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SNYTHESIS OF REGIONAL CRUST AND UPPER-MANTLE STRUCTURE

FROM SEISMIC AND GRAVITY DATA

Abstract

The principal objective of this study is to combine available
seismic and ground-based gravity data to infer the three-dimensional
crust and upper mantle structure in selected regions. This snythesis
and interpretation proceeds from large-scale average models suitable
for early comparison with high-altitude satellite potential field data
to more detaile.’ delineation of structural boundaries and other vari-
ations that may be signiticant in natural resource assessment. While
the study focuses primarily on seismic and ground based gravity data,
other relevant information (e.g. magnetic field, heat flow, Landsat
imagery, geodetic leveling, natural resources maps) are used to constrain
the structure inferred and to assist in defining structural domains and
boundaries. The relevant seismic data base consists of regional
refraction lines, limited reflection coverage, surface wave dispersion,
teleseismic P and S-wave delay times, anelastic absorption (Q), and
regional seismicity pattarns. The gravity data base consists of
available point gravity determinations for the areas considered. The
primary area considered is the Eastern United States from the
Mississippi River to the Atlantic Continental Margin.

The interpretation makes use of modern inversion methods, digital
analysis techniques, and empirical evidence on density-seismic velocity
relationships for crustal rocks. Results of the first year's study

under NASA Grant No. NSG 5276 are summarized in this report.



SUMMARY

The first year of this investigation (under Grant NSG 5276) has
been devoted heavily to reviewing the available data sources, gathering
previous regional seismic results and commencing a snythesis of gravity
(free air and Bouguer) anomaly data and seismic refraction and reflection
information. (The second year of this research project originally
proposed for a three-year interval is being continued under NASA Grant
NCC 5-19.)

To look for possible large-scale intraplate crustal features in
eastern North America that may be associated with past or current tec-
tonic structural elements, we analyzed 1° x 1° free-air anomaly data.
This analysis included conventional and new techniques developed in
this study for enhancement of structural boundarie-. Several large,
regional blocks (> 500 km in lateral dimension) were identified that
likely reflect deep crustal or upper mantle density differences.
However, the correlation of regional seismicity with these large block
structures is not strong enough to be compelling, although the major
gravity anomaly patterns appear to follow major tectonic trends in the
Eastern United States. Several smaller, distinct structural blocks are
likely contained within each large block and these may be important to
the tectonic interpretation. The details of this investigation are given
in the Appendir. (Abraham Biadgelgne's M.S. paper).

We have also obtained and reviewed especielly carefully the data
from a comprehensive tectonic study of the Southern Appalachian Region
recently conducted by the Tennessee Valley Authority (TVA) that includes

gravity, seismic, remote sensing, aeromagnetic, and regional geologic



observations. These and other data that we have studied in detail
suggest the presence of distinct crustal blocks that have lateral
dimensions of the order of 50 km, and we are attempting to determine
whether this characterization is typical of most areas in the EUS.
Contained in the TVA study area is a major magnetic source body in
S. Central Kentucky with associated strong gravity and seismic anomalies
that extend upward to the base of the Paleozoic section; this feature
and others that we can identify such as the Scranton gravity high are
receiving special attention. In particular these major crustal anomalies
are being investigated and modcled in more detail by R. Hawman in a
M.S. thesis that is in progress. Details of his investigation will be
reported under the continuation of this study (NASA Grant NCC 5-19).

During the past year we have also communicated frequently with
NASA (Goddard) scientists to coordinate our work with the MAGSAT effort
and we plan to continue this cooperative exchange. A vist to Penn State
by Drs. Langel, Taylor, Allenby and Thomas was especially helpful in
this regard.

Based on this initial year's study, future efforts should:
(1) concentrate on obtaining more detailed information on the crustal
structure in those areas exhibiting wodtor (MAGSAT) regional magnetic
anomalies, (2) vefine models of the crustal structure in areas where
seismic results (interpretations) are now lacking, and (3) combine our
models with MAGSAT results. Crustal structure estimates from regional
seismic networks thatare now being operated in the EUS should be

incorporated as well.
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ABSTRACT

An interpretational technique Dbased on the third
vertical derivative of a gravity anomaly has been developed.
The versatility and possible limitations of the method were
evaluated by examining the response for two- and three-
dimensional rectangular prisms with a wide range of sizes
and depths. The effect of the interference of adjacent
sources was also studied. It was demonstrated that for
isolated prismatic models with thicknesses ranging from 0.2
to 20.0 sampling intervals, the third vertical derivative
of the g:ivity anomaly outlines the ¢top surface of the
sources with error bounds of less than 8XZ. For cases in
which the sources were in contact, the boundaries were
delineated by well defined low or hig'i trends. Moreover,
the horizontal distance between the maxima and minima of the
vertical derivatives gives an estimate of the depth to the
source with error bounds of less than 9% if the thickness is
less than two grid intervals. Depth estimation for sources
in contact was complicated by the 1interference of the
extrema of the derivatives. An approach for improving the
results in such cases was proposed.

An attempt was then made to enhance some linear
features in the most recent 1° by 1® gravity data for the

central and eastern United States using the third vertical



111

derivative technigue. Correlation cof the inferred
lineaments ~ith some seismic trends and magnetic features
assisted in outl.ng soma2 1likely crustal blocks. The
problem of the <cuperposition of the effects of regional

shallow and deep structures was discussed.
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CHAPTER I

INTRODUCTION

Quantitative interpretation of data collected 1in a
gravity or magnetic field survey 1involves 1investigating
various types of models that will best fit the observed
anomaly and the known geology of the region of interest.
For this reason, there is no paucity of papers discussing
techniques for evaluating the field due to different model
sources (e.g., Henderson and Zeitz, 1948; Vacquier, 1958;
Battacharyya, 1964, i96€¢). From among such models, the
rectangular block-shaped body has found the most widespread
app{ications in the interpretation of potential field data.
The popularity of the model arises from 1its versatility in
representing a wide variety of geological structures and
from 1{its wutility as a building block for complex mass
distributions. Looking 1into the future, one expects the
model to gain more importance as satellite determination of
the earth’s gravity and magnetic field 1increases the
desirability and the feasibility of studying major crustal
structures.

In the past, various qualitative and quantitative
interpretational techniques have been developed to assist in
determining the physical parameters of field sources. of
all these, a method that has been used extensively to

interpret aeromagnetic data from various geological
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provinces 1is the one first developed by Vacquier et al.
(1958) and later extended by Battacharyya (1964, 1966) and
Jain, et al. (1974). Vacquier, et al (1958) conducted
detailed model studies and showed that the =zero contour of
the second vertical derivative of the magnetic field closely
outlines the top surface of a vertically sided, 1isolated
prismatic model with infinite thickress and vertical
magnetization. Moreover, Jain, et al. (1974) showed that
the horizontal distance between the plotted maxima and
minima of the derivatives gives a reasonably accurate
estimate of the depth to the source.

Standard interpretational techniques have been applied
for :he.gtavity case. However, in the past, no attempt has
been made to apply the Vacquier, et al. (1958) approach.
Hence, 1in this paper it will be shown that the general
procedure of determining the horizontal dimensions and the
depth of a prismatic source is also applicable to gravity,
since Poisson’s relation implies that the second vertical
derivative of the magnetic field of a source is equivalent
to the third wvertical derivative of its gravity field,
provided certain basic assumptions discussed later are met.
Two major differences between the gravity and the magnetic
problems are expected to affect the results of the gravity
case. In magnetics, the prismatic models are assumed to
have infinite thicknesses. This allows one to deal only

with a sheet of monopoles at the top surface. However, 1in
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gfavity, there is a continuous distribution of density with
depth which requires the model be 1limited to a finite
thickness in order to avoid a singularity. Thus, the effect
of finite thickness on the position of the zero contour and
on the estimcation of depth must be determined. An important
advantage of using gravity data over magnetic data is that
there 1s no need to correct field data for 1inclined field
direction, 1i.e., the gravity field 1is already "reduced to
the pole." The 1{implication of these basic factors will be
explored 1in detail in later sections for both two- and
three-dimensional model '. For the sake of simplicity, most
of the analysis will be conducted in the wavenumber domain.

