1Y [C.k:sh kyn+ C,k: sh &, n 4 C,k; sin kyn - (201)
S Chlchky q+ Ckychkyn —
-—-(‘,k:cosk,n] —_ ‘”[Ck shk, v+
+ Cikysh kg — Cyhgsin kg + Cikychbyn +
4 Cykgch kg + Cokgcos ky q]
for n=1, 3, 5. . .
Since Eq. (201) should be satisfied with any values of n, from /6
Eq. (201) we obtain
/(2)9
¢0ﬂ= ':‘:)w:;) ;
/“)k' ls"’)
b Ot (=12
/(”k’ j(’)
AJ»J—-C;»:!A‘—W (/= 1,2);
K2 4 gD
‘4)'¢3 = .—Cj’a“—*-c(”k.-{-. @) (i 03)v
(3),8__ 49 (202)
B = c,.._(_’___’_)_.
K} — 0] e
ki (19K — 14))
8103 = CJ’G j (”k|+'(2) '

B, = ¢, s [+ 13)
/.-0 + ,u),,‘_*,,(z) !

3) ' 4)
By=-—¢C 1—(.,(__"__,(_)_ .
% e 1 oD
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In this manner,

Q= ‘-\:n J'Pon + Ainch kynn + Agnch kg n -

n=t, 3,

+ A,nCOS k‘u" + A.nﬂh k‘u“ + A.uﬂh k'”" -3-

+ Agnsinkgyn) cosdk;
0
\ ='§'|Bln9h kiwnn + Beash kg n +

'{" B’n sin k,n'l + B‘n ch kl" ] + B.ﬂCh k,u L] +

~+ Byncoshsnn) 8in Ant;
N 0
w =: —-:,'(—’T-‘f—C";Chklnﬂ‘*'C'uChk.n“-‘-

Now |

+ Cygn o8 kan ) + Cynsh kyn ) +-
+ Consh kg ) + Con sin kyn ) sin A4E.

(203)

The following corresponding expressions can be obtalned for the

elastic forces and moments
@
G' F- --Dlnz'oln(n) Sin }'HE;
Gy, = —-D,"X‘G.n (m)sindsg; | °
Q‘
H = —D,";,' Hy(n) cos Ang;

O =— Kl"‘tvd‘Oln (n) cos A,

Qs = -K,'g{ Qan (M) sinAng;

3

where e
Gl"(n) ,‘q‘on "*- A‘,,Ch,unl] +

+ ZAJH! n shkmn + Agn €08 ks 1) + Ay sin kan'l] +
3
+ T [ ’imBanh kln U] ‘f‘,,_. "iths nsh "*Jn 1N+

+ KsnB3n €08 Kgn 1) — kgnBgn sin kan']] ;

Gim(n) -- -:7 [ }; (kjnBinch kjnny +
L=
-+ k)'aBua, a+h kin ']) -+ "'SHBSH cos kgn n-—

¥

—KynBensin ky u] — -'l'-';‘—l [%,, <4 i‘(.-l;,. chkjnn +
)-
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+ Ajes, nshkimn) + Agncos kv + Agnsin k,..q] ;
3 .
’lu(") et —:-'- [’E (A)nk}n’h k’n“ + A;.;.nk’nﬂhk,nﬂ) hanat

_ .“3"’\"" Sin k’" " + "‘anﬂﬁ (o4} k’q “] +

LY

']

2
+ [;}';(Biu shkjnn + Bjes,wcbkpnn) —

- Ban sin kl’\ n + B.n cos ksn “] H

Qia(m) = [‘Po- + X(Ajnchk}n‘\ 2 Ajes,nSDkjan + } (205)
jmi

+ A3ncoshyan + Agntinky, 'l] + ?"f‘ ["‘ ‘:(2;) +
n

-+ z (Cinchkjnn - Cjag, nshkiny) +Cancos kg, n 4
Sy

- Con8in kan q] 3

Qzs (n) = E (Binsh kv + Bjos, uchlijnn) +
Je1
4+ Bynsin kan v + Bencos kyan+-

+ '%"' lz (Cinkjnsh kjan + C}ﬂ.nkinCh kinv) —
Jm i

— CSnk.‘\n Si" kan n + ("ﬁﬂka'l cos kSn “]

for n=1, 3, 5, . . .

Coefficients Ajn’ Bjn' (y=1, 2, 3, 4, 5, 6) are determined through /72
random constants C, by expressions (202).

J

For determination of constants CJn (=1, 2, 3, 4, 5, 6), boundary

conditions (196) are used. In this manner, tiere can be 36 different
combinations of possible support fastenings of the edges of the plate
n=+1/2.

If 1t turns out that any of functions eikdn“ is a solution of uni-
form Eq. (182), 1i.e., kjnu'en(l)kjn2+en(2)'o’ the solution corresponding

to the solution wnaclchkjnn¢czshkdnn should be sought in the form
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where

58

Tn ('\) d Agkjn‘] sh kh. N A‘k;u d ch kj“ L H
¥n(n) = Bikjanchkinn - 3ksnnshkjnn,

A. foad Cl
A. - C|

B,wcl

,(nl);,}zn_ e

?Jt,,.i 2";”'—0& )) '

) I&"";’n— ,("3)

2K (2kh,—eD) ¢
"}n(’?)k}n",(n‘)) .

B’”Ca

2k, (27, — (D)
ko (%5, — 1)

23, (2k7,—e1)

y

|

(206)

(207)



CHAPTER 5. STABILITY OF ANISCTROPIC RECTANGULAR PLATES

g;. Formulation of Problem of Stability of Plates and General Methods
of Determination of Critical Loads

The advent of high strength materials led to the extensive use of /73
thin walled structures containing thin plates and shells as the basic
elements in industry. Experience in the use of such structures shows
that they, as a rule, turn out to be unsuccessful, not because the
stresses which develop in them exceed permissible limits, but because
of disturbance of the equilibrium of individual thin walled components.

Questiong of the instability of equilibrium arise everywhere where
there are thin walled structures. For thin walled structures made of
laminated plastics, because of the low rigidity of the latter, assurance
of stability is a particularly important problem in designing them.

If a parameter which characterizes the thin walled nature of a
structural element, for example, the ratio of wall thickness to the char-
acteristic plan dimension, 1s designated ¢, questions of stability as-
surance will be significant 1in the event the critical loed 1is deter-

mined by the relationship p-Aeq. where q>1 since, in this case, a reduc-
tion in wall thickness will significantly decrease the critical load,
while stress will increase only in proportion to the decrease in thick-
ness. The critical load 1in such thin walled structures proves to be

one or two orders of magnitude less than the load at which failure of
the material occurs. For plates, g=2 and, consequently, if the bulging
of units which consist of rectangular plates i1s an undesirable structure
according to the operating c-nditions, proper selection of dimensions 113
which ensure structural stability i1s an extremely important problem.
Dimensions can be selected with the availability of calculation for-
mulas or nomograms which define the critical load as a function of
geometric dimensions and elastic constants.

The problem of stability of a flat plate subjected to forces ap=-
plied in the plane of the plate can be formulated in the following man-
ner. It 1s assumed that the magnitude and principle of distribution
of extreme forces remain constant and that parameter y characterizes
the external load. The critical value of parameter y 1s determined at
the time of appearance of other forms of plate equilibrium accompanied
by distortion of its 'nean plane.

The theory of elastic stability has been worked out extremely
thoroughly, and a number of effective methods are available. One method
of determinatior of the critica. load i1s as follows. On the assumption
that, at some value of load parameter y, the development of a distorted
form of plate equilibrium is possible, differential bending equations

are compiled with external forces T1-7T10,7T2= T2°, s-ys°, which are

applied in the mean plane of the plate and give bending component p nor-
mal to the mean plane of the plate, taken into account. The solution
of such an equation, which contains y as a parameter and which satisfles
all boundary conditions, exists only with certain specific values of
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parameter vy, which are called the eigenvalues of the problem.

Each eigenvalue Yy (k= 1, 2, 3,. . .) defines a critical load

which corresponds to a specific form of loss of stability. It is evi-
dent that only a load determined by the smal.est eigenvalue of parameter
Y 1s of practical importance.

Engineering practice usually 1s limited to obtalning approximate
values, for which variation methods, based on general theorems of the
equilidbrium of mechanical systems and according to which the potential

energy of the system has a minimum value in the equilibrium position,
are extensively used

If Uo is the potential energy of a plate in planar equilibrium and
U is the potential energy of the plate in the distorted state of equi-
librium, the critical load is determined from the equation

(208)

l.e., for determination of the cr1t18a1 value of load parameter y, the
work performed by external forces T1 » T2’ S in minor bending of the

plate must be made equal to the potential energy of bending of the
plate.

The solution of specific enpineerinp problems by energy methods /15

looks approximately as follows. Expressions are assigned for func-
tions ¢, ¢ and plate deflection w, which satisfy the boundary condi-
tions of the problem

[ca R <o)

§ = z.\:xinmffmn(z' !/);

m n

W““";\.::anwmn(z. II); (209)
W = a\-::cmnwmn(x' U)-

m n

By substituting these expressions in variation Eq. (208), we ob-
tain an equation of the type

F(A, B, C.y)=§§1U,,(A,B,c)_yvm(c)|=o, (210)

If a finite number of terms is taken in Egq. (209), Eq. (210) 1is
not exactly satisfied. In this case, 1t is evident that the best ap-
proximation 1s obtained upon satisfaction of the conditlons
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oF oF aF
oAy =By =y =0 (211)

1-1. 2. 3. s oy n.

By setting the determinant of uniform linear system (211) equal
to zero, a characteristic ejquation can he obtalined for determination of
the critical value of load parameter y.

Investigation of stsbility can be approached from more general
standpoints of the stability of motiocn. Here, instability or stability
of the planar shape of a plate exposed to forces applied in the mean
plane of the plate should be indicated. Together with this unperturbed
form of equilibrium of the plate, perturbations of the form of motion
similar to it are considered. If the smallest perturbations desired
cause finite deviations from unperturbed equilibrium over time, the
latter are called unstable.

As applied to plates, this method 1s reduced to the following.
A differential 'equat.on of transverse vibrations are compiled, with the
longitudinal forces tuken into account. Further, natural oscillation

frequency @en is determined. It depends on the plate dimensions, elas-

tic constants of the material Cyy and load parameter y. At some values /76

of parameter y, the frequencies may turn out to be zero or imaginary,
and thelr corresponding deflections will increase indefinitely. Such
values of parameter y determine the c¢ritical load.

26. Differential and Variation Equations of Stability of Rectangular

Plates

We consider a rectangular anisotropic plate with sides a, b. We
select a coordinate system such that the x, y axes are along the sides

of the plate. Let the plate be loaded along the edges with forces Tlo,

7,7, 5% in the menn plane of the plate (Fig. 28).
Let bulging of the plate occur at some
po— b , combination of forces Tlo, Tzo, SO. it 1s
r 111} Ilfj, i evident that, with as small a distortlion of the
{4 mean plane of the plate as desired, the equi-
f -1 1librium equationy in addition to the internal
E} ) t: forces 1n the plane of the plate which arise
‘ r’h in bending do not depend on initlal forces
qTTITﬂTmT ;. Tlo, Tzo, SO. More than that, these forces
. }- ’ generally can be disregarded. The equatilons

of equilibrium of the forces ncrmal to the

mean plane of the plate depend essentlally on
Fig. 28. Loacding dia- the initlal forces, since the projections of
gram and conventicnal these forces on the normal to the deformed mean
symbols. plane are on the same order of smallness as the
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cutting forces which arise upon bulging.

By projecting forces Tlo. Tzo, S0 on the normal of the mean plane

of the plate after bulging, we obtain

o 8w ¢ Otw

o

i.e., the normal component of initlal forces Tlo, Tzo, S¥ 1s equivalent
to the distributed transverse load determined from Eq. (212). Since,
because of the smallness of the bulge, all relationships obtained in
study of the bending of a plate remain unchanged, the following system
of differential equations can be obtained which descrite the bulging
of rectangular plates.

1. Differential equations of stabilit of anisotropic rectangular /77
plate. For rectangular plates of anisotrop%c structure, the system of
differential equations of stabllity has the following form

0

T g T g1 asv
9) e |l e -y e e J .
Lq(w) r(u" 0§*+ b% on? 75 dgdq)[“(“)_‘o' (213)
o B A 'w e ow |
L.(‘P) =y gEs i uldax‘ o - dq ot oyt —ay 5"'":'1' — Qg "Tg ' !
v N A P ¢
W () = P g + Ba grogs + e gzy — (214)

& e |
1 gt ﬁ". dy °

where differential operators in partial derivatlves L6(), Lu() are
determined from Eq. (137), (138).

2. Differential equations of stability of orthotrogic rectangular
plates. Tn the case of orthotroplc plates, the principal axes of anlso-
tropy of which are parallel to the sides of the plate, differentlal

equations of stability (213), (214) are simplified somewhat and they
take the form

, r° a3 To a3 age @t
Fo(u) -+ (;‘L R + Tzﬁ—ﬁ-‘ - =5 FEm 0'])1'“ {w) = 0
F M XY ou (215)
() — ux;‘?“f‘ ﬂgw——-a.—(ﬁ: ;
N [ LTI F LT du a
FI("”" ﬂxm'rﬁam-—ﬁb-‘,—“-. (L16)

Differential operators in partial derlvatives FG()' FN() are
determined by expressions (148), (149).

Eq. (213)-(216), together with boundary conditions (22), permit
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determination of the critical values of forces Tlo, T2°, So, which are
applied to the edges of the plate in the mean plane. It is particular-
ly easy to obtain results in simple loading. '.e., when the external
forces change in proportion to parameter y -i- e,

It should be noted that, in the practical use of the method of
direct integration of differential equations reported above, great dif-
ficulties arise in a number of cases, which are connected with satisfac-
tion of the boundary conditions. Moreover, as a rule, the character-
istic equations which can be obtained in determination of the critical
load are transcendental, and they do not permit expression of the de-
pendence of the critical load on the geometric dimensions of the plate
in explicit form. Thus, it is highly advisable to have an approximate
method for determination of the critical load. Approximate methods
are based on consideration of the pctential energy of bending of a
plate upon bulging.

In derivation of the variation equation of stability, an expres-
sion must be obtained for the work of the external forzes which 1s ac-
complished in bulging of the mean plane of the plate.

This work 1s ietermined by the expression [17]

i S \3 duw \? N O dw
Mz-Tof'o”T:("’i‘) + 1 (%) + 28 ] e (217)

Based on the general theorems of mechanics, the equllibrium 1s
stable if the potential energy of the system 1s at a minimum. Conse-
quently, the magnitude of the critical load is determined from the con-
dition that the increment of potential energy of bending of the plate
upon bulsing equals tche work of the external forces.

Since the potential energy of bending of the plate is determined
by Eq. (155), (156), we have the followlng variation equations of sta-
bility of anisotropic rectangular plates.

1. Variation equation of stability of anisotropic plate. For a
rectangular plate made of anisotropic laminated plastic, the variation
equation of stability has the following form

v\ 2
'

+—59,,9§§.(%%.+%P)+ %D”%% %’*‘%)*‘1"1 ‘P"r%%) +
abd
+K’(¢+%).}d:dquJ [T:(%—':)’+ T:(%)z+

ow Ow
+ 2852 5 | dzdy.

(218)

2. Variation equation of stability of orthotropic rectangular
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plate. For an orthotropic plate, when the principal axes of aniso-
tropy are parallel to the sides of the plate, Eq. (218) 1s somewhat
simplified, and it takes the form

[ [0.(32) + 200 2 3+ 005 + 0S4 2+
+K.(q>+ 2V 1K (v + ) | dzdy =

’_55[1- 0:.) +T'( )+2Soa‘: :;:]d.tdy (219)

A T )

27. Stability of Orthotropic Rectangular Plate Compressed in One
Principal Direction of Anisotropy

Let a rectangular orthotropic plate be compressed in one principal /7
direction of anisotropy by forces Tl0 uniformly distributed along the

sides x=0, x=a (Fig. 29).

y We obtain a general expression for determina--
tion of the critical load by means of integration
of the differential equation of stability. By

increasing the intensity of load Tlo, such a

state can be reached in which the planar form of
== equilibrium of the plate becomes unstable and
bulging of the plate occurs.

RERER

bhidipe

fo—p—o

Fig. 29. Diagram of

plate compressed in The system of differential equations of
one direction. stabillity has the form
0
Fo(w) = L t,g, Fy(w); (220)
3y oy "
Fl (‘6) == @y l:;;a 4ty dgag,la —q:‘%ﬁ__;
30 .
Fu(¥) = Bi5o + Bs g5 —Ba g (221)

where functionals F6() and Fu() are determined by Eq. (14c) and (149).

a. Stability of plate hinge supported on profile. The solution
of Eq. (220) which satisfies the boundary condltions of hinge support
along the contour

at x=0, x=a w=Gl=w=0;
at y=0, y=b w=02=¢=0,

can be sought in the form
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¢ = Acosm afsinnay;
¥ = Bsinmafcosnnay;
w = Csinm n§sinnny. (222)

By substituting Eq. (222) in system of Eq. (220), {221), we obtain

¢ (agym® +- ayymin® 4 ayminé 4 a, 4n*) +
+ 9 o 1 (Vim® + yymn? L gy nt) =

- —+mtal [ns (3im* + ayym®n? + a, (n) 4 n9 (3om® + Gy gn?) + ay o3 (223)
A nd(a,mt + azm®n® 4 a, nt) 4 a? (agm? - ag4n?) 4
48y 4) = —C laym3a® + agmn® a® 4 aym a;
B (a4 (agm® 4 agym®n? 4 a, 4nt) 4 A2 (agym?® + a4 4n®) +- (224)
-Lagy) = —C {pyn*n3 4 Byminn® -+ Bynn).

In conformance with Eq. (223), the critical load is determined by
the following expression as a function of two integer parameters m, n,
which determine the mode of wave formation

° e at
L/ .
1T X

% n? (a,‘,m“ + agamind 4 agymind -+ a,4nt) + a,, (Y m4 4y m3n? 4 yw‘) ( 225 )
T (aggmd - agam 3+ agn) + ¥ (agomd - ag gn?) + g

We present Ea. (225) in a more convenient form for practical use.
We introduce the following designations

$1(q) = 7* (a0o® + a43q* |- 0549 -+ G o)
22(9) = 00 (V1¢* + V3 + Vo) (226)
3 (g) = 4 (8409% + agaq -+ ayy);
S () = 7% (a9 + ay ),

g=12r: w=u (227
n

where

The critical load is then determined by the simple expression

roo At Wl (@)t ule(e)
H q “"a(ﬂ'f'“C.(‘q)-f-aoo . (228)

From expression (228), we obtain

6Ty _ a%a' (5ile—1als)ut + 2000 §1 U + 00 s
du 9 s W+ T U+ ap)? ’

(229)
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It is easy to note that the sign of the right side of Eq. (229)
i1s determined by the coefficlient

Sile— tals = 714 {(ago030 — Gig0 ¥y) G* + dgqayy — 894800 Ys 1~
+ (243850 + G400y — 045800 Yy — agstiney,) ¢ +
T (834030 + B4gB03 — Qig@o0 Ys — 33800 Y3 — Goylgo ¥1) ¢* +
+ (G0 636 + A5ua0 3 — B3804 Yo — By (B0 0 Vo) 4] (230)

or, according to Eq. (150)

D, DK} .
Sife— Cafy= “‘{ : c:J g+ a?;n [D:K: + (ZD,D. +D: - C‘) K:"

—2CD,K K] * + = (DD, + 2D} — C") (DK} + D,K?}) —

~2(D,D, + D} — C*) CK\K,} ¢* + o5 [DIK? +
' ) D'K? ( 231 )
4+ (2D,D, + D} — C*) KY = 20D, K, Ky g + —2p2ie)
In this manner, over a wide range of change of plate rigldlty
0
oT
parameters —sﬁlzo and, consequently, in bulging of a hinge supported

plate compressed in one principal direction of anisotropy, one half
wave forms transverse to the compression, 1l.e., n=1,

The critical load is determined by the smallest value of the
expression

%), = 28 4@+ ) 232
N T E AT E e (232)

where q=12, 22, e ey m2.

It now 1s advisable to consider the case frequently encountered

in practice of the cylindrical shape of loss of stability of a rectan-
gular plate upon ccompression in the direction of the unsupported edges.

b. Stability of plate with two supported and two un§%§%%££%g§§%gg§.
In this case, the approximate solution of system of Eq. ( y (2
can be sought in the form

P==Acosmal; $=0; w=Csinmng. (233)

By substituting Eq. (233) in the system of differential equations
of stabllity, we obtain

T°
A0 mag, + RO méay vy = —+ miat(atmiayy + 7P mlay, + 8oo); (234)

A (m4 x4 a,, -+ m®ntay, + ag) = -- B (m® ade, + maay), (235)
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whence, for determination of the critical load, the following expres-
sion can be obtained

m3x

. () s
Tt‘”DlK‘(maq) | DD;( ) +(D:Ka+0uxn)(—‘) +K'K'

(236)
. f ma\?
or o D,A.( )
e
1 D‘("‘“)'{"l‘l (237)
In accordance with Eq. (237), in cylindrical bulging of a lami- /82

nated strip in the direction of compression, one half wave forms (ms=
1) and, consequently

T, . = VDK
cr n'u.+'A".a*’ (238)

The critical load for higher forms of loss of stability (m>l) does
not tend toward infinity, as occurs in the case of uniform shells, but
toward finite limit Kl. The equivalent of this is that, wlth decrease

in length of a rod, the critical load, upon increasing, asymptotically

tends towards finite limit Kl. This phenomenon should be tsken into

account in the use of reinforcing ribs made of laminated plastics to
strengthen a cylindrical shell. The carrying capacity of such stif-
fening ribs can be limited by their rigidity in transverse shear.

28, Stability of Hinge Supported Rectangular Orthotroplc FPlate 1n
Compression in Two Principal Directions of Anisotropy

We now consider the problem of the stability of a rectanguiar
hinge supported plate with sides a, b, in which the principal axes of
anisotropy are parallel to the sides and which is compressed by uni-

formly distributed forces Tlo, 2 (Fig. 30).

We obtain a solution by using varia-

. tion equation of stability (219). We assign
NI ITEI R RN I the deformed state of the plate after bulg-
] o ing in the form
- nAN
—- o 7
— -, Acosi (239)
== ¢ = AcosAzsinny,
LLLARRRRRRRERRRR'S B
a w == EsinAzsinny,
where
Fig. 30. Diagram of LY nn
plate compressed in == V=7
principal directions (240)

of anisotropy.
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the following can be obtained

8

-G-ZLas—AhlinAzdnqy: %w-—BqﬂnAzsinqy;

o

%u,lqcodzcoaqy; -%%u:lf?.cos.lzainqy; (241)
o ‘

5 = BAcoshzcosyy; %-Eksin}.zcmqy.

By substituting Eq. (239), (241) 4in variation equation of stabil- /83
ity (219), we obtain

a b

U={[{DAsin?Azsin®ny + 2CAn ABsin*hzsin®ny +
[

4 DB tsin?Arsintyy - Dy(mA + A B)? costAzxcostny -+
- Ky (A -+ AE)cothasinvtny + K, (B + 0 E)? sin*A zcosdny —
L E cos"Azsin' ny — 7o' E'sinAzcosny) drdy =
M \Dy R A 4 20 AN AB + Dy BY + Dy(n A + A BY 1

LKy (A +AE) + Ko (B4 nE) — (T + Ton') £,

(242)
where, as before, C=D12+D3.
The minimum potential energy condition has the form
orr AU ol
T{-ivzf-d—l,—:_—ﬁ—é"-vo' (2“3)
or, after reduction,
ADNM =Dy L Ky + B(C + Dydn+ ELK
v : s)An+ EAK, =0
"l(C+Da))"|+B(Da‘]=+Dav'f‘l\’:)'f‘Et]K,—::(); (244)

AMK, - BnKy+ E(V K+ 0" Ky — T0A" = T0?) - 0,

The condition of nontriviality of the solution of thils system
gives the necessary characteristic equation for determinatiloir of the
critical load
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Chy Dyw* + D, 4* + K, Kyn =0
K, Kyn KM+ Kynt — ay
— (32" +T3n') (245)
or
(T + T00") [(Dy A" + Dyn® + K,) (Dy 0 + DsA' - Ky — "My =
m= (DAY 4 Dyt + K)) (Dyn? + DyA® + K) (K, A + Ko v?) +
+ 2CK,KyA"' — (Dyn' + DyA’ + K,) K} A* —
— (DA + Dyn” + KD Kon' — C* (K A" + Kyn') 4. (246)
As a result, for determination of the criticsl load of a hinge

supported orthotropic plate compressed in the principal directions of
anisotropy, the following expression can be obtained

oy ofn\* Li(m,n)+ 2g (m, n)
71(“ ) +T'(b) = a! C.('rrc.rc)+;.(:v:.n)+a.‘ (247)

where, in accordance with Eq. (150), the following designations are
introduced

w1 (M, n) - A% (agem® -i- aymén? - az;mind - agent);
Ca(m, n) s= 2y (yymé & yymn® 4- yynd);
Ea(m, n) - a4 (aggms 4 agmn’ + a,nd); (248)
La(m,n) .= 3% (aym? +- ayyn?).

In simple locading, when the load along all edges 1n8reases in
proportion to a single parameter, i.e., when Tl =T, T2 =4T, the

critical value of parameter T 1s determined from the expression

" e > -
oo ci(mon)4-2q(m. n)

(20.+m(%). va (mom) o (mon) tag

(249)
i.e., the problem is reduced to finding the smallest value of the
right side of Eq. (249) as a function of integer parameters m, n.

29. Stability of Infinitely Wide Orthotropic Plate in Compression
Along short Sides

Let an extremely wide orthotropic plate of length a be compressed
by forces Tlo, which are uniformly distributed along the wide edges.

We will assume that the principal directions of anisotropy coincide
with the sides (Fig. 31). In this case, a cylindrical form of loss of

stability can be ccnsidered, 1.e., it can be assumed that all components
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of displacements and forces do not depend on coordinate y. The system
of differential equations of stability then takes the form

v r
eolt ! 08y Y}‘vlv == —"'} (a“ww — a.wlv + auuy")c

’

(250)

v "
B¢ — Qe P +a°,tp=-nlw'"..¢‘w'_

In accordance with Eq. (150), system of
Eq. (250) can be presented in the following

TR AR RA TN form
L (D’?i% _Kl) DIKI':—:".:' =
=T (D gr = Ka) (D1 = Ki) G
(Dsger — Ko )(Dy 55 — Ki9) = (251)

= (1)3 e .-K,) Ka'.

x

Fig. 31. Loading dia-

gram of infiritely wide
strip. System of Eq. (251) satisfies the solu-

tion of the system

VR, } (252)
¢ —Pe= plu,

where e TR K
Dl(l\’l—r) ' 1 - I). * (253)

The general solution of system of differentlal Eq. (252) has tLhe
form

w = Cycos kx - Cysin kz 4- Cyz 4- Cy;
2k . "
(P=;,—p_FT:_.-(Cl.QIn’{J‘——(,gCOS]\‘I)——C,. ‘ (254)

It also is easy to find the bending moment and cutting force

o Dt
Gy= ~ p"x-}.-k_r (Cycos kx +- C,ysin kz); ,

a (255)
Q, = W (Cysinkr — Cycos kz). J

Further, we consider some partial cases of fastening of the plate
edges x=ta/2.

a. Edge of plate hinge supported. Because of symmetry, an even

solution for X can be considered, i.e., it can be assumed that C2=C3=O.
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Consequently, the boundary conditions are satisfied if cos ka/2=0 or
ka=r, and the critical load is determined by the expression

. ‘DK
Ter™ wh4 Rar- (20)

b. Edge of plate rigidly fastened. The boundary conditions have
the form

C,cos 1';-;-'- +C, = 0

N3k k
Cl;ﬁ—vsiu-—,}:o; (257)
as a result, it follows that ka=2r and, consequently, /8€
7. _ANDK,
er’ WO Kt (258)

c. Edge x=-a/2 rigidly fastened, edge x=a/2 unsupported. In this
case, the boundary conditions have the form

Cicosa—Cysina —Cy = + Cy = 0;

C,sinu+(",cosa+(},-'-)-’-;:-‘-;,‘;&3-—:0: (259)
Cycosa+ Cysina = Q; l
("T == 0,

where

ﬂ:,*’f-k—-:.:-—. —-ZL
2 2 ' Dy(Ky—T) * (260

The characteristic equation for decermination of the eritical
load has the form

sina cosa

=0, (261)

cosu sina

from whicl we have k2a2=n2/4 and, consequently,

r . DK,
Cr AD, fika (262)

d. Edge x=-a/2 rigidly fastened, edge x=a/2 hinge supported. For
such boundary conditions
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from which we obtain the following system of linear equations

C.cosu--C,llua—(.‘.i--i-c.-co;
C,sina + C,cosa 4 C, P'H' = ;

Cicosa 4 Cysina +C.-§— + Cy = 0;

Cicova -+ Cysing = 0.

(263)

From Eq. (263), it 1s easy to obtain the following trans-
cendental equation for determination of the critical load

tgka =

piha ke
Pitht T 14y k! (264)

where parameter y characterizes the effect of interlayer shearing on
the critical load of the plate and is determined by the expression

05

N

0!

Yoo dom or a6 g

Fig. 32. Graph for de-
termination of least root

of equation tanx=

X
1+yx2
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D,
V= R (265)

- If the least root of Eq. (264) is
designated ty w, the critical load 1s de-~
termined by the following formula

. miDlK' (266)
cr w0, +K,a*’

The least root of Eq. (266) as a func-
tion of Y 1s determined by the graph pre-
sented in Fig. 32.

S
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CHAPTER 6. TRANSVERSE OSCILL! 'ONS OF ANISOTROPIC LAMINATED PLATES

0. Formulation of Problem o: [ransverse Oscillations of Anisotropic
aminate ates

We will consider small bending oacillations of uniform anisotropic /88
plates of constant thickness bounded by & simple profile. We will as-
sume the bending deformations which arise in the oscillations to be
small elastic oscillations which are governed by the generalized Hooke's
law., Such oscillations are described by differential equations which
are similar to the differential bending equations. Thelir fundamental
difference 1s the dependence of the external load and, consequently,
deformation functions ¢, ¥y and plate deflection w on time, as well as
the presence of additional terms which define the inertial load.

Forced oscillaticns of the plate which arise as a result of vari-
able transverse load p(x, y; t) should be distinguished from the natural
free oscillations. We will state that the plate accomplishes free
transverse oscillations 1f any forces which impart deflections and ve-
locities to the particles of the mean surface are instantaneously re-
moved.,

Thus, the system of differential equations of oscillations of an
anisotropic plate can be written in the following for

Ly(w) ~ 5 La() + La(q); | (267)
0w Pw ow
L(g)=a,> n+ a'sgr—‘*' s oy MG T G FE
% " 020 an (268)

Lo(®) = By 55 + By 5oy +Baggig —Bo 5w —Bs G s

where p 1s the plate material density; q is the variable transverse
load applied to the plate.

Differential operators L6(), L,() and coefficlents ay, By are /89
determined from Eq. (134), (137) and (138).

In the case of a rectangular orthotropic plate, the principal

axes of anisotropy of which are parallel to the sides, the system of
differential equations is simplified, and it takes the form

Fe(uw) = b — oﬂ L Fow) + Folp); (269)
L 9N Py ou
Fy(y)- a %.3’_ -+ “3‘77,}“’ g
P P (270)

Fo(¥) = B g + PBs- a*:a,‘ ﬂ-"—f)}_f

Operators F6(). Fu() and coefficients Gy B1 are determined by
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Eq. (148)=(151). The free oscillations of the plate are determined by
solution of uniform system of Eq. (269), (270).

Deformation functions ¢ and ¢, as well as plate deflection w should
satisfy boundary conditions which depend on the fastening conditions of
the bounded profile of the plate and the initial conditions which de-
fine the form and velocity of displacement of the particles of the mean
surface at the initial moment of time, i.e., at t«0, the following con-
ditions should be satisfied

Pe=qo(3. )i $=¥%(E ) w=w( n),
W . 271
Q=4 =0 %—=mwny ( )

The solution of the problem of free oscillations of the plate is
reduced to determination of the form of the oscillations, which is
determined by the mode of functions ¢, ¢, w and the natural oscillation
frequency. It should be noted that, in oscillation theory, the eigen-
frequercies of an elastic system are of extremely great importance.

Fecllowing S.G. Lekhnitskiy [17)], we reproduce the trend of the
solution of the problem of free bending oscillations cf an anisotropic
plate by the Fourier method.

We represent the solution of system of Eq. (267), (268) in the
form of the product of the periodic time functions by the amplitude of
the corresponding functions, i.e., we set

Q= (Cl“n)gpl -+ C’ sin pl)d’(ﬁ. n);
Y = (Cycos pt - Cysin pt) ¥ (%, v); (272)
w == (Cycos pt 4 Cysin pt) W (L, v),

where p 1s the frequency of the natural oscillations of the plate.

By suostituting Eq. (272) in Eq. (267), (268) for determination /90
of ¢, ¥, W, we obtaln the system of differential equations

Ly(W) + p*od L, (W) - 0;
La(@) 0, G+ ay g +
s g — ae - — 0, 5 (273)
Lu(¥) = By G + By -+
+ Ps a(::g,, = P 0;;:’ "ﬂa%‘;“" '

By satisfylng the assigned boundary conditions of the problem, as
1s done in determination of the critical load, we obtain a character-
istic equation which determines the presence of the nontrivial solution
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A(p)=0, which gives an infinite spectrum of the eigenfrequencies of
oscillation of the plate.

The elgenfrequencies of oscillation of the plate depend on two
integer parameters m, n=1, 2, 3. . . The lowest frequency is called
the eigenfreguency of the primary tone, and the remaining frequencies
are called frequencies of the second, third, etc. order. Each eigen-
frequency Pmun corresponds to the form of the natural oscilletions an

wmn’ wmn’ which 13 determined to within an arbitrairy factor.

Functions ¢ mn? y mn? W frequently are called eigenfunctions.
They are used in solution of problems of oscillations of a plate.

If the deforn.d state of the plate must be determined at any
moment of time, the following procedure is used: initial functions ¢o’

Vosr Wo and initial velocity vo(E, n) are expanded in series by the
eigenfunictions

Po (51 m) = \ Zam‘Dm &, n)

PYo(S: 1) = E 2 Bmn¥mn (8 )

o o (274)
wy (8, ) = ZZYmnWmu(E. n);
Y (€, ‘1 = .ggomnwmn(gp n);
and the solution 1s found in the form of the analogous seriles /91
¢, t) = %}_(Cmn cos pt + Cymnsin pt) @ (8, 1);
Y onit) = %; (Cymn oS pt + Cymn sin pt) Wmn (§, 0); (275)
w (§' m ') = §; (Clmn COSPt + Cgmn sin p’) Wmn \5 1"')
There is no difficulty in finding constants Clmn’ C2mn and, con-

sequently, the deformed state 1s determined by the sum of simple har-
monic oscillaticns.

The porsitility of expansion of the solution in serles by elgen-
functions is based on the orthogonal nature of the latter. Actually,
let the plate accomplish simple harmonic oscillations of frequency p,
when the inertial load acting on the plate is pép 2w(x,n). Since the
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e
¥

-

plate acquirer deflection wy as a result of characteristic load
p6p12w1. anda deflection w, as a result of characteristic load pspkzwk.
according to the reciprocity principle of the work of Beatty, we have

(276)
08 [ [ plwawy d§ dn = od [ [ pawnw, dt dn,
from which it follows that
(pi = ph) ff w0 (2 ) wn (B m) dE dy =0, (277)

i.e., eigenfunctions w, are orthogonal. The orthogonal nature of
eigenfunctions by Uy {(1=1, 2, 3, . . .) 1s proved similarly.

Thus, 1f deflection 1s presented in the form of an expansion by
elgenfunctions

(=]
w(Ev ']) =;a¢w‘ (&, n)’
the coefficients of expansion are determinred by the expressions

o = Fw Gom)wi & n) dg dn
JJwi@ wdgay (278)

If the elgenfunctions are normalized, 1l.e., 1if
i ul(E wdtdy =1, (279)

the coefficlents of expansicn by eigenfunctions are determined by the
expressions

ai = [fw(E, n)wiE n)dtdy. (280)

31. Variation Equation of Transverse Oscillations of Rectangular Plates

Exact determination of the form and frequency of oscillation of a /92
plate, with the exception of the simplest cases of a hinge supported
r2ctangular plste, involves the solution of extremely complicated sys-
tems of differential Eq. (267), (268) for anisotropic plates or Eq.
(269), (270) for orthotropic plates. In the solution c. specific
engineering problems, approximate methods based on some general prin-
ciples of mechanics are extremely effective. 1In theories of core
systems, such methods permit rapid determination of the frequency of
osclllation of the primary tones, which are of the greatest practical
interest, without integration of differential equations. These methods
can be generalized for the case of transverse oscillationc of plates.
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We consider the action functional of Ostrogradskiy-Hamilton
'p
S = f(T=U)dt, (281)
tA

where T and U are, respectively, the kinetic and potential energies of
a plate accomplishing transverse oscillations.

From the class of permissible functions which describe bending
osclllations of a plate, we take the population of principal oscil-
laticns with frequency p.

By integrating over time for one period of oscillation tB-tA-

2r/p, we obtain the variation equation of transverse oscillations of
the plate in the form

G(Tmax-umax)'o; (282)

the natural primary oscillations satisfy this equation.

We now write Eq. (282) in expanded form. For this, we determine
the maximum values of the kinetic and potentlal energles of the plate.

If the plate accomplishes transverse oscillations ¢o(x, y: t),
wo(x, v t), wo(x, y; t) the corresponding potential energles for a

plate with a general type of anisotropy and an orthotropic plate, the
principal axes of anisotropy of which are parallel to the coordinate
axes, are determined by the expressions

Uy =+ [[[Du (%) + 2D, 50 20 4 b, () 4
+Du(3% a¢u)+20“‘;'io(23’o+0‘4’0)+

+3 D,"‘“("Lu: e ) 4Ky (o 2

s (283)
Ko+ 53] s
1 aqg, P, a“ v, '
Ur—?fHD:(f,H 2D 2 G+ Du ()
\ ¢, i)\j » bur, uo -~ 0
~"D'"‘<"67 ! ) + K,y ( ”aEE‘) (“’o : )]drdl/ (284)
The kinetic energy of a plate accomplishing transverse oscilla- /93
tions 1s determined by the known expression
-y ff (% (285)

77



When the plate accomplishes ore of the primary oscillatlons,
i.e., when

VYo (2, 1i 8) = Y (2, y) sin (pt + a);

wo (2, yi t) = w(x, y) sin (P + @),

Po (2, yi t) = ¢ (2, y) sin (pt + a);
] (286)

the greatest potential energies are determined by Eq. (284), (285)
where, instead of deformation components ¢°, wo, wo, their amplitude

values ¢, y, w stand, and the greatest kinetic energy of the osclllating
plate

Tmn = '1'
087 [[wt(z, yydzay. (287)

Consequently, the variation equations for the principal natural
oscillations of the plate can be written in the following form:

a. variation equation of oscillation of anisotroplic plate

oo 08 2 4 oa(2)
'“’”(T*"?) +%bw%(%+%ﬁ’-)+
+%Da ( +5% )+K1(<P+-%-':;—)'+K.(¢+_‘};L)’]d¢dy_
—'le”f w’(x.y)dzdy}=0; (288)

b. variation equation of oscilllation of orthotropic plate, /94
the principal axes of anisotropy ¢f which coincide with the coordinate
axes

8 L =0 ” D, (%) "pen, oD (5) +
+m(ﬁ+ﬁw\+K&w+Z)+

b Ky (o 2) = ob ] dz dy. (289)

In Eq. (288), (285), g' designates the variation of the functional.

