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EIGURE CAPTIONS

Flg. 1-1 Global maps (l.e., |.R. emitted flux, net flux, and albedo) »f
processeg NIMBUS-6 cdata for July, 1977. Units for fluxes
(watts/m“), for albedo (percent).

Fig. 1=2 Same as 1, except for August, 1977,

Fig. 1-3 Same as 1, oxcept for September, 1977.

Fig. 1-4 Same as 1, except for October, 1977.

Flge 1=5 Same as 1, except for November, 1977.

Fig. 1-6 Same as 1, except for December, 1977.

Flg. 1=7 Same as 1, except for January, 1978.

Fig. 1-8 Same as 1, except for February, 1978.

Fig. 1-9 Same as 1, except for March, 1978.

Fige 1-10 Same as 1, except for April, 1978.

Fig. 1-11  Same as 1, except for May, 1978.

Fig. 1-12 Scale and geography for global maps (l.e., Figs 1-11)

Fig. 1-13  Zonal averages of net radlation flux for April.

Fig. 1-14  Same as 1-12, except for May.

Fig. 1-15 Same as 1-12, except for June.

Fig. 1=16  Zonal mean emltted flux (watts/m?) for Dec - Jan period

Fig. 1-17  Zonal mean net flux (waffs/mz) for Dec - Jan perlod

Flg. 2-1 Net solar radlation at the surface and top of the model's atmosphere
for January

Flg. 2=2 Observed and calculated mean zonal wind 500 mb

Fig. 2=3 Observed (200 mb) and calculated (250 mb) mean zonal wind
Flg. 2-4 Observed (700 mb) and calculated (750 mb) meridional wind
Fig. 2-5 Observed and calculated pressure veloclty w 500 mb

Fig. 2-6 Calculated precipltation and mixing ratio day 91-120



SUMMARY

During the flrst seven months of research on Radlatlon Budget Measure-
ment/Model Ing Interface we have laid plans and completed early work In three

areas: (a) Improved Earth Radlation Budget Data Sets, (b) Numerical Model

Experiment Definition and (c) Review of Concurrent Research by Other Sclentists.
All of these areas of work will be reported In detall via speclal reports now In
preparation. Figures Included In the following sections of the present report

| Illustrate the work In prog-ess.



1.0 Improved Earth Radiatlion Budget Data Sets

As a gulde to selection of climate model Ing experiments we are continulng
our early work by processing and analyzing the NIMBUS-6 data. The flrst two
years ot NIMBUS-6 data as well as earller data, which have been previously
processed, were reported by Stephens at al. (1981). In recent months we com=
pleted the processing of the third year of NIMBUS-6 data. Unfortunately, the
data quallty from June, 1978 *% ough October, 1978 was Insufficlent to provide a
meaningful analysis ot ihe earth's radliation budget for this period. Thus, the
third year of data extends from July, 1977 to May, 1978. The processed results
for the "third year" of the NIMBUS-6 data are shown In Flgures 1-1 through 1-11.
The scale and geography for these global maps Is shown In Figure 12. These data
are being combined with earller data (see Table 1) to form the most up-to-date
climatology of the earth's radiation budge* from which the model work noted
below will be guided. Speclial attention has been directed to the April = June
perliod, which Is hypothesized by the P. |. to be a principal time of potential
Interannual variabllity In the radiation budget.

From the processed data generated from the satellltes referenced In Table
1, we have computed the zonal averages ot net radlaticn for the three months
mentioned above (Figures 1-13 through 1-15). It Is still uncertain whether the
differences observed in these zonal averages are, In fact, manlfestations of anr
Interannual variabllity within the earth's radiation budget, or If they are
merely artlfacts of the various satellite sampling systems.

Assuming satelllte problems to be minimal, the Northern Hemlsphere winters
of 1975/76, 1976/77 and now 1977/78 are particularly Interesting. In contrast
to Campbell (1981) who surmised only minor dlfferences between 75/76 and 76/77,
our preliminary results from this research show 75/76 and 77/78 to be strikingly

simllar In terms of radiation budget - with 76/77, the winter of major North

-



—

g

.