Finally, the interpretational technique will be applied
to the most recent 1° by 1° free-air gravity data of the
eastern and central United States prepared by Rapp(1978).
The main intent of this study will be to enhance some major
linear features suggested by the field data. Some basic
limitations of the data set that make the final outcome of
this aspect of the investigation preliminary in nature will

also be addressed.



CHAPTER II

THEORY

The theoretical framework for the interpretational
technique developed in this paper will be presented herein.
The general approach will be to begin with a review of the
interpretational scheme used 1in magnetics, and then to
invoke Poisson’s theorem to show the nature of the operation
focr gravity data. This will be followed by a discussion on
the gravity effects of a rectangular prismatic model with
finite thickness. An analysis of both the continuous and
discrete forms of the vertical derivative operators will

also be presented in the wavenumber domain for later use.

Magnetic Theory and Its Applications

Vacquier, et al. (1958) have shown that for bottomless
rectangular prisms that have great areal extent compared to
their depth of ©burial, the zero contour for the second
vertical derivative of the magnetic field closely follows
the outlines of the top surface of an 1isolated body. The
theoretical framework for this concept 1is based on the
assumption that the anomalous field results solely from
induction in the earth’s magnetic field and that the field
is nearly vertical. However, experimental work on rock
magnetism by several investigators (Greem, 1960; Ross and

Lavin, 1966; and Battacharyya, 1964) has demonstrated that



remanent magnetization is commonly present and may even
dominate the induced magnetization. Despite this
restriction, a wide application of this rather simple
technique over diverse geological provinces has lead to
significant results (Jain et al., 1974; Bhattacharyya, 1966;
Zeitz et al., 1967). In cases where a relatively strong
remanent magnetization exists at an angle to the earth’s
field, or where the dip of the magnetization vector is too
low, the contours would be skewed to one end of the model
and the inflection points would not mark the edges of the
model (Zeitz and Andreasen, 1967). For such cases, the
asymmetry in the contours may be improved by reduction to
the pole if the magnetization direction is known.

The other main information obtained from the vertical’
derivative operator, in magnetics, 1is the estimation of the
depth to the top of the prismatic source. The horizontal
distance between the maxima and minima of the second
vertical derivative, R, has been related to the depth of the
source, Ds' through theoretical studies and detailed
empirical observations. Jain et al. (1974) have shown that
R varies in almost direct proportion to Ds' or

Ds = CR (1)
where C is a constant that ranges from 1.2 for very narrow
or very wide bodies to about l.4 for bodies whose width is
double the depth. In general, taking the value 1.3 for C

limits the percentage errors in depth estimation to within
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10%. Once again, if the reduction to the pole 1is
incomplete, due to a lack of information on the direction of
magnetization or due to inadequate data processing, the
value of C may be as high as 1.5 leading to erroneous depth
determinations (Jain, 1974). It has also been observed that
for cases in which the distance between different sources is
roughly equal to or 1less than the depth of burial, the

technique provides less reliable depth estimates.

Poisson’s Theorem and Its Applications

The Newtonian or gravitational potential and the
magnetic dipolar potential are related by a simple equation
provided the restrictive assumptions discussed below are
met. Suppose the mass of a body that fills a volume, V, has
a continuously distributed dipole moment per wunit volume,
I?. where I i{s its magnitude and t is a unit vector in the
direction of magnetization. Then, the magnetic potential,
A(?). at an arbitrary point, S, outside the body (Figure 1lA)

is given by
t )R -] (2)

Similarly, the gravitational potential due to a conrinuous
mass of density, D, at the same exterior point, S, 1is given

by

U@ = - Q fﬁ-‘:’y%-' : (3)
v o



k(xvy’z)

—
+ X
x|
L 4
',
A. Spatial Domain
(u,v,2)
—
+ U
u=pcos ()
v=psin(9)
+V

+ Z

B. Wavenumber Domain

Figure 1. Coordinate System.
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where Q 1is the Gravitational Coﬁstant (6.67 x lo-scgs
units). Assuming that the density, D, 1is uniform and the
magnetization, I, is uniform both in magnitude and direction
over the same volume, V, t . geometric factor of Equations 2

and 3 may be equated giving

AP = ---5-11(?) - (4)

The above equation, which is attributed to Poisson (1826),
implies that all the properties of the magnetic potential of
an anomalous body are derivable from its gravitational
potential or vice versa, provided the basic assumptions are
met. For cases 1in which the vertical component of the
magnetic field are considered, Equation 4 nmay be

differentiated to obtain

HZ.L
QD

Q)lq;
o

(5)

where Hz and g, are the vertical components of the magnetic
and gravity fields, respectively.

Equations 4 and 5 have been widely applied in the
analysis of local and regional anomalies. Garland (195ib)
used the relation 1in transforming the Crow Lake gravity
anomaly in the Canadian Shield into a magnetic anomaly, and
demonstrated that the source was non-uniformily magnetized.

Lundback (1956), Ross and Lavin (1966), and Robinson (1971)



9
have applied various versions of Poisson’s relation to
determine the direction of magnetization for two- and three=-
dimensional bodies by the transformation of gravity or
magnetic fields. Recently, a numerical approach that
employs least-square inversion of gravity and magnetic data
in the wave number domain has been successfully used to
determine the ratio I/D, and the direction of magnetization
(Cordell and Taylor, 1971). Kanasewich and Agarwal (1970)
have also applied the theorem in the wavenumber domain to
compare gravity data measured over a large area with the
corresponding magnetic field data reduced to the pole.

In the present study, Poisson’s relation is wused to
relate higher order vertical derivatives of gravity and
magnetic 'fielda- Suppose that the fiela source 1is
vertically magnetized, or that it is reduced to the pole.

Then, Equation 5 becomes

&
H = —

9
z” Q0D a2z . ()

Differentiating twice with respect to z gives

32 I 9} ;
222z QDazi% 7
Equation 7 shows the second vertical derivative of a

magnetic field corresponds to the third vertical derivative

of the gravity field. Thus, one can extend the magnetic
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analysis procedure of Vacquier, et al. (1958) and Jain, et
al. (1974) to gravity anomalies by employing the third

vertical devivative of the field.

Gravitational Anomaly of Rectangular Prism

A right rectangular prism with sides parallel to the
coordinate axis, at depth H below the surface of observation
is shown in Figure 2. The derivation of a closed expression
for the vertical component of the gravitaticn attraction at
an arbitrary point,S(x,y,z), outside of or on the boundary
of the prism was given by Nagy (1966). Through a simple
transformation of his <coordinate system, the general

equation for the field value at an arbitrary pnint becomes

sz - QD| (@ - x)In(E - y+R) + (B -y)in(a - x+ R)

2
G-+ -2 -k
B-y+R (B y)2% (v - 2)2

- (Y - z) arcsin

i,(a)

where the variables are evaluated from xc - A to xc + A for
o, froch- B to YC+B£orP and from H to H + T for ¥
(Figure 2).

The complexity of the space-domain expression 1limits
its usefulness in interpretational schemes for all practical
purposess All the parameters of the prism are contained in
coupled terms and extraction of any of them appears rather
difficult. Moreover, the analytic evaluation of the third

vertical derivative in the spatial domain would be very
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cumbersome at best. The first vertical derivative alone
involves over ten terms, and it is not difficult to imagine
how intractable the third vertical derivative would be.

Alternatively, the gravity effect may be represented by

its Fourier transfiorm given by

o .
G(u,v) = g(x,y) exp(-1(ux + vy) dx dy ,  (9)
“o0
where
o
g(x,y) = '/wr,‘)f%.v) exp(iux + 1vy) dx dy , (10)
-0P

and u and v are wavenumbers in radians per unit length in
the X and Y directions, respectively.