The solution of the variation problem of transverse osclllations
of a plate, as in the case of static bending and stability, can be ob-
tained, for example, by the Ritz method, namely, deformatlon components
¢, ¥, w are assigned in the form of an 1nf1nite sum with the indeter-
minate coefficlients
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¢z, y) = .2.1 .}IA-».. Pmn (2, P);

V(z, y) = ;.:_“Bm%..(z. ME (290)

w(z, y) = ;;“%:Cmnwmn (v,

8 % -
where ¢mn’ wmn’ Won are complete ems of continuous functions de

rendent on two parameters and satisfying the conditions of fastening
of the edges of the plate. Afte» formulation of Eq. (290) in varia-
tion equations and integration, the problem 1s reduced to finding the

minimum of the quadratic functions of arguments Amn’ an, Cmn’ i.e.,
to solution of a system of uniform linear algebraic equatiohs for Amn’
B c__.

mn’ “mn

The conditlion of nontriviality cf the solution leads to the char-
acteristic equation for determination of the oscillation frequency

291
16i;(p)| = 0. (291)

The smallest value of the rooct gilves an approximate value of the
~wclllation frequency of the primary tone, The remaining roots are
-he frequencles of the higher tones,

32. Determination of Frequencies of Natural Oscillations of Orthotropic
Rectangular Plate

We consider bending cscillations of a rectangular plate made of an
orthotropic material. We will assume the principal axes of anisotropy
to be parallel to the sides of the plate (Fig. 33).

a. Free oscillations_of hinge support- /95
z ed rectangular plate. It 1s particularly
lo ) - simple to obtain a solution of the problem
/&2 for a hinge supported rectangular plate.
/ In accordance with Eq. (273), the system
s of differential equations of the natural
1// _y// oscillations of an orthotropic plate has
Pl the form
; ,

Fig. 33. Basic designa- Fq(w) + 0b p*F (u) = 0; (292)
tions. M 3° dw
F«(‘I-‘)’:ﬂr;,-é-%‘ﬂam'-:?—a,—a—%; |

B

v a3 w
Fo(¥) =B go -+ m;g,%,—m%;.} (293)
where operators Fé(), Fu() and coefficients Oy Bi are determined by
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Eq. (148)=-(151).

The solution of system of Eq. (292), (293) which satisfies the
conditlons of hinge support of the plate, i1.e., the conditions

at x=0, x=g w-w-Gl-O;
at y=0, y=b w-¢-02-0,

can be sought in the form

¢ = Acosmn sinn xy;
¥ = Bsinm af cos n ay; (294)
w == Csin m at sinn ny,

where m, n are whole numbers.

The oscillation frequency 1is determined from Eq. (292). 3y sub-
stituting Eq. (294) in this equation, we obtain

Qb pt ==

__ 8 (agm® 4 agamnt 4 ag m3nd 1 a,,n8) - Y dag(¥) M ¥y mINT 4 y4nd)
R (agem + aggmind agnt) + n? (agem? + agen?) + agy

(295)

where coefficients ayys Yy are determined by expressions (150), (151).

The osclillation frequency of the primaiy tone at m=l, n=1l

a% 52 (ag, * age - age+ Gas) + Bon (Y1 4 Y2t V) 6
pn = y o5~ (a4 +- @33+ ag)) 472 (ago - dgg) + a0y * (296)

b. Free osclllations of rigidly fastened rectangular plate. For
a plate with rigldly fastened edges, it 1s extremely complicated to
obtaln a precise solution. Therefore, for determination of the fre-
quency of the natural oscillations, we use variation Eq. (289), which /96
we write in dimensionless coordinates £=x/a; n=y/b;

ICIC R T L
00

al? o oy n

{ ap 1 oy A\ o, ! 1_‘2_“_!_ ' -
—Da('g—;l"*'—T) ’T‘I‘I(WTT i)ﬁ
(48 oot asin o (297)

We will seek the form of oscillation of the primary tone in the
form
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z (1 cos -?-"-!-),

P = B(i — cos 2’")sin 22y .

b '
w==F(1—cos ‘: )(1—003 i’ii) .

By substituting Eq. (298) in the variation equation, the follow-

ing can be obtailned

,I

b3 (G R) A e (3
4nt

+%’%’-AF+§“£§—BF}=O.

where :

9A T 9 T 6F

has the form

D D - C 3K,
O
c Dy D, 74 3K,

< 3(f+5r + Ko) Tnh

3K, 3Ky 3K, 3K,

Jna 2ab a? b
908 p?

403

from which we find

B [0 +K) (a+ B — 57| = 5o KK +

+ (T +55) [+ B s + B — o] -

’AR

(h+K)— KKz 4 K,

where
D,
“at

D
A = +—3',:—; Ay = b: +"3’,,"a"

Consequent.y, the frequency of natural oscillation of the primary

t one

_D.’_...*.['Z')Bl.*.
+(1:++-3§‘l-—__.__996”'.)p+ 2(’)\:4-03) AB +

(298)

(299)

(300)

(301)

(302)

(303)

(304)
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N
Pu ,/m X

1 D, C+ D) D R T I
X / KXy [7:7+ 2(3:'% -t T"‘] ( r +'T)<""" Bathi )
O +F) Oa+ o) —gor (305)

As K1+m, Kz»m, i.e., without accounting for interlsyer shearing,

the known fermula for the frequency of natural oscillations of an ortho-
%ropic rectangular plate with rigidly fastened edges follows from Eq.
305)

22,79 D 2(C+ Dy) D
Pu="ms Y W T

(306)

c¢. Transverse oscillations of laminated strips. Free primary
oscillations of laminated strips are described by the following system
of differential equations

w' -+ 2% — s'w =0; (307)
¢ — ol = 0¥,
where X 5o -
‘:-..—-L' _-—_._Q._L- C= Q0 p
® Do 2r3 K =5 (308)
If
k:=Vr"+s'-—r'; k::"r‘+s‘+r" (309)

1s designated, it 1is easy to obtain a solution of Eq. (307) in the form /98

w = Cych &z 4 Cysh kyz + Cycoskyx + Cysin kyz;

k|(l)

9= (Cishkyz + Cychkyz) + (310)
e
k.

e (Cysin kyz — Cycos kyz).

There also can be found

Dt
G,=— P e (Cyeh kyz + Cysh keyz) —
10 - (311)
Dkl w*
(Cycos kyz 4 Cy s1n kyx);

3
k.+(o'
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KK
Q)= — -f—'Ll' (Cy sh kyz + Cych kyz) +

+'P'.:._¢'J(C"i" kyt = Cycos kyz). (311)
|

We select a coordina:e system as indicated in Fig. 34, and we
determine the free oscillation frequency with various fasteninge of the
ends of the strip x=+a/2.

of strip hinge supported.
By satis? Eng the boundary conditions

N

2
e oy at xerk
T /7‘Z-j;3’. the following can be obtalned
ﬁ' ’:" ° C,cha, + Cycosay = 0;
> k. k'
A4 <4 - Croy cha + €y oty eosy = 0;
1 ]
Cyshay 4 Cysinay = Q;
' s (312)
C sh al + C‘—‘L—'Bi" ag = O,
Fig. 34, Strip with rigidly RS k+o®
fastened ends. where
dm"—l/‘]/i-}-Z—r—i
(313)

. ' - l/]/1+2—+1
- 7

X
y - The characteristic equation can be
J /:/

written in the form

0

cos a2=0; sin a2=0;

and, consequently, the frequency spec-
trum of free oscillations of a laminated
strip 1s determined by the expression

. L Vg TS (314)
p o )/Q.ﬁ- n“m‘b. ‘,"K;G’ ¢

b. Edge of strip x=0 riglidly fastened, edge x=a unsupported (Fig.
35). By satisfying the boundary condltlons

Fig. 35. Diagram of bracket
and coordinate system.

w=¢=0 at x=0,

GI=Q1=0 at Xx=a,

we obtain the following system of linear equations for determination
of the frequencles
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Cl+C,==0

?_I_.J(C,chZG,-f-C,Bbz“n) + (315)

"l
+ m (Cyco82aq + Cysin2ay) = 0
]

R
T (Cysh 2a, 4- Cych 2a,) —
)
]

k
— et (Cysin 20y — C cos 2a,) = 0. )

K+ o

Consequently, the firequency spectrum of the natural oscillations
of a laminated bracket i1s determined by the equation

(316)

sin 2ay == 0,

(-%,_)9_*_(1_1 ..-)chZa,coszag ’:— ‘:

where ay and a, are determined by Eq. (313).

As Klaa, there is the known equation for determination of the fre-
quency of natural oscillations of the bracket

chkacoska = 1. (317)

33. Axisymmetric Transverse Oscillations of Circular Plate

If a circular plate made of a cylindrically orthotropic laminated
plastic executes axisymmetric transverse osclllations, the system of
differential equations has the form [14]

é(rG
(;rl) ""Gl - er; } (318)
9 i
(((r)q) 3 z‘m_ -—q (r, ‘) r,

where p 1s the density of the laminated plastic; q is the external
transverse load which changes over time.

By substituting basic relationships (64), (65) in Eq. (318), we
obtain

m¢ i 99 Ky (290 o),
L e B (e, (29
% { aw 1 0 o8 ‘7"" ‘”’ f
At tra e =55t )

For the principal normal oscillations of the plate
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Fi(r 8) = @(r)(Cicost + Cysinat);
wy(r,t) = w(r)(Cycosot 4 Cysin o ¢); } (320)

and, consequently, the oscillation amplitudes comply with the following
system of differential equations

”"” Q' ) oz .
Vb5 = (R e = e (321)
" wr ’ 9 .
w _}..;-—{-p‘wz—(‘P +",")' (322)
where /101
o)
k’___ ’l‘)" . ;";--g—:—' p’—":%‘f‘- (323)

Eq. (321), (322) are equivalent to the following differential
equations

oV + 2 w'"—(ﬁb}i—p’) 9+
+ (5 +L)e = (5 + 5+ e -0 (324)
w=-—~,},,.—(tv +2¢" —-,lr‘v'+-’,'-:—«v)- (325)

Eq. (324) is a fourth order Fuchs class differential equation. Ve
will seek its solution in the form

(=]
(p = "o. onmrm.

memz

(326)

By substituting Eq. (7526) in Eq. (324), the following can be ob-
tained

%[a—{-bm-{ﬁcm(m—i)+em(m—l)(m—2)+
+m (m — 1) (m — 2) (m —3)] Am ™ +
+ 2ld 4 f(m—2) + p*(m— 2) (m — 3)] Ap-2r™ —
T+ (=2 P = 2) (=) (327)
— k?p!ZA;"_‘rm == 0'
[}
where .
a =, 40, + (3 —A) g + 41" g, — 31%
b=doy — 60, —2 (A" + 1) o + 31;
¢ = Gop — (A' 4 2);
d = p*leg—2"); (3co)
e = 2(20,+ 1);
/=0 (2-+1).
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The following recurrent formulas for coefficients A_' can be ob-
tained from Eq. (327) "

m=0 ms={
la -+ bm 4 em(m — ) A em ‘m —{) (m — 2) 4
+ m(m — 1) (m —2)(m —3)) A = 0; (329)

m=2, m=3
Ap =
- ~ld4 [ (m—=2)+p* (m—2)'( -3)] A
atbmpem(m—1)+em(m—1)(m—2)4m(m—1)(m—2)(m~3g) ™2

(330)

m=4

A KA, —ld4 1 (m=2)+p* (m=2) (m—3)] A,, _, (331)
™ et bmAem (m—") 4 em (m-~{)(m—2) 4 m (m— 1) (m=2) (m~3)

In accordance witn Eq. (329), the characteristi: equation for
determination of Po has the form

o) — o) + (3—A%) ol + 41", — 3A" = 0. (332)

The roots of this characteristic equation are

. 333)
LR O L A N A Ay (

It is easy to note that A ‘=0 (m=0, 1, 2, 3, « + +)o

2m+l

In the case of a continuous plate, the solution which corresponds
to root po=—x should be set equal to zero, and roots poI-l, poII-3

gives llrearly dependent solutions. The missing solution should be
sought in the form

v (w3 anrm), (334)
where ¢2 i1s th2 solution which corresponds to the root poII=3.
By substituting Eq. (334) in Eg. (324), we obtaln
}30(3(16 —A)m + (52 —AYm (m — 1) 4 14m (m — 1) (m — 2) +
mix
+m(m —1) (m—2) (m — 3)] Anr™+ X [p19 = 0") + 7p%m — 2+
+ P (m=2)(m—3)] dn-or" — K'p' X Anar™ = (335)

= 4, ([2(9 — A?) + 2(34 — A% m + 36m (m — 1) +
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+4m(m — 1) (m ~2)) (Am), ™ +
+ 3100 +20" (m— 2] (Arng), (335)

In this manner, for coefficients Am". the following recurrent re- /103
lationships can be obtained

me2
Ay = — '5—(-2-5-’;-,37 {P' (0—4") 4, +

, k3 -1 ) ’
+ Ao [Gk. (A.)l 2 “'8‘(2""_,_:3‘()0 1 ) (A.).} L

(336)

where

(4, = — FR=3 (40), (337)

for my2n (n=1, 2, 3, . . )

' - — '
An = = = A F G m = F T = =2 X

x {[P* (9~ 4%) + 75" (m —2) + p* (m — 2) (m = 3)] M-, —
— K P A + A, (2(9-A") +2(34— 2" m +
-+ 36m (m — 1) -{- 4m (m — 1) (m — 2)] (An), +
+ Aq [6K° + 2" (m — 2)] (Am-2)), (338)

where coefficients (Am')l are determined by the expression

("“ﬂ)l [ -]

Ke* (Am_ i)y =16 (0=4") +7p" (m —2) (m—3)] (4], _ 2
= m(3(6 =)+ (52— W) (m—1) + 14 (m = 1) (m =2) 4 (m—1) (m—2)(m—3) * (339)

The odd coefficlents again equal zero.
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CHAPTER 7. MEMBRANE THEORY OF ANISOTROPIC LAMINATED SHELLS

4, Region of Applicability of Membrane Theory of Shells and Boundar
on ons

The simplest alternate versicn of the general theory of shells is /104
the membrane theory, which is widely uscd for calculation of various
engineering structures and buildings. The explanation of this is that
the membrane theory quite satisfactorily describes the behavior of
thin shells under various loads which have to be of concern in engi~-
neering. The simplicity and value of membrane theory is not only sig-
nificant mathematical simplification of the basic differential equa-
tions of the theory of shells but also that, in many cases, the results
of the basic stage of the theory, which consists of determination of
the nature of transmission of forces from the equations of equilibrium,
are valid for any thin shells regardless of their structure and nature
of deformation. Structural inhomogeneity within the shell material ap-
pears in subsequent stages of solution of the problem, which are con-
nected with determination of the deformed state and the nature of dis-
tribution of stresses through the shell.

As in the case of isotropic or anisotropic shells [1, 8], we will
call membrane theory an approx.mate method of calculation, based on the
assumption that bending stresses are smell compared with the stresses
unirormly distributed through the shell. This assumption is mzthemat-
ically equivalent to the assumption that cutting forces Ql Q can be

disregarded in the first three equilibrium Eq. (17). With the inten-
tion that only shells of rotation will be considered subsequently, we
write the basic equations of membrane theory for this partial case.
Membrane theory of anisotropic shells is discussed in greater detail
in the monograph of S.A. Ambartsumyan [1].

As curvilinesr Gaussian coordinates which define the positions of /105
points or the mean surface of a shell, we use arc length s, reckoned
from the initial parallei (point M in Fig. 36) and angle B between

two planes passing through the axis ~f rotation. One such plane wae
selected as the initial plane. We introduce two more coordinates:
shell cross section radius r and angle o between the normal to meridian
n and the axis of rotation.

Principal radii of curvature Rl, R2 are determinad by the expres-

sions [8]

r

sina ' (3“0)

R, = i Ry

du

Two Gauss~Codacci relationships are satisfied identically, and
the third has the form

dr d(Rgsina) “
Ti;,‘z"‘_":?ﬁ'—" = Ryicosa, (341)

The last relationship can be obtained from geometric considera-
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tions (Fig. 37)
Ar
m == CO8 Q.
Tf the components of the distributed surface

load acting on the chell are X, Y, Z, equilibrium
Eq. (17), with A.*1, Ay=r, take the form

r%’%‘-—(T,—T,)cosu-&-%—‘;-:-Xr;
”’-{-r-’z,-s--{-ZScosas-Yr; 342
K]} ds
Ty Ty
KRNI L R 3
Fig. 36£. Sketch o
of shell of ro-
tation and con- In accordance with Eq. (10), the components of
ventional sym=- deformation of the mean surface are determined by
bols. the expressions
_u v
Q=% TH
1 o W
faa =gt T et R (343)
"
<\ m.—=—:--%'-+-gf-—-'-’-cosa
"
/Vdﬂ
For shells with undetermined anisotropy of /106

elastic properties and for shells made of ortho-
tropic materials, the principal axes of anisotropy
Fig. 37. Geomet- of which do not coincide with the coordinate axes,

ric interpreta- in accordance with Eq. (8), (343), Hooke's law has
tion of Gausse- the form
Codacci relation-~
ship. ou y .
%o T y Pl 3 (83T + 813T 5 +-a,55);
-:-—%%+-1:-cosn+7':-'-=—;—-(a,,T,+a.,2T,+a,,S); (344)
{ du av v 1
a2

25 T 3y — 3 ouse =-6—(a,,T‘+a33T, + agS).

Correspondingly, for orthotropic laminated shells, the principal
axes of anisotropy of which coincide with the coordinate axes, in ac-
cordance with Eq. (28) and (343), the elasticity relationships have
the form

o, w Ty—v; Ty
o TR = B =)
dow u o Ts—vTy
r —0'5_+ 7 CoSG 4 Ry — By(f—vvy)’ (345)
{ 0u , Ov v S
7W+3;f--’—008(1—ﬁ. ’
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Thus, the systems of differential equations of membrane theory can
be integrated in tw successive stages:

stage 1. by solution of system of Eq. (-42), elastic forces
Tl’ T2, S of gﬁe shell are determined;

stage 2. from system of Eq.< (344) or (345), displacements
u, v, w are determined for anisotropic and orthotropic shells.

Since, by the definition of membrane theory, interlayer shears Yqs
Y, are absent or negligibly small under load, by Eq. (12) we obtain

{ ow v
-G ErER YETT TR (246)

The components of effective change of cuvcrvature and torsion of
the mean surface, 1n accordance with Eq. (11) and (346), are determined
by the following expressions

(347)

Bending moments and torques G
Eq. (4) or (25).

For shells of rotation with random anisotropy of properties and
for orthotropic shells, the principal axes of anisotropy of which do
not coincide with the coordinate axes, there are the following expres-
sions for determinaticn of the bending moments and torque

6:=Dugr (G —7-) +Du [+ (L 55— 7) +
F2( =) [ (L) o
+r g (FF ) - (5 -]
F] w

?0 S D

1» G5, H can now be determined by /107



4-%(%%-—7%:)%»- i (5 =)+
_b_b_(bw u )___coln(_irﬂw v ] (3"‘8)

Correspondingliy, for orthotropic shells of rotation, the principal
axes of anirotropy of which coincide with the coordinate axes,

6D () [ ()

= (=)

+v‘-'z-(%':;_ “)}; (349)

1Dy [r o (33— )+ (o — W)

S S

From the last two of equilibrium Eq. (17), cutting forces Qs Q5
which were eliminated in equilibrium Eq. (342), can be determined

8 (r¢
rQ, ,,,:__%;.1.)..{--‘-:—%’--—6,0080
I‘QQ'-~ G, .J 0(1”) +llcusa (350)

o

System of Eq. (348), (350) or (349), (350) are supplementary 1in
membrane theory, and they are used only for checking the possibilities
of its use, namely, if it turns out that the bending stresses actually
are negligibly small compared with the membrane stresses, i.e., they
are uniformly distributed in the thickness of the membrane, this is
confirmation of %the applicability of membrane theory.

In some cases, it can be foreseen that membrane theory cannot sur-
ficiently well describe the axisymmetric stressed and deformed states
of a shell of rotation. This will occur in those cases when there is
a break in continuity of geometric dimenslions §, Rl’ R2, rigidity char-

acteristics cij’ including rigid fastening or other kinematic connec-

tions or, finally, there are areas of discontinuity of external surface
load X, Y, 2.

The condition of the presence of areas of slight disturbance of
the geometric, elastic or strength parameters can be replaced by more
general ones, namely, for inapplicability of membrane theory, 1t 1is
sufficient that the abovementioned parameters have a large index of
variability.
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In areas of a shell where there are such features, additional
stresses can develop, which cause local bending of the mean surface of
the shell. Exact solutions show that areas of bending stresses are ex-
tremely small and, consequently, at some distance from such areas, shell
calculations can be carried out according to membrane theory.

Thus, membrane theory is described by systems of Eq. (342), (344)
for shells with random anisotropy and for orthotropic shells, the prin-
cipazi axes of anisotropy of which do not coincide with the coordinate
axes, and by system of Eq. (342), (345) for orthotropic shells, the
principal axes of anisotropy of which coincide with the coordinate
axes.

In accordance with Eq. (22), the boundary conditions of membrane
theory have the form:

1. unsupported edge T=S=0; (351)
2. rigidly fastened edge us=v=0; (352)
3. hinge supported edge Tl'V'O or us=S=(Q, (353)

It follows from boundary conditions (351)-(353) that membrane

theory is applicable in the event the shell 1is not loaded by cutting /109

forces and moments on the edges, since end effects, 1.e., local bend-
ing of the shell, will develop on the edges.

35. Membrane Theory of Symmetrically Loaded Shells of Rotation

If a shell of rotation is loaded symmetrically about the axis of
rotation, the surface loading components should be functions of arc 8
alone, i.e., they should not denend on angle B8:

X=X (8); Y=Y (s); Z=Z (s). (354)

Since all geometric parameters Rl, Rz, r of shells of rotation de-

pend on arc s, the elastic forces and displacemnents also are functions
of coordinate s alone and, consequently, the equations of equilibrium
of a symmetrically loaded shell of rotation have the form

r—'g;‘——-(T,—-T,)cosnm - Xr,
ri:_.‘s:.+28cosa=—-r}’; (355)
T T
..I_I'T+T".=;Z.

If, following V.V. Novozhilov [21], stress functlons are introduced,
®(s)=T,r sin a; ¥(g)=Sr?; (356)
the following can be obtained from the first two of Eq. (355)
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%‘-f-'- =r(Zcosa — X sina);

(357)
- —ny, °

Consequently, the stress functions are determined by the expressions

OMnﬁwmm—meb+Q; (358)
0 .

[
Y (s) = -—Jr’}’ds + W, (359)

By determining force T2 from the last equation of equilibrium, in
accordance with Eq. (356), (358), (359), we obtain

Ty Ty=Ry(Z-F): S=—1r. (360)

rsina

According to membrane theory, the nermal, tangential and shear- /110
ing stresses are determined by the simple 2xpressions

T T s
£\ - X*—X- |

T = (XY X7) 4 s (361)
Yo y-

Ty (V0 ¥)

where X+, X, Y+, Y™ are components of the external surface load ap-

plied to the upper (z=§/2) and lcwer (z=-6/2) bounding surfaces of the
shell, respectively.

As was noted in the preceding section, the expressions for the
elastic forces of an anisotropic laminated shell coincide with the cor-
responding for an isotropic shell.

In accordance with Eq. (344), movements of a symmetrically load-
ed shell of rotation are determined by the following system of linear
differential equations

du W

1
o+ Y (T 4 ayls + a,S);

= cosa + = +@Ty+ @y, Ty + asS); (362)

dv v i
T T C0se = (810Ty + gy Ty -+ a5 S).

System of Eq. (362) is equivalent to the following:

93



o i -

w e KL (@ — 010 ©) Ty + 8158 + a1y 2] — R, 5% (363)

%:L"‘ e u "("u""zanﬂ'f'anﬂ')!;l +
+(¢u—¢u0)s+("n“‘“nQ)‘%“z3 (364)
F =% = (0, — 00 Q) B + G T + 0By -,
where Ry
= (365)

If, as in determination of stresses, the deformation functions
b n= (366)
are introduced, from Eq. (364), it 1s easy to obtain

] .
Tff" = 6__5:71_5 (81 — 20350 4 645 Q") T, -

+ (813 — 833Q) 8 + (a;3 — 843 0) R, Z};

RS
-
f
f

@ "'7!6"(“13'_"&39)7'1+aas+azanzzl. (367)
whence .
£- %fl(“n = 20,30+ 30 0°) Ty + (4,5 — a550) S +
’ is (368)

+ (@1 — 853 0) ByZ] 5 + s
n- ‘;‘J [(a,,-—auq)—t;‘--{wa”-"?-+a,3-’—:3—2] ds + o

where @o, wo are the values of the deformation functions at the edge
of the shell.

In this manner, the components of movement of an anisotropic
symmetrically loaded shell of rotation are determined by the following
expresslions

u=="Fsina;, v=ry;

w= —fcosa ‘%"'[(“u — 8330) Ty + 0595 -+ agyRyZ). (369)

As should be expected, in distinction from isotropic shells, with
any boundary conditions, each movement depends on all three components
of external surface load X, Y, Z. The rature of the stressed state de-
pends essentially on the boundary conditions, namely, only with statilc
indeterminate boundary conditions will the forces depend on all three
components of the external load.

Eq. (369) also determine movements of orthotropic shells of rota-
tion, the principal directions of anisotropy of which do not coincide
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with the coordinate axes.

In the case of orthotropic shells of rotation, the principal direc-
tions of anisotropy of which coincide with the coordinate axes, the ex-
pressions for the elastic forces remain as before, and the movement
functions are determined by the formulas

[+ 3+ )mm

t=1
—(z+ ) 2] + b (370)

ne [ Sansng
[

u~*§ﬁna, v=9r

w=—fcosa - = ["lz (V’l' 7?;‘)7:]} (371)

In this case, movements u, w are caused by the radial and merid- /112

ional components of the external lcad Z, X, and displacement v 1i¢
caused by annular forces Y, 1.e., the same as 1ir. isotropic shells of
rotation.

In this manner, calculation of symmetrically lecaded anisotropic
and orthotropic shells of rotation is reduced to determination of four
random integration constants oo’ Wo, ¢°, wo' Consequently, on each

edge of the shell 8=8 3 8=5,, for an unambiguous solution, two boundary

conditions each must be assigned. In this case, at least two of the
boundary conditions should be kinematic. Otherwise, the existence of
the stressec membrane state will be impossible, 1.e., bending of the
mean surface of the shell without stretching (compressing) or shearing
will occur, or displacement of the shell as a solid will be possible.

We now consider some examples of calculation of symmetrically load-
ed shells of rotation according to membrane theory.

36. Calculation of Closed Containers Operating under Constant Internal
Pressure

Shells of rotation in the form of cylindrical and coulcal shells
closed by end plates of different geometric shape and of spherical and
toroidal containers are exceptionally widely used in industry. Partic-
ularly in chemical equipment, these shells operate under uniform in-
ternal pressure. Such structures are calculated according to membrane
theory, with the exception of small end effect areas, where more exact
equations, which will be obtained later, must be used for the calcula-
tion. In such zones, special dexign measures must be used to moderate
stress concentrations and more uniformly distribute the stress.
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In shells of rotstion subjected to uniform internal pressure,
X=Y=0, Z=p, where p=const is the intensity of the internal pressure.

In accordance with Eq. (358), the stress function
3 pR'lin’a
(Dupr,linad(R.dna)+0, =-—|3-——+C. (372)
[ ™

Consequently, the elastic forces are determined by the expressions /113

pR c
Tv="3" -+ Talaa’ (373)
. ph R C
Ty = —-2-!—(2— T:-) = T, sinia

It is evident that, for shells of rotation clos2d at the top,
Cz0 must be set and, consequently, for such shells

L Pl? . . pR o I"
et (e d) o1

The deformation functions for closed shells of rotation, accord-
ing to Eq. (370),

a

t -

[t—2w — Bello) o o] Sufeda g, (375)

..’l'; sina

and the components of movement

um%g—ﬂ[l — 2y, — 20 ‘ll ¥ ot - Q’J X
g
‘ X ”fl‘::n -+ Eosin a;
W= — !;28: o[‘ — 2y, — 2% (i;—vz) Q+_:_|;_Qa} X \ (376)
ao
x—{?—‘s%‘-’-gg— tocosa + fn: (2 —vg —0Q).

Consequently, radial movement of the shell, i.e., movement per-
pendicular to the axis of rotation, is determined by the expression

- R
¢~ Ar=ucosa+wsinag = 2’;’3(2—\»,—-9). (377)
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Correspondingly, the angle of rotation of a meridional element

so= fRigm [ H20 b st -3t -k (378)

a. Spherical container or spherical bottom (Fig. 38)., 1In the
case of a spherical contailner

and, consequently, the forces generated in the shell
T)=T=52. (379)
The radial deformation and angular dis- /114

placement of an element of the meridian are
determined by the respective expressions

o pat(f--vy) . pactga LN
*o 2‘5’6 ] x. > 2£‘6 (7+2\' v.). (380)

b. Closed cylindrical container (Fig. 39).
Fig. 38. Hemispher- In this case, Rl*w; P=Q; Rz-r-a and, consequently,

ical bottom. according to Eq. (374)

a

Ty Loy Ty pa. (381)

Corresnondingly, the radial de-
formation and angular displacement

. et (2--v,) | _
Co—’—-y,;'-r’-. %o = 0. (382)

c. Ellipsoidal bottom (Fig. 40).
Fig. 39. Closed cylindrical In this case
container,

al

&= —1.

The radii of curvature of an el-
lipsoidal bottom are determined by the
known expressions

Fig. 40. Ellipsoidal R ViTE _ eVTiTe
bottom. Y Y Otesina? ' ' Vitesinta

(383)
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Consequently, the elastic forces and deformations

(ETH
7'“'——‘/1-{-"“ a'

1
Ty 5 (l —e sin? o) V-—_*_—e-%-ar;

=14 esinta;
= Z (384)

pat(i+0) . .
;.:‘: ')b 6(‘+3”inm. (""\' ﬂ“"‘a)n

]/ {42 cos a
Yo = 25, f{+esin'a sina

X[Q"*"-!(l V:)Q+4—--- 2Qesin’j.

X

d. Ccnieczl bottom (Fig. Ul1). 1In this case

N
—
[

l

R1=~; Rz-x tg v o=0,

If distance x is reckoned along the generatrix
of >he cone from the top, it is easy to obtain

ey .
Ty £EL T, pragy

_PEEY [, vy
Xo = “3E,F ( g

b= 2= vk i (385)

Fiz. 41. Con- e. Toroidal container (Fig. U42)., 1In this case
ical bottom.

R<4rsina
Ro= —goa—i Ru=r

a2

A toroidal reservolr 1is not closed at
the top. Conrequently, the forces are de-
termined by Eq. (373), and the value of
constant C must be determined.

st From the conditions of equilibrium
of an element of a torus cut along a plane
\\\\ passing through the curvilinear axis of
the torus, and of 1 cylindrical surface
Fig. 42, Closed toroidal passing through the curvilinear axls, we
container. find

= Pr QR+
U\%_% T Ryr (386)

and, consequently, the desired constant is C--pR2/2. Thus,

~
[
[
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R4r .
LR LEITITI N (387)

The respective radial and angular displacements
pR!
So= gy (@—v—ek
R
1.-4%[Q'+2“—”3)0+4"%{'+ﬁﬁg¢—]- (388
: 3

Further, we consider some problems in determination of efficient
bottom parameters, which ensure strength with the least possible weight.

37. Some Problems Connected with Deteirrnination of Parameters of Least
Welght Bottom

Let a cylindrical container of radius a be subjected to internal

preasure of intensity p. Spherical and conical bottoms of the least
possible welight m:st be selected.

Since the }yoblem is solved from the point of view of membrane
theory of shells, some simplifying assumptions must be made. Namely,
we willl assume that, in uneven Jolning of the bottom with the cylindri-
cal part of the container, the resulting thrust is taken up by a rein-
forcing ring which is mounted in the butt section. We designate the

permissible yleld strength of the material by o and the specific welght
of the material by y.

a. Spherical bottom (Fig. 43). In this case

Resths

Since the stresses are uniform in a spherical
shell, the bottom should be made of constant thick-

ress and provide isotropic structure of the lami-
nated plastic.

The welght of the bottom 1s determined by
the formula

s*!_\‘\ i

= 25y (1 — cosa) R*Q.

Gsh

The required bottom thickness

P e i)
D R e edtocralbadily

=R
6 20 °

gé%é°:3' Spherical Consequently, with bottom aperture angle a, /1!
' the weight of the bottom shell

npya® {—cosa

Ggn =~ —ma " (389)
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The required weight of the reinforcing ring in the butt section

S pYwna! cora (390)

Gl‘ b Own 'iTB"i"

The total weight of the spherical bottom shell with the reinforc-
ing ring

ngﬂ:‘\'.'+("';::‘cﬂn. (391)
where 9
k_.ijihﬁf
Ly
(). (392)

Fig. U4 presents Lhe results of
calculation of the weight of the bot-
tom as a functicn of the relative
specific strength of ‘he shell and
ring material k and of aperture angle
a of the spherical bottom.

Eq. (391) and the calcuiation
results show that it 1s advisable to
reinforce the butt section of the bot-
tom with a ring of a materiel, the
specific strength of whicn 1s ronsider=-
ably greater than the specific strength
of the laminated plastic. The maximum
possible weight advantage over a hemi-
spherical bottom reaches 28%. In re-
inforcing with the same material, be-
cause of the unidirectional nature of
the laminated plastic, the relative
specific strength k=0.5.

b. Constant thickness conical bot- /118
tom (Fig. §5). The shell welght of a
conlical bottom of constant thickness

Fig. 44, Spherical bottom
welight vs. aperture angle and

t] apyad 2 .
relative specific strength of sh = —5— S’ (393)
plastic.

Key: a. Relative welight the required welght of the reinforcing
ring .

3
G,‘ mwtgq

or K (394)

Cons-quently, the total welght of the conical bottom shesll and
reinforcing ring
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A pa® 2 1
6 = 255 [+ ko). (395)

The results of calculation of the bottom weight
by Eq. (395) are presented in Fiz. U6 as a function
of k and %he half aperture angle of the cone,

The minimum weight advantage of the use of a
conical bottom over a hemispherical bottom is 50%, if
it is considered that the specific strength of a coni-
cal bottom made of uniform oriented laminated plastic
is greater than the specific strength of a hemispherical
bottom. Actually, if the yield strength of a unidirec-
tional plastic is o, the yield strength of a full
strength plastic is 0/2, and the yield strength of the
plastic of a conical bottom is 2/3¢.

c. Variable thickness conical bottom. 1In the use /119
1cal bottom of laminated plastics for manufacture of bottoms,
with reinforce available technological methods of continuous winding
ing ring permit a variable thickness bottom to be obtained
) without difficulty.

Fig. 45. Con-

Since the stressed state of a
/[]]| conical bottom 1s variable along the

/ generatrix, it 1s more advisable to
/66/ make a variable thickness conical bot-
4

&
S

tom. Evidently, the relationship of
change in thickness of the bottom is
the following
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\ d(z) = n:;ua ' (396)
N ,
25 ‘(\-—:;// Consequently, the weight of the
bottom shell
20
0 15 i/ [ 60 af G, . apye 4 (397)

sh
Fig. 4€. Constant thickness o Jdsin2a

conical bottom weight vs. half

aperture angle and relative Since the wei
ght of the reinforc-
specific strength of plastic. ing ring remains the same, the total

. weight of a variable thickness conical
Key: a. Relative weight bottom

(,'=an¢-(3“:2“+ka). (398)

g

The results of calculation of the bottom weight by Eq. (398) 1is
presented in Fig. 47 as a function of cone half aperture angle a and k.
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The minimum weight advantage of the
/ /” use of a variable thickness conical bot-
tom over a hemispherical bottom with k=0
is 33%. If it is considered that the
specific strength of the conical bottom
is greater than the specific strength of
a hemispherical bottom, with k=0, the
minimum possible weight of a variable /120
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thickness conical bottom equals the weight
N of the hemispherical bottom. This could
§:~—~ have been expected beforehand, since both
2 T bottoms are full strength.
10 d. Box bottom (Fig. 48). We now
0 15 70 o5 60 @° corsider a box bottom, obtained by even

Joining of the spherical part wlth the
zégicgz.boggg;agéigggisg?ess cylindrical part through & toroidal shell.

half aperture angle and rel-

ative specific strength of The weight of the spherical psrt of

plastic. the bottom
[3 " . _ _
Key: a. Relative weight Gsph — Sya { a+es$;iu cosa) (399)

The weight of the toroidal part of the buttom

Geop = -"—ﬁyi{e(z—z)[(-’—z‘--—a)(l —e)+ecosa]]. (400)

Thus, the total weight of the box bottom

__ npa’y ((1—e+esina)® (1 —cosa)
G = 3 { sinfa +

+-e(2—e) [(-3--—0)(1 —-z)+acosa]}. (401)

Fig. 48. Box bottom.

It is easy to note that the welght of the bottom decreases with
decrease in ¢ and, consesjuently, the smallest joint radius based on
design or other considerations must be used.

The maximum weight advantage will be at a=60° and e¢=+0, i.e.,
the toroidal part of the bottom, by ensuring even joining, replaces
the ring, as i1t were. The welght advantage is 23% over a hemispher-
ical bottom.

The results of calculation of the box bottom weight as a function
of € and a are presented in Fig. U9,
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Fig. 49. Box bottom weight vs.
geometric parameters.

Key: a. Relative welght
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ORIGINAL PAGE I8
OF POOR QUALITY

CHAPTER 8. OPTIMUM METHODS OF CONTINUOUS WINDING OF CYLINDRICAL FIBER-
GUASS REINFORCED PLASTIC SHLLLS

38. Basic Concepts and Initial Hypotheses

One of the most convenient and widespread methods cf production /121
of laminated shells 1s continuous winding. There are various methods
of continuous winding, which differ in the method of placement on the
mandrel and type of filler, as well as the nature of impregnation of
the filler. Rotation of the mandrel combined with forward motion of
the carriage with the bobbin along the mandrel permits the most di-
verse filler orientation to be achieved. After winding, the shell
together with the mandrel go through heat treatment, as a result of
which hardening of the binder cccurs. After heat treatment, the shell
is removed from the mandrel. To make removal of the shell from the
mandrel easier the latter is covered with a film before winding, which
prevents adhesion of the filler.

For mass production of c¢ylindrical shells and types, high capacity
coll winders usually are used., One of them is shown 1in Fig. 50.

Fabric and nonfabric glass
filler, in the form of threads,
tapes, bands and fabrics are used
for continuous winding of fiber-
glass reinforced plastic shells.
Folyester, phenol, epoxy, organo-
silicon resins and various modi-
fications of them are used as the
binders.

Fiberglass reinforced plastic
¢cylindrical shells obtained by
continuous winding are anisotropic
laminated materials. In distinc-
tion from natural anisotropic
materials, the nature of the aniso-
Mg, 50, Unit for continuous wind- tropy of the fiberglass reinforced
ing of cylindrical shells. plastics and other reinforcing

plastics can be regulated by change
in orientation and mutual location of the filler during production. It
1s expedient to call such anisotropy of the material controllable tech-
nological anisotropy, in distinction from structural anisotropy, which
1s produced by strengthening the shells with stiffening ribs.

The most efficlient reinforced plastic structures are those in which /1c
anisotropy of the elastic properties most profitably corresponds to the
stressed state of tbhe shell or ensures its maximum rigidity with re-
spect to a glven load. Determination of the optimum structure of lami-
nated plastics in various structures presents interesting new problems
of the theory of elasticity and the theory of shells.

This chapter discusses the problem of the selection of optimum
structure of a fiberglass reinforced plastic in a cylindrical shell
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which 18 exposed to axisymmetric loads, which produce a uniform state
of stress in it, determined by the components of the normal forces Tl'
T,.

2

It 1s assumed that the bindev has i1deal elastic, strength and ad=-
hesive properties, which ensure compatibility of the deformation of
individual glass filler elements all the way to failure. The glass
filler is considered in the form of circular cross section fibers,
which does not restrict the generality of the results obtained.

It is easy to nhow that, in elastic deformations, forces Tl’ 'I‘2
will be taken up by the filler and binder in propcrtion to their moduli
of elasticity EH’ Ec and their volumetric content in the material.

If the relative volumetric content of binder is designated g, the
relative fraction of the forces which are taken up bty the binder 1is
determined by the expression

g Bk
E =0 (4o2)

The moduli of elasticity of avallable resins change between
o] o]
3:10° and 7:10° n/m°, and the modulus of elasticity of glass Ey"

7‘103 n/me. The optimum conter.t of binder in fiberglass reinforced
plastic is approximately 30% and, consequently, by Eq. (402), qw2-Uuf,

~N
[
"ny

Thus, the normal and shearing forces in filberglass reinforced
plastic shells are primarily taken up by the glass filler. This de-
termines the carrying capacity of the structure. Based on this, we
will assume that the effective load on the shell is taken up by the
glass filler.

We will call continuous winding the optimum 1if it ensures equi-
librium of the glass filler without the binder. It should be noted
that, in nonlinear deformations in the binder and in plastic deforma-
tions of the material at the time of failure, the fraction of the load
which 1s taken up by the binder decreases sharply. Therefore, selec-
tion of the optimum winding general speaking 1s of decisive importance
for increasing the carrying capacity of a shell. We will call a shell
composed of fibers alone the basic system.

