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ANNOTATION

The b "-sic technical theories of anisotropic plates and shells made
of rigid reinforced plastics are reported in the book. Solutions of
numerous technical problems most often encountered in engineering prac-
tice are obtained, with recommendations on efficient design of elastic
reinforced plastic parts. Some sections are entirely devoted to ques-
tions of selection of the optimum structure of the material.

The results obtained are valid for thin three ply plates and
shells, if appropriate substitution_ is made of the rigidity parameters,
which are among the most efficient stress schemes for reinforced plas-
tic structured.

The book is intended for engineering and technical workers who are
engaged in the development of thin walled reinforced plastic structures.



FOREWORD

Shells of laminated plastics made on a base of continuous fillers
and various synthetic binders are multiply anisotropic, heterogeneous
elastic systems. Some simplifying hypotheses permit study of deformed,
stressed states of a shell to be reduced to study of bending and deforma-
tion of a surface of reduction. In this case, the system of stresses
which develop in normal sections of the shell are replaced by a stati-
cally equivalent system of elastic forces and moments.

It follows from s,.ch a reduction that, to within the assumptions
made, a structurally nonuniform laminated shell can be considered a uni-
form shell, i.e., laminated plastics can be considered uniform materials,
which have some reduced properties which are determined by the properties
of the initial components and the mutual location and orientation of the
reinforcing filler.

Skillful use of the abovementioned properties permits the develop-
ment of extremely efficient laminated plastic structures which, in
many cases, are not inferior in efficiency and technical character-
istics to excellent structures, made of traditional materials. The de-
fects inherent in welded metal structures, which significantly reduce
the critical loads or result in premature destruction, are absent in
thin walled laminated structures.

With the appearance of new structural materials, fiberglass plas-
tics, the field of use of laminated plastics in engineering broadened
substantially, and the technical and economic advantages of their use
increased sharply. The development of methods of calculation of thin
walled laminated plastic structures becomes of great practical impor-
tance in this connection. The attention of investigators was first
drawn to these questions by the founder of the Soviet School of Aniso-
tropic Plates S.G. Lekhnitskiy, the results of many years of study of
which are reported in his monographs [16, 171.

The laminated plastics used in engineering have symmetrical elas-
tic properties in the majority of cases, i.e., they are orthotropic
materials. However, their principal directions of anisotropy may not
coincide with the directions of ire coordinate axes and, consequently,
it becomes necessary to consider the elasticity relationships which
correspond to the general case of anisotropy. For orthotropic materials,
there are reliable methods of determination of the necessary mechanical
characteristics in two principal directions of anisotropy. Moreoe7er,
fundamentally new characteristics of the :laminated orthotropic material
must be known, which usually do not have to be dealt with in isotropic
uniform shells, namely: the shearing strength by layer and the trans-
verse separation strength. These new characteristics of laminated plas-
tics are associated with (heir structural inhomogeneity and the signif-
icant difference of the elastic and strength properties under various
types of loads.

This book reports an approximate method of accounting for the
effect of interlayer shear on the stressed, deformed state of laminated
anisotropic plates and shells. In selection of simplifying hypotheses
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for study of thin laminated shells, it was considered that the elas-
tic properties of existing cements and binders are appreciably less
than the corresponding elastic characteristicsof the reinforcing fillers
and, consequently, the interlayer shears which develop in the bending
of laminated shells can significantly distort the pattern of the de-
formed state des3ribed by the hypotheses of nondeformable normals ex-
tensively used in the theory of shells, especially when the shell op-
erates under heating conditions.

The results of thorough studies of thin laminated anisotropic
shells, with interlayer shear and transverse deformation taken into ac-
count, are reported in the monograph of S.A. Ambartsumyan [1]. Since
the corresponding rigidity parameters of a laminated sheet differ sig-
nificantly, allowance for transverse deformation gives an extremely
insignificant correction, and we will disregard its effect.

The proposed approximate method of calculation of laminated
shells was used in study of three ply plates and shells, and it showed
satisfactory correspondence with experimental results. Besides the
usual elastic characteristics of a laminated shell, two new ones appear
K1 and K2 , which define the connection of the cross forces to inter-

layer shears of the mean surface and characterize the resistance of
the laminated shell to such shears in two mutually orthogonal directions.
Laminated shell rigidity parameters K 1 and K 2 are determined experimen-

taliy in transverse bending tests of laminated strips and, consequently,
they somewhat compensate the errors which are tolerated by the initial
hypotheses adopted.

The results obtained in the work are valid for three ply plates
and shells with a light elastic filler, if appropriate rigidity param-
eters are used. This question is presented in detail in the last chap-
ter, where some stability problems characteristic only of three ply
plates and shells with elastic fillers also are discussed.

In distinction from the traditional courses on the theory of
shells, the author attempted to discuss problems connected with effi-
cient design of plates and shells made of reinforced plastics, sub-
jected to the effects of the loads most frequently encountered in en-
gineering practice. Chapters 8 and 13 are completely devoted to ques-
tions of selection of the optimum structure of the material of cylin-
drical shells operating under axisymmetric loads.

Tne present work does not cover many questions raised by modern
engineering practice and the needs of machine building. Problems con-
nected with large displacements of the mean surface of a shell, includ-
ing problems of stability are not touched on. Nonlinear elastic and
inelastic de''ormations of laminated shells are not discussed, and ques-
tions of nonlinear oscillations are not covered. There is no doubt that
they will be treated in the works of other investigators in the near
future.
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LAMINATED ANTSOTROPIC REINFORCED PLASTIC PLATES AND SHELLS

V.T. Korolev

CHAPTER 1. BASIC EQUATIONS OF TECHNT.CAL 'THEORY OF ANISOTROPIC PLATES
AND SHELLS

1. Initial Hypotheses and Basic. Relationships

We will consider laminated shells produced on a base of continuous /7*
fillers and synthetic binders as uniform anisotropic systems, the elas-
tic constants of which are determined by conventional methods.

We use the rectilinear element hypothesis [141 for inscription of
the dEformed state of the shell. mhis is satisfactorily consistent with
experimental results for three ply plates with a light elastic filler.

Based on this hypothesis and the assumption that the normal stresses
are independent of interlayer shear for the stresses which arise in nor-
mal sections of a shell, we have the following expressions

a1 -- ctt( r i+ zxi ) + cis (r,	 x,)	 Cis(td	 23x;l

a,^=C„(r, }-sx) {-c,s ies +zx;i+ C,,,( ►a+2zxal; 1	 (1)

T MCiI ( e l +3X41) + C„(('•, _LZxx”) }-C„(('I)+ 22X: 1 I

where c ij (i,J-1, 2, 3) are the elastic constants of the material; El,

e 2 t w are the relative elongation and shear of the mean surface of the

shell; IC, e, K2e, K 3 e are the effective changes in curvature and torsion
.L

of the mean surface of the shell.

As in [14], for shearing stresses which act between the layers of
the shell, the following expressions can be obtained

3 (d1 -4st)	 3 (82-450)	 (2)it 2 8s "" Q ` ; t, — 
d 3 Q1,

In distinction from thin three ply shells with an elastic filler,
shearing through the layers in a laminate- shell chart-e by a parabolic
relationship and disappear at the bounding surfaces z-+612.

We will account for the effect of surface load X. Y on the shear- /8
ing stresses in the membrane solution, on the assumption, as in [1],
that the shearing stresses change linearly through the thickness of the

Numbers in the margin indicate pagination in the foreign text.
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shell.

We will characterize the shearing stresses between the layers which
correspond to shearing stresses ( 2) by the maximum shears which arise
in the mean surface of the shell. Like the stresses, shears through they
thickness of the shall change parabolica,.1y.

By redt .cing stress system (1)-(2) to the statically equivalent
system of elastic + forces T l , T2 , S and moments 0 1 , 0^, H. the follow-

ing elasticity relationships can be obtained for a laminated anisotropic
shell

T, Bu el+ B„ e, + Bu W;
T, :: Bn el + Bn el -+- Bp w:	

(3)
S.: B» e I `}` B:a e: + B» M;

	

G, W. —D3,x;—D.-x;-2Dpx;;	 (4)

Qi --Ii i vi . Qt — —KI y».	
(5)

where shell rigidity parar.+^t ers D i,, Bi , , K 1 , K
2 

( i s J -1, 2, 3). in
the case of a sufficient! ► large number of layers, are determined through
reduced elastic constant;o of the material c i,(is ,j-i, 2 9 3), 0 139 G23 and

and shell thickness 6 by the following expressions

B i f = c i ; 3; D id =:^' ct1 b' (i, l _ i, 2, 3);	 (6)

K — 
u G,, 	 K,	 G,, d, (7)

where 0 13 , 
G 2 

are the moduli. of elasticity in interleyer shearing.

The rigidity parameters of a laminated shell also can be determined
from the simplest experiments, which are described schematically in
Section 8.

By solving expressions (3) for the components of deformation, the
known relationships, which will be needed subsequently, can be obtained

el b (aj, + a,:T s + ai,S);

m = t (marl + aprs + aaS).

I

J

2
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	In the general ca e of anisotropy, elastic constants a iJ (i, J o t,	 /Q

2, 3) are independent, and they are expressed through elastic constants
c ij by the expressions

I

a 	
is 23 " `tt	 ^'•^n—ems` .

t

t

it

	

` 11`22 It 	 'lt^ia—t"e" .a„ _	 A	 ass a'	 A

A ffi c11eascoe + 2e1le1sets, — ct1c„ --
— c„elst — me l̂t

The deformed state of a laminated shell is defined by five random
functions: three components of displacement u, v, w in the directions
of coordinate axes a l , 0 2 , which coincide with the lines of curvature

of the mean surface of the shell, and by the external normals to the
mean surface and by two functions m, 0 which characterize the bending
of the shell without allowance for the effect of interlayer shearing

_ i Oil	 1, OA,	
I

,1	 A, a/ -1 A,A, w-,/ti '

	

1 8r	 u	 OA S m 	 (10)
[3	 rA, da, 1'

r1	 d	 u 1	 A^
A t da l ( AS /	 A, du, A,

MI A, da, + A,A, dtc,

A As Out 	 A,A, Jai
e	 A, 8	 y 	 A. 8

wi t da l	 ,is	 As dug	 At

	

A Btu	 u

Y1 T + At do, ^` It, ;	 (12)

	

Our	 v

As curvilinear coordinates a l , a 2 on the mean surface of the shell,

it is advisable to consider only coordinates which form a rectilinear
regular grid of coordinate lines. Geometrically, this condition is re-

	

duced to Vie requirement that vectors r al , Fa2 , 
which are tangent to	 /10

coordinate lines a l , a 2 , not the collinear. For this, it is necessary

analytically that, of the three Jacobians

(9)

3



• (s. ^)	 6 N.:)	 a (,. s)
flea- us) '	 (a,, a, (13)

^-	
w

(where x, y, x are coordinates in the vector parametric representation
of the surface) at 'least one be different from zero.

If the coordinate lines coincide with the lines of curvature of
the mean surface, the curvilinear coordinate is orthoksunal, and we sub-
sequently will use primarily such a coordinate system.

In such a coordinate system, Lame's constants A 1 , A2 are determined

by the expressions

	

At a ^f (da,	 Ulf + (ba,
	Ir 	 (14)

The equations of continuity of deformation for laminated aniso-
tropic shells are written as in the case of isotropic shells, and they
have the form

Ott, x, _ t E x• aAs x1 _
Ou t	A, da,	 do,

	

t '01	 JA, ^, 	1 8AI 2	 DA, 
tt) ^"da i 	 A, Out —

 ft,

a ( Al W )	 1	 W 
-
jai \ 2 / +	

0,
Ht dal 2 

aAi x,	 t OA' x' _ aA,
da, - — ^'
 Out	 da, K^ —

''

#A, e,	 1	 aA,
J

1 OA: 2	 +
its	 dug	 A, aa j — da, s

a	 A, m	 t DA, to
dos Its 2	 it, Out 2

LA^ r2	
e^

A,rl, aai A,	 iiu,	 A,	 da,	 aa^ i

a	 aA^	

/ l
_ t BA, e, — 1 _ ^ 2	 aA, a (= 0,+ duo :1,(da,	 As Ou t 	aa, 2 Jl

here c l , c 2 , w are the components of deformation and shear of the mean /11

surface of the shell determined by expressions (10), and K 1 , K 2 , K  are

4

(15)
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ie totA1 changes of curvature and torsion of the mean surface, which
can be determined by the following expressions

X1 = x. 1 e	 YL ^ — AI .^ _ A
l A ' Bas

e _ 1 ey, — y_ #At .
Kt = K, At Dag	 A,A%^,	

1

	
(16)

2x, = 2K; — 
L AS a, \ As	 At 8W \ A, )J '

2. Equations of Equilibrium of Laminated Shell and Boundary Conditions

If the positive directions of the elastic forces and moments are
selected as indicated in Fig. 1, the equations of equilibrium in the
system of curvilinear orthogonal coordinates selected can be written
in conventional form

a (A,T,)	 8 (A l l)	 OAS	 8A,	 Q,
do, 	 Ba, — TR 8a, +S aat — A,AR h, +

4- A,A 2 X = 0;
r)(A,T:) J- 0(All)_T, 'A, 

+S A
-2 AA, Qs +A,ARY-O;

Ju

l
	do,	 dat	 do,	 Be

d (Q,n,) + a (.,	 -	 (f + Rn I -- A IA RZ = 0;
8 

jA '
G

' ) -}- a (A H) - C 1 At 11 dÀ - A A p 0'do,	 da,	 du, + do, i R 1	 r

8	 G,)	 8 (A 2H)	 8A,	 8A,
do, ^- 8a, — G, do, +H aa, — A IA sQR = 0;

(17)

in addition, t'or determination of the normal transverse stress a z , the

following expression can be obtained, which characterizes equilibrium
of the internal and external forces in the normal direction

a. = 2b, (Z' (63 + 362 z - 4Z3) - Z - (63 - 383 Z + 4Z3)) +	 (18)

+ (6
1 2d4-2) l

3 \ It^ + Rt /	 \ + Be)J
Z

t	 t	 t

where Z
+ , 

Z- are components of the normal surface load applied to the
upper (z-6/2) and lower (z--6/2) bounding surfaces of the shell, respec-
tively.

The boundary conditions for an anisotropic laminated shell, the
deformed state of which is described by the rectilinear element hypoth- /12
eses, differ significantly from the boundary conditions for shells •,rhich
r,re deformed by the direct normals principle. We subsequently limit our-
selves to cases when the edge of the shell coincides vrith the coordinate
lines In the case of closed shells or shells closed in one direction,

S	 `'I



the boundary conditions are replaced by the corresponding periodicity
conditions, which should ensure well defined movement at any point of
the closed coordinate line.

Fig. 1. Adopted positive directions
of elastic forces and moments.

Variation of the potential energy of a laminated shell is 	 ter-
mined by the following expression

bU= f f(T t bei +?' I bt= +S b(o —G,bx„ — Gj8x;-2H 8x;--	 (19)

—Qi6Yi—Qa6Y2+X8u.; Ybv+ZBw)Aidsdalday.

By substituting relationships (10)-(12) in Eq. (19), we obtain

(	 1 Du	 v 6A,	 w
8U =_	

lTl b A, da l + A IA, an, + R, J +

	

Dv	 u OA,	 w+ T s	 As das	 AIAS da l	 RS

V OAD^	 +,	 D±p	 DAs
– Gi b(   

AI 
h -} A I A,	 ) — 

G, 8 (At 
1 0% -}- W

 
A IA$ Oa,

— 116 [ AI dal ( A ) + A, au, 
( _L )

] Ai 

	

Wa	 b 	 ) + X81, +   Dw	 I'
_. () 1 8 (t^ -}- A, dal — f{,)	 As duo_

”
 A,	 (20)

+ Ybv — p 8 w^ .4,.9 ' dal dal.

By partial integration, we obtain

6

/13

w	 __



6U - f (T,A,d u }•SA,6P-GjAg4- HA,6V-Q,A'8wPj do$+

}- f (%',A, 6 v 4 S.,1, 6 u --- G,A, 6V - NA, 6g - Q,A, 6 w lh d" l +

(DA T	 DA .S	 JA	 DA	 4^+ L 	 + Joy - To da' + S -y - A,A, "^ + A,A,n 8 u +
..

1iA T OA 18	
Qr

}	 dal f da, 
-T,2—Al  
 dos 

S
DA

9a, - A,A, Ili '}' A,A,Y, 6 L^ -

- (_dA.Qj 
-f° 0A je^ ^- A,A, T` -} -') - A,A,p] 6w -

	

ll da,	 /itno

_ 1
nA C 

_ 0A"'	 DA	 DA	 l
	

(21)

	

da,	 da, _ Gs val -} fl 6 - A,A,Qt J -'

[ f i du ^' _T_Jdal r --G, ` a-` + fl ^ ^ - A,A,Q,, alp) da, da,.

On the strength of the independence of variations of du, 6v, dw,
S^ and 6^, the boundary conditions and equilibrium Eq. (17) follow as
a result of this.

We present the boundary conditions for an edge which is bounced
by the coordinate line a l = const. The boundary conditions are decomposed

into boundary conditions for tangential forces and movements and bound-
ary conditions for normal forces, moments, deflection and displacement
functions m, W.

The following uniform boundary conditions can occur for the tan-
gential forces and movements

1', - 0, S=-0; u==0, S A O. 1

T,=O, v=0; u^= 0, v 0.	 (22)

Correspondingly, for the normal forces, moments, deflection and
displacement functions m, ^, the following uniform boundary conditions
(canonical form) can occur

G ,	 Q, - 0; q= N=Q,-=O;
G, =fl=w=0;	 T--11 W 0;	

(23)
G, == V' Q, == 0;	 (P - V - Q, _= 0;

	In the case of flat plates, conditions (22) and (23) determine	 /14
the boundary conditions for the two dimensional problem and for bending,
respectively. For shells, boundary conditions (22) and (23) are set,
i.e., when the deformed state of a laminated shell is described by the
rectilinear element hypotheses, an extremely great diversity of bound-
ary conditions can occur, namely, 3'_ different cases of canonical edge
supporting anchors.

7



Thus, for example:

a. unsupported edge

T1-S-G1'H-Q1so;

b. rigidly fastened edge

u-v-w-m-*00;

c. edge unsupported in she tangential direction and rigidly
fastened in the transverse direction

T1-S-w-^-*00;

d. an edge rigidly fastened in the tangential direction and
unsupported in the transverse direction

u-v-Gl-H-Ql-O

etc.

There is a diversity of boundary conditions because, compared with
the undeformable normal hypotheses, the rectilinear element hypotheses
take into account two additional degrees of freedom of movement, which
are characterized by the magnitudes of the interlayer shears in two di-
rections.

3. Laminated Shells of Varied Orthotropic Structure

As has been noted, laminated shells produced on a continuous filler
base can have diverse structures, depending on the mutual location and
orientation of the filler.

We will assume each unit layer to be uniform and orthotropic, with
elastic constants E l , E 2 , G, V 1 v 2 ; the well known relationship Elv2t

E2v l occurs here.

1. If the principal axes of anisotropy coincide with the coordi-
nate axis in production of the shell, the material of the laminated
shell will be c rthotropic, its elastic constants will coincide with the
elastic constants of the unit layer and basic relationships (3)-(5), 	 /15
which connect the deformed and stressed states of the shell, are sim-
plified and take the form

T, — B, (e l +'IFS);
T, = Ba (ea + v,e,);

S -- B, a);
	

(24)

G, -= -D, (x; + vzx;);	
(25)G, _ —D: (x; -{' `'ix, );

H = —2D, x;;

M

8

r,



Fig. 2. Diagram of
reinforcing of ortho-
tropic plate rein-
forced in directions
not coincident with
the coordinate axes.

Q, —K, Y,; Qs — --K, Vg,
	

(26)

where the rigidity parameters of the shell are determined by the ex-
pressions

B, _ Eta
 v, ; B2 = 

E ave ; Bs G 6;

D	 E' 82	
D	 F' 62i ' t20— V I VO '	 • U0—v,v,) '

D,. f2°;	 (27)

K, _ G,3 8; K, = G.8.

By solving Eq. (24) for E1, 2, 0), the following relationships can

be obtained ror an orthotr•opic shell

T, — V I T,
F, B, ^' ^,'tV'j r

_ T2_ %' 2 Ts	 (28)[2 
^ W_ (1— v,v 2) '

S
u = B3

where

2. If the shell is produced in such a
way that the principal direction of anisotropy
with modulus of elasticity E 1 forms angle m

with coordinate axis a l (Fig. 2), the basic re-

lationships which connect the stress and de-
formed states of the shell are defined by general
expressions (3)-(5). However, since the shell 116
material is orthotropic, elastic constants cij

will not be independent, but they will be deter-
mined through four independent, for example,
E 1 , E 2 , G, 

V  by the known expressions

c,, = E l coOq)+2E3 sin s 4pcos2 4p + Ls.sin4q);

X12 	 Ej v2 -f- (El f- E2 — 2E,) si n = m cos' q,;

cz_= El sin4q'+2E3sin2cpcos2(p+ E2 cos4q?;

c..0 = G + (E, + E 2 — 2E3) 5  n 2 y cos2 q,;

c 13 = (E2 sin2 T — E, cos2 T -{ E3 cos 2(p) sin 2y;

C23 = 
Z 

(E2 cos2 cp — E, sin2 T — E3 cos 2(p) sin 2(p,

E, _	 E,	 E = 2G E vi.

(30

9

k

(29)



at

Fig. 3. Diagram of rein-
forcing of orthotropic
plastic with crossed
bias reinforcing.

Elastic constants a ii (1, j=l, 2, 3) in Eq. (8) also are not inde-
pendent, and they are determined by the formulas

al l	 COQ `^ -}- ( G
	 E, ) 

si ns 
Ir cos, IF + rIL'^"

a 
s ein• 	 f	 2v	 sing Cos'	 Ca• I .

cos" 29	 ( 1+vl	 L+v, )sins2

a,,=— ( vl _ 1 ( t+vl	 1+v' — 1 >sina2y
JJ
] .

( 

ll E, ` B, + k: * 	G /

a1° = L sfno t — c	 "+ ( 4	
' ) `sos2T sin1r;

cost	sin'	 1	 1	 2v
^'	 E, — E, — 2 G --^- cos2^I sin 2T.

(31)

3. Still another case of practical
importance can be presented, when the struc-
ture of a laminated plastic ensures that it
has orthotropic elastic properties [14].
With a large number of unit layers which
are cross laid at angles + m (Fig. 3), the
laminated plastic can be considered ortho-
tropic.

In this case, the basic relationships
which connect the stressed and deformed states
of the shell are represented by expressions
(24)-(26). The rigidity parameters of the
shell are deterniin ,-d by Eq. (27), where El,

E2 , G, v 1 are the elastic constants of the

laminated material.

If the elastic constants of a unit orthotropic layer of filler

E l 0 , F 2 0 , G0 , v 1 0 are known, the following should be assumed in Eq.

(27)

E, = Cu; Lz = c.z; C = Css;

_ cl , ,	 el,
V2 ' r1l ' ,1	 c is '	 JJ

(32)

where c ll , c 22 , c
33' c12 are determined by relationships ( 29), i.e.,

they depend on the cross laying angle of the filler.

10



CHAPTER 2. CYLINDRICAL BENDING OF RECTANGULAR PLATES

4. General Expressions for Calculation of Bending of Laminated Beams

Some simplest cases of determination of the deformed and stressed /18
states in cylindrical bending of rectangular plates with bending rigid-
ity D and rigidity K with respect to interlayer shear are discussed in
this chapter. For extremely narrow plates, the Poisson coefficients
in the expressions for D should be considered to equal zero. All the
results obtained below are presented for a strip of unit width,

The coordinate system and symbols adopted in this chapter are in-
dicated in Fig. 4. It is assumed that one of the principal directions
of elasticity coincides with the x axis. The basic elasticity relation-
ships in accordance with Eq. (24)-(26) have the form

G=—D4r'; Q =—K(q)+w').
	 (33)

From Eq. (33) and the equilibrium
equations

Q'--P; G '-@ 1 	(34)

general expressions can be obtained
for determination of the stressed and
deformed states of rectangular strips

Fig. 4. Coordinate system and	 in cylindrical bending. Since system

basic symbols.	
of Eq. (33)1 (34) is equivalent to one
fourth order differential equation four

random integration constants appear in the general solution, which are
determined from the boundary conditions

Q = —px+C1; G = — xs +C,x+Cl;

__ P=° _ CI=I _ Ca=
6D 2D D 'f' C30

1	 (35)
24D	 6D	 h	 D

—(A` 
+C,)x+C'.

General Eq. (35) are valid along the entire length of the strip, 	 /19
and only constants Ci(i-1, 2, 3, 4) differ in sections which differ by
the nat..ure of the loading or by rigidities D or K. To determine the
new random constants with each such section, the conditions of smooth-
ness and continuity of conjugation

wk = wk.1; ('R = q)R.1; G k = Gk.1; "Qa = QA. t •	 ( 36)

are added to the boundary conditions.

11



The maximum deflection of the
strip at the unsupported end

w lsssar = PI(! +3y)	
(38)

/20

5. Bending of Cantilever Strip with Concentrated and Uniformly
Distributed oads

a. Bending of cantilever by concentrated force apelled on unsu -
d end ( Fig.After determinationo constants	 , , 3 9 )
th—e boundary conditions

w=0; m n0 at x-0

G n 0; Qmp at xa t;

from Eq. (35), with p-0, we obtain

G. P(s-1); Q-P;
w=^^s' -31s--GK);	 (37)

q)- pU (21	 r).

P

Fig. 5. Diagram of bending of
cantilever by force applied to
unsupported end.

W
0

Here and subsequently, the sym-
bol for the relative give of the
strip by interlayer shearing is in-
troduced

j'Y	 (39)= Kt = '

Correspondingly, the greatest
values of the normal and shearing
stresses are

Fig. 6. Diagram of bending of
cantilever by uniformly dis-
tributed load.

GC	 GPI	 3Q	 3P

	

Osna: b, = d, ; Tm.: = Z6	 28	 (40)

b. Bending of cantilever by uniformly distributed load (Fig. 6).
By determining the random constants in a manner similar to the preced-
ing from the boundary conditions

w=0, m=0 at x=0;

G=0, Q=0 at x-t,

we obtain

12



Q - P (1 - z); G - - a( z -1)8;

- (z' - 31z + 31=);

w	 10--41z'+ 612z-!2y(z-21) Oj.

(41)

The maximum deflection of the unsupported end of the beam is

114. 0 + 4y).	 (42)

6. Bending of Hinge Supported Strip

We consider several cases of loading of a strip which are most
often encountered in various engineering applications.

a. Pure bending of strip (Fig. 7). Integration constants C 1 (1- 121
1, 2, 3, 4) can be determined, for example, from these boundary condi-
tions

w=-O, Q=O, G=D10 at z=0;

V = O at z =2;

Q - 

0, 
G 

Mo,1
T -= z (1—?x);	 ( 4 3)

W = ^zD (z —1).

w

X

Fig. 7. Diagram of pure bending
of strip.

'0w

x

Fig. 8. Diagram of bending of
hinge supported strip by concen-
trated force applied in center.

The maximum deflection of the
center section of the beam

I w lmas 8V .	 (44)

In pure bending, interlayer
shear is absent, and the greatest
normal stresses are constant ever
the length of the strip.

b. Bending of strip bX concen-
trated force aDDlied in middle sec-
tion (Fig. 8). Because of symmetry,
the left half of ae strip alone can
be considered OSxO/2.

Boundary conditions:

at z=0 w=0, G O, Q= 2- 	 ;

at z= 2 (P=0.

I w Imes

13
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After determination of random constants C, (, • 1, 2, 3, 4), we
obtain

Q— Z C= 2si

T = t, (1 ' — 4x!);	 (45)
Pa

w — 48,o (4x' — 31' —24y 19).

The maximum deflection in the center of the strip
	

/22

W Im•: — ^ (i + 1 2y).	 (46)

The greatest shearing stresses are constant in each half of the
beam, and the absolute value is

T	
3 P
4 b .
	 (47)°1t= 

The normal stress in the critical section of the beam

3P1
0111.: = 26' •	 (48)

c. Bending of strip under uniformly distributed load (Fig. 9).
After determination of the random constants from t e bou ary condi-
tions

at x-0 w=0, C=O;

at x= . 9 = 0, Q=O,
Y

we obtain	 Q = 2 (I — 2z); G = Z (I —x);

Y _ 24P (4x' — 642 + 11);

w=— P-' 	
(49)

24/)

	

The maximum deflectior of the
	

/23
w
	

strip in the center

x

3840 (1 + 48 y).	 ^ 50 )

Fig. 9. Diagram of bending of
hinge supported strip by uni-
formly distributed load.

The greatest shearing stress be-
tween the layers occurs at the ends of
the strip

apt
46	 (51)tmat = 

14

j

3



3 p!l
coal T-3r' (52)

l

e

t.	 The normal stresses in the critical section

Z. Bending of Rigidly Fastened Strip

In t'hc case of rigid fastening of thr ends in the simplest cases
of loading, it is especially easy to obtain expressions for the elastic
forces and deflection.

a. Bending of strip by concentrated force applied in center (Fig.
10).

The boundary conditions

W	
p

^z
x

i/

Fig. 10. Diagram of betiding
of strip with rigidly fasten-
ed ends by concentrated force.

at xs0 ws0 m M o j Qnf;

at 
xs7 

m00.

After determination of the random
constants, we have

Q_ 2 G __ a (4s — t);
Pz

q) —8g (lx — l); (53)

w = 48U (4z' — 31z — 24V l=).

The maximum deflection in the center
of the strip

J W IMAZ = Plau ( t + 
43Y) •	 (54)

Fig. 11. Diagram of bending
of strip with rigidly fasten-
ed ends by uniform loading.	 The shearing stresses are constant /24

over the length

8 P
Tmas = 4 a -	 (55)

The normal stresses in the critical section

3P1
	

(56)
Qmas = 43

b. Bending of strip by uniformly distributed load (Fig. 11).

The boundary conditions

15



at x-0 wo o l m00;

at x=7 ®=0, QW0.

Accordingly, for the elastic forces and deformations of a sheet,
'	 the following expressions can be obtained	 +

Q p (1— ?.$); G — j^ 'Oz' — Gls + 11);

oD'f^ (2s2 --3ls+12);	 (57)

W	 eau jx' (r -'I)' + 12y s (1— s)1').

The maximum deflection in the center

►n gym.:	 384u ( i -}- 48y). (58)

The greatest shearing stresses arise at the ends of the strip

(59)

The normal stresses in the critical center section of the
strip

Oval — 
pis

(60)

8. Experimental Determination of Elastic and Rigidit
	

rameters of
S

For determination of the complete set of rigidity characteristics /29
of a laminated orthotropic material, tensile, torsion, clean and trans-
verse bending tests of rectangular strips cut in the principal direc-
tions of anisotropy are required.

With standard specimens under tension, tensile rigidities B l , B2,

moduli of elasticity E l , E2 and Poisson coefficients v 1 v 2 are obtained,

which should satisfy the condition E1v2=E2vl.

Flexural rigidities of the laminated shell 
D1. 

D2 are determined

by Eq. (27), if the reduced flexural and tensile and flexural moduli
of elasticity are the same. Otherwise, flexural rigidities must be
determined in clean bending tests of rectangular specimens according
to the symmetrical two cantilever beam system (Fig. 12).

It evidently is advisable to provide for clean bending tests in
the principal directions of anisotropy in all cases, if only as con-
trol tests, the more so that they are the simplest.

16



Fig. 12. Diagram of clean bend-
ing test.

If the deflection of a strip in
the center section measured under
load is wo and the width of the strip

is b, the flexural rigidity is deter-
mined by the formula

D^ ^^r	 (61)
Y

The torsional ,igidity of a
plate D3 , shear modulus Q and, con-

sequently, shear rigidity B 3 are

determined by torsion tests or by
transverse bending tests of rectan-
gular or square plates loaded with
four equal balanced concentrated
forces applied to the corners of the
plate (Fig. 13).

K

Torsion tests of specimens out
Fig. 13. Diagram of torsion	 in the other principal direction of
tests.	 anisotropy are control tests.

As the results obtained above show, the effect of interlayer shear- /26
ing of laminated plates in the deformed and stressed states dept-nds on
the relative thickness of the plate, the boundary conditions and the
nature of the load. It is evident that, for determination of the rigid-
ity parameters of a plate, it is more advisable to use transverse bend-
ing tests by systems of hinge supported or rigidly fastened beams.

If, for example, the deflection of a hinge supported strip of width
b, measured in transverse bending tests with loading force P applied in
the center of the span is woo the rigidity of the laminated plate with

respect to shearing between the layers is determined by the formula

12DP1
K 48DW, — Pis

By conducting such tests of strips cut in both principal directions
of anisotropy, we obtain rigidities K l , K2.

In this manner, the simplest mechanical tests of rectangular strips
cut from a laminated plate completely solve the problems associated with
determination of the elastic and rigidity characteristics of laminated
shells.

If a laminated shell is bent in one or both directions, the fabrica-
tion of flat control samples should be provided for, which are cut under
the same technological conditions and go through the same heat treatment
as the shell itself.

(62)

17



To obtain control samples, it is advisable to provide for tech-
nological margins in the fabrication of an actual structure, which are
then cut into samples for mechanical testing.

18
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CHAPTER 3. AXISYMMETRIC BENDING OF CIRCULAR PLATES WITH CYLINDRICAL
ANISOTROPY

We consider a circular plate of constant thickness made of a cy-
 

/27
lindrically orthotropic material (Fig. 14).

It is assumed that the axis of
anisotropy passes through the center of
the plate perpendicular to the mean sur-
face, and that the principal axes of
elasticity coincide with the axis of
anisotropy, with radial and circular
directions. A load distributed symmet-
rically about the z axis acts on the
plate normal to the mean surface.

In conformance with Eq. (10)-(12)0
Fig. 14. Sketch of circular (24), (26), in axisymmetric deformation
plate and basic symbols.	 of the plate, the basic relationships

which connect the stressed and deformed
states of the plate have the form

	

G, = - D'	 + v,q)' )
	 (r4)

Q,=-K,(w'+IF)•	 (65)

For determination of radial displacement u, plate deflection w
and deformation function ^, we have three equations of equilibrium

(rT,)' — T, = 0;
(rG,)' — Gs = rQi;
	

(66)

(rQ,)' + pr = 0.

System of differential equations (66) is decomposed into two
systems relative to u and w, and 0

	

W	 V	 (67)

	

r	 ►Y

r is	 2D, U, r

	

W'+m= 
pr	 C

— ` f	 (68)

	

2/i i	K, r

/28
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where C 1 is the random integration constant and

General solutions of Eq. (68) have the form

Q1 - - , +
ra CI F

! + C,r^' + C,r-R;

Pr'	 Pr'	
Ciro

4K, —' 8 (9—	 — 2 (4 --1) 1),
C,	 ^+i	 C, rI -A

— /Ĉ' lnr — 
(-1 
r + r -1	 +C4;

(-^; + (,^± 0 U, +G, _D, [
2 

+ C, (X + v.) r	 C3(), — v,) 
r-'.%+1)^

G 2 .­ —D, 21(-9=0 v, ^i^^^ Ij D -I-

i C3 0 +XVJr^`
-I

 +C,(! —X10r-(x+1)1 .

Integration constants C 1 , C21 C 3 , C 4 are determined from the

boundary conditions at the edges of the plate. In the case of a solid
plate, the boundary condition on the inner profile is replaced by the

	
/29

condition in the center of the plate with r=0, which is reduced to the
requirement of limitation of deflection of the plate or the finite na-
ture of the bending moments, or the cutting force as a function of the
type of load.

General solutions (70) permit various cases of symmetrical loading
of the plate to be considered with diverse boundary conditions.

10. Bending of Solid Circular Plate by Uniform Load

Let a solid circular plate be bent by normal pressure uniformly
distributed over the upper boundary of the plate (see Fig. lb).

In this case, by virtue of the finite nature of the deflection in
the center of the plate and the absence of rotation of the' normal,
C 1= C 3 = 0 and, consequently,

G 1	 —Dl [ (3 Vs) Pro p + C, (7' + v,) r'-'

G, —Ut i i((± 3 ^r 1̂ ^'	 C. (1 + )w 1 ) r^

_ Pr'	 Pry	 ('s+1	
( 71)

4l►, — 8(0^L)^ J.T r	 C^;

Pro

= 2 (9 — M) D, -}- C,l a

(69)

(70)
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a. Edge of P1Rte Hinge Supported

By determining constants C 2 , C 4 from the boundary conditions with
r•a, wo 0. G 1 W0, we obtain

	

Pao	 r (k-3) (X+4 + vi) 	r

4 (3 + v)	 ► b +I	 2 9 - X9) D,_ ( ro

p,13	 3+Vs

(1-4-3V I )XI P49 r ( r =	 (3+vl)(I+),v,)	 r x-t

	

G o - - 2(9-b)	 L\ a) - (k+v.)(1+3v,, ( a) J

(72)

The maximum deflection in the center of the plate is determined
by the expression

_	 Pa' ( X +4+ vt)	 Pay
^^^ma:-- 8(). +3)(X+Nj(^+ 4K,'	 (73)

and, at the edge of the plate ( r=a)

	In the center of the plate, bending moments G 1 M G 2 0 0 if a>l, or	 /30

they increase indefinitely if X<l, i.e,, the stressed state depends
essentially on the nature of the anisotropy.

b. Edge of Plate Rigidly Fastened

In this case, we obtain

Pao	 rL,%-3+4('- 
A+ t

+.+
) r	

P (r' — a2)

	

1 C a) ,	 4K,

- 2 (9 P ).') Di l^ a )3 -- ^a	 (75)
(	 y	 r	 1 ,

G , —	 ('3 + y!) Pat	 r 1	 X +	
X _'

	

q	 a	 !+3v ` a

The greatest deflection in the center of the plate

P4Cal

	

+w Imes	 8 () + 3) () + 1) D, } 4h. , .
(76)
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ra

The bending moments at the edge of the plate

C,
= 2rPO ; G,=`', G,. 	 (77)

In this case, the stressed state of the plate depends essentially

6h the nature of the anisotropy. If A 2 >1,-the maximum stresses develop

at the edge of the plate. If A 2
< 1, the stresses in the center increase

indefinitely.

Thus, if a laminated, cylindrically orthotropic, circular plate
operates under uniform normal pressure, the modulus of elasticity of
the material in the circular direction should be greater than the mod-
ulus of elasticity of the material in the radial direction. It is ad-
visable to use laminated plates which do not satisfy this condition for
the manufacture of circular parts. If, for some reason, a plate should

be made of a material, for which A 2=E 2/E 1<1, the center of the plate

must be reinforced with an absolutely rigid disk, i.e., a disk the
flexural rigidity of which is considerably greater than the flexural
rigidity of the plate.

11. Bending of Solid Circular Plate by Concentrated Force

Let a solid circular plate made of a cylindrically orthotropic
laminated plastic be bent by normal concentrated force P applied to the
center of the plate ( Fig. 15). In this case, p=0, C 1=-P/2n, C 3=0 must /31

be set in Eq. (70). We then obtain

r P (l + vs)	 ^k	 vs)C 	r^ —G 1 = D i t 2:t (Xs -1) Dl	 s 

G2 D2	 P 0 +v1) — C, (i + XVl) r'-'

_	 Prs	 P in r	 Cl r%+ i + C4;

	

Pr	 + C,rX
 X.

(41 — 1) Ul

a. Edge of Plate r=a Hinge Supported

The stressed, deformed state of the plate is determined by the
expressions

_ P(1 +v,)	 r l^'!l	 1
C i — 2n (Xs-1) I t r \ a 	

\
Go	 2n1(-1 l 1	 (( + Vt)(t! + VI)

1

,)) ( 
a 

1 -' 1

r	 (	

'

2n (Xs 4 o

	

1) D1 L ()	 J' -1-	 ava \  
_	 Pas	 r r \ s _ 	 2(1+v,) ( r '6*i_

W — 4n (TD, R a / (X+vs) (%+1) \ a )

_ (X—!) (1+2+vs)	
Plna

(X+ vs) O. + I) I + 2n Kj

c
	 22
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Fig. 15. Diagram of bend-
ing of circular plate by
force applied to center.

Gi=giP+VO0	
[t -

0,.+VI)	 r	 ^-1
(	 ) Jn, +.,	 Q

Pa

W	
Pat

Pinr	 ^^1

(80)

The deflection in the center of the
plate reverts to infinity. Consequently,
in transmission of the force, distribution
of the load over a definite area must be
ensured, or a rigid disk must be incorpo-
rated in the center of the plate.

b. Edge of Plate Rigidly Fastened

In this case

In this case, the load also should be transmitted through a rigid
disk in the center or it should be distributed over a certain area in
the center of the plate.

Relative to stress distribution, the same conclusions are valid
as those made in the preceding section. For the fabrication of circular
plates operating under locally distributed load applied in the center of
the plate, it is advisable to use plates the modulus of elasticity in
the radial direction of which is greater than the modulus of elasticity
in the annular direction, i.e., X<l.

It is of interest to note that precisely such anisotropy of elastic
properties develops in circular disks strengthened with radial stiffen-
ing ribs. However, radial ribs which converge in the center of the
disk form a rigid hub. For more favorable stress distribution in the
reinforced disks, annular strengthening ribs should be provided.

12. Bending of Circular Plate with Rigid Disk in Center by Uniform
Pressure

We now consider a circular plate made of cylindrically orthotropic
laminated plastic, subjected to uniformly distributed normal pressure.
The inner profile of the plate is rigidly fastened to a massive disk	 /33
located in the center (Fig. 16).

In this case, we have C 1= 0, Q=-pr/2 and, consequently,

^3
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(84)

s ORIGINAL Pao! 18
OF POOR QUMM

^ =	 4A,	 8(9 — V) Do
C+ab•f L(4 )A•1 — i^
	 C'4f-L

+	 ILA—/t

G f -D,
(3[ ^ ± ^v' l + Co + VI) r

) 
t --

-Ct(.%- vJ r-tr► •01

+ Ct (! - Rvf) r- tit. f 11 .

(81)

Fig. 16. Diagram of bending
of hinge supported circular
plate with rigid disk in cen-
ter by uniformly distributed
pressure.

a. Ede of plate r-a hinge sup-

bog
orted (see Fig.	 y sati sfying

y conditions w-0, G^-0, we obtain

_ _ P43—L	 (k—vf) QX+3 +3+v, .
C' —
	

2(9—).+ Di (X—vj Q a +X+vt
mil. a 	(3+v,)Q1-3—(X+v,)

Ca	 2 (9--X+) D,	 (). —vj Q2ir+j+v+	 (82)

whe. a	 ^Q = a) .

At edge r-a of the plate, the bend-
ing moments

(83)

C _ 0 G	 pa'x'(t — vIv,) (.+3)Q`L- 2yQb•t,^, X_3+_ _	 2(9—IN)	 (X— v.)Qz +X+vt

At the edge of the plate around the
the inner disk

•
G 1 = - 2 (fl T x

X (X-vs)(3-%)Q'k- 2%(3+vt)e'- t +(X +3)(X+v.) I
(L—vs) Qz +X+vt

Go = v,GI.

b. Edge of plate r = 0 rigidly fastened (Fig. 17).

	

_ _ pae-1	 1-0&*3

	

C+	 2(9—a')	D,iF9`

	

pb%+3	 t -Q'`-3

	

C,	 2(9- k')	 D, tt—Q2X
where p=b/a.
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At the edge of plate r •a, bend-
ing moments

G t =	
Pas (^-31- 2^@7^.^ 1 (^+3)est`.	 ( 86)

2 (p XI)	 1 _ Q2A,

G, = v ' G1.

Correspondingly at the edge r ob,
Fig. 17. Diagram of bending of 	 we obtain
circular plate with rigidly fas-
tened rim and disk in center by
uniformly distributed pressure. 	 "-'	 ",

	

G	
pb	 k-4^3-2%@	 -t-_(X-3)@"	

^87)i ' ` 2(9-4j)_.-	
1—Q2

G, .= v,G1.

In both cases considered, the greatest tangential stresses arise
on the outer profile of the plate

'3pa
Tunas = d

13. Bending of Circular Plate by Forces Applied to Rigid Disk in Center

Let a circular plate fastened in an absolutely rigid disk be load-
ed by an axisymmetric system of normal forces applied to the disk. If
the resultant equals P, C 1=-P/2n and, consequently, according to Eq.

(70), with x=0, the bending moments and deformation are determined by 	 /35
the following expressions

	

P (r2_ 
.,)P
	 r	 r, (rk. t —aA* t)

to _ 4n (%'-1) D l + 2.t Ki In a —
	 a + 1	 +

C . ( ► t-1`—at-X)
k_1

T_ l.t (XyPr 1) Dl + C,rx + C,r-t` i

G,	 D, 
L21s( (1+v Di	

C,(X+V,)r,.-t +

-

	

PO +vJ	 -t

/^	 P
\'12-r

a. Rim r=0 hinge supported (Fig. 18).

Cg= (90)L[(X*-1)D,

(88)

(89)
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Fig. 18. Diagram of bend-
ing of hinge supported
circular plate with rigid
disk in center by forces
applied to disk.

Fig. 19. Diagram of bend-
ing of circular plate with
rigidly fastened rim and
rigid disk in center by forces
applied to disk.

On the outer profile of the plate, bend-
ing moments

G, = 0;

Correspondingly, on the profile of the //6
rigid disk, we obtain

'r
^',,,^— 2n( 

i-1 X

x (A—t)(A—+^)Q^^`+27^1t+v.)QtA")) — (^+!)(A+v.) .	 (92)
(%—v.) Q24	 +v,

_

G, = v,G,.

b. Rim of plate r •a rigidly fastened (Fig. 19). In this case,
the following can be obtaine d

Cs= U0.2 -1)L), !—Q2r

Pb*at	 1 —Qx_1	 (93)

The respective bending moments on the outer and inner profiles of
the plate

G,=--^(A, _1)
	t—Q2	

Gs =v,Gil	 (94)

G ___ P _ (A-1)Q`)`-21.?^`'^+A+t	 G, _ v G 	 ( 95: I .

	

l	 )

In both of the boundary condition
cases considered, the greatest shearing
stresses arise on the inner profile of
the plate

TM" = 4a 6 '	 (96)

14. Bending of Annular Plate by Load
Uniformly Distributed Over Inner Profile

Let an annular plate made of cy-
lindrically orthotropic laminated plas-
tic be loaded with load P=2nbq uniform-
ly distributed over the inner profile
(Fig. 20). With different fastenings	 /37
of the outer profile of the plate, the
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Fig. 20. Diagram of bending
of annular plate with hinge
supported outer rim by forces
uniformly distributed over
inner profile.

elastic forces and deformations are de-
termined by general expressions (89).

a. Rim 	 late rna hinge supported.
In this case— his easy to obtain

	

PO + vs)a I-,%	 0— %*1 )^

C,	
nn al— o ), ( + vi. (t —QZA)'

	

P(t +v.)b"	 (!	 (97)

The bending moments on the inner
and outer profiles of the plate are de-
termined by the following respective
expressions

G,-0;
P X, (t -- VIVI)

t—Q
G, = 0;

	

G	 PX$(t-V'V')	 X

	

'	 2a 0.9--1)(1r —V:)	 (99)
X (k_V,)( —t )Q2'' +2X0+ Vs) Q1`-I—a+1)(.+vs)

t- Q 	'

b. Rim of plate r=a rigidly fastened (Fig. 21). In this case,
the following can be obtaine d

	

Pot-%	 ^= v,+(l+ vs) Q
A+t .

C9= 2n (1v^ — t) pl ()6—Vj +(X +V2) Qa

	

PbX+1	 l+ vs — ().+ vs) ex- ^
C, °'

_
 2n(^ X_V,+(1► +VjQ=

(100)

On the inner profile of plate r=a, the bending moments

P
G	

'2nQ.2 _ 1) X

x	
X (f. F 1) 0. 	 :)Q Zr._2i.(I+V,)Q^.tVI)(L—t)

X- V= .-(X+ VI) Q2k

C2 = v= G1'

(101)

Correspondingly, on the inner profile, we obtain
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Fig. 21. Diagram of bend-
ing of annular plate with
rigidly fastened outer rim
by forces uniformly ap-
plied over inner profile.

Fig. 22. Cir-
cular plate with
annular fiber
reinforcing.

G, L 0;

P).10-- V,Vt: (^.-tle`^ -:)Q*-'+^.^t	 (102)
G, = 2x(M -1) 	 k- V'+0. +V:)Q=om-' .

In both cases considered, the great-
est shearing stresses arise on the inner
profile of the plate

:3P
4.%ba

It is easy to determine that i;, is
advisable to make annular plates with a
small opening in the center of laminated
plastics, the modulus of elasticity in the
radial direction of which is greater than
the modulus of elasticity in the annular
direction.

15. Bending of Circular Plates with
Annular Fiber Reinforc ng

(103)

A characteristic example of the practical use
of circular cylindrically orthotropic laminated plates
is circular plates made of synthetic polymers and re-
inforced in the annular direction with a fiber filler,
fiberglass, for example. As has been noted, rein-
forcing of the plate only in the annular direction
permits more efficient anisotropy of properties and,
consequently, a more favor-able distribution of stresses
to be produced.

We consider a circular plate reinforced in the 	 /39
annular direction with uniformly placed fibers of cir-
cular cross section (Fig. 22).

If the reinforcing fibers are located at uniform
distance i in each layer, the basic relationships
which connect the stressed and deformed states of the
plate can be presented in the form

G,=-Ut ^ r 	 (104)

Qj--h,(w.+,T).

Flexural rigidities of the plate in the radial and annular direc-
tions D l , D2 and Poisson coefficients v l , v 2 are determined by the fol-

lowing expressions
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D	
D .	 f all

12(x:
Dat...D`1..+. ^^(	 teJ .wD(I+ ); (105)

D
V3 7=V; V, — V u

a

where EH , EC are the moduli of elasticity of the fiber reinforcing and

binder; v is the Poisson coefficient of the binder; C is the cross sec-
tion radius of the reinforcing fiber; I is the distance between the
reinforcing rings.

Such plates have a favorable elastic property anisotropy, since
the following relationship o-.curs

). - j%, u' —{ , i-, k>i.	 (106)

Thus, for the calculation of laminated circular plates with uni-
form annular reinforcing, all the formulas obtained in the preceding
sections are applicable. In the loading of such plates, both continuous
and with an opening in the center, concentration of stresses and im-
permissible increase in deflection do not occur.

Simultaneous reinforcing of a plate in the annular and radial
directions obviously is inadvisable with respect to stress distribution
and complexity of production.

The basic difference of laminated circular plates reinforced only /40
radially is that the anisotropy of their elastic properties changes
radially.

16. Bending of Circular Plates with Radial Fiber Reinforcing

We consider a circular annular laminated plate obtained by bond-
ing layers reinforced radially with a fiber filler (Fig. 23).

Evidently, the packing density of the fiber filler satisfies the
relationship

Og,n;b

where 4 is the cross section radius of the fiber filler.

The aperture angle of the fiber reinforcing a-21t^/b. The basic
relationships which connect the stressed and deformed state of such a
cylindrically orthotropl-- plate can be presented in the form

G, = — Dj (r) 4p' — D v r ;

G,= —D —DvT';	 (107)

Qa =—K,(w'+4p)•

29

l



E 83
where D•-- ^- is the

12(1-v )
unreinforced plate; E c , v are the modulus of elas-

ticity and Poisson coefficient of the binder; K1

is the rigidity of the laminated plate with respect
to interlayer shearing; EH is the modulus of elas-

ticity of the fiber filler; D l is the radial flex-

ural rigidity of the plate.