It 1is worthwhile to note that to have a definite
Fourier transform, in strict mathematical sense, a function
needs to be absolutely integrable over the X-Y plane. This
requires the function to go to zero over large values of X
and Y. However, the gravity field of anomalous sources does
not vanish over the surface of observation, and, 1{in fact,
theoretically, 1{t extends to infinity. To overcome this
mathematical difficulty, one must assume that che field will
be defined over 1 large, but finite area of the coordinate
plane and that {t becomes zero outside this domain. A
method for reducing truncation effects that arise from such
fini*eness of the surface of observation will be addressed

in the dara processing section of the next chapter.
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Carroll (1973) showed that the spectrum for a

rectangular prismatic model with finite thickness {is given

by
G(u,v) = _zﬂ exp(~Hp) (1 = exp(=Tp)) sinc(Au)
Tp
sinc(Bv) exr(-ixcu) exp(-iycv) , (11)

wher2 M is the total mass and p2 = uz + v2 (Figure 1B). The

wavenumber expression of the gravity field 4is =impler to
analyze since the parameters are now uncoupled intc separate
terms. The term exp(-Hp) represents the depth term, (1l =
exp(=Tp))/Tp represents the thickness term, and the sinc
functions, sinc(Au) and sinc(Bv) represent the width terms.
It is also noted that Equation 1] may be modified further to
accomodate two-dimensional problems, by assuming the gravity
field to be cornstant along one of the axe;. If, for
instance, the field is constant parallel to the Y axis, the
v dependence in Equation 11 will drop out, leaving the
spectrum for a rectangular porallepiped extended along the Y

axis to infinity (Carroll, 1973), or

ZﬂQM2
G(u,v) = ] exp(-H|u|) (1 - exp(-T|ul))
lsinc(Au)l §(v) ’ (12)

where Hz is the mass per unit length of the source and §(v)

is the delta function.
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Discrete Form of the Nth Vertical Derivative

The vertical derivative of order n has a wavenumber

response given by (Agarwal, 1972)

2,n/2

Fu, v) = (u%4v?) (13)
In particular, for our purpose, the 1ideal third
vertical derivative operator has the form
Flu, v) = (uZ+v?)3/2, (14)

Hence, the third vertical derivative of a gravity field
can be easily obtained by multiplying G(u, v) by F3(u, v) as
shown below

¢3(u, v) = G(u, v) F(u, v) , (15)
and then inverse Fourier transforming the result. The
simplicity of the approach in the wavenumber domain stands
in clear contrast to the rather intractable alternative of
the analytical evaluation of the derivative in the spatial
domain.

The gravity and magnetic effects that observed field
data represent are, in reality, continuous functions, while,
in practice, one often only knows these functions at points
of intersection of a grid. This requires that we discretize
the smooth and continuous vertical derivative operator,
F3(u, v). If we have N data points in the X-direction and M
data points in the Y-direction, the sampling intervals in

the wavenumber domain, in cycles per data interval will be

Aky= 1/ 2and Ako= 1/y . (16)
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Equation 14 then becomes

Dy k) = (1) (At TE el
where k1 and kz are the integers 0, 1, 2, . . . . For the

discrete case Equation 15 may be rewritten as

(k) .ky) = Glky,ky) DO(kpky) - (18)

It is important to note that the derivatives (Equation
17) are independent of the internal mass distribution and
can be computed unambiguously for any observed surface data.
Moreover, the form of the vertical derivative operator shows
the tendency ¢to amplify high wavenumber anomalies and
observational errors relative to broad features in the
surface field. It is, thus, 1imperative to make a detailed
inspection of the spectrum of the measured anomaly, and then
decide which wavenumber range should be operated on and
which parts of the Fourier spectrum should be suppressed,
thereby gaining full control over the output of the

derivative operator.
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Determination of Width and Depth Parameters

In the previous sections we have shown that Poisson’s
theorem Jjustifies an approach for gravity field analysis
equivalent to the magnetic interpretational technique. This
implies that ¢the zero contour of the third vertical

derivative of a gravity field will closely outline the top

surface of a rectangular prism with finite thickness. In
cases where a continuous distribution of sources 1is
encountered, the zero contours would be expected to
delineate the boundaries between the sources. In fact, one

apparent advantage in gravity interpretation 1is that the
anomaly is "n-turally" reduced to the pole. Hence, there is
no problem of the zero-contour being skeyed te one edge of
the prismatic models, as would be the case in magnetics when
the source is not vertically magnetized. On the other hand,
care must be taken 1In specifying the thickness of the
models. In magnetics, the effect of the north and south
poles of the magnetization vectors of a vertically-sided
prismatic model cancel each other except for the ones at its
top and bottom surfaces. This 1implies that the vertical
component of the magnetic Intensity at any point of
observation is proportional to the difference of the solid
angles subtended by the top and bottom surfaces,
respectively. Hence, in the case of bottomJess rectangular

blocks, one has to consider only the effect of a sheet of

monopoles at the top. However, in gravity, there 1is a
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continuous distribution of density with depth, and extending
the thickness to infinity will lead to a singularity. This
requires that, unlike the approaches followed in magnetics
(Vacquier, et al., 1958; Brattacheryya, 1964, 1966;Jain,
1974), the gravity investigation must be restricted to
prismatic models with finite thicknesses. Hence, one must
study the relation of thickness to the position of the zero
contour and determine the range of thicknesses over which
the method works.

Another major application of the vertical derivative
scheme is based on the relationship of the depth to the top
of the source and the horizontal distance between the maxima
and minima of the second vertical derivative of the magnetic
field as shown in Equation 1 (Jain, et al., 1974). It
should also be noted that Equation 7 gives a linear
relationship between the second vertical derivative of a
magnetic field and the third vertical derivative of a
corresponding gravity field. Hence, the method for
estimating the depth to the source is readily transferable
to the interpretation of an anomaly due to an 1isolated
gravity source, provided the implications of t he

restrictions put on the thickness as discussed above are

respected.




CHAPTER ILI

PROCESSING AND INTERPRETATION ON MODEL DATA

To examine the wutility of the interpretational
technique formulated in Chapter II, the gravity anomalies of
several numerical models and their third vertical
derivatives were studied wusing various data ©processing
schemes. For the sake of simplicity and ease of study, most
of the detailed analysis was focused on two-dimensional
rectangular parallelepipeds with finite thicknesses. This
was supplemented by a limited consideration of three=-
dimensional models, to show the effect of having two or more
models that are {n contact or well 1isolated. The overall
reliability and possible limitations of the method were also
evaluated. Several of the more 1interesting two- and three-

dimensional model studies are described herein.

Data Processing

The gravity anomaly for a right rectanguiar prism of
finite thickness was generated using computer programs based
on the Talawani algorithms (Talawani, 1965; Talawani and
Heirtzler, 1964) . The anomaly was then fasc-Fourier
transformed (Cooley and Tukey, 1965) for processing with the
discrete form of the third vertical derivative operator

(Equation 17).
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A problem was encountered early in the study brought

about by the basic assumption that the field btecomes zero

outside the area of observation. Such data-set truncation
in the spatial domain results in high wavenumber
oscillations 1in the wavenumber domain. To avoid this

undesirable phenomenon, a Hanning window was found to be the
most suitable pre-transform filter. The form of the window

used for a two-dimensional data set is

W(x,y) = %— (1 + cos mx) (1 + cos my) o
N M

for x <Nand y <M ,

where N and M are the array sizes of the gravity field data
in the X and Y direction, respectively. For profile data,
one of the variables (X or Y) is set to zero.