Since actual resins which are used as binders in the manufacture
of shells have various properties, they provide compatibility of de-
formation of the glass filler in different ways, and thils explains the
results of studirs in which a significant effect of the binder on the
elastic and strength properties of fiberglass reinforced plastics was
found. Actually, with slight adhesion of the binder to the glass filil-
er, tne distribution of forces through the shell will be irregular.
This leads to both premature destruction of the filler in the most
stressed fibers and to overstress and fallure of the binder, 1.e., an
increase in irregularity of distribution of the forces and subsequent
reduction of carrying capacity of the shell.
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If the axial force in a cylindrical shell 1is Tl and the annular
force is (l+a) Tl’ the normal forces which act on a surface which 1is

located at angle 6 to the generatrix of the shell is determined by the
expression

Ty=T (1 acostd). (4o3)

Let glass fibers be wound on a cylindrical mandrel at uangle ¢ to
the generatrix (Fig. 51).

It i1s easy to determine that the same number of
fibers passes through segments AB, AD and BC (Fig. 51).
If the length of a segment of the generatrix ABs=a,
the length of a segment perpendicular tn the fiber
direction equals a sin ¢. Consequently, na sin ¢ fi-
bers pass through the segments indicated above, where
n is the glass fiber packing density, i.e., the num-
ber of fibers passing through a unit segment perpen-
dicular to the fibers.

The angle between the normal to area BC dropped /124
from point A (AE]/BE), and the length of segment BC
ing diagram and o .
conventional a5 — (04 ¢q) Tom |BC| ez 20T (bolk)
symbols. sin (0-+¢q)

Consequently, the normal force which arises in area BC in stretch-
ing of the fibers by force f 1s determined from the expression

T .- .!.".’Li‘_'.‘.:E."ﬂ"_"’_.afn sin® (8 -+ ¢). (405)

According to Eq. (405), the distribution of normal forces in a
cylindrical shell depends essentially on the orientation of the glass
filler during winding, 1l.e.; on angle ¢.

According to Eq. (405), winding of the fibers at one constant
angle ¢ does not ensure equilibrium of the basic system. We will sub-
sequently assume Eg. (405) to be written for the limiting state of the
shell, 1.e., we will assume fiber tension f to be equal to the break-
ing force of the fiber. For convenience in use, it 1s advisable to
subsequently present Eq. (40%) in the form

Ty = 221 4 008 29 — 2cos 2pcos® 0 -+ sin 2psin 20]. (406)

39. Continuous Winding of Cylindrical Shells with Unidirectional Glass
Fillers at Optimum Angles to Shell Generatrix

Since winding a cylindrical shell at one constant angle does not
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snsure equilibrium of the basic system, we consider the case when the
shell is wound with two glass fiber systems at angles ¢1 and ¢2 to the

shell generatrix (Fig. 52).

We initially study the simplest case, when each layer of one sys-
tem of fibers corresponds to one layer of the other system. Accord-
ing to Eq. (406), the force on the area 0 is presented in the form

r, -l,} (2 4- cos 2¢, + c08 2@y — 2 (08 2, -+ cos 2¢,) cos? & + (407)
+ (sin 27, + sin 2¢,) sin 20).

The equilibrium conditions of the glass
fibers have the form

€08 2p, +- €08 2qy <3 < o

T¥a (408)
sin 2¢, -+ sin 2¢, == 0.
Filg. 52. Bias cross
winding. From Eq. (408), it 1s easy to find /125
v @ =ue=—tma (m=0,4,2...% (409)
60—} . o829 ©+ — s (410)
40} £ 4~ — Ao ree ]
208 —1— where a»-., 1.e.,, the winding should be crossed
at angles t¢. For different stresses of the
0 2 ¢ 5 & w0 nnh shell, the optimum cross winding angles are
T, determined by Eq. (410).
Fig. 53. Optimum winde+ The results of calculation by Eq. (410)
ing angles vs. Jtress are presented in Table 1, and they are 1llus-

of cylindrical shell. trated in Fig. 53.
The basic relationship whichk connects the carrying capacity of
the shell with the strength of the glass fibers has the form

Tv= 53z in. (411)

We now consider a more general case of continuous winding, when
N layers wound at angle ¢2 to the generatrix are applied to each layer

wound at angle ¢1 to the generatrix.

The equilibrium conditions of the fibers have the form
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sin2¢, 4 N sir 29, = 0, (412)
TABLE 1. OPTIMUM WINDING ANGLES OF

CYLINDRICAL SHELL UNDER AXISYMMETRIC
LOAD Vvs. 'I‘2/'I‘1

k:;nrpmnun ’ _1# v

a
Ocenoe pacTrike-
mite 0 0*
b 1 iy
Dryrpoupce na-| 2 54° 44
paoBne ¢ ocenoll 3 80®
C cunon 4 632 25°
5 5e 55’
9 71° 35’
oo 00°

Key: a. Type loading of shell
b. Axial tension
¢. Internal pressure with axial force

Consequently, the optimum winding angles are determined by the
following exresslions

cos2q, - 2 '*.')._2.; i;g?).’,‘_;i:,'-’“ +2) ;
9 (a*+2042) ¥V —2(a+1) (413)
cos 2q, — (24 ajaN v

The carrying capacity of the shell

T ;H/", (414)

Determination of the optimum winding angles by Eq. (413) is not

difficult in any axisymmetric stress of the shell. Further, we study

the cases of loading with uniform internal pressure most Ifrequently
encountered in practice.

If a shell operates under uniform internal pressure, the optimum

winding angles are determined by the formulas

. 4¥ -5 4—5N
cos 2y - —— =~ C052¢y = —ax— . (415)

It follows from Eq. (415) that

~
H
N
(o)
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1SN 2 (416)

The carrying capacity of the shell
2 b
PR = = (N + 1) fn. (417)

TABLE 2. OPTIMUM WINDING ANCLES OF
CYLINDRICAL SHELLS OPERATING UNDER INTERNAL
PRESSURE VS. LAYER RATIO N

N " "

1 S4° 44 125 16’
1.4 §50¢ 46’ 124° 29’
1.2 46° 54 118° 08’
1.3 43° 08’ 115° 04*
1.4 40° 14’ 11242
1.5 J5° 46’ 100° 28°
1.6 31+ 08’ 106° 46
1.7 26° 34’ 104° 02’
1.8 21° 2¢’ 101° 06’
1.9 14° 58’ 97° 36
2 0° 00°

The results of calculation of the optimum winding angles by Eq.
(415) are presented in mMable 2.

N=1 corresponds to bilas cross winding; N=2 corresponds to longi-
tudinal-transverse winding, when two layers are wound in the annular
direction (¢2-90°) on one longitudinally laid layer.

The calculation results presented in Table
2 are i1llustrated in Fig. 54.

v
P ! We now compare the yileld strengths of
‘li shell materials obtalned by continuous winding

100 with the same glass fibers and different aniso-
tropy of the strength properties. According to

80 basic relationship (414), which connects the
carrying capacity of the shell with the strength

60— of the fibers, the following results can be

w'\- o obtained (Table 3).

2 5g, Optimum Continuous Winding of Cylindrical
Shells with Flberglass Fabrics

¢
I 42 16 5 N Fiberglass fabric is an aggregate of two

mutually orthogonal glass fiber systems connect-

Fig. 54. Optimum ed together with varied amounts of interweaving
winding angles of in textile processing. By type and amount of
cylindrical shells interweaving of the warp and woof fibers, card,
operating under in- satin and serge cloth are distinguished (Fig.
ternal pressure, 55).
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Satin fabrics have the greatest flexibility, they ensure the high-
est quality packing in continuous winding, and they have the best ca-

pacity for impregnation with binders.
produced from fabrics usually are called fiberglass laminates.

For convenience, we introduce the following designations:

f

TABLE 3.

c Tipeasan nposmocrs » rAaSEME
RAUPARRSHEAT ANNSOTPOTNR
& Tun crensonaacrina .,ﬁ:ﬁ:,’,‘m,
% %%
d Oasouaupamaemnufi ! 1:0 In 0
€  Panuoupounuii t:1 Ti-ln -'-,— n
- . 2 1
2:1 3 In -:i-ln
~ . m n
m>n m:n > In e In
Key: a. Fiberglass plas~ ¢. Yield strength in principal

1’

VS. NATURE OF ANISOTRCPY

FIBERGLASS REINFORCED PLASTIC STRENGTH

tic type
b. Nature of aniso-

tropy

O el

2% l]:?

b 0)

Fig. 55.
card; b.

s

directions of anisotropy
d. Unidirectional
e. Full strength

ALEL

) 24

e U

LA B
T

Fiberglass fabric structure: a.
c. serge.

satin;

Fiberglass reinforced plastics

are the breaking forces of the warp and woof fibers;
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ny» N, are the packing density of the warp and woof fibers;
kef,n,/fin, is the relative strength of the fabric (k¢l).

As in winding with unidirectional glass fillers, winding of a
cylindrical shell with fabrics at a constant angle does not ensure equi-
librium of the basic system, except for straight winding of the
warp in the annular or longitudinal directions. 1In this case, of course,
the anisotropy of the fabric should be k-T2/'I‘1 or k'Tl/Tz’

We consider the general case:of cross winding of a cylindrical
shell with two fabric systems, which are laid so that the direction of
the warp fabric is at angles ¢1. ¢2 with the shell generatrix.

Both systems are composed of the same fabric of relative strength
k in which, on each layer of the first system, there are N of the second
system.

In accordance with Eq. (406), the normal force on arca @ /129

T, m:—’—'é'ﬂ—l(/\f-i~ 1) (k + 1) — (k — 1) (cos 29, + N cos 2q,) +

+ 2(k — 1) (cos 2p, -i- N £18 2¢,) cos? O —
— (k — 1) [sin 2q; - N sin 2¢,] sin 20]. (418)

Consequently, the equilibrium conditions of the basic uystem are
written in the form

(N+1)k+1)a

(k—1)(2-+a) ' 4
sin2q, -+ Nsin2q, =0, (419)

co8 2¢; + N cos 2¢; =

The relationship which connects the carrying capacity of the
reinforced shell with the strength of the fibers has the form

Ty= L2 (N 4 1) (K + 1). (420)

The following expressions for determination of the optimum winding
angles can be obtained from Eq. (419):

€08 2¢p; =
L@ k=) N — (ko )Pt (N L) — (k—1)8 (2+u)’
2(N+1)(k*—1)a(2+a)
€05 2, = (421)
(k—1)2(2+-a)2 V24 (k+ 4)3 03 (N 4 1)2 —(k—1)3 (2+a)’
2N (N 1) (k*=1)a(2+a)

Since it 1s quite complex to study Eq. (421) in the general case
of loading a cylindrical shell, we consider the case of loading a shell
with uniform internal pressure (a=l) in greater detail, for cross wind-
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ing N=1,
In this partial case, ¢,=-4,"¢

cos2¢p-=-77‘—__;"+__':, : (u22)

it follows from this formula that, for manufacture of fiberglass fabric
cylindrical shells operating under uniform internal pressure, fiberzlass
fabrice must be used which satisfy the condition

0cke3, (423)
i.e., the fabiric strength along the woof should not be greater than
half the fabric strength along the warp. Otherwise, the excess strength /130
of the fabric along the woof cannot be used, even in bias winding.

The results of the calculation by Eq. (422) are presented in
Table 4 and are depictec in Fig. 56.

TABLE 4, OPTIMUM CROSS WINDING
ANGLES OF FIBTRGLASS FABRICS

A 9 h 9
540 44° 0.25 61° 48’
005 55% 48’ 0.30 684° 07’
040 5707’ 0.35 66° 50’
045 53° 24’ 040 70° 52°
60° 05 80*

According to Eq. (420), the carrying capacity

“.

of a shell under internal pressure equals

”

o PR = % finy (k + 1). (L2l)

75

” It can be concluded from this that filberglass lami-

» nate shells are considerable inferior in strength

g r to sh«1ls made by winding unidirectional glass fill-

60 ers, the carrying capacity of which cquals

53 8

0 PR =3 n. (425)

0 Q! 8 8 4¢
Fig. 56. Optimum Actually, the relaticnship f1n1>fn always
winding angle of occurs, since the fiber strength in textile process-

cylindrical shell ing only decreases, i.e., f1<f. Besldes, the fiber

vs. relative warp .
packing density in fabrics 1s less than the filber
g?df:ggic?trength packing density in winding: n,<n. Consequently,
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even in the most favorable case, when rlnlmfn, the carrying capacity of

a fiverglass laminate shell is 25% less than the carrying capacity of
a shell produced by winding unidirectional glass filleres.

It also follows from Eq. (424) that with a given warp strength of
fiberglass fabric, the maximum carrying capacity of the shell is reach-
ed at k=0.5, 1.e., in straight winding of fabrics, the warp strength of
which 1s twice the woof strength.

It seems advisable to consider a still simpler method of manufac-
ture of shells, when annular winding is accompanied by laying the fabric
warp along the shell generatrix.

Let N layers be wound in the annular direction on each layer of /131
fabric laid along the generatrix or vice versa. In this case, the norma
force on area 0 13 represented by the expressions

Tos=tiny (¥ ik + 1) [1 = L=HI=) copro] (426)
or
To=tying (N, + k) [’ + 4 —wk).g—z = cos’o] ) (427)

The relative fabric strength 's not limited by blas winding condi-
tions, and it changes in the Ogkgl interval.

Thus, the number of annular layers on one layer of fabric laid along
the generatrix i1s determined by the formula

{tda—k {t—k--ka
N‘rz_‘.:.k“___ﬂ- or Ny=—raoi (428)

Since N>0, the fiberglass fabric should satisfy the conditlors

hgmin(i-é-u; Tj;)gu

(429)
i;:k;max(i-{-u; —IT:-_n-) 9

We consider several possible cases.

1. Axial tension of shell a=-1; the optimum fabrics which
ensure the greatest strength of the shell should be unidirectional
(k=0). According to Eq. (428) N,=0.

2. Uniform tension of shell a=0; for the manufacture of a
cylindrical shell, the annular stress of which equals the axlal stress,
it 1s advisable to use full strength fabrics (k=l). According to Eq.
(428), Nl-l.

3. Shell under internal pressure a=1l; in this case, the
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optirum fabrics should lave relative woof strength k=1/2 and be wound
only annularly. According to Eq. (428), N,=0.

41. Optimum Methods of Combined Winding of Cylindricsl Shells

There is still another method of continuous winding of shells w*‘‘h
fiberglass fabrics alternately with some unidirectional glass fillere.
This combined winding method permits the impre-ement of fabrics which
do not satisfy the conditions of optimality. MNoreover, in laying the
fabric warp in the direction of the generatrix, the strength of the

sgei% is increased correspondingly compared with fiberglass laminate
shells.

We initially consider the combined continuous winding method as

applied to the manufacture of shells which operate under uniform internal

pressure. Let the warp of the fabric form angle . 2Y with the generatrix

of the shell and the unidirectional filler be wound at angle °2 to the
generatrix.

If N layers of unidirectional glass filler are wound on each layer
of fabric, the optimum winding angles are determined by the following
expressions

u:-a::‘w,u-a&-w,-—-s )

U=k (hr+ k1) '

Bk]— 4"+ k ket & + 10k — 4 (430)
3y (h+Ek+1) ’

cos 2¢q, ==

€08 2Qg = —

where

f is the tensile strength of the fiber; n 1s the packing density of the
unidirecticnal filler.
We also consider the case of winding of the greatest practical

importance, when the fabric is laid with the warp in the axlal direc-
tion (¢1u0), and the unidirectionai glass filler is cross wound at

angles +¢.

In this case, the normal force on area 8 1s represented by the
formula

Toz/ln‘[i_*.&L’fiﬁzﬂ_(k,cos%p—}-l-k)cos’()]. (431)

The carrying capacity of the shell 1s determined by the expression

PR = 2 (finy + fany + fN), (432)

and the optimum cross winding angle of the unidirectional glass filler
is found by the formula
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conZpen Bt (433)

where parameters kl' k should satisfy the condition

c-kl+k;2. (434)

In the individual case when kl+k-2, ¢=90°, i.,e., the unidirec-
tional glass filler should be wound in the annular direction.

TABLE 5. OPTIMUM COMBINED WINDING ANGLES

‘-h'+h

3 3 4 5 [} 7 L} #

04 100%] 70011’ | 65°35° | 63°08° | 64°37' | 60°34’ | 50°48" | 59° 12’
02 100°] 60049 | 650 14’ | 62 54° | 64°21° | 60° 20" | 59°34' | bO®

03 0] 69°26' | 64° 52 2032 | 61°04° | 60°05' | 69* 22° | O8° 48’
041000 6902 | 64*31° | 02012 | 6048’ | 50°560° | 50°08° | 58° 36’
051{90°] 68°45' | 64°08° | 61¢82° | 60°30° | 5H9°35 | 68°54° | 68* 24’
06100°] 68207 | 63%43 | 61232° | 60° 12’ | 59°19° | 58° 40’ | 58° 42°
071900 67°37' | 3% 18 | 6110’ | 59°54’ | 59403’ | 58°26' | 57° 09’
O8[O0%] 67006 | 62051 | 60°48° | 59°34° | 58°46° | 58° 42’ | 57° 46’
0.9190°| 56°32 | 62022' | 60°25' | 59°15° | 5830’ | 57°56° | £7° 32
1 100°] 65°50° | 61°50' | GO° 56°54° | 58912 | 57°42' | 51° 18’

The results of calculation by Eq. (433) are
presented in Table 5 and Fig. 57.

¢ "] [ ] We now study the general case when it 1is /133
)4 — necessary to determine the optimum combined winding
¢ | o of a cylindrical shell operating under axisymmetric
5"{_‘*142;._4__~ loed T,/T,=1l+a. We consider the simplest longitudi-
§0 |- t— nal-transverse winding, when the fabric warp is
,‘ b laid long the axis of the shell or is wound with
55 [ Lo the warp in the annv'ar direction, depending on the
| [ nature of the stress of the shell.
527 o o5 or ¢

Similarly to the preceding, for determination
Fig. 57. Optimum of the optimum winding angles of the unidirect¢ional

combined winding glass filler, the following calculation formulas
angles. can be obtalined
_ 2k—kja—2(14a)
cos 2p = (;H-a)k. ; (435)
2(1—a)—2k(1+a)—k a (436)
cos 29 = ki (2+0) ’

When the warp of the fabric i1s laid axially, according to Eq.
(435), the filler paramters should satisfy the conditions
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k>t t+hE (437)

If the warp of the fabric is wound annularly, the filler parameters
should satisfy the conditions

ky+ k=329, k-——’_ﬁ’_l;g-;-:-}. (438)

i4+a’

42, Optimum Winding Angles of Bottoms of Varied Geometric Shape

We will consider a bottom manufactured by continuous winding, in /134
the form of a shell of rotation and smoothly Jjoined to a2 cylindrical
body of radius a (Fig. 58).

If the (r, x) coordinate origin 1is
placed in the pole of the bottom, the
principal radii of curvature of the bottom
are determined by the known expressions

papesen— G
1 R, = _y—(l—':',"al-; Ry=rV1i4r" (439)
h—s\_’.—_\_’_‘
Fig. 58. Coordinate sys- The meriddonal and annular forces
tem for shell of rota- which are generated in the bottom as a
tion. result of uniform internal pressure are
equal to
T, =L Vi+r ‘
(440)
N g . .|
T,.—:—c- ‘+r <2+i+'12)

Since a shell of rotation with positive Gaussian curvature
l/R1R2>0 is a nondevelorable surface, the bottom can be made only by

continuous winding of glass fibers.
Let nc fibers pass through small segment ¢ perpendicular to the

fiber direction. We consider an element of the bottom cut by two axial
planes and two conical surfaces, so that the condition ds1 gin ¢=c,

d52 cos ¢=c, where ¢ 1s the winding angle, i.e., the angle between the
fiber direction and the meridian of the surface, is satisfled (Fig.
59).

The same number of fibers, equal to the product of the packing
density and the length of segment ¢ (perpendicular to the fiber direc- /135
tion), 1.e., equal to nc, passes through segments dsz,c and dsl. In

distinction from a cylindrical shell, the fiber packing density on a
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double curvature shell 1s not constant, but it changes direction toward
the pole of the shell, 1.e., the fiber packing density 4in winding shells
of rotation is a function of the cross section radius or &#xial coordi-
nate x.

The normal forces which are generated in area dsl, dsz, with the
fibers under tension of force f,

T,=fn cos® ¢; T,=fn sin® ¢. (441)

According to Eq. (4U40), (441), a system of differential equations
which determines the optimum continusus winding of shells of rotation
has the form

pr "'i + ’-" o 2,’3 ('US’ ¢,

pr) T4 (24 ) < 2msint . (Hh2)

By dividing the second equation of (ll#2) by the first, we obtain
an expresslion for the square of the tangent of the optimum winding
angle of the bottom as a function of the shape of the bottom

rr’
ch., 2~‘r-r—-'-,f. (443)

tan "

This basic relationship permits the pattern of change of winding angles
¢ in the manufacture of shells of rotation of arbitrary shape to be
found:

Shape of shell of rotation Optimum winding angle
Hemispherical f_"iim_‘
Ellipsoidal arctg | 2= gy
Fllipsoidal b=a//? mng;/é’.f:.,‘._;g’).
Conical 54°44° )
Oglval uﬂg]/2—7:£:$

r
Box arctg ‘/2-'—a
0

-

However, in continuous winding of shells with a nonzero Gausslan
curvature, 1t must be kept in mind that, besides satisfying the conditlon
of equilibrium of the basic system, i.e., equilibrium of the glass filler
without the binder, still another no less important condition must be met
which specifies no slipping of the glass filler from the shell surface,
and it is geometrically reduced to winding along the geodetic lines of /136
the surface. According to the Klero theorem for a surface of rotatilon,
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this condition can be written in the form
r sin ¢=h, (bby)
where h 1s the geodetic line parameter,

With an opening at the pole and continuous winding of the opening,
the gecdetic line parameter equals the cross section radius of the
opening.

According to Eq. (443), (44l), the differential equation which
determines the shape of the bottom and the optimum winding can be writ-
ten in the form

. PIATT L
—"“j:;f""'; et = 0. (44s)

By replacement of the variables
F=t;  r'-U(1), (4u6)
differential Eq. (U445) can be reduced to the form

Udv - (3=2:m4a; (uu7)
1+U3 C@=1)

from which, after integration, the desired shape of the bottom is de-

termined in the form of a simple quadrature as a function of parameter
h

P [ S
‘Jnu;un-;- t- %o (448)

c=m—(-§—";1.2},-- (449)

h

where

According to Eq. (4u48), the optimum shape only exists in regicns .
where the sublntegral expr«ssion 1s positive.

Optimum shape of bottom with longitudinal-transverse winding.
There 1s interest in determinatlion of the optimum shape of a bottom with
longitudinal=-transverse winding of the cylindrical shell.

In longitudinal-transverse winding, the glass fibers will go in the
direction of the meridian of the shell. Consequently, tc erisure equi-
librium of the basic system in the annular direction, a bottom shape
must be selected in which the annular stresses equal zero.

According to Eq. (440), the desired bottom shape is determined by
the following differential equation

rr"+2r'2+2-0. (450)
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The solution of Eq. (450) is represented by the elliptical integral /13

|

. 1 dt
z.“of }at—ts ' (451)

which can be expressed through elliptical functions.

In the dimensionless coordinates n=x/a, {=r/a, the shape of the
bottom 18 determined by the equation

n=06(z), (452)
where function ¢/(f) and its first derivative are presented in Table 6.

TABLE 6. OPTIMUM SHAPE OF BOTTOM WITH
LONGITUDINAL-TRANSVERS® WINDING

4 ®(Q)-108 ' () t G () 103 @'}
0 0 0 0,52 4,7629 0.2809
0.02 0.3 10" 0.0004 0.54 5.3484 0.3049
0.04 021%-10-2 | 0.0016 0.56 59834 03303
0.06 0.720. 107 | 00036 0.58 6.6702 0.2572
.08 00177 00064 0,60 7.4131 0.3850
0.10 0.0333 00100 | og2 8.2152 0.4164
042 0.0576 00144 0.64 0.0797 0.4490
044 0.0815 0.0196 0.66 10013 0.4839
0.46 04365 0,0250 048 11,017 0.5215
0.8 04944 0,0324 0,70 12,008 0.5621
0,20 2667 00400 072 13,266 0.6062
0.22 0.3594 0.0485 0.74 14521 0.6544
0.24 0.4613 0.0577 0.76 15,880 0.7076
0.26 0.5865 00678 0.78 17.344 0.7666
0,28 0.7327 0078 | 080 18,931 0.8329
0,30 0.9015 0.0804 0.82 20,531 1.1008
0,32 1.0047 0.1029 0.84 22,270 1/ ()
0,34 1.3139 0.4164 0.86 23,472 0.9371
0.36 1,5608 0.4307 0.88 26,301 0.8170
0,38 1.8372 04459 0.90 98,687 0.7240
0.40 2.4450 0.1624 0,92 31,435 0.6292
0,42 2.4861 04792 094 34,682 0.5204
0.44 2,8621 04973 0,46 38,702 0.4212
0.46 3.2764 0.2465 0.98 44.184 0.2001
048 3.7204 0.2368 1 58,115 0.0000
0.50 £.2242 0.2582

, —— The optimum bottoin shape 1s
— preserted in Fig. 60, where an

ellipsoidal bottom with the same

semiaxes as the optimum bottom

46 1s noted by the dashed line.
\ E@*
Y ¥ y/

N S

28 06 0 09 08¢

Fig. 60. Optimum shape of bottom
with longitudinal-transverse winding.
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CHAPTER 9. END EFFECTS IN AXISYMMETRICALLY LOADED CYLINDRICAL SHELLS

g&. Differential Equation of Axisymmetrical Deformation of Cylindrical
ell

We consider an orthotropic cylindrical shell, the principal axes /138
of anisotropy of which coincide with coordinate axes x, g, which char-
acterize the distance along the shell generatrix and the circumferen-
tial angle (Fig. 61).

According to Eq. (10)=(12) and (2u)=-
(26), in axisymmetric loading of an ortho-
tropic cylindrical shell, the basic elasticity
relationships are presented in the form

\
T‘ = Bl (u' + V'%) ]
Ty=By(F +ww'); (453)

Q1= —Ki(9 +v');
G‘ == —‘D‘q)'; G’ =V G‘-

Fig. 61. Gaussian coor=-

dinates on surface of

cylindrical shell. The equilibrium equatlons of a shell
subjected to a surface load and end forces
can be written in the form

Ty + X (@) =0;
Qi+t = Z(2); (454)
G; = 01-

The axial force generated in the shell i1s determined by the ex-
pression

T::-—xx da T’
1 ‘_{ (§)ds + T, (455)

where To is the axial force applied to the end of shell X=X

From the first elasticity relationship, with Eq. (455) taken into /139
account, the following can be obtained

W [ X@d+ Ly (456)
X0

By substituting Eq. (U456) in the second elasticity relationship,
we obtain
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B St A

Tym Byl — v v T v [X @),

(457)

If stress function o--Dl¢ ig iantroduced, the elastic forces, mo=-
ments and movements of the shell are determined by the folléwing ex-

pressions

G, =D Q=0
T, = RZ (z) — RO™;

w= {{%[zm—v.%+—‘,‘,1fX(a>da—m'"];
X0
u=—g Jor [X@a Lol 2 [uarp,
xe Xe xe

where u1 is the axial movement of the end of shell x-xo.

(458)

The differential equation which describes the axisymmetric deforma-
tion of an orthotropic cylindrical shell made of laminated plastics has

the form

(Dlv _2Q2®"+ k‘(p = —v, % + y A4 (1'),
where

2. Ea8 12(1—=v,vy) E
2= g K="pmwE—

(459)

(460)

Gl dct # DS L ARl RIS

S Y T T A4

If the partial solution of Eq. (459), which is found by convention-
al methods, 1s designated oo(x), the forces, moments and movements which /140

correspond to this partial solution are written in the form

G, = (I);; Q, = (I);; T° - (Z - (D;"):

¢,
Go = D,
x
_ ,," R_ o\ g _v,R \ If'mo' Rz
Wy = E.OJX(b)dG Eq b 70—"11-‘——,6 ——_—Eab ’ (&61)
x

x x
.%J_%fajxma—iﬁﬁﬁLm%f%a+%:
LY 0

*0

\
The solution of homogeneous differential Eq. (U459), which determines
the end effects generated near zones of abrupt change of geometric and
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rgg%gicy parameters or external load, has the form, for long cylindrical
she

D (2) -~ Cy Py (2) + Cy Py (2), (462)

where
O, (2) = e Tcosrz; My(7) = e ““sinrr (463)
,mvﬁgqrz‘$#; (46H)

The following known relationships satisfy functions 01(k)} 02(x)

D, = — (r®y+-sdy); D, =rd, — sy
O = ("~ ) D, £ 25Dy B (5" — 1) O, —
—2rsQ,; (465)
D, = —s(s" = 3r") D, + r (r' — 35"
@ =5 (s = 3" Oy — r (P — 35" O

for short cylindrical shells,

¢(x)=C, ¢ +02¢2+c3o +C, 0y (466)

1 1 3
where ¢l(x). @2(x), 03(x), ou(x) are the functions of V.Z. Vlasov,
defined by Eq. (188), satisfied by Eq. (189).

In short cylindrical shells, there 1s a general bent state of the

shel.s, and, consequently, the "end effect" concept itself loses mean-
ing.

It follows from Eq. (462)=-(464) that, in laminated orthotropic /1
shells, the end effect damping zone is determined not only by the
geometric dimensions, but depends essentially on the nature of the
anisotropy and rigidity with respect to interlayer shear.

The end effect zone decreases with increase in parameters E /E
E2/Gl3, i.e., the presence of interlayer shearing contributes to dakp-

ing the stressed and deformed state off'the shell. The concepts of
"short" and "infinitely long" is not purely geometrical for laminated
orthotropic shells, and it is determined by the value of parameter sf.
It 1s assumed that, in actual laminated shells, the relationship
2

k >92 or the relationship

Gu, 1 16
E5 2 5t (o)

where 013 is the interlayer shear modulus along the shell axis, is

satisfied.
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Long cylindrical shells. We select the distance from section x=
X, as the axlal coordinate in which the end effect is studied (Fig. 62).

With this coordinate system, in order
/ y to maintain the validity of the expressions

obtained above for the elastic forces and

’ r<ry, - a3 movements, the change of signh in differ-
entiation in region I, located to the left

. . . -J -— of the section, should be taken into ac-

count. In the expressions presented be-
low, the upper sign of the double sign
concerns region II, where XBX and the

lower sign, region I, where XX, ¢

“ae'e ® & ° o

Fig. 62. Hypothetical re-
gions of propagation of

end effects. Q, = Qo+ C,[(s* = P¥) D, + 2rs D] +

+ C. {88 — 1) Dy — 2rs @,};
G, =Gy F[Cy (3%, + 1r®y) — Cy (r®, — s Dy)];

u =g + g5 107 (2) — O () (465)
® = 90— - (C1®, + C, D)
W=y % (€5 (8 — 3r) O, — r (' - 36 D] +
4 Cylr(r* — 3s8?) @, + s {? -- 3%) D,]).

The two random integration constants are determined from the /142
boundary conditions in section x=0.

Short cylindrical shells. In short cylindrical shells, for con-
venience in practical calculations, it is more convenient to express
the solution of Eq. (466) in initial parameters bgr Wy Go’ Qo’ which

designate the angle of rotation of the normal, deflection, bending mo-
ment and cutting force on the end of the shell (x=0). Since two con-
stants will be assigned on one end, in specific calculations, the prob-
lem 1s reduced to determination of ' the two remaining constants from the
boundary conditions on the other end of the shell.

According to Eq. (461), for short shells,

® ‘. .. T (L69)
p=—pi G=0% Q=07 w=— G-,

The fcllowing expressions for the baslic components o0i' the forces
and deformations can be obtained in the initial rarameters

P = Agy (D)0, + Ag, (D0 + Ag o (2)Q, + Ag (1) G,
W= A, (2@, + Ay, (D)W + A (2) @, + A g () G,

v Q=Aq4(2)9, +Ag, (D)W + Agq (2)Q,+ Ag6(2) G (470)
G =Ag o (D)9, + Agy (D)W + Agq (2) @, + 465 (2) G
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Influence coefficients Ai are determined through hyperbolotrigono-
metric Vlasov functions (188), by the expressions

Aw (3) =@~y

Ayu(2) = m (s®, — rdy);
P
.Q(z) = "'i,_..v; H
A'G(z) = mdr(r’-—&’) O, +
+ 8 (s* — 3r') B,);
Aoy (2) = — 37 (1O + 1 Oy);

Awe (2) = Oy + - Oy

(471)
Ao (2) =— z’-::ﬁ;;l' (:’:— 3r) @, —r(r* —3st) Oy);

Ly
A'a (3) - 2". x
Dy (s 4-rt
on(‘)""'('i?j’-_)'m*‘
AQu(") = -.'-;%9,7"-(30.+r®,).

Agq (z)=m,+-§,—®.:
Age (@) = — L2 @ — r d,);

2rs

A; (2) = bt rl) ('2':' ) (s Dy —rdy);

Ao,@) = =GP g
60 () = o (6@ + ry);
A (x) = @y — ___LQ).,

In finding the initial parameters from the boundary conditions to /143
solution (470), the corresponding solution obtained from membrane
theory must be added.

b4, Stressed and Deformed States of Cylindrical Shell Generated by
Annular Concentrated Foices

We consider a long cylindrical shell compressed by a concentrated
annular force of intensity q (Fig. 63).

In view of the symmetry, only one half of the shell can be consid-
ered, for example, that loca‘ed to the left of the section where the
pressure 1s applied.

Since there are no surface loads or axial forces on the end of
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the shell (x-z-To-O). the initial forces, moments

. and movements equal zero. Consequently,
v Q,=C,[(s* =)D, 4 2rs D,) + C, |(8* — r?) Dy —
' -21Q,);
¢ Gy= —[C, (3@, +r D) —Cy (r®, —sDy)):
- wiR — - .
Fig. 63. Cylindrical 4= 5,5 Q@) = Q) + i (472)
shell subjected to - .
concentrated annular v B; (10 + G Dy)i
pressure. w mi%;c,u(s'—3r')<nl—r(r-..aa-)m.| +
+ Cylr(rr—3M D, 1 5(s* — 3r7) D)) J
Integration constants Cl’ 02 are determined from the %“oundary /144
conditions
at *==0 ¢=0; &*:—gw
(473)

Cl-‘:O; Cg"zqr;.

Consequently, the stressed and deformed states of a laminated cy-
lindrical shell compressed by a concentrated annular force are deter-
mined by the following expressions

o = —,;g,-lzfs“’x — (85 — ) D1,

G, = ZZ—' (r®, —s®,);

gv. R 524 r?
u- G5y [A-0)+5 0] (474)
——d_ .
¢=— 475D, m"

qR? .
W= (17— 387 Dy - 5 (s — 3r7) ).

The maximum deflection in the section where the annular force 1is
appllied

Bt (475)

Wmag = —

The maximum flexural stress and the greatest shearing stress be-
tween the layers are generated in section x=0:

3¢ 3q
aq ST — -
max = 5, Tmox e (1476)
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form internal pressure, which is strengthened by
equally spaced reinforcing rings (Fig. 64).

oderbd b bl f ol ed infinitely long in the sense indicated above,
=R 2 w i.e., the stressed and deformed shell states
described by Eq. (474) are completely damped in

Flg. 64 Sketch of distance 2/2., 1In actual shells, these conditions
cylindrical shell usually are always satisflied, since the roinforc-
with annular ribs ing rings must be larger to preserve the circular

* shape of the shell than to increase the strength.

Let the rigidity of the reinforcing ring under tension equal EF.
The end forces and surface load components

To-gﬁ; Zmp;  X=0. (477)

Consequently, the solution of the inhomogeneous equation has the
form

Gy~ Qp=gq,=0; (478)
L (2—wy) pht?

Wy - L .
o 2E, 8

The intensity of the force of interaction between the reinforc-
ing ring and the shell q 1s determined from the condition of compat-
ibility of deformation of the ring and shell

(R (2w pRT

LF 2050

. (s —.r3)qR3 (l‘79)
4“E|6 °

Consequently, the intensity of the force of interaction

(2—vs) 1
9= -Z‘"'{a,o.:u«-ﬂj ' (480)

FF T A

The normal stress generated in the reinforcing ring

Omax = @—vi)ph . 11
20 E (d*—-r) FY ° ;
{.E,_ 430 ] ( 481 )

The stressed and deformed states of the shell are the sum of the

We investigate the stressed and deformed states
of a laminated cylindrical shell subjected to uni-

We will assume that a segment of the shell of
length £ located between two rings can be consider-

/145

momentless state generated by the internal pressure and the stressed and

deformed states generated by the resistance of the ring to deformation
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of the shell., The latter is determined by Eq. (474), where q is found
by Eq. (480).

Thus, the greatest normal stresses and maximum shearing stresses
between the layers develop in the reinforced sections of the chell, 146
and they are determined by the expressions

0, mag = 2R 4 3@ =Ve) P i .
) masg 'iF ‘.SI [%'rg+3?_" ] ’
R, 3(2—vy) vep 4 .
o.m..-Ls-+——-4-,-§r—'-T_;§'.__'5:3-.1:—,r]"~ (482)
IY3 4
- m3(2-\'l)l’ . )
max 8d [7;"6"0'3'..‘"] .
.E-I': rY]

;g. Calculation of Laminated Cylindrical Shell with Variable Wall
ickness Changing by Steps

We determine the stresses generated in a closed laminated cylin-
drical container, which is supported by the base on a circular sup-
port and 1s filled with 1liquid of specific weight y and is under low
pressurization po. which 1s required to give the container the necessary

rigidity (Fig. 65).

LB The lateral hydroetatic pressure of the liquid
\ on the container wall is proportional to the height

of the liquid column to the section under considera-

tion and the specific weight of the liquid. If the

coordinate origin is selected on the open surface

of the 1liquid,

IR gppeyaareny

Xm0 TymBR: Z(z)=(yz+P) (183)

In accordance with Eq. (461), the momentless /147

state of the shell 1s determined by the expressions

° 76%0%4%%% %" s a"a"a"

Go=:Qo=0; Ty=(p+y2)R;

YR, (2= vi)poR? yzR?
Fo=—"178" Y= 215;0(:) Eqbd (1) ° (484)
Fig. 65. Variable
thickness chemical Consequently, it is inadvisable to make the
container. walls of such containers of constant thickness. Let

the wall thickness be increased toward the base,
changing by steps. We investigate the end effects which arlse 1n the
sections of the container where there is wall thickness discontinulty

§(x).
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Let the thickness of adjacent sections
of the shell be §,, §, (62>61). We consider

two sections of the tank separately, on the
assumption that they are sufficiently long:
Lsn/s (Fig. 66.

For section I

Q, = C {8} = 7)) ®, 4 28, @) + €, [(5] — 1)) By —

Fig. 66. Initial param- —2n8,®,);
:gg;g . GOQO in cylindrical Gy =C(8, P +n @) — Cy(r, B, — 5, Dy);
]
= b — 7 (€, [1 (6} = 37) &, — (485)

—r (=3 O] + €, [r, (= 38) O, +
+ 8, (5] —3r}) Dy}
g = — 21230 (6, @, 4 C, Dy).

El 6[

By satisfying the boundary conditions, the following can be ob-
tained

("“’;)G."".Q, . (u86)

s+ y)

2‘|Gn"" o- .
a:+ r: !

Clt”——

=
s

Consequently, in the initial parameters, Eq. (485) take the form

0= G0, 4 0y (0, 2,
G, = Go(‘pl +;‘:®n) —Oo%;
wo = w} + E:n%: [Go("x"*":) (0, _‘;i‘pl) -
C.-—'.
=0, f2n 0~ 2750,

e izsl-—vw!) S—=r
v E, 6: ':‘*":) [G,(Z:, @, + ": ‘d),) -

~a.(0.+20,)]

(487)

The movement and angle of rotation of the end of the shell x=0,
respectiveily,

! 2E| é] E. 6| I‘.‘,hl
y R

- A2y - Qo) =
T E R ey O W T ES

w (2—";)/’»"’ 4 \'“R' + U [G°(7:+s:}_23100];
(488)
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For section II

C, (=), +2.5®,] +C, (o) =rl) @, -
”2’:':“’1]'
Gy = —C, (@, + ry®y) + C, (r, @, —3, ®,);

L
w = wh! + g5 1 [ (57— 3r}) @, —

—r, (r:--ax:) Q).] -+ C; [r, (r:-3l:) P, 4+
+ 8, (5} —37) D))

[] |}
We agein find constants Cl » 02 from the boundary conditions

C. (s —r))—C2rty == Qo
|} L}

, ' y
—Clty+Ciry=Go (490)

from which the following values of the constants can be obtained

C o 20000 o (4=7) Get 00, (491)
0+, €, * e ('::+r:) '

In initial parameters Go, Qo’ Eq. (489) are presented in the form

Q= —G, -m,+o.(m,+ nD,);
c,-ao\m‘+i'rm,)+oo,

o =t (G D (o) +
+Qo(28,®,—.1__up.). (492)

o= ;26( l(—~ vi¥s) [G (2,.(1)‘ + J.__.!.O') +

'+°°("’1+7.-“’-)] :

The deflection and angle of rotation of the end of the shell x=0 /149

w,, = 2=V P2 | yaRt m[

n S, "Ey 8 +E 8
Py = 12 (1 —v,vy)

1 S 3, .1

E (r +r”

Go(ry+3,) + 24,Q0]

(246, + Qo ~ 20 . (493)
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The conditions of compatibility of the deformations in the butt
sections of the shell can be reduced to the form

Go [8, (£ 42) =8, (8} +71)] +2Q0 (3, 8,4+ 5,8,) =
- (2—'—22'1’0'*‘\'“) (89—,
2G, [:, s:+r')6'+s,( 1) 82 4 Qo (8} 411 0 — (494)

g d,) 616}
o = L OB B0 () (1)

From this, for determination of end forces G_, Qo, we obtain the
following expressions °

Go= (35 potva) (-0 f, +

vn( 6’!
+ 7ﬁuf~vvo f

—v (495)
Qp= —2 (2 ) : Po+V¢)(ba"'6x)fs—
yR*(8,—5,) 816}
._ 622 (1 ~vyva) fo
) s —(g+n)8,
llr’“ A ’
=R () (48 4438),
2= A ’
ol 8 ()8
. s ' (496)
hz(.:+,;x,;+,;>[(.:+,;)6,_(,;+,¢)o,,;
A=[(s}+r;) 8— (s:+r:)6,][(st+r:)6:-—
(8,+r:)6,] 4(%6,-{-3,6,)[s,(s:-l-r:)b:-}-
+sl(3:+":)b:]-
After determination of the end forces, the stressed state in /150

sections in which the thickness changes by steps is determined by the
expressions obtained above.