If the E c/EH ratio is disregarded compared

with unity, the following expression for rigidity
can be obtained

flexural rigidity of the

Fig. 23. Circular
plate with radial
fiber reinforcing.

where

Dj wD I+ A) 	 (108)

/41

k'•.jnv' 1 E" .	 (109)
za W,

By substituting Eq. (107) in plate equilibrium Eq. (66), we obtain
the following system of differential equations, which describe the bend-
ing of the circular plate with radial reinforcing

(r + k)(p" + tp' - T 
= - Qtr.

w'==--Q^-l--^;	 (110)1

Ql:— 2 + C.

The following expressions also can be found for the bending moments
and deformations

Gl=-DljC [A(i+v+ ^)- kit 
v) 

-f

+(!.+ v + 	 I n r+ k) +--°$k' X
00

	

rr	 n n+v r n- 1 	 n n	 r++-2

	

["W4	 n:4
W

_ C,	 ! q n+V r A-1
2D I (— 1) a—! (!^ +

n=2
OD

_L I(—' )n 11 (^I )n-2 1 .
%w2
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Fig. 24. Aclepted coor-
dinate system for circu-
lar plate.

Q, m --D{C[A U +v)+U+V)IUr+k_

k (1+ y) r + k V ~	 w A V+1 r »-1

w.1
w

p ^, O J
wm2

~ _ w
[Ar — k + r in r ±kI 

+ V	 (^

-^-^(^)
w_1

(111)

u, 
4A'S

 -- CO I n r __

— lkr [Ars —'kr+ ;r'-- k')1n(r+k)—r=lit r)--

CO

-TIT fin % -1 \ k /	 2D	 0-1 ( k ) -^ B.
w..^	 ns2

Integration constants A. B, C, C 1 are determined from the boundary /42

conditions on the inner and outer profiles of the plate.

17. General Relationships and Differential Equations of Asymmetric
Bending of Circular Anisotrop c Plates

Let a circular plate made of laminated
cylindrically orthotropic material be bent
by a transverse load, which is distributed
symmetrically about the polar axis of the
plate x. This is practically the most fre-
quently encountered case of loading.

We place the origin of the r, 8, z
cylindrical coordinate system at the pole
of anisotropy, and we direct the z axis
along the axis of symmetry of elastic prop-
erties (Fig. 24).

A transverse load distributed symmetri-
cally about the polar axis can be expanded

in the trigonometric series

(112)

P = E As (r) cos n 0.n=0

The general elasticity relationships are written in the form
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G, -. — D, [42- 	
4 +

G, a—Do(; 4+-t-{-v,.,;	 (113)

Q, —K,^^.^

Q9 =_R:(*+' 1 ).	 (114)PW

In accordance with Eq. (17), with A m l, A2 
or, the plate equilib-	 /43

rium equations are written in the form

e (FQ0 + a4. = pr; 1
a, BO

	

B (rG^) + eH	
i Qt ^a,	 'T —G `g r	 (115)

ac,	 a ', 4- tl W Qe.dd or

1.

Since bending of the plate will be symmetrical about the polar
axis, the elastic forces and displacement can be sought in the trigo-
nometric series

CO

ry^ irn (r) cos n 0;
n_0
CO

'%" V. (r) sin n 0;
rise

c0
'1

W a	 u1„ (r) cos n 0;
"MO
CO

G, _ Z G; (r) cos n 0;
nmo

on

G, = I^ G, (r) cos n 0;
n .a o

m
H `.r Iln (r) ai n n 0;

n=0

cc

Q,	 2: Qj (r) cos n 0,
n-0

CO

Q= 
=n%,oQ, 

(r) sin n 0.

(116)

(117)

In accordance with Eq. (113), (114), the coefficients of expansion
of the forces are connected to the coefficients of expansion of displace-
ments mn , ern , wn by the following relationships



^;	 4

n	
(118)

Q, (r) = — K, (W. + w',);

By substituting Eq. (117) in the equilibrium equations with Eq. 	 /44
(118) taken into account, we obtain differential equations of asym-
7etric bending of circular plates

^'^n + ^' Vn 1 n' 'I  + /C$ Vn —

N
r q)n 4- 4 + en Vin =	 K, — rwn

nle
—[on + r W n,

whe re
D, _ = D __ G 0 — vivo)

D	 G (1—VIVO
D, =	 El	 s•

K ' _ k, K, =k , Ke	 G,, _
D i	i' DT	 9' K, — Gia i b`

(119)

(120)

If the load is distributed skew symmetrically about the polar axis,
he relationships are obtained by substitution of cos ne by sin ne
ice versa, with corresponding changes of signs of n.

In the most general case of asymmetric loading, the solution is
I by summing the asymmetric, symmetric and skew symmetric solu-
i. 	 conclusion, we note some identity relationships between the
'icients introdi;ced above

g' 
k
D, = X'; XIM2 = Col

	
(121)

X(t+ XVI) =X+v'.
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CHAPTER 4. BENDING OF RECTANGULAR PLATE.°, BY NORMAL LOAD

18. Differential Equation of Bending of Anisotropic Rectangular Plates

We consider a rectangular plate mace of laminated anisotropic
	

/45
material and loaded by forces which are normal to the mean surface of
the plate before deformation.

We select the x, y, z rectangular coordinate system as indicated
in Fig. 25.

In accordance with Eq. (4), (5) and
(11) 9 (12),

G 1 =— DI, !I —Dui—D,X C -f- ^t

oz	 04,	 Ox

11	 D„ 04P --Dpi—Do( ds ^-of);

Fig. 25. Coordinate system	 Q,=—K'(4v+Ow )
and basic symbols.	 Om	 (123)

By substituting Eq. (122), (123) in the equilibrium equations

dG,	 am
'F.- + sy ° Q,;
OG,	 aft

- jv + a: -Q	 (124)
8Q,	 eQL
as By -" ^0

we obtain a system of differential equations of bending of rectangular /46
anisotropic plates

a-,fl=V'	 ^	 a=^^	
o"'h (to + ar ) D^^ di, ^- ..^„ as fly + ^^^ 
fl
ay= +

-} D„ di C az ay + U. ay=((125)

ow
	 O'T	 O"r	 a=q

	

>i s V' -1 oyy	 D„ 8.0 } C at dy -f ' D:^ outI-
+ Da3ar,	 ;,D;, d^ ay t D:, dy= .

	

K, ^
a^	 a'u 	 app	 a=u,
ar -f- a:=^ , h, ( ay 

+ ay=) =1''	 (127)

Eq. (125, and (126) can be reduced to the following symmetrical
form
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L, (4p) - DuK, ^ + (2DUK, - DuKg) d ray -!
-{- (D&jK, - CKJ ate' - D"K' ^ - K1K, as ;	 (128)

Le ('Y) = D„K,	 f- (2Di3K8 - DaK,)

 VOW +

+(D„K,-CK,)^- D13K,^--KjK, ^^	 (129)where

C —D ,a+ D„•

	

	 (130)
a•L& () _ (D„D3s - Dl*,,) asp + 2 (D,aD= + DsaD„ - CU ,a) a:, ay +

	

+ (D313 + 2D13DO + D„D23 — CO)"as 	 +

{- D D	
a'

2 ( za ss + DuDa9 — CDC,) es ys +
8•+ ( D12D33 - D	 •,'') dy' - (D„K, + D.KO

- 2 ( D13K, + D29K,) , - D K D K '` 3 	 ( sa s + as ,) y° -^- h',K^.ds 
(131)

By multiplying Eq. (127) by operator L 4 () and with Eq. (128),	 /47
(129) taken into account, a differential equation of bending of a lami-
nar anisotropic rectangular plate can be obtained with interlayer shear-
ing taken into account

( Dii D33 — D,^,J K, d - - 2 (D„ Do, — DI , 1),,) K, 

04
'a',,  +

[ h , ( D33 + 2/)„D„ -}- D„D:: ` G^^ `^- h s ( Du D33 D,3)] xd6u.

x A.r• dy + 2 ( K I (D, D13 -- D„Ds) +

+ K2 (Du Dsa — DIA.,)) 
e

d: dy3 +
+ [h , ( D33 + 2D, 3Ds3 + D„Ds3 — C3 ) + K, ( D33D33 — D123)] 

d a”" +

+ 2 ( D3:D13 — D12D131 K$ dr —'7V' +
s	 aim+ l D„D33 -- D,3) K, a, — K,K, u

r	 8•r {-
	

8•u+ 	 A^uX D„ 
are	

4D„ 
dra dy 2 (C + Dw) ,. 	 -f

a•^+	 a•m
+ 4D:3	 +DOZ 01/3	 „ ay, ] =L,(P)•

For brevity, we introduce the following designations

D„ D33'—D ,a	 2 (D I IDS ,,	 .+a —	 a•	 as, =	 a3b

D„ -f- 2D,,D,3 + Dn Das — 
C^

aaa =	 asba

2 (D„DI3 —D,s Ds3)	 2 (D 1AKt + Ds3h,)
a19	 Wa„ °	 ab

(132)

(133)
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D D^ D'^ .	 a 
Q D K t t DtfK,_

Q^—	 e a•

ass Â —

• 1	 R	 _Da
R, ^DuD.='—^	 Dn! ^	 ^ ^—' brat 

a,e =-	
as

ae

D D	 Us((DtID,o--DjsD

as — 
2K, 

(D„Do b ^^ a an, 

c	
ab

a., _ { K, (Dis + 2D,,D.. + D,,D. -- C*) +
1

+ K. (DjtD.. — D
.
u) I a'' :

t

as3 = 2 { K, (DatDja — DlaDaa) + Ka (D11Dsa — D iaDis) T

as, -= K, (Di. -}- 2D..D.t + D„Dtt	
t)

— C +

1 74eT

(133)

D„K, ,	 D,tKt .	 D„ .

2K,Ds,—D„Ks	 2K ,D„—DtsK2	 = 4Du .
as =	 6aab	 • PI-- ag,	 , Ya W

D,sK, —CKt ,	 D„K,—CK, ,	 2 (C ♦ DO .
as 	 abs
	 ^s = --
 alb	 Ya	 albs

D„Ks ,	 D„K, ,	 4Ds3 .
a• T ^e — as Y+ a abs

KjKs	 K,K,	 Ds,
as = a	 ^• = b	 Y. = b,

(134)

/48
Then, in dimensionless coordinates E=x/a; n=y/bs system of dif-

ferential equations of bending of an anisotropic plate (132) 9 (128)9
(129) is written in the form

Le (w) = L4 (P):	 (135)

a^.o	 a'^	 a•^,	 03W	 01W
L• ((p) = .a1 a E, + as aEs en ^' as ^ — a• eq, — ae BE

Le($) _ ^ t aa, + Aa8 asm ,+ 0a #Is O — P• ats — 0e ate,,	 (136)
E en	 E en 	 aE	 an

.
Le ( ) = Qeo SET ^- au E^ -(- a,,,aE— 4 Ov +

84
04 	 of

-{- an B—	 t +.aat 612 n• '^ Qu OE en• + aoe

01• +' Ya dE. -^ Ys e	 -1- Ya e	 -I- Yo R :	 (137)

vhere the following differential operators are written through L6 (),

J 4 ( )
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L.( ) —o e °: +auk+ws	 + auy;+

+ao.^—aw-W—ali-$O" —aes-AT+ aar	 (138)

19. General Equations of Bending of Orthotropic Rectangular Plates

If a laminated plate is made of an orthotropic material, the
resulting general relationships and differential equations are simpli-
fied when the principal axes of anisotropy coincide with the coordi-
nate axes, since D13=D^300.

By replacing D11 by i) t , D22 by D2 , D 33 by D 3 and D 12 by D lv 2 or
D2v 1 , for an orthotropic rectangular plate, we obtain

G l =—D,(n'F +v, a^);

C2 _Ds (" +V, 2T—);) 	 (139)

	

Ox	 dy

Qi _ — Kl Cq) -}- raz )

Qs=— Ks^+V+ 
W	

(140)

System of differential Eq. (127)-(129) takes the form

s 030^am
L. (^) = DaKI es• -i- (DsK, — CKs) aiayT -- K,K, O+z

	

L ''11'' D K '"W + D K CK ) '	 g K ' ;	
(141)

(W) = S ! JJyy	1	 1 aso ay	 1 ' ay
,	 s

ox	 OST	 OV	 re—

where L 4 () is a differential operator in up to fourth order partial

derivatives

/49

La {) = DIDs es. + (D,Ds + e	 a: ay
s

+ D,Ds a^^ — (D,Ks + DsK,) as —
as

— (D,K, + DsKs) r + K1Ks• (143)
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Differential equation of bending of an orthotropic plate (132)
takes the form

D,DsK, ^ + [D, (DsK, + DsKe) + K, (Di - C')] d' W +
+ [Ds (D,K9 + DIKJ + Ks (D: — CO ) '"'P  + D,D,Ks -

- K,K, [Ds^ ^- 2 (C -t- Ds) a°Tyr -}• Ds ̂-'F4 (P)•	 (144)

System of differential equations of bending of an orthotropic plate
(135), (136) is simplified, since D 13=D23=0 and, con3equently,

an - as, =a,s ,,=a„ — as, —a,&—%=as p
= 02 — P's = Ys = Y's -O.

(145)

/50In dimensionless coordinates E=x/a, n ay/b, the system of equa-
tions has the form

	

""W
	 awF4 (0 == a, fib , 1- a, ag des - a, 8t +

e

	

F, (V) = ^, a9u' + , a
,d	 am
	

(146)  
oq^	 ds! aq — ^, ^;^ i

To (w) = F4 (P),	 (147)

where F6 (), F 4 () are the following differential operators in partial

derivatives

8^	 a6	 a^
F6( ) — a60 dee + aae a b , des + a24 e' "' +

a w	 a^	 a•	 a^
+ 

a06 d,—̂• _— aoo ^ 1', 4̂4 + 1'a d5 , dn , i 1'e Oq4 ) '
	

(148)

a^	 a^	 a^
I^ 4 ( ) — a4o db• -f - ax: ^^, 4 + aos at,^ —

as	 02
- a20 a5, - a0z â̂ , }- aOU.	

(149)

''I

Coefficients a i , $ i , Yi (i=1, 3, 5) aid are determined by Eq.

(133), (134); with 
D13 D2300., D 11 =D1' D22=D

2' D33-D3, we have

y5
y	 _

DA DA	D, D,
A 	 aso — a,	 aot — b, +

a
DtD,+D,-c'	 xso.+h,D,.	 (150)ate =	 a$ba	 +	 a20 =	 a2
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R

r

+X 11D
a,, 

= K, 
D 0,	 ap. KtK.:

D, :	 Dube ,
a„ =	 i	 A'

a., — [Ki (DAD, + D; — CO) + D,D.K.] ;W

as4 — [Ks (DiDI + Da — C') + D.D.K,] ^ OT

(150)

D K, .
a l = --gip--^

K, D, — CK,
as = — abT— ;

Us = K,K.
a	 +

D,K, .

QQ	 K.D, •—Cgs

oil

D,
Y1 a" •--:

Y3 = 2 (C+Dx)
elp—

D, (151)

20. Energy of Deformation of Anisotropic Rectangular Plate

In the majority of cases of solution of specific engineering 	 /51
problems, an exact solution cannot successfully be obtained. There-
fore, various approximate methods of analysis must be used. In the
theory of shells, variation methods based on the principle of the de-
formation energy minimum are most widespread. If an anisotropic plate
is bent by normal load p, the potential energy of bending is determined
by the well known expression

U =_ — ; ff(G, x; -} G, x, + 2ff xs + Q,Y, + Q,Y: ) didy.	 (152)

By using the Hooke's law relationships, we obtain

U = f I D1tx t^ + 2Du xixo ^' D„ x,^ + 3D,,x,xe +

+ 3D„x;x;+4D„
xi,

+ K, Y, + K,)', )dxdy.	 (153)

By substituting K le , K 2 e , K 3e , Y l , Y 2 from Eq. (11), (12) in Eq.
(153), we obtain

U	 ff
' [D^^ d: )' ^'D,a a: ay + Daa ( dy )s +

+ K2(* + dy )'] dxdy.	 (154)

In this manner, while a possible deformed state of the plate is
determined by functions ^, iy, w, the actual deformed state differs from
all the kinematically possible states, i.e., those which satisfy the
boundary conditions given, insofar as, for the actually deformed state,
the functional
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avav	 av
BC.0 

_ 
8C, = ... a 8Cn 

_
(159)

ff ID11 (4)	 oil
+DU(4+"')*+ D ig +^)+
+'AD. m ^ +^) +K^ (^ +_rZ	 (155)

+ K,(+p ay )' — 2pw) dsdy

has the minimum value.

The integral is taken over the entire surface of the plate. If 	 /52
the plate is orthotropic and the directionsof coordinate axes x, y
coincide with the principal directions of anisotropy, Eq. (155) is
significantly simplified and takes the form

V.
2 JJ [D, ( e: )'+12D, v,"T ^y +D,( ey )'+

+ D,(By + a: )' + K,(r+ a: )'+
+ K, ( sh +; w )' — 2pw, dXdy •	 (156)

The simplest alternate version of use of the principle of possible
displacements, which is called the Ritz method, is as follows. Desired
functions 0, *, w are assigned which satisfy the assigned boundary con-
ditions at any values of random parameters C i (J-1, 2,. . .,n) and cor-

respond as well as possible to the physical essence of the problem

W	 w (r, y; C,, C,, C,, ..., Cn).	 (157)

By substituting these values in Eq. (155) for an anisotropic plate
or in Eq. (156) for an orthotropic plate, after integration over x and
y within limits which correspond to the entire surface of the plate,
we obtain

V=V(C1, C 2 , C
39

. . ., C-).	 (158)

We select constants C l , C2 ,. . ., Cn in such a way that the energy

of the system has the least value, i.e.,
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R E,

d' 

`	 Values of random constants C11 C
20

.	 . Cn result from solution of

the system of n equations, which determine the desired solution of the
problem with the required degree of approximation. In the limit, as
n-o-m , an exact solution can be obtained. The accuracy of the solution

3	 depends on how successfully functions 	 w are selected.

21. Bending of Orthotropic Plate by Concentrated Force

Let a concentrated force applied at the point with coordinates xo , /53

Y O 
act on an orthotropic rectangular plate, the principal axes of ani:j-•

tropy of which coincide with the x, y coordinate axes (Fig. 26).

Fig. 26. Diagram of bending
of hinge supported rectangu-
lar plate by concentrated
force.

We will assume the sides of the
plate to be supported and satisfy the
following boundary conditions

wnG 10 00 at	 xn0, xsa;

wMG 2 0 ^ 0 0	 at	 y'09 y`b.

Such boundary conditions satisfy a
possible deformed state, which is de-
termined by the expressions

m	 CO

A mn cos
m 

a 
s

sin "-' y
M-1 n-1
co	 CO

Bmn si n m a = cos

,m-tn-1 (160)
cc	 WI I Cmn sin '" a = Si n " b y .

m-i n-i

In accordance with Eq. (156), the functional of the elastic energy of
the system

	

V= Z D	 VAmn ari stn max  sin " n y +i
m- n-i
0o m

	

+2D, V,	 Amn ari sin '"a z bin "ay 
J 

X
m-in-1

X	 Bmn 
"D 

sin M` = sin " n y l -}-
(M-1  n-1

IJ

U	 nd tr	 nav+_	 ^3mn b x'111 a VIII6fi	 ( l6l)
1 n-1

	

°°1	 s
j^ S'	 n'T	 m t \ 	 m:tr	 nzy ^

+ 3 i^ ( Amn b + Bonn Q 1 Cos Q COs b {-
rn- n-1
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r

°° ao	
1,

+ KIVS (Amn + Clan 
	
Coa m s- ein " b N 

J 
•}-

m _ t "•. 1

1°°, CO	

)Il dxdy — (161)

K,Y L ( Bren -f- )8in »'
e

= Cu+^ 

co Go

—P	 C,, sin "'a ='sin "^.
M-1 n_1

Because the integrals of the product of the trigonometric func-
tions discussed differ from zero only in the quadratic terms, we have

00 0

S 11 l 1	 ^ mn 'f' 2D V a^ AmnBrnn +
m-In-1

Do ( ^  B.,n + D3 (A ren "b + Bmn nn )' -}-

+ h, ( Amn + Cmn "'-4 + K, (Bmn + Cmn "^
x

-> aJ —
CO .1 CO	

(162)
_PV

 I C.. Sin M a O Sin " b!/e
M-1 n•t

The minimum of functional (162) is realized under the conditions

/

Amn [D i ( a" )I+ Ds (^-) ^" KI] +

+ Bmn (D, vs + D,) tab n ^ C.nnK^ 4 == 0;

A ►nn (Dj Vs + D')	 { Brea [D, ( b

+ D, ( m
a /n )' + K,I ,+ C►nnK: 

b11 : 0;

m n •'
Am„Kt on + BmnK2 "6 + c.”, [Kt ( a +

  • 1 	 4P Iu m n so sin 
n tt uo

+ Ks
( nn)
 b 	 — ab	 a	 b

for m, n=1, 2, 3 ) . . .

By solving system of En. (162), we find

a
A	 — 4P Alm in 

m .t Ep i
n n a ya

abmn =	 7%,	 b

4P A;n	 m,
 t0	4"0

Bmn =-	 ab Am Sip a sin b

^.	 4P Avn sin m n ro .ln n n y,,
mn = ab Am 	a	 b

(m,n=1,2,3,.. )

where

(163)

/55

(164)
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r

QI^ K1Da ( :^ )a ^- (K,D, — KtQ ^^ C R +

+ K,Ks rn ;

MA^Q,. ^ KIDs e4 )' + (KIDI — 
KIC) ( s" ) T +

+ K,K,e ;

inn 	 t	
mn 1 T °Qan _- p,pa ( a ) -{- (D ID, -}- Da — C

s
) ^ . ) ° 	, +

+ D•Da \T )e + (D IK, + DaKI) sU +

+ (DeK, + DaK,)("d )t + KIK,,

Qn, — D,DaK, s^ + I D, (DaK, + D,Ks);+

+ KI (D, — Cl)] ( ," 	 Mb )' J- ID. (D IKa + DaK I ) +

+ Ka (De "- Ca)]oR	 fib )° + DaDaKa ( AD R) +

+ h IK, ^D, l sn  + 2 (C + Da) \ a^ 1 l^ +

(165)

C=D,vs + Da—D,v,+Ds,

for m, n=1, 2, 3,. . .

The bending moments and cutting forces are determined by the ex-	 /56pressions

G 6 4 ̂ ^ n I^ ^ e„^ a + a a +^ b V,) x
m_1 n..1

XsiA "l a s0 sin n b y° sin a'a=^SIU nay

CO cc

Go	
ab	 A^	 X

M-1 n-1

X sin a=° sin —T sin 
m

' 
w 

sin ^'	 •

OD CO

N = 4n PD, T
, ^ 

(4a m s -^-D^ rnb )
aD ^L^	 AM	 X

M-1 n — I (166)
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Ii

xsin "' 0 sin "-	 Cos ^"^ cos -"^'t-^

4PKI 
.o ^. (aim as"Qt°^1^ An`	 x

x sin " . .70 sin 	 Cos -- " sin

Qt .0 	

lAsw—e,w S"I x
e.»

X sin mis sin"--	 sin r" Cos " ' Y .

(166)

22. Bending of Orthotropic Plate by Uniformly Distributed Load

Let an orthotropic hinge supported rectangular plate with sides
a, b be bent by a uniformly distributed load of intensity p. We select
the coordinate system as indicated in Fig. 26.

We will seek a solution of Eq. (146) 0 (147) in the binary trigo-
	

/57
nometric series

CO

^i 11 Z Ann cosmat sin nail;en-1 n-1
Go 00

Z V B",nsin ntnt cos n nq;	 (167)
,n-i n-1
CO 00

tv= V% Cmnsinmatsinnnq.
m t n-t

We represent load p in the form of the binary trigonometric series

CO CO	 (168)

i '11 n-tP.,, sin m nj sin n nq,
m-t 

where
Pmn = ;6P (m, n = i. 3, 5, ... ).	 (169)A s non

By substituting Eq. (167), (168) in bending Eq. (146), (147), we
obtain CO

I
CO	 j
jq Amn In` (aioin4 + aa:at'n' + aan') +

m-t n-t
+ n' (aWn' + ao2n') + auo) cos in at sin n aq =

(170)mI C-n(n' (at MIS +a,mn') +na, m)x

x cos Mat sin n nq;
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,n

R

w oe

>~it .^.^̂  B-01 .416 (46n4 + aWX'ns + 460) +

+n'(40fi'+ awn') + OUI sin m At coo nnq •R
eo

Fj	 Ce•w 1>z ' (rl n' ^' ^^ tn'n) '} Jt^, nl X
to-1 n•1

(170)

X sin M n& cos n nq;
0o eo

^^t n•1
+ n4 aM (Yi ►n6 + Ys tr.'n' + y& n4)) sln m nt stn n nq

so M

Yw Y Pm ln6 (a&v%4 + a pft° + aan") +
e.•t w- t

+ a' (awn' + ayn') + awl sin m At sin n nq.

According to Eq. (169), coefficients Am,1 , Bmn C. differ from

zero only at odd values of indices m, n oe
l, 5, 3,e	 . therefore, we

will not subsequently stipulate this, and we will understand that
summing is carried out only over the odd indices.

We introduce the following designations

/58

.rq n,	 e	 e	 • >	 > ♦ 	 •
ir®	 t l a•dn	 a,^nt n	 az 1nl n }awn ► } 

1114 :. 	rn2n' + 1', ►le);

:t'	 '	 aal/l'n'

I Z' \ aIIdll^ -^ a„,O)	 a.;

b, • "_ ,^c° (aa, nl' .'- a, tit n') -4 - aa& in;

for m, n=1, 3, 59. . .

In accordance with Eq. (170), we obtain

.m, n	 m, n

L mn - pmn ►-j 
n r Amn — Pmn Ll

 n
^ +e	 tie

^m, n

B.0 = pmn ^ 3 w
e

(171)

(172)

and, consequently, the solution of Eq. (146), (147) has the form

_i

a
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00	 CIO

^Mw	 n wxma$ sin nnq;^•.
gal 

"-1

,^ .. IOP

00	 00	 •,, "

^►̂  ^'	 ^'	 " $In m It cos n nq;

1T^
sin mnj sin nnl.

n^n'("I,nw,-I n-1	 •

(173)

The maximum deflection in the center of the plate

M f w-=

	

00 m	 $	 tw, w

^u ^m•z ^
16P

L

	

'` 
on. ft- 	 m"Z;	 (174)

	The bending moments, torques and	 cutting forces are determined	 /=9
by the following expressions

!q A
IP/ l)^ IIgym, ^m + V! ^; . " n	 •

G^=	 -^ ^nCm n	 simm^;tinnnq;
  •

00

Gl^ lt^py,`,,̂ t;" miZ;'nn simma sin nnq;
:s M-I

-1 ^	 rnn^•

00 
`
oo .a, n n	' 	 q1rip

va	 .G.t `'	 gym3 n	 COS m n4 cos n at);
mnm..1 n .1 	 ^•

4"
18 Kk IV ` 

J

AN I m 

—;
'
n

QI =	 :.r v	 mn •in. 
n cos m n^ sin n nq;

m-1 n-1	 *•

tapK,	 00R^m,nn—_',n

Q!	 NT_ Z 	 ,n, n — sin m :tz cos n :ti,.

m- I w-1	 •

(175)

The maximum shearing stresses on the edgeP of the plate (x•0,
x=a and y s0, y=b) arise in the middles of the aides, and they are de-
termined by the expressions

	

00 on	 . m, n	 M. n
TI max '" tt d Aj	 mn; m, n

	

m-t n-1	 •	
(176 )

24 K 
00 00 n! ►n. n n _ sm. n24pKg	 t	 aTo Ma x	 W

+n-Iw-1	 •

where 
;0m,n 11 ;1m,n 1 ^ 2m n, 2 ;3m,n are determined by Eq. (133), (134) and

(171).

A solution in the form of binary trigonometric series is inconven-
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ient for practical use. Therefore, it is advisable to consider a solu-
tion presented in single series.

23. Bending of Orthotrovic Re
	

to with Two Supported EdRes

Let the principal axes of anisotropy of the plate be parallel to
the sides. We select the coordinate system as shown in Fig. 27.

We will assume the edges of the
plate xs0, xna to be supported and to
satisfy the following boundary condi-
tions

w-Qlw^ no.

Fig. 27. Coordinate system
selected.

where

	

In this case, solution of plate	 /60
bending system of differential Eq. (146)9
(147) can be sought in the form of sin-
gle trigonometric series of the follow-
ing type

`co

9	 Tn (11) COS xn^;
n-t

co

( sin Ant;

co	 (177)

W — ^ wn ( ii) sin knt, 1

(Xn = n n).

We expand the uniformly distributed load in the trigonometric
series	 (178)

p = I An sin ^„ J,
n-1

where
An = jp for n = 1, 3,5,...	 (179)

By substituting Eq. (177 ) 9 ( 178) in bending Eq. (146),, ( 147), we
obtain

00

n 3 lao4 (pnV 
— (X: a., + a.) (n + (Xn a4o +

sob)
co

"} a n at0 + q).]COS ^n^i = I [Xnas W.

(f
	 n- t. 9

-- Xn (4a, + al.) Wn] COS Xj;
00

v ao4 Vn' — (%n a., + a02) +Vn+(X4nato+4 a.+
n- 1 , S

((Q	 ( Q

(180)
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r,

+ P+) wn] Wn X"t;
(180)CO

^• (	 tv	 +	 tV 
+

f	 s
II laoswn — (7^ ass '+' Ys a00) wn	 ^n (fin ass +

nit, S

+ Ys aoo) wn ` ^n ^^^ aso +Yt a00) wn] sin ^,

1
m

= n %, A n (An as0 + 4 aso + aso) siD a+►t

Here and subsequently, summing is carried out only by odd indices /61
(n-1, 3, 5,. . .).

System of Eq. (180) is satisfied if, for each n=1, 3, 59 . • .,
there is a solution of the following system of conventional differential
equations

a01 ynV

	

	as, + as) (j + ( Xn al0 + 9 as0 + aw) 4pn

= Xnaf wn — An \^

(
n 0 1 + af) wn.

a01 ^nV _ (X,' a,, + aof) Wn + 1^n a40 + Xnf;Is 0 + aoo/ *n =

_ P 1 wn — (%n Ps + P + ) wn;
aoswvt — (4, 	 + (4n ass+ Y.a.0) wn

f	 f—,%4n ( Xn as0 i- X, a00 ) wn = 4P
' ( a40 +	 as0 '+' aoo).

(181)

We present system of Eq. (181) in canonical form, doing them cor-
respondingly by coefficients ao4 , 

a06 which, according to Eq. (150);

are different from zero

T
V — enf) 

(Pn + e((n) ^n = I nt )wn !na)wn^

1pn
	 e(.1) 

^n '^ to ^wt = /n wn — !n n^

WZI
- 1) wnV + wn2) wn — cun

st
wn = nw

for n=1, 3, 5, 7,. . ., where

(182)

(183)

/62

(184)

	

' 22  +^°	 U U L a^ LID+ 
+ Ds _._. (;') }..

04	 . 9 i

+ f;,D, 4 K,D,I

(2)	 xn a f0 4- X12' as0+ 400 	
_ L 

^n DID	
^n X

C"	 a	 — U U a^ 1 f+as

	

o4	 s a

X (K.D, + Kj Ds) + KSK,1;



`	 ^( 1) 	 )."an 	d' ^^+ (K ip. — 2CKt);F	 "	 ot4 	 U,U, o

1(21 ^n Na, + aa)	 b4 Xn r an
n	 d,, U,Ut 7- \a Da + Kt, K,;

eta) _ P,	 N ab
" _. 

aat	 Ut '

V [^" ( KID, 2Ch') } K K,a 0,	 U,U,	 a^	 7 1	 t	 1 t

6)	 n fa	 • oo
°	

a	 Apt
fir	

== Ut Ua Ae l of I D*DsK t + Kt (D jDt }- D; — Cf) +
t	

+ D,K,Kt}

(2) _. Xn( X'n 42 + y3 a00) 	M	
X

X at { as 1 KtDtDa + K t [D ,D, + D, _ Ca l +

+2(C+Da)K,K,)

X'W (3)	 fir►
^ ( fin agO+ y 1 a,,)

"
	

uof

OD IK, )`n^n D .3 t. h•

	

U,U,K, Q• (a, 	 t)

(184)

for n=1, 3, 5, . . .

4P	 bi	 "'

t
+ ai (KiD, + K,DO + KjK`2

After finding the general solution for plate deflection wn , for	 /63

aeformation functions fin , fi n , partial solutions of Eq. (182) are taken.

In this manner, the solution of system of differential Eq. (182), (183)
is determined by the roots of the characteristic equation

	

k, — lU" k, -}- W,F k, — W"
	 (l85)

Eq. (185) always has two r al roots. The remaining roots are
determined by coel : icients W n (J) (J=1, 2, 3) .

We consider the most general case of complex roots, i.e., we will
assume that the roots of characteristic Eq. (185) are

	

4- kit'.  -- (s, t r,,() .
	 (186)
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The general solution of differential Eq. (183) can then be present-
ed in the following form (for brevity, we will omit index n of coeffi-
cients C i , Ai' H i , ki' B i g ri)

t',. _{, C i ch k tl + Cs Q► ^ (^1) + Cs Q's ( +1) f-
7,4

+C+shkii+C, Q's( TO +-C.('4(^1)	 (187)

where the well known functions of V.Z. Vlasov are designated by

0 1 (n) (1`1 9 2 9 3, 4)

(1)i	 chsitces r q; (D,W =. Asiqcus r il;
^P= (^l ) = AsnsinrTI; 04 (,l ) = chatisiurrl. }	 (188)

There are the following relationships for these functions

^L, = s Q►s + r tP — (D. = s Q^, + r (Ui;

0' = (s' — r') Q'a + 2rs (1),;
= ( s' — r' 1 Q)y — -'rs 0,;Qua 

(1)4 .= (s' — r') (Di }- 2rs Q►,;
^i. _ s ( s

o 
— 3r')fi3 r(r'-3s')Q)+;

s (s' — 3r') Q), — r (r' — 3s') (D,;

(D® = s ( s
o 
—3r')(D I I 1-r(r'-3s')0z;

s (s' — 3r') Q), — r (r' — 3s') tD,;

(D; v (s`•—Gr's'+r')0,-4rs ( s
o

—r')(Do;

V,v = (s' —GrY+r` ) (Do +Ors(so —r') (D1;

(D;Vj=(84—Gr's'-{ r ` )Q)s-4rs ( s
o

	

—r')Q^a;	
(18^)

Q>iv = (s —Gr's'+r` )Q)4 +Ors (s
o

—r')(Ds, i

A table of functions 
f1, 

1)
2 , 'D 3 , 04 [15] is presented in the ap-pendices.

In the coordinate system selected with a uniformly distributed
load, solution of system of Eq. (182), (183) should be even relative to
m n , w  and odd relative to *n , i.e., the solution mubt be sought in the

1k

/64

T.01) 4P,+ Fi lch k Tl + A s Q0i (rl) + A s 1Ds (n);
Vi n (11) = B, sh kq + Bs (Ds (q) + B, O j (q);	

( 1 90 )
Wn (11) = — On + C, ch k tl + Cs m, (n) + C, 03 (TO

j



By substituting Eq. (190) in differential Eq. (182), we obtain

x

A tka ch k q + As [ (sa — 600 + ra) (Di (q) -

- Ors (s' — r') 0s 001 + A a I(sa — 6rsss + rd) ms (q) +
+4rs(sl — r2)ms(q )j —e("t)jAtk2chkq+

+ As [ (s' — rs) IDt (A) — 2rs Oz (q)1 +
+ As [(s' — r') Os (q) + 2r+ (Di W] 1 +

+ e( ) ( ipo + A t ch k q + As 4>1 (q) + As 0s (q)] a
— t.') {Ctk' ch k q + Co ^^	 r2) (DI (11) -

- 2rs 4)s (q)] + Ce [ (s' — rs) ms (+1) + 2rs (DI (q )1 I -
- jts) [we + C t ch k q + C1t 01 (q) + Cs (Ds (q) 1;

Btka sh kq + Be ( (sa — 6r's' + ra) (Da (q) -

- Ctrs (s' — rs) ma (q)1 + Be [(s4 — 6r'-1' + ra) 04(n) +

+ Ors (s2 — r2 ) (Do (q)] -- e;) IBtk2 sh k q +

+ Be [(s' — r') 03 (q) — 2rs ma (q)1 +

+ Be [(s' — r') ma (q) + 2rs 'Do (q)1 I +
+ 4)t[Bt sh k q + Be ma (A) + Be 04 (q))

^Ca) (Ctkash k q + Cs Is (s2 — 3r') (Do (q) +
+ r (r' — 30) 0a (AM + Ca Is (s' — 3r') 04 (q) -

- r (r'-3s') Qts (q)] I — /n (Ctk sh k q+

+ Cs Is ma (q) — r 0,1 (q)1 + Ca is <Da (q) + r '03 (q)1•

(191)

Since equality (191)

that k 4 —en (1)k2+en(2)#09

coefficients A i , B i (i=1,

occurs with any values of n, on the assumption /65 1

the following expressions can be obtained for

2, 3)

/n21 Qn

(r" "~ e(2) W(3)
n	 n

/^2)	 k (/(3)k2—/(4)) 	(192)

A t = C t ka — e(f)k2+e(2) 	 Bt = Ct 0—ent)k2 +e(,2)
n	 n

A2 _ Ant )C

2/
+ An2)C3 ;

/^

	B2 = A(3)C2-}- Oni)C„

A 3 = — A (,,V , + Aj&' )li 3;	 Ba = — A
(4)C2 +A G,

(	 //nf )(S' — r2 ) — 2)1 [ sa — 6r a2 + ,a _ e(1)(s2 — r2 ) +
where	 Qi') _	 ( (sa- 6r2s2 +,a)— enf) ( s2 — , t ) + e(  )12-#

+en211-
4,282/nf) lent)-2(S2—r2)J

2+ 4rzst e(f) — 2 (l2 — r2 )1
n

/(t) 
Ist- 6r2s2+,a— e(1>(s2.— r2)+

(2) —	 n	 n

^n	
ZrS	

sa-6rzs2+ ra)— e(,)(s2—r2)+

{ e;2 + Iett(a' —r2 )1 i /mot) (s2 — r2)--1 1 f) -2 2)1
+e(n2)12+4,zsz lent)-2(sa --r2)12

en — 
s 

(/ns)(8s-3r2) -1^1 	 s +,a_ent)(j2_,2) r	 (193)
(3)

[(aa— 6rz12 + ra ) –" en') (P— 	 +e(n2)1 2 ,+.

51



a
+e;,"'+2r'(e;,t)--2(82_ra)t 1jL3)(ra-38a)+1„4)

+4r ^^ I^it)-2(ia—ra)^1
l n

Qns) ^: r 2s' [e;^)-2(aa—ra) i„9)(ia-3ra)—^) —

'^i^
1
—

(
Ora + r — tit ) (is -r ) +

—	
aara +r&— en (8*a—r2)+e(,!)j

+efl91 +4r as [eat)—r(aa -rx)12

Thus,

^^ (g'o -{' A ln Ch kn 11 -^- Aan (ttn ( tl) -^' :tan (tan(tl)(COS •^i
nft, 3C.

(1; 1 ,, sh kn it 4- Ban (tan (11) + Ban (Dan (n)i sill X.Z;

ac+

10 =	 l — "- + C ln ch k. ,q + Can (ttn ( q) +
n	 a	

sin XnZ,+Can (tan (a))(

(193)

(194)

where coefficients Ajn, 
Bjn Q=1 0 2, 3) are expressed through random	 /66

constants 
C,)n 

(J=1, 2, 3) by Eq. (192), and kn is a real root of char-

acteristic Eq. (185).

Correspondingly, the following expressions can be obtained for the

bending moments and forces

CO

G t = Dl I (on (4'0 + A tnCh kn tl + A 2+► (),. W +
n - t

+ A3n (tan ( tl)( — ^b ( knBln Ch kn ,l +

+ B2n (ta	 `{' Ban (tin (tl)i Sill X"t;

00

Ga — — D9 2: i b [knBln Ch kn q + B2n ()3n (tl) +
n-t

+ B3n C. ( tl)^ — ^ ay' (4'o + Aln Ch kn it

+ At, 01.(n) + A an ()an (tl)j sin )^n;;
cq

N=- —Da[A inknsh kntl -}- A 2. (Din (tl)
n-t

+ At. ID;. (n)] -} a (Bln sh kn h + Ban (tan ( tl) +

+ Ban 04n (n))} Cos hnt;

(195`
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CO

Q, = —Ki I [[To + Ain ch kn q + A,,, Min (q ) +
n-1

+ Asn Or. (rl)) + ; 
l —
	 + Cin ch kn q +

+ CS. d'In W + Can O,n (q)} C0611n ^;

Qs W — K, {( Bin sh km q ♦ Ban Man (q) +
n-1

+ Ban 10`n (q)) 'f' T (Cinkn sh kn q + Cs. Min (q) +

+ C3- 4)=n (il)] ) sin A,4, .

For each number n=', 3, 5, random constants Cln , C2n are determined /67

from the boundary conditions at the edges of the plate n=+1/2.

In conformance with conditions (22), the boundary conditions for
the edge 9=const have the form

unsupported edges
G2=H=Q2=0;

rigidly fastened
*n ^=w=0 ;
	

(196)

loosely supported
w=G 2 =H=0;	 ^=H=Q2=0;

w=^=G 2 = 0;	 *=W=H=O;

^=^=Q2=0.

Besides these conditions, there can be different fastening of both
edges, i.e., any pair combination of the boundary conditions written
above. However, in these cases, the deformed and stressed states of
the plate will not be symmetrical about the x axis and, consequently,
all six random constant remain necessary in solution of (187).

24. Case of Different Real Roots of Characteristic Equation

Bicubic Eq. (185) 9 by the known substitution

k = k; — 8

can be reduced to canonical form

k 3f 3pk+2q= 0,	 (197)

where
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q	 0 —- t

P = ft 9	 .9 (198)

# .s

The number of real roots of Eq. (197) depends on the sign of dis-

criminant Dwg2+p2

D
a7 ^" A + 27	 toa — — 6	 (199)

Consequently, a case of three different real roots can be visual- /68
ized. Let these roots be 7C 1 , k29 'C 3

0 
The roots of bicubic Eq. (185)

will then be in the form +k l , +k2 , +ik 3 . We will assume that a:kin

(i=1 9 2, 3) are not solutions of uniform Eq. (182), i.e.,

z tt)	 (z)k j — k, e„ + e„

( i -- 1, 2, 3).

The solution of system of differential Eq. (182), (183) can then
be presented in the following form

(p. (q) =4'u+A,chk, q+A,chk,tl+

+A9coskj + Aashk, tl +A b !!hk, t} +A $ sin k,g;

^„(tl)= B. chk,n +Bb chk,q +Be cos k,n+
+B, shk,g4- B,sh kz n+B, sin ks t1;

tr„ (tj) — wl ny) +C,chk, tj+C,chkjil+
n

+C,, cos k,n+C,shk,q+Cbshk,n+C,Ank,11

(200)

In this case, it is easy to obtain a solution for the general case
of asymmetric boundary conditions.

By substituting Eq. (200) in system of Eq. (182), we obtain

A,klchk,q+A,,;: ch k,tl +A k;cos k,n+

+AAshk,11+A,k:shk,ti+ Aak; sink,q—

— e;,t)[A,k;chk,t), A 3k:chk,t)—A,k: cos k,ti+	 ( 2 01)
-} A bkl sh k, n + A bks sh k, ti — A,k; sin k, q] +
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+e;,=) [4p, + A,chk,q-}-A s chk,q + As cosksg4-

+A, shk,q + A,sh k,q+A, sin k,q]

f,," [C,k:ch k, q +C,k; chk,q—C,k; con k,q+

+ C,k, sh k, q + C,k; sh k, q —C,k; sin k, q] -

-- [ —.on +C, chklq + C,chk, q+Cecosksq+
 n

+C,shk,q-f-Csshh-sq+Cesinksvi

B,k: sit k, 1l +B,k; shk,q+Bskssink,q-^

B;k', rhk, q - } B,k; ch k,q+ B,k; cusks q-

- 	 L),k, sh k, q + B,k; sh k, q — B,k; sin ks q -i-

-*- B,k, ch k, q + B,k; ch ks q — B,k; cos k, q] +

+e; 2) IB, sit k,q+B 2 s it ksq-i• B, sin k,q+

- L B,ch le t il+B,chk,q +B. cos k 3 Ill

_.= J;; ) IC,4 slt k, ti + C,k, sh k s q 4- C,k; sin k, q }-

C,k3,chk, q+C,k;chk,q-

- CA cos k, q] — J„t) [C,k, sh k, q +

+Csk=shksq—Csk3 Bill ksq+Cak,chk,q+

+ C,k, ch k, q + Csks cos ks q]

(201)

for n=1, 3, 5. . .

Since Eq. (201) should be satisfied with any values of ri, from	 /69
Eq. (201) we obtain

J(2) ^
n	 nTo n = ^l.') WI3)
n	 n

J( uk! _ J(2)
A, -= C,	 n j	 n o .

n ! '^ sn
/( I )k

j,
_ J(^:)

AJ.3 =C, +3 A,

	

	

(ukJs^ ne(2) U _ 1,2);
n 

J(nt 
)kn 

+ J(z )

	

A,. 3 - —C,-3 ,	 (f

	

2)	
0,3 ^;ks + e^' e^t)k 

B; = C,
kj

k! _eU)ks +e(2)n

	

1	 n / 
^3)ks	

.C/+ 
3 

kJ n , — Jet, )

kj—a^t)k^ +en2)

B	 ks (^.4 +J4)

J(3)ks	 4)

B, = — C 
k s n s -}- Jln

(202)
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/70In this manner,
Q7

j Tdit + A in ch k in q + A,n ch k,n q +
n-t, s. S

+ Aan cos kan q + A,n sh kin q + A.n sh k,n q -{-
+ A,n sin k,n 'I Cos )4:

00

1,(B,,, sh kin q + Bp sh k=n q +

4- Ban sin k,n q + B,n ch k in q + Bin ch k3. q +
+ Ban cos k,n q) sin X-t;

a0

W _::	 r — WIN + Cin ch k,n q + C,n ch k,n q +
Ln

+ Cv cos k,n q + C4n sh kin q +

+ C,n sh k,,, q + Ccn sin "an q  sin knI.

(203)

The following corresponding expressions can be obtained for the
elastic forces and moments

cc(^
C1 _ —D 1 (d 1C ln ( q) sin x,,^;

C, = —Ds. Can ( ri) Sin kn^;n_1

fl = —D31 !fn (q) cos X„E;	
(204)

n-1

ttQ1 = — K 1 v Qln (q) cos kr„;
m̀

Qa = "_ Ks n-1Q9n ( 11) Rill hnG;

where	 r	 2
G in (q)	 a Lq,an j- V.,jjn Ch k,nq +

2+ I Aj +3.n sh kin q + Aan Cos k n q + A,,, sin ksn q^+
s	 s+ -a 
	
kjnB/n ch kin q + kjnBj« s, n sh k/n q +

1

+ k,nB,n COS k,n q — k. ,Bon si a ka1„ q 
1 ;

C :n (11)	 b `, (kjnL3jn ch kjn q `^
L)"1

kj.B,.3, .!.h kjn q) k3t,83n cos ksn q _.

—k	 n k

	

3nBen Sill q — i.n V1 r	 ^^ .'1/n h k0 1 q`On + i^ (	 c In q +

	

L	 ^-1

(205)
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+ A i . 3. n sh k/n q) + Asa cos kan q + Aoa si t, kon q 
1 ;

a

H- (q) L t ; (Ajnkin sh k)n i + As. 3, nk/n chkin q) —

— A3„k3n sin k,n q + A{nk3ncos kan q^ +

a+ ^" I,1(Bin sh k/n 11 -+- Bi. J. n Ch kin q) —

Ban si n k,n q + Bon cos ksn q

P1.( 11) [To• - ^(A inchk* q = Ai.s.n^ikin q -^

+ A3n cos ksnq+ Aw l t4n ksn q } } a — ^" +o	 „s!

+	 (Cjn ch kin 11- - Cs. 3. n sh k-j. q) -C3n cos k,n q +
J-1

+Con sin k in 11
7

P:n ( q ) = V (Ni., sh kj.q+Bi.s, ►► ch I`in q)+
J-1

[ J-t

+ B3 ,,si n ks n 11 + Ben cos ksn q +

+ b  j(Cjnkj.shktnq+ Ci .s.n kinchk1nq)

— Csnk;ln sin k in q + Conk 3 r, cos k 3. ,q
1

(205)

for n= 1, 3, 5 9 • . .

Coefficients Ain , Bin , (J`1, 2, 3, 4 9 5, 6) are determined through /72

random constants Cjn by expressions (202).

For determination of constants Cjn (J = 1, 2, 3, 4 9 5, 6), boundary

conditions (196) are used. In this manner, tiere can be 36 different
combinations of possible support fastenings of the edges of the plate
n= +1/2.

If it turns out that any of functions 
a±kjnn is a solution of uni-

form Eq. (182), i.e., kin 4 -en (1) kin 2+e,l (2)Q 0, the solution corresponding

to the solution wn-Cl chkinn+C 2 shkjnn should be sought in the form
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t
^„ (q) A ik i„ q A ki.. q + A,ki„ r, ch ki^ n;	

(206)
^^ (n) s Biki^ ,q ch ki„ q 4- ihki„ q A ki^ n, y

where	 A ^ ^1 )ki^—^2^t	 1 2ki^ 2kĵ —e( ))
')ks^. — &„ /n	 nA^

C' 2k;,,(2k2 —,41))

jn

2kM ^2 k/n -- ^n) )^

(207)
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CHAPTER 5. STABILITY OF ANISOTROPIC RECTANGULAR PLATES

m of Stabilit y of Plates	 5

The advent of high strength materials led to the extensive use of /73
thin walled structures containing thin plates and shells as the basic
elements in industry. Experience in the use of such structures shows
that they, as a rule, turn out to be unsuccessful, not because the
stresses which develop in them exceed permissible limits, but because
of disturbance of the equilibrium of individual thin walled components.

Questions of the instability of equilibrium arise everywhere where
there are thin walled structures. For thin walled structures made of
laminated plastics, because of the low rigidity of the latter, assurance
of stability is a particularly important problem in designing them.

If a parameter which characterizes the thin walled nature of a
structural element, for example, the ratio of wall thickness to the char-
acteristic plan dimension, is designated e, questions of stability as-
surance will be significant in the event the critical load is deter-

mined by the relationship p aAe q , where q>1 since, in this case, a reduc-
tion in wall thickness will significantly decrease the critical load,
while stress will increase only in proportion to the decrease in thick-
ness. The critical load in such thin walled structures proves to be
one or two orders of magnitude less than the load at which failure of
the material occurs. For plates, q-2 and, consequently, if the bulging
of units which consist of rectangular plates is an undesirable structure
according to the operating c^nditions, proper selection of dimensions	 /74
which ensure structural stability is an extremely important problem.
Dimensions can be selected with the availability of calculation for-
mulas or nomograms which define the critical load as a function of
geometric dimensions and elastic constants.