Another problem encountered early in the project was
the sensitivity of the vertical derivative operator to the
selection of grid spacing. Model profiles were generated
with even spatial sampling intervals of different lengths.
In general, the results demonstrate that the finer the grid
spacing, the more accurate the computed values of the
horizontal dimension and the depth of the prismatic models.
On the other hand, it 1is 1important to note that the
superimposed grid acts as a filter that retains anomalies
pertaining to sources of certain wavelengths. However, 1in

some geophysical studies 1local or shallow anomalies are of

minor or no interest and should be eliminated. Hence, in
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practice, there 1s a need to wuse a grid spacing which is
commensurate with the structural features being studied
provided alaising of the data-set is avoided. For our
particular purpose, a sampling interval of about 0.2 times
the width of the numerical models gave adequate results in
outlining the top surface of the sources,while a value of
0.1 was required for estimating their depth of burial.
These values result in oversampled data. In cases where
coarser grid spacings were employed, 1interpolation to finer
spacing wusing the bi-cubic spline 1interpolation in the
spatial domain and padding with zeroes in the wavenumber
domain were found to be particularly useful in improving the

results.

Delineation of Block Boundaries

The effectiveness of the zero contour of the third
vertical derivative 1in outlining the edges of an isolated
source or Iin delineating the 1lithologic boundaries of
continuously distributed sources are 1influenced by the
physical parameters of the bodies. Detailed and systematic
empirical 1investigations were <carried out to determine
possible restrictions introduced by these factors. Some of
the most significaat results will be discussed below.

One of the prerequisites for <carrying out a field

survey or a model study is selecting an appropriate sampling

scheme. In field applications, the grid spacing would be
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set depending on the data coverage desired and/or the
logistics of ¢the date acquisition process. In model
studies, they are selected to give reasonably accurate
results without ©being too fine for practical applications.
The proper grid interval selected on this basis has been
discussed in the data processing section. In the subsequent
sections, the procedure followed is to wuse an adequate
sampling interval (0.2 or O.l times the width) for a
particular model and then to vary the physical
parameters,keeping the grid spacing fixed. In this manner,
one determines the range of parameters that will be covered
for a given condition without introducing serious errors.
The standard model wused for this purpose has a width equal
to 12.0 sampling intervals. The parameters were varied over
ranges consistent with the nature of the gravity field data
expected in the next chapter. It should also be noted that,
from now on, the grid spacing 1is the unit of measurement

when it is not specified otherwise.

Two-Dimensional Models

Figure 3 illustrates a typical gravity anomaly and its
third vertical derivative for a two-dimenc<ional rectangular
parallelpiped. The location of the maxima and minima of the
derivative are indicated by A‘ and B’, respectively. The
position of the reversal of sign 1in the wvalues of the

derivative is indicated by C « This corresponds to the zero

contour in the three-dimensional case.

B T i e
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Figure 3. The gravity anomaly and third vertical derivative

for a rectangular prism.
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Table 1 gives a sample of interpretational results
showing the effects of thickness on width estimations.
A two-dimensional rectangular parallelpiped with a width
equal to 12.0 was employed. The depth was kept fixed at
2.0, while the thickness varied from 0.2 to 20.0. The data
indicates that accurate determinations of width with error
bounds of 1less than 2.2X are to be expected over all the
range of thicknesses considered. A slight increase in the
differences between actual and predicted width is noticed as
the thickness 1increases by two orders of magnitude. It
should be noted that, since there 1is a continuous
distribution of density with depth, increasing the thickness
amounts to adding some more mass to its deep end. Hence,
in the limit as the thickness goes to infinity ;ne would be
faced with a singularity. This would, necessarily, lead to
a slowly increasing inaccuracy in the results.

Table 2 shows the effect of using a fixed grid interval
and profile length that were found adequate for a model
width equal to 12.0 for models of other widths.

The depth for all models was 2.0, and the range of width
considered varied from 2.0 to 24.0. The thickness was kept
constant at 4.0. Truncation effects introduced as the
models extend closer to the border probably contributed to
the slightly higher errors for wider models, though the
Hanning window has greatly reduced such effects. The

narrower models, on the other hand, have been greatly
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TABLE 1

EFFECT OF THICKNESS ON WIDTH ESTIMATION

Estimated
Thickness Width Percentage
(sampling unit) (sampling unit) Error
0.2 11.88 -0.7
0.4 11.86 -1.2
006 11084 -103
0.8 11084 -1‘3
100 11082 -105
102 11082 -105
1.6 11.80 -1.6
2-0 11080 "10‘
4.0 11.76 -2.0
800 11.74 "202
12.0 11.74 -2.2
1600 1107“ -202
20.0 11.74 -2.2
affected. The smallest model presented shows an error of
30%. This primarily reflects the effect of inadequate
sampling of the data for the particular case. The same

analysis was repeated for a range of thicknesses extending
from 0.2 to 20.0 and a similar trend in percentage errors
was observed. The only difference was that the thickness
effect makes the overall errors slightly higher as was the
case in Table 1.

Several models were evaluated to examine the influence of
the depth parameter in outlining the top surface (Table 3).

Within the range of practical interest for local and
regional studies, the results are reasonably accurate. As

we probe for deeper sources, the inaccuracy in the predicted



TABLE 2

WIDTH ESTIMATIONS FOR FIXED SAMPLING INTERVAL

Estimated
Width Width Percentage
(sampling unit) (sampling unit) Error

2.0 2.60 " +30.0%
4,0 4,24 + 6.0
6-0 5.86 - 2-3
1200 11!76 o 2.0
18.0 17-60 = 2.2
24.0 23.42 - 2.4

* curve very oscillatory

values increases slightly. In fact, the errors become even
larger when the effect of width _,and thickness shown in
Tables 1 and 2 are included with the depth effect. This
would be especially true for very narrow sources that are
extremely thick. Hence, once again, it is noted that the
extremely narrow sources suffer more than the extended ones.
This is, perhaps, reflective of the nature of the depth term
in Equation 12, together with the problem of 1inadequate
sampling discussed before. The data spectrum in Equation 12
falls off as exp(-H|ul]) with increasing value of H. Thus,
the depth factor acts as a low-pass filter.

It should be noted that the results given in the three
tables cover a wide range of depth, width and thickness that
are quite realistic. If, for instance, a grid interval in a

field survey s assumed to be 10 kmn, the range of
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TABLE 3

EFFECT OF DEPTH ON WIDTH ESTIMATION

Estimated
Depth Width Percetage
(sampling unit) (sampling unit) Error
100 * 11094. '0.51
2.0 11.80 -1.7%
3.0 11060 -3.3z
4.0 11.44 -3.32
500 11026 -6.21
6.0 il.10% -7.5%
7-0 11.04" '8.01

* curve very oscillatory

thicknesses (Table 1) ranges from 2 km to 200 km. The range
of widths extends from 20 km to 240 km, while the depth
varies from 10 km to 70 km. Similar range estimations are

plausible for other grid intervals depending on the field

survey desired. It is also noted that for most of the
ncise-free data that has been ccnsidered, the range of
errors is less than 8 percent. These error values indicate

that the results are reasonably accurate for practical

purposes.

Three-Dimensional Models

To 1illustrate the versatility of the interpretational

technique 1in outlining 1isolated gravity sources, and 1in

delineating lithologic boundaries, several empirical models
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were run using a three-dimensional i12ctangular prism witl
finite thickness as the basic model. Some of the more
interesting results are discussed below.