We note that the manufacture of cylindrical shells made of lami-

nated plastics with variable wall thickness presents no technlcal dif-
ficulties.

46, Calculation of Laminated Orthotropic Cylindrical Shell Subjected
to Axlal E Eccentrically Applied “Forces

In actual shells, axial forces may be applied to the side surface
only with some eccentricity with respect to the mean surface (Fig. 67).
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We will assume that the contact of the
shell with the reinforcing ring is linear. The
axial eccentrically applied load can be re-
duced to axial forces applied to the mean sur-
face of the shell and to reactive bending mo-
ments uniformly distributed around the cir-
cumference of the shell cross section. The
strength of the reactive’ bending moments 1is
determined from the conditions of compatibility
of the deformations of the ring and shell.

Fig. 67. Cylindrical
shell subjected to
eccentrically applied
axial load.

By separating the reinforcing ring from
the shell and replacing the force of inter-
action between them by reactive moments of
unknown intensity m, we have the calculation
scheme shown in Fig. 68. M 1s the external
torque generated by the eccentricity of the
arxial load.

The calsculation formulas for determina-
A-m tion of the deformed and stressed states of
an orthotropic laminated cylindrical shell,
[ subjected to uniformly distributed bending
- moments m, are obtalned by differentiation
' of the solution obtained for the case of
@P@ annular pressure with simultaneous substitu-
tion of m for q [18]. However, in taking
account of interlayer shearing, this method /151
can lead to errors, since the effect of
shearing in the limiting transition ia not

Fig. 68. Calculation taken into account exactly. Therefore, we
scheme of cylindrical use general solution (468),
shell.

For the upper and lower sectlons of the
shell, respectively

Q,=C,[|(s*~r*) D, +2rs @y} +-C, [(8*— 1) Dy —

—2rs @,};
Gy=FIC, (sD 41 P)—~Cy (r O, —s D,);
w=- :E?‘;—l(',[s(s’—3r'~')(b,—r(r’~—3s') D,] + (497)

o Cyr(rr—38Y) @, + s (57— 3r7) Dy
== 5 (CL D+ C, D),

N R ,
= tig+ 5 (C: () — Q4 ().

In section x=0, the bending moment has a discontinuity of m,
Consequently, integration constants Cl’ 02 can be obtained from the

following boundary conditions.
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at x=0 cl-%'; w=0, (498)

By substituting Eq. (497) in Eq. (498), we obtain

Gys (st —3r1) —Cyr (38°~-r*) = 0;

(499)
C,c-—C.r-—--—-';l-.
The following can be obtained from Eq. (499)
m (3]'—") . m(gl_.arl)
Cio= T ¢ O~ (500)

In this manner, there are the following calculation formulas for
a shell subjected to bending moments of intensity m uniformly dis-
tributed around the perimeter of the section

o= __ﬂ_{f:":'__’:_)_(rd,‘_*_‘m');

Gy = T = (2rs Dy + (2 — 1) Dy
D [r(33’—r’) ‘Dl+‘("—3r’)®.|.

¢ = 4"(,1.*.,!) (501)
mRd (' 1)t 4,
we= m T mlv
U - —"‘ lQn (2)—Q (z)].
In Eq. (501), the upper sign refers to upper region I of the /152

zgell and the lower sign, to lower region II of the shell (see Fig.
)

For shells made of laminated pilastics, reinforcing rings with a
cont inuous rectangular cross section are most acceptable. The resist-
ance of such a ring to axisymmetrical torsion is determined by the
flexural rigidity of the ring EJy, i.e., the rigidity of the ring when

it 1s bent out of the plane of curvature.

From the compatibility condition of deformations of the shell and
reinforcing ring $p=tg> it can be found that

e M (502)

(+7'

where the geometric rigidity parameter 1s designated g

o

By
C= R (503)
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In accordance with Eq. (502), an external uniformly distributed
bending moment which is transmitted to the shell through an elastic
reinforcing ring is taken up by both the shell and the reinforcing ring.
The fractions taken up by the shell and reinforcing ring are determined
by parameter {. An increase of this parameter entails a decrease in
load which 1s transmittecd to the shell. Thus, the stress and deforma-
tion of the shell can be regulated by increasing the flexural rigidity
of the ring. Since this rigidity is characterized by moment of inertia
Jy, for transmission of eccentrically applied axial forces to the lami-

nated cylindrical shell, it is advisable to use wide reinforcing rings.

It should be noted that, with large shell dimensions, the effect
of the reinforcing ring decreases sharply in proportion to R3/2, 1i.e.,
in thin cylindrical shells of large diameter, the external bending mo-
ment 1s almost entirely absorbed by the shell.

The stresses and deformations due to uniform compression should be

added in the lower part of the shell to the stresses and deformations
which are determined by Eq. (501).
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CHAPTER 10, AXISYMMETRIC DEFORMATION OF ORTHOTROPIC SHELLS OF ROTATION
47. Initial Relationships ard Basic Differential Equations

We consider laminated shells of rotaticn loaded symmetrically /153
relative to the axis, including the reactions of the support connec-
tions. We select circumferential angle 8§ and angie a, formed by the
normal to the mean surface with the axis of rotation as the curvilinear
Gaussian coordinates on the mean surface of the shell (Fig. 69).

We will assume that the principal direc-
tions of anisotropy of an orthotropic laminated
plastic are coincident with the coordinate direc-
tions, 1.e., with the lines of curvatures of the
mean surface of the shell,

Under axisymmetric loading, a shell of
rotation will be deformed symmetrically relative
to the axis. Consequently, the forces, bending
moments and movements of the mean surface of the
shell will be functions of angular coordinate
Fig. 69. Curvilinear o alone.
coordinates on sure-
face of shell of ro- From the elastic forces in the shell, only
tation. normal forces Tl, T2, transverse cutting force

Ql and bending moments Gl’ 02 will result. Movements of points of the

mean surface are completely determined by two components u, w, i.e.,
by movement along the meridian and deflection of the shell.

In accordance with basic Eq. (24)-(26) and Eq. (10)=-(12), in axi- /154
symm2tric deformation of a shell of rotation,

u 4w @ ttg a4 w
R G e e L

Ty= By (“UES 4 v S, (504)
()l = ...l\'l (w + ll"l—‘-;u >;
G, - —D, (-‘l.‘;_". + vy 'J“}::!ﬁ );

S ¢etga L
Gom =Dy (T 4 ).

(505)

where Rl R? are the principal radii of curvature of the mean surface,
y 2
and the primes designated differentiation over angular coordlnate a.

For symmetrically loaded shelis of rotation, equilibrium Eq. (17)
take the form
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e B R

d (T Ry sin a)

-+ — TR, cosa — Q,Rysina = —XR,sina;
.‘-'..‘.Q.L'::.:.._’M.’.ﬁ-ﬁ,ﬂ,sinu —;-:-—&-%:—)«Zlf,slna; (506)
d (G, 3in a)

- — G,R,cc3a — QR Rysina = 0.

As the solution of nonhomogeneous system of Eq. (506), we will use
the solution which corresponds to the membrane theory of shells. Fur-
ther, we obtaln the solution of homogeneous system of Eq. (506) on the
assumption that X=Y=0,

Following Melssner, we introduce the stress function

V=R2Ql. (507)

Then, from the first two equilibrium Eq. (506), we obtain

T‘z_l’;;fu; T3=_'%i-' (508)

For axisymmetric loading of shells of rotation, relationships (8)
take the form

'y . Ry ,
v 4w E,O(v‘v -E;Vclgn),

uctga+w--E—:T(v,Vctga-%:-V'). (509)

By substituting them in the obvious identity which expresses the
condition of deformation compatibility

W —u=(uctga+w—u —w)ctga + (uctga -+ w), (510)

N
[
n

we obtaln one differential equation

| 284 —’% + Vv’ [(—g—:’-)' +-%:ctga] 4 [A’-g:— ctgta -+

6GFg _"_'

(511)
+ 5G,y A, —\,2] = Ezbnl(r.

By substltuting Eq. (505) in the remaining unused equilibrium
equation, a second equation can be obtained for stress and deformation
functions V and ¢

W'—Zf +¢ [(-{,;—:)l +f+:ctga] -9 ["ﬁ+—?;;-1"3t8’“] =— %:*“3



Thus, the axisymmetric deformation of shells of rotation is des-
cribed by system of Eq.: {511), (512), which it is convenient to present
in the following 3svmmetrical form

L+ (Je=22)V = Esbe. (513)
L@—Fo=—7 (514)

where L() designates the differential operator in second order partial
derivatives

dr R\ , R
LO) = Rygr+ () + Frowa] 5 —f cte’a( ). (515)
k, = Ball—=vivs) _ 6E,
1= K, T 5Gyy !

here ;-Rla is the length of the arc of the meridian of the mean surface
of the shell.

Consideration of shells of rotation of variable thickness &§=8§(a) 1s
of practical interest, since the manufacture of such shells from laminated
plastics involves no fundamental difficulties compared with shells of
constant thickness.

Without repeating the calculation, for axisymmetrically loaded
shells of rotation of variable thickness the following Bystem of dif-
ferential equations can be obtained

L)+ (—",,’T —-},‘7) V- %(R,t‘f—v,mg o) = E, 0¢;

b o - (516)
L(g)— -}';}«p+3%(ﬁs@+~'.¢ctea)== --,-,'i;-

where the points designate differentiation over the arc of the meridian
;.

Eq. (513), (514) and (516) are valid for laminated anisotropic /156
shells of rotation of constant and variable thickness, which are made
of laminated plastics of unchanging elastic constants along the merid-
ian. However, if a convex shell of rotation is made by continuous
wirding of fiber fillers, as was pointed out above, the elastic con-
stants of the material will change along the meridian, since the fiber
packing density increases toward the pole of the shell.

The structure of the equations and asymptotic analysis of the
solutions show that system of Eq. (513), (514) or (516) describe the
simple end effects phenomenon, i.e., for not very "short" shells, the
solutions contaln terms which are rapidly damped with increase in the
argument of z [1]. Consequently, the equations obtained will be valid
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for shells of rotation, where there are factors which cause local flexural
deformations.

If the indices of variabllity of the external loads, elastic con-
stants and geometric dimensions of the shells are not very large, Eq.
(513), (514) for constant thickness shells of rotation and Eq. (516)
for variable thickness shells of rotation remain valid., However, rur-
ther simplifications can be made in these equations.

48. Differential Equations of Technical Theory oi Axisymmetrically
Loaded Shells of Rotation

Exact solutions of Eq. (513), (514) present great mathematical
difficulties, and they are obtained only with some simplifying hypoth-
eses for individual cases. At the same time, for engineering applica-
tions in many cases, it 1s quite sutficlient to be limited to the first
approximation of asymptotic intezration [7]. The-error of the simpli-
fied equations which correspond to the first approximation is Ay
compared with unity, i.e., it is completely sufficlient for "thin" shells.

The technical theory equations can be obtained, if it 1s assumed
that the index of variability of displacement functions ¢ and stress
functions V are considerably greater than the indices of variability of
geometric dimenslions Rl, R2, §, elastic constants cij’ a1J and the ex-

ternal locad applied to the shell,

By multiplying Eq. (514) by random complex constant z=x+ly and
summing with Eq. (513), we obtain

Ve

[ o= 2] [0 (B - )Y+ 5] o

(517)
Following A.I. Lur'ye [18], we set /157
hY k,’ t i
_7’.?;.-—7;.; -—D_‘-.—.——a—rbt.}
sy Bib o agbi). | (518)
‘l H

3y substituting z=x+iy in Eq. (518) and separating the real and
imaginary parts, we obtaln

7 L SR S a:
T T
y= Db,
v, E 8z —a: (519)
",}T + T z"+"yz = ’
yE4d
Tk

By disregarding the small terms, the following values of the con-
stants introduced can be obtained:
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T g TR TS

k
z -:_T"-‘D:L:um' D\R,;

=D,R ]/—-——'2""'"”"’" A 4 e
y=D\)A, RubT‘—_4".*""DnD:1k‘-m.‘
! , : ' : (520)

[
a-—-w;-u--mzn,;

.

_ 1203 (1 — vyvy) K e
b_my/ P&"“ = =R,V =,
s Wk
where
2 = ky - d3 (1—vyvy) |
[] ]
2R 2K, 1}

3_ Ay Z(T=—vivg) (521)
S T

Consequently, Eq. (517) takes the form
L(U)+(a+b1)U=0, (522)

where U is the complex function of stresses and deformations determined
from the expression

U+V+(x+1y)¢. (523)

Because of the assumptions made as to the nature of varlability
of the quantities, operator L(), which can be determined by Eq. (515),
can be simplified

d3 R ’ R d [
LO=Ragg+ [(5) + 7t ose] p - owe (524)
Far from the pole of the shell (a=0), the last terms in this /158

operator can be disregarded and, consequently, the deformed and stress-
ed states of the axisymmetrically loaded shell of rotation in zones

quite far from the pole are described by the following second order
differential equation

G =l F=wu=o. (525)

The elastic forces, bending moments and radial movement of the
shell far from the pole are determined by the formulas

L _ Velga | o av
Ql—-ﬁ;v Tl""""'—‘_”' H 1’—-—-—-—‘1-5-'
d
G:”-—Dn‘,‘,%; G, =v,Gy;
Ry av (526)
§=Are= -——h.‘——s-T;-sma.
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Correspondingly, the stressed and deformed states of the shell of
rotation near the pole (a=0) are described by the following differential
equation

di’ { dU P 1
Tt TR =+ E—VE=S U=, (527)
where ‘or
AR
""—",,; : (528)

The elastic forces, bending moments and radial movements of the
shell in the area of the pole are determined through the ctress and
deformation function by the formulas

v, VR, av
Co=gyi Tim =gy Tam—gps

6im =D, (424 22

Gy=—D, (L +vigt): (529)

Rysina 7 dV VR
bmtre S (—vam)-

In accordance with Eq. (523), if a solution of differential Eq.
(525) or (527) 1s found, i.e., if the follcewing complex function of
stresses and deformations is found

U(g)=ReU(z )+1ImU(z), (530)

N

functions ¢ and V are determined by the following expressions

mU@) o _ImU@)

= 2raDy Ry ¢ (531)
VeaReU(L) 4+ ImU L),
\here U+ ImU @)
Vs

VI YR (532)

49, cCcalculation of Axisymmetrically Loaded Shells of Rotation in
Their Coupling Zones

The examples of axisymmetrically loaded shells of rotation most
often found in practice are the bottoms of cvlindrical containers oper-
ating under internal pressure. In chemical containers, a bottom made
up of smoothly Jjoined spherical, conical and toroidal shells is used.
At the Joint sites 17 such shells, local bending stresses and deforma-
tions appear which are described by differential Eq. (525).
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The solution of Eq. (525) which disappears at infinity can be
written in the following form

U-(L';+lC;)¢"'(slnn+leolPl)- (533)

Consequently, the real and imaginary parts

RelU (}) = C,®,—C,®,; (534)
ImU (§) = C, @, +C, Dy,
where 01 (g), L2 (z) are exponential trigonometric functions which

disappear at infinity and are determined by Eq. (463). They are sat-

isifed by Eq. (465), which are very convenient for practical strength
calculations.

In accordance with Eq. (531), we obtain
9= =g (GO 4G, ®y);
7“’.'. - C,[(s*—r2) @, -+ 2rs @, -+ C, [(83—13) Dy— 2rs D). (535)

The elastic forces, bending moments and radial movements of an /160
axisymmetrically loaded shell o. rotation are determined by the follow=-

ing formulas
Qs = Qp4-C, I(s* —r*) D+ 2rs D) +
+ Cyl(s?—r®) D, —2rs D),
G=G,x[Cy(sD,+4r®)—C,(rd,—sd,);
T, —|C|(s5—r3) D, 4 2rs D] +

4 Cy (52— %) Dy —2rs D) ctga Ty
Ty= % (Cyls (3r-- %) By —r (357 — 1) Dy + (536)
+C lr (382 —rt) @+ 5 (3r2 —s*)D,)| R, + T:;

t= 17:.%' (Cy 15 (373 —8%) Dy —r (3s*—r*) By +
+ Cylr (38— ) @, + 5 (3r3—s?) By} sin @ + &

where quantities obtalned according to membrane theory are noted by the
symbol "o." 1In Eq. (535), (536), angular coordinate B is reckoned from
the section where the local stresses are investigated. The upper and

lower signs concern the lower (I) and upper (II) regions of the shell,
respectively (Fig. 70).

We consider a quite "long" shell of rotation, at one end of which
8=0 bending moments Go and thrusts Po are applied (Fig. 71).

For anisotropic shells of rotation in study of the deformed and
stressed states under axisymmetrical loading, the concepts "long" and
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"short," as was pointed out earlier, are not
purely geometrical but, rather, they are de-2
termined by elastic constants of the shell 1<,
k1 or by parameter-sg.

With given thrust Po’ cutting force Qo-
Po sin a and, consequently, integration con-
stants C,, C, are determined through initial /161
parameters Go. Qo by the following expressions

Fig. 70. Diagram of
arbitrary regione of
propagation of end

effects in shell of 2:Go— Qs . (o3 —1%) Go— Qs
rotation. Cim= s Co=—rgm— (537)

Thus, in expressions of the elastic
forces, bending moments and deformations through
the initiel parameters, there are the follow-
ing formulas

Fig. 71. End forces Q1= Go T2 0,40y (0, — L ©,) + Qy;
in shell of rotation. , ®
G,nGu((l),+-’—(D,)-—Q=;’a+G°:
nl
b=tot g2y [Go(rr+ ) (0,— 7 0,) -
"'00(25 ‘1’.—--——":" Q’,)] sina;
T,=R, [Go(f"'f'") (Q’,——:-(D,)—-

—Q, (2'" q,l__.!'—_"‘b,)] +T3

(538)

r

T, = “{Go ) m.+oo(¢1+_:_q),)}ct.¢a+r;';

r

o= = st 6200+ 250,

—Qu (P ++0,)] .

As an example, we consider the problem of caldculation of joining
a cylindrical tank to a spherical bottom. The stressed and deformed
states in the butt zone of the section are determined: in the bottom,
by Eq. (538); in the cylindrical part of the container, by Eq. (492),
with y=0.

We designate all parameters of the cylindrical part of the container
by exponent I and all quantities which relate to the bottom by exponent
II.

From the deformation compatibility condition, the following values
of initial parameters Go’ Po can be found, which determine the forces
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of interaction of the cylindrical part of the container with the bottom:

,('x“'*"u) ['—;;;;—(2":)’”

4 [l:f‘-i-l‘!“ (e+dsina)+

-—p

p."

acosa

—2a8;; cosa | 4 (Afy—Kje)

T AT a| + &, (d—sin a) —kje (dsina) ‘

a(oge+ap sina)cos a4

Go= P 41-: ed + a8y (e+daum)] o ':l sin u-.
2"\ R g =t
+[.(.__,2.L)_+u"qina—-_zri-n-';](d-—:hm) (539)

+"=l (d—-linu)—k:c(d-ﬂinu) '

where 11 1,8
E 8, D kg

—11—- e € —dpm—=d.

In order to decrease the end effects which arise in the butt sec- /162
tions of the containers, it is advisable to make them as smooth and
continuous as possible. Smoothness and continuity are particularly
important in the butt section of a container where the cylindrical part
is Joined to the bottom. However, continuity of the curvature of the
merldian cannot be preserved while ensuring smoothness of the contours
in this section.

In the smoothest and most continuous coupling of the bottom to the
cylindrical part of the container, except for the bending moment in the
butt section, the initial thrusting forces disappear. With sharp
breaks in coupling, they can lead to local ccllapse of the butt section
of the container as a result of loss of stability. Examples of smooth
nonthrust bottoms are ellipsoidal, box and hemispherical bottoms. 1If,
for some reason, a smooth coupling cannot be achieved, the sections
where there 1s a break in continuity should be reinforced with rings.

50, Flattened Laminated Spherical Shell Subjected to Concentrated
Forces Appiied at the Poles

We consider the problem of calculation of a thin laminated spher-
ical shell loaded with concentrated forces at the poles (Fig. 72).

Fer isotropic spherical shells, such studies have been conducted
in [7, 18]. It is evident that laminated spherical shells which are
subjected to concentrated forces do not need to be anisotropic. More
than that, 1f the point of application of the concentrated forces is
not fixed, the most nearly optimum structure of the material is a full /163
strength structure. Just such a case will be considered.

Parameter ¢ 1n Eq. (527), which describe the stressed and deformed

states of axisymmetrically loaded shells of rotation near the pole,
equals unity. Consequently, the basic differential equation of the
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problem under consideration has the form

(541)

U

T+ —[e*+a— 1 VE=&| v =s.

The elastic forces, bending moments
and radial movements of a full strength
spherical shell are determined through the
Fig. 72. Spherical shell stress and deformation functions by the

subjected to concentrated ollowing expressions

forces, v v .
Ql"T¢ Tx"—'T: 7'.-'-';5'.
G=D(FE+vE)s Gm—D(F+viR): (524)

T = (543)

We then cbtain

-l — VT g

@® (544)
Differential Eq. (541) takes the canonical form

A LA !

Il o +(1--€r)u-o. (545)

The 3o0lution of Eq. (545) is written in first order Bessel func-
tions of the first and second kinds

U=C,J, (E)+C,Y, (£). (5L46)
The deformed and stressed states of the shell near the pole are
described by the second term, since they should decrease with increase

in the argument. Consequently, Clso must be set.

By switching ‘o initial argument g, which is the length of an
arc along the mer.: ian, we obtaln

UsC,Y¥, [(r+1s)g], (547)
where 02 is the complex integration constant.

By separating the real and imaginary parts, we obtain /164
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U-(:1'+§t)(ReY.+ile,). (548)
and, consequently RelUe AReY,— B ImY;;
ImU=BReY,+AImY,. (549)

In accordance with Eq. (531), the deformation and stress functions
are determined by the expressions

o= _AlmY,+BRei,
2rsD '
V-Z(BeY,-}-fz_".‘.'.’.[myl)__ (550)

- E(Im Yn“-'-’é:—'.- Re Y,) .

or, after introduction of new constants

g —AImY +BReY,,
DR '
V=A2rsReY,+(s*—r?) Im Y,}— (551)
—Bi2rsIm Y, —(s*—r?) Re Y,).

We find integration constants A, B from the boundary conditions
at the pole of the shell, namely, in the limit as z+0, the following
conditions should be satisfiled

¢=0;  2mgV=-PR. (552)
Since Yx(z),..o%—--%.l' we obtain
z
RBY,;*O=-—--5%;—;—; InlYlC-‘O=‘,1_i:—§.' (553)

By substituting Eq. (553) in boundary conditions (552), we obtailn

R (554)
= PR | PR
A=22. B=2>.

‘Thus, the deformation and stress functions take the following
final form

9= —zop (SReY,+rImY,);

Vo ZER ((ReY,—rlmY)). (555)
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For a full strength spherical shell near the pole, according to /165

Eq. (509), ’
by (v L),
u v o dv 6
‘.."+"’"7:"5("';"‘W)- (556)

By subtracting the second equation from the first, we obtain

e e s -rw e

. du Mo {+v /dV 14
da @ Ed (71'0_ a)

(557)

Consequently, the movement of points along the meridian and the
deflection of the shell are determined by the following formulas

il sm

+v V.
o ] (558)
R (dv | ¥ 55
u’-—--ﬁ(?-;— T).

The following rule of differentiation of a Bessel function must be
taken into account in determining the forces and movements:

m ¥ (559)

3

: ReY
T}E(Reyl) =rReY,—slm }'l,————--eb ! . ]

Td‘-(lm Y,)=sRe¥Y,+rlmY,—

The deflection of the shell at the point of anplication of the
concentrated force

PR R?
l’————-—.::—.::lm}" .
v /.Ebrkl...m‘ 0 (560)

The elastic forces and moments which arise in the shell are de-
termined by the expressions

Q1= (sRe¥, ~rImY,);
Cym e {2)‘3 Re Yy— (s>~ %) Im ¥, —
- 1:\; [sReY,-f—rlel]}; (561)
Ty= S (sReY,—rlmy) L P 1,
Ty=LPR [mm Yo+-’&-(s ReY,—rImY,)]+
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For an axisymmetrically .oaded orthotropic shell of rotation, /166
differential Eq. (527) near the pole can be reduced to canonical form
by the same substitution as for a spherical shell

T (1—f)U=o. (562)

The solution of this equation 1s expressed through Bessel functions
of the first and second kinds of order n=c, which is determined by the
type of pole of the shell and the nature of the anisotropy.

The solution of differential Eq. (562) which decreases with in-
crease in the argument of g has the form

U-czYn[(r+si)c]. (563)

51. Calculation of Temperature Compensated Pipe

For compensation of temperature deformation of long cylindr.cal
pilpes whichi operate under uniform internal or external pressure, small
annular toroidal corrugations are made very often (Fig. 73).

Within one corrugation, a,gagm-a . We will

/ assume the radius of curvature of the corruga-
tion to be smaller than the pipe radius, and
shell thickness § to be smaller than corruga-

tion radius p.
P

The cross section radius of the corrugated
portion

\

Fig. 73. Pipe with - _
external corrugations. r=R+p (sina-sina,).  (564)

According to Eq. (504), (505). in axisymmetric loading, the elas-
tic forces and moments are connected with the deformed state of the
shell by the following expressions

Tx":Bl(“ +w+ ’ucosu«rwslnu);

T m==B’(ucosut-{'-wainu +\" u'

+
¢
G, r---D,(—-——-f—\’ Wcosn)'
Gy= —D, (m+\',l)

Q
Qx‘““‘Kx(‘P+ ry “)

(565)

¥
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We present the forces, bending noments and movements

of expansions by small parameter p/R

in the form /167

(566)

In accordance with Eq. (565), the coefficients of the expansion

are determined by the following expressions

" B ’ n-{ .

T(i )- '—Q“' [un"}‘w"’i'vaz(-—")u-l-' b 4

J=0
X (4 cos a +w;sin a)] s

'™ B, ’ "‘—ﬂ’ n-j~1

=7 Vﬂ("n+wn)+jao(‘ﬂ) X
K (u, cosa—{-w,sinu)];

On = ““'%“' (Q‘Pn + w;'l"-un);

(n) D ! N '
6{" = -—Q.—_.'{<n.+~-=cosaj>.(.. (=" w]:
n-1{

{n) D ', g i
G2" == '5';"["1‘3"\'1”3050 )_;0("'71)" ! ’Q‘j]

I

for n=0, 1, 2, 3, . . ., where

nxsina-sinao.

A

(567)
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By substituting Eq. (567) in the equilibrium equations, we obtain

(rTy) —TyQcosa—Qyr=0;
(r@) + Ty +Tyesina=pro; (569)
(rG,) —G,ocosa—Q,r=0;

a recurrent sequence of systems o differential equations can be ob-
tained for solution of the problem considered.

For n=0,
dre
a =0
dQy
LT =po; (570)
dG*
=00 =
For n2zl,

dr? S nejet () __ pl)
_‘T&.__(),.=-cosal:,0(—"l) (r’—=13);

n-1{
d \ —f1y ;
B TP == X (="' (Qscos a+ 79 sin a);
da i ’

dG(") _ n-1{ . .
———0Qn=—cosa X (="’ (6}’ ~GY"). (571)
i=o

The deformed state of the shell is determined by solutions of the
following differential equations

n-t

't Amy -jo
o e =gy O —vecosa 2 (—n)™""g; (572)

L

. ’ ’ ’
uy + wy, == ’b% T(’")—-T\%- Qn—Q(Pn b

n-1{
N
=0 (=)

n-jwi

(ujcosa-+wjsin a); (573)

—-\'2
, n-t , u
u,\r:—;(,l-T(,")— Uty —Vy ‘\_0(—11)"”" (ujcosa-+w;sina) (574)

-

21 7=

for n=0, 1, 2, /169

There are di{fsrential equations of the (573) type for determina-
tion of forces T, nj), Q, and, since integration of Eg. (572), (574)

presents no fundamental difficulties, the problem of calculation of
cylindrical pipes with transverse corrugations is reduced to the solu-
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tion of second order differential equationt of the type

y'+y=f(a). (575)

If the right side of Eq. (575) is presented in the form of the
expansion in trigonometric series

f(a)= io({lmcosrna-j-lim sinma), (576)
where x a
.4m--j-':-6fj(u)cosmadn; Bm-%jl(a)sinmadu; (577)

the general solution of differential Eq. (575) is in the form

y(a)u=C,cosa+C,sina+Ao-}—n(AleinanB‘cosa)-- (578)
—\‘( T CoSmat —— , ‘slnma)

m==2

In the general case, the sclution of Eq. (575) can be written in
the form

y(a)=C,cosa-C, sina+

" ~mufj\,)c0~ d-mcomcf/(a)unede (579)

An advantage of the proposed method of
calculation 1s tha! all the relationships
obtained remain valid for negative curvature /170
corrugations (Fig. T4), if the sign of p is
changed.

e vt &

In particular, compensators with cor-
rugation cf alternating sign curvature which
are continuously and smoothly Jjoined together
Fig. 74. Pipe with in- can be considered. In this case, 1t 1s not
ward corrugations. strictly possible to speak of pipe with

corrugations, since such shells are more 1like
bellows. However, in view of the absence of annular or conical springs,
the rigidity of sgch degenerate bellows will be very substantial, ap-
proximately (R/p)> times greater than the rigidity of conventional
noncompacted bellows.

52. Thermoelastic Stresses Generated in Orthotropic Shells of Rotation
by Axisymmetric Heating

In the use of shells made of laminated plastics, it must be kept
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in mind that, at comparatively low temperatures, the change in thermo-
physical properties of the material must be-taken into account. This

is the basic difference of heat problems for laminated anisotropic
shells from the corresponding problems for isotropic metal shells, which
usually are solved on the assumption that the elastic constants are in-
dependent of temperature.

We suppose that axisymmetric heating of a shell of rotation
occurs to a temperature at which the Duhamel-Neumann thermoelastic
hypothesis remains valid, and that the creep of the material can be
disregarded. With such assumptions, problems were solved in [10] with-
out taking interlayer shearing into account.

We will assume that the shell material is orthotropic and that the
principal axes of anisotropy coincide with the lines of curvature of
the mean surface of the shell, 1.e., they coincide with the coordinate
directions at each point of the surface. Since, in an orthotropic
shell under tensior and compression in the principal directions of
anisotropy, the latter remain the principal axes of anisotropy, we will
consider that heating does not distort the angles between the axes of
elastic symmetry of the material.

If the standard thermoelastic hypotheses which established the
connection of the thermoelastic stresses with deformations are retain-
ed, the relationship of elasticity in heatiug to temperature t can be
written in the form

o v .
e‘—_—.-E‘-l---—E!'-o,-{-a,t,

(580)

L . | .
o= F— it at,

where €y e, are the components of the total deformation; a,, a, are

the coefficlents of linear expansion of the material in the axlial and
annular directions.

~N
[
ﬂ
[

Elasticity relationships (580) can be presented for the stress
components in the following form

0y = eyt Crea— P 13 }

0y =:Cya€y -+ Caofs—Pa l, (581)
where en=Ey; cyu=Ey 3=V E =v E,,
By == € (@1 + vagy); J (582)
Ba = ta (a3 + v1a,).
In Eq. (580), (581), thermoelastic "constants" E;s E5y Vys vy,

Cy1s C1ps Cpps ®ys ns Bys Bp depend on shell temperature t=t(gz, z),
i.e., in the general case, they are functions of coordinates (¢, z).

By virtue of the rectilinear elements hypothesis, according to
Eq. (1),
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Oy == Cyy &+ €13 8y + 5 (24 %} +‘-'n":)"'p| H
a, = ¢y 83+ Cp &y 2 (C1y %} + Cgs ":)—ﬂ.'-

By reducing stresses (583) to the statically equivalent system of

(583)

elastic forces and moments, we obtain the basic relationships which con-
nect the deformed, stressed state of a laminated orthotropic shell

T,=B,()e,+ By (P)eg+ 4, (3) ": +A45(8) ":—Nl {41
Ti=B,y(U)ey+ By Q) S+ A, (3) % + A3 () *y—N, (8);

G,= — [An(t)e.+-4u(t) e+ Dy (8) % +
+ Dy (3) 13—, (3)];
Gy= — [A1a (V) &1+ gy (3) g+ Dya (3) x° +
where +Du () 6~ M, Q)

6/3
Bi(})= 6{ i (L, 2) dz;
-8/2
6/2
AuE)= [ eyl 2)zds;
-0/2
82
Dy ()= of ¢y (L, 2)20ds
-08/2
for 1, J'lnz; ’ J

[
N of Bi (v, 2) (3, 2) dz;

62
My= [ Bk 2)t(L2)zdz
for j=1, 2. o

By solving Eq. (584) for the deformation components and by substituting

the resulting values in Eq. (585), we obtain

B“ av _”gg i'(‘lga

Q=N 93 R, — Py —Fyy%+
+ B".\’|ZB.,.~', :
4 BB
G, = — Dy x;—Dyy %, + Fyy rc,;fu + Fy %“’”‘Ml (+)i
Gy= = Dy ;= Dy %4 Fia L38% + Foa T2+ M (),

where

|

(584)

(586)

(586)

(586)

(587)
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A = B, Byy—B,,;
F.l - I‘"”!!’A‘A|la|! ; Fl'- A'!B!!;Alln.. ;

Fpy e 4|;Bu;‘4n5q i Fu= -“nﬂnl';ﬁunlg .

A'B +Maﬁ;u"ﬂp
D,,-D"- 19 ) 1] i )

— 'p . —24_A B
Dy = Dy~ __1”1;'*"‘-:”]&1 2 M e T Y (588)

B e Dy ol )8 (At )
T’l (t) = M. (;)-—F"N'-—-F"A";

My (3) = My (})—FisN, —FyN,.

For determination of the stress and deformation functions, two
equations remained unused: the continuity of deformation equatior and /17:
one equilibrium Eq. (506):

R, ’
(337‘.""":)‘3‘8“'+' (’h"z)"—‘—f‘ja"“ﬂ

d(GR
{ ldz"nu)_c'cosam‘ sina,

(589)

Since the system of equations which is obtained after substituting
Eq. (587) in Eq. (589) hardly seems suitable for practical calculations,
it is more advisable to find a partial solution by one of the avallable
approximate methods. In this case, terms dependent on Ni’ Mi (1=1, 2)

appear as the heat load. Solution of the homogeneous system of equa-
tions can be obtained approximately, based on the technical equations
of axisymmetrically loaded shells of rotation [14].

We consider the case of axisymmetric quite smoothly changing heat
with length, in which the thermoelastic constants change considerably
more slowly than the stress and deformation functions. Then, by ob-
taining the equations, the coefficients dependent on the thermoelastic
constants and shell geometry can be considered constant and correspond-
ing to the shell section under consideration. Beslides, lower order
derivatives can be disregarded compared with higher order derivatives.

With such assumptions, system of Eq. (589) takes the form

dey o __V _ _ 9.

a K‘R: Ry’ l
dG, ____V_ ‘ (590)
d;, R’

and Eq. (587), (588) are simplified:
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_ (591)
G~ -—D“%%-+F“-%|£-.

By substituting the latter expressions in Eq. (590), the follow-
ing can be obtained

’“ v

VY20 Ve 4BV =0, (592)
¢=3.

where
Dy, A
3

K R. (B!lbll+ F. A) ;

203 =

k=

("..T)..+ FLA)Ry (593)

Differential Eq. (592) is analogous to Eq. (459), which describes /174
the end effects in a laminated cylindrical shell and, consequently,
its solution, which disappears at infinity,

V-C1¢1(;)+Czo2(;). (594)

where ¢,, %, are degenerate Vlasov functions satisfied by Eq. (465).

For each section where the thermal end effect is8 investigated, the

corresponding values of integration constants Cl’ 02 are used. The
boundary conditions are written for a general solution, i.e., for the
solution of Eq. (594) and some partial solution of nonhomogeneous sys-

tem of Eq. (587) and (589).

The problem of calculation of the temperature stresses in axisym-
metrically heated shells of rotation is significantly simplified in two
cases frequently encountered in practice.

1. The thermoelastlic constants do not change upon heating.
this case, basic relationships (585 and (585) take the form

Ty=Bye,+B,eg—N,;
Ty= 816+ Byye,—Ny;
Gn"“Dn"l -D, ”l'*‘“lv
G,=~-D,, ul-D" %y 4 M,

(£95)

i.e., we have the conventional problem of an orthotropic shell in the
presence of an axisymmetric heat load, which 1s characterized by param-
eters N,, Mi (1=1, 2).
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2. Uniform heating of shell. In uniform axisymmetric heating of
a shell of rotation, e elastic constants and coefficients of linear
expansion of the material change. However, they remain constant at the

corresponding shell temperature, In this case, the basic elasticity
relationships take the following form:

T,=Be,+BVe —p,0¢;

13
nunwh+83g—moq
G, = —D{J %] — D x?;
6, = =D xi—DY %,

(596)

where exponent t indicates that the rigidity coefficients for temperature
t are uged, 1.e., we again approach the conventional problem for an or-
thotropic shell with an extremely simple axisymmetric Leat load.
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CHAPTER 11. CIRCULAR ANISOTROPIC CYLINDRICAL SHELLS

g}. Basic Reletionships and Differential Equations of Anisotropic
ylindrica eIl

We consider a circular cylindrical shell made of a laminated /175
anisotropic plastic with elastic constants ciJ' aiJ’

uet R be the cross section radius of the shell and § be the wall
thickness. We select dimensionless orthogonal coordinates a, 8 as the
curvilinear Gaussian coordinates on the mean surface of the shell, of
which a defines the relative distance along the generatrix of the shell
and B defines the circumferential angle (Fig. 75).

For convenience, we choose the Lame parai-

1 eters to be the same and equal to the shell
fa,p) radius, i.e., Al-Az-R. The principal radii of
“O
(] curvature of the mean surface of the circular
y cylindrical shell are R,+=; R,=R.

In the coordinate system selected, equi-
librium Eq. (17) of a circular cylindrical
shell are presented in the form

ar 28 .
Fig. 75. Dimensionless "EL'*'T@F"—RX'
coordinates on surface 0T, . oS
of cylindrical shell. T e —C=—RY;
00, , 00 .
W*-+—¢+T,-RZ. (597)
aG, | ol . i
v T =Res |
aGe . oM
-;'—3-+'7,‘-;~“'~’ RQ,. l

The positive directions of the forces and moments in normal sec- /176
tions of the shell are shown in Fig. 1.

The components of the relative deformation and shear of the mean
surface of a circular cylindrical shell, the effective changes in curva-
ture and torsion, as well as the interlayer shearing alongz the coordi-
nate axes, in accordance with Eq. (10)-(12), are determined by the fol-
lowing expressions

f ou, 4 (O )
Oy = o= t2“7(0n+l">v

-5 o (598)
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By substituting the values of €1s €5y Oy xle, xze, x3e, Yy» Y5 in

Eq. (3)=(5), we obtain the basic elasticity relationships of a circular
anisotropic cylindrical shell

im0 )40 ()]
Tymr [Bu S+ B (35 +2) +Ba (55 + 5)):
Sm [Bige+Bu( g5 +w)+Bu(F+ 5 )
Or=— %(Rv+-:-:; ;
Qg —-’7";1 (R v+-’;‘i——v):
Gom = [Du e+ DS+ Du (G +52)) ¢
Gym — o [Du 3T + D B+ Du (55 + 55 )]
H=— 4 [Duge + D g3 +Ds (S5 +4x)-

———

(599)

Shell rigidity parameters BiJ’ Dij (1, J=1, 2, 3), Ky» K, are de-

termined through the elastic constants ~f the material and the thick-
ness of the shell by Eq. (6), (7).