The problem of stability of a flat plate subjected to forces ap-
plied in the plane of the plate can be formulated in the following man-
ner. It is assumed that the magnitude and principle of distribution
of extreme forces remain constant and that parameter y characterizes
the external load. The critical value of parameter y is determined at
the time of appearance of other forms of plate equilibrium accompanied
by distortion of its mean plane.

The theory of elastic stability has been worked out extremely
thoroughly, and a number of effective methods are available. One method
of determinatior of the critica:. load is as follows. On the assumption
that, at some value of load parameter Y, the development of a distorted
form of plate equilibrium is possible, differential bending equations

are compiled with external forces T l=yTl 0 ,YT2= T2 0 , S=yS0 , which are

applied in the mean plane of the plate and give Lending component p nor-
mal to the mean plane of the plate, taken into account. The solution
of such an equation, which contains y as a parameter and which satisfies
all boundary conditions, exists only with certain specific values of
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parameter Y, which are called the eigenvalues of the problem.

Each eigenvalue Y k (kn 1 9 2, 3,. . .) defines a critical load

which corresponds to a specific form of loss of stability. It is evi-
dent that only a load determined by the smal^est eigenvalue of parameter
Y is of practical importance.

Engineering practice usually is limited to obtaining approximate
values, for which variation methods, based on general theorems of the
equilibrium of mechanical systems and according to which the potential
energy of the system has a minimum value in the equilibrium position,
are extensively used

If Uo is the potential energy of a plate in planar equilibrium and

U is the potential energy of the plate in the distorted state of equi-
librium, the critical load is determined from the equation

(208)

i.e., for determination of the criti cal value of load parameter Y, the
work performed by external forces T 1 11 , T2 , S in minor bending of the

plate must be made equal to the potential energy of bending of the
plate.

The solution of specific enfrineerinr problems by energy methods	 /75
looks approximately as follows. Expressions are assigned for func-
tions m, * and plate deflection w, which satisfy the boundary condi-
tions of the problem

Do 00

'V	 1mn^( rnn 2,
111 n

a, 00

Bmn vmn (t, U);	 (209)
m n

CO 00

W =' rV V CmnWmn (Z , N)
m n

By substituting these expressions in variation Eq. (208), we ob-
tain an equation of the,type

F ( A , B , C , Y) = V V I Um (A, B, C) — Y vmn (C)1 = 0.	 (210)
m n

If a finite number of terms is taken in Eq. (209), Eq. (210) is
not exactly satisfied. In this case, it is evident that the best ap-
proximation is obtained upon satisfaction of the conditions
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OF	 OF	 OF O	
(211)

i n 1, 2, 3, . ., n.

By setting the determinant of uniform linear system (211) equal
to zero, a characteristic equation can be obtained for determination of
the critical value of load parameter y.

Investigation of stability can be approached from more general
standpoints of the stability of motion. Here, instability or stability
of the planar shape of a plate exposed to forces applied in the mean
plane of the plate should be indicated. Together with this unperturbed
form of equilibrium of the plate, perturbations of the form of motion
similar to it are considered. If the smallest perturbations desired
cause finite deviations from unperturbed equilibrium over time, the
latter are called unstable.

As applied to Plates, this method is reduced to the following.
A differential'.equatlon of transverse vibrations are compiled, with the
longitudinal forces taken into account. Further, natural oscillatiin
frequency wmn is determined. It depends on the plate dimensions, elas-

tic constants of the material c ii and load parameter y. At some values /76

of parameter y, the frequencies may turn out to be zero or imaginary,
and their corresponding deflections will increase indefinitely. Such
values of parameter y determine the critical load.

26. Differential and Variation Eauations of Stabilitv of Rectangular
Plates

We consider a rectangular anisotropic plate with sides a, b. We
select a coordinate system such that the x, y axes are along the sides

of the plate. Let the plate be loaded along the edges with forces Tl0,

T20, S0 in the me^.n plane of the plate (Fig. 28).

Let bulging of the plate occur at some
o	 combination of forces T 10 , T2 0 , S0 . It is

rf^^	 Tv	 evident that, with as small a distortion of the
mean plane of the plate as desired, the equi-

r, librium equationL in addition to the internal
o	 forces in the plane of i;he plate which arise

. f̂  in bending do not depend on initial forces

0, T2 0 , S0T1	. More than that, these forces

generally can be disregarded. The equations
of equilibrium of the forces normal to the
mean plane of the plate depend essentially on

Fig. 28. Loading dia-	 the initial forces, since the projections of
gram and conventional 	 these forces on the normal to the deformed mean
symbols.	 plane are on the same order of smallness as the
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cutting forces which arise upon bulging.

By projecting forces T l 0 , T2 D , S W on the normal of the mean plane

of the plate after bulging, we obtain

o A'u'	 62w	 • 6=ar
	

(212)

i.e., the normal component of initial forces T l 0 , T 2 0 , S 0 is equivalent

to the distributed transverse load determined from Eq. (212). Since,
because of the smallness of the bulge, all relationships obtained in
study of the bending of a plate remain unchanged, the following system
of differential equations can be obtained which describe the bulging
of rectangular plates.

1. Differential equations of stabilitx of anisotro is rectan gular /77

21ate. For rectangular plates or an sotrop c structure, the sys em o..
differential equations of stability has the following form

Ld () (7-. at	 ": d= _ 2s° 0= 1 L (w)	 0 • 	 (213)

aau	 Aau	 AYw	 19341,	 Aw

L. (y)	 ttl ^^.1	 utd s	 Cgs we 010 r414 dt^y 
—a• 

d, .

pp 
dew	 0"	 pt 

dau.
	 (214)

r'd M	 Y1 dq' + 0a yt dt^1 + 1' 3 J; L all —

pp Asir	 pp As•
— ('1 d7­ 	 dt,

where differential operators in partial derivatives L 6 (), L 4 () are

determined from Eq. (137), (138)•

2. Differential equations of stability of orthotro is rectangular
plates. In the case of orthotrop c plates, the principal axes of aniso-
tropy of which are parallel to the sides of the plate, differential
equations of stability (213), (214) are simplified somewhat and they
take the form

T° d o	 T° A s	 •^^u At
Fe (w)^' (Q: a' i + bbb's dt^ 1 f ab db dq^ Fr, ltt') = 0;	

21(	 5)
03w	 a3u,	 all,

F, (q') -' at d;;y + a, 
db t - a8 d;,

F	 {^ Asir	 a A°ir	 du'	 (216)
1 N.)	 01 7, :t " 03 7 ;1 dq — P A dt,

Differential operators in partial derivatives F 6 O , F 4 O are

determined by expressions (148), (149).

Eq. (213)-(216), together with boundary conditions (22), permit
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determination of the critical values of forces T 10 , T20,

applied to the edges of the plate in the mean plane. It
ly easy to obtain results in simple loading. '.e., when
forces change in proportion to parameter y a.-.,e.

SO, which are

is particular-
the external

It should be noted that, in the practical use of the method of
direct integration of differential equations reported above, great dif-
ficulties arise in a number of cases, which are connected with satisfac-
tion of the boundary conditions. Moreover, as a rule, the character-
istic equations which can be obtained in determination of the critical
load are transcendental, and they do not permit expression of the de-
pendence of the critical load on the geometric dimensions of the plate
in explicit form. Thus, it is highly advisable to have an approximate

	

method for determination of the critical load. Approximate methods	 /78
a.e based on consideration of the potential energy of bending of a
plate upon bulging.

In derivation of the variation equation of stability, an expres-
sion must be obtained for the work of the external for ges which is ac-
complished in bulging of the mean plane of the plate.

This work is ietermined by the expression [17]

n

f(bA 2 J 
^T'(at= /'+r'(aY 	

2S° a: ày^ drd^'	 (217)° °

Based on the general theorems of mechanics, the equilibrium is
stable if the potential energy of the system is at a minimum. Conse-
quently, the magnitude of the critical load is determined from the con-
dition that the incr,,^ment of potential energy of bending of the plate
upon bul;ing equals ',;he work of the external forces.

Since the potential energy of bending of the plate is determined
by Eq. (155), (156), we have the following variation equations of sta-
bility of anisotropic rectangular plates.

1. Variation equation of stability of anisotropic plate. For a
rectangular plate made of anisotropic laminated plastic, the variation
equation of stability has the following form

a bff
{D11 	 + 2D1S alp 

a* + Du (a!D ' {- D^, OF -}- 
a^

a: ay	 ay	 ay ax

+ a D13 a: ^ay -4' a:) + 2 D23	 OT^y+ a:) t h1 ^^"i d—i) -;

a 

r
b

+ Ks( iP + ay)^)dx	 r
dya^S `T1(as)'+T'(a" )'+ (218)

a^ aW
^"" ax ay dzdy.

2. Variation equation of stability of orthotropic rectangular
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late. For an orthotropic plate, when the principal axes of aniso-
tropy are parallel to the sides of the plate, Eq. (218) is somewhat
simplified, and it takes the form

o b

ID,' 
11
+ 2D„ a^+ D,( ay^l + D,( "'+ )I +

Ox

+ K, (qp+ 
^ \6

+h, -1- 8Y  
drdy

a 

^-
J [

To,( a: )1 + T: ( aY )s + 2S° e: eY ] ds dY '

	
(219)

2. Stability of Orthotro is Re
Principal Direction o _Anisotrop

ular Plate Compressed in One

Let a rectangular orthotropic plate be compressed in one principal /79
direction of anisotropy by forces T 1 0 uniformly distributed along the

sides x=0, x=a (Fig. 29).

Fig. 29. Diagram of
plate compressed in
one direction.

We obtain a general expression for determina-
tion of the critical load by means of integration
of the differential equation of stability. By

increasing the intensity of load T 10 , such a

state can be reached in which the planar form of
equilibrium of the plate becomes unstable and
bulging of the plate occurs.

The system of differential equations of
stability has the form

Fa (w) =
T as
oa dzs F^ Iw);	 (220)

03W	 asir	 du
Fd N) = R1 

dr y + 
as

dr 011 3 — QS de

F. (V) = P, 	 + P^ 
a1„ ` 

P^ 
a^^	 (221)d11	d J11dq

where functionals F 6 () and F 4 () are determined by Eq. (14i) ;.o.; (149).

a. Stability of plate hinge 
s 
upported on profile. The solution

of Eq. (22	 which satisfies the boundary conditions of hinge support
along the contour

at x=0, x=a w=G1=^=0;

at y = 0, y=b w-G2"=0,

can be sought in the form
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m°
q = 	 n2 =u.

(227)

9 — A cos mat sin nnil;
— B sin mat cod nan;	 (222)

w = C sin m at sin n nn.

By substituting Eq. (222) in system of Eq. (220), (221), we obtain

ne (aso►n$ f a4smIn' -F a34msne + ao sne) +

r°	
+ ae o n' (Vi me -f- Ys Ons + is ne) _

4 m' n' ( ne (a4ome -f- asgm'n' -f - ao ,n-&) + ns (asom ' -1- ao ln') + ao a I;	 (223)

A i no (a.o►n' + a2tm 2n 2 + aO jn') + as (a2om2 + ao s►+ ') +

+ ao01 = —CI a,m, a3+ a, mn' n' +a, m a 1;

B 1 n' (a 4O?n4 
+ assm2n2 + ao 40 )){ + n2 (asom2 -I- ao s0) +	 (224)

+ a00 I = —C I Y 1 ►l' n ' + YJ na2n a 3 + 0 1, n a 1 .

In conformance with Eq. (223), the critical load is determined by /80
the following expression as a function of two integer parameters m, n,
which determine the mode of wave formation

+ '	 rns

X -0(a.dn°-8-aa+'+'ts2+a34m2r+4+ao4n°)+a.,(\'+ ►0-f y. m2?' 1 +V30)	 (225)
1 , (a +o rr+ , f ns,rn sr+n + a°sn^) + n° ( a non+ s ( as s►+2) (ao 0

We present Eq. (225) in a more convenient form for practical use.
We introduce the following designations

;, (q) = n ' (a°oq' + a42q' f- a24q -1- ao s);

^2(q) noo (VI q'+VO+V:);	 (226)

^ 3 (q) _ a4 (aOOq' + a2sq `f- ao)^

where	
b4 (q) = n' (a2oq + a o 2).

The critical load is then determined by the simple expression

us ;,(q)+u;s(q)
'	 q us ;s(q) +u ^° (q) + aoo -	 (228)

From expression (228), we obtain

Br l	 nsa• ( ;'ts--;s;a) us +2a,,;, u+a,,;s
du _ q	 (Cs us +Z° u + aoo) s	(229)
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It is easy to note that the sign of the right side of Eq. (229)
is determined by the coefficient

Z1C^ — tsCe = no (aooa:o — adaoo Yi) 96 + aaatlo —aa400 Yo +
+ (a,,4,, + aooaos — asoaoo V, — an400yl) 93 +

+ (a ,4a,o + ai,aoa — awaoo Ye — a:saoo V. — a maoo 1't) 9' +	
(230)+ (ao oa:(, + ae4ao : — aisao o Y& — 40 4ao o Ys) 9 I,

or, according to Eq. (150)

D D'K^
biro — tiZ,4 = no { '— l 90 +

76b_11  
[DiK. + (2DiDo + D; — C') Ki —

— 2CD IK IK 21 9' + a p. I(DiDO + 2D; — Ce) (D,K; + DsKst) —

-- 2 (D,D, + D: - C') CKtK,j 9' + D' [D;Ki +
D D'K' 	 (231)

21),D; + D; — C') K; — 2CD2K,K 2] 9 + b—

In this manner, over a wide range of change of plate rigidity

8T01
parameters au y1 0 and, consequently, in bulging of a hinge supported

plate compressed in one principal direction of anisotropy, one half
wave forms transverse to the compres p ion, i.e., n=1.

The critical load is determined by the smallest value of the
expression

a'!'	 C,(a)+^'(y)	 (232)
a.

where q = 1 2 , 2 2 ,	 ., m2.

It now is advisable to consider the case frequently encountered
in practice of the cylindrical shape of loss of stability of a rectan-
gular plate upon compression in the direction of the unsupported edges.

b. Stability of plate with two supported and two unsupported edges.
In this case, the approximate solution of system of Eq. 	 0), (221)
can be sought in the form

fp == A cos m at; ip= 4; w= C sin m nb.
	 (233)

By substituting Eq. (233) in the system of differential equations
of stability, we obtain

*1 4
	 el + n 4 m4a°o Yi = as m$ M (z0 mbao + :% M a:o + aoo);	 (234)

A (m` n0 aio + m$n=aao + aoo) = --B (m' n'al + m :tab ),	 (235)
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whence, for determination of the critical load, the following expres-
sion can be obtained

D( na R l^

T SDK

	

mn	 Da( o / +A•
T,	 i ► a	 DID, ( 

non 
\^ + (D IK E ♦ D

I

	

 ( 	+ K,K,
J	 (236)

( mn ^
or	 DjKj ` 

a
T• 

Da o +ICi	 (237)

In accordance with Eq. (237), in cylindrical bulging of a lami-
nated strip in the direction of compression, one half wave forme (m-
1) and, consequently

r
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C
	

(238)

The critical load for higher forms of loss of stability (m>l) does
not tend toward infinity, as occurs in the case of uniform shells, but
toward finite limit K 1 . The equivalent of this is that, with decrease

in length of a rod, the critical load, upon increasing, asymptotically
tends towards finite limit K 1 . This phenomenon should be taken into

account in the use of reinforcing ribs made of laminated plastics to
strengthen a cylindrical shell. The carrying capacity of such stif-
fening ribs can be limited by their rigidity in transverse shear.

28. Stability of Hinge .Sup2orted Rectangular Orthotro is Plate in
Compression in Two Principal Directions of Anisotropy

We now consider the problem of the stability of a rectangular
hinge supported plate with sides a, b, in which the principal axes of
anisotropy are parallel to the sides and which is compressed by uni-

formly distributed forces T 1 0 , T2 0 (Fig. 30).

We obtain a solution
tion equation of stability
the deformed state of the
ing in the form

ry = A cos X z sin it y;

-= B sin A x cos it y;

m=Esinhzsint^y,

by using varia-
(219). We assign

plate after bulg-

(239)

where
Fig. 30. Diagram of
plate compressed in
principal directions
of anisotropy.

_ n,n	 _ nn
a ' — b

(240)
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w.

f

x

L	 the following can be obtained

Oz
s —Alsinhzsingy;

A g cos R z Cos v;
a^	 g

ds B A cook z Cos g y;

1	 —BgsinAzsingy;r a

es — EAcos? xBingy;

^MEx Bill A.x Cos gv.

(241)

By substituting Eq. (239), (241) in variation equation of stabil-
ity (219), we obtain

fl b
U=J f {D I X2 sin 2 kx sin' gy+2CXgABsin t I z Mitt ily }-

U U

D211 2 gs si n2 X s si n= rl y -{ Da (g A + ). BY cost X x Coss 
g U +

K1(A-;.XE)= cost Xx si0gy+ f►s(B+ rl E)' sint X zCossgy

—T;i'E' cos' 7,z sin'gy To ill E'sin X x Cos I] dz dy=-

^^ 
D, 

VAt + 2C Xg AB -}- D, ill B' D, (g A 4 X D) s y

K j (A4 - XE)' }- K.(B+ilE)' — (TAX'+T,g')E'I,

(242)

where, as before, C=D 12+D3.

The minimum potential energy condition has the form

ar 7 av 	'

	

at,	
0	 ( 243)

a..t - dK 4 a^

or, after reduction,

A (Ds )`t ` Dg gt K,) ^- B (C } Ds) Xg } E k K, 0:
.4(C+ Ds) leg + B (Dt g'+ D,XZ +ht)+E rl K, 0;	 (244)

A4K,+BgK2+E(41K,+q'K3—TOk'—T,rl')-0.

The condition of nontriviality of the solution of this system
gives the necessary characteristic equation for determination of the
critical load
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D, 14+ D3gs +K,	 C lq	 K,1

C lq	 D,114 " }' Ds 14 -f- Ks	 Ks q
K,1	 Ksq	 K,is+Ks g4 —	

0

- ( TO, X, T: q')	
45)

or
( TO 1'+ Tiq')[ (D I X' + Do gs + K,) (Do il l +Do 1'+Ks—C'X'tq')

(D I 1' -f- D , 114 '+- K j (Ds qs + Do )" + Ks) (K i 14 + K o r,') +

+ 2CK,Ks 1'ij — (Do q s + Do 1' + Ks) Ki 1' —

— (D I 1'`{-'D,no+K,)K; il
l 

—C'(Ki 1'+hs ill ) 1'q'.	 (246)

As a result, for determination of the critical load of a hinge
supported orthotropic plate compressed in the principal directions of
anisotropy, the following expression can be obtained

1 ^ ^ ° / + T• \ 6 ) - ^ K•(ni,n) + d (n+, n)+Goo
	 (247)

where, in accordance with Eq. (150), the following designations are
Introduced

^t (llt, 11) w. n 4 (a•Qnt" -;- R,_l/tbi = -!- a:,m2n4 -L a0•n');
b9 (m , n )	 100 (1't m 4	 ln2,t1 -.y_ )-6114);

E^ (m, n ) - n4 (a,,iO -} a.._ n2n 2 + as►t` ); (248)
b^ (m, n) - a  (a,, nil - a0 "),

In simple loading, when the load along all edges in8reases in
proportion	 to a single parameter, i.e., when T 1 0 -T, T 2 '&T, the

critical value of parameter T is determined from the expression

/84

T . _	
1	

Y	
+ On - n ) -4- "s On. n)

	

(a	
-1-eo (	 l^	 F^ ( rn, n ) t %^ ( ne , n ) r^„o

(249)

i.e., the problem is reduced to finding the smallest value of the
right side of Eq. (249) as a function of integer parameters m, n.

29. Stabilit of I_nfinitely Wide Orthotropic Plate in Compression
Along Short Sides

Let an extremely wide orthotropic plate of length a be compressed

by forces T 1 0 , which are uniformly distributed along the wide edges.

We will assume that the principal directions of anisotropy coincide
with the sides (Fig. 31). In this case, a cylindrical form of loss of
stability can be considered, i.e., it can be assumed that all components
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a

Fig. 31. Loading dia-
gram of infinitely wide
strip.

of displacements and forces do not depend on coordinate y. The system
of differential equations of stability then takes the form

a#,wvt — a
., VAIVIV = 

a (a"a,vi -- a ftwiy -}. a,ou; ')
„	 (250)a+o 4' tv — a., =p -f- aoo T =R a, m — a, m .

In accordance with Eq. (150), system of /85
Eq. (250) can be presented in the following
form

where

d^	 d1w
D3	K,dr, — , D) ,K, d=,

=
 T (

d^	 d=	 d=u^D, fir; — K.) (D, ds, — K,) d:t
0	 f!(251)
dr, —Ka)

^D, ds, —Kt^}
d'

( D., dig — K=) K,u' .

u,iv	 k 1u,"
	 0; (252)

 )Y " — P, (P	 Ptu•,

K.

^'
(K.—T)	 J _ 

75T	 (253)

System of Eq. (251) satisfies the solu-
tion of the system

The general solution of system of differential Eq. (252) has the
form

u+ _ C, cos kx + C, sits fix + C,x - C,;

y) = 
P:1. 

(Ct sin kx — C, cos kx) — C,. }	 (251{ )p=+ks

It also is easy to find the bending moment and cutting force

I) i F^=k=

C ' -= -- F,_ _+P  (C, Cos kx C. sin kx),
(255)

Q	 P1 + A , (Cl sin kr — ('p cos kx).

Further, we consider some partial cases of fastening of the plate
edges x=+a/2.

a. Edge of plate hinge supported . Because of symmetry, an even
solution for x can be considered, i.e., it can be assumed that C2=C3=0.
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Consequently, the boundary conditions are satisfied if cos ka/2=0 or
ka-n, and the critical load is determined by the expression

no ok	 (256)
ers R I i+Air•

b. Edge of plate rigidly fastened. The boundary conditions have
the form

Ciees ^ + C, 0;

C i -̂^=+ sin 
to -_ 0;	 ( 2 57)

as a result, it follows that ka-2n and, consequently,

$ -0 Doh ^

Ter— 41 D ► ' K,,,1 '	 (258)

c
*
Ed a x •-a/2 rigidly fastened edge x-a/2 unsupported. In this

case, the boun ary conditions have the form

Cl cosa —C $ sina —C, +C,= 0;

Ci sin a + ('s cos a + C, ^'?F+K ' - 0;	 (259)

Ci Cos a+c2 sina =0;
C,T = 0,

where
ka n ^TA i... 	

viWi —r) 	 (260

The characteristic equation for determination of the critical
load has the form

Sill Q Cosa
^Cosa &!nQ	 0.	 (261)

from whicl we have k 2a 2=n 2A and, consequently,

"2n ' Ki	 (262)cr= :i^ ui +4KjaJ.

d. Edge x=-a/2 rigidly fastened, edge x-a/2 hinge supported. For
such boundary conditions

at z =—°,— w—q)-0;

at s == 0 w— Ci=O.

/86
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Y = D,
K7ar (265)

If the least root of Eq. (264) is
designated ty w. the critical load is de-
termined by the following formula

WDIK,	 (266)
TcrV	 D^ +K^a

from which we obtain the following system of linear equations

C, Cosa —Cssiva— CS! +C, 0;

Ci sin a + C. cos a + 
Csp 

k' p;	
(263)

Ci cos a + Cs sin a r- C3 1+ c,,,. 0;

Ci coba+ Casino .0.

	From Eq. (261). it is easy to obtain the following trans-
	

/87
cendental equation for determination of the critical load

t ka — 
P40	 4-8

g 	 PZ+A., : t+vk1av
	 (264)

where parameter Y characterizes the effect of interlayer shearing on
the critical. load of the plate and is determined by the expression

0

v3

7.4	 ON act	 0.11	 a16 x

Fig. 32 • Graph for de-
termination of least root

of equation tanx= 
x

1+Y x 2

The least root of F.q . (266)  as a func-
tion of Y is determined by the graph pre-
sented in Fig. 32.
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CHAPTER 6. TRANSVERSE OSCILU 'ONS OF ANISOTROPIC LAMINATED PLATES

ea Ylazes

We will consider small bending oscillations of uniform anisotropic /88
plates of constant thickness bounded by a simple profile. We will as -
sume the bending deformations which arise in the oscillations to be
small elastic oscillations which are governed by the generalized Hooke's
law. Such oscillations are described by differential equations which
are similar to the differential bending equations. Their fundamental
difference is the dependence of the external load and, consequently,
deformation functions ^, ^ and plate deflection w on time, as well as
the presence of additional terms which define the inertial load.

Forced oscillations of the plate which arise as a result of vari-
able transverse load p(x, y; t) should be distinguished from the natural
free oscillations. We will state that the plate accomplishes free
transverse oscillations if any forces which impart deflections and ve-
locities to the particles of the mean surface are instantaneously re-
moved.

Thus, the system of differential equations of oscillations of an
anisotropic plate can be written in the following forin

L, (w) - ju d L+ (w) + L. (4); (267)
a3w aim 	 aim	 dsw	 r7u

L+ (^) = a: ^ja + a' ^ -}- as OF— — a+ day

a•u,	 ^a^	 a^	 at,^	 (268)

where p is the plate material density; q is the variable transverse
load applied to the plate.

	

Differential operators L 6 (), L 4 () and coefficients a i , B i are
	

/89
determined from Eq. (134) 0 (137) and (138).

In the case of a rectangular orthotropic plate, the principal
axes of anisotropy of which are parallel to the sides, the system of
differential equations is simplified, and it takes the form

F, (w) = eb d̂ f+ (w ) + F 4 (P);	 (269)

	

23i193U.	 au'
F4 ((j ')	 a, d.^ ' - (I3 d^ dqt — ag -7;

8 tr	 (270)

	

8^u'	 au'

Operators F6 (), F 4 () and coefficients a i , B i are determined by
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Eq. (148)- ( 151). The free oscillations of the plate are determined by
solution of uniform system of Eq. ( 269) 9 (270).

Deformation functions m and *, as well as plate deflection w should
satisfy boundary conditions which depend on the fastening conditions of
the bounded profile of the plate and the initial conditions which de-
fine the form and velocity of displacement of the particles of the mean
surfane at the initial moment of time, i.e., at t ==0, the following con-
ditions should be satisfied

(f — Yb G' q); t' — Vo (4, 1I); m — WO (a, q);

(271)

di

The solution of the problem of free oscillations of the plate is
reduced to determination of the form of the oscillations, which is
determined by the mode of functions m, *, w and the natural oscillation
frequency. It should be noted that, in oscillation theory, the eigen-
frequer. cies of an elastic system are of extremely great importance.

Following S.Q. Lekhnitskiy [17], we reproduce the trend of the
solution of the problem of free bending oscillations cf an anisotropic
plate by the Fourier method.

We represent the solution of system of Eq. ( 267), (268) in the
form of the product of the periodic time functions by the amplitude of
the corresponding functions, i.e., we set

q) =: (( j ' ')a pt + C, Kin Pt) (D (a, +1);
V (C l cos pt + C, sin pt) IF(^,	 (272)
UP=  (C, cos pt +('281"  pt) IV G, 11),

where p is the frequency of the natural oscillations of the plate.

By suostituting Eq. (272) in Eq. (267), (268) for determination
	

/90
of m, `Y, W. we obtain the system of differential equations

L, (IV)+ps Qb L,(IV) 0;
8= W a= {v

a3 tyu, a- dq , -- C1 y
'_ a, all,

03;V 031V

acv

(2'x'3)

By satisfying the assigned boundary conditions of the problem, as
is done in determination of the critical load, we obtain a character-
istic equation which determines the presence of the nontrivial solution
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A(p)=O, which gives an infinite spectrum of the eigenfrequencies of
oscillation of the plate.

The eigenfrequencies of oscillation of the plate depend on two
integer parameters m, n=1, 2, 3. . , The lowest frequency is called
the eigenfrequency of the primary tone, and the remaining frequencies
are called frequencies of the second, third, etc. order. Each eigen-
frequency pmn corresponds to the form of the natural oscillations @mn,

Tmn' Wmn' which is determined to within an arbitrary factor.

Functions mmn' Tmn' Wmn frequently are called eigenfunctions.

They are used in solution of problems of oscillations of a plate.

If the deforn—d state of the plate must be determined at any
moment of time, the following procedure is used: initial functions ^o,

^o , wo and initial velocity v o (t, n) are expanded in series by the

eigenfunctions

r

To
m n

co ``00

^o (^, ^1) = ^, G Pmnymn ( fie, 1));
to r.

cor00

M it

- 00

Uo ( , n). _ 1W2: bmn W.
M n

and the solution is found in the form of the analogous series

	

tt

	 00 00	
tt(b, ^^^ t ) _ I, Y(Clmn COS pt + C2mn sill Pt) Omn (b, q);

m n

	

(btt	
-,	 LL, 	 t) _	 (C1mn COS pt + C4mn sin At) T,.. (b, -q);

m n

m m

	

l!' (t,	 t) _ ĵ Y	 (Clmn COS pt + C2mn Shl pt) Wmn kb, T

	

m n	 ^)^

(274)

/91

(275)

There is no difficulty in finding constants Clmn' C2mn and, con-
sequently, the deformed state is determined by the sum of simple har-
monic oscillations.

The pot-sib ility of expansion of the solution in series by eigen-
functions is based on the orthogonal nature of the latter. Actually,
let the plate accomplish simple harmonic oscillations of frequency p,
when the inertial load acting on the plate is p6p 2w(x,n). Since the
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r

	

	

plate acquirer deflection w  as a result of characteristic load

p6p i 2wi , and deflection wk as a result of characteristic load p8pk2Wks

according to the reciprocity principle of the work of Beatty, we have

(276)
q8 f piwiwi, d^ dq = fib f f pkwkwi dl dr(,

from which it follows that

(Pi — Ph) ff wi(E, q ) «'t,(6, in) dl dil =0,	
(277)

i.e., eigenfunctions w  are orthogonal. The orthogonal nature of

eigenfunctions m i , ^i (i-1, 2, 3,	 .) is proved similarly.

Thus, if deflection is presented in the form of an expansion by
eigenfunctions

Go

W 	 aiwi (j , n),

the coefficients of expansion are determined by the expressions

1 m (r, tl) 4'i (E, q) dE dil
ai =	

j^ W '(E. q ) dE dn	 (278)

If the eigenfunctions are normalized, i.e., if

	

fl w1i ( E, ") dE dil == 1,	
(279)

the coefficients of expansion by eigenfunctions are determined by the
expressions

ai = f f w (t, q) wj (g , q ) dt dh
	

(280)

31. Varia'zion Equation of Transverse Oscillations of Rectangular Plates

Exact determination of the form and frequency of oscillation of a /92
plate, with the exception of the simplest cases of a hinge supported
Yactangular plate, involves the solution of extremely complicated sys-
tems of differential Eq. (267), (268) for anisotropic pl a tes or Eq.
( 2 69), (270) for orthotropic plates. In the solution cam' specific

engineering problems, approximate methods based on some general prin-
ciples of mechanics are extremely effective. In theories of core
systems, such methods permit rapid determination of the frequency of
oscillation of the primary tones, which are of the greatest practical
interest, without integration of differential equations. These methods
can be generalized for the case of transverse oscillations of plates.
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We consider the action functional of Ostrogradskiy-Hamilton

ru

S =: f (T — U) dt,	 (281)
to

where T and U are, respectively, the kinetic and potential energies of
a plate accomplishing transverse oscillations.

From the class of permissible functions which describe bending
oscillations of a plate, we take the population of principal oscil-
lations with frequency p.

By integrating over time for one period of oscillation tB-tAn

21r/p, we obtain the variation equation of transverse oscillations of
the plate in the form

a(T max- U max )no;	 (282)

the natural primary oscillations satisfy this equation.

We now write Eq. (282) in expanded form. For this, we determine
the maximum values of the kinetic and potential energies of the plate.

If the plate accomplishes transverse oscillations m o (x, y; t),

^o (x, y; t), w o (x, y; t) the corresponding potential energies for a

plate with a general type of anisotropy and an orthotropic plate, the
principal axes of anisotropy of which are parallel to the coordinate
axes, are determined by the expressions

ff	
^

UA = 
Z IDii ( a ° ) -( ryDi, aero a y" "f D'° ^ y0 )9 +

+ D" dy" + a^^ ^^ ^- 2 D" az^ ^^ + as ) +

	

DD air" da " 	aV'"	 K 

	

((	 l a
(283)

+ K. 
( I. -} 

au
'u"
^u I ] dx d y;

D

	

U - ff  L (
a^" 	 .^D a^" aV "	s$ (a y" 1'

" —	 1 ar	 ^z 
as dtt +	 d I

	

D, a4o _^ aV'o )' _^ K , ^To -} 8u " )' -^ K /	 air" \'1 dxd ► 	 ( `' p )ay a:	 a:	 s '^0 -f eu J J	
^.

The kinetic energy of a plate accomplishing transverse oscilla- 	 /93
tions is determined by the known expression

T	 (IT
2 Q6 	ac')=dsdy.
	

(285)

x
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When the plate accomplishes one of the primary oscillations,
i.e.,  whet.

To (x , y ; t ) � T (x, b,) sin (pt + a);

Vo(x , y ; r ) =* (x , 0 sill (Pt +a);	 (286)
W, (x• y; t) = w (x, y) sin (pt + a),

the greatest potential energies are determined b • Eq. (284), (285)
where, instead of deformation components 009 ^, o , wo , their amplitude
values m, ^,, w stand, and the greatest kinetic energy of the oscillating
plate

T ina= = IQ6p,ffW2(x, U)dxdy.	 (287)

Consequently, the variation equations for the principal natural
oscillations of the plate can be written in the following form:

a. variation equation of oscillation of anisotropic plate

6' L ' 6 1 1 ,f I D. dZ )_ 2D^a gy aZ -f- D„ (ay )' +

D a^ app 	 3	 aq, a^	
9Vi- "( aam -I- as:) ^- Z Dw d: ay + ax:) -}

	

+ 2 D23dy (dy-^0 )+K'	 ^^ + K^^ + dx , \^ ^ ay
)_]dxdy—

—Q8 of f wS (x. y) dx dy) — 0;	 (288)

b. variation equation of oscillation of orthotropic plate, 	 /94
the principal axes of anisotropy of which coincide with the coordinate
axes

8' L = 8' jf [Di I, d ^ + 2D,=Z ^^ D, ay

	

""P	
aye

_

+K'(V+oy^ 
-Q p^b O dxdy	 (289)

In Eq. (288), (285), 6' designates the variation of the functional.

The solution of the variation problem of transverse oscillations
of a plate, as in the case of static bending and stability, can be ob-
tained, for example, by the Ritz method, namely, deformation components
0, y, vi are assigned in the form of an infinite sum with the indeter-
minate coefficients
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Fig. 33. Basic designa-
tions.

CO CO

T (z. y) — A"*,' I' AMn TMn (x. y);
M n

0o co

V (2I Y) _ I ^, A9 n 1+Mn (X, y);
M n

00CO

W (s, y) = Z 4 CMnWMn (s, y)
M n

(290)

where Amn , A mn' wmn are complete s , tems of continuous functions de-

pendent on two parameters and satisfying the conditions of fastening
of the edges of the plate. After formulation of Eq. (290) in varia-
tion equations and integration, the problem is reduced to finding the
minimum of the quadratic functions of arguments A mn , Bmn , Cmn , i.e.,

to solution of a system of uniform linear algebraic equations for Amn,
Bmn, C

mn .

The condition of nontriviality ci the solution leads to the char-
acteristic equation for determination of the oscillation frequency

Iaif(P)I=0.
	 (291)

The smallest value of the root gives an approximate value of the
, .cillation frequency of the primary tone. The remaining roots are
.;he frequencies of the higher tones.

32. Determination of Frequencies of Natural Oscillations of Orthotropic
Rectangular Plate

We consider bending oscillations of a rectangular plate made of an
orthotropic material. We will assume the principal axes of anisotropy
to be parallel to the sides of the plate (Fig. 33).

a. Free oscillations of hinge support- /95
ed rectangular plate. It is particularly
simple to obtain a solution of the problem
for a hinge supported rectangular plate.
In accordance with Eq. (273), the system
of differential equations of the natural
oscillations of an orthotropic plate has
the form

F, (w) `f- eb p2F4 (w) = 0;	 (292)
aau,	 83m	 au+F4 l9) == a, d€, + a9 d^ a , — as dt ; )

where operators F6 (), F 4 () and coefficients a i , S i are determined by
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i
Eq. (148)-(151).

The solution of system of Eq. (292), (293) which satisfies
conditions of hinge support of the plate, i.e., the conditions

at xn0, x-a w-*-G1 no;

at y-0, y-b w-m-G2-0,

can be sought in the form

= A cos mitt sin n aq;

^y=B sin mat cos naq;

w Csin m ntsinn nq,

where m, n are whole numbers.

The oscillation frequency is determined from Eq. (292). B
stituting Eq. (294) in this equation, we obtain

;141 (a non+ o -f- a„mon' -I- a, im 2n 4 1, 4,n ') r no ano(V, m o -f- Va m'n' + y04)

M (aoum4 f agstri In :'+ao,,n o ) -f- n' (asom2-F• ao:n i) +aoo

(295)

where coefficients a ij , Yi are determined by expressions (150), (151).

The oscillation frequency of the prima;y tone at m-1, n-1

n'	n' ( aw aat -'- a,^ a,,,) -F ann (V^ ( Ya -I- Vo)	

(296)pii =	 eS	 no (asu -f-ol:+aoJ -f-1'(aso +aoo+aoo

b. Free oscillations of rigidly fastened rectangular plate. For
a plate with rigidly fastened edges, it is extremely complicated to
obtain a precise solution. Therefor«, for determination of the fre-
quency of the natural oscillations, we use variation Eq. (289), which 	 /96
we write in dimensionless coordinates E=x/a; n=y/b;

r jai	
aV 1 . 21) i : 19T Oy.	 D:	 6 y '
at

L a2
00

/^	 t aV
	 K
	 awl'

	

+K2 ( I+ b d,j )2— Qb P=u^', db d ̂ =G•	 (297)

We will seek the form of oscillation of the primary tone in the
form

8 0 	j
a



C
ab

3Ka
2.t bb

C
ab

3K,

2r, a

3K,

2n a
3Ka

2a b
3K,3K,
as { ba —

flea P:
ON (302)

to

i
t!

1 i

ip"Asin 2®a 
(i—Cos 

2x P);

=B(1-cos 2a=)sin ley 	 (298)
m-F(1-cos $a s )(l--cos 2--) .

By substituting Eq. (298) in the variation equation, the f011ow-
ing can be obtained

s
b' l3 (a; + 3s + K,) A 2 + 3 (-Ds + ; + k,)B= -^

-} 3Q -f	 °— — 9
e8 ° ) Ft -^- 2 (n tQb Da) AB +

+ K AF + 36a BF} = 0,	 ( 2 99)
where

K	 K,	 IC	 K,
- F ' s	 (300)

The condition of nontriviality of the system of linear equations

aL	 OL	 eL
^^t - -j-L7 v7 =G	 (301)

has the form

/97from which we find

3y6: 
a 

[(^1 +K^) (^! '+' K,)	 900 J _ 3a 6• 
K,K, +

1f	

J	

a

Rd, a (41 -}- Kl) — KaK' (42 + K,)'
where

D,	 D,	 D,	 Da

(304)

(303)

Consequent.L j , the frequency of natural oscillation of the primary
t jne
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Zx XPit r ^

f ^Kt r D, + 2(C+
^ DO

b .} ( a
s + b )(Xl;t— 90sbi

x 	 L
(kl + ^•. +Aij- Qy;z	 (305)J( 

As K i *00 9 K 2 4W, i.e., without accounting for interleyer shearing,
the known formula for the frequency of natural oscillations of an ortho-
tropic rectangular plate with rigidly fastened edges follows from Eq.
(305)

t

Pit = 
22^ifl ^` a. + 2 

(3a 0 
s) 

+ b4
^ Q8

(306)

c. 'Transverse oscillations of laminated strips. Free primary
oscillations of laminated strips are described by the following system
of differential equations

Wrv- 2A '—s ew=0;	 (307)
(p " _ (0$4p = (02W"

where
to' K '	 2r' 

= Q-P'; 0 = 
28
 •	 (30 8 )

If

k' — vr' s — r'; k'— r' s' r' 	 (30;')

is designated, it is easy to obtain a solution of Eq. (307) in the form /98

m = Cl ch kit + C, sh k it + C' cos k,z + C, sin k,t;

IP = k, wl 2 (Cl sh ktz + C, ch ktz) +	 (310)k
i

-} k,+, (C, sink=s—C, coskix).
IW

There also can be found

D k' a)'Cl ` — k^i 
i^^ (Clch kit+C, sh klz) —	 (311)

Di ka (o'
— k, + ^, (C, cos k=z + C, s l n k,t);
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Fig. 35. Diagram of bracket
and coordinate system.

ll k^
Q

1
 - kTa (Cl A k,s + C, ch k,:) +

-}- k-=+^ (C, sin k^s -- C4 cos kiz).	 ( 311)

We select a coordina ;;e system as indicated in Fig. 34, and we
determine the free oscillation frequency with various fastenin i3s of the
ends of the strip x=+a/2.

a Ed a of strb hinge su orted.
By satis y ng t e boundary conditions

w=G 1=0 at x=}I^z

the following can be obtained
C, cha,+CS Cos as = 0;

k'	 k'C, k'' ch a, -{- Ca k; '-;Cos as = 0;
i	 s+

C,sha,+C j sin a3 =0;
k'	 k+	 (312)

C$ , ' z sh a, + C4 	 ' 2 sin a 3 = 0,
Fig. 34. Strip with rigidly	 k,—to	 k,+W

fastened ends.	 where

The characteristic equation can be
written in the form

	

cos a2= 0;	 sin a2=0;

and, consequently, the frequency spec-
trum of free oscillations of a laminated
strip is determined by the expression

:t= ma	 K,UI	 (314)
P	

V Qb I n2n12b, +F

b. Edge of strip x=0 rigidly fastened, edge x=a unsupported (Fig.
35)• By satisfying the boundary conditions

w=m = 0	 at	 x=0,

G 1=Q 1=0 at	 x=a,

we obtain the following system of linear equations for determination
of the frequencies
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i
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/99

—^
a, = k2° = 1 l 1/ 1 + 2 0'

r
9	 Va,- ky -- 	v1 +2' d-1.	 (313)



Ci+C' —0;k s̀ —.^ Ct — ko +' W @ 0;

k'kJ -T (Cl ch ta i + Co sb ta i) +
k'

+ 0' (C3 cos 2a' + C j si n gas) — 0;

ke

k' 
W, (Ci sh ta i + Cs ch 2a i) --

k'
(Cg A n gas — Cs cos 2a,) — 0.

a

(315)

/100 1Consequently, the frequency spectrum of the natural oscillations
of a laminated bracket is determined by the equation

(316)
+(I ^. ^'-1 ) ch 2a, cos 2.a2 —  	 A2a, sin 2a= 0,

	

\	 /	 \	 ► ^

where a l and a2 are determined by Eq. (313).
As K 1^^O, there is the known equation for determination of the fre-

quency of natural oscillations of the bracket

ch k ia cos kia _ 1.	 (317)

33. Axisymmetric Transverse Oscillations of Circular Plate

If a circular plate made of a cylindrically orthotropic laminated
plastic executes axisymmetric transverse oscillations, the system of
differential equations has the form [14]

a (►r,,1
ar — Gs = Qir;

a(rV,)	 — Qbr a'W!. _— q (r, r,	
(318)

dr
	

8t	 )

where U is the density of the laminated plastic; q is the external
transverse load which changes over time.

By substituting basic relationships (64), (65) in Eq. (318), we
obtain

a'w,t aa,	 %^'	 n, (a',
Or;- -} rdr — rrrss (Pi = vi l or' Ti)	 (319)

a'm,	 ! a'0,	 f a	 0""'	 9 (r. Q
dr3 + r 8r + r dr (r ^1) = h,, dti + K, '

For the principal normal oscillations of the plate

8'.̂



T, (r, t) •• ip (r) (C, cos (a t + C9 an w t);
U', (r. t)	 W (►) (C, cos M t + CS sin 0) t); (320)

r
v

and, consequently, the oscillation amplitudes comply with the following
system of differential equations

q ^+  — (%' + k') qp — k'a' ;	
( 321)

►r +P'u'=—^^^+r) 	 (322)

where	 /101

ks X2 ­ E, ;
	 e = ►̂bc's .
	 (323)

U,	 E ► P 7

Eq. (321), (322) are equivalent to the followAng differential
equations

HIV +	 %1+Z ^,,, — \2	 ^_)'T.. +

P'	 1	 24

W
	

r w" —_rT 	 ;O	
(325)w)• 

Eq. (324) is a fourth order Fuchs class differential equation. We
will seek its solution in the form

00
m =o
	

(326)

By substituting Eq. (,26) in Eq. (324), the following can be ob-
tained

an

N'ja + bm + cm (m — 1) + em (m — 1) (m — 2) +

+m(ra-1)(m-2) (m-3)JAM' r-+

CO+ Gi I d + f (m — 2) + f = (m — 2) (m — 3)) A,.,-,r'" —
z

CO

— Opt I Am _ j` = 0,
t

where
a= Qo — 40;+(3— X')Q2 +4%'Qo-3%';

b=4Qo —G Qo - 2 (^^ + 1)Qa+W;

c GQ; (X2 + 2);

d P (Qe — x );
e = 2 (2Qo + 1);

= P2 (2QQ + 1)•

(327)

(3Gci

a
a
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The following recurrent formulas for coefficients A m ' can be ob-•
tained from Eq. (327)

M-0,  m-1

)a+bm+cm(m-0+em'?a-1)(m-2)+
+m(m—t)(m--2)(m-3))A; -0;	 (329)

M 2, m=-3

A,„ -

— Id +1Pn 2)+P'(m-2)'(' -3))
d + m+cm (m-1 ♦ rm(ni— t)(m--21 ♦ m(m —t (m-2)(m-5	

(330)
m ? 4

k sp'A+ _4-1d+l(m -2) +p'(M- 2)(In--9)jA^_2	 (331)
A "' J a+bm+cm(m —" ) +rm(m--t)(m-2) +m(a— MM --2)(M--3).

In accordance with Eq. (329), the characteristic; equation for	 1102
determination of p 0 has the form

(332)

The roots of this characteristic equation are

eo	 i; Q.1 1 =3; el l ' =_ X; elv -_ — 4.	
(333)

It is easy to note that A2m+l'=0 (m=0, 1, 2, 3, . . .).

In the case of a continuous plate, the solution which corresponds
to root p o=-a should be set equal to zero, and roots p 0 I=1, poll-3

gives 1'i^early dependent solutions. The missing solution should bo
sought M the form

0\^̂  
0	

1
T ra	 m

	

^ AoT2+	 Amrm
l .
	 (334)=Gt 

where ^2 is tl%e solution which corresponds to the root poll=3.

By substituting Eq. (334) in Eq. (324), we obtain

Co

v^ (3(t6-42)m+(52- ^1=)m(m- i)+14m(m-!)(m -2)+
m+=0

ao

+m(m-t)(m- 2 ) (m-3)) Amr'" +V., [P'(9-I")+7p'(m-2)+
2

+ p'(m-2)(m -- 3)] AM' - 2r'. k'p'Y A
►A-

4rm
 "	 (335)

4
=A0112(9—V)+2(34-42)m+36m(m—•t)+
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+4m(m - 0 (in -2)1(Am), r"+
•

-t- ^ (tip' + 2p (m - 2)] ( Am-s), ►".	 (335)

In this manner, for coefficients Am", the following recurrent re- /103

lationships can be obtained

m^2(

As - 8 (25' j•)j•) tp' (0 - X') A, +

20(!l3-3).1)(9—a')	 (336)

where
-}- Ao ^Gk• (At' ),-	 8(25-^_ (A.).}+

1

	

( A f ) l y - P'(9-	 (A(A,', ) ,	 (337)3 (2J

for m;2n (n-1, 2, 3, . . .)

Am = _	 !
P(!6 — k )m+(52—%I)m(m—!)+l4m(m—!)(m--2) X

X ((P'(9--h=) +7p'(m -2)+p'(m-2) (in --3)) AM"-."
-k'p'A; - 4 +A0 (2 (9-X')-f-2(34-X')m+
+3Gm(m -1)+4m(m-1)(m-2)1(Am)j+

+ Ao [Gk' + 20 (m - 2)) (Am-2)11,	 (338)

where coefficients (Am ') 1 are determined by the expression

,11r	 ),

k'P' ( Am-t^^ -)P'(9-k° +7p' (m -2) (m-3)) ( Am 
-2)N

— m (3i tl^—^')-1 (52—+)(^+—t)+i4 (m- 1)(n+ -2)+ lm—!) m -2)(m-3)' (339)

The odd coefficients again equal zero.
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CHAPTER 7. MEMBRANE THEORY OF ANISOTROPIC LAMINATED SHELLS

4. _Region of App licability of Membrane Theory of Shells and Bo

The simplest alternate version of the general theory of shells is /104
the membrane theory, which is widely udz,d for calculation of various
engineering structures and buildings. The explanation of this is that
the membrane theory quite satisfactorily describes the behavior of
thin shells under various loads which have to be of concern in engi«-
neering. The simplicity and value of membrane theory is not only sig-
nificant mathematical simplification of the basic differential equa-
tions of the theory of shells but also that, in many cases, the results
of the basic stage of the theory, which, consists of determination of
the nature of transmission of forces from the equations of equilibrium,
are valid for any thin shells regardless of their structure and nature
of deformation. Structural inhomogeneity within the shell material ap-
pears in subsequent stages of solution of the problem, which are con-
nected with determination of the deformed state and the nature of dis-
tribution of stresses through the shell.

As in the case of isotropic or anisotropic shells [1, 81, we will
call membrane theory an approximate method of calculation, based on the
assumption that bending stresses are smell compared with the stresses
uniformly distributed through the shell. This assumption is mathemat-
ically equivalent to the assumption that cutting forces Q l Q2 can be

disregarded in the first three equilibrium Eq. (17), With the inten-
tion that only shells of rotation will be considered subsequently, we
write the basic equations of membrane theory for this partial case.
Membrane theory of anisotropic shells is discussed in greater detail
in the monograph of S.A. Ambartsumyan [1].

As curvilinef.r Gaussian coordinates :which define the positions of /105
points or the mean surface of a shell, we use arc length s, reckoned
from the initial parallel (point M  in Fig. 36) and angle S between

two planes passim through the axis rf rotation. One such plane was
selected as the initial plane. We introduce two more coordinates:
shell cross section radius r and angle a between the normal to meridian
F and the axis of rotation.

Principal radii of curvature Rl , R2 are determined by the expres-

sions [8J

d, ►
B1 - do ' R2 =: 

sin u	 340

Two Gauss-Codacci relationships are satisfied identically, and
the third has the form

dr_ d (R, sin n)
da `	 da	

Rl cos a.	 (341)

The last relationship can be obtained from geometric considera-
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Fig. 36. Sketch
of shell of ro-
tation and con-
ventional sym-
bols.

Fig. 37. Geomet-
ric interpreta-
tion of Gauss-
Codacci relation-
ship.