The effect of truncation was studied by processiing a
segment of the anomaly generated for a rectangular prism of
finite thickness(Figure 4). Several pre-transform filters

were tested in an attempt to smooth the data spectrum and

prevent spectral leakage. However, the output of the
vertical derivative operator persistently showed some
instability at the truncated end. To circumvent the

problem, the derivative operator was designed in the spatial
domain. The set of weights were derived by inverse-Fourier
transforming the wavenumber expression of the third vertical
derivative operator and then truncating it into a set of 7
by 7 coefficients by using a symmetric Hanning window
(Equation 19). The wavenumber response of the filter is
showr. in Figure 5. It is noted that over a wide range of
wavenumbers the behavior of the amplitude response 1is
circularly symmetric as it would be with the ideal case. A
reversal of the curvature of high wavenumber contours occurs
for wavenumbers greater than atout 0.4 cycles per data
interval (cycles/di). This effect, which is also observed
in several cf the wavenumber responses of operators reported
in the geophysical literature (Henderson, 1960; Elkins,
1951; Fuller, 1967) 1is primarily a result of the loss of

circular symmetry cauced by specifying the discrete weights
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Tigure 4. A segment of the gravity anomaly generated for a

three-dimensional rectangular prism (contour intervals in mgals).
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on a square grid (Fuller, 1967). However, most of the
energy content of the data is concentrated below about 0.l
cycles/di, and should not be affected by the asymmetry.
Considerable improvement in the accuracy of the output was
achieved by convolving the set of coefficients with the
gravity anomaly (Figure 6). The resolution of the upper
corner of the body and the delineation of the truncated end
is rather striking. It should alse be noted that the loss
of data around the edges during the convolution process has
caused the origin to be shifted by 3 grid units both in the
X and Y direction.

Figure 7 gives the gravity anomaly of an isolated
prismatic model with its position indicated by dashed lines.
The model has a length of 21.0, a width of 14.0 and a
thickness of 1.0. The upper surface 1is located at a depth
of 3.0. Although the anomaly inflection 1line roughly
corresponds to the vertical boundaries of the prism, the
third vertical derivative of the anomaly enhances this
information considerably (Figure 8). The maxima and minima
flank the zero contour that marks the edges of the body with
reasonable accuracy. Unlike in magnetics, where there is a
preferential shift of the contours towards one of the poles,
depending on the direction of magnetization, the =zero
contour for gravity data shows symmetry around the body.

The anomaly of ¢two prisms in contact is shown in Figure

9. Dashed lines indicate the position of the models. They
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anomaly generated for a three-dimensional rectangular prism (contour
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Figure 8. The third vertical derivative of the gravity field for
a three-dimensional rectangular prism (contour interval=120 mgal/di’)
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Figure 9. The superimposed gravity anom:ly for two three-dimensional
rectangular prisms in contact (contour interval = 10 mgal).
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both have a depth of 3.0 and their density contrast is 0.2
gm/cm3. The map of their superimposed anomaly (Figure 9)
gives the impression of being due to a single source with no
apparent indication of the inner boundary. On the other
hand, the map of the third vertical derivative of the field
(Figure 10) reveals the existence of two sources. The zero
contour closely follows the outer boundaries with reasonable
accuracy, and the contact region 1s delineated by a well
defined low trend. The absence of the zero contour along
the contact 1is caused by the interference of the extrema
from each model. This is a persistent problem also in
magnetics for cases in which the distance between the bodies
is approximately equal to or less than the depth of burial
(Jain, 1974).

To simulate an area with several sources, a model with
rectangular prisms of various orientations and sizes was
evaluated. All the bodies have thicknesses of 1.0. Their
upper surfaces are located at a depth of 1.5. Figure 11
gives the superimposed anomaly of the different sources.
The relative positions of the bodies are indicated by the
dashed 1lines. The existence of the bodies 1is easily
inferred from the map of the anomaly. However, the exact
locations of their boundaries are not quite apparent fromz
the map. On the other hand, in the map of the third
vertical derivative (evaluated in the wavenumber domain),

the sources are marked more accurately with the zero
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Figure 10. The third vertical derivative of the superimposed
anomaly for two rectangular prisms in contact ( contcur
interval = 10 mgal/di?).
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Figure 11. The superimposed gravity anomaly
sources with different sizes and orientations
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Figure 12.  The third ° ical derivative of the
superimposed anomaly for five prismatic sources with
different sizes and orientations. (contour interval=10 mgal/di’)
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contour(Figure 12). It is also noted that the orientation
and relative positions of the various sources are well

preserved by the interpretational technique.

Determination of Depth to the Source

It has been shown in Chapter II that the third vertical
derivative may be emploved to obtain the depth of a
prismatic sourvrce. Equation ! is, in fact, in a form which
would allow one to estimate the depth to the top of an
isolated source. However, it has also been noted that,
unlike in magnetics, the continuous distribution of density
with depth requires the vertical extent be restricted to
finite values. Thus, the imblications of this on the value
of the factor, C (Equation 1), has been studied in detail
for two-dimensional prismatic models.

The general procedure followed in this study involved
measuring the horizontal distance between the maxima and
minima of the third vertical derivative of a gravity field
(see Figure 3) and then studying its relationship with the
depth to the top of the source. This was systematically
carried out by employing numerous models with various
widthg, thicknesses and depths.

A sample of the depth estimations for two-dimensional
models is given in Table 4. The thickness varies from 0.2
to 12.0, while the depth and width are kept constant at 2.0

and 12.0, respectively. For very thick sources (greater



TABLE 4

EFFECT OF THICKNESS ON DEPTH ESTIMATION

Distance between

Thickness maxima and minima
(sampling unit) (sampling unit)
0.2 1.8
0.4 1.8
0.6 2.0
J.8 2.0
1.0 2.0
1.2 2.0
1.6 2.0
2.0 2.0
10.0 2"‘
8.0 2.5
12.0 2.5

than 8.0) the factor C in Equation 1 is 0.80. Fo~r bodies
with intermediate thickness (0.6 to 2.0) it is 1.00. As the
thickness decreases (below 0.6), C increases to l.l4. The
general trend in the value of C is to be expected, since for
decreasing thicknesses, the density distribution slowly
approaches a distribution equivalent to magnetic monopoles
at the top surface of a bottomless prismatic model (Chapter
II). For practical purposes, a value of C equal to 1.07
will, in general, give depth estimates with error bounds of
less than 7% provided the source i3 not thicker than two
sampling intervals. Similar results are obtained when the
above procedure was repeated for wvarious values of the

width. Some of the results are shown in Table Se
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TABLE 5

EFFECT OF WIDTH ON DEPTH ESTIMATION

Distance between

Width maxima and minima
(sampl ng unit) (sampling unit)
4.0 2.0
6.0 1.8
12.0 1.8
18.0 2.0
24,0 2.0
TABLE 6

DEPTH ESTIMATIONS FOR A FIXED SAMPLIIG INTERVAL

Distance between

depth maxima and minima
(sampling unit) (sampling unit)
0.0 0.4%
1.0 1.2
2.0 2.0
3.0 3.0
4.0 4,0
5.0 5.1
6.0 6.3

*curve very oscillatory

The range of depths the interpretational technique will
resolve for a pre-set sampling interval was examined. Table
6 gives selected results for two-dimensional models over a
range of depths extending from 0.0 to 6.0. The thickness

and width are kept fixed at 1.0 and 12.0, respectively. 1f
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the value of C assumed earlier (1.07) 1is wused, the depth
estimates for models located between depths of 2.0 and 5.0
are accurate to within about 9%. However, very shallow
sources (less than 1.0) suffer from large errors primarily
indicating that the selected grid interval was too large for
such shallow depths.

The results given in Tables 4, 5, and 6 cover a wide
range of physical parameters that are of practical interest.
1f, for example, in a field survey the sampling interval is
set to 10 km then the models cover depths extending from O
km to 60 km. The widths considered extend from 40 km to 240
km. For most cases, the percentage error is less than 9%

It is important to realize thaE the above Tresults were
carried out for isolated sources. In cases where continuous
sources (see Figure 12) are encountered, the interference of
the maxima and minima of the various sources 1is to be
expected. If it is impossible to select a representative
isolated anomaly in such a region of intere.t, avoiding
extrema on the side closer to the boundary of a major
source would 1improve the reliability of the results.
Moreover, as has been mentioned earlier, it is imperative to

remove the undesirable effects of small, shallow sources

prior to applying the operator.