By substituting elasticity relationships (599) in equilibrium Eq. /177
(597), we obtain the following system of differential equations of a
cylindrical anisotropic shell in movements

Byt O130 4 83 + 8¢ + 8,59 = —R*X;

Biati 8030+ Byqt i Oy + Bgg§ = —REY;

Qg el Bya v+ Oy w80 -+ 834 = RPZ; (600)
Opq 4 - O v+ & w4 0 + 869 = 0;

Ot 80 Oag 0+ B35 - 855 == 0,

where designations are introduced for linear differential operators Gid
in partial derivatives up to the second order:

9? gt )
8y == By, 7,7;."{*'28:3",73[‘*'8&75}' :

a3 2t at
Ma: By Gav +(Byy + Bs) Gaop + By P '
a
85 = Blzifﬁ*‘nu?p';

(601)
%‘Bﬂ%‘*‘ZB”;%’*‘B’,':‘;T—K:;

9 N [
0::"”1:7;'*‘"’:1'*’":’553

£ a1
6”=-= — (K,-;;-;-F K'W.—B“);
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. -

Oy = -'K'R‘!";
Oy = — KR -;,ob ;
By = Kyl
0140y = 84y = 0;
601
6“-0,.3%+2D..1§g-+0-3¥r~ K,R*, (601)

s o
0y =~ Dn:z‘:‘r-ﬁ(ou'i-pn)-;%r—i-ﬂuw ;

By o.%,+zo“.o;‘%r+p,,_d%;._x,m.

System of differential Eq. (600) relative to linear differential
operators 6iJ is symmetrical. This property of symmetry of the differ=-

ential equations irn movements of isotropic and anisotropic shells was
noted in [1, 4].

System of Eq. (600) can te reduced to one resolving differential /178

2quation of the tenth order relative to stress functions ¢ (a, B),
through which all quantities whicen define the stressed and deformed
states of the shell can be expressed.

We will consider system of &iffecrential Eq. (600) as a complete
system of algebraic equations relative to movement components u, v, w
and deformation functions ¢, ¥, with constant coefficiente 513. The

determinant of this system of equations

0 &, 84 0 O
8 63 b8 O &,
Qe Oy Oy 8y by Oy [=0,A,+ 84,1 1y, (6C2)
0 0 & O 8
0 O O O O

is a differential operator in partial derivatives up to the tenth order,
with coefficients dependent on BiJ’ DiJ’ K1~ K2.

We designate the minors of the determinant, which also are differ-
ential operators in partial derivatives by AiJ (1, 3=1, 2, 3).

Thus, for example

O, O; O, O (603)
Au=] B 2 T e 88 00eB5 + 205854055008 —

O Om Oy Oy
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= 0,130 0100 — 030 O0aDt — OpgDaB5s — B 4405053 — 20,30,,0540,; +

o 28,,0,,0548 0 + 033005 — 8530, 03 — 02 Ose;

by b O 8
p| B 0w b b
0 04 04 Ou

o 0,,0,85 -+ 0,38,,05, + 8,,04,05 +

+ 6,.0,, 6“6“ + 0,.6"6“6‘, - 6,,6,,,6“6“ - 26“6“6“6“ -

and the like.

We will seek a solution of syctem of Eq.
following linear combination of functlons Fl’ Fz, F3, Fu, FS:

-0,.6..6,.6“—6,,6,,6:,;

Ba=l 0 0 b b4
Ov 625 6“ 6';

—8.8.8.8,—0.0 6:,—-6‘,6“6“6"+6,,b..b:,+6,,6,,6:,;

12726V asV ¢4 13723

8 8y 8 Ou

83 8y O3 Oy
0 0 8 G4
0 0, On Oss

AH=_

+ 833852054055 + 013029025845 — 012025034045 — 853039530848 —

- 6“6“6:. —0,,85.0,00:

6!3 623 633 0

A O 0,3 Oy On
1 0 0 &, O
0 8 &y da

-8,,0,58200 44— 01205503, — 01305503044 — 815043854043 —

_613“286256“ + 6136336356“

U=A8nF 1+ ApFy+ A1 F s+ 804 F o+ Ay Fsi
V= ApgF) + ApFy 4 BggFs - Ay F g+ AgsF;
W= AyoF)y - AgyF g+ DgyF s+ DguF g+ AgslFs;
Qo Ayl B Fy+ BgiFy+ ByoF s + AipFs;
V=20,.F 4 8gsF s+ ByuFy -+ Ao o+ AgiFs.

- 0,,6,,6“6“ + 6,,6,,6,.6“—-

o= 8,8050540 35 + 83025000048 +

= bnbzao:ubu +

(603)

(604)

(605)

(606)

(607)
/179

(600) in the form of the

(608)

By substituting Eq. (608) in system of Eq. (600), the latter can
be reduced to the following canonical form
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AF' - —-R’X;
AF, = R'Z; (509)
AF = AF, = 0.

Thus, the problem of calculation of a circular cylindrical shell
was reduced to solution of a nonhomogeneous differential equation in
partial derivatives of the tenth order.

If any partial solution of system of Eq. (609) 1s designated Fl“, /180

Fa“, 3*, the partial solution of system of Eq. (600) can be written
in the form

ug e Ay F, +A“F'+A,3F'7
Uy = AugF, 4 AgyFl + AysFl:

Wy = Ay + AgeFs + AgFl: (610)
Go = A"F: + ANF; + Aoy
Vo = AnF) 4 Ak i AF;.

For the types of external surtace load most frequently encountered
in englneering practice, 1t 1is simpler to determine a partial solution
directly from the solution of system of Eq. (600).

The general solution of system of Eq. (609) equals the sum of
partial solution (610) or a solution found by another method and a solu-
tion of the homogeneous equation

AF=0. (611)

If 1t 1s set that FllF and F2-F3=FM-F5-O, the general solution of
system of Eq. (600) is presented in the form

U= u, -+ AL F, l

V=g -+ ALF,

wewy+ApF; (612)
¢ =@y AnF; l

V= Yy +AnF.

54, Equations of Technical Theory of Orthotropic Cylindrical Shell

The theory of flattened shells developed by V.Z. Vlasov, which is
used for calculation of strength, stability and vibrations has become
widespread in engineerine practice [14]. This theory rests on certain
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assumptiors which permit sigrnificant simplification of the differential
equations of general moment theory.

Following Vlasov, we will assume¢

1. annular interlayer shearing Yo depends negligibly on
annular movements v;

2. 1in the equations of equilibrium of annular forces, cutting
force Q2 can be disregarded.

Based on these hypotheses, for a circular orthotropic cylindrical
shell, the principal axes of anisotropy of which coincide with the a, 8 /181
coordinate axes (see Fig. 75), we obtain the equilibrium equatlons

I 2 —RX;
f%ﬁ4.%§==__ny; (613)
84 T+ Ta= RE;
Gat o = 1y (614)

8G, | M
5+ 5a = Qs

Geometric relationships:

u?=%}3% x}a; i;, f’%?(%L*“2§)' (615)
e R AL &
Elasticity relationshlps:
0 —Ki (04 55);
Q.= ——K,(¢+-11‘_%‘é‘.); (616)
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G- B (eudt) | »
”“-%C%+%)’ (616)

where rigidity parameters Bl. 82, B3, Dl’ D2, D3, Kl’ K2 are determined

through elastic constants ciJ of the material and shell thickness § by
Ea. (7), (27).

Homogeneous Eq. (613) are identically satisfied, if stress func- /18
tion ¢ (a, B) is introduced in accordance with the expressions
‘"« P
e o oo Se ot (617)

By substituting Eq. (616) in equilibrium Eq. (614), we obtain

D.%}';—-w,%g’--;-cﬁi’ﬁ = KR (9 + 4 5=)

(618)
o.q, 0";, ai(p 1 duw .

Dy 55+ D, W+~CW=K2R’(¢+"}}"T;‘) '

PP . 6@ 6¢ ) . Ay b L)

Gar = K1 5g + K g+ (Ky G + Ko g )+ RZ. (619)

The last missing equation gives the deformation compatibility condi-
tion

ot o 0%, 1 %
o~ daap T e = (620)

System of Eq. (618) is equivalent to the following system of differ-
ential equations

DK, 3w DK, —CK o K\Ky o
m’((p)=::_‘4_+(=l ) 1Ky

T i Gaop*  H da’ (621)
D,K, & D\K,—CK,) & KK, % 021
m.('P)-—;—,;ﬁgﬁ--i-( 4 ’R' L oaslgp - ';1. RO

where there is introduced the differential operator in partial derivatives

0.0y ot . (BDFDI-CY) o
Ma( )= —p Gav R o

DDy 0 (DiKy+DyKy o1 _ (DiKyt DKy 8 L pop
+ 153, -—-——._«-—F‘——__ 35 + .Y
R 05‘ R? dal B (622)
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From Eq. (620), with Eq. (617) taken into account, an expression
for deflection of the shell can be obtained through-the stress function

Bl(BIBO—B: )

+(BAB|+B:—A')'§$%F+B:BI ‘0“? [ (623)
where
A= B B,,
13+ B (621)
or, in operator form
W == m, (D), (625)
and here, /
n ( ):z—-____li.._. »
) 1 u&ngn-n&) ) (626)
x [Bllilm'+'(ﬂ‘ni+1';—/1')m +B.B.ﬁ—‘-] R

In this manner, the system of differential equations of the lami-
nated orthotropic cylindrical shell has the form

A DKy P | DK —CK, 0w KKy Ou\,
my (¢) - (""}}5"‘ Py + 70 oadpt — "R Tﬂ;) '
N DRy e DK, —~CK, KKy ouw \ |
My (ll)-=( I:;” op? + = zlu‘“ . da? off - |!.’= _05.) ! (627 )
ab K, o K, 0 . og oy .
T (T a5 ) ™ @)+ K5 Ky g R

w = m, ().

System of Eq. (627) can be reduced to one resolving equation rela-
tive to stress functions ¢(a, B)

o . a2 . 2
Tn—‘—‘-"l,(q))z-i"-(l\l rre + K, :,)m,m,(ﬂ))-{—
. 9 . @
+ Kigg a (§)+ Ky 55 my (§) + By (2). (628)
We represent operator m, in the form of the sum of operators

where my()=mi’()—m¥ ( )+ KK, (629)
. m$! ( )=-,—:T X

X [D,Dy o+ (DD + D3~ €*) 52 + D:Da g | &

m§) () = g X (630)

x [(D1Ky+ DK ) g+ (Do + DK 5] -
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Consequently, Eq. (628) is presented in the form
(0 o -
—-'-'"' (KC o 1+ K2 7,3-‘) mym (@) +

+£"[;A;L(Kl ET'*‘ Kl'SFI') m, (®)— %m&”(@)-{-

b . 6D

- o mE () — K K2 o +

oat

+ A [1) Ky e+ (DyKy — CK) 5o w]m (®)—

KK,
n ou"

n“(d»-f “,[D A,dw 4 (D, Kg— Ch;)mﬂaﬁil X

% my (D) — f—l—?— -‘%‘- my (D) =- —Rmy(Z), (631)

or, after reduction,

$ /e K,
77(“'6@ + K 5pw

a' mi! LTI (D
_— (D) — =55 mam () +

)m m (D) —

+ ?TZT my (Q’)—l\',l\',% = --Rmy (Z), (632)
where
{ d.
m‘~.»”-=[ o +2(C+D) au*aﬁ-‘ *’D“W}° (633)

In developed form, differential Eq. (632) has the form

*

P Ao N
AIOO Bao + 48"'—1793?'*“‘466 d(l‘dﬁ‘
P FILT) o Pt
Ao T 2.8 Garopv Javopy T Ava0 T )—
g L] asd
“‘(AB 0 Tar 0 +A6 2 dﬂ‘dﬁ‘ —+ 4§ § 9at "B‘ =y

084 P
+ Az.6 53755 a:“:ﬁc’*""os oﬁ:)+4 20 Tga® v T

(634)

t 8‘(1)
+ Aoz ‘,3‘ aps -‘loo-;,—-;-——-,\lma(Z),
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where the coefficients are determined through the rigidity parameters /185
of the shell by the following expressions

Avo,0=B1B3D\D K y;
Ag2=K;B\BysD\D3s + K, | BBy (DD, + D3—C*) +
+ DDy (ByB; + Bi— A%))];
Aga = Ky [BiByDyDy + ByByD\Dy + (Dy Dy + D3 —C?) x
X (B1By+ B§—A*)| + K, [B,B, (DD, + D§—C?) +
+ DDy (B(B; + Bf — A%));
Avo= Ky {B\B3D;Ds + B:BsDy Dy +
+ (DD, + D§—C*) (BB, + B3 — 4°)] +
+ Ky [B2By (D1Dy 4+ D§—C*) + D, D, (B, By + Bj— 4%));
Azs = KyByBsD:Ds + K [ByBs (D4 D, + D§—C*) +
+ DDy (BB + Bi— £#*)];
Ag,10 =~ B:B3D,D;3K ,;
As,0 = ByB3D K (K;R* + ByD D3 ( By By— Bi»);
Ag2 = K\K,R* [Dy (B(B; + Bj— A%) + 2R By(C+ D)) +
+ B3 (B\B;— Bi,)(D,Dy 4 D} —C?);
A=K (K,;R* |B\B;D;y + B:B3D, +
+2(C--Dy) (ByBy+ B3 — A%)| + BsD.Dy ( By Bo— B3, );
Az =K \K:R* (D, (BB + B — A*) +
+2B:By (C + Dy)];
Ao s =Ba2B3D.K (KR,
Az = By (B B,—Bi,) R* (DK, + D;K,);
Aoz =By (BB, —Bi. R* (D:K - DyK.);
Ay = B; (3132—"3:1::) Kvxzn‘;
M=DBy(B,B,—B.) R,

(635)

55. Equations of Technical Theory of Orthotropic Shell in Movements

The equations of the technical theory of a cylindrical shell can
be presented in movements, as was done in Section 53 for the general
case of anlisotropy.

For an orthotropic shell, the principal axes of anisotropy of /186

which coincide with the coordinate axes, the equations in movements
can be presented in thre form
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At 4 8y 0+ 83w + 8, @+ Oy = — RX;

O3t + Byg U+ 8 -+ 8y + 853 == — RPY;

03U + gy v+ Bpq 1 4 83,9 + 8534 = RIZ; (636)
Ot a0+ 05 w0+ 8@+ 8059 = 0;

8t 05 v+ O3 10 - 00 - O3ap = 0,

where the linear differential operators are determined by the expres-
sions

o2 93
Op =By 5+ Ba'a'ﬁa' ;
a
84y = (Bya + Ba) 5o ap

ot ot
6::“83‘3“,7"'31'557?
0

0“==B,="7“";
/]
O“BB’W;
a , o1 .
6,,::-—-(1(.@"*"‘:(,7&' "Bt)' (637)
o"“": -‘K'R%;
8y —KyR 5

Pt a1
6“ = Dl 7“-; - DSW—KIR:;
i1
bus = (Dia+Dy) 50+
F1 ]
655 =] DaT«F +D,—;%—,——K‘R’;

bla =2 6‘5 == 6" = 6.3 - On

—

If any partial solution of system of Eq. (636) 1s designated by
Uys Vg Wy, 4, Vy, the general solution can be presented in the follow-

ing form:

umu,+ 4,0,

v=v,+4,0;

w=w,+ 0,3 D; (638)
P =@q+4,P; l

P = Yo+ A"‘Do

~
[
[@ o)
-3

where AiJ (J=1, 2, 3, 4, 5) 1s determined by the expressions
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Ay = —B3D, DK, 25 — (K, [B,(D,Dy—C* 4 D))+ B,D, D, +
+ K,B,D,D,) T%E"‘ (K, [B,D,D, + B, (D.D,-,-D:—c')] +
+ K, (B,D,Dy+ By (D,D, + D} —C")]) W |K,B,D,D, +

+ Ky [BsD\Dy 4 By (DD, + Dy— )] | g — BuDyDsKy 55 +
+ ByD, (ByD, + K, K R?) -2 —-; + {B,B,(D. g 4-D)—C') +
+ K, K,R*{B,D, + 2B, (C + D;))} m ' | ByByDy Dy +
+ KK R | ByDy + 2B, (C + Dy))i~

= dp, + BDyK KR g —
—B,B,R* (DK, + DyK, )——-—-—B,B,R' (l\’ Ds+ KiDy) s +
| + ByByK, KR 2 ' (639)
Ay~ AD D,K,—-—%—ﬁ--{-zi (K, (D,D,+ D}~ C*) 4 K,D,D,) -50%+
+A K, D,D,+I\,(D,D,+D C')]—,—&-B-.-+AD,D, ""70‘6’"

—(ByByD, D3 + AD,K, — [B,8, (DD, + D, —C") +

a'dp
+24 (C + Dy K,K4R?| m—(B,B,D Dy+ AD,K x.n-)TgF +
+ By ByR*(KyD, + K, Dy) -5 ,05 + B,BsR* (K, D, + K\ Dy) - ,, 3

‘ y
——BB,I\I\R-——T‘" (640)
Als <2 "”uBaD D,~——--——[H,,B,(D, *‘D' C')"‘

—B,ByD\D,] ,dp, =557 — | By B,(D D,+D;—C') +
+ By, ByD, ;| —T;a-ﬁu B,ByD,D, ap, + BysBy (KD, + K,D,) R*x
X = ByR? (K, (ByDy— ByyD,) + K y(ByD, — B,,D,)l e —
—B,B,R* (KD, + K, D,)»W—B,,B,Ix KR -2 +
+ ByB,K | K,R* 7;557 :

(641)
Mur =BiBDoK R o & ByRK, (ByDy— By D) = BiyCK )
,\ -,-;—’33,-5-4 Byl (DK — CK,) goioge -+ Bia By Ko R
P
BaioR R S (642)
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Alb - l’ ’”’(K C ""'K:Dl) I‘ 0" ‘;;‘T ""-B’R lKll}:(:“"K’ X

oa

X (Bcnn"BuD:)l—'i—""dp: + B.:BQA K,R “‘i‘a“a'

and function ¢ is the solution of the homogeneous differential equation /188
of the tenth order A¢=0.

The elastic forces and moments are determined by Eq. (616). Ten
random integration constants Ci (4=1, 2, . . ., 10) are determined from

boundary conditions of the type of (22), (23), of which five are at
each end of the shell. If a partial solution must be found, in accorc=-
ance with Eq. (609), the nonhomogeneoua equation has the form

A¢=R Z. (64l)

56. A Few Words on Integration of Equations of Technical Theory of
Orthotropic Cylindrical Shell

The differential equations obtained in the preceding section can
be used for solution of various engineering problems associated with
the calculation of orthotropic laminated cylindrical shells.

It 1s convenlient to present the integrals of resolving homogeneous
Eq. (644) in the form of trigonometric series by coordinates a or B8,
depending on whether the shell is open or closed.

We begin with consideration of a closed cylindrical shell. We
willl seek resolving function ¢ in the form

O(a,p)= SE (O cosnp+ P sinnpl, (AlUK)
n==0

(1)

where coef'ficlients °n y @

(2)

n are functions of longitudinal coordinste

o alone.

By substituting Eq. (645) in homogeneous differential Eq. (634), /189
we obtain

"\‘ol\,.m»“’)menHA (D) sinnp] -0, (646)

where differential operator An is determined from the expression
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An= Ayo,0 —:-:-:7‘?-—-(43.:"’-% Ag.0) 4::—?.-1 +

+(Agn' + Ag,n* + “"-’0) %‘Tg‘”
— (A on®+ A an® + Aoan® + o) Tt +

+n® (Az,en® 4 Aze) %",i?-—n‘(Ao.wn’-m..)m. (647)

Coet‘f‘iciem:sls.i.j are determined by the geometric dimensions of the
shell and the elastic constants of the material by Eq. (635).

In order to satisfy Eq. (645), the solution of ordinary differ-
ential equation with constant coefficients

An(as)-o (648)

(1) (2)
0n ’ °n
After finding resolving function ¢, components of movement u, v,

w and deformation functions ¢, ¥ are determined by Eq. (638), and the
elastic forces and moments by Eq. (616).

must be used as functions

It is easy to determine that all the quantitles listed are de-
termined by equations of the type of (646), i.e., they are the sum of
two states, one of which is symmetrical relative to initial generatrix
B=0 and the other is skew symmetrical. We agree to call the stressed
and daformed states of the cylindrical shell which are described by

(1) symmetrical and the stressed and deformed states des-

function On
o (2)
n

cribed by functions skew symmetrical.

In the symmetrical state,

@ (a, a)-.‘lows.”(nmsns- (649)

and, consequently, the following expressions can be obtained:

~
[
O
(]

o o
Y v
u "’"..}"ou" (@)cosnB; v N V.(a)sinnP;
== ney

w o (650)

we N Wy(a)cosnp; > $n(a)sinn p;
na={

n=0
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‘p-:"‘::o% (a)cosnB; S-‘::.:‘S.. (a)sinn B;
T, ugoi',,(a):osnp; He i‘ll..(a)slnnp; (650)
7= S T1n@ecosnp; Q3= 3 Qun(a)sinng.

G~ 2061-‘(0’00'"5: Gy = EoGzn(a)cosn B:

Qo -”goog,.(n) cosnf.
In the skew symmetrical stressed, deformed state of the shell,
®(a, p) = SO (a)sinn B, (651)

and, correspondingly, for the elastic forces, moments and deformations,
we obtain

Uu(a)sinnB;: v= 3 Va(a)cosnp;
nw(

u=$
2, Wa(a)sinnp; ¢ -n:?'o% (a)cos n B;
pX;

@ =~ n(a)sinn f; S = iosn(a)cosnp.
o ST (@) sinn B
T = "_’Tm(n)sinnp\ T, "‘:|T_,.(a)smnﬁ, (652)

H ﬂniloﬂn(n)cosnﬂ: Gl-ngialn(a) sinn f;

Q: ="§°Ozn(a)cosn B G2 E'Gzn(n) sinnp;

Q. ='§;’Q... (a)sinnp.

The enginesring theory form of solution of Eq. (645) is used in /191
calculation of closed cylindrical shells, since the condition of peri-
odicity of coordinate B is automatically fulfilled in this case. The
ter: random integration constants of Eq. (648) are determined from the
boundary conditions at the curvilinear ends a=0, o=y (Fig. 76).

It was assumed that the boundary conditions, as in many engineering
problems, are simple, 1.e., of canonical form. In this case, resolving
Eq. (648) can be integrated and the integration constants found inde-
pendently for each harmonic n and separately for the symmetrical and
skew symmetrical states of the shell.
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We now consider another method of integra-

tion of resolving Eq. (648), which is used in
calculations of open cylindrical hinge supported

panels with curvilinear ends a=0, aw=a, (Fig. 77)

In this case, the stress function can be
presented in the form

. 2. , (€53)
Fig. 76. For writing ..., Ve, ”"...-:.“"(p.)s“' e
down boundary condi- r Am = 28 (v54)
tions. T

After substitution of Eq. (653) in Eq.
a:0 (648), we obtain the following differential
, equation for coefficients of expansion Wm(B)
Ao.10 -‘%%"—-’(A:.a At Ags) 'd‘:T‘;Tm' +
d'¥m

+ AR (Ay e Mo+ Az) ;‘%%"""Mn (Ao Mt Ai) o T

ot M (A2 M+ Ag 2 Ao+ Ao2) d;!’m — X (10,0 A+

+ Ago At Ago A+ Aoo) W= 0 (655)

Fig. . Cylindrical
page177 y for msl, 2,. . .

The components of deformation, elastic forces and moments can be
obtained in trigonometric series of the type of (653)

C‘J‘ ’ &«
V= )..."m(ﬁ)siﬂlmu; hom ¥ Un(p)coshma;
m=2 ma0

[eo] o
W= .\.:.Wm(ﬂ)si" n@; G Eofpm(ﬁ)coslmu;
Maen

mzz

w0

g m_::‘ m(B)sindna; S = }jos.,.(p) 08 Ama;
r, mm{-\::‘ Tim(P)sinima; H e m%;olfm(p) €08 Ama; (656)
T; = m.?;lrzm B)sinhma; Q = Eoolm(ﬁ)cos Ama;

Gy = Elclm(a)Sin Ama; 02‘—" E'ng(ﬁ)sin Ama;

m=

G, = m‘\::‘sz () sin Ama.
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It is inexpedient to present the expressions for the coefficients
of expansion because of bulk.

The boundary conditions at the curvilinear esdges of the panel q=0,
a®ay are satisfied. As was done earlier, it can be shown that the bound-

ary conditions on the rectilinear ends p=+p, are satisfied separately

for each term of the expansion, if the boundary conditiones are simple,
as is the case in the majority of practical problems.

Methods which use expansions in trigonometric series are widely
used in engineering practice. They are rresented in the monograph of
A.L. Gol'denveyzer [8].

Thus, the problem of calculation of closed and open cylindrical
shells made of laminated orthotropic materials was reduced to solution
of ordinary tenth order differential equations with constant coefficient.:.

Consequently, the diversity of the solutions is determined by the /193
roots of the characteristic equations

Ago,02'0—(Ag,2n* + Ap,0) 20+ (Ag,in® + Ag an® + Ag) 2* —(Ay,en* +
+ Ay, n*+ Aoan® 4 Aeg) 28+ n* (Ag 40 +
4 A3,6) 22— (40,100 + A0 s) = 0; (657)
Ao0.102" —(Az.shm+ A0,8) 2+ A (A 6 hm+
+ Az,6) 2" —Am (Ag Am+ A1) 2 + A (A 3 A0y + Ag a2+
+ Aoz) 3.—A:n (Ago,o 7&:.4- Aso 3-:. + Az K.',.-}-Am) = (), (658)

where coefficients Aid are determined through the geometric dimensions

of the shell and the elastic constants of the material by Eq. (635).

It is not expedient to carry out analysis of the roots of Eq. (657) ana
(658) for an orthotropic shell in general form. It 1s more efficient
to study them for specific problems.

57. Transverse Vibrations of Orthotropic Cylindrical Shell

As an example, we consider the naturel transverse vibrations of
a laminated cylindrical shell made of an orthotropic material. We willl
assume that the principal axes of anisotropy coincide with the coordi-~
nate axes.

In dynamic problems of the theory of shells, the components of the
external load equal the corresponding components of the inertial forces,
i.e.,

d3u

e LT Y-—Qb%:—':; Z-—QO%’;—. (659)
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Since the flexural rigidity of a cylindrical shell is considerably
less than the rigidity during its deformation in the mean plane and
shearing deformations are small, we will disregard the tangential and
shearing components of the inertial forces in study of transverse vibra-
tions. In accordance with Eq. (634), the problem cof transverse vibra-
tions of a laminated orthotropic cylindrical shell 1is redueed to solu-
tion of the following differential equation

M
Ago,0 %‘%‘-{' Ay3 '3:—:%1'4'-40.0-5%%%74-46.0-5:%:4-
) %
+ Az -:,-3.7,%.-+ Ao, 10 %ﬁ.-::- —(Aa.o%‘:- +Ass gt
o o
+ A4y, ﬁ% +Az.o-5;,1-:gr+ Aos W) +
M

LAl O _ w o .
+-3-;r(.4zo-§;r+4403w) A""&F’ Mq-a-,-rm‘m,(w) (660)

where

RS
[
\O
=

Mo = (B,B,—B},) B d R, (661)
and coefficients AiJ are determined by Ea. (635).

I 1t 1s assumed that the natural vibrations of a cylindrical
shell are harmonic with frequency ©rne with hinge support of the ends

of the shell, the form of the vibrations can be assigned in the form

_— ) 662
wa, B: t)= Eo F_OC,..sin Ama cosn f sin omat, ¢ )
M= N
where
Ay = aHm
m=TT . (663)

By substituting Eq. (662) in differential Eq. (660), we obtain the
following expression for determination of the frequency «f natural
transverse vibrations of an orthotropic cylindrical shell:

P: (lm. n)t Pz ("m. n) J'“Pa ("m. n)
@, (. ) 1% O, ) ¥ 5 O, ] (664)

Qb R. w:nn =

for m, n=1, 2, 3, . . ., where the following designations are introduced
for polynomials P, (Am, n), Q (Am, ﬁ)

Py (M, n) = Aio,0 m+ Ag 2 Aant” + Ag u Am ' +
4 Agg M n'+ Ao g b n' + 40 100"
Py (A, n) == A0 Am+ Ae.2 Amn'+ Ay Am n'+
+ Ag,g Amn' + Aoen"; l

(665)
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Py(Mm, w) = Am (AgoAm+ Aogn’ + Ag);
Q1 = (Am, n) = BBy A+ By (B By + (665
+ By— AY Amn' + ByByn';
Qs (Am, n) = o5 | DDy A + (DD, +
+ D} —C") Amn' + D,D.n‘];
Qs (hm, n) = '[%f [(K,D,+ K\D,) A+
+(K\Dy+ K,D;) w?] -+ K\ K,

o

If the shell 1s stretched by internal forces T1 » T2 » it 1s easy

to show that the frequency of the natural vibrations increases and that /143
the frequency of the natural oscillations decreases under precompres-
sion,

We now consider the problem of forced vibrations of a cylindrical

shell as a result of a radial load which changes harmonically over time
with frequency w, 1.e., load

Z(a’ B’ 'U)'P(G, B) sin wt. - (666)

We will consider regular loads p(a, B8), which can be presented in
the form of the uniformly converging trigonometric series

=(a, f) s isamnsinlmacosnp, ‘ ’ (667)
where ay 3n
am..-——f fp(a B) sin Am cos n B da dp. (668)

In the presence of perturbing forces, the equation of the trans-
verse vibratiocns of an orthotropic cylindrical shell can be presented
in the form

arey, ey Aoy 0y
As0.0 —;F-*" 8.2 Ga da® of?t + 4o dus g + 4 éu ‘dﬁ'

619, 819 Ly
+ Az — satape T Aot 0;5:3 - (Aso ,,u“. + 462 5555w da.dﬁa Javop T

tw

LT U
+ A4 du‘ oﬁ‘ + Az 0“‘05' +Aos ,,pu.,) + oq. (Azo 7o T

+A02 ﬁ _AOOH)) =M — ot* m,m‘ (w)— 13,(3,3,——5'"\ R m,mg(Z). (669)

We will seek the solution of Eq. (669) in the double trigonometric
serlies

oo

w = sin wt \ S CrnsinAmacosnp. (670)

m-l n-v()
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By substivuting this expression in Eq. (669), we obtain

o

3 S ConlPy+ Pyt Py—d R0 Q) (Qy -+ Qu)l sinAna cosn p—

4l

Mot nel
=R 3 Sam Q(Q+Q)sinAmacosnf, (671)
from which ; /
lpl+P|+P.—'Qo R.‘o=0| (Qﬂ+03)l C‘ﬂﬂt’()l (03+O!) AQun (672)
for my, n=1, 2, 3, . . .
According to Eq. (664),
Pyt Pt Py . 3
00 0 R omn. (673)
Consequently, the following expression can be obtained for the
coefficilents of expansion
) amn
Con =@ T o (674)
for m, n=1, 2, 3, . . .
Thus, forced transverse vibrations of a laminated orthotropic
cylindrical shell occur in the form
1 02‘ ;‘3‘ OGmy K
w::-ag'\aizmbl“’\mucosna. (675)
ma4 n=~g
Upon coincldence of forced vibration frequency w with frequency
of natural oscillations of some tone w (m, n=1, 2, . . .), resonance

vibrations arise.

We consider forced vibrations of a shell, on

the assumption that the natural vibrations-disappear.

f“d%; J%} The general solution of Eq. (669) will equal the
sum of solutions (662), (670), i.e., the sum of the

gg @ natural and forced vibrations

© &
w= 3 3 CmnSin Ana cosn f sin (@mat — o) +

Mmei W=l
[} o«
ig. 78. Graph of +sinot ¥ ¥ CposinAmacosn §, (676)
beat with period Mt n=0
n/wmn.
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where Cmn (m, n=l, 2, 3, . . .).1s determined by Eq. (673) and parameters
Cmn’ w, are determined from the initial conditions.
Thus, for example, if the initial conditions are uniform, i.e., 1if /197

w=dw/dt=0 at t=0, the following form of vibration of the shell can be
obtained

n
- ()

I[Jm-!—- v A (ainwl-— m: 8in ©Omy, l) — sina "
e¢d 3 0 mn § mucosnp,

(677)

If the forced vibration frequency is close to the natural vibration

frequency of some tone @ N (m, n«1, 2, 3, . . .), 80 called beats occur,

with oscillation period T-2w/mmn (Fig. 78).
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CHAPTER 12. CALCULATION OF ORTHOTROPIC CYLINDRICAL SHELL SUBJECTED TO
LOCALLY DISTRIBUTED AXIAL FORCES

58. Initial Hypotheses and Basic Differential Equations

Many works of domesti¢ and fore!gn authors [11, 24-26] have dealt /198
with study of the strength of isotropic cylindrical thells which are
subjected to locally distributed loads. Among them, the work of V.M.
Darevskiy should be distinsished, in which a partial solution of the
most exact cylindrical she. equations were obtained in Fourier inte-
grals, and the convergence of the series and characteristics of the
solution were studied.

A significant contribution to the development of methods of calcula-
tion of cylindrical shells for concentrated loads was made by V.Z.
Vlasov {4-6]. The semimembrane theory of a cylindrical shell he developed
has been widely nsed in engineering practice, and it has shown satis-
factory correspondénce with experimental results. This chapter deals
with generalization of this theory for laminated orthotropic shells.

Experimental studies of thin quite iong cylindrical shells shows
a characteristic feature of thelr deformation, which i1s that signifi-
cant annular deformation of the shell occurs compared with deformation
of the generatrix as a result of concentirated radial loads. An orthog-
onal grid applied to the lateral surface of the shell remains nearly
orthogonal after deformation but the annular lines, which bend sharply,
remain almost incompressible. These characteristics of deformation,
together with the results of other experimental studles, were the basis
for the semimembrane theory of a cylindrical shell, two alternate ver-
sions of which were presented in the works of V.Z., Vlasov, which dif-
fered from each other in the number of initial simplifying hypotheses.

With the comparatively low resistance to shearing deformations of /199
laminated plastics taken into account, since the shear modulus of
laminated plastics is at least an order of magnitude less than the
shear modulus of metals, shearing deformations of the mean surface of
the shell cannot be disregarded, as was done in the last alternate
version of semimembrane theory. . Some other $implifylng assumptions
can also be dropped.

Following V.Z. Vlasov, for the calculation scheme of the cylindrical
shell in 1ts calculation as a result of locally distributed axial forces,
we use a three dimensional elastic system consisting of rings which are
connected together by vanishingly short connecting rods which ensure the
transmission of axial forces and shearing forces (Fig. T79).

Each ring in the cross section plane of the shell works both by
tension or compression and by bending 4s well as shearing. In:ithe
longitudinal direction of the basic calculation scheme, only moment-
less tangential forces N, S can appear. Thils calculation schem2 cor-
responds to the assumption of the membrane structure of the shell “n
the axial direction, i.e., the small magnitude of bending moments Gl

in cross sections and the insignificant effect of torques H.
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In this manner, according to the hypotheses
used, the stressed state of a laminated cylindri-
cal shell subjected to axial loce’ly distributed
forces is determined by the following parameters:

longitudinal normal force N=N (a, 8);

shearing force S=S (a, B);

Fig. 79. Diagram of
cylindrical shell for ( £)
semimembrane theory ’
calculation.

cutting force in axial section Q=Q

]
annular bending moment G=G (a, B8);
normal annular force T=T (a, B8).

For convenience in writing, we use symbols here which differ some-
what from the previous symbols for the elastic forces and moments. This
permits subsequent avoidance of excess piling up of symbols.

The deformed state of vhe shell also is described by five functilons:

axial movement u=u (a, B);
annular movement v=v (a, B);

positive shell del'lection toward outer normal w=w (a, B);

deformation functions ¢(a, B8), Y(a, B), which characterize /200
the interlayer shearing of the laminated shell.

The equilibrium equations have the form

a.’

=5 -+T—0

$-+T =0; (678)

We present the elasticity relationships in the form

N-V,T
a=—FEs

e T3 (679)

G""—(sﬁ‘z ): (650>

1 6w
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It is easy to verify that equilibrium equations and elasticity
relationships (679), (€80) are identically satisfied, if the following
stress function FsF (a, B) 18 introduced

R or [ o .
u= g [wrgp— s (7 +1)#]:
R a I.1 R
v= o garaw (@ +1) F—E5 ¥
0" a‘ o’ .
x [v garage— g (g +1) F]

w-%[v,ﬁ(-}&ru)r—-&g—fm]— (682)
_.G.E.S.m%r(j;--::)i‘-i-%[vl ::’ —
— a5 (g +1) P
¥ = —.D.(lf-'ﬁv,) ’ g;f‘
Y

. ar o ) .
T""""a'o‘aii" S""oatoﬁl (W'H)p'
oF »F
Q=giap+ G=Rysp-

We obtain equations for determination of stress functions F (a, B), /20:
if we satisfy the last elasticity relationship (681). By substituting
the necessary ecuations (682) in Eq. (681), the following differential
equation can be obtained for determination of the stress functions

3 o,p
st b i (1) [ B

_*_Aliz_r_

F o¢F
ap? ] K’

»® /7 o 82
— V2 garapy — ¥ Gaiop ('E'F'*'i) [ga'aor—-'*'
+M g et G =0, (683)

where the basic elasticity parameters

E E
2 2. L P B
M=fi £=%, '
6E, . 3 2R

5Gy ' &

k=
(684)

Eq. '683) is a differential equation in partial derivatives wigh
constant coefficients, which depend on elastic parameters Az, g, k
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and D and one geometric parameter c2. In the case of a thin isotropic

shell, only two independent parameters c2 and v remain, since 12-1,
2
k“=0 and 32/612-2 (1+v).
Because of relationships (682), differential Eq. (683) is satis-
fied both by stress functions F (a, 8) and any of the ten functions

which define the stressed and deformed states of a lamiriated cylindrical
shell subjected to axial locally distributed loade.

59. Integration of Eq. (683) in Single Trigonometric Series and Bound-

ary Conditions

In the case of a closed cylindrical shell, the solution of Eq. (683) /2
can be sought in the form of the single trigonometric series

F(u.ﬂ)=§i‘n(a)cosnﬁ. (685)
N

Coefflents of expansion Fn (a) are satisfied by the following
ordinary differential equations with constant coefficlents

e oph Lhe L ghFu=0 for n=1,2.3,.. ., (686)
where
s n¥(nt— 1)t g? —2vynt(nt—1)
2P == PRy g ! ]
).3 ‘( l._.’)l
Tn = e | (687)

The solutions of differential Eq. (686) are written in V.Z. Vlasov
fugctions, which are determined by Eq. (188) and are satisfied by Eq.
(189),

®,(a)=chspacosrna; ®;(a)=shspacosrna; } (688)
M, (2) =shs,asinr,a; P4(a)=chs,asinrya,
where

%a‘/dzﬁ; m=l/é%ﬁ-
(689)

If the elastic constants of a laminated plastic are such that the
inequality

Gl:<‘lz';;z‘;v (690)

is satisfiled, with sufficiently large values of n>>R/§, parameter rn
becomes imaginary. In this case, instead of the V.Z. Vlasov functions,
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hyperbolic functions should be used which are determined by the ex-
pressions

6,(a) =chsysachr,a; 0y (a) =shs,achr,a;
0,(a) =shsnashrna; 0,(a)- chs,ashrya, }

(691)

where

o S—— o

) T I i
q’|+pu "u—qn
S Lo PR Ve (692)

We also represent the components of the stressed and deformed
states of the shell by the single trigonometric series

N (a, B) =§0N.. () cosn B;
T (a, p) = EoTn(u)cosnﬂ;
S (a, p)e'gs..(a)sinnﬁz
0 (@, B)= 3 0n(@)sinnp;
G (@ B)= 3 Ga(a) cosn B
u(@, $)= 3 Ua (o) c0sn B: (693)
o(a, B)= S Va(a)sinn

w(a, )= X Wy(a)cosnp;
n=0

?(a, B)= §0®.. (a)cosn P,

Y (a, B) = iﬂ‘l’n (a)sinnp.