__ __.__-_,.,,_,..

tions (Fig. 37)
dr

Hi 4a Cos a,

Tf the components of the distributed surface
load acting on the shell are X. Y, Z. equilibrium
Eq. (17), with A l m l, A 2nr, take the form

r or ' -- (T, — T i) cos a + s ; — Xr;

OTTI+ r 
e. 

+2S cosa. --Yr;	 (342)

W-1 	 its

In accordance with Eq. (10), the components of
deformation of the mean surface are determined by
the expressions

a
tl - b, -^- R1 i

e^ = r -}- ► cos a -}- R,	 (343)
r u + do — -' Cosa.

	

For shells with undetermined anisotropy of	 1106
elastic properties and for shells made of ortho-
tropic materials, the principal axes of anisotropy
of which do not coincide with the coordinate axes,
in accordance with Eq. (8), (343), Hooke's law has
the Form

OU + w 
= 

b (auT i + a,2T2 +-a,3S)

eV + ; cos a+ n, = d (ajI+ a,xTj`f'a.,.S);	 (34 4 )

r^ 
-f- as — cos a = d (a,3T , + a23T2 + ate)•

Correspondingly, for orthotropic laminated shells, the principal
axes of anisotropy of which coincide with the coordinate axes, in ac-
cordance with Eq. (28) and (343), the elasticity relationships have
the form

8u	 m 	 71 —VI TS

Ra + R, Ql O-VIVO

! OVa	 ra _ Ts—vsTl .
r n^ -{- r Cosa -}- Be
	 g, Ri "- VIVS)

	

! 8u 8n	 u	 S
r pp -+- as — r cos a = Be

(345)
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Thus, the systems of differential equations of membrane theory can
be integrated in tw successive stages:

stag^e 1̂. by solution of system of Eq. (".42), elastic forces
Tl , T2 , S of the sbell are determined;

st^a^^ 2. from system of Egw.(344) or (345), displacements
u, v, w are Whrmined for anisotropic and orthotropic shells.

Since, by the definition of membrane theory, interlayer shears Y.l'

Y 2 are absent or negligibly small under load, by Eq. (12) we obtain

aw	 s aw	 V

The components of effective change of evovature and torsion of
the mean surface, in accordance with Eq. (11) and (346), are determined
by the following expressions

'e,=__(as,— 

	

l	 (347)

t o aw	 u_ cos a f AW	 v

r aT as N,

Bending moments and torques Gl, G2, H can now be determined by 	 /107

Eq. (4) or (25).

For shells of rotation with random anisotropy of properties and
for orthotropic shells, the principal axes of anisotropy of which do
not coincide with the coordinate axes, there are the following expres-
sions for determination of the bending moments and torque

a aw	
_ t'G1—D11as (as — R

^

, ) +D la (r a
t a
^(

^ aw
rao R,)+

+ 20r a ( as R, / J '^- D l, 
[r as ( r aP — Rs / +

1 a aw _ u _ cos cs	 am	 u

1	 ( 1 a	 f 8w	 vG 2 = Ole o, (as — RR, / + Dzi l ►r r do — R,) +
cos a aw _ u	 r
r ( as Rq )^	

a
L	

1 aw	 v

f a aw	 u _cos	 t alp _ v 11
+ r of (as Rl ) r- ( r OP Rs

H D 
a aw u

	

^ a	 ^ awD13 as as — R,+ D^ L r 6p (i a^ — R,) +

(348)



l

i

coo 
a ( 2-0 — + D,. lr ^\ ► — V ) 4-

+	 \68 -Vt 	 -Coroa 
( ► ^'	 i)J'	

(348)

Correspondingly, for orthotropic shells of rotation, the principal
axes of anisotropy of which coincide with the coordinate axes,

Gz = Dj(	 U + V2	
OW	 v

+ co/ a_ ( Ba — W

", ;

of 08

e ^ aW	

0

	 1 e a^	 v

_ cos a (
► d

do	 P

 Re) J

(349)

From the last two of equilibrium Eq. (17), cutting forces Q l , Q2 , LiOR

which were eliminated in equilibrium Eq. (342), can be determined

e (.c,)	 nrr
rQi	 oar	 + (

00 — G, Cosa:

rQ,	 6 -j a(rH) +H Cosa.	 (350)
ds

System of Eq. (348), (350) or (349), (350) are supplementary in
membrane theory, and they are used only for checking the possibilities
of its use, namely, if it turns out that the bending stresses actually
are negligibly small compared with the membrane stresses, i.e., they
are uniformly distributed in the thickness of the membrane, this is
confirmation of the applicability of membrane theory.

In some cases, it can be foreseen that membrane theory cannot sui'-
ficiently well describe the axisymmetric stressed and deformed states
of a shell of rotation. This will occur in those cases when there is
a break in continuity of geometric dimensions d, R l , R 2 , rigidity char-

acteristics c ij , including rigid fastening or other kinematic connec-

tions or, finally, there are areas of discontinuity of external surface
load X. Y, Z.

The condition of the presence of areas of slight disturbance of
the geometric, elastic or strength parameters can be replaced by more
general ones, namely, for inapplicability of membrane theory, it is
sufficient that the abovementioned parameters have a large index of
variability.
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In areas of a shell where there are such features, additional
stresses can develop, which cause local bending of the mean surface of
the shell. Exact solutions show that areas of bending stresses are ex-
tremely small and, consequently, at some distance from such areas, shell
calculations can be carried out according to membrane theory.

Thus, membrane theory is described by systems of Eq. (342) 9 (344)
for shells with random anisotropy and for orthotropic shells, the prin-
cipaul axes of anisotropy of which do not coincide with the coordinate
axes, and by system of Eq. (342) 0 (345) for orthotropic shells, the
principal axes of anisotropy of which coincide with the coordinate
axes.

In accordance with Eq. (22), the boundary conditions of membrane
theory have the form:

1. unsupported edge T-S-O;
	

( 351)

2. rigidly fastened edge u-v-0;
	

(352)

3. hinge supported edge T i-v-0 or u-S-O.	 (353)

It follows from boundary conditions (351)-(353) that membrane
theory is applicable in the event the shell is riot loaded by cutting /101
forces and moments on the edges, since end effec;a, i.e., local bend-
ing of the shell, will develop on the edges.

35. Membrane Theory of Symmetrically Loaded Shells of Rotation

If a shell of rotation is loaded symmetrically about the axis of
rotation, the surface loading components should be functions of are s
alone, i.e., they should not depend on angle 0:

X- X (s); Y-Y (s);	 Z-Z (s).
	

(354)

Since all geometric parameters R l , R2 , r of shells of rotation de-

pend on arc s, the elastic forces and displace ,nents also are functions
of coordinate s alone anal, consequently, the equations of equilibrium
of a symmetrically loaded shell of rotation have the form

r `̂ rl —(T,— T I ) cos a = —Xr;

r de +Mcosa- -rY;	 (355)
Ft. -} Ns � Z.

If, following V.V. Novczhilov [21], stress functions are introduced,

Cs)-T1r sin a; T(s)-Sr2;
	

(356)

,e following can be obtained from the first two of Eq. (355)



d`t' ^r(7, con a--X si n a);T
(357)dY M -- r'Y.

Consequently, thf, stress functions are determined by the expressions

0(a) s jr(Z Cosa - X sin a)da+00.,	 (358)
0

!r$Y4' (a) •a -- 	 d s -}- 4►•.	 ( 359 )0

By determining force T2 from the last equation of equilibrium, in

accordance with Eq. (356), (358), (359), we obtain

	

T,= r•iina	 T',-R,(2-k) ► S - r ,	 (360)

According to membrane theory, the normal, tangential and shear-
ing stresses are determined by the simple expressions

T, TO

	

T;	 (X- + X-) + a 
.,

^^	
( 361)2

/110

where X+ , X- ' Y+ , Y are components of the external surface load ap-
plied to the upper (z-8/2) and lower (z w-6/2) bounding surfaces of the
shell, respectively.

As was noted in the preceding section, the expressions for the
elastic forces of an anisotropic laminated shell coincide with the cor-
responding for an isotropic shell.

In accordance with Eq. (344), movements of a symmetrically load-
ed shell of rotation are determined by the following system of linear
differential equations

du	 !

da R,	 d (a1, T , + a,j T a + aiaS);

Cosa -}- R, b (a iaT, + a s :T • + a13');	 (362)
dv

da -- ; cos a	 6 (a.^aT, + a,3r, + assS)•

System of Eq. (362) is equivalent to the following:
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m	 [(all— all Q) T,+anS+auR,Z]—R, ' 1	
(363)

ds

du F
dI "' Q 

co' a u — (all — 2an Q + ass Q') -a! +

+ (au — an Q) S -f - (au — ass Q) =
it - Z;	 (364)

7" 
_ c . a v — (alp — an Q) ^ + an 0 + auRr B .

where	 R^

	

Q °Tr;	 (365)

If, as in determination of stresses, the deformation functions

U	
h. ;,	 (366)

are introduced, from Eq. (364) 9 it is easy to obtain

d, ; b eia a Kali — 2an Q A- a., Q') T, +

+ (a ,, — a., Q) S + (a lt — a!! Q) RtZ I;
dtj	

I I(a,,— a,,e)T,+a9,S+ a: R,Z I.	 (367)d. ;i5̂

whence

.^ I(n u _ wa it E + as. Q') TI + (a ls — a» e) S +

' 
-f (a l: — aae @) R:ZI s

dd +ina	 4`0;	
(368)

`. r
T1A J
 [(413 — an C)) ;' 4- am i + an ^,—° Z, ds + VO;

,n

where ^o , ^o are the values of the deformation functions at the edge

of the shell.

In this manner, the components of movement of an anisotropic
symmetrically loaded shell of rotation are determined by the following
expressions

u = t, shi a; v = r n;

cos a -f- b' (( a^i — a,, Q) T, + a,,S + anR'ZI.	
(369)

ri ll

As should be expected, in distinction from isotropic shells, with
any boundary conditions, each movement depends on all three components
of external surface load X. 'Y, Z. The nature of the stressed state de-
pends essentially on the boundary conditions, namely, only with static
indeterminate boundary conditions will the forces depend on all three
components of the external load.

Eq. (369) also determine movements of orthotropic shells of rota-
tion, the principal directions of anisotropy of which do not coincide
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with the coordinate axes.

In the case of orthotropic shells of rotation, the principal direc-
tions of anisotropy of which coincide with the coordinate axes, the ex-
pressions for the elastic forces remain as before, and the movement
functions are determined by the formulas

^^ ^) R°Z^Ton	 ( 370).
"r J . F dd +

to

U	 sin a; V qF;

R, ^,x	 V 1 	a	 '1
(371)

w a -- cos a +	 r ^* -- (. i -^_ .^^ T ► J .

In this case,, movements u, w are caused by the radial and merid- /112
ional components of the external load Z. X. and displacement v is
caused by annular forces Y. i.e., the same as in isotropic shells of
rotation.

In this manner, calculation of symmetrically loaded anisotropic
and orthotropic shells of rotation is reduced to determination of four
random integration constants 

0o' To' 0
0' ^o. Consequently, on each

edge of the shell s n s o ; s-s l , for an unambiguous solution, two boundary

conditions each must be assigned. In this case, at least two of the
boundary conditions should be kinematic. Otherwise, the existence of
the stressed membrane state  will be impossible, i.e., bending of the
mean surface of the shell without stretching (compressing) or shearing
will occur, or displacement of the shell as a solid will be possible.

We now consider some examples of calculation of symmetrically load-
ed shells of rotation according to membrane theory.

36. Calculation of Closed Containers Operating under Constant Internal
Pressure

Shells of rotation in the form of cylindrical and co: ►ical shells
closed by end plates of different geometric shape and of spherical and
toroidal containers are exceptionally widely used in industry. Partic-
ularly in chemical equipment, these shells operate under uniform in-
ternal pressure. Such structures are calculated according to membrane
theory, with the exception of small end effect areas, where more exact
equations, which will be obtained later, must be used for the calcula-
tion. In such zones, special deign measures must be used to moderate
stress concentrations and more uniformly distribute the stress.
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In shells of rotoLion subjected to uniform Internal pressure
XaYaO, Zap, where p •const is the intensity of the internal pressure.

In accordance with Eq. (358), the stress function

M.P !R g doa d(Rj idua)+4)0 — PR2
 + C.	 (372)

GO

Consequently, the elastic forces are determined by the expressions /_113

PRs
T, ^` .2 7r9 STa â	 (373)

T, , 11"t ( 2 — 
Rs	 r2 \	 WS,) — Oi, sin , a

It is evident that, for shells of rotation cloud at the top,
C =_0 must be set and, consequently, for such shells

T, ._ I' ll,  ; T, 4 y PR, 2 — R,	 (374)

The deformation functions for closed shells of rotation, accord-
ing to Eq. (370),

a
Pi (	 2v, (1— v,)	 v' a ^ 11 1 R, da

2 KI e I 1
1 — 2v, —	 Q + ', Q	 Bill av' 	 v	 {' o•	 (375)

as

and the components of movement

a

U ---	
P sill (1I

I 1 — 2^
2v, 0 —y 3) L	 ,^ 1	 Z 

1	 Xp r2E, d Il  V! Ve

uo

X R,Rs da + 4 A n a;
sill a

_	 4 (376)
V1 V1

uo

X 
R

sign as
P1i:

—' ea Cosa +	 '	 (2 — ♦ s -- Q)2R;b
r

Consequently, radial movement of the shell, i.e., movement per-
pendicular to the axis of rotation, is determined by the expression

e

`..Ar=u Cosa +w sin a = 
ERR: 

(2— vs —e).	 (377)
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Fig. 38. Hemispher-
ical bottom.

Correspondingly, the angle of rotation of a meridional element

H'
X^= gR e

Q (Q, _E.Z(i +v^Q + 4— V,1 —'^•	 (378)

a. Spherical container or spherical bottom ( Fig. 38). In the
case of a spherical container

R1•R2=a

and, consequently, the forces generated in the shell

T1=T2=.	 (379)

m

	

The radial deformation and angular dis- 	 /114
placement of an element of the meridian are
determined by the respective expressions

a et
Pat h', d 't, . X• ` Pan da C 7 + 2v, `_-

v^  •	 (38 0 )

b. Closed cylindrical container (Fig. 39).
In this case, R 14w; P n ; R 2mrsa and, consegLantly,

according to Eq. (374)

T, - 2 T, ^ bra.	 ( 381)

Correspondingly, the radial de-
formation and angular displacement

pal (2 -- vt) •
0	 ,d	 X0 =0.	 (382)

C. Ellipsoidal bottom (Fig. 40).
'	 Fig. 39. Closed cylindrical	 In this case

container.
•

e b
r Y.

The radii of curvature of an el-
lipsoidal bottom are determined by the

o	 known expressions

j;	 Fig. 140. EllipsoidalR 
=— "^^^ +E	 R _ •Y^.

bottom.	 r {'=u^^ ' ' i y`t+sa^R U

( 383)
i

9
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F i ,3 . 41.	 Con-
ical bottom.

Consequently, the elastic forces and deformations

a`

2
Rik : 1 } a tin s a.

Pat 0 + r1
	 1---v' —M sin, a

)
;fee == ^jq^d(^-}-taia ^ ( 

Pe I	 c	 coo a
7.e UTF 1 1 +t sin s a eipu X

x [Q1+2(1+v.)e+4_ * --2ee sin' a .

d. Cenical bottom (Fig. 41). In this case

(384)

1

R 1160; R` n X tg Y; P= 0.

If distance x is reckoned along the generatrix
of ;he cone from the top, it is easy to obtain

	

'2ES,6 (2 -- v,);	 (335)
Ps tRI Y 4 r V,

Xo = 2ES b ( 	
va

e. Toroidal containe r (Fig. 42). In this case

R	
ft+rsinn. R =r.

t sill u 3

f

Fig. 42.	 Closed toroidal
container.

A toroidal reservoir is not closed at
the top. Confequently, the forces are de-
termined by Eq. (373), and the value of
constant C must be determined.

From the conditions of equilibrium
of an element of a torus cut along a plane
passing through the curvilinear axis of
the torus, and of i cylindrical surface
passing through the curvilinear axis, we
find

Pr (2n + r) .
2	 11+r	 (386)

and, consequently, the desired constant is Cw-pR2/2. Thus, 	 /116
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P► ZR+ ► ^+••	 ( 387 )

The respective radial and angular displacements

PjVt

Co '" i	 (2 ve — 0;

ft
X4 	 P Itie

a 
[Q' + 2 ( 1 _vs)Q 4.4 ._ ^.F r

2N8 6pa, .
( 388)

Further, we consider some problems in determination of efficient
bottom parameters, which ensure strength with the least possible weight.

s Connected with DeterriAnation of Parameters of Least
om

Let a cylindrical container of radius a be sub^lected to internal
pressure of intensity p. Spherical and conical bottoms of the least
possible weight m ,.:st be se'l -cted.

Since the I-joblem is solved from the point of view of membrane
theory of shells, some simplifying assumptions must be made. Namely,
we will assume that, in uneven joining of the bottom with the cylindri-
cal part of the container, the resulting thrust is taken up by a rein-
forcing ring which 1s mounted in the butt section. We designate the
permissible yield strength of the material by o and the specific we?.ght
of the material by y.

a. Spherical bottom (Fig. 43). In this case

RM
:3 n a'

Since the stresses are uniform in a spherical
shell, the bottom should be made of constant thick-
ness and provide isotropic structure of the lami-
nated plastic.

The weight of the bottom is determined by
the formula

Qsh 
Q 2ny 0— cos a) R9 d.

The required bottom thickness

b da

Consequently, with bottom aperture angle a, 	 /11
the weight of the bottom shell

np^ n' 4--CosaG 	 °' o	 sia'a '



The required weight of the reinforcing ring in the butt eection

cap
	

(390)
r M^	

aWn	 r o

The total weight of the spherical bottom shell with the reinforc-
ing ring

	

G	 :, pa* Y . 1 {^ (k -1) coy n 0	
( 391)a	 rin a

where

tip.. \ YItA
/ a

l i^p	 ( 392)

C5 A

0

Fig. 44. Spherical bottom
weight vs. aperture angle and
relative specific strength of
plastic

Fig. 44 presents the results of
calculation of the weight of the bot-
tom as a function of the relative
specific strength of !,he shell and
ring material k and of aperture angle
a of the spherical bottom.

Eq. (391) and the calculation
results show that it is advisable to
reinforce the butt section of the bot-
tom with a ring of a material, the
specific strength of which is consider-
ably greater than the specific strength
of the laminated plastic. The maximum
possible weight advantage over a hemi-
spherical bottom reaches 28%. In re-
inforcing with the same material, be-
cause of the unidirectional nature of
the laminated plastic, the relative
specific strength k=0.5.

b. Constant thickness conical bot- /118

	

tom (Fig.	 The shell weight 77 a
conical bottom of constant thickness

	

0	 gpva$	 2	 (393)s 	 a air 26

k- 4i

46
41

r • 40

a
^ 8

6

Key: a. Relative weight	 the required weight of the reinforcing
ring

G. r - n 

°"^ 
4 Iga.'
	 (394)

Cons.:quently, the total weight of the conical. bottom shall and
reinforcing ring
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Fig. 45. Con-

ical bottom
with reinforc-
ing ring.

a
?s

4
10

z9

z0

4.0

k. 1.0

U
44 1

ks^^l

i

U	 ju	 43	 DD	 V

Fig. 46. Constant thickness
conical bottom weight vs. half
aperture angle and relative
specific strength of plastic.

Key: a. Relative weight

k

G•• i»' Y [	 4-ktga^.
sins	 (395)

The results of calculation of the bottom weight
by Eq. ( 395) are presented in Fig. 11 6 as a function
of k and `he half aperture angle of the cone.

The minimum weight advantage oi' the use of a
conical bottom over a hemispherical bottom is 50x, if
it is considered that the specific strength of a coni-
cal bottom made of uniform oriented laminated plastic
is greater than the specific strength of a hemispherical
bottom. Actually, if the yield strength of a unidirec-
tional plastic is v, the yield strength of a full
strength plastic is o12, and the yield strength of the
plastic of a conical bottom is 2/3o.

c. Variable thickness conical bottom. In the use /
of laminated pas cs or manufacture of bottoms,
available technological methods of continuous winding
permit a variable thickness bottom to be obtained
without difficulty.

Since the stressed state of a
conical bottom is variable along the
generatrix, it is more advisable to
make a variable thickness conical bot-
tom. Evidently, the relationship of
change in thickness of the bottom is
the following

	

8 ^Z) nst	 (396)i:0

Consequently, the weight of the
bottom shell

n PY 4°	 4	 (397)
Gah ^` 0 35in.a

Since the weight of the reinforc-
ing ring remains the same, the total
weight of a variable thickness conical
bottom

(398)G = ! X-°-1 (	 ^ + k fig a) .0	 3 sin 2a

The results of calculation of the bottom weight by Eq. (398) is
presented in Fig. 47 as a function of cone half aperture angle a and k.
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Fig. 47. Variable thickness
conical bottom weight vs.
halt' aperture angle and rel-
ative specific strength of
plastic.

Key: a. Relative weight

Fig. 118. Box bottom.

The minimum weight advantage of the
use of a variable thickness conical bot-
tom over a hemispherical bottom with k=0
is 33%. If it is considered that the
specific strength of the conical bottom
is greater than the specific strength of
a hemispherical bottom, with k=0, the

	

minimum possible weight of a variable	 1120
thickness conical bottom equals the weighf-
of the hemispherical bottom. This could
have been expected beforehand, since both
bottoms are full strength.

d. Box bottom (Fig. 48). We now
consider a box bottom, obtained by even
Joining of the spherical part with the
cylindrical part through a toroidal shell.

The weight of the spherical pert of
the bottom

G" asp (1—s+ssina)e(1— Co9a) 	
(399)sph ' o	 $ia a

The weight of the toroidal part of the bottom

Gtor	 apo 
a^ 

(e(2—e)['- —a)(1—e +9 Cos a]) (400)
t	 t	 I	 11

Thus, the total weight of the box bottom

tcpa3 y (1—a+esina)3(1—Cosa)
G	 J	 u1no a

4-e(2—e)[ \ 2 — a)(I --e)+eCosa]	 (401)

It is easy to note that the weight of the bottom decreases with
decrease in a and, conscluently, the smallest Joint radius based on
design or other considerations must be used.

The maximum weight advantage will be at a=60 0 and c+O, i.e.,
the toroidal part of the bottom, by ensuring even Joining, replaces
the ring, as it were. The weight advantage is 23% over a hemispher-
ical bottom.

The results of calculation of the box bottom weight as a function
of a and a are presented in Fig. 49.
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Fig. 49. Box bottom weight vs.
geometric parameters.

Key: a. Relative weight
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OF POOR QUALITY

CHAPTER 8. OPTIMUM METHODS OF CONTINUOUS WINDING OF CYLINDRICAL FIBER-
GLASS REINFORCED PLASTIC SHELLS

38. Basic Concepts and Initial Hypotheses

One of the most convenient and widespread methods c;f production 	 1121
of laminated shells is continuous winding. There are various methods
of continuous winding, which differ in the method of placement on the
mandrel and type of filler, as well as the nature of impregnation of
the filler. Rotation of the mandrel combined with forward motion of
the carriage with the bobbin along the mandrel permits the most di-
verse filler orientation to be achieved. After winding, the shell
together with the mandrel go through heat treatment, as a result of
which hardening of the binder occurs. After heat treatment, the shell
Is removed from the mandrel. To make removal of the shell from the
mandrel easier the latter is covered with a film before winding, which
prevents adhesion of the filler.

For mass production of cylindrical shells and types, high capacity
coil winders usually are used. One of them is shown in Fig. 50.

Fabric and nonfabric glass
filler, in the form of threads,
apes, bands and fabrics are used
for continuous winding of fiber-
glass reinforced plastic shells.
Polyester, phenol, epoxy, organ6-
silicon resins and various modi-
fications of them are used as the
binders.

Fiberglass reinforced plastic
cylindrical shells obtained by
continuous winding; are anisotropic
laminated materials. In distinc-
tion from natural anisotropic
materials, the nature of the aniso-

Fih. 50. unit for continuous wind-	 tropy of the fiberglass reinforced
ing of cylindrical shells.	 plastics and other reinforcing

plastics can be regulated by change
In orientation and mutual location of the filler during production. It
is expedient to call such anisotropy of the material controllable tech-
nological anisotropy, in distinction from structural anisotropy, which
Is produced by strengthening the shells with stiffening ribs.

The most efficient reinforced plastic structures are those in which 12
anisotropy of the elastic properties most profitably corresponds to the
stressed state of the shell or ensures its maximum rigidity with re-
spect to a given load. Determination of the optimum structure of lami-
nated plastics in various structures presents interesting new problems
of the theory of elasticity and the theory of shells.

This chapter discusses the problem of the selection of optimum
structure of a fiberglass reinforced plastic in a cylindrical shell
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which is exposed to axisymmetric loads, which produce a uniform state	 {
of stress in it, determined by the components of the normal forces Tl,
T2.

It is assumed that the binder has ideal elas l;ie, strength and ad-
hesive properties, which ensure compatibility of the deformation of
individual glass filler elements all the way to failure. The glass
filler is considered in the form of circular cross section fibero,
which does not restrict the generality of the results obtained. 	 J

It is easy to nhow that, in elastic deformations, forces T l , T2

will be taken up by the filler and binder in proportion to their moduli
of elasticity EH , E c and their volumetric content in the material.

If the relative volumetric content of binder is designated ^, the
relative fraction of the forces which are taken up by the binder is
determined by the expression

9r'---	
(402)

The moduli of elasticity of available resins change between 	 /123

3 . 10 2 and 7 . 10 2 n/m` , and the modulus of elasticity of glass EH.
n

7 . 10 3 n/m`. The optimum conter:r; of binder in fiberglass reinforced
plastic is approximately 30% and, consequently, by Eq. (402), q-2-4%.

Thus, the normal and shearing forces in fiberglass reinforced
plastic shells are primarily taken up by the glass filler. This de-
termines the carrying capacity of the structure. Based on this, we
will assume that the effective load on the shell is taken up by the
glass filler.

We will call continuous winding the optimum if it ensures equi-
librium of the glass filler without the binder. It should be noted
that, in nonlinear deformations in the binder and in plastic deforma-
tions of the material at the time of failure, the fraction of the load
which is taken up by the binder decreases sharply. Therefore, selec-
tion of the optimum winding general speaking is of decisive importance
for increasing the carrying capacity of a shell. We will call a shell
composed of fibers alone the basic system.

Since actual resins which are used as binders in the manufacture
of shells have various properties, they provide compatibility of de-
formation of the glass filler in different ways, and this explains the
results of studies in which a significant effect of the binder on the
elastic and strength properties of fiberglass reinforced plastics was
found. actually, with slight adhesion of the binder to the glass fill-
er, tno., distribution of forces through the shell will be irregular.
This leads to both premature destruction of the filler in the most
stressed fibers and to overstress and failure of the binder, i.e., an
Increase in irregularity of distribution of the forces and subsequent
.reduction of carrying capacity of the shell.
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If the axial force in a cylindrical shell is

force is (1+a) T l , the normal forces which act on

located at angle e to the generatrix of the shell
expression

To - T, (1 }- a cost 0).

Let glass fibers be wound on a cylindrical m
the generatrix (Fig. 51).

Ti and the annular

a surface which is

is determined by the

(403)

andrel at angle m to

Fig. 51. Wind-
ing diagram and
conventional
symbols.

It is easy to determine that the same number of
fibers passes through segments AB, AD and BC (Fig. 51).
If the length of a segment of the generatrix AB•a,
the length of a segment perpendicular to the fiber
direction equals a sin Q. Consequently, na sin ^ fi-
bers pass through the segments indicated above, where
n is the glass fiber packing density, i.e., the num-
ber of fibers passing through a unit segment perpen-
dicular to the fibers.

The angle between the normal to area BC dropped /124
from point A (AEJBE), and "he length of segment BC

U	 4 _ 8	 aNil1T2 ( -f 4l:	 x -_ R(' _- sin (e+q) '
	 (404)

Consequently, the normal force which arises in area BC in stretch-
ing of the fibers by force f is determined from the expression

?, O	 jnn vin cnv	 = fn 8i R' (0 4- T).	 (405)i^.
1

According to Eq. (405), the distribution of normal forces in a
cylindrical shell depends essentially on the orientation of the glass
filler during winding, i.e.; on angle ^.

According to Eq. (405), winding of the fibers at one constant
angle m does not ensure equilibrium of the basic system. We will sub-
sequently assume Eq. (405) to be written for the limiting state of the
shell, i.e., we will assume fiber tension f to be equal to the break-
ing force of the fiber. For convenience in use, it is advisable to
subsequently present Eq. (40 5 ) in the form

Te ffi f [ i + eos 21p- 2 cos 24p eosI O + sin by si n 2fl.	 (406)

Continuous Winding of Cylindrical Shells with Unidirectional Glass
ers at Opt mum Angles to Shell Generatr x

Since winding a cylindrical shell at one constant angle does not
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F,

ensure equilibrium of the basic system, we consider the case when the
shell is wound with two glass fiber°systems at angles f l and ^2 to the

shell generatrix (Fig. 52).

We initially study the simplest case, when each layer of one sys-
tem of fibers corresponds to one layer of the other system. Accord-
ing to Eq. (406), the force on the area a is presented in the form

T e .. ^j (2 -}- cos 2% + cos 2 T g — 2 (vos 2% -f - ems 2%) coO 0 +	 (407)
+ (sin 2T, + sin 2T,) sin 20(.

The equilibrium conditions of the Blabs
fibers have the form

cos 2T, 4- cos 2T, -- 2a

sin 2%+ sin 2T,,r 0.

Fig. 52. Bias cross
winding.	 From Eq. (408), it is easy to find

	
/14 a

T._4' ► ` —-( rnn (m-0,f, .,.);	 (409)

roe 2T « —	 .2+ Q

where a>-!, i.e., the winding should be crossed
at angles t^. For different stresses of the
shell, the optimum cross winding angles are
determined by Eq. (410).

v°

60

oa

?a

0 ? ^ s ^ ^e ►r 1
T^

(410)

Fig. 53. Optimum wind+ 	 The results of calculation b;^ Eq. (410)
ing angles vs. :)tress	 are presented in Table 1, and they are illus-
of cylindrical shell.	 trated in Fig. 53.

The basic relationship which connects the carrying capacity of
the shell with the strength of the glass fibers has the form

2
(411)

We now consider a more general case of continuous winding, when
N layers wound at angle m2 to the generatrix are applied to each layer

wound at angle ^1 to the generatrix.

The equilibrium conditions of the fibers have the form
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(415)

t

(N ♦00
cos 2ff } .ti cos 2% •• -- 	 a

slit 2T, + N sir. 2*, ^• 0.	 (412)

TABLE 1. OPTIMUM WINDING ANGLES OF
CYLINDRICAL SHELL UNDER AXISYMMETRIC

LOAD VS. T2/T1

a 
a" A	

TMtt"all

0081WO wCTRMS-
silo

b
0 Of
f 4'°

UeyTPOUP00	 A&- 2 54.44'
pnannt, c or0e0i 3 600

C cunoA 4 W 1, 25'
5 (15° 55'

9 7 V 35'
00 900

Key: a. Type loading of shell
b. Axial tension
c. Internal pressure with axial force

Consequently, the optimum winding angles are determined by the
following exrvessions

((t+1)N--((1= +2a+2)

(`+a)a	 (413)
a	 (a•42a+2)N- 2(a 4.1)

COS 2V' a 	 --	 - —	 a(2 -f•^^) aN

The carrying capacity of the shell

71i	 (N--1) In.	 (414)
(2 + a)

Determination of the optimum winding angles by Eq. (413) is not
difficult in any axisymmetric stress of the shell. Further, we study
the cases of loading-with uniform internal pressure most frequently

entered in practice.

If a shell operates under uniform internal pressure, the optimum
.ng angles are determined by the formulas

cos '9:,i 	 •
4N — 5 

• coscoo	
4 —5N .

3	
'	 aN

It follows from Eq. (415) that
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The carrying capacity of the shell

pR. 2 ( v + 1) In.	
(417)

TABLE 2. OPTIMUM WINDING ANGLES OF
CYLINDRICAL SHELLS OPERATING UNDER INTERNAL

PRESSURE VS. LAYER RATIO N

N (	 Vt h

t 54.44' 125.16'
1.1 50' 48' 121° 29'
1.2 46054, 118.08'
1.3 43. 06' 115° 04'
1.4 40.14' 112" 12'
1.5 35' 16' 109.28'
1.8 31.06' 1060 46'
1.7 266 34' 104.02'
1.8 21s 26' 101.00'
1.9 14058, 97.30'
2 0° 90'

The results of calculation of the optimum winding angles by Eq.
(415)  are presented in "able 2.

N-1 corresponds to bias cross winding; N-2 corresponds to longi-
tudinal-transverse winding, when two layers are wound in the annular
direction (m 2-90°) on one longitudinally laid layer.

The calculation results presented in Table
2 are illustrated in Fig. 54.

We now compare the yield strengths of
shell materials obtained by continuous winding
with the same glass fibers and different aniso-
tropy of the strength properties. According to
basic relationship (414), which connects the
carrying capacity of the shell with the strength
of the fibers, the following results can be
obtained (Table 3).

40. Optimum Continuous Winding of Cylindrical
Shells with Fiberglass Fa r cs

JA

r	 1 41 1.4 /.e lot N	 Fiberglass fabric is an aggregate of two
mutually orthogonal glass fiber systems connect-

Fig. 54. Optimum	 ed together with varied amounts of interweaving
winding angles of	 in textile processing. By type and amount of
cylindrical shells	 interweaving of the warp and woof fibers, card,
operating under in- satin and serge cloth are distinguished (Fig.
ternal pressure.	 55)•
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TABLE 3. FIBERGLASS REINFORCED PLASTIC STRENGTH
VS. NATURE OF ANISOTROPY

UPOWY upo"O"s a raa@Wzb	 C	 waapaaaawiw^s a.tr..ospemeN
a Taa CtrwaonaacTim., Xapowtap

awaaoegonww

(ri.	 °t.

d OAnonanpaaaanuwrl	 t : 0	 /n	 0
i

e	 14agoulwanuii	 ;	 In	 1 Jn2	 z
—	 I	 2:f	 3/n	 9Jn

rn^n	 ►n:n 	 /M

Key:	

mn n/n

Key: a. Fiberglass plas-	 c. Yield strength in principal
tic type	 directions of anisotropy

b. Nature of aniso-	 d. Unidirectional
tropy	 e. Full strength

Fig. 55. Fiberglass fabric structure: a.
card; b. satin; c. serge.

Satin fabrics have the greatest flexibility, they ensure the high-
est quality packing in continuous winding, and they have the best ca- 	 /128
pacity for impregnation with binders. Fiberglass reinforced plastics
produced from fabrics usually are called fiberglass laminates.

For convenience, we introduce the following designations:

f l , f 2 are the breaking forces of the warp and woof fibers;
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n l , n 2 are the packing density of the warp and woof fibers;

kn f2n2/f1n1 is the relative strength of the fabric (k(l).

As in winding with unidirectio
cylindrical shell with fabrics at a
librium of the basic system, except
warp in the annular or longitudinal
the anisotropy of the fabric should

nal glass fillers, winding of a
constant angle does not ensure equi-
for straight winding of the
directions. In this case, of course,
be kwT2/Ti or k-Tl/T2.

We consider the general casef.of cross winding of a, cylindrical
shell with two fabric systems, which are laid so that the direction of
the warp fabric is at angles ml, 02 with the shell generatrix.

Both systems are composed of the same fabric of relative strength
k in which, on each layer of the first system, there are N of the second
system.

In accordance with Eq. (406), the normal force on area e

T A 
=-L' ' I (N + 1) (k + 1) — (k — t) (cos 2% + N cos 2%) +

+ 2 (k — t) (cos 2(p, + N o)s 2%) cos' 0 —

--(k-1) [sin 2,T,-}-N sin 2gp=) Lain '201.	 (418)

Consequently, the equilibrium conditions of the basic uystem are
written in the form

cos 2y, + N cos'-,T, = (A'+1)(k+1)a
(k-1) (2+a)	 ( 419)

sin2(f,+N sin 24b-0.

The relationship which connects the carrying capacity of the
reinforced shell with the strength of the fibers has the form

/_122

	

Z n ' (N+ 1) (k+ 1).	 (420)

The following expressions for determination of the optimum winding
angles can be obtained from Eq. (419):

cos 2(p, =
]	 _ (2^- a)=(k--1)*N'—(k-ft)°^i^(A'-i.i)Y—(k-1)^(2-+•a)= .

	

—	 2( +t)(k —1)a(2-f-a)
cos 2(p. 	 (421)

_ (k-1)'(2•^a)a.^'=-f-(k-f•1)'a ^(A'-^1)F—(k-1)sf2•^-a)=

	

—	
2.V(A-f-1)^'kl—f)a(2-}-0)

Since it is quite complex to study Eq. (421) in the general case
of loading a cylindrical shell, we consider the case of loading a shell
with uniform internal pressure (a-l) in greater detail, for cross wind-
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p.

6
	 ing Nal.

In this partial case, flu-m2
n f

Cos 2cy = 3 (k ^ j	 (422)

it follows from this formula that, for manufacture of fiberglass fabric
cylindrical shells operating under uniform internal pressure, fiberglass
fabrics must be used which satisfy the condition

Oe, k4If,
	

(423)

i.e., the fabric strength along the woof should not be greater than
half the fabric strength along the warp. Otherwise, the excess strength /0
of the fabric along the woof cannot be used, even in bias winding.

The results of the calculation by Eq. ( 422) are presented in
Table 4 and are depicted in Fig. 56.

TABLE 4. OPTIMUM CROSS WINDING
ANGLES OF FIB7RGLASS FABRICS

A

l	
i	

1	
A •

0 54° 44'	 0.25 61. 48'
0.05 55.48'	 O.30 64.07'
040 57.07'	 0.35 66050,
035 530 24'	 0,40 701132'
0.20 60"	 0.5 90 0

According to Eq. ( 420), the carryin& capacity
of a shell under internal pressure equals

11

rc	 PR = s flit, (k + i)	 (424)

It can be concluded from this that fiberglass lami-
nate shells are considerable inferior in strength
to sh - Ils made by winding unidirectional glass fill-
ers, the carrying capacity of which equals

PR = s /".	 (425)
IN

Fig. 56. Optimum	 Actually, the relationship f ln1 > fn always

winding angle of	 occurs, since the fiber strength it textile process-
cylindrical shell	 ing only decreases, i.e., f l <f. Besides, the fiber

vs. relative warp packing density in fabrics is less than the fiberand woof strength
of fabric.	

packing density in winding: n 1 <n. Consequently,
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even in the most favorable case, when f inlwfn, the carrying capacity of

a fiberglass laminate shell is 25% less than tho carrying capacity of
a shell produced by winding unidirectional glass fillers.

It also follows from Eq. (424) that with a given warp strength of
fiberglass fabric, the maximum carrying capacity of the shell is reach-
ed at kn 0.5, i.e., in straight winding of fabrics, the warp strength of
which is twice the woof strength.

It seems advisable to consider a still simpler method of manufac-
ture of shells, when annular winding is accompanied by laying the fabric
warp along the shell generatrix.

Let N layers be wound in the annular direction on each layer of 	 /131
fabric laid along the generatrix or vice versa. In this case, the norms
force on area 8 is represented by the expressions

(t--k)(t—h'^)To / i n s (N i k + i) It — ---pjk+;
 coal 0]	 (426)

or

T o /, n l (A^, + k) C! -}- (--^,—^- Z)	 cos' 8] .	 (427)

The relative fabric strength 's not limited by bias winding condi-
tions, and it changes in the Oekkl interval.

Thus, the number of annular layers on one layer of fabric ?aid along
the generatrix is determined by the formula

t+n— k	 1—k-•ka
N, r= Or ,y , - W—+u -,t (428)

Since N>O, the fiberglass fabric should satisfy the conditions

k<min^I+a;	 t)^1;
t+a	

(429)
i>k? max (I +Cj; It 

We consider several possible cases.

1. Axial tension of shell as-1; the optimum fabrics which
ensure the greatest strength of the shell should be unidirectional
(k=0). According to Eq. (428) N1=0.

2. Uniform tension of shell a=0; for the manufacture of a
cylindrical shell, the annular stress of which equals the axiaLl stress,
it is advisable to use full strength fabrics (k-1). According to Eq.
(428), N1=1.

3. Shell under internal pressure a = l; in this case, the
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optimum fabrics should Lave relative woof strength k •1/2 and be wound
only annularly. According to Eq. (428), N2.0.

41. Optimum Methods of Combined Winding of Cylin drical Shells

Them is still another method of continuous winding of shells w4"h
fiberglass fabrics alternately with sortie unidirectional gla63 filler r.
This combined winding method permits the ?mpre--ement of fabrics which
do not satisfy the conditions of optimality. NAoreover, in laying the

	

Fabric warp in the direction of the generatrix, the strength of the 	 /132
shell is increased correspondingly compared with fiberglass laminate
shells.

We initially consider the combined continuous winding method as
applied to the manufacture of shells which operate under uniform internal
pressure. Let the warp of the fabric form angle 41 with the generatrix

of the shell and the unidirectional filler be wound at angle m 2 to the
generatrix.

If N layers of unidirectional glass filler are wound on each layer
of fabric, the optimum winding angles are determined by the following
expressions

4k'—SO—k k+8k—,k S
CUE 2(f t =°a 	 i	 "

3(1—k)(k,+k+1)

Cost	 _ ìk '—Us + kk + k^ +lok-4	 (430)^:	 g^^—+-k+1)

where	 kl	 t" N

f is the tensile strength of the fiber; n is the packing density of the
unidirectional filler.

We also consider the case of winding of the greatest practical
importance, when the fabric is la14 with the warp in the axial direc-
tion (® 1=0), and the unidirectionai glass filler is cross wound at

angles +m.

In this case, the normal force on area a is represented by the
formula

To : Jan, 1-} 
k,,o+`2 	 (k, Cos 2of+!—k) Cos' 0 .	 (431)

The carrying capacity of the shell is determined by the expression

pR ° 2 (J,n^ + Jana -+- JnN).	 (43 2 )

and the optimum cross winding angle of the unidirectional glass filler
is found by the formula
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cw2y- 2k++k _4 .	 ( 433)

where parameters k l , k should satisfy the condition

C' k 1+k;2 • 	 (434)

In the individu p!1 case when kl+kn2, 0. 900 , i . e., the unidirec-

tional glass filler should be wound in the annular direction.

TABLE 5. OPTIMUM COMBINED WINDING ANGLES

C•^^+^

$ L I	 b 6 I	 7 i P

0.1 w• 704 11 , 65 0 35 • 63 0 08' 61 . 37' 600 .34' 590 48' 59 0 12'
0.2 900 690 40' ti50 14' 62 0 51' 61 0 21' 600 20' 590 34' 59•
0.3 tK.►0 690 26' 64 0 52' 62. 32' 61 . 04' 600 05' 59. 22' 580 48'
0.4 904 690 02' 64 . 31' 620 IT 600 48' 59. 50' 59 . 08' 58.36'
0.5 900 680 35' 64 0 08' tit s 52' 600 30' 590 W 580 54' 580 24'
0.6 900 68 0 07' 63 . 43' tit 0 32' 600 12' 59 . 19' 580 40' 580 12'
0.7 900 67 0 37' 63. 18' 6t* 10' 590 54' 59. 03' 580 26' 57.99'
0.8 90* 67 0 (Ni' 620 51' 600 48' 590 34' 58 0 46' 58. 12' 57.46'
0.9 90 0 W* 32' 62 0 22' We 25' 590 15' 580 30' 570 50' .57 0 32'
1 900 65. 50' M e 50' Go* 560 54' 58 9 12' 57. 4'2' 57 0 18'

_.L69	 ,

s
60

3s

?90 V 4* 016 aI

The results of calculation by Eq. (433) are
presented in Table 5 and Fig. 57.

We now study the general case when it is	 /13
necessary to determine the optimum combined winding
of a cylindrical shell operating under axisymmetric
load T 2/T lm l+a. We consider the simplest longitudi-

nal-transverse winding, when the fabric warp is
laid Long the axis of the shell or is wound with
the warp in the annv".ar direction, depending on the
nature of the stress of the shell.

Similarly to the preceding, for determination
of the optimum winding angles of the unidirec,lonal
glass filler, the following calculation formulas
can be obtained

cos 21f = 
2k-•-kln-2(1.4-a)	 (435)(2+a)

cos 2q)= 2(1—a)-2k(t+a)—k.a	 (436)
kl (2+ a)

When the warp of the fabric is laid axially, according to Eq.
), the filler paramters should satisfy the conditions

Fig. 57. Optimum
- --` fined winding

^s.
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k,+k>t+u; t+k,^ t	 (437)

If the warp of the fabric is wound annularly, the filler parameters
should satisfy the conditions

f—a
	 k'	

9—a
k,-}-k^ f+a ; k-- 	=.	 (438)

42. Optimum Winding Angles of Bottoms of Varied Geometric Shape

We will consider a bottom manufactured by continuous winding, in /ice
the form of a shell of rotation and smoothly joined to a cylindrical
body of radius a (Fig. 58).

If the (r, x) coordinate origin is
placed in the pole of the bottom, the
principal radii of curvature of the bottom
are determined by the known expressions

Rla _y ( , +r,z)'	
^'+rti^i-}-r'a.	 (439)

Fig. 58. Coordinate sys-	 The meridlonal and annular forces
tem for shell of rota-	 which are generated in the bottom as a
tion.	 result of uniform internal pressure are

equal to

T, _ ►r V i + r^ °;	
1

T	 1 i -f p (2+ i+r,$)•	
(440)

: 2
Since a shell of rotation with positive Gaussian curvature

1/R1R2 >0 is a nondevelorable surface, the bottom can be made only by

contin.:jus winding of glass fibers.
Let nc fibers pass through small segment c perpendicular to the

fiber direction. We consider an element of the bottom cut by two axial
planes and two conical surfaces, so that the condition ds 1 sin ^-c,

ds 2 cos ^=c, where m is the winding angle, i.e., the angle between the

fiber direction and the meridian of the surface, is satisfied (Fig.
59).

The same number of fibers, equal to the product of the packing
density and the length of segment c (perpendicular to the fiber direc- /135
tion), i.e., equal to nc, passes through segments ds 2 ,c and ds 1 . In

distinction from a cylindrical shell, the fiber packing density on a

116



Shape of shell of rotation Optimum Winding angle

Hemispherical

Ellipsoidal

Fllipsoi dal b-a/ 3
Conical

Ogival

Box

45

arclg	 a (a	 r)r^

nrctg	 tt

54°44`
r

arclg	 2
I/
	 k i r—n

arctg	 2—
r

r— a

^'	 r	
y

T	 ?

double curvature shell is not constant, but it changes direction toward
the pole of the shell, i.e., the fiber packing density in winding shells
of rotation is a function of the cross section radius or axial coordi-
nate x.

The normal forces which are generated in area da l , ds
21
 with the

fibers under tension of force f.

T 1-fn cos t f;	 T 2-fn sin g m.	 (441)

According to Eq. (440) 0 (441), a system of differential equations
which determines the optimum continuous winding of shells of rotation
has the form

pr ! + r'' 2/n coss T;

pr 1 i +r"(2 ; —r-^-^ 2/n^iu^^.	 (442)

By dividing the second equation of (442) by the first, we obtain
an expression for the square of the tangent of the optimum winding
angle of the bottom as a function of the shape of the bottom

t an2tp	 2 _Ir
	 ►r•	

(443)

This basic relationship permits the pattern of change of winding angles
m in the manufacture of shells of rotation of arbitrary shape to be
found:

However, in continuous winding of shells with a nonzero Gaussian
curvature, it must be kept in mind that, besides satisfying the condition
of equilibrium of the basic system, i.e., equilibrium of the glass filler
without the binder, still another no less important condition must be met
which specifies no slipping of the glass filler from the shell surface,
and it is geometrically reduced to winding along-bhe geodetic lines of /136
the surface. According to the Klero theorem for a surface of rotation,
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this condition can be written in the form

r sin m nh,	 (444)

where h is the geodetic line parameter.

With an opening at the pole and continuous winding of the opening,
the geodetic line parameter equals the cross section radius of the
opening.

According to Eq. (4113), (444), the differential equation which
determines the shape of the bottom and the optimum winding can be writ-
ten in the form

20" -- 30

By replacement of the variables

F-t;;	 r '-U (r ),	 (446)

differential Eq. (445) can be reduced to the form

IW11 ^ (4-72") d.' 	 (447)
1+Us	 t(V-1) .

from which, after integration, the desired shape of the bottom is de-
termined in the form of a simple quadrature as a function of parameter
h

C+ 
{ r'li,'-i)—i^+ ..^.xp,
	

(1148)

where	

C_	 (a)'	
(449)

According to Eq. (448), the optimum shape only exists in regions
where the subintegral expression is positive.

Optimum shape of bottom with longitudinal -transverse windin .
There is interest in determination of the optimum shape of a bottom with
longitudinal -transverse winding of the cylindrical shell.

In longitudinal-transverse winding, the glass fibers will go in the
direction of the meridian of the shell. Consequently, tc ensure equi-
librium of the basic system in the annular direction, a bottom shape
must be selected in which the annular stresses equal zero.

According to Eq. ( 440), the desired bottom shape is determined by
the following differential equation

rr"+2r"- + 2s0.	 (450)
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The solution of Eq. (450) is represented by the elliptical integral

z -- f o f di
1 44 - 14 	 (451)

0

which can be expressed through elliptical functions.

In the dimensionless coordinates n n x/a, t =r/a, the shape of the
bottom is determined by the equation

n-@(t) 0
	

(452)

where function 0(t) and its first derivative are presented in 'Fable 6.

TABLE 6. OPTIMUM SHAPE OF BOTTOM WITH
LONGITUDINAL-TRANSVERSE WINDING

C	
J

OW -108 I	 m' lU tC1.102 I	 a.^ tU

0 0 0 II0,52 4,7629 0,20)
0,02 0,3.10-3 0,0004 0,54 5 3484 0.3049
0.04 0,213.10'3 010016 0.56 5.9834 03303
0.06 0,720.10-1 0,00311 0.5R (1,6702 0.,0,57:.'
0,08 0,0177 6,0064 0160 7,413 t 0,1859
0110 0.0333 0,0100 {I	 042 8,2152 0,4164
0,12 0.0576 0,0144 0,64 9,0797 0.400
0,14 010915 0,0196 ^^	 0166 10.013 0.4839
0116 0,1365 0,0256 Otis 11.017 0,5215
0,18 0,1944 (1,0324 1	 0,70 12.098 0.5621
0,20 0.2667 0,0400 0,72 13,266 0.0062
0,22 03594 010485 0.74 14.521 0,6544
0.24 0.4613 0,0577	 I 0,76 15,880 0,7076
0;20 0,58615 0,0678 0.78 17.344 0.7(16(1
028 0,7327 0.0786 0.80 18,931 0,8329030 0.9015 010904 0.82 20,53 t 111008
0,32 1,0947 0,1029 0.84 22,270 1/(h' (F)
0,34 1,3139 0.1164 0.86 23,172 0,071
0,36 1,5608 03307 0188 26.301 0,8170
0,38 1.8372 04459 0.90 28.687 0,7240
0.40 2,1450 0,1621 1	 0,92 31,4.V) 0.6292
0,42 2,4861 0.1792 0,94 34.682 0,5294
0.44 2,8621 0,1973 0196 38,702 0,4212
0,46 3.2764 0,2165 0.98 44.184 0.29010.48 3.7294 0,2368 1 58.115 0.00000.50 4.2242 0,2582

r

vs nd o 0.4 oe s

Fig. 60. Optimum shape of bottom
with longitudinal-transverse winding.