CHAPTER 1V

ANALYSIS OF 1° BY 1° MEAN FREE-AIR GRAVITY DATA

In recent years, the theory of global tectonics has
greatly improved our understanding of the dynamic processes
at lithospheric plate boundaries which are believed to be
formed by zones of accretion, subduction, and faulting.
These zones, in turn, correspond to rift systems, trenches
and transform and/or transcurrent fault zones, respectively
(Wilcox, 1974). Linear zones of intense seismic activity
and magnetic anomalies have, in the past, been wused to
identify and delineate such boundaries (Isaacs and Oliver,
1968; Pitman, 1968). More recently, Wilcox (1974) and Kaula
(1969, 1971) have utilized global free-air gravity maps for
the same purpose.

By comparison, little is yet known about the current
tectonic regimes within the interior of continental plates.
Earthquake seismology has not been fully wutilized for
detailed studies of parameters such as focal depth, state of
stress, stress drop, and fault plane solutions, partly
because only a small percentage of the world’s total
earthquakes contribute to the intraplate seismic activities
(Sykes, 1978). Moreover, the seismograph station coverage,
in most areas, is not adequate for detailed studies. This

was especially true 1in the eastern and central United

States, where earthquake stations were separated by a
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typical distance of about 300 km wuntil recently (Sykes,

1978). Hence, the examination of historical records and
present-dey seismic activities in this region has, for
example, lead to the emphasis of certain trends of

seismicity over others (Sbar and Sykes, 1973; Bollinger,
1973, 1975, Woollard, 1958; Richter, 1959; King, 1970).

Thus, at present, there is the need to supplement the
investigations of seismic patterns with the study of
lineaments revealed by satellite imagery, magnetic and
gravity data, and various types of geologic information. In
this chapter we will attempt to show how the third vertical
derivative of the 1° by 1° mean free-air gravity data may be
utilized to enhance certain linear features that may have a
bearing on the identification of ancient intraplate
boundaries, fault =zones, suture zones, continental rift
arms, or other major tectonic features.

Global and regional mean free-air maps have over the
years provided significant assistance in the examination of
tectonic processes both at 1lithospheric boundaries and in
their interiors. One of the major assumptions in such
studies has been that sufficiently 1large areas are imn
isostatic equilibrium resulting in the mean free-air gravity
value being approximately equal to zero (McGinnis, et al.,
1979). Locally, however, it may be different from zero.

This was inferred from the analysis of gravity data, and

from various quantitative and qualitative analyses of
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lithospheric bending under pressure (Gunn, 1949; Heiskanen
and Meinesz, 1958; McGinnis, 1970). It has been shown that
the eartu’s crust behaves like an elastic plate under a
topographic "load" and requircs a relaxation distance of
about 125 km to 200 km , depending on the geophysical
parameters assumed (McGinnis, et at. 1979).

Kaula (1969, 1972) described the tectonic classification
of the global gravitational field on the basis of the
magnitude and extent of mean free-air gravity anomalies for
59 by 5° areas primarily derived from satellite data. He
identified nineteen areas on the earth mostly over trenches,
island arcs and active oceanic rises, as miinly positive,
and fourteen areas primarily over oceanic and continental
basins, as markedly negative. He also determined that the
mean free—-air gravity anomaly over the eastern United States
is zero. Wilcox (1974) in a similar study utilized 1° by 1°
mean free-air gravity values to identify patterns that are
indicative of plate boundaries. He showed that a narrow
belt of intensely negative values usually follows the
present-day subduction zones (or trenches), while a belt of
intensely positive values usually follows ocean rises and
rift systems.

Specifically, within the continental interior of the
United States several attempts have been made to study the

implications of regional { ree-air gravity anomaly (Woollard,

1976; McGinnis, 1970). A transcontinental gravity anomaly
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profile extending from New York to Los Angeles showed that
the United States 1is in 1isostatic equilibrium (Woollard,
1958). Similar results were also reported by Heiskanen and
Meinesz (1958). 1In fact, further studies by Woollard (1962)
and McGinnis (1970) have shown that the relaxation distance
for the continental 1interior is about 250 km, and the
average free-air anomaly value over such large areas would
be expected to be approximately equal to zero. Hence, the
deviation of the mean values from zero indicates 1isostatic
imbalance. The resulting lineations on the anomaly map may
then be wutilized to delineate intraplate boundaries or to
outline major crustal blocks.

In the next sections, some major lineaments seen in the
most recent 1° by 1% me;n free-air gravity data of eastern
and central United States will Dbe 'ptesented. The
interpretational procedure will be enhanced by applying the
vertical derivative filter developed in the previous
chapters. Such linear features, apart from their tectonic
significance are also 1increasingly being recognized as

possible 1indicators of mineral deposits and sites of

hydrocarbon accumulations (Saunders, et al., 1976).
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Correlations of the Mean Free-Air Gravity Data

with Structure

The gravity field data used in this paper are part of the
most recent 1° by 1° mean free-air gravity anomalies of the
earth compilied by Rapp (1978). The terresterial gravity
values for the eastern and central United States are the
updated and expanded versions of the 1978 data set of the
Defense Mapping Agency Aerospace Center (DMAAC) and the
Lamont-Doherty Geological Observatory. Over some of the
continental margins and the ocean areas the data are
obtained from GEOS-3 satellite altimetry. The average
global accuracy of Rapp’s (1978) data set is +15mgal;
however, he noted that in the eastern and southeastern
United States, where gravity data are dense, the accuracy is
expected to be much better (Rapp, 1978).

To facilitate computer plotting and contcuring, the data
were interpolated onto a square grid of about 1/4° by 1/4°
using a program based on the cubic-spline algorithm
published by Davis (1972). The output was then
automatically contoured at a 10 mgal interval using the
Alber’s equal area projection to produce the free-air
anomaly map (Figure 13).

o
free—-air anomalies

The overal! pattern of the e by 1
seems to follow the major tectonic provinces, especially in

the Appalachian foldbelt. The map is very similar to the

by 1° mean free-air map of Woollard (1976) and to the map
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constructed by McGinnis, et al., (1979) for values averaged
over twelve quadrangles (1 by 0.8°). The anomaly values
range from over +30 mgal in the foldbelt to below =50 mgal
over the continental margins.

For ease of discussion, the prominent highs and lows that
occur over major tectonic regions (Figure 14) are marked
with letters on Figure 13, In the eastern central region
linear belts of negative and positive anomalies trend in
the northeastern direction. The inner Piedmont (AD) and the
deepest parts of the Appalachians are associated with a
mildly negative anomaly. On the other hand, a strongly
positive gravity high follows the east central Piedmont
across North Carolina and Virginia (CP). Another prominent
nigh over the Blue Ridge Mountains (BR) is found to the west
on line with the Kane gravity high (KG), in Penn;ylvania. to
the north. The southeastern extension of the large gravity
high passes through Georgia (GF) and loops around Florida
and heads westward along the Gulf Coast. To the north, a
small remnant of the Scrarton gravity high joins the
positive gravity anomaly associated with the Adirondack
Uplift (SA) resulting in a change of the general trend to
the north. Over the coastal areas and continental margins
to the east, the anomalies are predominantly negative (CM).

The belt of large, positive gravity anomalies in the
northwestern corner of Figure 13, 1is a segment of the so-

called midcontinent gravity high (MC), which is even more
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Figure 14. Location of major tectraic features in the

central and eastern United States. 1. Piedmont; 2. Brevard
Fault Zone; 3. Blue Ridge;4. Adirondack Uplift;5. Gett¥sburg
Basin;6. Newark Basin;7. Connecticut Basin;8. Michigan Basin;
9. Wisconsin Arch;10.Cincinati Arch;ll. Illinois Basin;l12.
Mississippi Embayment;13. Atlantic Coastal Plain;l4. Blake
Fracture Zone;1l7. Ouachita Mountains. Modified after
McGinnis, et al. (1979).
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prominently seen in the Bouguer anomaly map of the United
States (Woollard, 1964). It is flanked by a negative
anomaly over the Wisconsin Arch (WA) and by a positive
anomaly over the Michigan Basin (MB). The Mississippil
Embayment (ME), to the south, is associated with a broad,
mildly positive anomaly that joins the Kentucky gravity high
(KH) to the east. There is a gravity low over the Ouachita
foldbelts to the west (QF). A negative anomaly corresponds
to the Cincinnati Arch (CN).