In accordance with Eq. (682), the coefficients of expansion of
the elastic forces, moments, movements and defocrmation functions in
the trigonometric series are determined by the following expretsions

Un(@) = 55 [v Fo 4 (' —1) F);

Va (a) = -::—:—g- f[g’ (n'...‘)_‘.’n’] F:.—-A’ n (n,"'i) F.); (69“)
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Wn (a) = --g.ﬂ% {[213:—!'("'—‘) +vy(2n'—1)] PL 4

JEnt (a1 1) (K4 ) a0 Y] p | |
+ n + kins +cl P“} A

Gn(a) = --E’-.% nFa;
¥n(a) = — g (2P\Fa—ghFa); (69)
Na(a)=n’(n'—1) Fy;

Sn (@) = n' (n*—1) Fy;
Qn(a) = —n' (2p"Fp—gnFn);
Gn(a) = —nh (2P:F;"9:Fn)°

In accordance with Eq. (688) and relationships (189), we obtain /204
Po(a)=C, @, (a)+Cy @, (a) +C; Dy (a) + €y Dy (a);
F, (@) & C, (35 Pyg—rn D) + Cy (50 Py 4 ra D5) +

+Cs (50 Py—ra @y) + Cy (5n Py + rn D)
Fo(a)=C, [(sh—rh) @, —2rusn @y +
+Cy [sh—rh) @y + 2rusa @y ] + Cy [(sh—-rn) ®:—
—ZF"S'.(D‘] 4-Cs [(5:‘—":) (pl'*‘z’nsums]; (695)
F. (a) =C, [s,, (sa--3r%) @y + o (rh—3sn) (D.] -+
+C, [5n (sh--3rn) ©g—ry (ra—3sh) ©y] +
+Cs {Sn (3:“-3":) @, -+ rn (rh—3sn) D,] +
+C, [sn (sh—3rh) ®, —ra (FA—3s) D,].

Because of the momentless structure of the shell in the axial di-
rection at ends a=0, a=ay only two boundary conditions each can be
assigned:

a. static relative to elastic forces Nn’ Sn;

b. kinematic relative to movement Un’ Vn;

c., or mixed static-kinematic relative to Nn’ Vn or Sn’ Un'

The canonical form of the uniform boundary conditions can be

written thus:

a. hinge supported edges, at a=0, vn(O)-o; Nn(O)-O; at a=a;,
Vn(a.l)'o; Nn(al)’o;

b. rigidly fastened ends, at a=0, Un(O)-O; Vn(O)so; at as=a,, /205
U,(a;)=0; V (a;)=0;
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¢. unsupported ends, at a=0, Nn(O)-O; sn(o)-o; at a=a,,
Nn(al)-o; Sn(cl)-o.
For convenience in practical use, it is advisable to express in-
tegration constants C,, C,, 03, Cy by initial parameters Un(o). Vn(o),
Nn(O), sn(o). i.e., by the values of functions U , V., N, Sn at the

coordinate origin (a=0). After this, the problem of calculation of a
laminated orthotropic shell subjected to concentrated and locally dis-
tributed forces 1s reduced to the solution of a system of two algebraic
equations for two unknown initial functions, since two of them must be
assigned.

It is easy to obtain the following expressions by Eq. (694):

Un (a) = n? (C, (1, Dy+fy D)+ Co (1 Os— 1, ) +
+Cy(/y @y + 1,D) +Co(/, D, — £, D)].
E;Ib Vi (a) e i3 [Cy (hy ®y —h, Dy) 4 Cy (hy @y + by ©,) +
+ Cy (by @3—hy @) + Cy (hy g+ hy Q)1
Na(a) =n* (n'—1) (C, [(sh—rh) @, —2reta @] +
+C, [(s:-r:) D, + 2rnsn o] +C, [(::--r:) 0.—-21',.3,.0.] + (697)
+C, [(‘:\“"ri.\) (D¢+2'n‘n0|}}; )
Sn(a) = n' (".—‘i) ‘Cn [‘n (‘:\"‘3":) DOy +7n (’:—'33:) ®A] +
+Cy [8a (sh—3rh) @y —rn (ra—3sn) @) +
+C, [s,‘ (s,.—-3r,.) 0,+rn( n— 37 ,] +
+C [0 (sh—3rh) @y—rn (rn—3sh) @y} 1,

where
f1= 8 [vy (s —3rn) '5‘7"‘ (n*—1)];
fa=ra [vy (ra—3s) —A* (n'—1)];
hy=(sn—rn) [¢" (0" —1) —n"vy] —2*n* (0" —1);
hy = 2rnta[g’ (n"—1)—n"v,); (698)
C1 = =) [" "I,'J(,,‘.""' ¥ N o (0)—
= V..(O)] ;
1
Co= = g = X
i« —r?) {g’ (n*—1)—n?v, ]-—-).’nz(n'-—-i) ]
y[ ':mhAf N (0)—
{s
— ————l V,.(O)]
- § Esd s
Cs 2.3 sn(n’-—t)(-3.+r3.)[”"‘ (rn—3 Un(0) +
28 (nd—1)—v, (rh—3s})
+ = 5, 0)]:
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D )
2. rg A =1, s 41y

_ M (n—1)+ v, (5h—377) s.(O)]. (698)

nt(nt—1)

60. Girder Analogies and Initlal Parameters Method

Basic differential Eq. (686) of the semimembrane theory of an or- /206
thotropic laminated cylindrical shell and boundary conditions (696)
are similar to the corresponding equations and boundary conditions for
girders lying on a solid elastic base.

The analogy is that static quantities Nq(u) and Sn(a) in the bend-

ing theory of girders correspond to the bending moment and cutting force,
and movement components Vn(a). Un(a) correspond to the deflection of the

elastic axis cf the girder and the angle of rotation of an element of
this axis. The analogy goes still further, namely, at n=0 and r=1,
differential Eq. (686) of the semimembrane theory changes to a differ-
entilal equation of bending of the girder, 1.e., it describes the de-
formed state which corresponds to the flat section principle, and mem-
bers n32 describe the deformed state which develops as a result of self
balancing loads, when there 1s warping of the cross sections of the
shell.

Thus, 1f a locally distributed axisal load applied to the cylin-
drical shell in section a=t (Fig. 80) is represented in the form of
the trigonometric series

p-%-*-%%coeﬂ-l—}éaucos"ﬁv (699)

the solution which corresponds co the first two terms n=0 and n=l1 can
be found, by considering the shell as a girder with the corresponding
support fastenings. The term n=0 represents an axisymmetric load uni-
formly c¢lstributed in section a=f. The second term (n=l) represents
an axisl load distribut=d over section a=f by the cos B lsw, 1l.e., a
bending moment applied in thie section of the shell. Both of these
cases of loading apply to the simplest problems of the strength of
materials.

S
n
o
Q

The remaining terms of the series a, cos ng define self balancing

axial loads applied in section a=f{. We will call such self oalancing
loads n-th order harmonic forces. They cause deformation of the out-
line and warping of the cross section of the shell.

For n32, the basic forces and generalized movements can be presented
in the following form (subscript n is omitted for convenience):
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b‘ ' N (@) = Ky (@ N (0)+Kye (a)5(0)+ K,y )V O)+
p +Ky (@)U (0)—K,, (a—t)an:
S (a) = Ky (a) N (0) + K g (@) S (0) + Ky (@) V (0) +

+ Kau (a)U(0) """K.N (c—%)an:

V (@) = K, () N (0)+ K (0) S (0) + K,y (a) V1) +
+ K, (@)U (0)—Kg, (a—F) an;
centrated axial force. U(a)=Kyy (@) N (0)+Kyy(a)S(0)+ K,y () V(0)+

+Kyy (@)U (0)—K; (a—F) @n.

Fig. 80. Cylindrical
shell subjected to con-

In Eq. (700), generalized movements U(a), V(a), U(0), V(0) have
the dimensionality of forces. These are components of movement mul-

tiplied by rigidity perameter Ezé/R.

Coefficients KNN(a), KNS(G), o o ey KUU(a) are effect functions,

which can Le determined by the following expressions

Kyy(a)= 0;"‘337,;1’7;,1:3‘ [(s*+ %) lg? (n* — 1) —ntv,]—
—Atnt (nt—1) (s —r?)| B,;
Kyg(a)= WT,%:W {-:- [A® (n3—1)—(8* + r?) v,) D3+
+ L8 (1t =)+ (52 79) vy Dl

KNV(Q)NMQ .

4 80 ¥
83413
Kyyla) = 55 (r @y —s ®y);

Ky (@) = — grrmrar—iyrs |7 68+ r)* (g (n— 1) —
= vy AY 0t (0 — 1) (r— 36%)) D+ 8 ((s® + )P (6" (07— 1) —
—n vy —Ant (n?—1) (51— ) D) ;

K g (@) = O, + =gy [(*—r) W ("= 1) +
+ (") | 0y

ng (0) - L;‘;;‘,% (r ®8 +s Q");

Ky (0) = —Sho 0
Kyy(a) -m(m’(ﬂ'—i)-"’ val X

X {208 n? (n®—1) (8% —r3) —(s* +73) [g* (R*— 1) —n? vy] | —
— M ns(nd—1)")| By
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OF POOR QUALITY

Kyg(a)= m (ir {(a*+ 1) [g* (0*—1)—
—n v (A (n8 1) —(s*+ 7" V) AP 0% (R0 — 1) X
X (A8 (n?—1) — {8 —3s%) v, |} @y +8 {(s* +7*) (¢* (n*—1)—
—n? v,) (A (R 1) 4= {: ¥4 19) vg] — A A% (¥ — 1) X
X (A8 (n®—1) 4 (s*—3r%) v,]} @y} |;

Ky () = + gy "+ 7 (" (00— ) —n* ] —
—A (0= 1) (P —P) By

Kyy (@) = gomgrsywgrye | [0+t (nt— 1)

— 1t vy] 4+ AT 3 (n2— 1) (8 —3s%)) Dy (s + 1) X
x g (n—14)—n? "a"‘"‘” "'("""5)(""‘3"), D,
Ky (@) = e |7 160+ 70) 16 (= 1) —n* vl X
5 103 (n?— 1) — (51 + r*) vg] -+ A3 it (n?— 1) (A% (n®— 1) —
e (8 =-35%) vy)) Dy —5 {(s* 4 7%) [g* (' — 1) — ntv,} X
X (M (nt— 1) 4 (5% +7%) vg) — At n? {n?—1) (A3 (n*—1) +
+ (81— 3r) vy)) Dl);
K yg (@) =gy (8" 1) v+ 4 (n' = 1) (701)
X A8 (2 —1)0 4 2 (83 —72) vy}l Dy
K gy () = — e gy (7 108 (00— )= (5 +7%) ] @y —
"“i”(”""”""("'ﬁ"‘)vllmu!:
K yy (@) = Oy — gy 1M (R —1) (s —r*) +
+ (8 +r?) vy Dy,

where ¢,, ¢,, ®3, ¢), are Vlaeov functions, determined by Eq. (188) and /209
which are satisfied by differential Eq. (189).

Vlasov function tables are presented in the Appendices.

Parameters T sn, which are included in the values of the argu-
ments and appear during differentiation, are determined by Eq. (€89).

With a negative value of the argument, functions Kij(a) revert to

zero. Initlal parameters U(0), V(0), N(0), S(0) play the part of inte-
gration constant, and are determined from the boundary conditions.

Lamii ated orthotropic c¢ylindrical shells can be dividied into three
classes by the nature of transmission of axial locally distributed
forces: long shells; medium length shells; short shells.

We will understand long cylindrical shells to be cylindrical shells
for which the semimembrane theory presented above is valid, and an axial

load applied to one end is transmitted uniformly distributed through the
other end,
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We classify laminated cylindrical shells, for which semimembrarne
theory remains aprlicable, but the stressed and deformed states which
result from axial locally distributed loads depend sigrificantly on the
boundary conditions at both ends of the shell, as medium length shells. /210
Finally, we will call short laminated cylindrical shells to wahlch semi-
membrane th- _ 18 inapplicable,

Damping of the stressed and deformed states over the length of a
laminated cylindrical shell, which results from axial locally distributed

~Sno
forces, 1s defined by ‘“he exporient e n and, consequently, the class of
long ~ylindrical shells includes shells in which the following inequal-
ity 1s satisfled

E 2
LV R Loy ) swon g (702)
e E| G V""I"I‘h'{-c' Vm > .

In accordance with inequality (702), the concept of length of a
shell is nnt purely geometrical, but it depends on both the geometric
dimensions and on the nature of the loading and the elastic properties
of the material.

We note that, with increase in shear modulus G, increase in annular
modulus of elasticity E2 and decrease in axial modulus of elasticity El"

the rate of smoothing out the stressed and deformed states over the
1ength of the shell increases. Interlayer shearing contributes to
stress concentration.

The nature of loading of a shell shows up in that, beginning with
some number n, inequality (702) i1s satisfied and, consequently, wich
respect to harmonic forces of sufficiently high order, all shells can
be considered long. This situation 1s important in calculations, since
it permits significant simplification of calculation formulas, beginning
with a specific harmonic.

It also follows from this that, compared with the effect of low
order forces, higher order harmonic forces are damped considerably more
rapidly along the length ¢f a c¢ylindrical shell, i.e., the transmission
of axial locally distributed loads 1s determined primarily by the first
terms of the expansion in trigonometric series (n=l, 2, 3, 4). Calcula-
tions show that harmonic forces up to the fourth crder go through a
shell of elongation L/R}2-3, and that the effect of higher order harmon-
ic forces 1s damped without reaching the other end of the shell.

The nature of dampling of harmonic forces of various orders as a
result of axial concentrated loads is shown in Fig. 81.

Since the rate-of damping of harmonic forces determines the capac-
ity of the shell to resist the effect of locally distributed axial
forces, for more efficient design of such systems, it can be recommended
that shell elastic parameters A2 and g2 be increased 1if its dimensions /211
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cannot be decreased. ¥ith decrease in
shell diameter, dampirg cf the stressed

and deformed states irncreases sharply.

The abovementioned effect of the
elastic characteristics of a shell cor-

rectly reflects the pattern of transmis-
—e sion of axial concentrated forces in

¢ylindrical shells. Actually, 1f a shell

Fig. 81. Nature of damping
of harmonic forces along

cylindrical shell.

is visualized in which elastic parameter

a
A A2-E2/Elx0, nameiy, a shell consisting of

longitudinal ribs covered by a thir film,
it 1s clear that stress damping along
such a shell is extremely slight, since
the forces are tranemitted along the ribs

It is also follows from this that the installation of reinforcing rings
is advisable for cylindrical shells subjected to axlal loards which are
not uniformly distributed over the perineter.

4s an example, we consider the calculation of a laminated cylindrical
shell subjected to an axial load applled to one end.

61. Cylindrical Orthotropic 3hell Subjected to Axial Locally Distributed

Forces Applied to End

Let locally distributed axial forces applied to the upper end act
on a cylindrical shell made of a laminated orthotropic material. We wi
assume that the principal axes of anisotropy coincide with the coordinate
axes. We will assume the area over which each force is distributed is
uniform and determined by central angle y (Fig. 82).

P' P‘

o=
2

-
-

Fig. 82. Cylindrical
shell subjected to
locally distributed
loads.

Solution of the problem is reduced to de-
termination of two initlal parameters from the
boundary conditions on shell ends a=0, a=aq .

For example, let end a=0 where the forces
are applied be free of connections and end
a=a, be rigidly fastened.

We expand load P-p1+p2+p3 in trignnometric
series

o

N
P—.—--E%)-T*-—u-;’;“—cosﬁ-- % ancosnf. (703)
Nmg,

o4

From the boundary conditions for n2,

No(O)=—a, S, (0) =0;
} (704)

Un(@))=0; V. (a,)=0;
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we determine initial perameters Un(O), Vn(O) and, further, by Eq. (694),

for which n>»2, we calculate the coefficients of expansion of the elastic
forces, moments and deftormations.

The solution for n=0 corresponds to uniform compression oif the
shell and, consequently,

No(a) = —

p
i So=0o=Gy=0. (705)

The n=1 case corresponds to bending of the cylindrical shell as &
bracket, by bending moment M=PR applied to the a=0 end, i.e.,

N.(a)n=~,-'£”—cosp; §$;=0Q,=6,=0, (706)

Further, by summing the forces, moments and movements in accordance
with Eq.

(693), we obtain the distribution of the stressed and deformed
states over the surface of the shell.

We give the expansion in trigonometric series of the locally dis- /21
tributed axial loads most often encountered in engineering practice:

Type of load Trigonometric series P(B8)

[¢+]
P
3 —-7'-2 '"M cosnf

P P Q) ninny
ny

cosnfi

n
‘ s Y
L Hye .
P P X sinny o
| IWATRT e “ny 08P
(_ 7 4, 8,12
S
£ ¢ -
P X sinny
R—R r cubnﬂ
2, 6.10
£t
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In the limit, as y+0, we obtain an expansion of the system of
concentrated axial forces in diverging trigonometric series.

We now consider transmission of an axial load to a cylindrical
shell through an elastic ring (Fig. 83).

Because of 1low rigidity, it is aavisable
to make the laminated plastic rings quite mas-
sive, 1.e., solid. Therefore, we will disre-
gard warping of the cross section of the ring.

If the force of interaction of the ring /214
and shell 1s designated

o

9= .\..;’qn(‘nsnﬁ, (707)
Fig. 83. Transmission
of elastic forces to the ring will be deformed as a result of force
cylindrical shell P-q perpendicular to the plane of the ring

through elastic ring.

P—q ;\:‘q(l'"». qnicosnf, (708)

L L

and the shell will be compressed by distributed
forces q.

Thus, the deflection of the ring from the
plane of curvature as a result of periodic
loading normal to the plane of the ring must
be determined. Following Grammel' [3], we
congider a ring with a solid cross section, one
of the principal axes of which lies in the
plane of curvature. We will define the position
Fig. 84, Symbols for of any section of the ring by angle 8 (Fig. 84).
reinforcing ring cal-
culation. For a ring, one of the principal axes of

inertia of the cross section of which lies in
the plane of curvature, deformation in the plane of the ring and bending
from the plane of curvature of the ring can be considered independently.

The stressed state of the ring in bending from the plane 1s deflined
by bending moment M, torque H and cutting force Q. The deformed state
of the ring is determined by deflection w and cross section warp angle
6. Rotation of an element of the elastic line of the ring around cross
section radius ¢y 1s connected with the deflection of the ring.

If p(B) transverse harmonic load Pn cos nB distributed around the
circumference of the ring, the equilibrium equations have the form
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do
a5 =P
AH

ap T (709)
“jﬂ' —H = —0QR.

The elasticity relationships which connect the stressed and de-
formed states of the ring can be presented in the form

40 |, b MR dy MR
FHe=tt, S o MR (710)

where C is the torsional rigidity of the ring; Dz is the rigidity of /215

the ring in bending from the plane of curvature.

From Eq. (709) and (710), it is easy to ¢btain differential equa-
t%o?s for determination of bending moments M(B8) and deflection angles
VviB

dM

g+ M- P.Ricosnp; (711)
daw It aM ni
W.f.q,m-l-)-‘—-‘—ia---i--?—- (712)

By integrating differential Eq. (709), (711) and (712), the follow~
ing expressions can be obtained for the elastic forces, moments, deflec-
tion angles and deflection of the ring

M(B) = Cycosp -+ c,sinp__.;,'.'_f_:-msnp;
Q(B) == — PuR sin nf+4Cy:

n

H@p) —c, Si"ﬁ-f'C,cosﬁ-{--—-—’:f—&Tsinnﬁ+C,R;

n(nt—1

, . R (C+ D) o,
w(ﬂ):.(}.cosﬂ+(',,smp+?.__._g'btx B (Cycos P--Cysin B)+- (713)
AN & n3C 4 D P, R
i sy £ w iy in B

yp, - R(l'.siuﬂ-..(;bcusﬁ)-‘}-ﬂ‘_f;.e_.i-c.‘*_

+- nC 4 D, PR
Clay  nd(né~1o)

Tcosnf.

Becaugs of the periodicity of the functions and the conditions
that the ring be subjected to self balancing harmonic loads, 01-02=C3-
Cu-C -C6-0 and, consequently, the elastic forces and deformations of

5
the ring are determined by the following equations
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0 ()= — L% siunp;

M@P)=— ::'f: cosnf;
Poitt .
H (ﬂ) - m!in H} ﬂ;
C+ D, Py 3 !
¥(p)=— e CZ: ) n(n’-—'-l_)rsmnﬂ: (714)
(C+D,) P,
8(B)=——7p, W=y

cosnf;

tC4+ D PaRY
v (B) = ~p iy cos n -

Transmission of the axial forces to the cylindrical shell through /216
the elastic ring can now be calculated.

Deflection of the ring for each number n32 as a rerult of forces
P-q

= D, 4 n*c (Pn~—qn) R
y CD;, AT —{) cosnf, (715)

Axial movement of the a=0 end of the ring as a result of distributed
axial load q equals Un(O) cos nf.

From the condition of compatibllity of the deformations of tne ring
and shell

Y=, (0) (716)
the following expression can be obtalned for the initial parameter

Un(0) = D’:D’:.c nt (,,’::_‘)n (Pn—gn). (7117)

The remaining initial parameters are found from the boundary
conditions:

on the unsupported a=0 end, S(0)=0, N(O)--qn;
at the fixed a=a, end, U(a1)=0, V(al)-o.
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CHAI'TER 13. SOME PROBLEMS OF SELECTION OF OPTIMUM STRUCTURE OF LAMINATED
PLASTIC OF CYLINDRICAL SHELL

62. Initial Hypotheses, Assumptions and Relationships

The extensive use of laminated plastics in the most diverse /21
fields of the national economy is explained by the exceptionally
great diversity of their properties. Laminated plastics can have high
unit strength, high chemical and biological stability, good electrical
and sound insulating qualities, rnonmagnetism, radiotransparency and
other valuable properiies, which structures of the most diverse tech-
nical or every day purposes require.

The techrology of produ:tion and processing of laminated plastics
products does not reyuire subsequent extremely laborious mechanical
working, as a result of which, moreover, there are great losees of
material. Laminated plastics are easily extruded, molded at low pres-
sures and cast. Laminated plastics products can be manufactured di-
rectly in the process of producing the material itself. The produc-
tion of reinforced plastics with & given orientation of the reinforcing
material can be considered the origin of the extensive use of plastics
as structural materisls.

Cylindrical shells prcduced by continuous winding of various types
of reinforcing fillers are laminated elastic anisotropic systems. The
nature of the anisotropy of the elastic p.roperties of a sheils depends
essentlally on the mutual placement and orientation of the reinforcing
filler, and it can be easily regulated du:ing manufacture. This new
property of laminated plastics, controllable anisotropy, favorably dis-
tinguishes them from traditional building and structural materials. As
it were, they connect laminated plastics with the structures and, con- /218
sequently, this permits the creation of that structure of the material
which ensures the maximum resistance to given external loads during
manufacture of the shells.

Some problems on selection of the optimum structure of fiberglass
reinforced plastics were considered in Chapter 8, where the performance
of a shell in the momentless stressed state was considered.

More complex cases are studied in this chapter, when maximum shell
rigidity must be ensured [14].

Since the results obtalned below are generally speaking of a qual-
itative nature, becauve of difficulties assoclated with obtaining ini-
tial data on the elastic characteristics, we will disregard the effects
of interlayer shearing on the assumption that they are the same for the
entire spectrum of elastic systems considered.

We will assume that the unit layers of which a laminated shell is
composed are orthotropic and uniform. We will assume the elastic prop-
erties of such a layer to be known, for example, from mechanical test-
ing of strips unwound from the shell after manufacture.

For brevity, we will call a unit layer of the shell the "fabric,"
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and its principal cdirections of anisotropy the warp and woof directions,
with the understanding that the warp is the principal direction of aniso-
tropy with the greater modulus of elasticity. The elastic properties

of the fabric are defined by four independent parameters: moduli of
elasticity in the warp and woof directions El’ EE; shear modulus G;

Poisson coefficients ViVas which are connec“ed by the known relatione

shin
Elvz-Ezvl.

If the coordinate axes dc not cnincide
with the warp and woof directions of the
fabric and are rotated relative to them by
angle ¢ (Fig. 85), elastic constants Cyyqs

a1 of the material are determined by Eq.
(29) and (31).

In such a coordinate system, the basic

stressed and deformed states of the shell
have the form

Oy = €y Py~ C1q @y - €19 Oy}
Fig. 85. Symbols for de- °~“‘u't+”n'v+fwww=} (718)
termination of elastic T = Oy Og i Cgy €y - Cay gy
constants of material.
Key Woof direction or e O s Oy s
¢ a. e By == B)y Oz + Ggy Oy + ayy 1; ,
b. Warp direction Oay = @33 05 -+ 53 0y + Gy 7. (719)

We note for subsequent use that, according to Eq. (29) and (31),
elastlic constants 313, 323, 313, c23, in distinction from the remain-

ing constants, change sign with change in sign of ¢.

We consider a laminated shell a uniform anisotropic elastic sys-
tem. Since the elastic properties of the shell are determined by the
properties of the fabric and their mutual placement and orientation,
after determination of the elastic properties of the shell through the
elastic constants of the fabric and winding angle ¢, that orientation
direction can be selected 1in which the structure of the laminated
plastic becomes the optimum. In addition, problems can be solved which
are connected with the seleccion of the best initial materials for man-
ufacture of the shells.

It is evident that, if the shell is wound so that the warp and
woof directions of adjacent layers either coincide or or mutually ons
thogonal, the elastic properties of the shell will be orthotropic.
However, because the principal axes ¢f anisotropy do not coincide with
the coordinate axes, the elasticity relationships hLave the form
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T. =2 BN e, + 1)], L + BIQ w; l
T' - B" L1 + 822 E, + B“w;

S = Bne,+ By ey + By v, ] (720)
Gy =2 — Dy %y — D)y 1y — 2D %y
Gym —Dyy 2y — Dy %y — 2Dy %y } (721)
M = —Dygxy— Dy ng— 2Dy s
ey Aply 4 4,3 Ty + AyS:
e, = AT+ ATy + AgsS; (722)

@ = AygTy + ATy + AnS.

If a laminated shell with a sufficiently large number of layers is
made by cross bias winding of.the reinforcing filler (at angle +¢), it
has an orthotropic structure which is symmetrical relative to the gen- /220
eratrix, 1.e., the principal axes of anisotropy will coincide with the
coordinate axes. In this case, the elasticity relationships are sim-
plified, and they take the form

Ty= By e, Byyeq
Ty=Byyey+ By ey }

g (723)
Gy = — D)y ny— Dy %y

Gy —Dyy ny— Dy 1y, } (724)
H = —2Dg %,

where shell rigidity parameters AiJ’ BiJ’ D1J are determined by the
expressions ’

Au'-"‘g-; Bij=ci;0; Dyjm t‘::, (725)

for 1, J=1,.2, 3, . . .

Elastic constant aiJ’ c1J of the material depend on winding angle
¢ and elastic constants El, E2, G, Vis Yy of the fabrtc, and they are
determined by Eq. (29)-(31).

The changes in durvature and warping of the mean surface of a
tapered cylindrical shell are determined by the known expressions
1 8'm_
RT v
X~ = e

RY 6p7

o (726)
—I?i.daop )

x':::;

Xalu-.
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63. Differential Equation of Cylindrical Shell Stability

We obtain the differential equation of stability of a laminated
¢ylindrical shell made of an orthotropic material by single thread bias
winding, i.e., for the genera. case of anisotropy when the principal
axes of anisotropy do not coincide with the coordinate axes. It is evi-
dent that the equation of atability of a shell produced by straight
winding will be a partial case, with

8)3%853%C; 3¢53"0.

We again use the orthogonal a, 8 system of dimensionless coordi-

nates (Fig. 86) as the curvilinear Gaussian coordinates on the surface
of the shell.

By substituting Ea. (720), (721) in the equa- /22)
tions of neutral equilibrium of the shell

ar, | as .
20t o =0
or,

as (727)
B T =0

04:(.‘, 2 Ny 0(;% r Raf'ﬂ e Ot ° G'w' (728)
Fig. 86. Coordinate °*' ° saap top T vaar 7 25 55

system and conven- o o o

tional symhels. where Tl ’ T2 » S are ccmponents of the elastic

membrane forces which act on the shell before
buckling, we obtain

atu 0%

at i1 1
By 5ar + 2B 5o + B g+ Bus gn + 4 % 7+

0% ] dw
+Bu'3pi:‘“"’3u‘0":'-‘ﬂu7,%‘3

My ot ot it

otu 02
I oaaﬁ+I"=’Fb%+B“W+2B"ouap+B“ aps (729)

ow ouw
= — By g —Bu 55

BI!

v

] a ’ '
Dy S + 4D1s 5azgy +2 (€ + Do) e + 4D g +

+Du e+ B (S Gr+ BuGg+ a5 + B 55+ Buw) =

=R (T g + a5 42" g ). (730)
where A= Bll + By C == Du +DI' (731)
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We introduce the following differential operators in second order /222
partial derivatives

Vim By + A ;;?‘;,-+Bu-$-.-:

(1 ot o a
Vn"”ll'&ﬁ?‘*’zaum"‘auw; (732)
Vs« Bugar + 2By 5 + B g -

System of Eq. (729) 1is the. presented in the following form

Viuteive B, S, 2
dw

(733)
Viutyive —B, 5o —B, 5.

System of differential Eq. (733) is equivalent to the following
system of differential equations

Vil = (B By —B,B,) S5 |- (ByB,, —B,,B,,) %ﬂ- +
+ (BB, —B',) ;ai’;a? ;
V) 0= (B, k=B, By) G+ (R A—F,,B,,~ B,,B,) ﬁ + (734)
+2(Byy By — Buliy) e + (B — BBy, g’;_ ,

where V= vvm—vt (735)

By expanding operator ¥ 4 according to Eq.

1 (732), we obtain

a4 4
V: = (B By, — B:.) ‘d(‘:;r +2 (”nBu_"BI!BH) du:‘dﬁ +

+ {B"Bu "B:a + ZBnBu "23“8:;) ‘.‘)T,g':?g? +

+2(B“B“—B“B”)F'%T+(B”B”—B:.)'3%"." (736>

If the follcwing new differential operator now is introduced

V:"D|1'5%.7'+4Du';§5ﬁ'+2(c+0n)'87:%?‘}'
+4D,,7§-‘55;+D,,-£.—, (737)

differential Eq. (730) can be presented in the form

/223
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Voot R (B g + B + Ba g+ B+ Buo) = (738)
- R (T oA Ty S o ).

By multiplying Eq. (738) by operator vlu, the following differential

equation can be obtained for the stability of a laminated cylindrica.
shell made of a single thread bias wound orthotroyic material

. U a8 0 09 o
v:v:w-f 13”' 0“‘: mR'(T,-‘-,;‘—,—+1:-a-,-+zs"m-6-)v:w. (739)
where
B BBy By+ 28,8, B, — Bn”:,"’ BuB:." Bu":,' (740)

Based on Eq. (9) and (725), differential operator vlu can be pre-
sented in the form

4o & _ B 0 ae
ViV =5 [ g — 200 gy +

‘*‘(zau’*'au)a—“%?*?hu-g‘%;%’“u 3%:"] (741)

and, consequently, the differential equation of stability of a laminated
cylindrical shell finally takes the form

“ 4 g, O s/ me of a1t i .
VeV UJ+R 67&.— =R (T|W+T:W+2S.w) \‘U’.

(742)
where operators Vou, V“ are determined from Eq. (737) and (741), re-
spectively.

It aﬁpears to be extremely complicated to find an exact soiution
of Eq. (742). However, since the magnitude of the critical load of a

cylindrical shell of medium length depends little on the boundary condi-
tions, an approximate soluticn can be selected in the form

- - u
v = w,sin (Ao £ nP), (743)
where
PLE. (T4b)

L

Since the loss of stability of a cylindrical shell under external
pressure and uniform axial compression is accompanied by the formation
of a large number of annular waves, Eq. (743) approximately satisfies
the hinge support boundary conditions at a quite large number of points
(nP=km).
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By substituting Eq. (743) in differential equation of stability /224

(742), the following gemeral expression, which depends on two arbi-
zrary parameters A, n can be obtained for determination of the crit-
cal load:

~R (T)' 4T 425" An Jor®
Dy A +4D; A n 4 2(C + D)A*at 4 4Dy A n? 4- Dyyn® +

R A8
+ lnl‘—21;.L‘n-&-ﬁa..-i»a.ﬂ.'ﬂ:hu).a'-f-a"n‘ * (7“5)

64, Ostimum Structure of Laminated Plastic in Cylindrical Shell Operat-
ng under Uniform External Pressure

Let a laminated cylindrical shell be subjected to uniform external
pressure. In this case, on the assumption that T1°-Sl°=0 and T2°--pR.

for determination of the critical pressure, the following cclculation
formulas can be obtained by Eq. (745):

a. 8shell made by single thread bias winding

[ L R2
Pey= T [W (0. 9+ Trgaer | (746)
where ¥ (n. @) = e, AS - deygA?n + 2 ()3 + 2¢0) A2 1%
+ 4cgg A 0t 4 cgynt) -‘%;
Vs (B, Q’)-all""-zaﬂx'"'*'(z‘ll""au)"'n.- (787
—2a,3A 0% +aynt ‘

elastic constants ciJ’ aiJ depend on blas winding angle ¢;

b. shell made by cross bias winding

Per= T [0 (5 9+ sy | (748)
where 0, (n, @) =7 len M+2 (?.. + 2 A"+ cant); |
8, (s @) = gy M + (20 + ) AP0 ayt. (749)

In the event n2>>x2, the following approximate formula can be
obtained

e "'7'5""
Pex™ IRV ¥ (1—~vv) B,D,, - (750)

In accordance with Eq. (7&6), (748), selection of the optimum
structure of the laminated plastic for a given fabric is reduced to the
following simple procedure: for each value of winding angle ¢, which
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changes in the 0°<¢<90° interval, the lowest pressure p is determined /225
as a furction of whole number parameter +n, (m=1). This value de-

terminec the critical external pressure of a cylindrical shell made by
single thread bias or cross bias winding, i.e.,

PP (4). (751)
It is evident that the optimum structure
5, of the laminated plastic is determined from the

condition that the critical pressure 1is the
highest: pK'(pcr)max (Fig. 87).
The maximum value of function p=p(¢) de=-
vy termines the optimum winding angle and the maxi-

- s o mum nressure which a cylindrical shell made by
0 0 W 60 & o°

continuous winding with a given fabric ean stand.

As calculations show, over u wide range of

Fig. 87. Pk Vs. wind-: change of elastic constants El’ E2, G, v, of the

ing angle ¢ fabric and geometric dimensions R, &, § of the
shell, the most stable shells made by cross bilas

Key: a. ¢'¢opt winding are, as & rule, shells produced by right

angle winding (¢=0° and ¢=90°). Consequently,
calculations by Eq. (746) will determine the op-
timum structure of the laminated plastic. It
/ﬂ 10° should be stated that the optimum winding of
Elg & long cylindrical shells 1s straight annular wind-
] ing of the warp, since such shells lose stabil-
R / ity in the form of collapse of the cross section
“ \\\ and, consequently, the maximum annular rigidity
of the shell must be ensured.

2 4// : \‘ The results of calculation to determine

N the optimum single thread winding angles for
? some fatric elastic constants and geometric di-
' mensions of shells of medium length are present-
' ed in Table 7 and Fig. 88.

0 20 W 060 80¢°

It 1s evident from Table 7 and Fig. 8u /226
that the winding angle in manufacture of shells
by single thread bias winding significantly af-
fects the critical external uniform pressure.
The optimum winding angle evidently 1s deter-
mined by the elastic constants of the fabric

and the geometric dimensions of the shell.

Fig. 88. Relative
critical external
pressure vs. single
thread bias winding
angle.
Key: a £ '106
' ’ E} cr Thus, for the manufacture of cylindrical
shells of medlum length which operate under
uniform external pressure, single thread bilas
winding may prove to be more expedient. The expianation of this is that
single thread bias winding of medium length shells produces anisotropy
of the laminated plastic which disturbs the symmetrical nature of the
wave formation and forces it to buckle with wave formation at higher
pressure. It also follows from this that this concluslon 1s only valid
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for not very long shells,

Calculation formulas (746), (748) can be used for seiection of the
most nearly optimum fabrics, i.e., fabrics with elastic constants which
provide the greatest critical pressure.

TABLE 7.. CRITICAL EXTERNAL PRESSURE OF CYLINDRICAL
SHELL VS. WINDING ANGLE

Kronsan ! EDstan @ Kpnean 3 Hpmunan ¢

la (puc, 88) a !(l!:-c ) a u'mc as) a u'\'no 88)

v L L L l
n —— n — n Ry n —
a.[;;; alg nl; -\|ﬂ
0 R 0.314 1 w501 ) 3.83 4 1.74
) 7 0,308 7 0.511 K] 3.04 4 1,70
10 L} 0.M1 7 0.3 5] 305 4 1.69
15 8 0322 7 0.507 5 355 4 1,73
20 7 033} 7 0.408 5 J.65 4 1,81
PAG 7 0,347 7 0.48.4 b 383 4 1.93
30 7 0305 7 0,472 b 4.00 4 207
35 7 0.359 1 0.407 ) 4.42 4 2.4
40 7 0,418 1 0,470 (] 4.80 4 240
45 7 0,452 1 0.482 6 4.98 5 2.70
5 7 0.460 1 0,502 6 4,48 b 2,44
55 7 0,527 [} 0,587 0 4,07 ) 207
60 ] 0,708 (] 0.819 7 383 b 1,85
a5 (1} {.44 (i} 131 ki 350 5 1.72
'm [ 1.4 (] 1 .56 1 J.28 5 1.60
80 [ 0.818 ({] 0034 ? 2,70 (1] 1.2¢
85 6 0.488 ) 0.788 1) 220 6 1.02
00 6 0.623 (1] 0,710 8 1.77 ¢ 0.83

Key: a. Curve 1, 2, 3, 4 (Fig. 88)

65. Most Stable Laminated Cylindrical Shell under Axial Uniform
Compression

Let a cylindrical shell made of laminated plastic be subjected to /227
uniform axial compression (Fig. 89), 1In this case, we study the qu%s-
tion of the selection of the optimum structure of the 1aw1nated plastic
which realizes the greatest carrying capacity of the shell at a given
welght. Two possible types of elastic property symmetry of the lami-
nated plastic which correspond t ) single thread bias and cross bias
winding, should also be considered here.

According to Eq. (745), with T2°-a°-o, T1°=-T1, the critical load

of a laminated cylindrical shell under uniform axial compression 1s de-
termined by the following expression
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(Tl)cri'%%'" - T‘i," (cll A‘+ 43,.’&’ n + 2 (cl' + 2‘.) At +

R\?
» () 52
+Ahegg Ant4 cpynt) 4 Ggs AS — 2035 AVN 4 (2614 + 639) AV P — 20, A 0T a0 * (752)

where ), n are arbitrary parameters which define the form of wave forma-
tion upon loss of stability, and Cyyr B8yj- (1, J=1, 2, 3) are the elas-

ticity constants of the laminated plastic, which depend on the elastic
characteristics of the fabric and winding angle in continuous winding
with fabrics and which are determined by Eq. (29)-(31).

According to Eq. (752), for calculation of the critical axial load
of a laminated cylindrical shell, the following calculation formulas
can/be cbtained, which depend only on random wave formation parameter
u=n/x:

a. shell made by single thread blas winding
RVY ey T 4Cya b+ 2 (yg + 29) NP + dega 0P + cyg B¢ : (753)
(T')ci‘_x'—- Toes— Zagy b+ (201 + a.,'i |,A'—2¢lu|,l'+0ul‘i
b. shell made by cross bilas winding

RVE cat2 (619 + 2cm) ;3‘*"‘!1“‘
(T‘)C!' & -]/.n'f‘(?ﬂll'f“n)ll +aypt - (754)

Determination of the critical load by Eq. (753), /22

(754) 1s agaln reduced to finding the minimum of the
‘ “ ‘b ‘i " right side relative to parameter u for a given wind-
ing angle ¢.

The maximum critical lcad determines the optimum
winding angle and, consequently, the optimum structure
of the laminated plastic and the upper limit of the
carrying capacity of the shell which can be reached
by a change in winding angle.

It should be noted that, in uniform axial com-
pression of 1sotropic cylindrical shells, the criti-
Fig. 89. Conven- cal load obtained by linear theory is in poor agree-
tional symbols. ment with experimental results. For laminated shells,

the correspondence of experimental data with the re-
sults of calculation of the critical load by linear theory is more sat-
isfactory, and the scatter of the experimental data is not so great as
in the case of thin isotropic shells.

Some numerical calculation results. It 1is known that the elastic
properties of fiberglass reinforced plastic are determined primarily by
the properties and orientation of the glass filler. The modull of elas-
ticity in the principal directions of anisotropy depend on the number of
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glass fibers oriented in these directions of anisotropy. Consequently,
with a given total warp and woof fabric density, the sum of the moduli
of elasticity in the principal directions of anisotropy E1+E2 remains

nearly constant. Based on this, in order to investigate the effect of

the shear modulus of the fabric, the initial cata given in Table 8 were
selected for comparative calculations.