The optimum bottow shape is
presented in Fig. 60, where an
ellipsoidal bottom with the same
semiaxes as the optimum bottom
is noted by the dashed line.
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Fig. 61. Gaussian coor-
dinates on surface of
cylindrical shell.

CHAPTER 9. END EFFECTS IN AXISYMMETRICALLY LOADED CYLINDRICAL SHELLS

4 . Differential Equation of Axis mmetrical Deformation of Cylindrical
She ll

We consider an orthotropic cylindrical shell., the principal axes /138
of anisotropy of which coincide with coordinate axes x. S . which char-
acterize the distance along the shell generatrix and the circumferen-
tial angle (Fig. 61).

According to Eq. (10)-(12) and (24)-
(26), in axisymmetric loading of an ortho-
tropic cylindrical shell, the basic elasticity
relationships are presented in the form

T 
J=B,(u.

+V3.7w

T,=B=^H +vlu');	 (453)
Q, = —K, ((p + u,');
G t =—Di q)'; G,=vG,.

The equilibrium equations of a shell
subjected to a surface load and end forces
can be written in the form

T,' + X (x) = 0;

	

Q^+ R, —Z (x);	 (454)
G; = Q,.

The axial force generated in the shell is determined by the ex-
pression

T, -- I X(^)d's+To,	
(455)XG

where To is the axial force applied to the end of shell x=xo.

From the first elasticity relationship, with Eq. (455) taken into /139
account, the following can be obtained

	

u'=_ f X(t) dg + B, —v, w	 (456)
X9

By substituting Eq. (456) in the second elasticity relationship,
we obtain
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Pi
4

i

Ts— B:(1—v,%'s)w +v, To — vs f X(E)dt.	
(457)

xe'

If stress function 0--D,O is introduced, the elastic forces, mop.

ments and movements of the shell are determined by the following ex-
pressions

G, M'; Q, _ O';

To = RZ (z) — R (A';

+ f

i	
(458)

X (Z
xe

X	 x	 i

U =B J dz f X (C) 4 + (t °) 
T

° -- R fw dz + u
xe	 xe	 xe

BI

where u  is the axial movement of the end of shell xwxo.

The differential equation which describes the axisymmetric deforma-
tion of an orthotropic cylindrical shell made of laminated plastics has
the form

(Dtv — 2e24)"+ 0 (D= —v, k + Z' (z),	 (459)
where

2 e __ Be 8	 k{ 12 0 —vivo) E,

e ^'	 R, 6 2 F,	 (460)

If the partial solution of Eq. (459), which is found bj convention-
al methods, is designated 0 0 (x), the forces,moments and movements which /140

correspond to this partial solution are written in the form

Go =q►u: Q. =0. ; T, — R(Z — cpo );

411
=TO — us

X

s	 "V I R	 v, !^	 /t u^°	 R 27

r.	

WO
= ^,e f X(^) d^— ^^d °— E,d + E,e ;	 (461)X6

Y X
r

ue = — f dz f X (^) d; — (_ °) T° — h f u,e dz + us.
iz°	 re	 ze

The solution of homogeneous differential Eq. (459), which determines
the end effects generated near zones of abrupt change of geometric and
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G„!t >	 f
^, d	 2 V3 0 — v,v,)

(467)

yPy
F

rigidity parameters or external load, has the form, for long cylindrical
shells, 

(D (Z) C, 4), (_) #- C, fi, (_) •	 (46 2 )
where

q►^ (r) _^ e " cos rr; cp' (Y)	 e' "' si n rs; (463)

= j^	 r = j^ A' , 
py
	 (4611)

2

The following known relationships satisfy functions m 1 M , @2(x)

	

d ►, . — (r d>, + $ 00; lD, == r (n, — s 08 ;	 t
^, = (s'—r' ̂ID, +2rs0,; 0;: (s'—r' ) q), -

- 2rs 4) 1;	 (465)
s(s'-3r)(D,+r(r'-3s')(D,;

(D." 	 8(s'-3r')4)„--r(r'- 3A01;

for short cylindrical shells,

	

O(x)- C 1 0 1
+C 2 0 2+C 3 0 3+ C 4 04;	 (466)

where 0 1 (x), 0 2 (x), o 3 (x), 't 4 (x) are the functions of V.Z. Vlasov,

defined by Eck. (188), satisfied by Eq. (189)•

In short cylindrical shells, there is a general bent state of the
shel'.s, and, consequently, the "end effect" concept itself loses mean-
ing.

It follows from Eq. (462)-(464) that, in laminated orthotropic
	

/141
shells, the end effect damping zone is determined not only by the
geometric dimensions, but depends essentially on the nature of the
anisotropy and rigidity with respect to interlayer shear.

The end effect zone decreases with increase in parameters E2/E11,
E2/G 13 , i.e., the presence of interlayer shearing contributes to damp-

ing the stressed and deformed state of i the shell. The concepts of
"short" and "infinitely long" is not purely geometrical for laminated
orthotropic shells, and it is determined by the value of parameter st.

It is assumed that, in actual laminated shells, the relationship

k2 >p 2 or the relationship

where G 13 is the interlayer shear modulus along the shell axis, is

satisfied.
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Long cylindrical shells. We select the distance from section x•
x  as the axial coordina e n which the end effect is studied (Fig. 62).

With this coordinate system, in order
to maintain the validity of the expressions
obtained above for the elastic forces and
movements, the change of sign in differ-
entiation in region I. located to the left
of the section, should be taken into ac-
count. In the expressions presented be-
low, the upper sign of the double sign
concerns region II, where x%x o and the

lower sign, region I. where x4x0:

Fig. 62. Hypothetical re-
gions of propagation of
end effects.	 Q, = Qo+ C,1 (ss -- Ps) 01+2rs(D.]+

+ C. IIC. 	 — rs) ^1,^, -- 2rs 011;

G, = Go * ICS (s 1% + r 0s) — Cs (rO, — s Os*

U = uo +	 Im" (z) — (D" (zo)1; (46F)

w = w, :L 
E d I C, Is (as — 3rs) QV, — r (rs -•- ass) ms1 +

+ Cs Ir (rs -- 30) m, + ,
The two random integration constants are determined from the	 /142

boundary conditions in-section x-0.

Short cylindrical shells. In short cylindrical shells, for con-
venience in practical ca cu ations, it is more convenient to express
the solution of Eq. (466) in initial parameters ^ o , wJ , Go , Qo , which

designate the angle of rotation of the normal, deflection, bending mo-
ment and cutting force on the end of the shell (x-0). Since two con-
stants will be assigned on one end, in specific calculations, the prob-
lem is reduced to determination of , the two remaining constants from the
boundary conditions on the other end of the shell.

According to Eq. (461), for short shells,

4V = M ; G=V; Q=V,	 =
—its 4) 1;
	 (469)

-' T;	 11, 6

The following expressions for the basic components of the forces
and deformations can be obtained in the initial parameters

(p = A9 ,r (z) (P. + A v . (A w + Am Q (z) Q. + Ao r (z) r'o;

w = A- 4P q), + A.. (z) w + A.Q (z) Q, + AG (_) Go

Q= A Q o (z)^o + A Q ," (z) w `r '9 oG (z) Q,-{- A QG (z) G,;	 (470)

G = Aa ® (z)To + Acs, (z) w -{- AcQ (z) Q, + Acc (z) G.;
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Influence coefficients A i, are determined through hyperbolotrigono-

metric Vlasov functions (188), by the expressions

t

Avg (t) 01 - 2r, 4y
Be a	 I

ONA9Q (z) —;

A• G (z) 2r•—'T^j^ ►r (r' - 30) m' +
+ s(s' - 3r')041;

A (s) '_ - 
2re (s 414 + r 0s);

ArQ (x) °` - , lr-i. is (s' - 30) 04 - r (r' - 3s') Dal;

() ° AMC s 2r^

'4	
Dt (,4+r') be;

Q 4P (Z) —	 2r,

A Q..
Fl a I
 IF S, (

s Qti
  + rd's);

AQQ (z) = (Di +j'2r,' 0s;

AQG (z) ' _ r' ra ' (^ 4)' — r Q)a);

AG (^) ! D1 ( 

2r, 
r') 

(s 4)' — r 03);

C,d4^y.
AGW (

z) 	
2r8'RT

A GQ (z) = I (s $t + rO3);

AGG (t) ^^ 2r.

(471)

In finding the initial parameters from the boundary conditions to /143
solution (470), the corresponding solution obtained from membrane
theory must be added.

44. Stressed and Deformed States of C y lindrical Shell Generated by
Annular uoncentratea No'2ces

We consider a long cylindrical shell compressed by a concentrated
annular force of intensity q (Fig. 63).

In view of the symmetry, only one half of the shell can be consid-
ered, for example, that located to the left of the section where the
pressure is applied.

Since there are no surface loads or axial forces on the end of
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Fig. 63. Cylindrical
shell subjected to
concentrated annular
pressure.

the shell (Xn Z•T0nO), the initial forces, moments

and movements equal zero. Consequently,

Q, - C,1(s' — PI) 01 + VON +C.1(0—r')m,-
- 2rs 011;

G, —ICI ('10,+r0.)—Cs(r®a—s®l)1;

u °gST IQ, (x)—Q,(ZA ♦ w; 	
(472)

—^ (Cl 4>, + Cs0s);

w
no

yo-6- IC, Is (s' — 3r') ml — r (r' — 30) msl +

+ Cal r(r'-30)0, +s(s'— x')0.11-

^
-ka

Integration constants C l , C 2 are determined from the boundary	 /144
conditions

_	 q	 (473)

Consequently, the stressed and deformed states of a laminated cy-
lindrical shell compressed by a concentrated annular force are deter-
mined by the following expressions

Q	 Vs 12rs (1), — (s2 — r') 021;

G,= q (r Q), — s 02);
Off

2	 9

J

ViD,

W —' 4 psEa b 1 
r (rs — . 3s ?) (I), + s ( sa — 3r2) 021•

(474)

The maximum deflection in the section where the annular force is
applied

	

wma: = — 	
4;E2 d
	

(475)

The maximum flexural stress and the greatest shearing stress be-
tween the layers are generated in section x=0:

	

39 	 3q

	

Am p s = 2r V	 Tmax - 
41)	 (476)
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Fig. 64. Sketch of
cylindrical shell
with annular ribs.

We investigate the stressed and deformed states
of a laminated cylindrical shell subjected to uni-
form internal pressure, which is strengthened by
equally spaced reinforcing rings (Fit. 64).

We will assume that a segment of the shell of
length t located between two rings can be , consider-
ed infinitely long in the sense indicated above,
i.e., the stressed and deformed shell states
described by Eq. (474) are completely damped in 	 /145
distance V2. In actual shells, these conditions
usually are always satisfied, since the reinforc-
ing rings must be larger to preserve the circular
shape of the shell than to increase the strength.

Let the rigidity of the reinforcing ring under tension equal FF.
The end forces and surface load components

To-v-;	 Z-p;	 X-0.	 (477)

Consequently, the solution of the inhomogeneous equation has the
form

G O — Q0 = TO 0.
(2— Vii) Pij'u o . -	 2E,h

(478)

The intensity of the force of interaction between the reinforc-
ing ring and the shell q is determined from the condition of compat-
ibility of deformation of the ring and shell

,R =	 (2--v0 Pita

	

(30- =)gRs	 (479)-- 
.VE, A

Consequently, the intensity of the force of interaction

(2 -.V 3) f 
2	 ^; () .it= - ^ s	 (480)

1

The normal stress generated in the reinforcing ring

(Filial ^ (2— vs) PR	 1
21	 [E3

R + 486 1	 (481)

The stressed and deformed states of the shell are the sum of the
momentless state generated by the internal pressure and the stressed and
deformed states generated by the resistance of the ring to deformation
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of the shell. The latter is determined by Eq. ( 474), where q is found
by Eq. (480).

Thus, the greatest normal stresses and maximum shearing stresses

	

between the layers develop in the reinforced sections of the shell, 	 /146
and they are determined by the expressions

ph 3 (2 — va) P	 1
01 ma: - -}' --4.68--	

+3
R 3(2 —vt) v^P	 t

as max s -^- 4̂ r^ r.Us — r ^ '	 (482)

3 (2--ve) P
f -a-^-^, i
77 '+ $r

45. Calculation of Laminated Cylindrical Shell with Variable Wall

We determine the stresses generated in a closed laminated cylin-
drical container, which is supported by the base on a circular sup-
port and is filled with liquid of specific weight y and is under low
pressurization p o , which is required to give the container the necessary

rigidity (Fig. 65).

P,	 The lateral hydrostatic pressure of the liquid
on the container wall is proportional to the height
of the liquid column to the section under considera-
tion and the specific weight of the liquid. If the
coordinate origin is selected on the open surface
of the liquid,

	

7t-0; To-ft ; 
2(t)— (Yx+po)•	 083)

In accordance with Eq. (461), the momentless /147
state of the shell is determined by the expressions

G O .- Q9 =0; r,•=(Po+yz)R;

	

yR' • U, _ (2 - vy) peal + v =Re	 (484)TO — — Gs 8 ^	 ° — 21i. 6 (r)	 G•', d (_)

i

Fig. 65. Variable
thickness ^heroical
container.

changing by steps.
sections of the co:
6(x).

Consequently, it is inadvisable to make the
walls of such containers of constant thickness. Let
the wall thickness be increased toward the base,
We investigate the end effects which arise in the

atainer where there is wall thickness discontinuity
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64

Fig. 66. Initial param-
eters OoQo in cylindrical
shell.

Let the thickness of adjacent sections
of the shell be 4 16 6 2 (6 2>6 1 ). We consider

two sections of the tank separately, on the
assumption that they are sufficiently long:
t>n/s (Fig. 66.

For section I

Q, - C,	 ri) O, + 2r,s, 0,1 + Ct Vsi - r1) of -
-2rs,cp,);

G, -C,(ts 41,+r,4't)--C,(r,01 -slIN;
!

,vo " w91 - t.,-	 ( Ct Jh(s,- 3r,)4't—	 (485)
--r, (r, - 30, 1 Otl + Ct [r, (ri - 3s,) 01 +

+s,(s. — 3r,$ ) 0'11;
12 0 — vivo) C 4) -j- ce Q►

!

By satisfying the boundary conditions, the following can be ob-
tained

(486)C	 2SIGn" 57. E 	 111 ^i^G•—R1Q11
1— ' ._ it ► CS .^	 r /' i-r°1	 f	 ,	 1	 ,)

Consequently, in the initial parameters, Eq. (485) take the form

Q, = Go , 
r` f 4't + Qo ^^, — ;i fit)

G, = Go (01 + r-,'PO — Q.

U10 — W 1

° +	 [Go ( r, + s1) (01 —  41t> —

E1 bl if 	
[Ga(2s1 	 + th ! ^'1 —

(487)

/148The movement and angle of rotation of the end of the shell xw0,
respectively,

{2—"' rn—
ft'
	 ya"'	 !t'	 !	 !

1	 , dl	 E! 6 1	 /;l111

120—`'I`'_) ( 2s.G. 	 (488)

El ,(,,,)
	 ES at
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For section II

Q° — Ci [(s, _ r,} 41, + 2► its Os l + 'Ce [(b -' ri ) d°e"
-- 2 esr 011

GI	-- C' (se Q►i + re Q►e) + C; (ro 4), -- se me);
12 0 -- v ve) C, 4)i + Ce (be

—rs (r;-3s;) (be] -+- Ce [rs(r,---3s:) 0,+
+ is (s;--3r"^ fie 1.

(489)

We again find constants C I s C 2 ^ from the boundary conditions
1

C,	 r:) —C°2r R, — Qo;
—C^ ss +. C,'re — Go,

(490)

from which the following values of the constants can be obtained

(491)S — _ + ; ". --	 Tom—'

	

,° r	
°

s 	 re (,° r° )

In initial parameters ao x Qo , Eq. ( 489) are presented in the form

,°+ r°	 e
QI —Go '  ° 0:+Qa+ ra

/	 e, -03Gl .. Go t 0, -i- T e )+Q." ;Ps
s

w	 Ott
	
[GO(r°•t-s')\

(
0l-82 4)e)+

se _ re

+ Qo ^ 2Sa 0t --4'r' icps )

12( 1-- viva) f Go^2secpl ++-a-^me^+
E l i° ( "1'+ re ) L	 °

.+QO (4D, L'-02 )J

(492)

The deflection and angle of rotation of the end of the shell xs0 /149

	

(2—v i )p„R = yoR'	 R°	 .	 t

	

W 2E, 6, + E,B, 	 + E, b, tGO(r:+s°) -} 2s:Qol;

	

12 (1—v,v,)	 y R2Tit:- Ete (r'+r') (2s°GO+Qo)--El b,
(493)
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k
The conditions of compatibility of the deformations in the butt

sections of the shell can be reduced to the form

E
Go 181( s:+ro)-82(A',+ri)1+2Qo(s,61+sibi)

2G9 t!t(j^+ ri) 6i+ a1 (s; +r:) 8;) +Qo [(af +r;)8^—	 (494 }

s	 s s	 Y R ' (61-62)	
( 821
 

r' ) (S', r')

From this, for determination of end forces G o , Qo , we obtain the
following expressions

Go= ( 2 2v' po+Ya)(8,- -81) /,+

+ 6X I (t — v,vs)

Qo = —2 ( 2 2v ' Po+Y a ) (8m- 8i)^o—
3	 00

10 = (t — v ►v2)	 t''

A

A

( s + z^ s+ ( s + s) s

h a t' al ,' 

Ai 

't '' r' b'

	

vv 	 (// A

A

^_ [ ( as + r,) 8,—(aI+r,) 82] [(s^+rl) 81--

	

so+ rs ) 	4(sa8.+8i62) [so (8,2+r',)8l+

+ st ( S, +ra) 4-

(495)

(496)

After determination of the end forces, the stressed state in 	 /150
sections in which the thickness changes by steps is determined by the
expressions obtained above.

We note that the manufacture of cylindrical shells made of lami-
nated plastics with variable wall thickness presents no technical dif-
ficulties.

46. Calculation of Laminated Orthotropic Cylindrical Shell Subjected
to Axial Eccentrically Applied Forces

In actual shells, axial forces may be applied to the side surface
only with some eccentricity with respect to the mean surface (Fig. 67).
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Fig. 67. Cylindrical
shell subjected to
eccentrically applied
axial load.

` J	

M•m

%M

^y

Fig. 68. Calculation
scheme of cylindrical
shell.

We will assume that the contact of the
shell with the reinforcing ring is linear. The
axial eccentrically applied load can be re-
duced to axial forces applied to the mean sur-
face of the shell and to reactive bending mo-
ments uniformly distributed around the cir-
cumference of the shell cross section. The
strength of the reactive s bending moments is
determined from the conditions of compatibility
of the deformations of the ring and shell.

By separating the reinforcing ring from
the shell and replacing the force of inter-
action between them by reactive moments of
unknown intensity m, we have the calculation
scheme shown in Fig. 68. M is the external
torque generated by the eccentricity of the
a: ial load.

The calculation formulas for determina-
tion of the deformed and stressed states of
an orthotropic laminated cylindrical shell,
subjected to uniformly distributed bending
moments m, are obtained by differentiation
of the solution_ obtained for the case of
annular pressure with simultaneous substitu-
tion of m for q [18). However, in taking
account of interlayer shearing, this method /151
can lead to errors, since the'effect of
shearing in the limiting transition i:-i not
taken into account exactly. Therefore, we
use general solution (468).

For the upper and lower sections of the
shell, respectively

00*00-0

Q, ° Ci I(s'— r')^► -}-2rrd'^1 +Cs ((a°—r') d►,-
--- 2rs 0,1;

± Eirb J C1 I s (ss -3e) (D,—r (r! -3s') (P,J +
+ C, (r (r' — 30) (Dl + s (s' -- 3)4 ) (D:1

4 _' of (C l (r,+ C, 0:);

U 110+, d ICs (j)--Pl (so)).

(497)

In section x=0, the bending moment has a discontinuity of m.
Consegv ,^ntly, integration constants C 1 , C 2 can be obtained from the

following boundary conditions.
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at x-o	 a l••;	 w-o.	 (498)

By substituting Eq. (497) in Eq. (498), we obtain

G ls (s1 --3r2)—C'r(3s2 --r3) =0;	 (499)
Cis—C,r= — 2 .

The following can be obtained from Eq. (499)

C1 4+—Tip ; Cm • — 4r (+ -^ r' 	̂ (500)

In this manner, there are the following calculation formulas for
a shell subjected to bending moments of intensity m uniformly dis-
tributed around the perimeter of the section

Q1 = — 
m

W
r') (r 01 +iOJ ;

G 1 yrr 12rs d), + (O—'r') 0.1;

q+= on
4„(,,(-+^)^i (r(3s'—rs)0J +S(ss-3r2 ) 4D:1;	 (501)

1C ra ^+ MRd (1'+r')9
4E, 6	 re	 •;

U — = a lQ, (z) — Ql (xo)1-

In Eq. (501), the upper sign refers to upper region I of the
shell and the lower sign, to lower region II of the shell (see Pig.
68).

For shells made of laminated plastics, reinforcing rings with a
continuous rectangular cro.;s section are most acceptable. The resist-
ance of such a ring to axesymmetrical torsion is determined by the
flexural rigidity of the ring EJy , i.e., the rigidity of the ring when

it is bent out of the plane of curvature.

From the compatibility condition of deformations of the shell and
reinforcing ring m r=m s , it can be found that

M	 (502)
M ^ f' + e

where the geometric rigidity parameter is designated ^

EJ„ (.3sa — r')

	

4sD1 R 11 (r2 ♦ •1)
	 (503)
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In accordance with Eq. (502), an external uniformly distributed
bending moment which is transmitted to the shell through an elastic
reinforcing ring is taken up by both the shell and the reinforcing ring.
The fractions taken up by the shell and reinforcing ring are determined
by parameter 4. An increase of this parameter entails a decrease in
load which is transmitted to the shell. Thus, the stress and deforma-
tion of the shell can be regulated by increasing the flexural rigidity
of the ring. Since this rigidity is characterized by moment of inertia
Jy , for transmission of eccentrically applied axial forces to the lami-

nated cylindrical shell, it is advisable to use wide reinforcing rings.

It should be noted that, with large shell dimensions, the effect
of the reinforcing ring decreases sharply in proportion to R3/ 2 , i.e.,
in thin cylindrical shells of large diameter, the external bending mo-
ment is almost entirely absorbed by the shell.

The stresses and deformations due to uniform compression should be
added in the lower part of the shell to the stresses and deformations
which are determined by Eq. (501).
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Fig. 69. Curvilinear
coordinates on sur-
face of shell of ro-
tation.

Erw "T --- ,

CHAPTER 10. AXISYMMETRIC DEFORMATION OF ORTHOTROPIC SHELLS OF ROTATION

47. Initial Relationships and Basic Differential Equations

We consider laminated shells of rotation loaded symmetrically	 /_153
relative to the axis, including the reactions of the support connec-
tions. We select circumferential angle S and angle a, formed by the
normal to the mean surface with the axis of rotation as the curvilinear
Gaussian coordinates on the mean surface of the shell (Fig. 69).

We will assume that the principal direc-
tions of anisotropy of an orthotropic laminated
plastic are coincident with the coordinate direc-
tions, i.e., with the lines of curvatures of the
mean surface of the shell.

Under axisymmetric loading, a shell of
rotation will be deformed symmetrically relative
to the axis. Consequently, the forces, bending
moments and movements of the mean surface of the
shell will be functions of angular coordinate
a alone.

From the elastic forces in the shell, only
normal forces T 1 , T 2 , transverse cutting force

Q l and bending moments G l , G 2 will result. Movements of points of the

mean surface are completely determined by two components u, w, i.e.,
by movement along the meridian and deflection of the shell.

In accordance with basic Eq. (24)-(26) and Eq. (10)-(12), in axi- /154
symm?tric deformation of a shell of rotation,

u' 4- u , 	. ^ t q a + U,
T,	 B,	

R. 
A- v,	

le,

To	 Be	 I

fi etwa +U

	

	 u'+N	 (504)

u' -1!
1

G - D ^etQa 
v aG o _ a ` N, 

+ , jr1

where R1, R 2 are the principal radii of curvature of the mean surface,

and the primes designated differentiation over angular coordinate a.

For symmetrically loaded shells of rotation, equilibrium Eq. (17)
take the form
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d (r aR, ain a) - 
T sJti cos a - Q iR, sin a - -XRs sin a;da

d (P I ldaain a) + RiR' sin a C N^ -}- k^ ZR= sin a;	 (506)
d (G I R, sin a) - GaR,. a* a - Q1RiRs sin a = 0.da

As the solution of nonhomogeneous system of Eq. (506), we will use
the solution which corresponds to the membrane theory of shells. Fur-
ther, we obtain the solution of homogeneous system of Eq. (506) on the
assumption that X=Y=O.

Following Meissner, we introduce the stress function

V=R2Q1•	 (507)

Then, from the first two equilibrium Eq. (506), we obtain

V ctg a	 V-T,=- 
R,	 Rl

; T, _ —	 (508)

For axisymmetric loading of shells of rotation, relationships (8)
take the form

U0+W. I tVI V'— R, Vctga>;

uctgQ+W— E,8 Cv,Vctga- N, V') .	 (509)

By substituting them in the obvious identity which expresses the
condition of deformation compatibility

W, —U= 	 (510)

we obtain one differential equation
	

/155

V„
	
+ V' 

L\ k ^ /, + Rl Ciga] — V P R' ctg z a +

R,(511)r,E, 

By substituting Eq. (505) in the remaining unused equilibrium
ation, a second equation can be obtained for stress and deformation
ctions V and m

	

^• R' -!- ^, \ R , + Ri ctg a] — IF [vs -}- 
R' 

^s ctg2 a] =	 R, 
V.

(512 )N,	 Dl

j
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Thus, the axisymmetric deformation of shells of rotation is des-
cribed by system of Egti,(531) 8 (512), which it is convenient to present
in the following Symmetrical form

it,	 its	 (513)

L ((D) — ^^ — v, •	 (514)

where L() designates the differential operator in second order partial
derivatives

fig	 Be

(515)
kl = Bs(1—viv,) =9 .

Ki	 G.^

here 4=R 1a is the length of the arc of the meridian of the mean surface

of the shell.

Consideration of shells of rotation of variable thickness d = 6(a) is
of practical interest, since the manufacture of such shells from laminated
plastics involves no fundamental difficulties compared with shells of
constant thickness.

Without repeating the calculation, for axisymmetrically loaded
shells of rotation of variable thickness the following system of dif-
ferential equations can be obtained

L (V) + (13- — 
R^ l V — d 

(V—v, v ctg a) = E, alp.,

L 	 R, -1- 3 
d (R, T + v,4F Ct8 a) _ — p^ .

	 ( 51 6)

where the points designate differentiation over the arc of the meridian
4.

	

Eq . (513), (514) and (516) are valid for laminated anisotropic 	 /156
shells of rotation of constant and variable thickness, which are made
of laminated plastics of unchanging elastic constants along the merid-
ian. However, if a convex shell of rotation is made by continuous
winding of fiber fillers, as was pointed out above, the elastic con-
stants of the material will change along the meridian, since the fiber
packing density increases toward the pole of the shell.

The structure of the equations and asymptotic analysis of the
solutions show that system of Eq. (513), (514) or (516) describe the
simple end effects phenomenon, i.e., for not very "short" shells, the
solutions contain terms which are rapidly damped with increase in the
argument of ^ [1]. Consequently, the equations obtained will be valid
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for shells of rotation, inhere there are factors which cause local flexural
deformations.

If the indices of variability of the external loads, elastic con-
stants and geometric dimensions of the shells are not very large, Eq.
(513) 9 (514) for constant thickness shells of rotation and Eq. (516)
for variable thickness shells of rotation remain valid. However, ru17-
ther simplifications can be made in these equations.

8. Differential Equations of Technical Theory oi Axisymmetrical
0

Exact solutions of Eq. (519), (514) present great mathematical
difficulties, and they are obtained only with some simplifying hypoth-
eses for individual cases. At the same time, for engineering applica-
tions in many cases, it is quite sufficient to be limited to the first
approximation of asymptotic integration [7]. The- . error of the simpli-
fied equations which correspond to the first approximation is
compared with unity, i.e., it is completely sufficient for "thin" shells.

The technical theory equations can be obtained, if it is assumed
that the index of variability of displacement functions m and stress
functions V are considerably greater than the indices of variability of
geometric dimensions R l , R2 , d, elastic constants c i ,, aij and the ex-

ternal load applied to the shell.

By multiplying Eq. (514) by random complex constant z mx+iy and
summing with Eq. (513), we obtain

rr, a	 k,	 V,	 v z	 o.z [L (y)-- hi ^-"	 ^^ + f L(v)` ^ k, — fi-	 ,^'	 (517)

Following A.I. Lur'ye [18], we set	 1/157

k, 
^-	 a +bi;

+ 	 =—(a+bi)	 (518)

3y substituting z=x+iy in Eq. (518) and separating the real and
imaginary parts, we obtain

w

V2	 k` J r = a;

y = Dili;

vz + Jis _	 (F

UE, d	 b.
sa+Ya

By disregarding the small terms, the following values of tk
stants introduced can be obtained:



d'U— 
1(0" — i j 'I -- w'l U _ 0.

d^•
(525)

	

X OWk H 
OW (0= D,R,;	 l

iLL	
r	

: i
Y D1R9' `tz).aR: b v4 — ak '- —D,D, 1114V 	a	 ,	 I

(520)
o — 2R. --w: R,;

l^f2}.'(t—v ivo) _ kb	 i— R, C --T-- SRS —R2 llka — w^ .

where

2R'	 2K,Rf

	

k, _ k y"t2(t—v,v,	 (521)

Consequently, Eq. (517) takes the form

L(U)+(a+bi)U=O,	 (522)

where U is the complex function of stresses and deformations determined
from the expression

U+V+(x+iy)^.	 (523)

Because of the assumptions made as to the nature of variability
of the quantities, operator L(), which can be determined by Eq. (515)9
can be simplified

L( ) ! 
R= 

V

do + [ (_12_)' !, + !'t, c1g a, Z — N^ ctg'a. (524)

Far from the pole of the shell (a =0), the last terms in this	 /158
operator can be disregarded and, consequently, the deformed and stress-
ed states of the axisymmetrically loaded shell of rotation in zones
quite far from the pole are described by the following second order
differential equation

The elastic forces, bending moments and radial movement of the
shell far from the pole are determined by the formulas

Y	 V cig o	 ..	 dV

G, = —D, d^ ; G, = v, G,;

t = Or — — /A^b dZ

	

	
(526)

sin a.
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I`' R'
t= _. R' .

(528)

Correspondingly, the stressed and deformed states of the shell of
rotation near the pole (a w0) are described by the following differential
equation

d*J + a --^^'+ -iY	 1 U °
0,	 (527)

where

Y

t;

The elastic forces, bending moments and radial movements of the
shell in the area of the pole are determined through the stress and
deformation function by the formulas

it,	 Tfi—I

G, s --D1 ( d^ 

+v' Rf 	

dV

G
' -_D, :R.+'',_d
	 (529)

t m Ar. — R* aina dV	 VR,
ES  (dC — ' )

In accordance with Eq. (523), if a solution of differential Eq.
(525) or (527) is found, i.e., if the following complex function of
stresses and deformations is found

U(^)=ReU(^)+iImU(4),	 (530)

functions m and V are determined by the following expressions

	

— V ° _ 2r^f, r,	 (531)
V-- Re U (Z) + '1-^ t Im U (C)

where

/159

(532)

49. Calculation of Axisymmetrically Loaded Shells of Rotation in
Their Coapling_ Zones

The examples of axisymmetrically loaded shells of rotation most
often found in practice are the bottoms of cylindrical containers oper-
ating under internal pressure. In chemical containers, a bottom made
up of smoothly ,joined spherical, conical and toroidal shells is used.
At the ,joint sites in such shells, local bending stresses and deforma-
tions appear which are described by differential Eq. (525)•
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The solution of Eq. (525) which disappears at infinity can be
written in the following form

U — (c l* + iC;) t- c ' (sin r8 + I cos PS).	 (533)
Consequently, the real and imaginary parts

HeU(G)-Ci4)s—QV,;	 (534)
I m U a) - ca, (D I }- C' AAA , I

where 01 (01 m2 (t) are exponential trigonometric functions which

disappear at infinity and are determined by Eq. (463). They are sat-
isifed by Eq. (465), which are very convenient for practical strength
calculations.

In accordance with Eq. (531), we obtain

T :e _ 	 (C l 01 -f- Cs d's);

H, .. C S I ( O — ra) 4),+ 2rs 021 + Cs I(s=— rs) (Pz-- 2rs Ojj.	 (535)

	

The elastic forces, bending moments and radial movements of an 	 1160
axisymmetrically loaded shell of rotation are determined by the follow-
ing formulas

Q, — Qo a_ C, I (s2 — rs ) 0 1 + 2rs 0, 1 +
+Cs ((ss —r') (1's -2rs 0,1;

G, = Go $ IC i (s r1 ► , i- rd►,)—C, (r(1'1 —s 02)1;
T,`' — IC,I(s--r')(D,+ 2rs 0,l -}-

+C 2 I(s'—r"-))1)e--2rs(1)jjI clgu+TI;

T,-^ ± IC,(s(3r'--s')(1)j—r(3s'—r')'D: I-+-

+C,Ir(3s'—r')(Pj + s(3r'—s$)d', lI R, -I-T,;

± ^ I Cl(s(3r3_s2)(Di--r(3s$—r2)4)21+

+C, (r(3s=—r')(D,+s(3ra—s')0,I) sin a+to.

(536)

where quantities obtained according to membrane theory are noted by the
symbol "o." In Eq. (535) 9 (536), angular coordinate $ is reckoned from
the section where the local stresses are investigated. The upper and
lower signs concern the lower (I) and upper (II) regions of the shell,
respectively (Fig. 70).

We consider a quite "long" shell of rotation, at one end of which
0=0 bending moments Go and thrusts PG are applied ( Fig. 71).

For anisotropic shells of rotation in study of the deformed and
si:ressed states under axisymmetrical loading, the concepts " long" and
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Fig. 70. Diagram of
ar°bitrary regions of
propagation of end
effects in shell of
rotation.

"short," as was pointed out earlier, are not
purely geometrical but, rather, they are de-2
termined by elastic constants of the shell A
k  or by parameter-at.

With given thrust Po , cutting force Q 
0 a

Po sin a and, consequently, integration con-

stants Cl , C2 are determined through initial 1161

parameters Go , Qo by the following expressions

Go	
Go

Pe 	 r,

Thus, in expressions of the elastic
forces, bending moments and deformations through
the initial parameters, there are the follow-
ing formulas

Fig. 71. End forces
in shell of rotation.

Qt"Go 0 + ", fi,+Qo(Q't-- (D:)+Qo;
m,G t - Go fit -!- -1^ -Q + Go;

^o"^---	 ^G,(►'-}- a') (fit - ;
_ Q, (2s fit_ ,. f ,. 

fi'^^ sin a;

T o =: R, [Go (;' + 82) (IPt _

— Qo ( 21: 4j i -- 0 ^ r, 
fio ) -f- T;;

Tt 	 {
r^ -^- rs	 r

Go	 02+Qo(fit'^	 4^,)^cti;a+Ti;

^"	 ^.a t +r ) Vi
[Go (2sfi,+ 8'r i• fi,,--

"'Qo ( fit + fi°/J

(538)

As an example, we consider the problem of calculation of joining
a cylindrical tank to a spherical bottom. The stressed and deformed
states in the butt zone of the section are determined: in the bottom,
by Eq. (538); in the cylindrical part of the container, by Eq. (492)0
with y=0.

We designate all parameters of the cylindrical part of the container
by exponent I and all quantities which relate to the bottom by exponent
II.

From the deformation compatibility condition, the following values
of initial parameters G o , Po can be found, which determine the forces
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4 of interaction of the cylindrical part of the container with the bottom:

n
(old +alt) 

1--v	 (2-0)I e-'

t	 led+e!e!t(e+ d sla a)+ 	
_#

—:oe! ICON a +oktt—kle) 
Ge2	,

+ "I'l sin a] ♦ k!t (d —sin a) —kie (d sia a)

Go- P 	
0 (I I,+ III sin a)easa+	 _1

4	 rain a
t	 1!

+	 2+atl%ins— :11](d--ona) 	 (539)
+T, (d—sln a)—k ! a (d— p in a)

where	 !t	 tl .,
Jam! .. d.

^f 6 1	 U1kt	 (540)

In order to decrease the end effects which arise in the butt sec- /162
:ions of the containers, it is advisable to make them as smooth and
continuous as possible. Smoothness and continuity are particularly
important in the butt section of a container where the cylindrical part
is joined to the bottom. However, continuity of the curvature of the
meridian cannot be preserved while ensuring smoothness of the contours
in this section.

In the smoothest and most continuous coupling of the bottom to the
cylindrical part of the container, except for the bending moment in the
butt section, the initial thrusting forces disappear. With sharp
breaks in coupling, they can lead to local collapse of the butt section
of the container as a result of loss of stability. Examples of smooth
nonthrust bottoms are ellipsoidal, box and hemispherical bottoms. If,
for some reason, a smooth coupling cannot be achieved, the sections
where there is a break in continuity should be reinforced with rings.

50. Flattened Laminated Spherical Shell Subjected to Concentrated
Forces Applied at the Poles

We consider the problem of calculation of a thin laminated spher-
ical shell loaded with concentrated forces at the poles (Fig. 72).

For isotropic spherical shells, such studies have been conducted
in [7, 183. It is evident that laminated spherical shells which are
subjected to concentrated forces do not need to be anisotropic. More
than that, if the point of application of the concentrated forces is
not fixed, the most nearly optimum structure of the material is a full /163
strength structure. Just such a case will be considered.

Parameter c 2 in Eq. (527), which describe the stressed and deformed
states of axisymmetrically loaded shells of rotation near the pole,
equals unity. Consequently, the basic differential equation of the
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problem under consideration has the form

d =U	 t Iu	 ( 541)

Fig. 72. Spherical shell
subjected to concentrated
forces.

QIM
v 	 v 

T	
Al

T	 7d

0r y —r(W—yT).
We make the following substitution of variables

(524)

The elastic forces, bending moments
and radial movements of a full strength
spherical shell are determined through the
stress and deformation functions by the
following expressions

t

Vim• -^ ►^ -f

We then obtain	 du 1^^^•-i ^r-&►4 dG'

dam• - -- (^'- t Yom) d-T .

Differential Eq. (541) takes the canonical form

ar +- dt +(i—V)U-0.

(543)

(544)

(545)

The aolution of Eq. (545) is written in first order Bessel func-
tions of the first and second kinds

U-C 1J l (E)+C 2Y l (E)-
	 (546)

The deformed and stressed states of the shell near the pole are
described by the second term, since they should decrease with increase
in the argument. Consequently, C 1 s0 must be set.

By switching "o initial argument ^, which is the length of an
arc along the mer. ian, we obtain

U-C 2Y l 1(r+is%1,	 (547)
where C2 is the complex integration constant.

By separating the real and imaginary parts, we obtain
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(548)U-( + hi) (He YJ+iImY,),

and, consequently	 ReU-AReY,- 'fiImY,;
lmU-BReY,-}-AImY,.	 (549)

In accordance with Eq. (531), the deformation and stress functions
are determined by the expressions

--A Im Yj+79Bei',
2re D

v e. A (RaY,+ "-f" Im Y,)-	 (550)

-- B ( Ira Y,---̀ gar` Re Y,, ,

or, after introduction of new constants

^t—AImY,+BHeYj
UN	 '

V = A ( 2rs Re Y, + (sl - ra) Im Y11-	 (551)
-B 12rs Im Y, - (O-r2) Re Y,].

We find integration constants A, B from the boundary conditions
at the pole of the shell, namely, in the limit as t ♦0, the following
conditions should be satisfied

^=0;	 2ntVa-PR.	 (552)

Since Y, Mz-o _ ? f we obtain7 ' 7 '
ReY,c^o=—;, kY . ; In' Ylc

»e ms :ck'^	
(553)

b

By substituting Eq. (553) in boundary conditions (552), we obtain

A= 8R ; B= PR .
	 (554)

Thus, the deformation and stress functions take the following
final form

'p---8 v (s Re Y,+r'lmY1);

v= P RR( s ReYl-.. rImYi).	 (555)
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des	 a	 14-v d1' 	 Y
• du 	 — BD C .

_ 
•
_ 
a) (557)

it	
PO 111	

I MYO.
4E 6 (560)

For a full strength spherical shell near the pole, according to /165
Eq. (509),

de, +
iv	

I (v dV v
du 	 _W'_6 \ do	 a)

a +to— E6 (v a — do
(556)

By subtracting the second equation from the first, we obtain

Consequently, the movement of points along the meridian and the
deflection of the shell are determined by the following formulas

u •- 1^ b V;

MP_. R	 d 1
U1	

t
(558)

The following rule of differentiation of a Bessel function must be
taken into account in determining the forces and movements:

d̂ (Re Y,) = r Re Y„—s Im Yo— 11 y,
(559)

d^ (ImY,)-=sReY04r 1m Yo— 
IM)" .

The deflection of the shell at the point of arplication of the
concentrated force

The elastic forces and moments which arse in the shell are de-
termined by the expressions

Q1— gra (s Re Y, —r I m Y,);

G1 8rs ;2rs Re Yo —(s2 —ra) Im YO_

— 1 ,: (s Re Yj +r lm Y,)1 	 (561)
Pk=R	 1	 P	 1Ti = — 8rs (s Re Y,—r Im Y,)

(' 2n R sin so '
T, 	 lire [k$ Im Y,,+ (s He Y,—r Im Y,)) +

+ 

P	 1

 2n R eriu^ a `
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Fig. 73. ripe with
external corrugations.

t

	

	
For an axisymmetrically ..oaded orthotropic shell of rotation,	 /166

differential Eq. (527) near the pole can be reduced to canonical form
by the same substitution as for a spherical shell

^-+ de'_^t-- t;	 (562)

The solution of this equation is expressed through Bessel functions
of the first and second kinds of order n-c, which is determined by the
type of pole of the shell and the nature of the anisotropy.

The solution of differential Eq. (562) which decreases with in-
crease in the argument of Z has the form

U-c 2 Yn [(r+si)t].	 ( 563)

51. Calculation of Temperature Compensated Pipe

For compensation of temperature deformation of long cylindr.L.;al
pipes whic:i operate under uniform internal or external pressure, small
annular toroidal corrugations are made very often (Fig. 73).

Within one corrugation, a o'4a "<R-a0 . We will

assume the radius of curvature of the corruga-
tion t,) be smaller than the pipe radius, and
shell thickness 6 to be smaller than corruga-
tion r".da us p .

The cross section radius of the corrugated
portion

r-R+p(sina -sinao).	 ( 564)

According to Eq. (504), (505). in axisymmetric loading, the elas-
tic forces and moments are connected with the deformed state of the
shell by the following expressions

T, B1	 -^
/ u' } u>	 a cos a+w sin a )=	 Q	 va	 r

J
T a ^i	 +vt

ucos a+msina	 "'+W
^	 r	 ^

V	 4P Cosa

\ 4P cos a

Qj - -K, ( IT + W, Q 
U

(565)
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(567)

for n=0, 1, 2, 3, . . ., where

n=sina-sinao.

in the form /167We present the forces, bending moments and movements
of expansions by small parameter p/R

x

T1^V
.1	 nT 11 '^1

r 1 
;

na0

m
%'z	 rl'' C	 )n;

11-0
03

Q1 6° Y Qn (H )nr
n-0

c»

G, —,, G In) ( k )ni
n-0

00

7,	
(n)

C= ^..r Ca
/ @Q 1n.` 	,J

n-0

u= ^ 1! n^ 1H )ni
n-0

CO

/	 1n

11 -0
co

IV _	 wn (
R) 

n.
n -0

(566)

are
In accordance with Eq. (565), the coefficients of the expansion

determined by the following expressions

„ - 
f

T (n) ® B1un-{'11f-+V
$
 Y(—In)t1-J'-1 XQ ^-0

X (u6 cos a+IVj Sill a)
1

((	
-1

T2; _ 
2 V. luv,+Wn)+ 

n 

^(—^)n-j-1 X

X (Us Cos a +wj sin a)
1

;

K^ /

n-1
	G (n) o 	 e! g r1'{-' cosa

	

^	
n-1

	

(n)	 ,	 r	
``, (	

J

	

V 1QIn'1- COga L	 ^)n4'



By substituting Eq. (567) in the equilibrium equations, we obtain

(rT 1) r — T, Q cos a --Ql r = 0;

(rQ,)'+Tir+T, Q sin a--PrQ;

(rG,)'— G, Q Cos a —Q, Qr= 0;

(569)

a recurrent sequence of systems o differential equations can be ob-
tained for solution of the problem considered.

For n-0,

dTi
do — Qo 0;

d" + T^= PQ; 	 (570)
dGi

do — QQo=O.

For n:l,
dTi 

—'Qn = —cos a ^1 
(—n)" - j -1 ^T^f)—TO));do Qn

n-1
dQn i	 (n) — In- j - 1	 (7)
da +T t — 

o
f—ri)	 (Q;Cos a+ Ta sin a);
J=O 

dG(n)	 n"	
/

	

da _Q Qn = —COs a `, (—^)n-j-! ( G (j) `G2')).	 ( 571)

The deformed state of the shell is determined by solutions of the
following differential equations

	

G (in)— v2 Cos aj`o (—n)"- i
- lq'j;	 (572)

r

Il n .+.u' n _	 Tfn)_'ti Qn--Q(Qn
i	 t

n-1

—vz 1 (—ri) 	 (Ujcosa+lVj sina );	 (573)
—o

n-1u ;,,- a Tin) — u rn— v. ^ (--ii)"-i-1 (u;cosa-{-w;sina) (574)
—o

for n=0, 1, 2, . . .

There are differential equations of the (573) type for determina-
tion of forces T 1 n , Qn and, since integration of Eq. (572) 9 (574)

presentsno fundamental difficulties, the problem of calculation of
cylindrical pipes with transverse corrugations is reduced to the solu-

/169

148



k
tion of second order differential equationc of the type

y ll +y-f (a).	 (575)

If the right side of Eq. (575) is presented in the form of the
expansion in trigonometric series

	

1(a)	 (Am cos m a + Bm sin m a),	 (576)
,n=0

where

Am n^/(a) cos madu;	 Bon — 2 (a) sill madu;	 (577)

the general solution of differential Eq. (575) is in the form

U(a)—C,Cosa+ C,sillu+AO +a (A l ain a--Blcosa)--	
(578)

	

cc	
A

v (m ,_ t Cos ma -f- 71—I sinma^.
"i=a

In the general case, the solution of Eq. (575) can be written in
the form

i/(a) — C, cos a+C, sin a+
u	 u

-silla f 1 cosbd;—cosa^/(^)s^ntdt.f	 (579)
0

Q

	

	 An advantage of the proposed method of
calculation is that. all the relationships
obtained remain valid for negative curvature /170
corrugations ( Fig. 74) 9 if the sign :,f p is
changed.

In particular, compensators with cor-
rugation of alternating sign curvature which
are continuously and smoothly joined together

	

Fig. 74. Pipe with in- 	 can be considered. In this case, it is not
ward corrugations.	 strictly possible to speak of pipe with

corrugations, since such Shells are more like
bellows. However, in view of the absence of annular or conical springs,
the rigidity of s1ch degenerate bellows will be very substantial, ap-
proximately ( R/p) times greater than the rigidity of conventional
noncompacted bellows.

^2. Thermoelastic Stresses Generated in Orthotropic Shells of Rotation
by Axisymmetric Heating

I
In the use of shells made of laminated plastics, it must be kept
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Q t = c ite s + ci:ea — pt t; t
a" ` CIA + cszP: (5S1)

in mind that, at comparatively low temperatures, the change in thermo-
physical properties of the material must be-taken into account. This
is the basic difference of heat problems for laminated anisotropic
shells from the corresponding problems for isotropic metal shells, which
usually are solved on the assumption thIt the elastic constants are in-
dependent of temperature.

We suppose that axisymmetric heating of a shell of rotation
occurs to a temperature at which the Duhamel-Neumann thermoelastic
hypothesis remains valid, and that the creep of the material can be
disregarded. With such assumptions, problems were solved in [10] with-
out taking interlayer shearing into account.

We will assume that the shell material is orthotropic and that the
principal axes of anisotropy coincide with the lines of curvature of
the mean surface of the shell, i.e., they coincide with the coordinate
directions at each point of the surface. Since, in an orthotropic
shell under tension and compression in the principal directions of
anisotropy, the latter remain the principal axes of anisotropy, we will
consider that heating does not distort the angles between the axes of
elastic symmetry of the material.

If the standard thermoelastic hypotheses which established the
connection of the thermoelastic stresses with deformations are retain-
ed, the relationship of elasticity in heating to temperature t can be
written in the form

et = °1 — s-a,+att;E t 	E,
a,	 (580)e, = E, -- Et of -} a, t,

where el , e 2 are the components of the total deformation; a l , a 2 are

the coefficients of linear expansion of the material in the axial and
annular directions.

	

Elasticity relationships (580) can be presented for the stress	 /171
components in the following form

m

where	 ctt = t• cn = p:; ct9 — v, Et = yt Ea•
01 °c11(aI+V2%);	 ( 582)
02 '= cn (as + vtat)-

In Eq. (580), (581) 9 thermoelastic "constants" E l , E 2 , v l , v2,

c ll , e 12 , c 22 , a l , 0-2" 010 0 2 depend on shell temperature t-t(C, z),

i.e., in the general case, they are functions of coordinates (t;, z).
By virtue of the rectilinear elements hypothesis, according to

Eq. (1),
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where

a s — en % + c,2 % + s ( CIA xi + cis	 9;
0,—ci•e,+e,eg+ 2(c,, xi +caxi)—atI • 	 ( 5 8 3 )

By reducing stresses (583) to the statically equivalent system of
elastic forces and moments, we obtain the basic relationships which con-
nect the deformed, stressed state of a laminated orthotropic shell

T1 — B„ (C) el + Bu(C) em+ Au (C) xi +As (C)
T, — His (C) ei+ B„ (C) % + A ll (C) xi + A la (C) x^ —N^ (C);

G,n — [A ll (C) el+ All (C) as + Dlr(C) xi +
+ D„ (C) x;—.111(C)^;

G 2 — —[A ll (C) el+ A ss (C) et +Dg2 (t) x; f
+ Dlf ( : ) )4 —ills (C)j;

e/3

B,j (C)= f c,jcC1 s)ds;
-6/z
6/2

A it	 f eu(C, a)sds;
-e/ 2

ell
Dit	 co) z) 0 ds

-6/z

o_
Nj -	 .f P+ (r, z) t (_, z) dz;

-e,
V2

alt = f 0 1 (C, z) t (;,z) z dz
-6,2

where

for i, Jul,2;

for J u l, 2.