In general, the association of regional changes of 1° by
1° free-air anomaly with major tectonic regimes seems
apparent. As has been noted by King (1970) and Woollard
(1976), these anomalies should largely reflect the property
of the underlying masses, since the surface relief in the
central and eastern United States 1is, on the average,
moderate. There are some notable exceptions to this over
areas with high elevation, such as the small gravity high to
the southeast of the Kentucky gravity high. One also notes
that positive anomalies occur over diverse features such as
the Michigan Basin and the Adirondack Uplife, while negative
anomalies are observed over the Wisconsin Arch and the
Cincinnati Arch. This probably indicates that the anomalies
are not caused by shallow sources.

There have been some attempts in the past to understand

the nature c¢¢ the sources that contritute to regional

gravity anomalies derived from ground measurements or from
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the use of satellite orbital data. Woollard and Khan (1970)
conducted a conventional half-width analysis on 1™ by 12°
free-air gravity data from satellite measurements, and
showed that for the major anomalies considered, the centers
of the contributing masses have maximum depths that are less
than 1000 kms 1in all cases, and not more than 150 kms in
most cases. Woollard (1976) has also made a comparative
study of 1 ® by 1° free-air gravity anomaly with the change
of geophysical parameters along the 45°N parallel across the
United States. He showed that the pattern of changes of the
anomaly ar: related to the integrated effect of the mean
crustal velocity, the values of the crustal thickness, and
the upper mantle velocity. In regions where these
parameters are high, there are positive gravity anomalies.
On the other hand, where they are low, negative anomalies
o

are observed. Hence, it may be concluded that the T by 1

free—air anomalies mainly manifest the overall long

wavelength changes in crust and upper mantle structure.
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Correlation 2£ Data with Regional Lineaments

It has been shown earlier that the zero contour of the
third vertical derivative closely outlines the boundaries of
an isolated prismatic source. For a continuous distribution
of models, the areas of contact were shown to be delineated
by well-defined low or high trends. It has also been noted
that some anomalies in the mean frea-air gravity map (Figure
13) are associated with major tectonic regimes(Figure 14).
In fact, one also observes that some linear features in the
anomaly map are defined by the zero contour together with
some ma jor trends of highs or lows. In this section, the
vertical derivative operator will be employed to enhance
such linear features in the 1° by 1° mean free-air gravity
data for the central and eastern United States.

Sampling theory implies that the scale of features for R
by 1° (or about 110 km by 110 km) data 1is roughly 220 km.
However, the gravity anomaly map (Figure 13) and 1its
amplitude spectrum (Figure 15) indicate the presence of some
higher wavenumber features which might lead ¢to instability
problems when obtaining the third vertical derivative. Such
problems find their cause in the tendency of the vertical
derivative operator to amplify the high wavenumber content
of che field spectrum, which is caused by small, shallow
socurces or by random errors introduced during the data

acquisition, digitization, and/or interpolation processes.

A detailed inspection of the amplitude spectrum showed that
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removing wavelengths shorter than about 250 km (or .04
cycles/di) was adequate for our signal processing schemes.
The data were convolved with a set of 13 by 13 low-pass
filter coefficiente that were obtained using an algorithm
given by Lavin and Devane (1970). The normalized amplitude
response for the filter (Figure 16) shows that 1t 1is
circularly symmetric for wavenumbers less than about 0.l
cycles/di. Hence, it s3hould not introduce any directional
affects in the output.

The filtered version of the free-air data was convolved
with the 7 by 7 set of coefficients of the third vertical
derivative operator that was developed in the previous
chapter (Figure 17). We recall that the operator gives khe
maxin; and minima of the anomaly-curvatures near the
boundaries of the isolated body. The distance between the
extrema was related to the depth of the top surface of the
source, while the zero~contour was found to delineate the
outlines of the body. However, in view of the fact that the
observed gravity field of the eastern and central United
States is the result of the superposition of highly complex
mass distributions, the position of the maxime and minima
from each source cannot in most instances be accurately
isolated. In fact, the interference between the extrema
will have the tendency to complicate the already complex
picture, as is well illustrated in Figure 17. Hence, the

attempt to interpret the results will be directed only
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towards the wutilization of the zero-contour of the third
vertical derivative of the data to identify linear features
in the area. These lineaments may then outline the position
and areal extent of major crustal blocks. In order to
facilitate this interpretation the extrema of the verticel
derivative of the data were removed through low-pass
filtering, and the resulting map is shown in Figure 18.

It is noted that the maps shown in Figures 13, 17, and 18
have become progressively smaller, though the scale is kept
constant. This behavior 1is caused by the 1loss of data
around the edges during the convolution processe.

It should be emphasized that the filtering procedure used
does mnot necessarily eliminate the effect of shallow
features, since any particular range c¢f wavenumbers of the
spect?um contains the contributions from various sources at
different depths. This implies that the gravity effect of
regional structures in the sedimentary layer is superimposed
on the effects of deeper structures. Likewise, the nature
of the 1° by 1° free-air gravity data poses some problems.
Even though the data set is the most accurate to date, there
are still some problems in the data acquisition and
averaging processes that are being worked out (Rapp, 1978).

For this reasons, the analysis, in this section, will be
solely aimed at demonstrating the advantages and limitations
of the third vertical derivative operator for such a data

set. The overall results should, thus, be taken as

preliminary in nature.
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Prominent linear features that are enhanced by the
vertical derivative filter are shown by solid lines in
Figure 18. These lineaments are inferred from zones
delineated by the zero contour, and from areas along which
high or low trends are aligned or terminated. Only the very
distinct features that appear to have possible bearing on
identifying major crustal blocks are marked. The overall
picture in Figure 18 seems to show a bias toward the
dominance of major lineaments in the northeast-southwest
directions. Affleck (1963, 1970) reported that the
aeromagnetic data showed a similar trend as well as a few
others. (He also reported that the vertical derivative
filter was employed to enhance the interpretation of the
data).

In order to form some framework for the analysis we have
assigned a letter to each of the linear features (Figure
18). Lineament A, which is, perhaps, the most persistent
one, correlates with the so-called New York-Alabama magnetic
lineament (King and Zeitz, 1978) all the way from the
southern part of New York to eastern Tennessee. It swings
to the southeast in Alabama, where the "magnetic" lineament
was absent and was actually augmented wusing the Bouguer
gravity anomaly (King and Zeitz, 1978). We also note that
lineament A tends to follow the west side of the Appalachian

gravity low (AD in Figure 13) and also separates a zone of

predominately north trending gravity anomalies to the
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northwest from a zone of northeast trending anomalies to the
southeast. This is clearly seen in Figure 17. Moreover, as
has been noted by Watkins (1964) and King and Zeitz (1978)
for the New York-Alabama lineament, A seems to bound an
active seismic zone over the eastern part of the Appalachian
basin extending from New England to eastern Tennessee
(Figure 19). It also parallels the New Madrid earthquake
zone to the r'est. King and Zeitz (1978) have suggested that
the 2zone may represent an ancient intraplate boundary
between the highly deformed Appalachian foldbelt and the
stable craton of the continental interior.

Lineament B traces the Brevard fault zone throughout its
mapped lergth that extends from southern Virginia to the
coastal plains of Alabama .(Reed and Bryant, 1961; King,
1977). Saunders and Hicls (1976) have noted that satellite
imagery suggests furtner extensions northward into Maine and
southward to the Gulf coast. However, lineament B 1is
truncated in Virginia and merges with New York-Alabama
lineament to the south.