TABLE 8. INITIAL DATA

b  Bapnanta

[:Yupyrn HOMOTANTH
THaus 1 1t n Iv v Vi VIl | vinl

Eotownw |5 5] 15 ] 18] 18] 15| 4 |22
E,c10vnu/m | 3 |3 13 |3 {3 |3 |os5]22s

G107 n/m? 01 03] 04} 05| 06) 07T ] 03] 03
v, 04 0.4 0.4 04 04 0.4 08 | 02

vy 02 02j02)1o02102]02]01]02

Key: a. Elastic constants of fabric
t. Variants

c. n/m2

TABLE 9. CRITICAL LOAD OF CYLINDRICAL SHELL MADE BY
CROSS BIAS WINDING

Bapnastitu
o A
1 11 111 v v Vi vt VIl
0 0.70 1.22 1.41 1.57 1.72 1.86 1.09 1.30
S 0.72 1,24 143 1,59 1.74 1.87 140 132
10 077 1.30 148 1,64 1.78 1.9 144 138
15 0.85 1.39 1.57 1,72 1.85 1,96 147 148
20 0.96 1.50 - —_ 1,96 2,05 -_ 1.62
25 1,49 1,70 1.84 195 | 204 242 138 1.70
30 142 1.87 1.98 200 243 2,19 143 198
35 1,72 2.04 2.4 246 224 225 148 2417
40 2,02 247 2.20 2,23 2,26 2.29 1.51 2,31
45 2147 2.21 2.23 2,268 2,28 230 1.52 237

Key: a. Variant

The results of calculation to determine the critical load, ob-
tained by computer, are presented in Table 9.

For shelis made by cross bias winding, critical load vs. winding
angle is presented in Fig. 90.

As should have been expected, single thread bias winding extremely /229

insignificantly increases the axial critical load of a cylindrical shell.
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The explanation of this is that the most

nearly optimum ratio of the modulil of elas-
o’ ticity in the axial and annular directions,
and the shear modulus which can be obtained
by change in winding angle and which should
20 lead to a significant increase in the crit-
- ‘\g& ical load, is associated with an increase

Y in the degree of freedom, which 1s express-

16 7] ed by the possibility of the appearance of
/)( \(\ I oblique forms of wave formation upon loss
/j
-

N of stability. This leads to a decrease in
the critical load.

L2

I\

02

calculations in order to obtain recommenda-

/ It should be noted that the conduct of
tions on the most diverse cases of fabric

elasticity property ratios and geometric
¢ shell dimensions requires a great amount of
work and is hardly advisable. Evidently,
it is more reasonable to carry out the

0 70 0 50 W v calculations for given geometric dimensions

nnd a limited number of fabrics from which

Fig. 90. Axial critical the most nearly optimum must be selected,
load vs. cross blas wind- i.e., obtaining the greatest critical load
ing angle. for the weight of the shell.

General Eq. (745) permits calculation to determine critical loads
in variou: types of uniform and simple combined loading of a shell, as
well as selection of the optimum fabrics. It should be stated that tlc
form of wave formation depends, in each case, extremely appreciably
on the nature of anisotropy of the reinforced plastic. Therefore, the
simplifications usually made with respect to order of magnitude in the
theory of stability of thin isotropic shells should be made with great
caution.

TABLE 10. CRITICAL LOAD OF CYLINDRICAL SHELLS OF
OPTIMUM AND NONOPTIMUM STRUCTURE VS. SHEAR
MODULUS OF FABRIC

b G-10-19 w/u3

a Haworna
0,4 0,9 0,4 0% 0.6 0,7
Oxsoaazognan .10 1.22 1.69 1.65 1.72 2,04
NMeperpecraan 247 2.24 2.23 220 2.28 2,30
llpauan 0.7 1.22 1.41 1,57 1.72 1.86

Key: a. w1nging ¢c. Single thread e. Right angle
b. n/m d. Cross

The critical axial load of a c¢ylindrical shell of optimum structure
made by single:thread blas and cross blas windings vs. shear modulus of
the fabric is presented in Table 10. The critical loads for shells made
by right angle winding also are presented.
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The calculation results show that the cptimum structure of a lami-
nated cylindrical shell operating in axial compression is obtained by
continuous cross bias winding of full strength fabrics at angle ¢-1HS°.
It should be noted that the use of nonfull strength fabrics, for example,
with 1:2 anisotropy, highly insignificantly reduced the critical load
of the shell, With more clearly defined anisotropy, a more inteneive
decrease in critical load occurs.

66. Stability of Anisotropic Shells of Rotation as a Result of Uniform
Pressure

Let a double curvature anisotropic shell be exposed to forces Tlo.
T2°, s°, Then, by using the theory of tapered shells, the following

system of differential equations can be obtained, which describe the /231
local form of loss of stability

AP »rd a 0 O o 0w |
Ly @) = — kg —k g+ Ti g + Tagr +25 5555
” 2
,’l(d))-k!'b_"wf+kl TE’-'

| (755)

where Ll()’ L2() designate differential operators in up to fourth order
partial derivatives

’ o a4
Ly ( )-%[cllﬁp‘+4clsm+ 1

¢
+ 2 (6134 26x) .);l”.}ﬂ +4en axot';y' +eén :U‘ ] : 6
- g o (756)
Ly()=1 (s 7o — 2w gy +

+ (2854 + 83) 0:2

1] ¢ @
s 20 grap + o '0"97] .

System of Eq. (755) is equivalent to the followling differential
equation

3 ] ) N
LLy(w)+ (ks g+ o) w=(Tt 5 + Th g +25° —o57 ) Law). (757)

In the case of shells of rotation subjected to external uniform
pressure,

70— PRy,

. 2 Ti=—25(2- L), (758)

and, consequently, sta®ility Eq. (757) takes the form
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LxL:(w)‘*'("a';‘;r'f‘kn‘;; )w“—'—-"[-—r-i»(l ) e ]L.(w). (759)

By substituting the solution 1in the form w=w_ cos (Ax+ny) in
Eq. (759), we obtain

-c—ps{!’-.- ,'.4.(2 '%t\)q. {cl"t""éct.h’n‘*'2(cn+20.)h'n.+
"\*TR

+écuAn® +enn' +

12 (ky A 4 by n)0
+F [ors A — 283y AP + (J‘ln*'ul) Al —2ay5 A + 0y, 0] } (760)

Instead of arbitrary parameters A, n, we introduce new parameters
u, z according to the expressions

u=x24n?; uz-k2x2+k1n2. (761)

It 18 easy to show that there are the following inequalities:

h<eChk 1 K>k
k<o <Chy, AT K<k (762)

By substitution of new parameters u, z for parameters A, n in Eq.
(760), the following formula can be obtained for determination of the
critical external pressure

SoRy _ LIOENS

L ey T30 [(k. k)"l(‘)’*' uly (2) (763)

where homogeneous quadratic functions

3 1
hz)=cy (2 ~k)+bey|3—k, I?l""‘:l?+

! 3
+2(C1a+2e0) |2—Fy |12 —ky | Aoy 2—ky | 3| 2— Ky | 3 +
+Cyg (8—Ky)%;

/a("')"' {a,,(z-—k,)‘—-ZauIz-k,l'-' |"“k1|3 + (764)
+(20,3-F agy) | 2— Ky || 8y | —
1 3
~2a,3|8—F, !'2—13“"': |T+0u ("'kn)'} .
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The right side of Eq. (763) has the least value for parameter u at

(ko= k) s (765)
V1 GY ()

and 1t 1s determined by the expression

opR 2 ‘/'T‘T
wremy (766)

At the poles of a shell of rotation, when they are spherical points,
i.e., when Rl'Rz'R’ the critical pressure is determined by the expres-

sion

PROYE o /et o ptd (e 2cﬁ)g'+4tng‘+¢ug‘
Py ‘/ 833 —2dgg P+ (2319 + agy) P — 28y WP+ 8y L (767)

consequently, the critical external pressure on a spherical shell 1is
determined exactly by the same expressions as the critical axial load of
a cylindrical shell.

In the general case, the critical external pressure is found by
Eq. (766), by minimization of the right side relative to parameter z,
which inequalities (762) satisfy.
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CHAPTER 14. THREE PLY ORTHOTROPIC PLATES AND SHELLS WITH LIGHT ELASTIC
FILLERS

67. Hypotheses and Basic Relationships Used

Despite the fact that three ply structures with elastic fillers /233
have a whole set of valuable qualities which are necessary to p.oducts
in the most diverse fields of the national economy, their use until
recently was extremely limited, because of difficulties of high quality
manufacture which ensured complete reliability of such structures in
operation. With the appearance and extensive use of synthetic materials
and reinforced plastics and resins, the possibilities of the development
of reliable effective three ply structures with light elastic fillers
increased sharply. Synthetic cements produced on phenol-formaldehyde
and epoxy resin bases permit reliable Jjoining of pbearing layers with
honeycomb or foam plastic fillers. More than that, in the manufacture
of three ply structures, including metal structures, the cement com-
pounds are generally speaking the only possible ones.

In many engineering applications, namely, when great flexural ri-
gldity 1is required, the structure of three ply shells permits elimina-
tion of the basic structural defect of plastics, comparatively large
yielding to deformation. Therefore, highly improved nounmetal three ply
structures can be produced, especially with the use of fiberglass re-
inforced plastics.

The basic types of three ply structures are presented in Fig. 91.

Polyvinyl chloride, polystyrene or polyurethane foam plastics
glass honeycomb plastics, foam plastics, cork and balsa, corrugated or
hollow thin walled elements and other light elastic materials can be
used as fillers of three ply plates and shells,

Three ply plates and shells /234
with fiberglass reinforced plas-
tic bearing layers are aniso«
‘tropic. Anisotropy of the elas-
tic properties also arises in the
use of asymmetrical honeycomb
plastics, corrugated fillers or

other anisotropic materials.

It should be noted that a
rigorous solution of problems
connected with the calculation
of three ply plates and shells
is an extremely complex proeblem.
*ig. 91. Types of three ply shells Th: .efore, to obtain visible
with elastic fillers: a. foam calculation formulas and calcula-
plastic; b. corrugated; c. honeycomb. tion methods accessible to en-

gineering analysis, various sim-
plifying assumptions and hypotheses must be introduced. Reference to
modern computers does not change the situation, since the entire spec-~
trum of problems encountered in engineering cannot be specified and
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programed beforehand. However, of course, this does not exclude and
does not reduce the great value of exact methods of calculation.

The total number of works which deal with the calculation of three
ply plates and shells 1s extremely large. However, orthotropic three
ply shells have been investigated less thoroughly.

We oonsider thin three ply plates and
shells with light elastic fillers which are
SRR . symmetrical relative to the mean surfaee of
the structure (Fig. 92). It is assumed that

050l X the materials of which the shells are made Are ,
DSOS SOIRSOSEX orthotropic and that their principal directione /23
d%&§¢§53g§ﬂ¥¥%&#§ of anisotropy coincide with the coordinate di-

0.0 ~2-0.0.0.9.¢6.(J¢
LTINS e - OO 8, rections on the surface of the shell.

In the discussion, we limit ourselves to
a class of shells in which the loads acting

Fig. 92. Normal sec- on the mean surface are entirely absorbed by
tion of three ply the bearing layers (E1'62<<E151).

shell with symbols

used. We use the hypothesis of a rectilinear

element, 1.e., we will assume that rectilinear
elements which are normal before deformation of the mean surface of the
shell remaln rectilinear after deformation but, generally, not the nor-
mal deformed mean surface.

According to this hypothesis, the stresses in the bearing layers
and the filler layer are determined by the following expressions:

8
in bearing layers —%sIZI%

0‘"-E‘ [C‘+V203+Z(n’l + Vz"z)];
o(z" -EZ [£2+V|B| +Z(”.2 + Vnd)];
™ e G (04 2253);

(768)
S, &,
in the filler layer, 5—&24—5
off = B es+vPea 2 (6 +9Pud)]: | (769)
0 = B [ 4-viPeq + 2 (08 + viPn1)];
2

( -6(2)((0-*'22“.3):
the subscript "2" means that the corresponding value refers to the
filler layer.
If the system of stresses which develops in normal sections of

the shell is replaced by the statically equivalent system of elastic
forces and moments and the effect of transverse compression of the fill-
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er layer is disregarded, the following basic elasticity relationships
can be obtained which connect the stressed and deformed states of three
ply plates and shells

Ty =By (e, 4 vety)i
Ty o= By (8,4 Vi8,):
S = Byw;
G, = —D, (": + Vl”:);
Gy= —D, (x3+vx); (770)
H = —Dyu3;
Q= —K,vii
Q= —Kyve.

where the rigidity parameters of the shell are determined by the ex- /236

pression

% (a0 A% F (3"—a° 9
l), ;:i'(-—b’z——“!l: D'n—‘;’—(—a‘T._L'; D'r.:—-_!l-
26, (8" &)

2,, (8" - &)
30; (0 &)

K, = 30, B+ 05) '

' K;"’

B,=Ed: B,=Eb,; BymGd; l

here, 613’ 623 are the transverse shear moduli of the filler.

For separate fillers, 013, 023 should be underatood to be the

reduced shear moduli which are determined either from some theoretical
conslderations or experimentally.

Components of the deformed state of a three ply shell Cyo nie, Yq
are determined from Eq. (10)=(12).

Since the system of stresses was reduced to the statically equiv-
alent system of elastic forces and moments in the mean surface of the
shell, the equilibrium equations are written in the form of (17), with
boundary conditions of the canonical type of (23).

In this manner, all results obtained in the prvceding sections for
the forces and moments of deformation and movements of orthotropic lami-
nated plates and shells are completely valid f'or three ply plates and
shells with light elastic fillers, if the rigidity parameters are in
accordance with Eq. (771).

The difference in calculations of three ply shells appears only
in calculation of the stresses, which are determined by Eq. (768) and
(769).

It is easy to see that the results will be valid for three ply
plates and shells, the bearing layers of which are made of various ma-
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terials and have varied thickness, 1if 62»61 and the conditions of

elastic symmetry through the shell are satisfied, i.e., if there are the
relationships

T B0 Tror=Et0) G or=G'0);
viev Ve

(772)

Because the filler may have extremely low transverse strength, the
normal transverse stresses must also be determined. The following can
be obtained for them:

3(8°~8) ¢, , ¢
-_T‘-+ + .

68. Boundary Conditions and Estimate of Error cf the Theory As Applied
to Three Ply Plates and Shells

The random constantc which occur in integration of the diifferen- /237
tial equations are determined from the boundary conditions. As has
been noted, five independent parameters which define the deformed state
of laminated shells, even i1 the case of homogeneous canonical boundary
conditions, increase the diversity of types of support fastenings to a
considerable extent.

For plates, the system of differential equations breaks down into
two, one of which describes the planar stretsed state of the plate and
the other describes the bending of the imean surface. The boundary
conditions are broken down correspondingly. In the case of bending of
three ply plates, boundary conditions (22) can give the following g:aph=-
ic static geometric interpretation:

DIAGRAMS OF SUPPORT FASTENINGS

s

Boundary Support Fasten-

conditions ing diagram
GmH=Q=0 S
w=@p=yp=0 @
wnucu”_o @
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w-¢:all.m0

&
Quo=H=0 @
Qmo=v=0 ) gﬁ

&

The first type of boundary condition corresponds to an unsupported
end, the second corresponds to rigid fastening, and the remaining types
of boundary conditions correspond to various cases of hinge support.

We now istimate the errors allowed by the inirvial hypotheses and /238
assumptions, It 18 evident that the hypothesis of the rectilinear
element does not take into account the bending of the bearing layers
relative to the mean surface itself which occurs in transverse shear-
ing in the filler layer.

A change of curvature and torsion of the mean surface of tnhe bear-

ing layers due to shearing of the filler layer are determined by the
following expressions

¢t 00, e 1_ 90

ol ok *-“—77-'5;1-’

e _A( 3 00 | 1 0Q (774)
=g (R R

Consequently, the rectilinear element hypothese¢s adopted for the
entire set of shells are equiv:/ient to disregard of the following
quantities in the equilibrium equations, compared with cutting forces
Qs Q4

1* ™2

D, 3Q, , D, 0Q, , C 80
o TR e TR wwar
Dy "O|+D 289, , C 29,
Ky Oy 98 VK Gz oy

(775)

i.e., in determination of the deformed state of the shell, error &y

lIn the end effect zones, the errors permitted by the initial assumptions
will be larger.
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compared with unity is committed:

28

;,-m.x(m Tf::..::&_), (776)

where a is the characteristic plan dimension of the shell.

In determination of the stressed state, a somewhat larger error is
committed, namely, Lo compared with unity:

sl 508 )

Since usually 62/61k0.1-0.3 in three ply shells, according to the

rectilin:ar element hypothesis, the deformed state 18 defined with suf-
ficlent accurecy. The error is determination of the stressed state is
somewhat higher. However, as needed, when error (777) 1s indeterminate, /23
the stress can be refined 1if the accuracy in determination of the de-
formed state 1s sufficient.

Refinement of the stresses is carried out by Fgq. (774), by which
the bending of the bearing layers due to shear in the filler layer is
determined. If a coordinate system in the mean surface of the bearing
layers 1is selected (Fig. 93) and z designates the cistance of the fibers
from the mean surface of the bearing layer, the components of the de-
formation which originate 1in the bearing layers due to transverse shear
in the filler layer are determined by the expressions

e, = 2 (% +v,x);
ey = 2 [y + v,x});

€5y ™ 2 z“:'

(778)

0 0.9.0:°80 TV on,
:‘.::::'.'.'.%’_o e WO g o

Consequently, the maximum additional
stresses which were disregarded are determined
by the following expressions

Fig. 93. Symbols in Ot max = £ -94-'- (35 + vyxg):

stressed state refine- = 8 (e e

ment . 02 max = Ey == (3G 4 vyx()i (779)
Tmar = G 3 ;. ]

Finally, if the shell is such that errors in determination of
the deformed state are inadmissible, theories must be used which are
based on less rigid hypotheses. However, the complexity of solution of
engineering problems increases significantly here.
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It was assumed in the initial hypotheses that the effect of trans-
verse deformations of the filler could be disregarded. It is easy to
show that the error of such an assumption has the value z3 compared

with unity:
Lo s! o'a. : 'f- o!gl .

where Ez is the transverse modulus of elasticity of the filler.

In accordance with Eq. (780), in the case of very _soft fillers, /24
i e., filler which satisfy the condition 'Eé/Ei%Gléé/Rz, the effect

of transverse deformations must be taken into account.

69. Differential Equation of Symmetrical Form of Loss of Stability

In Chapter 5, solutions of some problems of stability of laminated
plates were obtained which, with the abovementioned stipulations, are
valid for three ply plates with an elastic filler. The forms of loss
of stability which were considered there are characterized by distor-
tion of the mean plane of the plate, i.e., they are asymmetric relative
to the mean plane.,

As the calculation formulas obtained show, the critical loads in
the asymmetric form of loss of stabllity increase with increase in
thickness of the filler layer. However, this relationship occurs up to
a certain thickness, beginning at which a further increase in thickness
of the filler layer in order to increase the critical load is useless,
since the possibility of loss of stability in a fundamentally different
form appears (symmetrical wrinkling of the bearing layers occurs rela-
tive to the mean plane). The critical load of the symmetrical form of
loss of stability depends little on filler layer thickness, and such a
form of instabllity 1s characteristic only of three ply plates and
shells with elastic fillers, although it is found in laminated structures
in the form of flaking.

The forms of loss of stability which can oc-
cur in three ply plates and shells with light
elastic fillers are shown in Fig. 9U.

We obtain the differential equation of the
symmetrical form of loss of stability by using
the energy method. The total potential energy
of the plate 1s made up of the potential energy
of bending of the bearing layers, the potentlal
energy of the filler and the work of external
forces, and 1t 1s determined by the following
Fig. 94. Forms of expression [13]:
loss of stabllity of
three ply shells
with elastic filler: U= [ f ® (We, Wy, Way, 0z, Wy, w) dzdy, (782)
a. skew symmetric;

b. symmetric.
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where

RS
N
=
pa

D (1200 Wiy Ways Wy Wyo W)
2 2 (1, .2
: n(" j“.; X '*‘ 2[)‘“2’“';_(“‘,3 '{‘ D&‘ )“'yy ’+‘ 403 W xy "*"
v0, 2 02
-4 "'i’ (7 (l,“'x + 1 g“’v + 230“’:%) -+

. . h 2% ) o
S (Kl Kar) 4 LA (762)
here D(l) D (l), D (1) D (1) are the rigidity parameters of the

1 * 72 12 K
bearing layers of the plate;

tb
S}
b, i (1 “l‘:)'
E 8
1)
Dy HINE \‘\,)
G
. (783)
1), 9() ;
D) v, D" v DY
K, G,8: K= G0,

E? is the reduced modulus of normal transverse elasticity of the filler;

E, e WLy ' (784)

@ aa % a ag -q a — i 2
11 e T I T %Ny T 0

a are the elasticity constants of an orthotropic filler as a three

1J
dimensional body; £ 1s a random parameter proportional to filler layer
thickness 62, determinable from the condition of the minimum critical
load.,

Because the potential energy of the plate has a minimum in the
equilibrium position, deflection of the bearing layers in symmetrical
wrinkling w should satisfy the following differential equation:

A o o ? 0
a7 Pt Gray Pea + 55 P — 7 Py - Vo D0, (785)

daxr

By expanding Eq. (785) according to Eq. (782), the following dif-
ferential equation can be obtained which describes the symmetrical
form of loss of stability uf threes ply plates, i.e., the stability loss /242
phenomenon assocliated with wrinkling of the bearing layers:
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ORIGINAL PAGE I8

OF POOR QUALITY
DO 2 42 (D0 4 2D8") s +

9 » & . 0w ___[;1_ ? wm
4D S BB (K Gt Ky )+ B

e 3w o
i r: —0—;:'+ 2s’ -"";-57 '*' [ "yl [}

(786)

where, for convenience in practical use, functions 01, 02 of random

parameter £ are introduced:

sh 28 4 2F) . xh2p. 2%
gy (8- * "'Fh'{ 8 ’ ‘l‘:(i) \ e

TS

TABLE 11. VALUES OF FUNCTIONS @1. @2, ¢3

t (%) Ty (L) ga () t T1 (D) 9y () (b

4,000 1.0 2000 26 5.560 0,733 2.308
4,000 1,333 2000 2? 5,716 0.711 2301
48
2

0

04

0.2 4.000 13408 2.000 5874 0,600 o424
0.3

™ 400 1.346 J4KH) 8] 0.042 0870 2408
0.4 $.002 1,305 2004 3 0,206 0,650 2,49
0,5 4.007 1,200 2,002 34 6.382 0.634 2.526
0.6 4013 1,273 2,003 3.2 0.550 0613 2,560
0.7 4.0t9 1.252 2.005 33 06.738 0.597 2,508
08 4.033 1.220 2,008 34 6015 0,680 2439

09 4,040 1.20% 2012 3.5 7403 0.565 2.085

1.0 4.074 1478 2018 | 36 7.280 0.551 2,700
1.1 4405 1.150 2026 | 3.7 7478 0.537 2.734
1.2 4.142 142 2,035 3.8 7.608 0.523 37489
1.3 4.487 1.002 2.046 39 7.856 0510 2801
1.4 4244 1.082 2,000 4 8.046 0.498 2,838
1.5 4307 1.032 2075 44 8.239 0,486 2870
1.8 4.381 1,002 2.083 4.2 8,434 0475 2.004
1.7 4.459 0971 2112 43 8,637 0.464 2939
1.8 4.540 0,642 2,133 44 8424 0.454 297
1.9 4,651 0.4 2457 45 9.022 0,444 3004
20 4,759 0.888 2,482 4.0 9.220 0.434 3.038
24 44872 0.858 2:207 47 0,414 0,425 3.068
2.2 4.958 0831 2.227 48 9612 0.416 3,100
P 5429 0.105 2.265 49 9811 0.408 3.432
24 5,264 1,780 2.204 5 10.010 0.400 3.164
2.5 5410 0.756 2.326

(787)

The values of functions ¢y1» ¢, are presented in Table 11, where
the value of function ¢3(£) also is given, which can be determined by

the expression

(k) =} m.

as feew

(788)
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q‘l (E) = 251
Ty (a) ~ % ’

@l(§)~",2»é~ (789)

0. Some Problems of Determination of Critical Loads of Symmetrical
Form of Stabllity Loss

As an illustration, we consider some simplest examples of determina-
tion of critical loads in which symmetrical wrinkling of the bearing
layers occurs relative to the mean plane.

Cylindrical wrinkling of bearing layers of three ply strip. Let
a rectangular threc ply plate with two opposite unsupported ends be
compressed uniformly by distributed forces T1° in the direction of the

unsupported ends. It is evident that wrinkling of the bearing layers
will occur in only one direction (Fig. 95) and, consequently, differ-
ential equation of stability (786) takes the form

(790)

1y 0% t . dhp E 2
Ve T ThOLE R --T:-:—,“’;.

wWitl, hinge support of ends x=0,
x=£, the solution can be sought 1ir the
form w=A sin mrx/2. By substituting
this solution in Eq. (790), the follow-
ing expression can be obtained for de-~
termination of the critical load:

7im (2R) D0+ B Ra®.  (T9D)

‘ s ()

Fig. 95. Stability of three The right side of Eq. (791) will /244
ply panels in longitudinal have the smallest value at
compression.

mx ¢ 1‘;. Q"‘(_ET (

l l a, uH

Consequently, the critical force 1s determined by the expression

pg. . )
r =2} A @K g6, (793

Parameter £ 1s selected from the condition of the minimum of the
right side of Eq. (793).
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In the case of soft fillers, when the number of half waves in the
longitudinal direction is small, it should be kept in mind that parameter
£ satisfies condition (792).

If it turns out that the minimum of the right side of Eq. (793)
occurs with a valuc of parameter E which corresponds to m<l, this means
that only one half wave forms in buckling in the direction of compres-
sion, 1.e., the critical load should be found by the formula

(794)

AtV X
- “I 4 'n$:(§)+7LWt(5)'

cr

where parameter £ again 1s determined from the condition of the minimum
of the right side.

It also is of interest to cbtaln calculation formulas for determina-
tion of the critical force of a three ply strip with a comparatively
thick filler layer.

In this case, it should be assumed that g+» and, consequently, ac-
cording to Eq. (793),

- ().“‘5(3 ‘ e
o — bt S 1) g o (795)
Icr ‘3 g — ittt ) b‘ L'(’“'
T e

Correspondingly, in the case of soft thick fillers, when one half
wave develops along its length 1in loss of stability in the direction of
compression, according to Eq. (794), the critical load is detcurmined by
the expression

A0 e
Top= —5'= + 5} EiGyy.

(796)

Stability of hinge supported plate during compression in one
direction. 1n compression of a rectangular plate in one princlpal di-
rection of anisotropy, differential equation of stability (786) takes
the form

e 4

¢ [ U
D" o+ 2 (D3 208 oo + DA S5 —

ayt
: AN r 2
— L) (K, S 4K, D5 )+ R Qo= —T S (797)
By substituting the solution in Eq. (797) in the form w=A sin /245

Ax sin ny, where

mxu nx
A:.: " ' "m\—

b (798)
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for determination of the critical lcad, the following expression can be
obtained:

B4 B e+ £ g ()

DD 32
];r DA+ X

+2/(D)+200) o4 K1 g, 3) (799)

It 18 easy to see that the smallest value of the right side of Egq.
(799) occurs with the smallest value of parameter n, i.e., when, during
buckling, one transverse half wave forms n=1l, n=n/b.

For determination of the critical load, the following formula can
be obtained

r =Y o [oP (R + (5 me+ ]+

3
+2(08 +208") () + 540, () (800)
with
max ¢ M_:“ q ¢ K, =n? . E,
a “‘,'EW(T» +4uw TTW“nﬂ'%uf’%(a' (801)

Parameter g again 1s selected from the condition of the minimum of
the right side of Eq. (800).

Condition (801) must be kept in mind in the case of soft fillers.
If 1t turns out that m<l, the critical load must be determined by Eq.
(800) with r=w/a.

Axisymmetric wrinkling of bearing layers of three ply cylindrical
shell In uniform axlal compression. We now consider axisymmetric buck-
1ing of the bearing layers of an orthotroplc cylindrical shell in uni-
form axial compression (Fig. 96).

Because of symmetry, a unit strip of unit width can be considered.
Because of - the curvature and elasticity of the filler, the bearing
layers are kept from buckling by a double elastic base as it were and,
consequently, according to Eq. (790), the differential equation of /246
stability can be written in the following form:

t1y dbr K, dtp ENA

- E - 2y
R B k-2 U LY Yy (802)

By substituting the solution in Eq. (802) in the form w=A sin
mrx/%, the following expression can be obtained for determination of the
ceritical load:
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Fig. 96. Stability

of three ply cylin-

drical shell in uni-
form axial compres-

sion.

YRV ]+£'-M§)-
(<) ¢ (803)

The smallest value of the right side of Eq.
(803) ocecurs with

ma &/ £, 48£{"
T} Wma-d#g;;;m (80U)
[

and it 1s determined by the expression

» 1) ]
Tp=2] o0 [Eqm 2] kg (809

Parameter £ in Eq. (80%) is determined from
the condition of tle minimum critical force.

In the case of a cylindrical shell with a
quite thick filler layer, the critical load 1is
determined by the formula

Tcr.-,uzl/Dﬁ”(E.u-}-fg;;gi)-}-%i, (806)

where parameter u 1s selected from the condition
of the minimum of the right side or as the posi-
tive root of the equation

61, G} " 8,

‘- DK, * T op\NEiR? =0 (807)
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Appendix 1

VLASOV FUNCTIONS Ol'ch yccos ky

ympp A=y
[X] G,3 0,8 0,4 0.b 0,8 0,7 0.8 0,0
0 { 1 ] 1 ] { [ | t
005 | 100119 100115 1,00100 1.00100 100088 1.00075 1.00058 £.00040 100047
040 | 1.00405 £.00480 1,.00400 100419 100081 £.00320 100253 1.00179 1.00002
045 | 101119 1.01084 101027 100048 1.0084 ¢ 1.00720 1205071 1.00402 100200
0.20 | 101087 101925 1.01823 1.04681 101500 101273 £.01010 100704 100350
0.25 | 103108 1.03012 1.02850 $.02025 102334 1.01082 1.04064 1.01085 1.00540
030 | 104487 1.04340 1.04144 1,03782 10360 102845 1.02237 104518 1.00747
035 | 1.00122 1.05028 106503 1,05050 1.04568 1.04857 102018 102053 1.000680
0.40 | 1.08020 1.07704 $.07.330 100726 1.06052 £.05008 L0847 102019 LONT7
045 | 1.10184 1.09850 1.00202 10805 107545 o8 1.048aG8 1.00227 £.01373
0.50 | 142622 112100 §.11407 f.10010 1.00257 107727 1.05026 1.03864 1.01037
055 | 1.45334 1.44812 44770 142726 1.41109 1.00277 107052 104508 101644
060 | 1,18334 1,46500 L0000 f.15149 $.402053 1. 10048 108244 10050 1.04679
05 | 1.21620 1.20850 148508 1.47782 1.40497 1.42727 1.09478 105709 101610
0,70 | 125209 1.24280 1.22759 {20620 14707 1.44608 1.40747 10045 101420
095 | 1.20103 1.28044 4.26203 1.23686 1.20470 1.16580 {4200 1 06850 1.01078
080 | 1.33315 732035 1.31247 120004 Eaif i 148629 £.03305 1.07370 £.00000
0.85 | 1.37852 1.36358 1.33877 120046 f.26044 1.20746 114576 £.07579 090805
0890 1 142730 140093 138117 134123 1.28043 1.22018 145798 10774 008811
005 | 1,47054¢ 1.45048 1.42627 1.38020 12167 1.25126 1.160514 fN7728 0,.07582%
100 1 1,53530 1.51233 1.47417 142127 130418 1.27000 f.4502 1.07008 005040
105 | 1.50404 | 1.56855 1.52485 146440 1119180 1,29428 148072 107046 03040
100 | 160844 1.02831 1.57849 1.50008 1422040 fa81t 140780 1.06310 (X TEL)
145 ] 1,72508 1L.u0168 153501 1,500 § 4000 143008 1.0042) 105204 N TETHITY
i »:2!) 1.79704 1. 15876 1.60400 {60692 1.40441 16127 120804 104844 [N R
125 | 187307 1820714 1.70717 160724 103143 138174 1.20001 1.02003¢ 0.81423
1.3 1.95427 1.90467 1,822 1,710 £.50%00 140114 £.20005 09077 070800
1.35 | 203058 1.98376 1. 80180 1. 70045 10004 [ LU 1.2006 4 097040 0THTR0
{40 | 242086 200714 1,96306 1.82247 154008 1.430064 1109809 093710 MBHTTY
145 | 222520 245493 2,008 1.88106 .68 1.80012 118608 0,80800 0,007
1.50 | 2325849 2.24735 241823 1.04154 t. 7210 .00 128 1.47049 0.85242 (1% BT
£.50 | 2.43232 234450 2.20045 200206 702718 147177 114047 079004 0, 4.1000
1.60 | 2.54455 2.44603 2,28618 206738 L7U074 1,417822 L2200 0,73 (UM
1,065 | 2.60282 2.00184 237040 243259 LRITH . 18419 108050 0.66096 TR N4
.70 | 278704 286640 24089 240922 180663 1.:4926 105017 OONIR0 L1087
1,75 | 244887 2.78447 255015 224707 1.2 1..7480 1 HHG8 0,50151 001240
1.80 | 3.056725 2490828 2,665 234042 103163 143464 083 040028 BN MNL
1.85 | 220288 3.03803 2,760:34 2400633 1.96405 1.44804 088713 020545 0GR
190 | 33506214 a1 287700 24774 1.98802 14271 081500 047202 --047 928
1.95 | 301750 331625 2750 2.54802 2.01203 1.1U887 0732608 03872 — 065472
2, J.08722 3.46521 3.4050 2621146 2,0:4272 1.30327 0,639406 - 0, 40086 <877
205 | 380736 | 262108 320500 26062 204957 1.969 053452 | —0.27303 | —LOGND
240 | 405320 3,78413 3.34873 2. 76610 206208 120741 0AL1704 L A0164 LI TR
245 1 4.25047 395463 3.47658 283845 2064970 1.20566 0.28606 | —0.64673 - LA
2,20 | 445782 443282 3.608u0 201044 2070 1.43366 0,1 4065 LB NI K - LRITAS
225 | 467565 431907 3.744¢08 298160 206814 1.05000 —0.04029 —1.08078 —= 20440
230 | 490460 4.51360 388406 300165 200760 0.095520 —0.40741 — 1,070 -~ 241147
235 | H44503 4.711682 4.02022 3.42007 2.03069 0.84700 - 039224 - 160089 =2 T30
2,40 | 539760 4,92896 447777 318702 291362 072474 — 060060 e LLU K] ~=JU88(0
245 | 566200 515044 4.33024 3.25400 { 97850 0.58741 ~—0.8:1882 —2.21407 —~3,4870
2,50 | 594163 5.38157 4.48693 334327 1.93363 0.43380 - 1,09308 —2,55105 - 385212
2,55 | 6.23417 562271 4.64756 237186 1.87801 0,26279 —1,36944 --2.04021 —4, 26847
2,60 | 654150 587428 4.81216 342601 1.8107!¢ 0N7311 —1.66944 —3,20070 — 4. TO820
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Appendix 1 continued

ORIGINAL PAGE IS
OF POOR QUALITY

K
vepp h > ’

[ K] ! 0,3 0.3 T 0.4 0,5 ' 0.8 0,7 o8 0,0

{

2650 | 6.80398 6,43060 4,98003 34770 3065 — 0,406 — 0042 ERIT e
200 | 720271 | 641007 51520 1.33 t : }u‘éﬁﬁ ok “.'z‘:":"-z‘. i 1',':?1: ) -371';".1'»23
275 | 155808 6.69508 JutaB84 300225 152778 | —0.062135 | ~—272083 | —-A40266 | 640200
289 70437 6.002214 6.50817 BAUHHG £.32000 | —O88947 | 343150 | -5.4tons | -6 70006
2.85 | 832286 7.30164 560118 362108 L2000 | —1.20035 | —3.56004 | - 508700 | - 727000
240 | 873305 762198 587735 3,6:8082 1.0u831 — 158400 | 400008 | - G208 | —7.800677
;"&!’; 3 (‘3?3{;,; gggg’{(‘) 3'9( ag.'!g 5:.82889 XU TR{]) —1,80062 —a-n4008 - 6, TWHS —8,40G720
4 \ 3002 W20 364812 0.71219 — 228737 —5408260 ~7.42379 --9, 4187
300 | 1000286 8.407300 6,45230 483628 048441 ~3,71210 -~ 50827 -~ 808220 - 0,75002
?'") 1050834 9005457 6,64877 J.64226 023122 3474 ~l;.27241 ——8.714‘..'7' - m.v:wn
.4.'1.: n.n'm» 9,4454) 084114 3.54787 — (04010 — 60827 ~ 892636 - gnnn | -t
'l.!‘) 1.1 .90.. 0.85612 7.04664 3.52283 — (15877 ~-4,20:188 - 7.62245 | —10.26660 | -- 1180808
320 1,4438.}5 10.28102 7.24713 345464 XL - 478071 —836114 | —1LO000 | - 126000
:!.:ug 12.84227 10,72302 7.44833 336898 | — 4,070 | —~540113 | —%44532 | - 1400202 | 43375080
:M.) 13.47560 1448420 764028 J.20401 -, 18420 — 06743 —0.07597 | — 1277050 | 145447
Mg 14.14000 | 11,60257 TH4080 301361 100244 |~ 678243 | —10.85519 | — 1108540 | — 1LDARTY
:13‘(; :gm;: :2”1‘.";9:3 gg’z:u&! i%‘.’?’? —-2.4:315: — 754760 | 1L T8408 - 1508202 | - 1575530
. 26755 246 265115 | —2.9541 —~ 830602 | ~12.76488 | — 1061024 | --10AHT2MG
3,55 | 1033465 | 4321140 | 844048 260710 | —3.53263 | —0.24202 | — (307270 } — 466G | - 1700008
g i) mih | wmms | ) Cume ) edm | Sl i S
i e WA 2.42 — 4,840 —14,47270 | —10.032008 | —18,77066 [ 9006244
.:;i': :gggt;gf : é .2(1}227‘ g(:l_;é:: ’?‘ :&tﬁx -«5.5;68& —{2.23308 | —17.23481 | — m.m'):m:! - 10.877;!:‘!
375 | 19.70175 556474 . A8 — 637160 | — 1336262 | —18.49026 | —2084684 | - 20,60530
.;.s() :50.?_(»(;;‘.‘.) 16.20671 1.34800 11353 — 722034 | —14.50200 ——19.31:!5: - 22.32(2:;3 - :l..'-m;ﬂ:\
385 2 3' . n}.'..ﬂ 19{”},9.} DABNIG 72970 | --B45323 | —1583678 | —21.20435 | --2%46200 | - 2228832
.50 :;f..s.,.3:l7 17.56755 9.64113 020088 | 9447050 | —17.48820 | —22.64746 | —24,70667 | - 2305322
3,05 | 2397654 18,28412 09,7750 —~0,23809 | —10,21636 | —18.62064 | —24.15656G | — 2507280 | — 278840
400 | 2545252 | 1902502 9.80541 —0,79750 | -—11.36432 | —20,13082 | —25,73036 ; - 27.26153 —24,48803
4,05 | 2639007 19,70378 9,00085 — A8 | —1250510 | —20,74072 | —27.06852 | - 28056850 | - 25,04509
490 | 2707724 | 205883 | (00Re8A | -20s8E | - ER0NART | WBANGGG | 00700 R
445 | 2003144 21,4104 1045386 ~§.s:m.n - l.')..'r.#zu _-‘5‘7’]!'{":’(4’2 - :{0.1-: ;07 : -~:: l’ .r!..' { ':l -— .:t: _} ;:‘f';"
4.20 | 30.45215 22,2002 10.19930 ~-3.6:3480 | —148.83708 2741242 | —=12.0750 ~ 00825 | — 26,7820
4.25 | 31,9408 23445189 10,2280 —4.01840 | —18.40080 ~30,40072 | ~34.58377 | —34.25622 | —27.40385
4.30 | 335042 2404677 1024372 —5.47874 | —20.47287 ~31.4058¢ | —30.58787 | —35.22708 | —27.0000)
435 | 3543001 | 24,084 1047714 —6,52477 | —23.01142 —33.30873 | —38,50435 | —I6.04802 | 207230
4,40 | 3635189 2596212 10,10876 —7.06070 | —23.97053 -35,71425 -40.651518 —~37.84981 | —2783514
445 | 3864871 2?.03090 10.00345 —;8.8031! —-ZU.(}‘;«'M' -—-/:g:’g.:)gé‘! —f;zgl!),m‘: ‘&!8:‘,{;5;;% »’.E;.:‘.S!S‘It\;
4.50 | 4053200 | 27.98128 0.858b4 | —10.2272¢ | —28.27652 | —A40.695 —45,01232 | —40.36686 | —I7.6830¢
4.55 | 4250053 | 20,0450 0.66067 | —11.67000 | —30.63088 | —43.30020 | —47.27600 | — 4156483 | —37.04 41
460 | 4407849 | 3043784 943405 | —13.23076 | —33.44555 | —46.0880 | —AD.50440 | --4270045 | —26.04500
An5 | 4074382 | 3131717 044207 | —14.01460 [ —3580794 | —40.00825 | --51.06047 | —ALT0OT | B0
4,70 | 49.01685 | 3242555 880110 | —10.72084 | —38.63368 | —52.45940 | —51.37302 | —44.79018 — 2550430
475 | 5139724 | 33.L7085 8.30067 | —18.68502 | —A1.62849 ——.’:g.ggtgg —-56.8‘.'!(5}03 —-’.g.n:;:_;z —%'.. ﬁ(‘m.
4,80 | 53.892u1 | 34.84068 702423 | —20.78880 | —4480331 | —D58.6V220 | —5931508 | —46.54 — 2323430
485 | 5650087 | 36.40803 738001 | —23.01831 | —48.46363 | —0240867 | —61.83307 | —47.20746 | —20.745:30
400 | 50.24035 |  37.40200 6,75706 | —2547016 | —-51,71010 —05,78787 | —061.37441 —AT8U11L | — 1090656
495 | 62.44727 38,73209 6.0489 3 —- 2808070 —-95.2 3889 —-gg.-zz'i.()g —-uggglzsbg - 23;{!){1; 93 — : Z .3(:925
500 | 6542547 | 4009504 6.2490. ~J0.88247 | —59.45236 | —T73.4%258 | —00.48465 | —48.50659 | —15.04340
5,05 | 68.27512 41.40270 435008 | —33.87777 | —63.64730 —71.52139 | —72.05414 | —A48.59207 | —12.09790
5.40 | 71,57600 | 4292307 334535 | —37.08500 | —68,07572 | —81.74089 | —74.60230 | —48.47601 | —10.01227
545 | 7503430 | 44.38708 290358 | —40.51580 | —72,74439 | —80,40007 | —77.12430 | —48.03002 | ~G.00642
520 | 78,65823 4588321 0.07890 —44.00400 | —T7.66750 —0,64803 | —T79.61200 | —47.56003 —2.03484
525 | 8245207 1 4741136 040070 | —18,10501 | —82.85007 | —5.28195 | —82.04771 —46.71480 1.20455
530 | 8048845 | 4807055 | —102328 | —52.2002 —88.JU8G0 | — 10000677 | —81.42003 | —45.,7876 576784
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Appendix 1 continued