(584)

(586)

(586)

(586)

/172

By solving Eq. (584) for the deformation components and by substituting
the resulting values in Eq. (585), we obtain

R„ di'	 B" "I'"
	 e	 e

^'1 A dr — A ^ —Fll xl —F,: x, r

R2t ,V 1 -B 14'y 4 .

A

all t ctga — R„ dl' F x` —F ., x`

+ R11N-R12N,
-A

G , =—D„ xe—D, , x i + Fig V R, a + Fig d 4-M,G);

G, ^ — Dl , x;—Un xe + F„ no  ° +F=' d;

(587)
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de, _ V

4*	 KiR3 R, '

dG i T V (590)

{

0 = BiiBa-Bis;

Fii — AjjRa-!"ten L	 Fit "' A1,811— Afa^u

	

e	 ^
A„Dst — AuD 1a	 A»e1i—A1aDIaF,i.^	

n	 F" 
A"811 

^

	

'f	 tAult„ +AIsDI _ 2A^^A^fDSi, = D ii — Is .

_	 f	 t
Utt = D„	 o

A„ (A^^B,+Af,Dii)--D«(Ai^Ap ♦ Ait^
Uit - Dit -	 A

(588)

Af i (() M, (*)-FiiNi-F,iN,;
Alt (^) = lli' (^)--FifNi --F„N,.

For determination of the stress and deformation functions, two
equations remained unused: the continuity of deformation equation. and /1
one equilibrium Eq. (506):

(e, fir, - e i > ctg a -} d, (R, e t ) . - 
A V	 (589)d(CIH,sin

dt	 __G, Cos(' ® sill a-

Since the system of equations which is obtained after substituting
Eq. (587) in Eq. ( 589) hardly seems suitable for practical calculations,
it is more advisable to find a partial solution by one of the available
approximate methods. In this case, terms dependent on N i , Mi (i m l, 2)

appear as the heat load. Solution of the homogeneous system of equa-
tions can be obtained approximately, based on the technical equations
of axisymmetrically loaded shells of rotation [14].

We consider the case of axisymmetric quite smoothly changing heat
with length, in which the thermoelastic constants change considerably
more slowly than the stress and deformation functions. Then, by ob-
taining the equations, the coefficients dependent on the thermoelastic
constants and shell geometry can be considered constant and correspond-
ing to the shell section under consideration. Besides, lower order
derivatives can be disregarded compared with higher order derivatives.

With such assumptions, system of Eq. (589) takes the form

and Eq. ( 587), (588) are simplified:
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8	 4dV

G, -D d +^. dV ,	 (591)
u	 u

By substituting the latter expressions in Eq. (590), the follow-
ing can be obtained

1,1v-2Q9I.,.+OV-0;	 (592)
PSI V^_'-^^

where
2Q2

	

b„ n
v	 ^

 
A^R^ (BuT1u -F Ftl `1

k4i

(B, ►z;t ► +,':, °) Rt 	 (593)

Differential Eq. (592) is analogous to Eq. (459), which describes /174
the end effects in a laminated cylindrical shell and, consequently,
its solution, which disappears at infinit;,,

VW C 1 0 1 (0 +C 2 0 2 (^),	 (594)

where 01, 
(̂ 2 are degenerate Vlasov functions satisfied by Eq. ( 465).

For each section where the thermal end effect is investigated, the
corresponding values of integration constants C 1 , C2 are used. The

boundary conditions are written for a general solution, i.e., for the
solution of Eq. ( 594) and some partial solution of nonhomogeneous sys-
tem of Eq. ( 587) and (589)•

The problem of calculation of the temperature stresses in axisym-
metrically heated shells of rotation is significantly simplified in two
cases frequently encountered in practice.

1. The thermoelastic constants do not chan ge upon heating . In
this case, basic relationships	 and	 take the form

T t = Bit e t -#- B^, e, —Nt;

	

is = BI , et + B.s es —'Ns;	 (595)
G, - -D„ x; - D„ x: + Al,;

G, = -- D„ x, - D„ x: + M,;

i.e., we have the conventional problem of an orthotropic shell in the
presence of an axisymmetric heat load, which is characterized by param-
eters N i , Mi (1=1, 2).
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2. Uniform heating of shell. In uniform axisymmetric heating of
a shell of rotation, the elastic constants and coefficients of linear

k

	

	 expansion of the material change. However, they remain constant at the
corresponding shell temperature. In this case, the basic elasticity
relationships take the following form:

T, - i	 +B111	 P'6 1;

^_ D„ ► x. p«,	 (596)x., 

G	 Du: x•—D") x'

where exponent t indicates that the rigidity coefficients for temperature
t are used, i.e., we again approach the conventional problem for an or-
thotropic shell with an extremely simple axisymmetric heat load.
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Fig. 75. Dimensionless
coordinates on surface
of cylindrical shell.

CHAPTER 11. CIRCULAR ANISOTROPIC CYLINDRICAL SHELLS

ionshius and Differential Eauati

We consider a circular'cylindrical shell made of a laminated
anisotropic plastic with elastic constants c i,, ai,.

^ U7

Let R be the cross section radius of the shell and 6 be the wall
thickness. We select dimensionless orthogonal coordinates a. B as the
curvilinear Gaussian coordinates on the mean surface of the shell, of
which a defines the relative distance along the generatrix of the shell
and g defines the circumferential angle (Fig. 75).

For convenience, we choose the Lame param-
eters to be the same and equal to the shell
radius, i.e., A l =A2 •R. The principal radii of

curvature of the mean surface of the circular
cylindrical shell are R 1 -►m ; R2=R.

In the coordinate system selec0ed, equi-
librium Eq. (11") of a circular cylindrical
shell are presented in the form

-AT -^ as

are °s	 Ry;W -}- ,f --Q. _ —

OQI + " + T, - RZ..
597

	

flr,,	 ^^lf	
(	 )

	

au	 do 	 RQ''

`} mil _ RQ,•
	f 	 a

The positive directions of the forces and moments in normal sec- /176
tions of the shell are shown in Fig. 1.

The components of the relative deformation and shear of the mean
surface of a circular cylindrical shell, the effective changes in curva-
ture and torsion, as well as the interlayer shearing along the coordi-
nate axes, in accordance with Eq. (10)-(12), are determined by the fol-
lowing expressions

1 au	 1 (By	 1
it .iu ' e- it \ as + tc+/'

to I Ou
	 di'

	

x^Q R as "2 R a	 (598)

Y: s 
+N 8a ' ^'^ — -^- ^	 — R
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By substituting the valued of e l , e 21 W, K le , K 2 e , K 3e , v l , y2 in
Eq. (3)-(1 5), we obtain the basic elasticity relationships of a circular
anisotropic cylindrical shell

Ts'T [B,s
a +Box	 + ) +Bs'( + )^'

Q, " — ' (RIP+ 2)'

Q.	 (RP +_W-V);

G1 00 - I D„ -+D,s + Dix (-° +")};

du

(599)

Shell rigidity parameters B,,, D ii (i, J m 1, 2 9 3), K19 K2 are de-
termined through the elastic constants of the material and the thick-
ness of the shell by Eq. (6) 9 (7).

By substituting elasticity relationships (599) in equilibrium Eq. /177
(597), we obtain the following system of differential equations of a
cylindrical anisotropic shell in movements

612 u + 8:x^ + 8x9 u.. bss^i' ^-^saV^ :^ —Rsy:

6 )3 U-; 825 J f 633 U, + 8a,T t 62ST . . R =Z;	 (600)

815 u 
T 8x5 V - T NA u' + ^^5'P + 8s6* =' 0,

where designations are introduced for linear differential operators 611

in partial derivatives up to the second order:

-L"
	 a'

as	 a+	 a=
s = R, i 	{ (B„ }-1'x,3) 709T-^ 1^^^ 

30-1
;

6„ ^ D,R du + Q,^ a

bss - B„ a—" + 2a,3 do ^ Bay ^T — ^► s;

60 - R„ da + (hn + Ks)

as	 a^
8„ : — ( K,' + K,	 B. };

(601)
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Kett;0
AA
616 -^
N4 -alb-604-0;

64& — Dig r + (Dig + D„) da t P93 e
6u— DoWr+2Dn^^ +D„^•—A':R'•

r

(601)

System of differential Eq. (600) relative to linear differential
operators 

611 
is symmetrical. This property of symmetry of the differ-

ential equations In movements of isotropic and anisotropic shells was
noted in [1, 4 1.

System of Eq. (600) can be reduced to one resolving differential
,equation of the tenth order relative to stress functions t (a, 6),
through which all quantities whien define the stressed and deformed
states of the shell can be expressed.

We will consider system of differential Eq. (600) as a complete
system of algebraic equations relative to movement components u, V. w
and deformation functions ^, *, with constant coefficients SW The

determinant of this system of equations

611 a„ 6 1 . 0 0

6:i 622 6
1

3 0 62A

A d a ll 623 63, 46 636
A

`611 61!+ 61:26 12 1 6186 13	 (6C2)
0 0 634 644 60

0 6lss 6,s 6u 6"

is a differential operator in partial derivatives up to the tenth order,
with coefficients dependent on B ip DUO K1 _ K2.

We designate the minors of the determinant, which also are differ-
ential operators in partial derivatives by a i , (i, 1-1 9 2, 3).

Thus, for example

6"	 693	 0	 6=6

6=2	 an	 a„	 a,ls (603)
Ali ! 0	 ails	 6u	 6'M  b^ls,.1u6ss + 26:26u6u64& --

6,ls	 bas	 6"	 6116
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-6pa4^a — a^bNav—a„36,6;6— BMdua '̂,-2a„a,bab^d^-}-

♦ 2d„bubadbb -^- de3bw— b„bNd;• — bt•du;	 (6 0 3 )

alt ap 0 60
b

Al2 "= '— 0 aim 644 a^ ” b l2bubs6 + b 12b236e + 612636$3• +
0 6n 645 666

-f- d l•ba bad.. -f-612ae•ds.da`aiadsaaNa„-28i.do.8.:a.•—

—'bubab"6" —b12623bu;	 ( 604)

612 622	 0	 625

	

A13 =	 02 0	 4 645	 612623644656 + 612625624646-

0	 626 645 865

-- 6 1:6:•6:•664 — 6 236 ► 36u —61362nd44666 + 6136 4 .61• + 61ada: 2 	(605)646;   

612 622 623 626

	

A14 = —	
03 03 6 

623 633

	

34 645 
	 612626634635 + 612623625646 +

0 625 636 665

6136:2634656 + 613623623645- 6126224 20-6126,5613646—

— 6,646: • — 6136sa6.66•• (606)
612 623 623	 0

A1s — 
613 623 6

33 634 .612623634646+0	 0 634 644

0	 625 636 646
+ 8 12626633646 — 6126256$3.--612623635644-613622634666—

—613h23625644 .+ 613623636644	
(607)

and the like.	 ./179

We will seek a solution of system of Eq. (500) in the form of the
following linear combination of functions F l , F21 F39 F41 F5:

u = A 11F, + A 12F2 + A 13F3 + A 14F4 -f- A 15F6;

V = Al2FI + A22F2 + A 23F3 -f- A24F4 + A26F6;
w — A13Fi + A 23F2 + A33F3 + A34F4 + A35F6;	 (6o8)

m A14F, + A24F2 + A34F3 -1- A44F, A4r.F•;

= A 1:.F,+ A25F2I- A36F3+ A45F4 -f- A6 , 6

By substituting Eq. (608) in system of Eq. (600), the latter can
be reduced to the following canonical form
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AF, - — nix;
Apo - —RAY;

AF, - R=Z;	 (609)

Thus, the problem of calculation of a circular cylindrical shell
was reduced to solution of a nonhomogeneous differential equation in
partial derivatives of the tenth order.

If any partial solution of system of Eq. (609) is designated F l*, /180

F2 *, F 3 * 9 the partial solution of system of Eq. (600) can be written

in the form

t

U. e, A IF,* i- A„FI, + A „F;

W* A,, F,* -f- A l,F, +AmF,;	 (610)

V• = A Ij,' + A;6F; i A,,F;.

For the types of external surface load most frequently encountered
in engineering practice, it is simpler to determine a partial solution
directly from the solution of system of Eq. (600).

The general solution of system of Eq. ( 609) equals the sum of
partial solution ( 610) or a solution found by another method and a solu-
tion of the homogeneous equation

AFa 0.
	

(611)

If it is set that F 1-F and F2MF 3=F 4 s F5-0, the general solution of

system of Eq. ( 600) is presented in the form

U - U, + A„F; I

V - 190 -+- A,,F;

w - w* +A,A '	 (612)

4 = ^s + A:4F:
^.+A„F.

Equations of Technical Theory of Orthotropic Cylindrical Shell

The theory of flattened shells developed by V.Z. Vlasov, which is
ed for calculation of strength, stability and vibrations has become
despread in engineering practice [14]. This theory rests on certain
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assumptions which permit significant simplification of the differential
equations of general moment theory.

Following Vlasov, we will assumf,

1. annular interlayer shearing Y 2 depends negligibly on

annular movements v;

2. in the equations of equilibrium of annular forces, cutting
force Q 2 can be disregarded.

Based on these hypotheses, for a circular orthotropic cylindrical
shell, the principal axes of anisotropy of which coincide with the a, B /181
coordinate axes ( see Fig. 75), we obtain the equilibrium equations

i.

ar,	 ;
^^ _ _:

as —1?

nr, as —RY;
d^ + du

d[+ dQ'+7',—RZ;
ar,	 air
da +dpi 

_ 11Q.;

"" AI! Rdo -^- da Qa

Geometric relationships:

I allt	 dr	 a«	 a^
^^ ° k da e2 -!r l d0 +u'^' `^" it (do+da

	

w	 t aG 	 c	 \1 dyyI	
a	 a

	

xt	
It (10	 It
	

do
	

du

a±,	 ,	 t	 a«•

(613)

(614)

(615)

(616)

Elasticity relationships:

T1 Ri L
da 

v,1 do+U, ]

	

B, di	 y\	 au / JT2^. H do ,_w ^i da

	

B, au	 dv

	

S = it 
do	 d^ '

1 aa+
Q, _ —K,  (V f- It da^

Q —K2 ^4 + it do

C i — R (da +v
2
 do )

J



a • .p 	 a•m	 vmT' Saa.	 _ aaa b (617)

fl

L

H^ —Dt + 0),
where rigidity parameters B 1 , B 2 , B 3 , Dl , D2 , D 3 , Kl , K2 are determined
through elastic constants c ij of the material and shell thickness 6 by
Eq. (7), (27)•

Homogeneous Eq. (613) are identically satisfied, if stress func- /183
tion 4^ ( a, S) is introduced in accordance with the expressions

By substituting Eq. (616) in equilibrium Eq. (614), we obtain

D' da ^ D'
i2qr)

+' C aae "K,Rg('^-!'ir aa^^

n	
(618)f	

D a'$	 a24	 2	 ! auD3 
W-3 ^- : W + e as a — KzR 	 R dp

a•m
	 LT-
	 aye	 02"'

da• 
`^ K, a + K= V + R (h^ ()a$ ^' 

K3'W2

alu ) 
-^ RZ.

(619)

tion
The last missing equation gives the deformation compatibility condi-

a=e,	 Ad	 a=e,	 t a=wW, — -ft-v + aa r h aa2 . (620)

System of Eq. (618) is equivalent to the following system of differ-
ential equations

DK^ a°a' (D,K i —CK,) a,w _ K IN, amM2 (^^ >c ,
R& aa3 +	 R*	 daaPa 	 R da

M, M
D,K, 03w (D

IK,—CKI) asw _KIN, aw	 (621)
TaT 6T 'R

where there is introduced the differential operator in partial derivatives

D,D, a•	 (DID ,+D; — C°)	 a•
M, ( >w R

• 8a• +	 R•	 da a +

D,D, a• 	(D I D"► •+ DaK t) AN _ ( D,K,+D3►a) a^	 K K ' 8̂  R3'_ das — R' a • + i ^•
(622)

T,	 da • d,
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t'
From Eq. (620), with Eq. (617) taken into account, an expression

for deflection of the shell can be obtained through-the stress function

B' (B
'
U--	 ) W - B1

83
 044D +

62
where

or, in operator form	

A - Bill + Bo,	
(624)

W`MA(0),	 (625)

and here,

it
Do (RIB	

(626)
X [13^IT, d'n + (B,H,+It;-Aa) 

da : d +BIB# d3,^ J .

/183

In this manner, the system of differential equations of the lami-
nated orthotropic cylindrical shell has the form

n= s 00 (1!'
Ar +

dt
Pt K , —CK, d3w	 _ K, K, eL'

)11 113 c►u do R du

n!a (V) °
D.K, d',' + l),K, —CK, Mir

"'
KKK, du,

)1r dP 113 daU do 11 a^f
(627 ),74Q► 	 K,

ea r 	' ( R
da

ra= +
K,	 lit
R do==) m^ (d)) -}

d^
h:! OU

dyK, do + Hz;

It, -= In 	 ((A).

System of Eq. (627) can be reduced to one resolving equation rela-
tive to stress functions t(a. S)

da4 naa (q)) _ ^1 (K. 
dn^ 

+ Ka d a) ma ma ((P)+

+ K, da ma(T) + ha do Ina(*')+Rrn,(Z)• 	 (628)

We represent operator m2 in the form of the sum of operators

where	
m:( )=m(t'( )°m^_' T ( )+K,K^,

	 (629)

X [DiDa day +(DtD.+D3-C") da 4^{s -4- D.D9

1r=

X [(D,K, + D,II t) 02 + (DsK, + DaK2) d ] .

(630)
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t
Consequently, Eq. (628) is presented in the form

— 
k r 

Kt —sueI + K= •a m ► m^» (^) +

	

a	 Aa.p

4- Inca m `_' ► (^I ►)--h ► ti: vua +

+ hy [1)^l► i qu a + ( ,02 K , — CK. 4^u^ d^i^,X3

A'	
(	 a	 J

—«^ d^i^ 
fil l (d► )-} 

^r LU3^^^ ^Aa - , 
I Ka— CA,) oil

	

1( )	 `^1 
a_ fil l 	 --- I1 ►11 2 L),	 ( 6 31)

It

or, after reduction,
	 /184

9

k ^ hi au a h= a a n^ 1 m^;^^ (4► )--

dua
n► ._

	

.+. dna m^ (Q ► ) — h'1/►! 
a) ° '-Rm, (e),	 (632)

where

m(3) — (ps dua { ?(C } U) aT,, off , U^ dua 
I -	 (633)

In developed form, differential Eq. (632) has the form

.

A lo.o dat0 +AS,2 dae d + Ae.i dua dPa +

()194)'91@(Ddl.yr
Z' a1.lt d3 4 d06 %^ = ^ 8 dua —do 1 

+ Ao'tu 0010 )—

ds /r 	 044)	 (all)
— (A s.o da" Ae.2 da ,)W {-Ai.1 (aa doa +

a
-}- A 2.6 da s ^^ { A 0.8 d , + .^_0 dna 

^'

064D	 a'`D — — .11m (z),-}-Apg dua d1y, --^I00 dna	 9( )

(634)
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where the coefficients are determined through the rigidity parameters /185
of the shell by the following expressions

A to,o = BIB3DID2KI;

A 8,2 = 2B1B3D1D3'+ K j [ B IB3(DID2+D3—C')+
-+- D I D3 (BI B2 -}- B3 — A 2 A;

Aa.t — KI [B I B3 D2D3 + B2B3 D 1 D3 -+- (D I D2 + D3 — C2 ) X
x (BIBa-+-B3—A2)]'+-K2 [B I BS (D1Dz-}-D9—C2)-i-

+D 1 D3 (BIB2+B3—A2)];

A &,6 —K2 [B I B3D2D3+BADID3+
'} (D I D2 +D3—C-') ^BIB2+B3^—A-^)] -i-

-+- K I [B2B3 (D I D., D3—C 2 J+D2D3 (BIB2+ 3-A2)];

A 2 , 9 — K t B2B3 D2 D 3 + K2 [B2B3 (D I D2 4- D' _C2) .+-
+D2 D3 (BIH2+B3-Al)];

A o,to — B2B3D2D3K2;

A8,o — BIB3DIKIK2R2+B3DID3(B1B2—Biz);

A 8.2'-= K j K:R" [D I ( B I B2-+- B3 —A )+2BIB3(C-+-D3)]+

+ B3 ( B 1 B2 —B2j2)(D t Dz -+- D32_ C2);

A a.t = K,K.,Rz [B 1 B3 D2 +B2BA +
+2(C+D 3 ) ( B 1 B. }-B3--A`)]+B3D;.,D3(B1B2—B12);
A ,, ,o = K I K2R 2 [D-, (BtB2+ B3 — A 2 ) +

+ 2B 2 B3 (C -+- D3)];

A o,s = B.B3 D .,K t KzR2;

A N —B3(B tBs — Biz)R"(D11+ 2 ? D3h,);

A o2 = B3 (R, B2 —Bi_ R (D,,K i i-1)3K.,);

Aoo = B3 ( B I B2 —B _) KIK21?4;
.11-=13 3 (BIB.,—B^_) R''.

(635)

55. Equations of Technical Theory of Orthotropic Shell in Movements

The equations of the technical theory of a cylindrical shell can
be presented in movements, as was done in Section 53 for the general
case of anisotropy.

For an orthotropic shell, the principal axes of anisotropy of	 118E
which coincide with the coordinate axes, the equations in movements
can be presented in the form
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k

All it 	 -R'X;
612 u + 626 v + 6.;.[► + 624T + 62 a v =- - MY;
613u + 623 0+63310+ 6317 +63-14' R2Z;	 (636)
612u+622v+631 10 + 664v, + 64&v - 0;

61& u + 622 v + 63& W + 646T + 6,2 1h = 0.

where the linear differential operators are determined by the expres-
sions

J2	 Ja
6 11 --B, 0 -L. B3 ans

a^
612 - ( 1112 + B3) an a^

J^	 8s
6!2 = B3 a -{- B2

a
613 r B12 du

a
623—B2_dT;

8 t	 Js6.	 (K1fta +112 b^ ri1 — B2)

634 — -K1R 

a ;	 Y

635 a_ -K2R ao ;

6 1& - D, "+D3a ^—K,R2;
dQ2

6&&	
at

-(D,2+ DO as ;

655 - D3 ^ + D2 0, - K2R2;

613 = 616==62&- 625-0.

(637)

If any partial solution of system of Eq. (636) is designated by
u * , v * , w * , 0*1 ^*, the general solution can be presented in the follow-

ing form:

U - 1• '+' A110;

v ' V. + elf/;
W W* +	 (638)

^• + el&(D;

- *0 + e164Dr

P►here p ig (J a l, 2, 3, 4, 5) is determined by the expressions 	 /187
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A,, — —B,D , DaK , d̀, — I K, [ 113( DiD: —C' `t . D,')+ RlDID.I +

+ K,B*D ,D>> aa.^ , —IK,jB.,D:D,+B,(D,D,y-D;—C')I +

+K3 ,i B2D,D3 -}-B3 (D,D,+D;—C')]I 4a , — IK,B^DiDI+

+K, tB,D,D,+B (D D +D'—C')]I 	 B D D K es

04+B,D, ( B:D3+ K, KIR'^ e`a. -}- i BaBat( DtD:-}- Ds-- C') ♦

-I' K i KtR '( BtD,+ 2B, (C-1-Da )lI n	 -' IB:RaDtDs+

+ K,K:112 I BaD, + 2B, (C -4. DA I Ba >t Via, + B2D*K,K'R' a s —

—B.B3R2 (D , K, -+- D.K,) 04 —B,B,R' (K:Ds + K,D,) Out . +

+ B'B'K, K'R -9a:. ; (639)
0„ — AD,D,K,—vas -{-A [ K, (D,D,+D;—C')+K'D,D.] ft,^ , +

+A I h,DID3+Ks (D,D2+D,—C')] daaa s +AD,D3K.	 T—
—(B=B'DiD3+AD1K,K'R') 

8a dp —(B.Ba(D,DS+D,*—'C')+

•2A (C+DI)K,KsR=,
au as	 — (BSBaDID3+AD9K,K'R') au s s +

+ B:b'aR '(KiD,+ K ,DO -aa' ap +B^B3n* (K=Dr +K,D,) asa a.—

—B,B3K1K=R' as,	
; (640)

A ,a -- —BuBaD,D3 da r — I N,aB3 ( D,D, -}-D;—C')—

—B:B3D , D3 da d' 	 --(B,B,(D,D,-}-D;—C,)+

•B„B'D=Da] aaaa , +BtBaDsDa aa^ao, + B12B3 (KlD, + KID,) R' X
X da+ —BaR' (K, (BaD3—BnDi)+K,(BaDi— B,2D.)I doaa , —

—B:B3R2(KsD3+K,Ds) 
aaB s — B„B3K,K2R4 03 +

+B B,KK	 a'	 .a	 ,	 ,R^ au a ,

(641)

Aj ji- -N,_13 3 D,K,R 	 11,111K, (I^.n,— B I JM 	- BI.CK:)

4- B2 13,1? (D.K, —CK.)	
rt^^ 

--11 .B K K	 '	 v^K	 I. 9 1 sR ^^^

—B.B,K, K:Ra 
()«_

(642)
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Alb • B12 Bs (KIC—Kapj) R • - --B3R IK,B --Ka x

x (IT,D, _ R:sAa) I `'s	 _eTa3 f R:a 13 aK i K aR, 84

_' ns 11aKiK9R3 dae' '	 (643)

and function 0 is the solution of the homogeneous differential equation /188
of the tenth order AOwO.

The elastic forces and moments are determined by Eq. ( 616). Ten
random integration constants C  (i s l, 2 9 . . ., 10) are determined from

boundary conditions of the type of (22), (23), of which five are at
each end of the shell. If a partial solution must be found, in accord-
ance with Eq. (609 ) , the nonhomogeneous equation has the form

AO UR2Z.
	 (644)

56. A Few Words on Integration of Equations of Technical Theory of
rthotrop c Cylindrical She

The differential equations obtained in the preceding section can
be used for solution of varioub engineering problems associated with
the calculation of orthotropic laminated cylindrical shells.

It is convenient to present the integrals of resolving homogeneous
Eq. (644) in the form of trigonometric series by coordinates a or s,
depending on whether the shell is open or closed.

We begin with consideration of a closed cylindrical shell. We
will seek resolving function 0 in the form

0(a,P) . V (4)"1 Cos n0-}-Q►^"`lsinn^^,	 (F45)
n=0

where coefficients 0n(1), 0n(2) are functions of longitudinal coordinate

a alone.

By substituting Eq. (645) in homogeneous differential Eq. (634), /189
we obtain

(646)

where differential operator O n is determined from the expression
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A^ , Ato.o da(D — ^Ao.2n2+Ao.o) da +

-f-( A o.j n^+ A o.zns + Az0) Q ---

-- ( A 4.eno -f A 4,4 n4 + A o2n2 + Aoo d40

+ no (A2,sn2+A:,#) ^—no (Ao.jon'+Ao.o) M.
(647)

Coefficients A id are determined by the geometric dimensions of the

shell and the elastic constants of the material by Eq. (635).

In order to satisfy Eq. (646), the solution of ordinary differ-
ential equation with constant coefficients

4n(m)-0
	

(648)

must be used as functions 0 n (1) , 0n(`).

After finding resolving function 0, components of movement u, v,
w and deformation functions m, ^ are determined by Eq. (638), and the
elastic forces and moments by Eq. (616).

It is easy to determine that all the quantities listed are de-
termined by equations of the type of (646), i.e., they are the sum of
two states, one of which is symmetrical relative to initial generatrix
0-0 and the other is skew symmetrical. We agree to call the stressed
and deformed states of the cylindrical shell which are described by

function 0n (1) symmetrical and the stressed and deformed states des-

cribed by functions 0 n (2) skew symmetrical.

In the symmetrical state,

N
T ŝ ^ (a) cos n ^.

r_o	 (649)

and, consequently, the following expressions can be obtained:
	

/190

CO	 C"

u oU„ (a) cos n 0;	 v -= , ̂V. (a) sin n o;
n-1

00	 00	 (650)
U, 

A— Wn (a) cos n p; I- t^„ (a) Gi n n ^;
n=0	 n-1
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as
•- ,fir' ^ (a) cos n A;

m
S -	 ,^.,r̂ Sn (a) sin n a;

n ..0 w... 1
CO

T I - jT tn (a) osnF;
w

H- 2;H,%(a)s1nnA;
ft^o awl

CD
T z	 T=n (a) cos n p;

Go

Qs -I Qzn (a) sin n a .

GI	 aJ G in (a) co{ n a;
00

Gz — L GZn (a) coo n a;
n=O "MO

(650)

00

Q, — *.1 QIn(a)coa n a.

In the skew symmetrical stressed, deformed state of the shell,

m
j4)*23 (a) sin n ^.	 (651)
AMI

and, correspondingly, for the elastic forces, moments and deformations,
we obtain

cc

n = S U. (a) sin n 0;
nv1

Go

W — v, Wn (a) sin n
nmt

CO

m —  I'̂' Tn (a) sin n  
n= 1
00

To - ^., T tn (a)sinn a;n, t

CO
H = j Nn (a) cos n p;

"MO
OD

Q2 = YQPn (a) cos n a;
nw O

v = y' Vn (a) cos n A;
n MO

—
OD

*n (a) cos n 0;
nY

S =
00

AW	 n (a) cos n

TZ

co

Tw T 2n (a) sin n P;
nwl

Gi-

COi Gin (a) sin nP;
neat

G..,.

CO

N,̂  G2n (a) sin n a;
na1

(652)

CO

QI = VI QIn (a) sin n ^.

The engineering theory form of solution of Eq. (645) is used in	 /191
calculation of closed cylindrical shells, since the condition of peri-
odicity of coordinate B is automatically fulfilled in this case. The
ter: random integration constants of Eq. (648) are determined from the
boundary conditions at the curvilinear ends a=0, a na l (Fig. 76).

It was assumed that the boundary conditions, as in many engineering
problems, are simple, i.e., of canonical form. In this case, resolving
Eq. (648) can be integrated and the integration constants found inde-
pendently for each harmonic n and separately for the symmetrical and
skew symmetrical states of the shell.
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Fig. 76. For writing
down boundary condi-
tions.

Fig. 77. Cylindrical
panel.

We now consider another method of integra-
tion of resolving Eq. (648), which is used in
calculations of open cylindrical hinge supported
panels with curvilinear ends a n0, sou l (Fig. 77).

In this case, the stress runction can be
presented in the form

	

00	 (653)

14", (A)

where	 "t' I

	

AmLm M3	 5a	 (	 )6 4

After substitution of Eq. (653) in Eq.
(648), we obtain the f6llowing differential
equation for coefficients of expansion TM(8)

A 0.10 dId ,* —^A:.e^M+qo.a^ dd e +
-}- A2,(A &.6 JLnt+ A2.e) *jT --AMkA0.44+At.4^ 

__Vm +

	

d	 A10,o X t+

	

-l-Amt(AO.xA^t-^-Ae.zAM-f-Aos^--^^( 	
0

	

+ A O.o4+ A 20
).

mt `f- A oe) Wm r 0	 (655)

for mol, 2,. . .

/192The components of deformation, elastic forces and moments can be
obtained in trigonometric series of the type of (653)

Cl)	 03
a	 p2 { ^m(^) g inAmu;	 u.. .' U". (0)

in= 	 m:0

a+	 o

us ` ^' tym (^) sin ).mQ;	 v, 'Fm (^) cos ).mQ;
.n—I	 ms0

m	 00
•I,	 pp pp

i ► m (M) SIII Am a; s — ^' Sm (Y) COs X.Q;
in= m-0

u?	 co

T 1 °	 Tlm (P)sinAu; N— Z Hm (p)cosama;
m::l	 in=0

coT2	 v T2­ (Y) sin Xma; Q!	 v Q1 m (F') CO3 kma ;^M-1	 m=0

.`	
00G 1 	 ^,.+ Glm(P)sinAmQ; Q2 — !(l2m( â)SinkmQ;m=1	 on=t

m

G2 a v, G 2 (0) Sin 3tm1M.
m= 1

(656)
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It is inexpedient to present the expressions for the coefficients
of expansion because of bulk.

The boundary conditions at the curvilinear edges of the panel sw O.
ao al are satisfied. As was done earlier, it can be shown that the bound-
ary conditions on the rectilinear ends g&+Ol are satisfied separately

for each term of the expansion, if the boundary conditions are simple,
as is the case in the majority of practical problems.

Methods which use expansions in trigonometric series are widely
used in engineering practice. They are presented in the monograph of
A.L. aol'denveyzer [8].

Thus, the problem of calculation of closed and open cylindrical
shells made of laminated orthotropic materials was reduced to solution
of ordinary tenth order differential equations with constant coefficien.,,.

Consequently, the diversity of the solutions is determined by the ZW
roots of the characteristic equations

.•, io os ' o— ( A e.2n ' +A e.o) s' + ( A e.in' + A e.2n'+ A so) s' — (A&.Sn" +
+ A 4.6n' + Ao2n' + Aso) s{ T n' (A2.en*+

+ A2.e) x'- u' ( A o.wnl + Ao.o) — 0;	 (657)
Ao.foz " — ( A 2.eX.' 4- A o.e) a -F_XL(A+.eX+L+

+A2.e) -X'.(Ao.44+A4.e) + X'„(Ae.2XMi +Ae.2)•m+
+A02)z'-X,'.(A1o.oX.'+A,,oX'^A204.+Aoo)-0,	 (658)

where coefficients Aij are determined through the geometric dimensions

of the shell and the elastic constants of the material by Eq. (635)•
It is not expedient to carry out analysis of the roots of Eq. (657) and
(658) for an orthotropic shell in general form. It is more efficient
to study them for specific problems.

57. Transverse Vibrations of Orthotropic Cylindrical Shell

As an example, we consider the natural transverse vibrations of
a laminated cylindrical shell made of an orthotropic material. We will
assume that the principal axes of anisotropy coincide with the coord 4k.-
nate axes.

In dynamic problems of the theory of shells, the components of the
external load equal the corresponding components of the inertial forces,
i.e.,

X	
air	 }'- -paw ; Z--96 e .	 (659
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Since the flexural rigidity of a cylindrical shell is considerably
less than the rigidity during its deformation in the mean plane and
shearing deformations are small, we will disregard the tangential and
shearing components of the inertial forces in study of transverse vibra-
tions. Iu accordance with Eq. (634), the problem of transverse vibra-
tions of a laminated orthotropic cylindrical shell is reduced to solu-
tion of the following differential equation

blow	 blow	 brow	 stow 
+Ato,o ►• +. As,2 aa, 	 + As.4 a . + At,e --rte

+A2.s ,•w
• +Ao.to 

euo "(Ao•o^
+Ao.z Waps-

+ As, ti b0ti4 O •+ A2.e eu 
m +

Ao,o -We )+

	

818wbow	 Dom	 d'

.{- b^
^aT ( .

9 20 
b

MOT -+- Ao2 -) — Ap ^ M Q Tor mt (t0)•

where

.110 = (BiB2 — B%) B, Qd R',

and coefficients A ij are determined by Eq, (635).

(660)

/194

(661)

if it is assumed that the natural vibrations of a cylindrical
shell are harmonic ttith frequency w mn , with hinge support of the ends

of the shell, the form of the vibrations can be assigned in the form

	

an CO	 (6 6 2)
w(a, P; t)=2: S C.sinR-acos n Psin W-n t,

in-0 n-0
where

	

X-
:t Nnt

(663)

By substituting Eq. (662) in differential Eq. (660), we obtain the
following expression for determination of the frequency of natural
transverse vibrations of an orthotropic cylindrical shell:

' a	 Pi (;'-, n) + P2 0'-, n) '. P2 (k.. n)bR wmtt	
('IV'-.-) I Q2 0'-, tt ) +Qe ()".0]

(664)

for m, n=1, 2, 3 9 . . ., where the following designations are introduced
for polynomials Pi 

(Xm' n) ' Q3 (Xm' is)

P1 (.-, tt) — A i u,o %m + A 8,2 Xmn• + A6,4 Xm n4 +
(665)

+ Aa,e Xm n• +A 2,8 4 no +Ao.+on";

P2 (k-, tt) _ Aa.o X!+As,2 kLn'+At,t ,%m n4 +

+ A 2.1 X n• + Ao,en;	 1
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P, (X., n) — Xm (A„ Xm + A ,n + AOj;

Q,-(X..*)-DjB,X 6+B,(1?tBg+

+ Bs— A t) X'„n2 +B'B,n ;

s	 •

+D;—C') Xw n'+D,D,n j

Q'( .^)-' ((K,D,+K,D,)X+

+(K,D,+ KA) n'] +K,K,.

(665)

If the shell is stretched by internal forces T lo , T 2 o , it is easy

to show that the frequency of the natural vibrations increases and that /lq.
the frequency of the natural oscillations decreases under precompres-
sion.

We now consider the problem of forced vibrations of a cylindrical
shell as a result of a radial load which changes harmonically over time
with frequency w, i.e., load

Z(a, O, t) oop(a, $) sin wt. -	 (666)

We will consider regular loads p(a, g), which can be presented in
the form of the uniformly converging trigonometric series

00 00

P
^ 1̀ 1' 

am. sin Xma cos n ^,	 ( 6 F 7)
m 

where a, 2n

	

amn y n 	 f p(a, 0) Sin A. C4)s n P da dp. 	 (666)
0 0

In the presence of perturbing forces, theequation of the trans-
verse vibrations of an orthotropic cylindrical shell can be presented
in the form

thou.	 dl'^u•	 aivan	 dwu,
. 1 0 0 Oulu +A M,2 dtt8 up. + tiG,^ d^t^ d^j4"^" ^^6.0 604 do$ +

	

thou,	 geo^.	 deu,	 e,w
-}-A 2.d ant dos +A 0 to d^► o _.. ( A ,,p duo +`40 + 2 da • doy +

A	 deu'	 d'u'	 dbw	 9^	 8sw
+ b.8 dil l OP4 ^' A 2G duid^• '^' 9 0,8 dpi) ^' ^ Aso as '+'

'w
A	 d. 

m +A02
U

dot — Ooiv —,1^ dr t ,Mh (w)—d,(BrB,—B;,) R'm,m,(Z).	 (669)

We will seek the solution of Eq. (669) in the double trigonometric
:s

00 "0sin cot -̂1 N`w rr ...,
0-•

Cm. Sin lima co9 n p,	 (	 )
M-1 0	 670
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1	 amrt
CM. _ — tC6 Wrnn _Wf (674)

Fig. 78. Graph of
beat with period
n/wmn'

By substituting this expression in Eq. (669), we obtain

V ^, Csn 1 '̂ + Ps + Pa — Qa R' u^'Q1 We+ Qe)16in6aColln^—

m-1 rs-0
CO CO

— R$ I ,V a..Qt(KO+Q3) "in Awa coo n a,	 ( 671)
'n —I n-0

/196from which

( PI+ PI+P,-•QdR'(')2QI (Q$+Q,)lC" .—Q,(Qt+Qf)anrn 	 (672)

for m, n-1, 2, 3 9 . . .

According to Eq. (664)0

P,+Pt+Pa aebR,(ilmn.
Q1 (Qt + Q3)	 (673)

Consequently, the following expression can be obtained for the
coefficients of expansion

for m, na l, 2, 3, . . .

Thus, forced transverse vibrations of a laminated orthotropic
cylindrical shell occur in the form

CO .0

U7 =	 ^, , a,nn
	 in X.a cos n ^.

Q^	 ^mn—^'
rn-1 n-•0

(675)

Upon coincidence of forced vibration frequency m with frequency
of natural, oscillations of some tone Wmn (m, n=l, 2,	 .), resonance

vibrations arise.

We consider fo-cced vibrations of a shell, on
the assumption that the natural vibrations,disappear.
The general Solution of Eq. (669) will equal she
sum of solutions (662), (670), i.e., the sum of the
natural and forced vibrations

0 _

W:= ^^., lC yan si nalmacosn p si[1(w.,,t — w.) +
m-1 sr-0

m o0
-}- sin w t I~ ^ Cmn sin Ra cos n N,	 (6706)

m—t n-0
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sere Cmn (m, n-1, 2, 3 9 . . .),1s determined by Eq. (673) and parameters

Cmn ,
 wo are determined from the initial conditions.

Thus, for example, if the initial conditions are uniform, i.e., if /197
wsdw/dt-0 at t n0, the following form of vibration of the shell can be
obtained

CID	 OD

' Ni—'l
"
 Wn COMA t^

R' 
	\
	 W, _m,	 an, sin Amu cos n ^.

M^1 n..0	 M	
(677)

7f the forced vibration frequency is close to the natural vibration
frequency of some tone w,	 (m, n s l, 2, 3, .	 .), so called beats occur,

with oscillation period T o 2x/worn (Fig. 78).
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CHAPTER 12. CALCULATION OF ORTHOTROPIC CYLINDRICAL SHELL SUBJECTED TO
LOCALLY DISTRIBUTED AXIAL FORCES

58. Initial Hypotheses and Basic Differential Equations

Many works of domestic and fore!gn authors [11, 24-261 have dealt /198
with study of the strength of isotropic cylindrical shells which are
subjected to locally distributed loads. Among them, the work of V.M.
Darevskiy should be distin p-tshed, in which a partial solution of the
most exact cylindrical sheer equations were obtained in Fourier inte-
grals, and the convergence of the series and characteristics of the
solution were studied.

A significant contribution to the development of methods of calcula-
tion of cylindrical shells for concentrated loads was made by V.Z.
Vlasov [4-6]. The semimembrane theory of a cylindrical shell he developed
has been widely >>sed in engineering practice, and it has shown satis-
factory correspondence with experimental results. This chapter deals
with generalization of this theory for laminated orthotropic shells.

Experimental studies of thin quite long cylindrical shells shows
a characteristic feature of their deformation, which is that signifi-
cant annular deformation of the shell occurs compared with deformation
of the generatrix as a result of concentrated radial loads. An orthog-
onal grid applied to the lateral surface of the shell remains nearly
orthogonal after deformation but the annular lines, which bend sharply,
remain almost incompressible. These characteristics of deformation,
together with the results of other experimental studies, were the basis
for the semimembrane theory of a cylindrical shell, two alternate ver-
sions of which were presented in the works of V.Z. Vlasov, which dif-
fered from each other in the number of initial simplifying hypotheses.

With the comparatively low resistance to shearing deformations of /199
laminated plastics taken into account, since the shear modulus of
laminated plastics is at least an order of magnitude less than the
shear modulus of metals, shearing deformations of the mean surface of
the shell cannot be disregarded, as was done in the last alternate
version of semimembrane theory. Some other timplifying assumptions
can also be dropped.

Following V.Z. Vlasov, for the calculation scheme of the cylindrical
shell in its calculation as a result of locally distributed axial forces,
we use a three dimensional elastic system consisting of rings which are
connected together by vanishingly short connecting rods which ensure the
transmission of axial forces and shearing forces (Fig. 79).

Each ring in the cross section plane of the shell works both by
tension or compression and by bending as well as shearing. In:the
longitudinal direction of the basic calculation scheme, only moment-
less tangential forces N, S can appear. This calculation schema cor-
responds to the assumption of the membrane structure of the shell {.n
the axial direction, i.e., the small magnitude of bending moments G1

In cross sections and the insignificant effect of torques H.
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In this manner, according to the hypotheses
used, the stressed state of a laminated cylindri-
cal shell subjected to axial loce?ly distributed
forces is determined by the following parameters:

longitudinal normal force N=N (a, S);

shearing force S-S (a, S);

Fig. 79. Diagram of
cylindrical shell for	 cutting force in axial section Q-Q

semimembrane theory 	 (a, E);

calculation.	 annular bending moment G-G (a, S);

normal annular force T nT (a, S).

For convenience in writing, we use symbols here which differ some-
what from the previous symbols for the elastic forces and moments. This
permits subsequent avoidance of excess piling up of symbols.

The deformed state of 5.he shell also is described by five functions:

axial movement u-u (a, S);

annular movement v=v (a. S);

positive shell dol'"Lection toward? outer normal w-w (a, $);

deformation functions ^(a, S), *(a, S), which characterize 1200
the interlayer shearing of the laminated shell.

The equilibrium equations have the form

as + d
aT 

aft' + as ^^
aQ
ift-+T =o. 	 (678)

ac = RQ
a^

We present the elasticity relationships in the form

N•—VJ Tel	
E16

T—v,N	 (679)ear E,0

^ e S
C is 6

G° R (W+ V2 au )^	
(680)

Q®—K,(.p+k 00 R),	 (681)
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It is easy to verify that equilibrium equations and elasticity
relationships (679), (680) are identically satisfied, if the following
stress function F- F (us s) is introduced

u 77 [V= im'— so OAS	 ]

X 
[
ei a d •—W' (W+1)F]

as	 I
W— B d lvS ftm W\ '+ ') F— as ]—

alp
GRS '7rae'' '(D' +' i ) F+ B 8 LV. US6

-
all (.^+ 0

_	 Rs v	 e4F

Ds 0 -vivs ' eat'+ ^t

	

R,	 64F

N a aaas ( at + !) F'

T•— ao'a	
S.. ea, e , (ems-!"f)F'

Q- OF	 G ®R a+F

	

aa4 aps '	 aa4 a

(682)

We obtain equations for determination of stress functions F (a, B), /201
if we satisfy the last elasticity relationship (681). By substituting
the necessary equations (682) in Eq. (681), the following differential
equation can be obtained for determination of the stress functions

as pt ^•r aa' 8^^ + a^^ ( 8 + i ) L^^ 06

	

4' 
alp ^ -v im k' a--- 1 -8	 i) ^' 8sr +

a!Fd'F
+^' aa. - 0'	 (683)

where the basic elasticity parameters

EI . 6'9 	GI,

ks a 6E„ 	 — 12RS
5G,, '	 62	 (684)

Eq. '683) is a differential equation in partial derivative with
constant coefficients, which depend on elastic parameters X 2 , g , k2
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r
and v 2 and one geometric parameter c 2 . In the case of a thin isotropic

shell, only two independent parameters c 2 and v remain, since X2.1,

k2=0 and E2 /G 12'2 (l+v).

Because of relationships (682), differential Eq. (683) is satis-
fied both by stress functions F (a, B) and any of the ten functions
which define the stressed and deformed states of a laminated cylindrical
shell subjected to axial locally distributed loade.

egration of Eq. (683) in Single Trigonometric Series and Bound-
it ions

In the case of a closed cylindrical shell, the solution of Eq. (683)
can be sought in the form of the single trigonometric series

F„ (a) cos n ^.	 (685)
n •.0

Coeffients of expansion Fn (a) are satisfied by the following

ordinary differential equations with constant coefficients

0 ^"--2p. d"	 n ='-- + g4.F U for n - 1, 2, 3, ...,d	 da 	(6$6)

where
t nt(nt-1)$gs- 2v, 002 -0

2Pn ==	 0 +ksn + 1	 ,
q • _ ).1n4(na-1)°	 '	 (687)n— 0+k2nt+ c3 '

The solutions of differential Eq. (686) are written in V.Z. Vlasov
functions, which are determined by Eq. (188) and are satisfied by Eq.
(189),

01(a)-chsnacosr„a; (D3 (a)=shs„acosr,,a; 1	 (688)
(Dt (a) = sh s„ a sin r„ a; (D` (a) = ch Sn a sin rn a, J

where

	

Sn 1	 2	 rn = 1 '' 2-
(689)

If the elastic constants of a laminated plastic are such that the
inequality

G
	

1 ESE.
	

(690)

is satisfied, with sufficiently large values of n>>R/d, parameter r 

becomes imaginary. In this case, instead of the V.Z. Vlasov functions,
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t

	

	
hyperbolic functions should be used which are determined by the ex-
pressions

01((')Mc1is„ achy„ a; 03(a ) —shsnachrna;
0t (a) — AsnaAr.,a; 04 (a)c chs„ashrna, 	 (691)

where
	

/203

r i =	 ^ ^ 
„+n„ ; n V r„ 2 .	 (692)

2	 r	 Ŷ

We also represent the components of the stressed and deformed
Gtates of the shell by the single trigonometric series

ppN (a , 1')	 N,, (u) cos n P;
n-0

T (a, ^) = 61.4 T n (a) cos n P;
n-0

m
S (a,	 S S. (a) sin n P;

n-0

00Q (a, P) — ., Qn (a) sin n 0;
n-0

00G	 I Gn (a) cos n 0;
n-0

cc

u (a, (3) _ V U. (a) cos n 0;
n-0

m
V (a + ^) _ ^ V,, ( a ) sin n

,1-0
ao

n-0
m
AV” On (a) cos n p;
n-0

m
V (a,	 w Tn (a) sin n ^.

n-0

(693)

In accordance with Eq. (682), the coefficients of expansion of
the elastic forces, moments, movements and deformation functions in
the trigonometric series are determined by the following expressions

Un(a)e R,b (VaFn-{-1^'(n'—i)F^^;

Rn°	 t	 a s' s	 (694)
vn(a)° Er a I[^ ( n —i^—ti= n^Fn-7► n ^n —i)Fnl;
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C*'"-T

.	 tW,(a)---^H.^"^ j [2p.—g' (n'—f)+v1(2n9- i)1Fn+

+
), e n. (a s — 1)((kl+1)ne +ell 

Fs}^0 ♦ PRO + e

V
, e'

^n (a) — --fir-a nF,,;

yn (a) ..^ ^ '
TOT

 (2AP' --g!F,);

Nn(a)••n (n'--1)F„;

S. (a)'° n' (n — 1) Fn;
Q. (a) ° —n' (2p',n-4'F.);
G. (a) -- nR (2p,2,F„- qnF*).

(694)

In accordance with Eq, (688) and relationships (189), we obtain 	 /204

Fn(a ) —C , 4),0)+Cf02(a)+C303(a)+C44).(a);!

F;, (a) - C, (sn 03 —rn 04) + C. (sn 04 + rn (Ps) +

+ Ca(sn 0,—rn 4)a)+ C. On 4)2+rn(N;

-+-C= [s' — r') 0, + 2rnsn (b,I + C3 [(S'-•r') 4).—

—2r„sn(Djj + C4 f(sn ._rn) (D4 +2rnsn(Dsj'

Fn (a) —C, [sn (s'--3r'1 4)3 +rn ( r' -3s'
`
) 04 1 +

+ C! Isn (s.' -- 	 04 —rn (r,'z- 3sn) m31 +
-+- Cs is, (S;,-3r') 4)j +rn (4n-3s') Q)$) +

-}- Ca [Sn (4,-3rn)  4), — rn (4,,-3s') 0,1.

(695)

Because of the momentless structure of the shell in the axial di-
rection at ends a-0, a-a l , only two boundary conditions each can be
assigned:

a. static relative to elastic forces N ns Sn;

b. kinematic relative to movement U n , Vn;

c. or mixed static-kinematic relative to N n , Vn or Sn , Un.

The canonical form of the uniform boundary conditions can be
written thus:

a. hinge supported edges, at a-0, Vn (0)-0; Nn (0)-0; at a-al,

Vn (a l )-0; Nn(al)-0;

b. rigidly fastened ends, at a-0, U n (0)-0; Vn (0)-0; at a-a l , /205

Un (a 1 )-0; Vn(a1)-0;
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c. unsupported ends, at a n0, Nn M OO; Sn (0) U0; at await

Nn (a l )-0; Sn(a1)-0.