Along the eastern boundary of the Piedmont ('"the fall
line"), there is a belt of earthquakes that extends roughly
from New Jersey to Alabama, along which many major faults
have been recognized (Agarwal and Sykes, 1978; Higgins et
al., 1974). A focal mechanism solution for an earthquake
around Wilmington, Delaware, showed dip-slip movement on a

nearly vertical fault oriented 1in a northeast direction
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(Sbar, et al., 1975). Higgins ,et al. (1974) have also
noted that the pattern of aeromagnetic anomalies suggest a
system of faults that runs from New York to Virginia.
Lineament C appears to correlate with such a zone of
faulting and seismic activity. In the north this linear
feature intersects 1lineament D, which traces the axis
defined by the Appalachian Salient between South Mountain
and the Newport gravity and magnetic high. Further
extension of lineament D to the northwest follows the
Tyrone-Mt. Union lineament.

In the northwestern part of the region, 1lineament G
appears to bound the New Madrid earthquake zone. This
seismic region is the most active in the central and eastern
United States. Historic records that include two large
earthquakes of 1811 and 1812, and recent activities are
concentrated along the northern part of the Mississippi
Embayment, which 1is associated with northeast trending
faults, and large magnetic anomalies (Sykes,1978).

Lineament "H," in the south, partly defines the Blake
Fracture Zone, an ocean floor topographic feature where a
left lateral offset (100km) of magnetic lineaments has been
observed (Pitman and Talwani,1972). On land, extensions of
this linear feature are inferred from satellite imagery and
geophysical data. Bollinger (1972, 1973), ir a study of
historic earthquakes and recent activities defines a South

Carolina-Georgia zone of northwesterly seismic trend which
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is not far from an extension of the fracture zone. The
trend 1is also delineated by several 1igneous intrusions
(King, 196l1; De Boer, 1967), and by some prominent magnetic
anomalies indicative of mafic and wultramafic rocks at depth
(Popenoe and Zeitz, 1977). It is also interesting to note
that the seismic area close to Charleston, South Carolina,
falls close to the intersection of this linear feature with
lineament C.

At this stage of the project, one may attempt to identify
the crustal blocks that are bounded by the major lineaments
keeping in mind the problems brought on by the superposition
of shallow and deep sources. For example, King and Zeitz
(1978) have recognized the aseismic area northeast of the
Mississippi Embayment as a more stable crustal block. It is
bounded by lineament A in the east and the New Madrid
seismic zone in the west. The southern boundary is the zero
contour of the Mississippi Embayment. Its border 1in the
north 1s not <clear from the map though an extension of
lineament D is a possible candidate. Another <crustal block
is, perhaps, what Sykes (1978) <calls the Blue Ridge Dome.
This block 1is roughly bounded by the zero contour (Figure
18) marked by lineaments A, B, C, D, and an approximate
ex nsion of lineament H on the south. It is possible that
one will be tempted to continue such a scheme over the whole
region. For instance, the shaded areas in Figure 18 that

are delineated by the zero contours are some likely
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candidates for crustal blocks. One may then attempt to
study the seismic, magnetic and other data for. the
indicated blocks to determine the difference between their
average properties. However, as it has been stressed
earlier, any detailed and reliable analysis should wait
until the influence of the sedimentary layer is identified

and eliminated.



CHAPTLR V

CONCLUSIONS

The major 1intent of this study has been to investigate
the conditions whereby an interpretational technique that
has been extensively used for aeromagnetic data analysis may
be extended to gravity field interpretation. The
techniqua was based on the fact that, for an 1isolated,
bottemless rectangular prism, the zero contour of the second
vertical derivative of its magnetic field <closely outlines
its top surface (Vacquier et al., 1958). Moreover, the
horizontal distance between the plotted maxima and minima of
the derivative gives an estimate of the depth to the source
(Jain, et al., 1974). An examination of Poisson’s theorem
indicated that an extension of the method to gravity field
analysis was possible. It implied that the second vertical
derivative of the magnetic field 1is equivalent to the third
vertical derivative of the gravity field. However, The
continuous distribution of density with depth required that,
when using the gravity field, the prismatic model had to be
restricted to a finite thickness in order to avoid a
singularity. Hence, a detailed model study was carried out
to determine the effects of the thickness factor on the
interpretational technique.

The rectangular prismatic model with finite thickness was

examined extensively because of its wide applications in the
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investigation of varied geological structurus. The space
domain expression of 1its gravity effect showed that 1{ts
parameters were contained in coupled terms . This made the
analytical evaluations of the third vertical derivative
rather interactable. Hence, for the sake of simplicity,
most of the analysis was carried out in the wavenumber
domain. In some cases, it was necessary to employ a
derivative operator designed in the spatial domain in order
to circumvent severe truncation effects.

An examination of the sensitivity of the interpretational
technique to sampling interval demonstrated that the finer
the grid spacing the more accurate the computed results.
However, a sampling interwal of about 0.2 times the width
for the numerical models gave adequate results in outlining
the top surface of the source, while a value of 0.1 was
required for estimating their depth of burial. In cases
where the grid spacing was coarser, 1interpolation to finer
spacing wusing the bi=-cubic spline interpolation in the
spatial domain and padding with zeroes 1in the wavenumber
domain were found effective in improving the results.

The model study covered a wide rangze of physical
parameters that were of practical 1interest. If, for
instance, a grid interval in a field survey is assumed to be
10 km, the range of thicknesses studied varied from 2 km to
200 km, the depths considered extended from zero to 70 km,

and the width varied from 20 km to 240 km. The overall
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results demconstrated that, for thicknesses ranging from 0.2
to 20.0 sampling intervals, error bounds of less than 8
percent are to be expected on outliuing the edges of the
source. On the other hand, error bounds for the depth
estimate would be less than 9 percent if the thickness is
smaller than twice the grid interval.

The versatility of the 1interpretational techniqu: was
illustrated by evaluating the superimposed anomalies oxf
several three-dimensional rectangular prisms. It was
demonstrated that the zero contour of the third vertical
derivative of the gravity field closely outlines the top
surface for 1isolated sources. In cases where the models
were in contact, the boundaries were delineated by well
defined low or high trends. The orientations and relative
locations of the various models were also well prese-ved by
the technique. However, the depth estimation for sources in
contact was made difficult by the interference of their
extrema. In such cases, wusing extrema that are away from
the contact region gave bet er results.

Finally, an attempt was made to analyze the most recent
by 1° free-air gravity data for the central and eastern
United States. The anomaly map produced was found to be
very similar to that of Woollard(1976) and McGinn.s, et al.,
(1979). The general pattern of the anomalies appears to
follow the major tectonic regimes. It was understood that

the major high and lows primarily reflect the effect of the
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underlying masses, since the mean surface elevation in the
region is moderate. Moreover, the observation of, for
instance, large positive anomalies over both basins an!
vplifts (e.g; the Michigan Basin and Adirondack Uplift)
seems to indicate that the sources of the anomalies are not
shallow in nature. 1In fact, the overall picture ,appears io
support the suggestion by Woollard (1976) that the free-air
gravity anromaly reflects the integrated effect of the mean
crustal and upper mantle structure.

The interpretational technique developed 1in this pa, :r
was employed to enhance the 1linear features observed in the
1 by 1° free-air gravity data. Prior to this, the high
wavenumber content of the field spectrum was removed through
* low-pass filtering. However, it 1is 1likely that the
filtering procedure did not necessarily eliminate the effect
of al? shallow sources. Hence, only a preliminary
analysir of the most distinct lineaments was attempted. In
spite of this restriction,the <correlation of the inferred
lincar features with some seismic trends and magnetic
lineamencs was demonstrated. Some possible crustal blocks
were also delineated by the zero contour of the third
vertical derivative of the field data.

Further wcrk should be done on the relationship between
the inferred crustal blocks and the basement structure in
the region. This probably involves isolating and removing

the effect of the regional stuctures 1in the sedimentary
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layer. Further work should also be done in comparing the
seismic, magnetic and other geophysical data for the

inferred crustal blocks.
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