“m—'—
y=pph
0.1 0.2 0,3 0.4 o8 | em | aa 08 | oo

535 9050000 51.61283 —3,060148 | —50,75000 | - 94048256 | —10500010 | —86,70010 | —44.42764 10, 78605
540 | 90953191 52.47881 — 044449 | ~-61.51903 | —100,08540 | —110,46065 | 8800208 | ~42.33377 L0982
545 | 0651002 5H3.82515 —~T 46702 | —66.59400 | ~-100.42508 | —445,42041 | —00.00822 | —40,40782 2227708
550 | 154,30482] 5540700 —-D,68017 | ~72,00180 | —113,080620 | —120.81621 | —02.91108 | —137,60121 27.5797¢
5.55 | 100.20047|  57.48500 | —12,73019 | —77.74550 | —120.05302 | —128,32440 | —~04.067071 | 3400745 | 2h86u50
680 | 114,56230| 58.91049 —$4, 73700 | ~—RIB8201 | —127.40232 | —132,00234 | —96.27717 | —314.44003 43,5050
565 [ 12005493 | 0036435 —~47.00028 | —D0S0443 | -~ 43008004 | —1147,35854 | —07.0580¢ | ~27.17860 hdAnst
570 | 12580084 6240272 —~20,73416 | —97.31680 | -- 143.42770 | —143.68061 | —08,80368 | --22.68420 6060800
5,75 1134832501 0447252 ~24.4280¢ | --104.067004 | —150.54511 | —149.68508 | —00,68114 | —{7.61842 00001
5.80 | 138.14248 0505452 —27.81148 | —112,47794 | —160.35530 | —155,78194 | —100,26170 | — 4104530 8U.27R4)
8,856 | 144.74585| 67,73731 ~34,79909 | --120,76247 | — 1649.55943 | —161,96882 | —100,50782 ~562117 IR KA
5.00 | 154,60326] 6952550 ~30,41890 | —420.55004 | — 47017998 | —168.22513 | —100.,48970 1.38808 102.60808
595 | 15892104 7434337 ~=40,78508 | —130.82045 | —180.21854 | —174.54715 | —V0.8(289 043147 §15,30864
6.00 | 166,48309 7300368 —A45.82079 | —148,74309 | - 19969647 | - -180.89052 | —8.80312 17.05012; 128.02000
605 [ 17441745 | 74.86061 ~BL2TUB | --159,202:38 | —240.61570 | —187.20300 i ~907.41200 25.00646 1 14284448
640 182,72458 |  76.60000 | —57.03040 | —170,27840 | —220,90503 | — 19363923 —0543034 | ATA0140 | 45640024
6.45 | 19141508 | 7843240 | —GRAS4 | — 18100676 | — 28383714 -lm).am:!?.‘t; —02HHHU8 ARG26T | 471, 76695
620 120052012 | 8002277 | —70.26384 | —104.30276 | —246,16306 | —200.20763 | —BUGALIR | GOJRIIR | N7, 0280
6.25 { 21004462 8167021 —T7.58048 | —207.00147 | —258,9G850 | —242.53110 | —83.73062 7447003 | 20490074
6,30 | 220,04596 | 83.27077 —~80.4 1634 | —220,95081 | —272.27508 | 2865007 | —Ri.08703 8761647 | 222681065
6,35 1230,74236 | 84.92843 —04.015410 | ~ 216.20006 | —~286,45174 | —224,00840 | —T75,72658 10300660 | 248.57028
6.40 | 241.38660 BO.286G48 | ~— 10290777 | - 20046020 | — 3042874 | --230,48348 | —6.30725 149.20000 | 20068610
640 | 203447721 B7T77983 |~ (1282001 20840668 | - HA6HI98 | - 230,770 | —62,14814 13700080 | 281,22:361
6.00 {264,75357 BY.O6289 | 12344435 | - 28407720 | - 33061047 | --241,42368 | --53.77017 10581043 | 301,851
6.55 | 277.64452 1 $0,20205 | — 43444101 | 30351245 | - BI6.94430 | ~246TREDE | = 4A4ATIGL [ 17624467 | 3250084
0,60 | 290,35046 | 9HAB13T | —146.24000 | --322,27367 | —-36294656 | —251,47544 | —I300000 | 19760150 | 34640653

222




Appendix 2

VLASOV FUNCTIONS Oziah yeein ky

Axs A
yepf ’
0.1 0.2 0.4 0.4 0.5 0.8 0.9 1.8 0,0
0 0 0 0 0 0 0 0 0 0
0,05 | 000025 | 000050 0,0007) 0,00100 0,00125 0.001M50 0.00175 000200 000225
040 | 000100 | 000200 0003014 0.00401 0,001 0.00401 0.00701 0.00804 0.00001
045 | 000226 | 000452 000677 0.00003 004428 0.01:354 0015678 001808 0.02027
0.20 { 000403 | 0.00803 001207 0.01609 0.02010 0,02410 0.02809 0.03208 0.03601
025 | 000634 001262 0.01892 002522 0.03449 003775 004168 0.00019 000000
030 | 000012 | 0.01820 002737 003645 004551 0,03452 000348 07238 008122
035 | 001250 | 0024 0.03743 004984 006214 0.07446 0.08064 0.00871 0410606
040 | 001643 | 003282 004017 006544 008160 00976 041351 042021 044409
045 | 002003 | 004182 000202 0.08331 0.40:382 042412 0.14417 0,16:392 048315
0,50 | 002004 | 0.05202 007787 0.10353 0.42802 045309 047808 0.20204 V2006
055 | 003178 | 006347 0.0045%¢ 012617 045728 0.18724 024711 0,24626 027404
060 | 003817 0.076224 0,11308 0.15133 0.18814 0,22427 0,25960 0.20309 0.327:33
065 | 004525 | 009032 0.43500 0.47012 0.22247 0.26559 0,30619 034620 0.18474
0,7u | 00563056 | 040586 0.45813 0.20004 0,26012 0.30932 035701 0.40:200 0.44601
075 | 006162 0.12289 0.18340 0.24401 0.30530 0.35768 0,41234 046434 0.51384
080 | 007097 044149 0.21110 0,27037 0.3458% 041011 0ATLTH 0,530:38 0.58560
085 | 008110 046170 0.24147 0,31886 0,39423 0.46076 0,53500 0,6012 0,06214
080 | 000226 | 048378 0.27380 0.36161 0.44650 002777 0.60470 0,67687 074300
085 | 040430 | 020765 0,30613 0,40782 0,50284 0.59331 0,07844 0.75745 0.82062
1,00 | 041732 | 023348 0.3472¢ 0,45765 056343 0,60350 0.75709 0841304 002057
1.05 | 043140 | 0.20138 0.38847 0.51427 N,.02843 0,73870 0.84081 0.93367 1.01624
140 | 044063 | 029148 0.43280 0,56891 60813 0.81891 092080 102044 1410664
145 | 046306 | 032404 0.48051 0.63075 0,77.65 0.00433 127413 1,130437 1.25507
120 | 048070 | 0,35880 0.53174 0,69704 0.85230 0.09531 1 12400 1.2365. f.328
125 | 049971 039634 0.58673 0,76801 043727 1.00193 1,22054 1.34797 144530
130 | 022046 | 043662 0,64574 0,84389 1.02784 119444 1,34087 1.40408 1.56378
1.35 | 0.24214 0,47087 0,70888 0.92198 1.42423 1,30306 1.45814 1,G8072 1,68639
140 | 026573 0,52627 0,77650 1.01454 1.22679 1.41802 1,58152 1.71400 1.81306
145 | 0,29106 0,57598 0.84881 1.10:386 1.33570 1.53057 1,71100 1.840608 1.94:351
1,50 | 031820 | 0.62004 0,92647 1.20228 1.45140 1.66793 1.84698 1.98457 207764
1.55 | 034720 | 068627 1.00877 130711 1.57407 1.8033: 1,98033 242764 2,24753
1,60 | 037879 | 0,74791 1.09791 1.41988 1,70557 1.94768 2,14005 221775 2,35726
165 | 041485 | 081252 1.40142 1,53737 1,84183 209031 2.20377 242003 240778
1,70 | 0,44759 | 088229 1,20154 1.66355 198761 2,254317 2,45612 2,58700 264343
1,75 | 048584 | 095683 1,30855 1,79764 SAMT75 2/42040 2,02522 2,74981 2,79035
1,80 0.52674 1.03635 1.51269 1.0400¢ 2,30469 2.50488 2,80121 291704 2,93861
185 | 057048 112149 1.6341v 200147 247672 277782 208400 3.08854 3.08749
1.00 | 0.61722 1,24222 1.76360 225150 265839 296955 317387 3.2094 3.23656
105 | 0.66719 1,30907 1,90134 242154 284904 317033 3.37049 344300 3,38402
200 | 0,72055 41237 2,04787 260176 3.05189 3,38038 3,57409 362530 3513202
206 | 0797755 1,52252 220374 2,70268 3,26459 350002 3,78436 381045 367660
210 | 083840 1,63995 2:36944 299484 3,48864 3.82017 400143 3,00789 381872
245 | 090336 1.76511 2.54569 320884 3,72431 4,06818 422406 448715 305643
2,20 0,97267 1,88846 2,713274 3,43527 397258 431769 4.45501 433755 408779
225 | 194665 | 2.04052 2,93146 367473 4,232014 457727 4,09108 4.56849 4,21548
2.30 | 1.42552 218176 3,44257 3.02784 4.50626 4.84735 4,93316 475013 433445
235 | 1.20963 236281 3,36653 419535 4.79341 5,12808 5,18070 494875 44456
240 | 4.20082 | 2.46953 360432 447788 5,09474 541955 543365 513634 454401
245 | 4,30491 2,706614 3,85652 4,71623 541057 5,728 569128 530518 463268
250 | 149083 290005 412400 500106 5,74152 6,03501 595334 550145 4,70748
255 | 160538 | 3,10703 440764 542326 6,08803 6,3502 6,22000 567670 476714
2,60 1.72108 3.32648 4,70827 577353 6.45077 6,69433 €,48703 584537 4.80989
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OFf POOR QUALITY,
Appendix 2 continued
q
ympd e
X 02 | o3 0,4 0, 0.8 0.7 an 0,0

265 | 184422 | 355078 | 502078 0.14280 683004 .
270 | 1907547 | 380785 | 530428 6.51202 7.22044 ;33%'» %33:; 2‘1‘312 At
275 | 241612 | 407141 | 572150 6.04106 7414042 7.78407 7.30679 6.20760 ARG
280 | 220302 | 435447 |  ©.40003 737455 BO72TH 8.44310 7.57025 GA2509 477040
285 | 242217 | 404880 | 650047 782777 8,52342 8.53160 7.85128 653768 4,60050
290 | 250058 | 400482 | 02440 830580 8.00:352 R.93019 813014 6.6:3308 450218
295 | 270982 | 530034 | 737280 8.80858 .48207 0.33837 8.38683 6.71078 AAGARD
gzg 2.?:3:: 505040 | 784730 033705 9,00272 9,75500 864752 6.70667 428144

5 | 416325 | 603401 | 836078 080247 | 1052282 | 10.48152 890122 670006 o
310 | 337808 | 043586 | RB7010 | 1047398 | 1107401 | 1061044 0.14682 680504 gm?‘.w
345 | 360835 | 686148 | 9Amic | 1108862 | 4184638 | 11,0580 0.38181 6.75247 3515040
320 | 385219 | 731324 | 1003170 | 91.73180 | $2.29008 | 11.50684 9,00460 6.72740 146703
325 | 411924 | 770220 | 065728 | 9240050 | 928572 | 1198108 9.81289 6.61746 276700
330 | 448681 | 830034 | 1131807 | 34044t | 340550 | 1242010 | 000460 G.00038 2000
335 | 467051 | 883006 | 1201548 | 1385634 | g4.45030 | 1248280 | 10.17661 6.33932 1.79702
340 | 500576 | 9041007 | 1275213 | 1463400 1 484065 | 1331805 | 1032745 6.42407 1.200068
345 | 532138 | 1001552 | 13.52915 | 15.44874 soida0 | 1381410 | 1045202 585040 ORTHH
350 | 6.07247 | 1005700 | 1434944 | 16.30103 m.z‘ms 1427076 | 1055023 554161 | —0.43012
355 | 604522 | 1933082 | 1520444 | 1749400 | 1700010 | 1474310 0,61643 5.4606: —0.0284
360 | GAMAZ | 1205707 | 1642704 | 1842030 | 1780720 | 520216 oot | knse | 23 7o
365 | 68693 | 1282013 | 1708800 | 1940040 | 1860628 | 1565505 | 1064100 429502 | 274754
370 | 730881 | 1002827 | 9840025 | 2042802 | 1942874 | 1009071 | f0.50452 365016 | —37537
375 | 778279 | 1448402 | t0u7192 | 2040544 | 2027004 | 16053304 | g0.40020 200863 | 401184
380 | 828613 | 4530007 | 20.20820 92,1050 2443508 105203 10,1479 290500 5
385 | 882000 | 16.34047 | 204m442 | 247485 | 2202788 | 1735631 | fo.4an 144056 | 742
300 | 03873t | 1736476 | 2273033 | 24108060 | 2291704 | 17.73057 9.87817 05308 | 8820t
395 | 008866 | 184303 | 2400088 | 2005702 | Ziseied | 18.10004 54608 | —CATTRN | - g0anR0
400 | 1062724 | 1957670 | 2543050 | 2727818 | 2481472 | 18.43325 044185 | —1.50201 | —{12.076.44
405 | 1130444 | 2077080 | 2080207 | 2805540 | 257804 | 1873579 845806 | —2.81880 | —13.84040
410 | 1202282 | 2205284 | 2842725 | 3008977 | 26.70443 | 18,00288 800152 | —4.10143 | —~15.72428
445 | 1278480 | 233u01y | 3004050 | sr.08202 | 2776260 | 1922000 743230 | 562710 | -~17.73110
420 | *59205 | 2482307 | 3073856 | 3343600 | 287758 | 19.41208 607480 | —7.2207 | —10.86500
435 | (444064 | 20232003 | 3352310 | 3475320 | 2m70meu | 19,5442 581126 | —B.05504 | —22.12482
430 | 1535879 | 2702118 | 3540033 | 3643378 | 30.83400 | 1962006 A8AB | —10.83187 | —24.52572
435 | 1632100 | 2960402 | 37.37210 | 3847967 | 30.87475 | t9.63404 373530 | —12.85880 § ~27.05750
440 | 1734308 | 3138809 | 23044560 | 3009246 | 3202155 | 19.57805 250027 | —1504334 | —29.72753
445 | 1842607 | 3326452 | 4162270 | 4087442 | 3396871 | 1944793 143875 | —17.30317 | —32.53504
450 | 1957496 | 2525221 | 4391034 | 4382018 | 3501540 | 10.23339 | —O0.37847 | 1991473 | ~2548022
455 | 2079078 | 87.35197 | 4631471 45,8448 1805376 1802768 | —2.00320 | —22,01604 | —38.57638
460 | 2208080 | 3957086 | 4883440 | 4784560 | 37.08047 | 1852241 | —3.80501 | —I5.50071 | —41.80653
465 | 2344685 | 4191487 | 5148143 | 01620 | 3840728 | 1800736 | —5.91688 | —28.58517 | —45.48286
470 | 2489493 | 4430080 | 5425004 | 5236240 | 3ugos82 | 1737461 | —B42772 | —I1867T5 | —48.6U652
475 | 2642868 | 4700577 | 5747411 | 5408484 | 4008625 | 1661284 | —10,53934 | —35.35806 | —52.34710
480 | 2805318 | 4v.76587 | 6023120 | 57.08382 | 400342 | 4570010 | —13.00333 | —30.06212 | —56.4100
485 | 2077440 | 5268206 | 6343774 | 50.56233 | 4194801 | 1465023 | —10.01128 | —42.989%03 | —60,05001
490 | 3150805 | 5576074 | 6680009 | 6241068 | 4281005 | 1344308 | —19.00006 | —47.4437 | —64.00407
495 | 3353372 | 5001070 | 7032348 | 06475653 | 43.64705 | 1205221 | —2243158 | —51,53051 | —68.25749
500 | 3657524 | 6243077 | 7401696 | 6747208 | 4440810 | 1047156 | —20,02000 | —50.45699 | —72.61007
505 | 3774028 | 6605954 | 77.88556 | 70.20885 | 4510814 8.08697 | —20,90282 | —61,02880 | —76.01670
510 | 4003462 | 0087076 | 8103085 | 7344531 | 4573447 608364 | —3406773 | —66.44922 | —B1.30440
545 | 4240241 | 7391028 | 86.18268 | 76.40094 | 46.27475 444000 | —38.53714 | ~71.52004 | —85.05421
520 | 4503300 | 78.40221 | 90.62792 | 7943470 | 46.72150 1.05677 | —43.32546 | —77.15346 | —00.58623
525 | 4775450 | 8264822 | 952780 224700 | 47.00005 | —080131 | —48.40307 | —83.04459 | —95.27008
530 | 5063687 | 8735073 | 10044788 | 8543551 | 47,2813t | —3.84637 | —53.01831 | —80.40574 | ~90.00063
535 | s168075 | 0237019 | 10523700 | 8860833 | 4736808 | —7.49733 | —59.75210 | —0U5,61030 | —104.74623
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Appendix 2 continued

OR'GINAL PAGE IS
OF POOR QUALITY

l--!-
yrp P
(X 0,3 0.9 0.4 0,b 0,4 0,7 0.8 0.0

5,40 56.91070 | 07.6.3381 110.50670 02.034568 4731137 | —1087637 | ~—05.00804 | — 102,287G8 | - 100407008
.45 0033213 | 103.48324 110.43603 9541072 AT000768 | —44.90206 | ~T2,577310 | —100,22650 | - t14.2200m
5560 | 6394794 | 10003432 | 121.00008 98.91506 4660378 | —19.20075 | —80.82400 | —116,42247 | — 1 18.9060%
555 | 67.54012 | 11520209 | 12804440 | 102.45201 46.10043 | —24,08805 | —87.04058 ' — (2387475 | - - 121,503
560 71.82202 | 121.70374 134.40549 106,04807 4520440 | —30.20760 | —DA.0386H | —~130.57687 | — 128.01040
565 1 7640530 | 12855043 | 141.04062 100,69961 4433370 | — 3494752 | —103.28465 | ~110.52141 | — (32,3886
5,70 | B0.63800 | 13577843 | 14708702 113,40008 4203872 1 —40.00601 | ~112,40830 | —147.7001¢ | —128.6047R
5,70 | 8527302 | 43,3888 | 155.22747 117.44637 FUABITT | --ATH8420 | — 12044770 | — 45040248 | - - 1408080
580 90,50455 | 151.40793 162.78995 12002652 3901172 1 —5AB2757 | — 1. 40874 | —-104,71508 | —144.32470
6585 05,30888 | 160.85070 | 170.67644 124,73507 JTHN2 | —62.52424 | — 14050288 | — 17302047 | — 14277401
590 | 101.54536 | 108,75738 178907147 128.56705 70400 | —T0.82680 | — 15242037 | —182,54188 | - - 150.8845
0505 | 10754084 | 17843434 | 18748040 132,40744 SENI6TT | —TOT0N87 |~ 16380804 | — 10105800 | - - 1560007
0.00 | 11085008 | 18800473 100.43830 130.24947 2840576 | —89.26214 | — 17580846 | -—200,03858 | — 15087086
6.05 | 120.60800 | 19840322 | 205,76154 | 14007052 | 2460028 | ~—09.50001 | —188,34430 | —2H0,30008 [ - 15704618
6,40 | 127,708062 | 200.35145 | 21547974 143.88649 20018897 | —1:0.46070 | —201,40600 | - 210.80454 | — 15885000
6,40 | 13500780 | 22087072 | 225,50060 147,65214 1550410 | —12247766 | —215.47546 | —220.32507 | -- 1H0.43300
6,20 | 14345286 | 23304514 23644162 158.30440 1024421 | --134.68693 | — 22048707 | — 2:48.85012 | — 15034748
625 | 160.54150 | 24570000 | 24741192 15500689 A27800 | — 14803720 | 24440282 | ~ 24836551 | - 1h842840
6.30 | 16041400 | 259.23u85 | 25853101 158.50074 778502 | --162.20010 | —258 84282 | - 205780210 | - {56.69459
0.35 | 17000452 | 273.73487 | 270,74273 102, 20604 CAT00 ) 47781007 | —276.48468 | —207.45080 | — 10422127
6,40 | 17971043 | 288.28900 | 282,760107 oAy |- 1700480 | - 1002064 | 20288200 | - 2760.26747 |~ 100201
G40 1 10042762 | ug.34214 1 20606237 PEXGTIER - - 2008810 | - HORMA0 | —HOSLL | 28004008 | -140,7047
6.50 | 200.20807 | 320.45121 NI RIZE R 17140087 ~JDURA08 | -~ Q0R,THETE | - SUNLEOBA4 | - 20080802 § — 43000
6,55 | 21124162 | 318.24050 |  1323.20540 17542019 —AONBE2R | - 2AR2THOR | —AT.21600 02400008 | - 432500710
600 | 22535086 | 35605004 | 337.20224 17672800 | D705 | -~ 268331830 | — 36508804 RUTKITRT. .3 I RAR PR
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O LA GiLy

Appendix 3

VLASOV FUNCTIONS 03-ah y-cos ky

Aead
yop P »
0.t 0.2 .3 0,4 0.5 0.8 0,7 0.8 0.

0 0 0 0 0 0 0 0 0 0
005 | 00000 | 005000 0.04100 0,04t 00408 004008 00407 0.041K 004005
0.40 0.40019 040018 040085 0400142 040067 000002 0,000 OARPINR (IXLA T4l
045 | 045058 G500 045045 N E1y8] o007 G499 044077 0,149%2 044923
020 | 020130 | 020118 0.20008 0.20070 02000 0 AD080 040037 019877 04480
025 | 025258 | 025220 02510 0254145 i ] 0.24977 024875 024757 024624
050 1 050438 | 0.30307 039329 023 0.301 10 0.20000 020783 020579 0.2 40
035 | 035697 | 0.35634 0,35532 035470 05473 0.34034 0.34852 034328 0.8
040 | 0A1042 | 0.40943 0.40780 0.405H0) 0.40250 0.30898 0.39475 0.21K000 TRCHER
0.45 040480 0.40340 046110 045782 0.45300 0.44848 0.44243 043551 045006
050 | 052045 | 051849 0.51525 054071 0.50490 0.40782 0.48050 0.47900 0, 46022
055 | 057727 | 057466 057029 056422 0,55042 0.54695 0.5:2582 0.52308 GSHORTH
060 0.6:30550 063207 062036 0.61840 0,60822 050584 008132 UMY 00300
005 | 069527 | 060087 068354 0.67333 0.66027 0.04443 0432586 C06D 0.58088
0.70 0.75672 075840 0.74101 072004 07125 0080205 0608032 04271 064295
075 1 082000 | 08108 080158 0. 78550 0.76517 0.74050 0,71157 06786 054198
080 1 088527 | 087677 087154 084333 ONIR00 078774 075240 071248 66700
085 | 005206 | v.u421 092514 0.80182 O.R7105 0183444 0.79180 074340 06872
00 | 402236 | 1ol 0.080:373 0,072 0024853 088046 0.82046 077175 050778
005 | 00451 1,07ty 107512 1.02104 07774 092565 UB6518 0780605 073140
100 | stem | neann 112271 1.08243 103033 096994 084884 081877 071052
1.05 124694 1.22603 1.49244 104980 {06812 f.01{m0 0014 DRIGHO 073440
140 | 132758 | 130346 1.26.358 1.20843 1.1:1867 1.05515 005888 085101 0.73526
145 § 141039 | 138137 1.23704 1.27300 149229 1.00578 098474 086074 0.72034
1.20 | 140861 146620 1.41270 1.3:1887 1.24582 1.0:4483 1.0077) 086570 071145
125 | 155941 1.55212 1,490 1,40584 1.20000 147204 1,022601 0,86352 069070
130 | 1.63404 | 160408 1.57085 1.47380 1,85200 120739 104238 0.85075 066202
135 | 1.798270 | 1.73:301 1,6508 1.543140 1,40455 1,24047 1,05380 084790 BH26G
1.40 | 188508 | 1.83015 1,7:880 161344 1,45648 127104 106073 (LN TRCRAN
145 | 199310 | 193015 1.82666 168486 1.50768 1,288 1,06277 080438 052011
150 | 240037 | 203489 194731 1.75748 1,5075 132058 1 05947 0T 04665
155 | 220261 | 200738 201072 1.8100 160714 1.34488 1050130 0,73067 09343
100 | 224720 | 2.25088 240888 190705 1.6:5648 1.3635%, 1.0:4586 0.68170 01008
165 | 247338 | 237210 220046 1 98087 1.70144 1,37582 101281 062230 0.24480
$.70 | 260748 | 240417 2,895 205716 1.74600 1,48404 008327 00607 0.10701
.75 | 274774 | 20423 240064 213422 1. 78862 1,188:34 0.94578 047429 | —0.01172
180 | 280286 | 2.40358 2.20:354 224195 1. H2888 1.38673 089977 08372 |~ 4450
185 | 306832 | 280142 263575 2,20029 1 86642 1.37902 0.84451 028149 1 —0.20174
190 | 320088 | 203501 275146 2,35880 1. 0102 136475 0.77930 016592 | - 046
195 | 337703 | 348460 287060 244781 193249 1.34337 0.70353 008719 | - 063060
200 | 355458 | 3.34005 299349 252687 1.05050 1.31423 061646 | —040080 | - 0.82402
2,05 73956 | 3.50301 3.40058 2.60579 198274 1.27660 051700 | —0241: | —1.03427
2.40 gasaso 367232 324078 268444 200116 1.22006 040472 | =048 | --126210
245 | 413668 | 384875 3.38350 2,76235 2,01429 1.17338 027840 | —0.62041 | —1.50822
220 | 434969 | 4.03257 3.52107 2 R85 202174 1,.10616 03723 | —0.83820 [ —1,77:310
225 | 457200 | 4.22416 166240 291607 202209 102741 —0.01970 | —1.00083 | —2.05820
230 | 480007 | 4.42376 380763 2000 201670 043628 | —0.49348 | —1.31303 | 236347
235 | 505016 | 4.43170 1.05659 306402 200292 0.83173 —~0,38546 | —1,58087 | —2,68066
240 | 530057 | 484849 410957 1,13409 1.98974 071200 | —050576 | —1.57027 | —303718
245 | 5570i0 | 507431 4.26623 3.20344 1.494925 057873 | 082642 | --2.48223 | 3407606
250 | 586210 ( 530053 442687 3.26892 1,90775 0.42799 ~1,07845 | —2.51779 | — 3.80055
255 | 645862 | 555456 450123 3.33009 1.85525 0.25061 ~1.35284 | —2.87790 | —A21674
260 | 646972 | 580082 4,75935 3,38001 1,70084 007230 | ~t685112 | —3.26355 | —4.65659
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Append.ix 3 continued

q
Ara s
y=pp »
0,4 0,2 0,3 0.4 0,6 0,6 0,7 0,8 0,9
2.5 6.79584 007504 493115 3.44247 1.71340 —0,43520 —1,97442 - 3.06758) —H,12000
270 743703 0.35242 510002 349079 1,02204 -~0,30424 - 332440 —A44 568 —5,608014
2,75 749655 6.£4058 528546 3.503325 1,.51534 ~0.01629 —2.70189 —~4.584008 —t) {2180
2,80 7.8720: 6.94009 546778 3.56006 1.39238 —0.81002 -—3,10842 —5,081494 -~ 06,6506
2.85 8.20730 7.25289 565319 350750 1.25157 —{,40532 —3.54584 —~H,01020 7,224
2,9 8.68123 157798 584188 3.01784 1,00168 —1.52563 —4,01547 —6,47010 —~7.80034
2,95 9.11510 7.04624 603314 3,62895 091124 —{ 88H.4 —~4,51876 ~-0,70203 ~8,42004
3.00 9.57047 8,20815 6.22724 3.63007 0,70866 —~2,27606 -—5,05752 —17.38707 -—0,05686
3.05 10,04774 863418 6.42342 3,62000 0,48225 —2,60907 -—5,03204 —8.04607 —0,71624
340 10.54843 0.01480 6.62183 3.09703 0.23028 -3,15889 —0,24701 —B8,73943 | --10.398050
345 | 11.07336 0.41081 6.81600 06177 ~0,04802 —3.654P2 —0,90000 —4681F | —11,40041
3.20 1162428 082242 102326 351114 —0,35758 —4,48003 ~7,50085 | —10.23253 | —11.82027
3.25 12,.20100 | 2025015 7.22737 344427 —0.68761 —4,76630 —8.33004 | —11.031) | —=-12.575602
3.30 12,80738 | 10.694790 742810 33,3508 —1.07412 538045 —0,42047 | —11.87028 | —13.33001
3.35 13,44242 | 11.45675 7.56047 325580 — 14,4800 —6,05250 —9.95143 | —12.74411 | —1441066
340 | 14.40859 | 11.63661 | 783242 343435 | —1.02814 | —6.76704 | —1083103 | —13.65499 | —44.91552
3,45 14800615 | 12,3500 8,03268 2,08386 —2.41663 —7.53249 | —11,76030 § —14.60255 | —45.72302
3.50 15,53905 12.65240 8,23112 281175 — 2404872 —8.435155 | —12,74103 | —15.58680 | —16.54197
355 | 1630772 | 13.18962 8,42657 261284 -3,02084 —0,22679 | —13,77574 | — 1060720 | —47.26710
460 17,41336 13,74719 861848 2,38479 ~—4.45440 --10.46123 | —14.86516 | —17.66339 | —18,4%6
365 1 1795784 | 1432640 8.80002 2425003 ~A4.83434 —11,4576% | —16.01041 | —{R.75430 | —19.0267¢
3,70 18.84:359 1492043 RO874NH 1.8:4200 —-H,h70043 — 2,873 | —17.20475 | —1087002 ] —19.80000
375 10.771499 1554702 040484 1.50314 —,36400 —{334T8G | 1847584 | — 20,0008 | —20.67251
3.80 20,7472 | 10492560 06.32871 1.13417 ~7.22211 —14.54800 | —10,70852 | —22,22414 | —21,479012
3.85 21,7625 | 1686075 9,4R736 0,72313 —8,44585 —1582244 | —21,18246 | —23,41778 | —22,26815
3.80 22,83704 4755345 9,63.323 026605 —0,44010 — 747414 | —22,62890 | —24.68042 | —23.034:0)
3.95 23,958177 18,2708 9,76776 —0.21881 |—10,20878 —~48,60574 | —24,138606 | ~2595365 | —23,77083
400 | 25,3565 | 19.01316 9.88877 —0,79086 | —11,25670 | --20,12331 | —25,71314 —27.24320 | —24.47204
4,05 26,38305 | 19.78177 9,9.392 —1,410908 | —12,58750 | —21.72760 | —27.35201 -="18,55125 1 ~—235.43082
440 2766204 | 2057702 10,08130 —208560 | —13.00673 | —2%42279 ~2005643 | —29.87301 —20,73802
415 29,01704 2139985 10,1488 282400 | —15HMBOT | —o521200 | —3082030 ~=330000 | —du42027
4,20 30.43847 22.,25023 10,49471 —3,63325 | —16,82051 —27.10023 | —32,66062 | —32,54361 —26,77024
4,25 3192756 23,4207 10.21578 ~A01527 1 —1844307 | —20,08057 | —34 Ah084 1 — 188206 | —27.475008
4,30 33,48928 24,03792 10,2089 —5,47673 | —2046644 | —31,18438 —36,52442 | —35,21501 — 2749080
4.35 3542021 2497600 1047433 —0(.52200 | —22,00400 | —33,38766 —A8,50101 | —36,0358¢ | —17.71408
A40 36.,84079 2..94430 10,4057 —7,65848 | —23.0033 —35,70350 | —40.64193 1 —37.83841 —27.82670
4,45 38,0384 7 26,94355 10.00072 —8,80020 | --26,04030 | --38,43518 —42,70222 —5}9.1 1504 27 81812
450 | 405225 | 27.97432 | 085641 | —10.22468 | —28.20054 | —40.68587 | —4500121 | —40.35680 | —27.67685
4,55 42,40703 | 2003708 9,66751 —~41,60820 | —3063r03 | —43,35051 ~47.20550 | —41.56000 | --27,38820
4,60 44,56C35 | 3043175 0,43245 —13.22800 | 3343880 | —46,15054 | —49.58444 —42,70082 | —26.9062
4,65 40,73528 | 31.25046 0,44460 1401103 | —10.80149 | —40.08027 | —51.95008 | — FNT8207 | —26.34 484
4,70 49.00875 12,42019 8.80054 —16,72708 | —38,62720 1 —562,45078 | —04 A0403 | —44,73877 | —25.50014
4,75 51,8955 | 3354402 8.309041 —18.68292 | —41,62283 | —H5. 34860 | —00.81814 —45,70843 | ~2447719
4,80 5J 8857 2484130 7.92303 —20,78504 | —44.70654 | —58.68340 —50,30666 | —46.52672 1 —23,23084
485 | 506,49994 | 36,40364 797944 —~23.04742 | —-4R.15772 | —6246105 | —61,82639 —AT230T T —21.74204
4,90 59,24067 37.30897 6.75641 —2547672 { —~51,71414 | —05.78156 —0B4.36824 | —47.80653 | --10.99464
4,05 | 62,11104 38.72870 0.04834 —_08,08304 | —55.47333 | —60,54706 | —G6 02416 | —48.23565 | —{17.4678D
500 | 6541025 | 4000199 | 524013 | —30.87066 | —DO.44TIG | —T346043 | —69.48834 | —48,50219 | — 1514204
505 | 68.24d454 41,4895 4.34973 —33.87409 | —63,064207 | —77.02282 —72,04822 1 —48,58808 | --12,090692
510 TLH7458 | 4202048 3,34510 —37,08234 | —068,07066 | —81,73482 —T74.50085 | —48.47241 —10,01452
545 75,02932 44.38410 2.22343 —40,51314 | —72.43051 —86.00810 | —77.41012 | —48,13608 —6.66598
5.20 78,65344 | 4588042 0.97884 —44.18105 | --77.006282 | —00,64251 | —79.60781 —A7.50714 —2.93471
525 8244813 | 47.4u872 | —0.40018 —48.10236 | —82.84640 | —95.27670 | —82,04319 -46,71222 1.20149
530 | 8642415 | 48,0084% | —1,92348 ~52,98761 | —88.30426 | —100,00179 | —84,41582 —45,57049 n76755
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Appendix 3 continued

R u—q—
ympp »
0. 0.2 0.3 04 0.5 1 0.6 0,7 0N 0,0
535 H8GI8 | 5055720 —~3.60130 | —n8.75312 ~ 044471 — 10500470 —-BB,T0408 | — 4440040 1078000
540 0404931 | 6247008 —0AAAET | —6LH652 | 008140 ] — 11046516 —-BREBORAD | - 42013204 {16, 28180
H4% 09,51024 | H3.82447 —TAMTE | -~ 60D0204 | - 10842200 ] —UHALML ] —-0006486 | - 4000633 SLLT6RT
6,50 | 10430004 | 5540520 -~067085 | ~-71,00040 | — 1308248 ] —120.82247 ] --02.00797 | - 32500008 28,707
505 | 10931016 | 57.40070 —{274078 | - -T.76030 | — 42000806 —1206.34031 | —04.08250 | - 3460170 INRGOY
500 | 114.55017 | 5800888 — 4473700 | - BI8TOTL | —127.33884 | —130.00873] —00.27454 | - RIR KK ASD0ONI
65,656 | 12005405 | 60,6280 —AT.00880 1 —00,30210 | —125,07790] — 43736504 —07.06570 | —27.07700 n2.AMIRY
870 | 12380683 | 62,40132 —20,73360 | —~ 07,3462 | —143,42450 | —143.67740 ] --08,80147 —224817N GOLMGA
N5 | 43482002 | 64,47822 —2442803 | — 10460842 | —151,64205 [ —149.68205] —00.67012 | - (T.61808 70400770
580 | 13843002 | 6585024 = 2781007 | - 11247588 | --160.35230 | —155.78100 | — 100.25080 14,04547 ROLTOHL
085 | 14474340 | 67.73018 3070946 | -~120.76017 | -—460.55661 | —164.90683 | — 10050610 ~5024068 0202674
H00 | 150,06008 | 6052401 —d6, 836 | 12054000 | 17947720 —-468,22260 | --100,38820 CARSE | {02060704
500 | 15801886 | 71.31240 — A0, 78503 ARBOTRR | - 1RO,24508 | —174.535560| —00.R6154 OAR35 | 1408707
3,00 | 16648194 | 73.00278 — 458202 AABTAL27 | - 100,69401 | —180.88820 1 —08.80189 17,04000 | 12800002
6,05 | 174445510 | 7485078 —5427074 | —159,20065 | -- 21064330 | —187.264831 —07.43005 20080160 | 1A RR2R0
640 | 182,72274 | 70.60082 043801 |--170,27008 | — 22000860 —103.63728 — 15,4357 S, 74O | A0G.40066
6,45 | 194,41303 | 7833160 —06345050 | --180,00500 | 23383500 —199,0014) —02,85484 AR0LHTO | 47165304
0,20 | 20054847 | 8002242 TR0 | — 10430110 | — 24045164 ] —-200,20503 | —89,04054 GOJIRWS | ER7.M20
620 | 290,04300 | 84,86060 —~T7.57040 | —207,40063 | - 25806660 —292.63320] —85.73602 THA0940 | 204.80021
6.30 | 22001447 | 8127021 —8HA407) | 22080412 | 27227414 | —218.65840] —81,08048 R7,.G1488 | 22268014
6,35 | 230,73290 | 84,01484 — 0400403 § —236.28727 1 — 286, 45433 1 22402018 [ --75,72347 103,00218 | 2415607
0,40 | 241.20929 | 86.28027 § —102,96036 25044710 | -300.40710 ] —-230.4608¢ ~60.30226 149, 20438 | 200,66730
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Appendix 4

VLASOV FUNCTIONS ®y=ch y:sin

ORIGINAL PAGE g
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