For convenience in practical use, it is advisable to express in-
tegration constants C l , C29 C 30 C 4 by initial parameters Un (0), Vn(0),

Nn (0), Sn (0), i.e., by the values of functions U n , Vn , Nn , 3n at the

coordinate origin (a=0). After this, the problem of calculation of a
laminated orthotropic shell subjected to concentrated and locally dis-
tributed forces is reduced to the solution of a system of two algebraic
equations for two unknown initial functions, since two of them must be
assigned.

It is easy to obtain the following expressions by Eq. (694):

-+- Ce (h 01 -+' Is fie) : +- C4 (11 03 — flool
RHO 

V„ ( a ) •- n' IC, (hi (0, — /is 02)-+-Ce(h,Og +'he(Dt)-+-
+ C' (hi Q►,—h= m6) -+- C# (hi 06 -+- hs Ws) 1;

N„ (a) — no (n'--1) (Cl I(sn —rn) mi-2rnsn me] -+'

+ C2	 (Ds + 2rnsn01 1 -+' Ca [(so.'—r9) mi-2rnsnm6] -+-•

♦ Ce ] (sn-- rn) 04 +-2r sn G)sj (;

S,, (a ) n' (n'- 1 ) ( C, [sn (sn-3r'n) 0e'+'rn (rn--3sn) ®e] `+'
-+-C, Is. (sn -- 3rn) W,-- rn (rn- 3sn) me] -+'

• Ce Is. ( sn-34) m, +rn (rn- 3sn) 0e1 "+'

• C4 Isn (sn -3rn) me—rn (42 -34) 011 1,

where
/i ° s. IV, (sn-3rn) -+-X1(n'-1)];

1e s rn IV, (rn-34)--A^ (n'-t)];

h, (sn—rn) [K' 
( ne

—!) —n' v,] —e n' (n'—! );

he= 2rrOn[8 (n'--!)--n'v'];

C, 	 (nz—I	 n301-0n

.— BR Vn(0)]

v r I se —rh) IS'(n'—t)—n'V,J_),In2(n=—t) .^n(0)—
113 ( n = — i)

R	 n'

C'	 f	 (l_ 
	 en( ns '1) 'n + -n ► L Rn' 

n 
—

3snl Un(0) "F

	

n (nt-1)	 Sn (0)]

(697)

(698)
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1)+v (•,,—y.) SR(0)1.	
( 6981,

60. Girder Analogies and Init lal pa -aY meters Method

Basic differential Eq. (686) of the semimembrane theory of an or- 1206
thotropic laminated cylindrical shell and boundary conditions (696)
are similar to the corresponding equations and boundary conditions for
girders lying on a solid elastic base.

The analogy is that static quantities Nn (a) and Sn (a) in the bend-
ing theory of girders correspond to the bending moment and cutting force,
and movement components Vn (a), Un (a) correspond to the deflection of the

elastic axis of the girder and the angle of rotation of an element of
this axis. The analogy goes still further, namely, at n n 0 and r,. n 1,
differential Eq. (686) of the semimembrane theory changes to a differ-
ential equation of bending of the girder, i.e., it describes the de-
formed state which corresponds to the flat section principle, and mem-
bers na g describe the deformed state which develops as a result of self
balancing loads, when there is warping of the cross sections of the
shell.

Thus, if a locally distributed axial 	 load applied to the cylin-
drical shell in section a -E (Fig. 80) is represented in the form of
the trigonometric series

CO

P — -inn + R cosP+Vancosnp,	 (699)n=

the solution which corresponds ;o the first two terms n-0 and n al can
be found, by considering the shell as a girder with the corresponding
support fastenings. The term n •0 represents an axisymmetric load uni- /207
formly eA stributed in section a n&. The second term (n=1) represents
an axial load distribu t ed over section a=E by the cos 0 law, i.e., a
bending moment applied in this section of the shell. Both of these
cases of loading apply to the simplest problems of the strength of
materials.

The remaining terms of the series an cos nB define self balancing

axial loads applied in section a-E. We will call such self oalancing
loads n-th order harmonic forces. 	 They cause deformation of the out-
line and warping of the cross section of the shell.

For n)2, the basic forces and generalized movements can be presented
in the following form (subscript n is omitted for convenience):
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Fig. 80. Cylindrical
shell subjected to con-
centrated axial force.

t
N (a) Kxx (a) N (0) + KNs (a ) S (0) + Kxv (a ) V (0) +

+Kxu (a) U (0)— Kxx (a—t) an;

S (a) KSX (a) N (0) + Kss (a) S (0) + KS, (a) V (0) +

+ Kau (a) U (0) Ksx (a — E) a%;

V (a) — K,.v (a) N (0) ♦ Kvs (a) S (0) + Kvv (a) V 1%04) +

+ Ksu (a) U (0) —KSN (a— t) an;

U (a) " Kux (a) N (0) + Kus (a) S (0) + X :1V (a) V (0) +

+ Kuu (a) U (0)--K uN (a — V am.

(700)

In Eq. ( 700), generalized movements UW, VW, U(0), V(0) have
the dimensionality of forces. These are components of movement mul-
tiplied by rigidity ps.rameter E261F.

Coefficients KNN (a), KNS (a), . . ., KUU (a) are effect functions, /208
which can be determined by the following expressions

KNN(a)	 2i. ^— -T(n-r1^J(61 + r')Igo(no—!)—n'v,1—

—V n' (no — t) (So — r2)) d',;

KNjJ(a)— 2A
I (—n ^) l(' [X=(n'—f)—(s'+r')V21(D3+

+ IM (n
o 

—1)+(82+rs) vol 04);

KNV (a) — 
2M "n s;

KNU (a) a f+I is (r 03 --s 4)4);

KSN(a) --2A-z:(	 1).. ( { rI(s +r2 )1 Ig' (n
o 
-i)-

ns v,l-f-X' n'(n'-1)(rs- 3s2))(Da + s( $2+r')°[g'(n2—f)—
—ns vol—A.s no (rn'—i) (s

o 
— 3rs)) IN)1;

Kss (a) — mt + 2k s►^ (no_ f) ^(a'—rs) ^`s (n'-1) -I-

+ (
so 

+ rT VJ 0s;
(701)

Ksv (a) — (—=r- (r ms + s 4D4);ZA n rs

•s ♦ 1 sN ,•P
Ksu (a) — —	 . s.A irn

KVN	 2P as (no i-)F 
I Ile (ns -1)—nsysl x

x ) 2As ns (ns—l)(ss—rs) — (sl + rs)[g'(n2- 1) —n2v,ll-
- A' n,1 (n

o 
— I)]I ms;
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where 01, 0 2 11 	 04 are Vlasov functions, determined by Eq. (188) and /202
which are satisfied by differential Eq. (189).

Vlasov function tables are presented in the Appendices.

Parameters rn , sn , which are included in sh e values of the argu-

ments and appear during differentiation, are determined by Eq. (689).

With a negative value of the argument, functions Ki,(a) revert to

zero. Initial parameters U(0), V(0) 9 N(0) 9 S(0) play the part of inte-
gration constant, and are determined from the boundary conditions.

Laminated orthotropic cylindrical shells can be dividied into three
classes by the nature of transmission of axial locally distributed
forces: long shells; medium length shells; short shells.

We will understand long cylindrical shells to be cylindrical shells
for which the semimembrane theory presented above is valid, and an axial
load applied to one end is transmitted uniformly distributed through the
other end.
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We classify laminated cylindrical shells, for which
theory remains applicable, but the stressed and deformed
result from axial locally distributed loads depend sigr.ii
boundary conditions at both ends of the shell, as medium
Finally, we will kill short laminated cylindrical shells.
membrane th , . ±s inapplicable.

semimembrane
states which

Pl cant ly on the
length shells. /210
to which semi-

Damping of the stressed and deformed states over the length of a
laminated cylindrical shell, which results from axial locally distributed

sna
forces, is defined by the exponent a and, consequently, the class of
long ^.ylindrical shells includes shells in which the following inequal-
ity is satisfied

La	 t	 E.	 (n•-1)	 1	 nt(nl-
1) 	

(702)

R Z	
E + L V'n4 + °n ♦ e' J n^ -1- k=n .}. 

> 50.

In accordance with inequality (702), the concept of length of a
shell is not purely geometrical, but it depends on both the geometric
dimensions and on the nature of the loading and the elastic properties
of the material.

We note that, with increase in shear modulus G. Increase in annular
modulus of elasticity E2 and decrease in axial modulus of elasticity El,•

the rate of smoothing out the stressed and deformed states over the
length of the shell increases. Interlayer shearing contributes to
stress concentration:.

The nature of loading of a shell shows up in that, beginning with
some number n, inequality (702) is satisfied and, consequently, w1ch
respect to harmonic forces of sufficiently high order, all shells can
be considered long. This situation is important in calculations, since
it permits significant simplification of calculation formulas, beginning
with a specific harmonic.

It also follows from this that, compared with the effect of low
order forces, higher order harmonic forces are damped considerably more
rapidly along the length of a cylindrical shell, i.e., the transmission
of axial 'locally distributed loads is determined primarily by the first
terms of the expansion in trigonometric series (n=1, 2, 3 9 4). Calcula-
tions show that harmonic forces up to the fourth order go through a
shell of elongation L/R&,2-3, and that the effect of higher order harmon-
ic forces is damped without reaching the other end of the shell.

The nature of damping of harmonic forces of various orders as a
result of axial concentrated loads is shown in Fig. 81.

Since the rate-of damping of harmonic forces determines the capac-
ity of the shell to resist the effect of locally distributed axial
forces, for more efficient design of such systems, it can be recommended
that shell elastic parameters X 2 and g2 be increased if its dimensions 1211
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ro
a.i

^i

cannot be decreased. W l.th decrease in
shell diameter, damping of the stressed
and deformed states increases sharply.

	

0,75	 The abovementioned effect of the

	

450	
elastic characteristics of a shell cor-
rectly reflects the pattern of transmis-

	

U	 ` 	, 	 Sion of axial concentrated forces in
cylindrical shells. Actually, if' a shell
is visualized in which elastic parameter

a 	
A2=E2/EJtiO, namely, a shell consisting of

Fig. 81. Nature of damping	 longitudinal ribs covered by a thin filin,

of harmonic forces along	 it is clear that stress damping along

cylindrical shell.	 such a shell is extremely slight, since
the forces are transmitted along the ribs.

It is also follows from this that the installation of reinforcing rings
is advisable for cylindrical shells subjected to axial loads which are
not uniformly distributed over the Feri.neter.

4s an example, we consider the calculation of a laminated cylindrical
shell subjected to an axial load applied to one end.

61. Cylindrical Orthotropic Shell SubLected to Axial Locally Distributed
Forces Applied to Fn

Let locally distributed axial forces applied to the upper end act
on a cylindrical shell made of a laminated orthotropic material. We will
assume that the principal axes of anisotropy coincide with the coordinate
axes. We will assume the area over which each force is distributed is
uniform and determined by central angle y (Fig. 82).

Solution of the problem is reduced to de-
termination of two initial parameters from the
boundary conditions on shell ends a=0, anal.

For example, let end a =0 where the forces
are applied be free of connections and end
a=a l be rigidly fastened.

We expand load P=p l+p 2 +p 3 in trigonometric
series

CO

(703)COS	 a, cas n

n•	 .4

Fig. 82. Cylindrical
shell subjected to
	

From the boundary conditions for n>,2, 	 /212
locally distributed
loads.

N,. (0) = — it.; S- (0) = 0; )

U. (ad = 0; V. (at ) — 0;	 ( 704)
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we determine initial parameters U n (0), Vn (0) and, further, by Eq. (694),

for which na2, we calculate the coefficients of expansion of the elastic
forces, moments and deformations.

a

The solution for n u0 corresponds to uniform compression of the
shill and, consequently,

N„ (u)- - 1n It ' So- Q.- Go-O.
	 (705)

1 
.1
	 The nil case corresponds to bending of trie cylindrical shell as e,

bracket, by bending moment M=PR applied to the a w 0 end, i.e.,

N, (a)	 con P; S, a Q, - G, - 0.
	 (706)

Further, by summing the forces, moments and movements in accordance
with Eq. (693), we obtain the distribution of the stressed and deformed
states over the surface of the shell.

/213We give the expansion in trigonometric series of the locally dis-
tributed axial loads most often encountered in engineering practice:

Type of load	 Trigonometric series P($)

0

N	 /'	 ninny

i 2:1R + :iRN^ fly cosn ^
. ". 9

ro
P P 1

5A—ft + in	 ny cosn
2. 4. 0

O	 ^
T	 T	 CO

n!? v s
inny

 y cos n

6	 ;	 4 Oct

P	 P	 sin n y	 o
2nR + nR ` ny casnt,

7	 4. r12

r	 CO
i	 P NLI sinny

n !Z	
CUS n

W n y 
2. 0.10

d	
T f

CO	 n^3
^ i	 WTI 1%1 1 sinny [Cosn0-}-( -1)2 sinnP

t, 3.s
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In the limit, as y4O, we obtain an expansion of the system of
concentrated axial forces in diverging trigonometric series.

We now consider transmission of an axial load to a cylindrical
shell through an elastic ring (Fig. 83).

Because of low rigidity, it is aavisable
to make the laminated plastic rings quite mas-
sive, i.e., solid. Therefore, we will disre-
gard wa^ping of the cross section of the ring.

If the force of interaction of the ring /214
and shell is designated

M
Q "` V Qn (707)

n

Fig. 83. Transmission
of elastic forces to	 the ring will be deformed as a result of force
cylindrical shell	 P-q perpendicular to the plane of the ring
through elastic ring.

P,__Q	 I (P.- 7n)Cnv n p,	
( 708)

11 .

and the shell will be compressed by distributed
forces q.

Thus, the deflection of the ring from the
plane of curvature as a result of periodicya,	
loading normal to the plane of the ring must
be determined. Following Grammel' [31, we

1	 consider a ring with a solid cross section, one
 of the principal axes of which lies in the

plane of curvature. We will define the position
Fig. 84. Symbols for	 of any section of the ring by angle 0 (Fig. 84).
reinforcing ring cal-
culation.	 For a ring, one of the principal axes of

inertia of the cross section of which lies in
the plane of curvature, deformation in the plane of the ring and bending
from the plane of curvature of the ring can be considered independently.

The stressed state of the ring in bending from the plane is defined
by bending moment M, torque H and cutting force Q. The deformed state
of the ring is determined by deflection w and cross section warp angle
6. Rotation of an element of the elastic line of the ring around cross
section radius ^ is connected with the deflection of the ring.

If p(0) transverse harmonic load P  cos nB distributed around the

circumference of the ri.ng,, the equilibrium equations have the form
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jV 	 PR;
'IM

	

W+.0 -0; 	 (709)
o'AI H w --QR.
dM

The elasticity relationships which connect the stressed and de-
formed states of the ring can be presented in the form

d0 +
V — RR ; d* 

,d 
M11

Ip	 c dp	 _W'_ ►
(710)

where C is the torsional rigidity of the ring; D  is the rigidity of /215

the ring in bending from the plane of curvature.

From Eq. (709) and (710), it is easy to obtain differential equa-
tions for determination of bending moments M(p) and deflection angles*(0)

dIAI
jV+AI t. P.11' Cosnp;	 ( 711)

dIV 1t dAl	 R11
,: 1 +W 	 1), d? ." + i	 ( 712 )

By integrating differential Eq. (709), (71.1) and (712), the follow-
ing expressions can be obtained for the elastic forces, moments, deflec-
tion angles and deflection of the ring

Jtl (P) — Cr cus ft , } CI sin — p- cor nn -j-	 P;

Q (0) — Z
,►R 

sill n +C^ i;

t
—C' sill -̂ C, Cos ft+ 

n nn 
sinn +C'R;

rl'(P) ,C4 ros +C S Sin ft fd (^C^ja') (C, coq	 C'siu^)-}-

Can-	 n zC+ 1),	 P, R3

C	 CL)z	
sill n o;

y(A, R(C 4 Siif	 C '% Cos 0)+ fin +CS+C
n  + Dz P„R 

(713)

Becaucc of the periodicity of the functions and the conditions
that the ring be subjected to self balancing harmonic loads, ClWC2=C3=

C 4 =C 5=C6 w 0 and, consequently, the elasti^ forces and deformations of

the ring are determined by the following equations



() (^) s — Pnit bill n a.

MA" 	 cos nP;

f! (a) ••P	 bin :a
n (nW —1)

(nIC+DS) P "Pa

8	 (C+D') P" its coon

a =C+Dt P'R' 
coon

( 7111)

Transmission of the axial forces to the cylindrical shell through /216
the elastic ring can now be calculated.

Deflection of the ring for each number n,2 as a result of forces
P-q

^, I)-+M=C (Pn-9n) R•Y	 cu,	 ( ), coons.	 (715)

Axial movement of the a c0 end of the ring as a result of distributed
axial load q equals Un (0) cos n$.

From the condition of compatibility of the deformations of the ring
and shell

yn-Un(0)
	

(716)

the following expression can be obtained for the initial parameter

— D,+n'C	 R4	 (717)

The remaining initial parameters are found from the boundary
conditions:

on the unsupported a-0 end, S(0)-0, N(0)--q n;

n

	 at the fixed a-a l end, U(a 1 )-0, V(al)-0.
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CHARTER 13. SOME PROBLEMS OF SELECTION OF OPTIMUM STRUCTURE OF LAMINATED
PLASTIC OF CYLINDRICAL SHELL

62. Initial Hypotheses, Assumptions and Relationships

The extensive use of laminated plastics in the most diverse 	 /217
fields of the national economy is explained by the exceptionally
great diversity of their properties. Laminated plastics can have high
unit strength, high chemical and biological stability, good electrical
and sound insulating qualities, nonmagnetism, radiotraiteparency and
other valuable proper^ies, which structures of the most diverse tech-
nical or every day purposes require.

The technology of production and processing of laminated plastics
products does not require subsequent extremely laborious mechanical
working, as a result of which, moreover, there are great losses of
material. Laminated plastics are easily extruded, molded at low pres-
sures and cast. Laminated plastics products can be manufactured di-
rectly in the process of producing the material itself. The produc-
tion of reinforced plastics with a given orientation of the reinforcing.
material can be considered the origin of the extensive use of plastics
as structural materials.

Cylindrical shells produced by continuous winding of various types
of reinforcing fillers are laminated elastic anisotropic systems. The
nature of the anisotropy of the elastic properties of a shells depends
essentially on the mutual placement and orientation of the reinforcing
filler, and it can be easily regulated du: , ing manufacture. This new
property of laminated plastics, controllable anisotropy, favorably dis-
tinguishes them from traditional building and structural materials. As
it were, they connect laminated plastics with the structures and, con- /218
sequently, this permits the creation of that structure of the material
which ensures the maximum resistance to given external loads during
manufacture of the shells.

Some problems on selection of the optimum structure of fiberglass
reinforced plastics were considered in Chapter 8, where the performance
of a shell in the momentless stressed state was considered.

More complex cases are studied in this chapter, when maximum shell
rigidity must be ensured [14].

Since the results obtained below are generally speaking of a qual-
itative nature, becauve of difficulties associated with obtaining ini-
tial data on the elastic characteristics, we will disregard the effects
of interlayer shearing on the assumption that they are the same for the
entire spectrum of elastic systems considered.

We will assume that the unit layers of which a laminated shell is
composed are orthotropic and uniform. We will assume the elastic prop-
erties of such a layer to be known, for example, from mechanical test-
ing of strips unwound from the shell after manufacture.

For brevity, we will call a unit layer of the shell the " fabric,"
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and its principal directions of anisotropy the warp and woof directions,
with the understanding that the warp is the principal direction of aniso-
tropy with the greater modulus of elasticity. The elastic properties
of the fabric are defined by four independent parameters:	 moduli of
elasticity in the warp and woof directions E 1 , E2 ; shear modulus 0;
Poisson coefficients v lv 2 , which are connected by the known relation*
ship

E1V2•E2v10

If the coordinate axes do not coincide
with the warp and woof directions of the
fabric and are rotated relative to them by
angle ^ (Fig. 85), elastic constants cij,

a i, of the material are determined by Eq.

(29) and (31).

In such a coordinate system, the basic
elasticity reiaticr:ships which connect the /219
stressed and deformed states of the shell
have the form

vx ` ell Fx + Cl2 W + C (acv',

Qy - CH rs + Ctt t'Y + C2A(Osy;

	

T — C13 es +C!3 eY + Ca 4J=Y	
( 718)

o r	
E6 -..- a ll (Ts + a,, C', + N3 T;
E y al= Oi +a,,QV+a,,T;

	

wsy= a ls o=+ a:a ay + as, T .	 (719)

Fig. 85. Symbols for de-
termination of elastic
constants of material.

Key: a. Woof direction
b. Warp direction

We note for subsequent use that, according to Eq. (29) and (31),
elastic constants a 13 , a23 , c 13 , c 23 , in distinction from the remain-

ing constants, change sign with change in sign of m.

We consider a laminated shell a uniform anisotropic elastic sys-
tem. Since the elastic properties of the shell are determined by the
properties of the fabric and their mutual placement and orientation,
after determination of the elastic properties of the shell through the
elastic constants of the fabric and winding angle m, that orientation
direction can be selected in which the structure of the laminated
plastic becomes the optimum. In addition, problems can be solved which
are connected with the selec e ion of the best initial materials for man-
ufacture of the shells.

It is evident that, if the shell is wound so that the warp and
woof directions of adjacent layers either coincide or or mutually or*
thogonal, the elastic properties of the shell will be orthotropic.
However, because the principal axes of anisotropy do not coincide with
the coordinate axes, the elasticity relationships have the form
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r, F: Bli tj + fin el+Bltw;

rt ., 1012 e l `f' Btt et + Bq u► ;	 (720)
S h,, e l +Bat e$ + Bat W; I

G l ,, --D„xl—Ultxt-2Dl,x,,;
G t r -D, t xl —D.,x,--2Dt,xt ;	 (721)
It —Dlsxl—•Dtaxt--2Dpx,;
el Altrl + A lirt + AI,S;

e. A lar l + Mart + At,S;	 (722)
W A„r, + 

A"rt 
+ AnS.

If a laminated shell with a sufficiently large number of layers is
made by cross bias winding of^ . bhe reinforcing filler (at angle +m), it
has an orthotropic structure which is symmetrical relative to the gen- 1220
eratrix, i . e., the principal axes of anisotropy will coincide with the
coordinate axes. In this case, the elasticity relationships are sim-
plified, and they take the form

r l ” Bil el + Blt et14

rt — Bit el + B,t a:;
S^.BaW ;	 (723)

G l - - Dll xl - D, t xt;
G t -v -D, t x,-Dtt'*t;	 (724)
N'- -2D=Xj,

where she'll rigidity parameters A i,, B ij , Dij are determined by the
expressions

a

(725)Ali — ' J ; Bil a ciA Dif — 
ail sa

6	 12

for I. j-1, - 2, 3 9, . . .

Elastic constant a ii , c ij of the material depend on winding angle

and elastic constants E l , E2 , G, v l , v 2 of the fabric, and they are

determined by Eq. (29)-(31).

The changes in durvature and warping of the mean surface of a
tapered cylindrical shell are determined by the known expressions

i t
xl

am
R' da' '

tX2 xW — k' VPi.
(726)

x' " Ri as ap .



Fig. 86. Coordinate
system and conven-
tional symbols,

e

C-	 }

r
r

M

63. Differential Equation of Cylindrical Shell Stability

We obtain the differential equation of stability of a laminated
cylindrical shell made of an orthotropic material by single thread bias
winding, i.e., for the generate case of anisotropy when the principal
axes of anisotropy do not coincide with the coordinate axes. It is evi-
dent that the equation of stability of a shell produced by straight
winding will be a partial case, with

al3n a
13

•c^ 3'c23'0.

We again use the orthogonal a, $ system of dimensionless coordi-
nates (Fig. 86) as the curvilinear Gaussian coordinates on tho surface
of the shell.

By substituting Eq. (720), (721) in the equa- 1221
*ions of neutral equilibrium of the shell

d + as U;

ar,	 as (727)

02Gr	 2 ai//	 a'C,	
T R T• diu' 

^- ,
Y,• al

u-
	 • asm	 ( 72 8 )vT	

ou t
	 dpi	 '	 da i	 - - + da • .

where T lo , T2 o , S o are components of the elastic

membrane forces which act on the shell before
buckling, we obtain

where

aiu	 aiu	 aiu	 alv	 div
Bii aU$ + ^Bia as {" R" ^ `f" B„ dai + A da dd -{-

siv	 all'au+
+ Ba• do, _ Bi, da —R. dp

G in	 diu	 diu	 aiu	 dW	 sivB
13 dui + A da d -f- Bpi d i + B„ dui 2B„ du dp + Bt,

aw
du 

Bg, 
a 1^

D„ aoi -{- 014 04Wdp f - 2 (C -}- D,^ au; doi `f- iAy, as d +

Da *.- + B2 (  1! da +B 4 B du + Bn -Ap' +B23w)

a. R• T; °''° T• °'+^ l ?,S' aim'^' , •" i T'	 as do

A — BU + Bay; C = Dls + Do.

(729)

(730)

(731)

i
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I

We introduce the following differential operptors In second order 1.222
partial derivatives

ee'^ B.a —„ + A W + Bat We

C. = N►1 T + 2B1, dA' + Bee W ;	 (732)

Di " Bu da + 2BID u, + Bn

System of Eq. (729) is thc •. presented in the following form

c':u+V;V---B^,---B„ OJT;	
(733)

V.0+V:V— --B„-;—By^-.

System of differential Eq. (733) is equivalent to the following
system of dif ferential equations

C1 U `' (^.B„^- f11 ,B„) a—^- } (/^^al^a, —IT ^aBee) Bu el +
e	 8eu^

++ BnBa _B„
^ dad s ^

a	

d	

(Iq 34 )
C^ ` (Blef'ie--BuBN) da'	 9u

+(R 1e A—B 1aBea' B it Be,) 8•+

0311.
+ 2 ( Bl:Baa' Bw B:i ) m d : +(/J„--BISBe$1 02 ,

where	 ^^ 3 c;^:--^C ► ''• (735)

By e;cpanding operator 
714 according to Eq. (732). 

we obtain

C1 i Buyaa — B1t) 
dui t ` ( B1a Bee — B1aBw) du',d +

+} 8.18,--142+2Ba*B1t--2B12883) du o do' +

+ 2 (Ba3Bee -111 2Ba) 
as a a 

+ t Be, B.. — Bea d'^
(736)

If the follcwing new differential operator now is introduced

C: All OU4 + 4D 
du a 4 } 2 (L Dea) dr: # a +

	

} On da 43 Dn d
	 (737)

differential Eq. (730) can be presented in the form
	

/223
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.	 eu	 au	 a• 	 e^

By multiplying Eq. (738) by operator 7 1 4 , the following differential

ion can be obtained for the stability of a laminated cylindrica'L
made of a single thread bias wound orthotropic material

where

•	 f a • w	 °	 d°	 .. a°	 1 .
^'.V=	

a°
w } /11^ 00" R ^T^ del= ^ 

7 t d • ^`^ •iva^l ^'IU'. 	 (739)

	

11=- BI&Rt° Ila+2111t11°1lla--I1= •11
:, —B,SB*—H„ll, -	 (740)

Based on Eq. (9) and (725), differential operator 7 1 4 can be pre-
sented in the form

•	 . e [a,-!--2a,,
 a• L

♦ (ta il + an) du64 y - 2(.,, as • +a}' 04 •
	

(741)

and, consequently, the differential equation of stability of a laminated
cylindrical shell finally takes the form

•
r.c iv+ ,R' 6 du, -R (T, 

dul 
7'y 

T= T 2S° du dpi ) V' u
'
,	 (742)

where operators 7 O 4 , e 4 are determined from Eq. (737) and (741), re-

spectively.

It appears to be extremely complicated to find an exact solution
of Eq. (742). However, since the magnitude of the critical load of a
cylindrical shell of medium length depends little on the boundary condi-
tions, an approximate solution can be selected in the form

w-wm sin (Aatna),	
(743)

where
X. MAR	 (744)

L

Since the loss of stability of a cylindrical shell under external
pressure and uniform axial compression is accompanied by the formation
of a large number of annular waves, Eq. (743) approximately satisfies
the hinge support boundary conditions at a quite large number of points
W-kn).
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By substituting Eq. (743) in differential equation of stability 	 224
(742), the following general expression, which depends on two arbi-
trary parameters A. n can be obtained for determination of the crit-
ical load:

	

-R' (Too he + roe 	 71 d )Crr

Du.%4 + Wig X'n+2(C+Dw)isn'+Wls).n'+Dnad+

+	
Be A46	 (745)do , —d^,, n+l' 1s + a 	 —emu 

64. Optimum Structure of Laminated Plastic in Cvlindrieal Shell Ooerat-

Let a laminated cylindrical shell be subjected to uniform external
pressure. In this case, on the assumption that T l O=S 1oa 0 and T20n -pR,

for determination of the critical pressure, the following c 0 culation
formulas can be obtained by Eq. (745):

a. shell made by single thread bias winding

	

Per A ^*.(n,v)+^^.t"^^1. 	 (746)

where

	

	 *1(n • W) - fell X' + 4eis is n + 2 (es: + 2cn) is n' +

+ 4eM i n' +enis4J f2 ;

^Os(n , (p) - an k"-2auX'n+(mss+ an) isn'-

	

-tau in' +aun`	 (7471

elastic constants c ij , ai, depend on bias winding angle m;

b. shell made by cross bias winding

	

Per" ^ ^ei tn, ^) +	 0 
v) 1,	 (748)

where	 ,- t A4	 -^- 2e J^' n' -{- enn'); 1

	

91 tn, 4p)t`^ Ieii , „+2 (cu ,	 t

	

es (n, ,T) - a,% X" + (2ais + an) i' n' + a,,n` • 	 (749)

In the event n2>>X 2 , the following approximate formula can be
obtained

P - 7j?T'T 3(i --v,v#) D DCT tR	 i^ a (750)

In accordance with Eq. ( 746), (748), selection of the optimum
structure of the laminated plastic for a given fabric is reduced to the
following simple procedure: for each value of winding angle m, which
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is determined
value de-
shell made by

Fig. 87. PK vs. wind-

ing angle m

Key: a. m-m opt

changes in the 0 0 <^<90 0 interval, the lowest pressure p
as a function of whole number parameter +n, (m a l). This
termines the critical external pressure of a cylindrical
single thread bias or cross bias winding, i.e.,

PK-P(®).
	

(751)

It is evident that the optimum structure
of the laminated plastic is determined from the
condition that the critical pressure is the
highest: PK'(Pcr)max (Fig. 87).

The maximum value of function p-p(m) de-
termines the optimum winding angle and the maxi-
mum pressure which a cylindrical shell made by
continuous winding with a given fabric can stand.

As calculations show, over a wide range of
change of elastic constants E l , E2 , G, v, of the

fabric and geometric dimensions R. Z, 8 of the
shell, the most stable shells made by cross bias
winding are, as a rule, shells produced by right
angle winding (m a 0 0 and -900 ). Consequently,
calculations by Eq. (7461 will determine the op-
timum structure of the laminated plastic. It
should be stated than the optimum winding of
long cylindrical shells is straight annular wind-
ing of the warp, since such shells lose stabil-
ity in the form of collapse of the cross section
and, consequently, the maximum annular rigidity
of the shell must be ensured.

The results of calculation to determine
the optimum single thread winding angles for
some fabric elastic constants and geometric di-
mensions of shells of medium length are present-
ed in Table 7 and Fig. 88.

Fig. 88. Relative
critical external
pressure vs. single
thread bias winding
angle.

p	 6
Key: a. (-1 ) cr^ 10	 Thus, for the manufacture of cylindrical

shells of medium length which operate under
uniform external pressure, single thread bias

winding may prove to be more expedient. The explanation of this is that
single thread bias winding of medium length shells produces anisotropy
of the laminated plastic which disturbs the symmetrical nature of the
wave formation and forces it to buckle with wave formation at higher
pressure. It also follows from this that this conclusion is only valid

It is evident from Table 7 and Fig. 86	 1226
that the winding angle in manufacture of shells
by single thread bias winding significantly af-
fects the critical external uniform pressure.
The optimum winding angle evidently is deter-
mined by the elastic constants of the 'fabric
and the geometric dimensions of the shell.
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for not very long shells.

Calculation formulas (746), (748) can be used for selection of tht
most nearly optimum fabrics, i.e., fabrics with elastic constants which
provide the greatest critical pressure.

TABLE 7.. CRITICAL EXTERNAL PRESSURE OF CYLINDRICAL
SHELL VS. WINDING ANGLE

itnr^lw ! a las^^,^ r a IipN^ +►w / a/tprssn I

F, +I
..^.•-

ft
^

pl+^
•„gym. •

gl4j
.,^.....

o K 0.314 7 0.501 5 3.5,'1 4 1.74
5 7 0.308 7 01511 5 3164 4 1.70

10 8 0.311 7 0.5 13 5 3.55 4 1,69
15 8 0.322 7 0.507 5 3.55 4 1.73
20 7 O.M1 7 0.496 5 3.65 4 1.81
25 7 01:347 7 0148:1 5 3.8a9 4 1.11.9
100 7 0.365 7 0.472 5 4.09 4 207
35 7 0.389 7 0,467 5 4.42 4 2.24
4() 7 0.418 7 0,470 6 430 4 2.4.)
45 7 0.452 7 01482 6 4.98 5 2.70
:>t) 7 0.460 7 0,502 6 4.48 5 2.44
55 7 0,527 43 0.587 6 4.07 5 2.07
60 6 0.708 6 0.819 7 3.83 5 1.85
65 6 1.16 a 1.31 7 3,510 5 112
70 41 1.41 6 1.56 7 3,28 5 1.60
75 6 1.07 6 1119 7 3.03 5 1.47
80 6 0.818 6 01931 IT 2.70 6 1.211
85 13 0AM 6 0,788 h 2.26 6 1.02
90 6 0,623 6 0.710 8 1.77 6 0.83

Key: a. Curve 1, 2, 3, 4 (Fig. 88)

6.5_ Most Stable Laminated Cylindrical Shell under Axial Uniform
Compression

Let a cylindrical shell made of laminated plastic be subjected to /227
uniform axial compression (Fig. 89). In this case, we study the qu e s-
tion of the selection of the optimum structure of the laminated plaster
which realizes the greatest carrying capacity of the shell at a given
weight. Two possible types of elastic property 	 symmetry of the lami-
nated plastic which correspond t) single thread bias and cross bias
winding, should also be considered here.

According to Eq. (745), with T2''s:;o=0, T l o6 -T l , the critical load
of a laminated cylindrical shell under uniform axial compression is de-
termined by the following expression
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(rJC ,
He ks

'- !^ less X4 +4cseXa n+2 (ell +2esrjX2n'+

-{-^csaAas-} CUR41-+- ; 
	(T^^	 (752

;s 

where X. n are arbitrary parameters which define the form of wave forma-
tion upon loss of stability, and c is, a id ,, (is J n 1, 2 9 3) are the elas-

ticity constants of the laminated plastic, which depend on the elastic
characteristics of the fabric and winding angle 	 in continuous winding
with fabrics and which are determined by Eq. (29)-(31).

According to Eq. (752), for calculation of the critical axial load
of a laminated cylindrical shell, the following calculation formulas
can be obtained, which depend only on random wave formation parameter
N-n/A:

a. shell made by single thread bias wincing

R{f3 _	 ^^r+4c_a+2(el +2e )+4e a + res µ'
(TsICY—"Si_ ^iw-'•assP +('an+ass) N —2assP +auN '	 (753)

b. shell made by cross bias winding

C7 	 au +(2ass +-on)P + au P'	 (75b)

Determination of the critical load by Eq. (753), /?28
(75 4 ) is again reduced to finding the minimum of the
right side relative to parameter V for a given wind-
ing angle ^.

The maximum critical load determines the optimum
winding angle and, consequently, the optimum structure
of the laminated plastic and the upper limit of the
carrying capacity of the shell which can be reached
by a change in winding angle.

It should be noted that, in uniform axial com-
pression of isotropic cylindrical shells, the criti-

Fig. 89. Conven- cal load obtained by linear theory is in poor agree-
tional symbols.	 ment with experimental results. For laminated shells,

the correspondence of experimental data with the re-
sults of calculation of the critical load by linear theory is more sat-
isfactory, and the scatter of the experimental data is not so great as
in the case of thin isotropic shells.

Some numerical calculation results. It is known that the elastic
properties of fiberg ass rein orced p astir are determined primarily by
the properties and orientation of the glass filler. The moduli of elas-
ticity in the principal directions of anisotropy depend on the number of
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glass fibers oriented in these directions of
with a given total warp and woof fabric dens;
of elasticity in the principal directions of

nearly constant. Based on this, in order to
the shear modulus of the fabric, the initial
selected for comparative cale t., lations.

anisotropy. Consequently,
ity, the sum of the moduli
anisotropy E l+E2 remains
Investigate the effect of
e,ata given in Table 8 were

TABLE 8. INITIAL DATA

.	 b	 QapMaNTW

yapyr a How""M	 ...^.
THaNs

I	 1I	 III	 I	 IV	 V	 Vi	 VII	 VIII

E, - 10-16 H /x' j	 1.5 1.5 1.5 1.5 1.5 1.5 4 2.25
E, • 10-" x /r' {	 3 3 3 3 3 3 0.5 2.25
G . 10-11 m/.%' 0,1 0.3 0.4 0.5 0.6 0.7 0.3 0.3

va 0.1 01 03 0.1 04 0.1 0.8 0.2

v. 0.2 0,2 0.2 0.2 0.2 0.2 0.1 0.2

Key: a. Elastic constants of fabric
b. Variants

c. n/m2

TABLE 9• CRITICAL LOAD OF CYLINDRICAL SHELL MADE BY
CROSS BIAS WINDING

N
a	 DapaawTU

I II lIl (	 IV	 I V	 I VI	 I VII
I	

VIII

0 0.70 1.22 1.41 1.57 1.72 1.86 1.00 1.30
5 0.72 124 1.43 1.59 1.74 1.87 1.10 1.32

10 0.77 1.30 1.48 1.64 1.78 1.91 1114 138
15 0.85 139 1.57 1.72 1.85 1.96 1.17 1.48
20 0196 1.50 - - 1.96 2.05 - t .62
25 1.19 1.70 1.84 t.95 2.04 2.12 1.38 1.79
30 1.42 1.87 1.98 2.06 2.13 2.19 1.43 1.98
35 02 2.04 2.11 2.16 2.21 2.25 1.48 2.17
40 2.02 2.17 2.20 2.23 2.26 2.29 1.5t 2.31
45 2.17 2.21 2.23 2.26 2.28 2..90 1.52 2.37

Key: a. Variant

The results of calculation to determine the critical load, ob-
tained by computer, are presented in Table 9.

For shells made by cross bias winding, critical load vs. winding
angle is presented in Fig. 90.

As should have been expected, single thread bias winding extremely /229
insianificantl y increases the axial critical load of a cylindrical shell.



The explanation of this is that the most
nearly optimum ratio of the moduli of elas-
ticity in the axial and annular directions,
and the shear modulus which can be obtained
by change in winding angle and which should
lead to a significant increase in the crit-
ical load, is associated with an increase
in the degree of freedom, which is express-
ed by the possibility of the appearance of
oblique forms of wave formation upon loss
of stability. This leads to a decrease in
the critical load.

It should be noted that the conduct of
calculations in order to obtain recommenda-
tions on the most diverse cases of fabric
elasticity property ratios and geometric
shell dimensions requires a great amount of /230
work and is hardly advisable. Evidently,
it is more reasonable to carry out the
calculations for given geometric dimensions
and a limited number of fabrics from which
the most nearly optimum must be selected,
i.e., obtaining the greatest critical load
for the weight of the shell.

t

g to -?

V

^e

;4

Fig. 90. Axial critical
load vs. cross bias wind-
ing angle.

General Eq. (745) permits calculation to determine critical loads
in various types of uniform and simple combined loading of a shell, as
well as selection of the optimum fabrics, It should be stated that thco
form of wave	 formation depends, in each case, extremely appreciably
on the nature of anisotropy of the reinforced plastic. Therefore, the
simplifications usually made with respect to order of magnitude in the
theory of stability of thin isotropic shells should be made with great
caution.

TABLE 10. CRITICAL LOAD OF CYLINDRICAL SHELLS OF
OPTIMUM AND NONOPTIMUM STRUCTURE VS. SHEAR

MODULUS OF FABRIC

a 8a^a
b	 0.10-10 n)ra

0.1 0.3 0.4 0.6 I	 O le I	 0.7

OAHoaa=onnaa 1.10 1.22 1.69 1,65 1.72 2.01
nepexpeclsae 2.17 2.21 2.23 2.10 2.28 2.30
11pnwa 0.7 1.22 1.41 1.57 1.72 1.86

Key: a. Win 2ding	 c. Single thread	 e. Right angle
b. n/m	 d. Cross

The critical axial load of a cylindrical shell
made by singlethread bias and cross bias windings
the fabric is presented in Table 10. The critical
by ^{ aht angle winding also are presented.

of optimum structure
vs. shear modulus of
loads for shells made
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The calculation results show that the optimum structure of a lami-
nated cylindrical shell operating in axial compression is obtained by
continuous cross bias winding of full strength fabrics at angle m•+450.
It should be noted that the use of nonfull strength fabrics, for example,
with 1:2 anisotropy, highly insignificantly reduced the critical load
of the shell. With more clearly defined anisotropy, a more intenQive
decrease in critical load occurs.

66. Stability of Anisotro is Shells of Rotation as a Result of Uniform
Tres-sure

Let a double curvature anisotropic shell be exposed to forces T1°,

T2°, S°. Then, by using the theory of tapered shells, the following

system of differential equations can be obtained, which describe the /231
local form of loss of stability

D^4	 " 	 aim	 • '	 • "'0

	

I., (w) --k, d:o -k•-FirTs,-0- '-t' T• -y '4'2'" as ay	 (755)
a2WL,(4))-k,-d-{-k^ ^y

where L1 (), L2 () designate differential operators in up to fourth order

partial derivatives

LI ( ) " f2 ! Cl, 'Js4 {- 4C' ^ as, d y +

d4	 04	 a'	 .+ 2 (c,, 2c„) -^Z°i^ - + t̂ C•^ as d ya + C^= a y4

L• ( ) ^' ^, La.es•:^ -- 2an a `F-a y +
	 (756)

e•	 a4	 04

+ (2a,, + a3,) asO 
ay, - 2a„ s a + ail ^y

System of Eq. ( 755) is equivalent to the following differential
equation

	

I,L,(ty)-t-(k, ds, -}-k^ ays
)'m= (T; '►:• ^-T• ')y' ^'	 a ay ) 

Ls(tn).	
(757)

In the case of shells of rotation subjected to external uniform
pressure,

T°- - PL' ; T° PR' ^2 - R,=	 z	 ,

, ►nd, consequently, stability Eq. (757) takes the form

204

(758)

9



L,^,(W) +(k,7+^^ 
as
:) W^- a W +(^-i; )^]^(^^•	

(759)

By substituting the solution in the form wswo cos ( hx+n y) in
Eq . (759), we obtain

e- PĤ —	 el d.4 + 4cu ).'n + 2 (ell + 2es) ).t ns +
x' +(2—	 M1

+'c» MM +en h' +
12 (kj X'+k, +)'	 (760)+ as (ate A,4 —2a„ Wil + (Y.a,, + a„) A q —1a„ Xff + a„ +)'

Instead of arbitrary parameters X. n, we introduce new parameters
u, z according to the expressions

uW a 2+h 2 ;	 uz-k 2 A 2+kln 2 .	 (761)

It is easy to show that there are the following inequalities:
	

/232

k, < L < k,. if k, >k,,
k,<a<k,, if k,<k,.}

(762)

By substitution of new parameters u, z for parameters a, n in Eq.
(760), the following formula cA.n be obtained for determination of the
critical external pressure

	

APRI	
U(Z) C

	

d'	 Z— Ifs:	 ( k, — k.)' '	 u /it(a)	 (763)

where homogeneous quadratic functions
,

11($) —a„(s—kl)'+4e,eI=—k,1=' Ia —k,($ +
^	 s

+ 2 (el,+ 2e s)I t—k,ll$—k,I+ Acol $—k,1 2 1s—k' 1 2 +
+ C" (X—V;

	

1,(t)” f2 { 	 Iz--kI + (764)
+ (2aj,+a=)1 a —k, I l s-k, I--,	 J

—2a,31=--k, I x I -- k, i' + a„ (=—k,)'} .
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The right aide of Eq. (763) has the least value for parameter u at

o-
r

U _ tk --k,)Is
(765)

V It ( S )	 (s)

and it is determined by the expression

6PR „ r 2z :	 LI (S

b'	 R' ^ 	 (766)

At the poles of a shell of rotation, when they are spherical points,
i.e., when R 1 MR2•R, the critical pressure is determined by the expres-

sion

281 	
_
.-V/ as — '2a.,P+(2412+ ass) pt_ anµs ta

"
 a ll 	 =	 (767)

consequently, the critical external pressure on a spherical shell is
determined exactly by the same expressions as the critical axial load of
a cylindrical shell.

In the general ease, the critical external. pressure is found by
Eq. (766), by minimization of the right side relative to parameter z,
which inequalities (762) satisfy.
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CHAPTER 14. THREE PLY ORTHOTROPIC PLATES AND SHELLS WITH LIGHT ELASTIC
FILLERS

67. Hypotheses and Basic Relationships Used

Despite the fact that three ply structures with elastic fillers 	 /_2
have a whole set of valuable qualities which are necessary to products
!n the most diverse fields of the national economy, their use until
recently was extremely limited, because of difficulties of high quality
manufacture which ensured complete reliability of such structures in
operation. With the appearance and extensive use of synthetic materials
and reinforced plastics and resins, the possibilities of the development
of reliable effective three ply structures with light elastic fillers
increased sharply. Synthetic cements produced on phenol-formaldehyde
and epoxy resin bases permit reliable joining of bearing layers with
honeycomb or foam plastic fillers. More than that, in the manufacture
of three ply structures, including metal structures, the cement com-
pounds are generally speaking the only possible ones.

In many engineering applications, namely, when great flexural ri-
gidity is required, the structure of three ply shells permits elimina-
tion of the basic structural defect of plastics, comparatively large
yielding to deformation. Therefore, highly improved nonmetal three ply
structures can be produced, especially with the use of fiberglass re-
inforced plastics.

The basic types of three ply structures are presented in Fig. 91.

Polyvinyl chloride, polystyrene or polyurethane foam plastics
Klass honeycomb plastics, foam plastics, cork and balsa, corrugated or
hollow thin walled elements and other light elastic materials can be
used as fillers of three ply plates and shells.

a n^
4	

11 
	b 61

Three ply plates and shells /234
with fiberglass reinforced plas-
tic bearing layers are aniso--
'tropic. Anisotropy of the elas-
tic properties also arises in the
use of asymmetrical honeycomb
plastics, corrugated fillers or
other anisotropic materials.

It should be noted that a
rigorous solution of problems
connected with the calculation

c of	
of three ply plates and shells
is an extremely complex problem.

^ig. 91. Types of three ply shells 	 Th,..efore, to obtain visible
with elastic fillers: a. foam 	 calculation formulas and calcula-
plastic; b. corrugated; c. honeycomb. tion methods accessible to en-

gineering analysis, various sim-
plifying assumptions and hypotheses must be introduced. Reference to
modern computers does not change the situation, since the entire spec-
trum of problems encountered in engineering cannot be specified and



Fig. 92. Normal sec-
tion of three ply
shell with symbols
used.

t

^r

programed beforehand. However, of course, this does not exclude and
does not reduce the great value of exact methods of calculation.

The total number of works which deal with the calculation of three
ply plates and shells is extremely large. However, orthotcopic three
ply shells have been investigated less thoroughly.

We'consider thin three ply plates and
shells with light elastic fillers which are
symmetrical relative to the mean surface of
the structure (Fig. 92). It is assumed that
the materials of which the shells are made are
orthotropic and that their principal directions //2 5
of anisotropy coincide with the coordinate di-
rections on the surface of the shell.

In the discussion, we limit ourselves to
a class of shells in which the loads acting
on the mean surface are entirely bsorbed by
the bearing layers (Ei'62<<Eidl).

We use the hypothesis of a rectilinear
element, i.e., we will assume that rectilinear

elements which are normal before deformation of the mean surface of the
shell remain rectilinear after deformation but, generally, not the nor-
mal deformed meart surface.

According to this hypothesis, the stresses in the bearing layers
and the filler layer are determined by the following Expressions:

in bearing layers 2,<IzI-f

trV'- R I [8 J + V2e2 + Z(x41 +V2x2)J;

02 ) " P2 [62+ V l e t + Z (x2 '+' ytxf)1;
TO) . G ((u+2ax2);

in the filler layer, 747.482
-2

Q(f) ® ` 12) [e t'+ V2 )3 2 '+' Z (x1 '^ y2 )x2)1;
17(2) — B^2 ) [e2 +yf` >e l + 2 (x2 + vt2)x1)

1(2), G(2) (w+2z92);

(768)

(769)

the subscript 11 2" means that the corresponding value refers to the
filler layer.

If the system of stresses which develops in normal sections of
the shell is replaced by the statically equivalent system of elastic
forces and moments and the effect of transverse compression of the fill-
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er layer is disregarded, the following basic elasticity relationships
can be obtained which connect the stressed and deformed states of three
ply plates and shells

T, — at (a& + vies);
T, — B8 (%+ visl);
S - ago;

Gt — —D, (x; + vgx;);

G9- -Ds(x:+v,14);	 (770)
H — —D, x;;

Ql — —Ka %;
Q9 — --98 Y's -

where the rigidity parameters of the shell are determined by the ex-
pression

Iii G(68-681 .

 
2G

2, ( r - a
Kj	 3610+68)t	 b	 361(6+68)

/236

here, 0 13 , G23 are the transverse shear moduli of the filler.

For separate fillers, 0 13 , 023 should be understood to be the

reduced shear moduli which are determined either from some theoretical
considerations or experimentally.

Components of the deformed state of a three ply shell 
c I , Il i eI Yi

are determined from Eq. (10)-(12).

Since the system of stresses was reduced to the statically equiv-
alent system of elastic forces and moments in the mean surface of the
shell, the equilibrium equations are written in the form of (17), with
boundary conditions of the canonical type of (23).

In this manner, all results obtained in the prt-ceding sections for
the forces and moments of deformation and movements of orthotropic lami-
nated plates and shells are completely valid for three ply plates an3
shells with light elastic fillers, if the rigidity parameters are in
accordance with Eq. (771).

The difference in calculations of three ply shells appears only
in calculation of the stresses, which are determined by Eq. (768) and
(769).

It is easy to see that the results will be valid for three ply
plates and shells, the bearing layers of which are made of various ma-

209



terials and have varied thickness, if 4 `»6 1 and the conditions of

elastic symmetry through the shell are satisfied, i.e., if there are the
relationships

v;—vii e;-V;•	
(772)

Because the filler may have extremely low transverse strength, the
normal transverse stresses must also be determined. The following can
be obtained for them:

a (86-6e) G	 G

a' — s a— e,) ^^;+VsY	
(773)

68. Boundary Conditions and Estimate of Error of the Theory As Aplied
to Three y	 es and Shells

The random constantc which occur ir, integration of the Aifferen- ZZL7
tial equations are determined from the boundary conditions. As has
been noted, five independent parameters which define the deformed state
of laminated shells, even in the case of homogeneous canonical boundary
conditions, increase the di l.ersity of types of support fastenings to a
considerable extent.

For plates, the system of differential equations breaks down into
two, one of which describes the planar stretsed state of the plate and
the other describes the bending of the mean 6urface. The boundary
conditions are broken down correspondingly. In the case of bending of
three ply plates, boundary conditions (22) can give the following g: •aph-
ic static geometric interpretation:

DIAGRAMS OF SUPrORT FASTENINGS
OF THREE PLY PEATES

Boundary	 Support Fasten-
conditions	 ing diagram

G -II -Q-O	 C!^
W-T-*-0	 1P

u► •sG-tl-U

w - G - * - O

f
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s'—®Ml —0

Q IP—H-0

Q—®:*—O

Q—C— *-O

The first type of boundary condition corresponds to an unsupported
end, the second corresponds to rigid fastening, and the remaining types
of boundary conditions correspond to various cases of hinge support.

We now istimate the errors allowed by the initial hypotheses and /238
assumptions.	 It is evident that the hypothesis of the rectilinear
element does not take into account the bending of the bearing layers
relative to the mean surface itself which occurs in transverse shear-
ing in the filler layer.

A change of curvature and torsion of the mean surface of the bear-
ing layers due to shearing of the filler layer are determined by the
following expressions

Xs _. I ep ' .	 o _ I 1"%Q18 .
i	 ^ Ks ' %^	 K, toy r

x` 	 t	 t eQ1	 eQ. 	 (774)
I 	 CK, ay ^'W ,,).

Consequently, the rectilinear element hypotheses adopted for the
entire set of shells are equiv,°,,.ent to disregard of the following
quantities in the equilibrium equations, compared with cutting forces

Q1' Q2'

D, 3'P^	 /^a e'Q^ G 	 IQK. dz• + K, ay+ +^^ ;

	

D, ®'Q, Dom, e^p,  c app,	 (775)
K, eys 

+
A,	 as ey

i.e., in determination of the deformed state of the shell, error Cl

1 I the end effect zones, the errors permitted by the initial assumptions
will be larger.
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Fig. 93. Symbols in
stressed state refine-
ment.

compared with unity is committed:

tj W max ( z be	
I" as ) ,	

(776)

where a is the characteristic plan dimension of the shell.

In determination of the stressed state, a somewhat larger error is
committed, namely, {2 compared with unity:

t

Since usually 6 2 /8 1ti0.1- 0.3 in three ply shells, according to the
rectilintar element hypothesis, the deformed state is defined with suf-
ficient accurscy. The error is determination of the stressed state is
somewhat higher. However, as needed, when error (777) is indeterminate,
the stress can be refined if the accuracy in determination of the de-
formed state is sufficient.

Refinement of the stresses is carried out by Eq. (774) 3, by which
the bending of the bearing layers due to shear in the filler layer is
determined. If a coordinate system in the mean surface of the bearing
layers is selected (Fig. 93) and z designates the distance of the fibers
from the mean surface of the bearing layer, the components of the de-
formation which originate in the bearing layers due to transverse shear
in the filler layer are determined by the expressions

e, .. E (x*+v,x.t);

(778)ell,	 .

Consequently, the maximum additional
stresses which were disregarded are determined
by the following expressions

8^ ((	 e`O f max "W, 4 t x .e
e
 + VA);

11,(Y : max "' , 4 ( X;+ V ixel)	 (779)

tmax G ? x,

Finally, if the shell is such that errors in determination of
the deformed state are inadmissible, theories must be used which are
based on less rigid hypotheses. However, the complexity of solution of
engineering problems increases significantly here.
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Fig. 94. Forms of
loss of stability of
three ply shells
with elastic filler:
a. skew symmetric;
$1 symmetric.

e

f

It was assumed in the initial hypotheses that the effect of trans-
verse deformations of the filler could be disregarded. It is easy to
show that the error of such an assumption has the Value C 3 compared

with unity:

max (-.! s ) 'AM -
(780)

where E  is the transverse modulus of elasticity of the filler.

In accordance with Eq. (780), in the case of very soft fillers, 	 /240
i e., filler which satisfy the condition _E^/Ei^.416//R2, the effect

of transverse deformations must be taken into account.

69. Differential Equation of Symmetrical Form of Loss of Stability

In Chapter 5, solutions of some problems of stability of laminated
plates were obtained which, with the abovementioned stipulations, are
valid for three ply plates with an elastic filler. The forms of loss
of stability which were considered there are characterized by distor-
tion of the mean plane of the plate, i.e., they are asymmetric relative
to the mean plane.

As the calculation formulas obtained show, the critical loads in
the asymmetric form of loss of stability increase with increase in
thickness of the filler layer. However, this relationship occurs up to
a certain thickness, beginning at which a further increase in thickness
of the filler layer in order to increase the critical load is useless,
since the possibility of loss of stability in a fundamentally different
form appears (symmetrical wrinkling of the bearing layers occurs rela-
tive to the mean plane). The critical load of the symmetrical form of
loss of stability depends little on filler layer thickness, and such a
form of instability is characteristic only of three ply plates and
shells with elastic fillers, although it is found in laminated structures
in the form of flaking.

Elm_-M-E
a aI

The forms of loss of stability which can oc-
cur in three ply plates and shells with light
elastic fillers are shown in Fig. 94.

We obtain the differential equation of the
symmetrical form of loss of stability by using
the energy method. The total potential energy
of the plate is made up of the potential energy
of bending of the bearing layers, the potential
energy of the filler and the work of external
forces, and it is determined by the following
expression (13):

U — f f 0 (m=, ►oMI WXY, ms, wN , W) dx d y,	 (787-)
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where /241

1,

III (u'aa , V'YY, u ,aY. w., u'Y , I") -

n'1 tU ,^^ c "{° y^'1 ^ll•xa11 'VY -{- ^^t ill,YY `}.' 
^^^f 1ll,xY

Mti z^ -- z^	 ,:	 ,.	 t E (^t1 2 1,21)	 (782)

here Di 1) 9 D2(1), 
D12 (1) , D 3 (1) are the rigidity parameters of the

bearing layers of the plate;

G r'

D 1t f
/)IM:^1)(1)

K
11K 1 C1381-	

/► p	 ^36^^

(783)

E ? is the reduced modulus of normal transverse elasticity of the filler;

	

E, 1 0 -.`11
	 (784),,..	 1 	 t1	 1

^1t^114 a3 `t 	11413"13_.. t1 1L rt11_
.a11^17	 133aI

ai.) are the elasticity constants of an orthotropic filler as a three

dimensional body; C is a random parameter proportional to filler layer
thickness 6 2 , determinable from the condition of the minimum critical
load.

Because the potential energy of the plate has a minimum in the
equilibrium position, deflection of the bearing layers in symmetrical
wrinkling w should satisfy the following differential equation:

	

dr y Ir,c .cx+ Jr by 
Ir)u^ + Jy 1 ^)µ'YY ` c+t ^1nx'^ toy	 (785)Nu, ^:l^.	 (785)

By expanding Eq. (785) according to Eq. (782), the following dif-
ferential equation can be obtained, which describes the symmetrical
form of loss of stability of three ply plates, i.e., the stability loss /242
phenomenon associated with wrinkling of the bearing layers:
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0441,

^)^( ► aĵ -{- 2 (lei ! ) -}' 2DIS ^d^^ . -

_	 • S•u.	 .^	 ®310	 ^• dyu'

^' t 07 i "S• ds dy ^ • dv + '

where, for convenience in practical use, functions m , Q
2 	 rar

parameter, Eare introduced;	 1	 2

L	 E_(N11 2t -4 2 D	 C	 A 2	 2,

TABLE 11. VALUES OF FUNCTIONS m l , Q29 
m3

I6i tt) I	 py (t ► I	 Y, t!) 1	 It s 1 (t) Qr (t ► 	 tS'3 (!)

0 4,0401 I.:13:1 ;>Akk) I	 2.6 5.5110 017:1. 2.358(M 41000 1.31;3 2.(NIO 2 ? 5.716 0.711 2.:1910.2 4.000 1.:3:1:1 l.(kNl 18 5.874 0.69k) 2.424
01 4A)1 1.116 2.108) 2.9 6.042 0.67( ►
0.4 4.(H)'2 1.305 2.009 3 6.206 01650 2.4!240.5 4.007 1.2W 2.012  3.1 6.982 O.&11 n 4.16Y.. Y0 ,t1 4.01.1 .31.21.10,1'2 3.2 6.559 0.61;t 2.51100.7 4.019 1.25'2 2.0 05 3.3 6.738 0..°,97 1'.59(3018 4.011 1.229 211018 3.4 61915 0.580 2.41390 19 41049 11201 2.012 3.5 7.103 01565 3.(1651.) 4.074 1.178 2.018 1	 3.6 7.290 0.531 2.7101,f 41105 1.150 2.026 3.7 7,479 0,537 2.7341.2 4.142 1,121 2,0:15 3.8 7,669 0.523 2.7691.:3 4.187 1,092 2.046 3.9 7.856 01510 :.803114 4.2.14 LOU 2.060 4 8446 0.488 2.8361.5 4,307 1.032 2.075 4.1 8.239 0,486 2,8701.6 4.381 1,002 2,09.1 4.2 8.434 0.475 2.9041.7 4.459 0.971 2.112 4.3 8.637 0.464 2,9391.8 4.549 0,94: 2.133 414 8.824 0.454 2.9701.9 4x51 0.914 2357 415 9422 0,444 3.0042.0 4,759 04M 2,182 4.6 9.22(► 0.434 3.0362.1 4.872 0,858 2,207 4.7 91414 0.425 3.0682.2 41958 0931 2.227 4.8 9.612 0,416 3.1002.3 5.129 0 .As 2,265 4.9 9.8t t 0,408 3.1322.4 5.264 11,790 2.294 5 10.010 0.400 3.1(it2.5 5,410 0.756 2,326

The values of functions ^1, m2 are presented in Table 11, where 	 /243
the value of function m 3 (C) also is given, which can be determined by
the expression

-I it (M).	
(788)

as E-IM
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q'e M r^.

'Ta W A' 2

Ta (F) ^. Vil
	

(789)

0. Some Problems of Determination of Critical Loads of Symmetrical
orm of Stabilit y Loss

As an illustration, we consider some simplest examples of determina-
tion of critical loads in which symmetrical wrinkling of the bearing
layers occurs relative to the mean plane.

Cylindrical wrinkline of bearing layers of three pigstrl . Let
a rectangular three ply plate  w5	 two opposite unsupported ends be
compressed uniformly by distributed forces T lo in the direction of the
unsupported ends. It is evident that wrinkling of the bearing layers
will occur in only one direction (Fig. 95) and, consequently, differ-
ential equation of stability (786) takes the form

D(1 1)
	 t r '	 F'	 ,	 (790)

i as• —' •f 4'a(e) h t dj, 8, a'ia)W	 rat

 hinge support of ends x-0,
XM I, the solution can be sought ir. the
form w!A sin mnx/1. By substituting
this solution in Eq. (790), the follow-
ing expression can be obtained for de-
termination of the critical load:

D(11)+ E' m' n ) -+ ' q's(^ )• 	(791)
`\	 JJ	 g.( I )

Fig. 95. Stability of three 	 The right side of Eq. (791) will	 /244
ply panels in longitudinal	 have the smallest value at
compression.

m a	 ' ^. v, i ►̂	 (792)
r	 ^

Consequently, the critical force is determined by the expression

cr 2e,	 a

Parameter ^ is selected from the condition of the minimum of the
right side of Eq, (793).
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k=

k In the case of soft fillers, when the number of half waves in the
longitudinal direction is small, it should be kept in mind that parameter
E satisfies condition (792)•

If it turns out that the minimum of the right side of Eq. (793)
occurs with a value of parameter & which corresponds to m<l, this means
that only one half wave forms in buckling in the direction of compres-
sion, i.e., the critical load should be found by the formula

• (')	 F•tr	 ( 794)n s	 ' Tl W n
CTS ^i ^. :06, + 4 4a (G)^

where parameter C again is determined from the condition of the minimum
of the right side.

It also is of interest to obtain calculation formulas for determina-
tion of the critical force of a three ply strip with a comparatively
thick filler layer.

In this case, it should be assumed that &-- and, consequently, ac-
cording to Eq. (793),

f,	 O,Iwli	 o	 kIJ	 (795)Cr i — . 1t) ^l„ 1 `1 ^d8 13

	

1	 t

Correspondingly, in the case of soft thick fillers, when one half
wave develops along its length in loss of stability in the direction of
compression, according to Eq. (794), the critical load is determined by
the expression

1a Ull)

fcr° -- ^-^— n E,Gi,•	 (796)

Stability of hinge supported plate during com ression in one
direct on. In compression of a rectangular plate  n one principal di-
rection of anisotropy, differential equation of stability (786) takes
the form

DV) 'J""+ 2 ( DI I 1 2D(l)) ®'w + Dy^l)
d:4	 I2 '^" 3 di d ^	 dye
^ 	 A'-

	 T agu'	 (7974 ► CK, 
e='
JjZ O '^ hs ONO ) '^ , 4'i (^) 1( °' — ds°

By substituting the solution in Eq. (797) in the form w=A sir
Xx sin ny, where

°	 ^► ^	 (79E



for determination of the critical load, the following expression can be
obtained:

+2 (U(ol,)+2Dl)() qs + 4! v'^ (c)•	 (799)

It is easy to see that the smallest value of the right side of Eq.
(799) occurs with the smallest value of parameter n, i.e., when, during
buckling, one transverse half wave forms n • 1, fan/b.

For determination of the critical load, the following formula can
be obtained

+2(D(1'3'+2D!,'))^ )$+4' ^^^a) 	 (800)
with

a	 i	 F•;i^ (G ) + 4U^i) b+ ^{a^G)+di/J`t)'F^()•	
(8011	 )

Parameter C again is selected from the condition of the minimum of
the right side of Eq. (800).

Condition (801) must be kept in mind in the case of soft fillers.
If it turns out that m<l, the critical load must be determined by Eq.
(800) with A:n/a.

Axisymmetric wrinkling of bearing layers of three Ely cylindrical
shell in uniform axial compression. We now consider ax symme r c buck-
ling of the bearing layers of an orthotropic cylindrical shell in uni-
form axial compression (Fig. 96).

Because of symmetry, a unit strip of unit width can be considered.
Because of bhe curvature and elasticity of the filler, the bearing
layers are kept from buckling by a double elastic base as it were and,
consequently, according to Eq. (790), the differential equation of	 /246
stability can be written in the following form:

t ) r)^ 'r	 K,	 dlrn	 f'	 lril)
802

	

D, ds! -- 4 Q2 (r) dz ! 	 by Q,1 ^r)'i' ^^(! ^ t(' -- — r 
d^u
	 ( 802)

dt=

By substituting the solution in Eq. (802) in the form w=A sin
mnx/R, the following expression can be obtained for determination of the
critical load:
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Fig. 96• Stability
of three ply cylin-
drical shell in uni-
form axial compres-
sion.

I•ci"D1)(MI:I1'+

11 )at J
P^CV0+ 	

fi^
MR

1 1 (803)

The smallest value of the right side of Eq.
(803) occurs with

T l —w
81

and it is determined by the expression

7cr 2	 (805)1 DSO>[^ ^',(:)+	 a, I+' ^(ti) 
..h 	J	 4

Parameter C in Eq. (801-') is determined from
the condition of tP a minimum critical force.

In the case of a cylindrical shell with a
quite thick filler layer, the critical load is
determined by the formula

cr	
D^') (E.0 + 

EV ) 61 +	 (806)

where parameter u is selected from the condition
of the minimum of the right side or as the posi-
tive root of the equation

u• ^ C^a u _ b ias ^) e

	

JD(1)2D^UE.Hs 0•	 (807)
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Appendix 1
VLASOV FUNCTIONS 0 1 nch y • cos ky

Y *1111
A .,.	 t

0 1 ;,,: o,>t o n,(► o,a I	 o,^ u,e n,4

0 t 1 f 1 1 1 f 1 f

0.05 180110 1.00115 fA0109 1.00100 11100188 1.0(0175 1.010'18 1.1011 ► i0 1,00017
030 180445 101481 ► 1.004110 MOM) 1.00:181 i.00:120 1.00253 1,00179 1.00192
045 1 AI t 19 1,01084 1,01027 101948 1.01141 1,1107:0 1.110571 1.00402 1.01114►
0.20 1 Aiit87 1.01925 1.018'.'„'1 1.0W81 1101500 1,01273 111111110 1.00701 1.00,11.1
0.25 1 IM % 1.03012 1,02850 1.0241.1.5 1,02331 1.11982 1.015114 1101085 1.105.10
0,30 1,04487 1.).1:140 1.04111 1.03782 1.13:1(10 1102845 1,022.17 1,01538 1,01747
0,35 1.00122 1,05928 1.0.1,,1503 1,050.50 1,1!.11(10 1.0 R57 1,029 I R 1.1120;1;1 1.0040114
0.40 1 A8020 1.07701 1.07:1;10 1.(03126 1.0511;5.1, 1 10500t 1.03897 1.121119 I. ► 1177
0.45 1.10164 1898.50 10929'2 1.08515 107515 1 A!i:t01 1.018!18 1.032127 1.0137:4
0.50 (.12622 1,12199 1,11497 1,10:11(3 11102257 1,07727 1,15920 11038011 1.01537
0,55 1,15334 1,14812 (.14770 1.12726 1.11169 1.09277 1.17052 1.0-:,[18 1.01 Ili i
0A0 1,18334 111135181 1.1(Wt 1.15ti1) 1.1325:3 1.10948 L0821,l 1,(`;'1110 1.011179
0165 1,21 1620 1,210x1.'10 1,19568 1, t 7782 1.1:)197 1.12727 1,041478 1.0 ,1)7 ,,19 1.11610
0.70 1,25209 1;14289 1.22759 1,2!01211 1.171017 t.1 Ua18 1.111747 11A0115 1.01421
0.75 1.29103 11218014 1,210).3 1ZUNI 1,210470 1,111.80 1.120:11 1.11855 1.01070
0.80 1.33315 '.32035 1,3 t 217 1.16951 1,2311411 1.181129 1.13315 1,01275 1.00:);1(1
0.85 07852 1.36:iM 1,3.1877 1,2110-'.1 1 ,2104 4 1.207441 1.1.1576 1.07:179 11.99x105

1 090 1,4'1730 1.4121&3 1.:01117 1.:111.1.3 1,10 0 1,:.''1918 1,15798 1.017tt 0dx3Rt1
0 ,95 1.479151 1.4;1!1.18 1.42627 1.3140211 1.32167 t,51211 1.16951 1.117728 0,0752".
1.01 1,535:16 L51233 1.47117 1.42127 1,35418 1.27;156 1.111021 1.0)5()(8 11.95910
1.15 1159494 11568511 1.1124811 1.413440 1.:3!1180 1,9.128 1.18972 1,010113 :.03910
1.10 1.115844 1162831 1157849 11509,19 1,1.2 E  1,:1181t 111!1785 I	 010314) 11.91(kh)
1,t5 1,72593 1,691613 1.63501 l 111."WAN) 1,:3:3!14149 i.2!)12R) 1 •)::250 0,8811143
1,111 1,7 1,1764 1,75876 1.69411!) 111;06921 1,491 it 1,:93127 11214951 1.1:!811 0,8514!
I'') 1.8731 117 1.82971 1.75717 1.;5721 115:114.1 t..M374 1.211951 1.02(03! 0.8142 :4

1.30 1.95427 1.90467 1.82291 1.710:19 1.56th10 1140111 1.20965 0,99771 11,711895
1.35 1,03958 1.98376 iNII85 1,7(;;)1;1 1114)(;41,1 I.It921 1.'1(1;)61 11317!11;) 0,7171	 1
1140 2,12986 2,007t4 14)(1:1116 1.812.17 1111	 A)!) 1.4:111!31 1,1!114041 031.3710 11.!;.'.7/111
1.45 2,22 5 2 0 2,15493 2.03938 1,14,910(3 1.69323 1.1,012 1.18115.1 0,8"0, 0„!0112
1.50 2,32599 2.2.17:15 2,1182:1 t31115i 1,7,11119 1.46!28 1,11111!) 11.95242 (1.51;)'!1
1.55 2,4:32.12 2,31450 2;1004;) 2.01266 1.75218 1.1-1177 1.1 i917 0.79961 0,1;3050
t.(;0 2,54455	 I 2.446113 2),'281118 2,00738 1,741574 11,178-12 1.12'1!15 0,73!)(11 11„3:131.`,

1.65 2.113282 2.55.184 2.375 W, 2,13259 1.8:3175 1119119 1,11IN119 0,66991; 11,21,1:12
1.70 2'.78154 2.166110 2.46339 '1,199'12' i,80663 1.1+126 1,0,117 0.5!11811 0111.1137
1175 2.411887 2,78447 2.51015 2.200 1,'.00011 1, -,'1 1',01468 0.50:153 -03)1'11,,
1.80 3,05725 2,90828 2.111;531 2.:33591 1,9:316.3 i 16461 0140528 (1.15_'143
1.95 :1,20288 3.):3803 2.76939 2..1(1;3;1 1,101105 1, 11841.1 0,887:1.1 0:19545 --0,30650
1.101 3,35621 3,17391 2,877;!9 2,477:11 1.98.`103 114;'7"i 11.815(01 !1,17.15'1 --0,4712'1
1.95 3.51750 3.34625 2,917:)) 2,54893 2.01203 f.34i14R7 0,732011 0.03872 - 1).6,11172

2,00 3.19722 3,46521 3.1050!3 2.6:'1111 1,03172 t,36327 0163916 - 11.1090; -0,85171
2,05 3,86731 3,62108 3,211509 2.39;032 2.111957 1.31969 0153452 -•(1,;,, 7:3!1:1 ---1.116111:1
2.10 4,15326 :1,78113 3.34873 2,76616 2. 0i; 11 1114 1,26741 0.11701 -011511;:1 1.310K1.t
2,15 4.25057 3951(13 3,47658 2.8.1855 2,06,970 1.20566 0,28(106 -0,64673 t 54 971
2,20 4.45782 4,! 3282 3.0181x► 2.91011 2.072N N) 1,13366 n.11065 -0.854313 -1.817114
2.25 4.675115 4.31907 3.74468 2.98160 2.06814 1,0511511 -0.041120 -104978 --2,104.1;1
2,30 4,101460 4,51360 3994!x3 3,05165 2.05165 0.9511213 -0.19711 -1,.1397() --2,iti47
2,35 5.14.503 4.71692 4,02922 3,12027 2103969 0.84700 -0.:19'.4'24 - 0111989 -	 2,7:4!01 1
2,40 5.39769 4192890 4.17777 3.18702 2.91:1112 0.72174 -0.0151;5 13 011:31 --3.188141
2,45 5.313290 5,15044 4.33024 3:151511 i 978,11 ► 0.58741 -0,8:3482 I	 -2,21497 -1.3:18711
2.50 5,94163 5.38157 4,48693 3.31327 1,93363 0143380 -1.00:0)8 -2,55105 --3.85212
2,55 6.234t7 5,62271 4.04756 3„37186 1.87801 0,26279 -1,36944 3	 --"_,9 1 :12t --4.22467
2.60 6,54150 5,87428 4.81216 3,42661 1.81071 0,07311 --1.36911 -3,29976 - 4,70825
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Appendix 1 continued

A V	 ,

0.3	 0,1	 J 0,5 P.N t),1 t,,l{	 I t
.

2.05 (1.86398 6.136!11

I

419806:1 33771)l 1.73(W;5 -011:1656

,

-1.9!)423 .1.71.71 - 5111188
:.'.711 7.20271 11.81007 5.t52%i 3.52217 1,6:11711 ---6.:3(17.55 --2,31.125 -4.1.,:111 5.lK,l1.K6

2.75 7.558118 G.t30:►i18 J..21014 356225 1.52778 -0.62135 -.1 .7_:18;1 -4.01w, -Ii.t01205
2.80 7.93137 6.90221 :,.50!(37 3.59555 1.3201(1 -0.894141 -3.13150 5.114,11,16 .6.7044)(1
2.85 8.32286 73011;4 5.69118 3,11;.11(1!{ 1,2591,6!4 -1.203:35 -:1..)f014 -	 8.111711.► 7.270:10
244) 8.73:195 7.62398 5.87135 3,6:19811, 1.018;!1 -1„'1:341111 1-IYtn1',,3 - (L20758 -7.851177
2,95 4).10523 7.95970 6A11128 3.04889 11.91621; -1.89562 -4451358 - 6.79918 -8.1117'_0
301 111618114 8.30924 625816 3464812 0.71219 -2.M737 -5.0 132(1!0 -7,42379 --11,111187
:405 10.09288 8,61300 6,45230 .1,10128 0,48511 -.-2,71210 --5,115827 ° 8.118:.'2:, - 9,1511112
3.10 10.59134 9.05157 (1,64877 3,61226 1).23122 --•3.17171 -1;:17141 -8,7707 - 16.41126
3.15 11,11410 0,44543 6,84114 ;1.:14787 -U,1149t11 -1.66827 - 11.9'21',30 - 915	 ^40WI -	 11.111'26
3 :211 11,G62l►8 9.8561'2 744(304 3,5228:3 -6,x5877 -..4.20:” - 1,62215 --10-261166 -	 11.86811!1
:1:25 12.238.35 10,28102 7.24713 3.45AGA - 0.6!1971 - :?S07! -8,3(1114 -11,11 ;6;t1; !'1.61x3!1
3,;111 12.84227 10,72392 7.44833 3.36898 - 1.1171W -5.401 t3 -41,1611;02 11,!11262 13.3753.'o
3,35 13.47556 11.18426 7,64928 3;26161 -1.184'25 -6.10743 - !'..17597 -1°_.77:,:,:t -14.15547
3-40 14,1400(1 11,11(1! 117 7,84!931) 1,!11301 -1 :13'144 - 6,78213 -16,85;'119 -1:1.085 55 1:.94879
3.45 14.83(163 12,15958 8.648!39 3,081188 -2.42151 -7.5476! ► -•-11,7836:; -11.61:'[1'2 -	 15,75.535
3.50 15.56801 1'1.67556 8,211114 2.65115 __2.95411 -8,:16062 •--1'2.76.188 -15.61524 -	 111.57:.'16

3.55 141.33465 1:1,'211411 8,44048 2.61710 - 3.532(x3 -9,242112 -13.97270 -16,61S11S -	 17.311593
3119 17,13893 13,76773 8.63136 2.38835 -4,IGt1(i6 -10,17(141 -14.88737 -17.181178 -18.'2.0'415
3.65 17.98212 1431477 8.81742 232851 -4,84(188 -11.17'70 -!6,0320(1 -18,779611 -19.0.5254
3.71 ► 18,86664 t4.94:167 8.911814 1.8:1486 -5571184 -12=168 -17,23481 -19.11)333 19.87783
3,75 t9.79175 15,56473 9,171!18 1.:4138!1 - 6,371(it ) -13.36262 -18,49626 -:.'01.81661 - 20.695311
3.80 20,7114 ;49 16.20671 9,13806 1,135:11 -•-7,1293 .4 -14.5621113 -19,81;351 -22'21(1x9 - 21,140;3
3.85 21,78597 W,8700 9149:196 11.72379 --8.15:323 -15.83678 -21.:.'111;35 --23-W:-'5t 22288:12
331) 22,85577 17,56755 9.;411:3 01.2(1688 --9.14765 -17.1882:1 -'22.1;4741; -2S,7t1.;1;7 :!:1.)53'1:.'
:3.95 2;1,97!1!;4 !8.'18412 9,77.411 -11.23899 - 10,21(13(1 -18,620114 -28.151;51; - 2:,.9T099 2:678841;

4,00 25,15252 19.02592 9.895St -0,79740 - II.3G53:. -20,13632 -7..73113(ll --27.'20',15;3 --25,18893

4,05 26.3111)7 19,79378 9.99995 -1,4118:1 -12.511511) -21.71072 -27,311852 -28.516`156 - ::^i,1 1 :1119
'.,,7..1	 1

4.16 2767724 X .W13 141.4"m --2.11MIAI
-2.82691

1:;.914:17
-15,:326:!0

23.4:350,6
-25,22..509

t6,n7:11)u
--:16.88071

:'.!1.8x611:!
-;31.2'2141

4,15
4,20

213,0;1144
30,45215

21.411149
22.211123

16.15386
10,199:11) -3,11:13139 -111,8:3708 -:7.11242 -32.67531 -:1:1,5:"42;'1 -26,78';'25

4,25 31.911118 23.14530 16.22286
10,21372

-5,51840
-5.47874

-18,45585
-2 1.17387

-29.10972
-31.19586

-:14,58377
-31653787

-34.25622
-:1;',,:.1 '27!1.'3

-27,19:6*!.,
-21..'413113

450
4„35

33:5011::2
;35,13591

23414677
25.981:18 MUM -6.52177 -'2:',6114'2 -33.39873 -38,56.1:6"► -'41.5481 ► '2 -.'7,723:31

4,40 36.35189 25.95212 10,108713 -7,66079 -2.1.97053 -35.71425 -40.65418 -37,85!;81 -27,8:3:114

b,45 38,64871 26.950'911 10.11345
'

-8,89271
' 1'„112 ,---16;

-'.6,05641
,	 ►-28.:71;3 :.

--• 13.14558
- 0.695914

-4'1.80:389
-45,61'23'2

-39.12572
-40.36186

-27,8'2:,76
-27.08368

4,50 10,53296 21.98128 9,8.ti8.^1

4.55 42.5003 2904356 0,66967 -11.67090 -3(1,63(188 -43,30920 -47,276(16 - 31.5!;483 -27,39''# 11

4.60 44.07849 30,13784 9.43.105 -13.23076 -33.11555 -46,168813 -49,59146 --42,701145 -26,95506

4.65 46.74382 31.31717 9.14267 -1.4.91466 -3.'1,'40798 -49.09825
5:.'.15910

--51111047
-5.137:392

-43.741117
-44.79618

-26,3111115
-25,:4)4:15

4,70 4941685
51.39724

32.42555
33,87685

8.80110
8.39667

-16,72981
-18.1850'2

'#3.(3.'1:368-
-41.6:8.49

-
-55,35688 -56,82665 -45,71.137 -21,48085

4.75
4,811 53,89291 34.84018 7,92413 -20.78880 -44,81`331 -58.09229

62.10867
-5931568
-(11.83397

-46.53374
-47.23746

-23,23436
-21.755:10

4.85 56.50687
59.24635

36.10803
37.40256

7.38061
6.75796

--23,6183t
-25,47916

-48.1!136:3
-51.71916

-
-65.78787 -65.37 .411 -47.81111 -19,996:1;

4,90
4,95 62,11727 38,7:3259 641891 -:.8.00(376 -55,47889 ' —69.15A04 -66-91188 -48,31108 -17316965

5,60 6532517 40.09504 6,24963 -36.88247 -59,4523t; -73,4,*WS -69,49465 -48,50659 -15.14:346

5,05 68.27512 41.49276 43`4X18 -33,87777 -0.64730
-68.67573

-77,52139
-804089

-7245414
-74.60239

-4859207
-48,47601

-12.9979!)
-10,01227

5.10 71,57690
75,03430

42.02.367
44.38708

3,34535
2.22358

--37.085019
-40,51586 -72.74439 -86,10097 -77,12430 -48-13932 -6.06(1[42

5.15
5,20 78,658'1'9 45.88321 0.91890 -44.09400 -77.66756

818;5197
-90.61863
-11.5,28195

-79.61266
-82,04771

-47,51603
-46,71480,

-2.934811
1.:2(1155

5.25 82,45267
86,18845

47,41131)
48.07055

1), PY20
- 1.92328

- S81 10.501
-:i1-290'11

-
-88,31h911 -100,99677 -81.42'603 -45.:',7871 5.76781

5.30
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Appendix 1 continued

Y^sO a

A,1 0,2

51.61383

0,3

-3,60148

0,6

- 56,756x1

O.!,

- 0.5.04925

0, 'A

-tO5MOl(%

o,7

-80170919

O,w

-44.t271iS

p.o

100,7811:,55-15 901,59099
5,40 9(,.95319 52.17881 -5,44448 --(11.51903 -100,(8549 -110.16965 -88.9020:4 -47„3:1377 16.981-1:,01
5.45 WS1992 51,82515 -7,40702 -66,59450 ---5((;.42.598 -115,42341 -90.9082: -40,10782 221,2177119
5.50 tO4..10412 53,49700 -9,68017 -72,0018() -It3.08026 -120AIM - 922 ,91108 -:17,00121 27.57979
5,55 509.29047 57,18.560 -f2XIM9 -77,74550 -I20.0,N192 -126,32459 -94,07071 -;t4.;t)7•S:, :1;,.8411611
50( 114.56230 58,91049 - 14,73709 -83,88201 -127,402.12 -!32.002:14 --98',.17717 -31.14003 41.50:,0,0!
5,65 12045493 00,3643.5 -17.000'1:) -911.3944:) .- ti.i3O81:14 --137,3585.0 -97.65811 -•,►,7,178110 .,'2.15811
5,70 125,80964 62.40272 -20.7.7411; ---97,31680 143.12770 -14:3268901 -98,80,'308 •-22AWAN (AlA1800
5.75 .3.,83259 6447252 -2442851 --SA5.67054 _. 151.5.4511 -14.1,085(18 -9'J,08114 -17-8842 70,10921
5,80 138.14248 05.95152 --27.81 t 48 -112,47794 -16035530 -; 55.7&191 --100,20170 -1LO C,39 80,278:1!0
5.85 144.74585 67.73731 -31.79999 -•520,70217 - 509,55943 -101,96882 -10,5078: -5,112117 111,13112
5,90 151.00326 09,52556 -363189() -129.550104 -179,1791.08 -168222513 -100.:38970 5.:1881'8 502.698:,4
5,95 158,92101 71,331337 --40,78.5M -139.82915 -189:21851 -t74.54713 -99,8089 9.13147 115,3914"
6.00 166.48399 73.09308 -45,82979 -148,75:004) 099,69647 - 180.89052 -98,89312 17.05012 128,02690
645 174.41745 75.86061 -51,271.11 --159,20'.1.'41 -210.01570 -187.20:390 ? -97,4:120:l 26-13046 , 142,88148
6,50 182,72458 76,0UW -5743919 -170,27840 -221,99593 -193-13923 ; -95,0111 37.19141 156,40321
645 191.41508 78,33241 -63,45094 -181918176 -:,';33.83715 -t99,4M1324 -9246568 48,324167 17L*1N111:,
6.20 20052012 80,92277 -70.26384 -194.30270; --241116366 -200,297113 --89.64121 110,381IS 187,: 9"80
0.25 21044462 81-;7021 -77458048 -207,50117 -258,96850 -212,53110 --8,1.7:11102 7:1.47(x1;3 !OVK),)71
6,30 22045596 83.27077 -8.1,11634 -221,355111 -272.27598 -2142051,007 - 81,0871)3 87,011617 222.14811;1
0,35 230,74230 84.92843 -94,01549 -2:16.29(;306 - 2801,45174 -221;0:4810 -75,72058 10:10)(430 251.:,791.4
0,40 241.38600 811,28648 --102.411777 --251.405:.'.', - :(10,1'187 .5	 I --21.10,.18:318 -69,30725 110•2111190 2041,6686111
6.45 253.11772 87.77981 - 112.829)1 268.10668 315,6513 18 -230„37709 - 112,11614 13i,tM58O 281,223111
641( 264,75557 88 . 96289 --12331134 - 284,97725 4 330-319,17 - -241,4230/;1 --53,77017 155.81641 301,8519.3
6.5'5 277,01152 90.26295 -134,44101 -:90:1'5124.1 - 316.94439 --21 11 .79525 - 41.47161 176.21467 :121,008;t;
6.60 2%0,35946 9148137 -916$4010 ••-322.27367 --362,%1656 -25137514 -3:3,91((x; 1:17,11(130 346.11613
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Appendix 2

VLASOV FUNCTIONS 02 = eh y • ein ky

0,1 0.2 0.5	 I o,0 0,7

0 0 0 0 0 0 0 0 0 0
0,011 xAM25 0100050 0,00075 01(()100 II.W125 0,0015(1 000175 0,00200 11.01122,1
030 0.00100 0.00200 0,(103(11 001401 0,()0:11 ► ( 0.00001 0.00701 0,00801 0,0(x)0)
0.15 0.00226 0,00152 OAM77 0.1X1903 0.01128 0101:154 0,01578 (1.)1808 0,02027
0.20 0,00403 0AW)5 0A1:8)7 0101009 0.02010 0,02410 0,028(1) 0.0:5208 0103601
0.25 0.0(1631 O.► 121i2 OA1892 0.02522 ( ►.113149 0,031151 (1.14:1169	 I 0.O,►Ot9 0,0.56,,111
0,30 0.00913 0.01826 0.027.17 1)"3645 0.01551 0.)5452 0.611348 (',07238 0.118122
05 0,032.50 0.0241% 0A3743 0.04984 0.06219 0,07116 ".0860 ► 0.09871 (1111 Mr,
0,40 0,01643 043282 0.04917 0106544 0,081(k) 0.0976:1 0.11351 11,12021 11.14469
0,45 042093 0.04182 0,06202 0.08331 0.10:18: 032412 0,14417 0.10392 0,183:1.5
0,50 0.021304 09►:W2 0.07787 0.103.53 6.12802 0,15390 0.1781)8 0,2"''.9:3 0,22666
0.55 0.03178 0.011'1347 0.094(1(11 0,12(117 0,15728 0.18734 0,21713 0.24626 0.27464
0-60 043817 0.07621 6.11(3318 0,15133 0,18814 0.22427 0,25960 0.29,1119 6.327:13
0.65 0.04525 OA ).12 0119" 0,17912 0.22247 0,26559 0,30019 3,.'31620 0.38471
0.76 0,05365 0.10586 0,15813 0.20904 0;26012 0,:11932 0,15701 0.40295 0,44091
0,75 OA6162 0,12289 0.18346 0,24.301 0,30530 0.35768 0,4123t 0.4114:11 0,51:181
0.80 0,07007 0.14149 0.21110 0,27937 01:1459) 0.41011 0,47175 0,5:1038 0.585111
0,85 0.08116 036176 0.24117 0,31886 0,39423 0,46076 0,53591) 0,60120 0166214
0.90 OA922f1 0.18:378 0,27:380 0,36101 0.44650 0.512777 0.101711 0,67687 0,71350
0.95 0,10430 0,26765 (),30913 0,40782 0.50284 0,59331 0,67844 0,75745 0.82962
1,00 0.11731 0,23348 0,34729 0.45765 0,511343 0,06350 0.15700 0.81:)01 0,921157
1.05 033140 0.26138 0.38847 0,51127 0,62843 0,73870 0.84081 0,93367 1.01624
1,10 0.14063 6,29148 0,43280 0156891 1,09813 0.81891 0,92080 1,0'1144 1,t 1064
t,15 0,10305 0,32401 0,4805t 0,6:x175 0,77,'65 0,90433 LAW 1,130:37 1,25307
1.20 0.18070 0,35880 0,53174 0,613704 0,852:30 0,99531 1,124011 1;23653 1,33129
1,25 6.19971 0,396:31 0,58673 6,76801 0;93727 1,09t93 1.22951 f.317U7 t.44535

1,30 0,22016 0.43662 0,(34571 0,84389 1.02784 1.19441 1,34087 1,464(18 156378
1.311 0.24214 0,47987 0,70888 0,92498 1,12423 1,30301•) 1.45814 1,581372 1,680311
1.40 020573 0.52627 0,77650 1,Ot154 1;22679 1,41802 1.58152 1,71406 1.8t39xi
1,415 0,29106 0.575118 6.8488t 1,16381; 1,33570 1,53957 1.71106 1.14668 1,91351
1.50 0,31820 0.62004 0,92617 1,26228 1,45140 1,66793 1,84698 1,98457 2,07764
1,55 0.34729 0.0627 1,00877 1,30711 1,57407 1180:13:1 1,98933 2.12764 2.23753
1,(10 0.37879 0,74791 1,09791 1.4t1188 1,70557 1,94768 234006 2,27775 2,35726
1,05 0.41185 0.81252 1.191(6 t,53737 1,8418:1 2.09631 2,29377 2.42903 2.49778
1.70 0,44759 038229 1,29154 1,66355 1,98761 2.25437 2,45612 2.5870f3 2,64343
1.75 0,48584 0.955 1,39855 1,79761 214175 2,42046 2,62522 2,741381 2.79035
1.80 0,52674 1.()3635 1.51209 1,1400; 2,30469 2.59488 2.80121 2.91104 2,93861
1.85 0157048 1,12149 L634t9 2AIt11 2,47672 2,77782 2,98400 3.08851 3,08749
1,90 0,61722 1.'11212 1,763(30 1,25150 '2,65839 2,913955 3,17:387 3.'26694 3.23656
1,95 0,66719 1,30907 1,90131 232154 .2,84994 3.17033 3.37049 3.44300 :1.38492
2,00 0,72055 1.41237 2,04787 2.60176 3.05189 3.38038 3.57469 3.62530 3,53202
2.05 0,77755 1,52252 2,20374 2,792118 3,26459 3,59119:.' 3,784:1f► 3.81045 3,6766.5
2,10 0,83840 1,63995 2,36944 2.99481 3,48864 3,82917 4,10143 3,99789 3,81872
2,15 0,90336 1.76511 2.54559 3,20884 3,72433 4,068:18 4.22496 4,18711 3.95643
2,20 0,97267 1,89846 2,73274 3,43527 3,97258 4.31169 4.45501 4.33755 4.08779
2,25 1,04665 2,04052 2,93146 3,67473 4,23261 4,57727 4,69t08 4.56849 4.21548
2,30 1,12552 239176 3,14257 3.92784 4.50626 4,84735 4,93316 4.7591:1 431445
2,35 1,20963 2.35281 3,36653 439535 4.793111 5,12808 538076 4,948711 4.44151;
2.40 1,29982 2.46953 3,60432 4,47788 5,09474 541955 5,43365 5,131134 4,544111
2,45 1,39491 2.70661 3,856.52 4,77623 5,41057 5,72181 5,69128 11,305:18 4.63268
2.50 1.49683 2.90065 4,12406 5.00106 5,74152 0,03501 5,95:334 5,50145 4.70148
2,55 1.605.38 330703 4,40761 5,42326 6,08803 6„35923 6,22099 5,1171370 4,76714
2.130 1,72108 3.408 4,70827 5,77353 6.45077 6,69433 (!18793 5.84537 41801389
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Appendix 2 continued

4;1(8`446 at it r i.0 Is

OF POOR QUALM..

Y-pp
II. -L

11

v,• v ,a 1	 W." 1	 Y,7 {	 11,11 ► 	 0,0

6.14289 618:9101 7,04041 6,75917 13,00(313 4 84309
6.53202 7.22644 7.39730 7413217 11,15742 0:41.10
6,041111► 74~042 7,76497 7.3()579 13,97131) 4.811115
74373110 8137213 8.14310 7,57925 13,42110! ► 4.77011)
7,82777 8,5'2.142 8.53160 7,85128 6.53768 4.10150
8,305130 8911352 8.5:1()19 8.13014 6413368 4.59238
88081)8 9.482117 t► a3.3837 8.381'(;83 6,71078 4.4548:3
9..1371" 9199272 9.75590 81347512 6.1(NH37 4.28144
9.89247

10,47:,98
11418862
11.73180
12.40059
1:3.11441
13,8.5034
1444141:3
15,14874

16,301'93
17,19490

18,12030
19.11k)•19
20,12803

:.' 1.19;144
!2411059
:!:1,47485
?.4,68!x39

:':,,!!5711'„
27,27818

106) 2282

11.07401
11.646;18
12;4061
12.M672
1:3.49551
14.1513311
14,840635
155,4 !40

16,27778

17.01)71
17,51)129
1800028
1:),4:871
20,27,101
`' 1 •! 35!3.9
22,021788
2'2,9;3704
2:3,813584
24,81472

10.18152
104311144
1141.'1834
11 :411384
11,!)111011
12.4':1119
12.88289
13.31805
13.81410
14 27976
14.74310
1 5.202 16
15.65515

113,0!)`)71
113,5:3304
113,!35293
17,35631
17,73P57
1810004
18.43325

8,!)(1122
9,14682
9„'18181
9.(30469
9.81'289

104)0463
10.17661

10.3'2715
10,45262
10,55023

141.61643
10.64817

111,1'.41 tx)
10.5!31 .`13
10,491130
10,:24739
1034:3:12
9.87817
9111 1(Ah4
9,1418.')

6.791106
13431'504
6"7`317
6.72 ?40
6,6:3746
1 111.109,28
6,3393'2
0.12:3!11
5.86946
5.!141431

5.101621
4,72809
4.'512
343511111
'.,!1!1,41 i:i
$•°13'.6341
1,445511
O,1i:3:N?;V

-v.1177811
--1.59'291

44138116
3,81113 ;
3,5151111
:3.1670:3
2,71)71x)
2.31 159
1.79702
1,2111438
0.57556

-0.1391.'
-0-92840
- 1171Ni:r3
•- 2.74754
-3.7,4;,37
_-4;11 ';84

-7.413: ;M'2
--B,R!1;.^111

-	 111, 4:.'.'t 1: 3
---1'2.1171 i:4; 3

2.45 1.84422 3,55978 542678
2.70 1,07547 3,80785 5,36428
2.75 2.11512 447141 5,72159
2,80 2.26392 4.35147 6.1(1)03
2.85 2,42217 4,6488() 6„',0047
2.00 2'..5'1"58 4.06482 6.02449
2.95 2,76982 5:30034 7.37280
340 2.96048 5,65649 7,84730
345 .3,16325 643461 836978
3.10 3.37898 6.43586 8.87910
3.15 3,(3(18'35 6,8(3148 9,43946
3,20 3.85219 7.31324 10.03170
3.25 4.11124 7.79229 iO435728
3.30 4«38981 8.300:M 11,31801
3.35 4,417951 883906 1241548
3.40 540576 9,41007 12,7521.1
3.45 5,32136 10,01552 13.52915
3.50 9.67247 10,65709 14,34941
I 64)•1522 11.1398 2 15.21441
3.60 (3,44142 12,05707 16.12704
3.95 6.86193 12.82013 174)8890
3.70 7:111881 13412821 18.10325
3.75 778279 14,4840.'. 19,11192)
3,80 8,2861:1 15,:39("37 20.299213
3.85 b,82036 16,:14947 21,49442
3,90 9.:38731 17.311476 22,73911
3,95 9,98806 18,43931 24,041'138
4,00 10.92724 19.57670 2.`,,43530

4,011 11.30444 20,77989 26,892117
4.10 12,02282 22.05284 28.427211
4,1S 12,78480 2:1.39911 30,04059
4.20 '159295 24.82307 31,738513
4,25 14,40MA 26,.32903 :33,5~119
4.30 15,35819 27,92118 35,40033
4.35 16.32199 29410462 37,37210
4,40 1734398 31.388319 39,4454X►
4.45 18,42697 33,26452 41,62271
4.50 19,57490 35,25221 43,91034

4.55 20,79078 37,35197 40,31171
4.30 2241"80 39.57080 48834411
4.65 23,444185 41,91487 51,481 4.1
4.70 24,89493 44,:39080 54,2599.1
4,75 26,428138 47,00577 57,17411
4.80 28,05318 49,76587 (10,23129
4.85 29,77446 52.682(36 6:3.43774
4.90 31,59865 55,76074 96430009
4,95 33,53372 5941029 70,32348
5,00 35,57524 62,43977 74.016!x1

54A 37.74028 6645954 77.88'156
5,10 40.03462 69.87976) 81,93984
5,15 42,46241 73,91028 86.18268
5,20 45.03390 7816221 90,62792
5.25 47,75459 82434822 95,27E'u)
5.30 50,931187 87.38073 100,14788
5,35 53.68675 92,37019 305.23799

28,0-5540 25,780:91 18,7:09 8.135990 --2,81880 -13434040
.10,08977 26,76443 19,011'288 809152 -4.16143 -15,724:8
31438:92 27,11;:160 113,221,11,39 7,432230 --5.62710 --17.73110
33.13099 28,775t:9 19.412:143 0,67480 -7,22317 -133,811;:19
305329 211,791x3;1 19,.544'21 5.811'20 -895554► -22,12,02
36,43378 30,83400 19,6:.'006 4.83418 -10,83187 -211.52572
38,179137 31,87475 :943;1104 3,73539 -12,8588'9 -27,05756
39,992.10 32!92155 113.117805 2.50627 -15,043:14 -211.72753
41,87442 MAK871 19,44793 1.13825 -17,39:117 -32,53594
4:1,82618 35,01549 19,23339 -0.37847 --19!91473 -.15.48622
45,84948 36,05376 18!92708 -2,05329 -22,61004 -:38,571334
47.94500 37,08947 18,52211 -3,89591 -25,50:'71 -4130953
:'9.11620 3810728 18,007:30 -5.91088 -244.58517 -45,182813
52,36241 39,1J882 17,37461 -8,12772 -:11,8677:1) -48.69652
54,138461 40,08625 1641128.1 -10.53934 -35,358110 -52.34710
51,08382 41403420 15.71111) -13,113333 -:39,013!32 -;►(3,1:3:101?
59„50233 41:34801 14,05923 -•16,01128 -42,98!x)3 -60,050!31
62.11968 42.81995 13,44368 -19,09696 -47,14317 -64.094117
64.75653 43.64205 12.05721 -22,43158 -51,53051 -68,25749
97.47:,x,8 44.40839 10.4156 -2642900 -56,1509 -72,01007
70,268811 45.10814 868697 -29,90282 -9142880 -76,91670
73,14531 45,73417 0,08361 -34.09773 -136,14922 -81,3941411
76,10094 46.27475 4,441600 -38,53714 -71.52:104 -85,95421
793:3470 46,721511 1,95617 -43,32546 -77.15:140 -90,58623
82,24709 47,09095 -0.80131 -48,49397 -83.04459 -95.270118
85,43551 47.2813t -3,84037 -53,91831 -80,191174 -99,99993
88,69833 47,30868 -7,19733 -59,75210 -95,91030 --104.74623
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Y-i+/
A.. 1

r

0.1 017 0,:1 0,4 0,N 0.0 0.7 O,N 1^„1

530 56.91570 97,67.781 110,'19670 92A:1156 4711137 -10,87677 -65.916891 -102,28768 - 109,497113
5.45 110.33213 10:1.18328 1111.13W3 05.41072 47.090711 -14.11:816 --72.57731 -109.225:di f 14.22:1981
5,:10 63,94794 1090:1412 MAW 98.91506 46,68378 -19.29975 -80.82406 -116.42247 - 118.11060.5
5.55 07.51612 115.39209 128.04440 102.45231 46.10013 --24A8W5 -8704658 --123.87475 123.51111
5.00 71.81292 121.70374 134.40W 1181048117 45;29145 -9.9,20760 --04.0.78(15 --131.571187 -	 129.0111411
5.05 76.10530 128.55643 (41,04662 109.69961 44:13370 -:1014752 -103,28465 -139.52141 --1:12.:18811:?
5.70 80,631100 1.15,77843 147.Y6702 113,41098 4:.9.7872 -41.00691 -•112,108,`19 -147.70011 -13801478
5.75 85.27362 143.388891 155,22747 117.141137 41.:18177 --47.68423 --1.1 1.41775 -1:511.10248 -1411-WAS.14
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Appendix 3
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Appendix 3 continued
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Appendix 3 continued
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