J. K R 100.0000 UL

Figure !-|

187 77 17

MAX 350. 00 INC 20.000  W/Mwx2 FLUX
MES-236.567-236.567 GLB-235.397-235. 387
TR RSSEND INVRS ]S DECON

A
EITT

MRX 300.00 INC 20.000 W/Mxn2 FLUX B
MES -.S4) - -.930 GLB ~-.188 -.198
NET FROM. EM DEC 15 RLLDDEC 15

MAX 100.00 INC 5.0000  W/Mxx2 FLUX Y4
MES  .293 87.796 GLB  .293 97.48S
DAILY RVERREF RSSENDLANDMD SRT




o fae, o

L -0, 0000 % 31).0.00 Uy

m. o000

L 100.0000 ¥ 330.0700 OCL  20.0000

9.0C00 ®  100.0000 DEL §.0000

L

Figure I-2
187 87 77
MRX 350 N0 .. INC 20.000 W/Mww2 FLUX 1

MES-235.316-235.316 GLB-234.137-234.137
IR RSSEND 'INVRS 15 DECON

5 L
L 1]l
ns
e IR

= . N 22/ e — L .
=7\ T S :
@ S PN =DX,
o2
e — R
= —_——————
I.r : -
MRX 100.00 INC 5.0000  W/Mwx2 FLUX §

MES .287 96.959 GLB .286 96.064

DRILY RVERREF RSSENDLANDMD SAT.

=== o

=

M@\V/e

MRX 300.00 INC 20.000 W/Mxx2 FLUX B

MES 4.935 §.875 GLB S.24yy 5.2uy
NET FROM EM DEC 15 ALLDDEC 15




P SR —

Figure 1-3

17/ 87 77

MAX 350.00  INC 20.000 W/Mxw2 FLUX 1
MES-233.586-233.586 GLB-232.278-232.278
IR RSSEND INVRS 15 DECON

L 100.0000 ¥ 350.0000 DEL  20.0000

MAX 100.00  INC 5.0000  W/Mwn2-FLUX
MES  .288 998.17) GLB  .288 88.15§
DRILY RVERREF RSSENDLANDHD SAT

MARX 300.00 INC 20.000 W/Muw2 FLUX B
MES 11.294 11,155 GLB 10.4y82 10.uB2
NET FROM EM DEC 15 ALLDDEC 15 ’




Figure |-4
18710/ 77

MAX 350.00 INC 20: 000 W/Hxw2 FLUX
MES-229.666-229.668 CLB-228.630-228.630
IR RSSEND INVRS 15 DECON

L 100.0000 ¥ 330.0000 XL 20.0000

MARX 100.00  INC 5.0000 W/Mxx2 FLUX §
MES .299 104.529 GLB ~ .302 104.S.y
DRILY RVERREF RSSENDLANDMD SAT

9.9000 ® 100.0000 DL

L

Scopra=

o aZe
7“ o N, L

e ac"q-.,

ot e 3l et ] e 8

MAX 300.00 INC 20.000' W/Mux2 FLUX 8

MES 15.161 14.974 GLB 13.9G5 13.805
NET FROM EM DEC 1S5 RLLDDEC 15 '

L -VAreE & 20,0000 BIL




s =

DRp— L R

f—; 8 ey

VURIGINAL FRUGL o
OF POOR QUALITY

Figure |1-5
177117 77
.
MAX 350.00 INC 20.000 H/Ms =2 FLUX )
MES-225.777-225.777 GLB-225. 133-225.133
IR RSSEND INVRS 15 DECON b .

==\

§
é :’ AR SENE" cH
- P = Q. () tl
12 8 o QITIAS
= N
i ' -
I |
- Ri1] e [N
: |

MRX 100.00 . INC S5.0000 H/Mxx2 FLUX N

MES .311 :108.718.CLB .317 111.636 )

DRILY RVERREF RSSENDLRNDMD SRT

=S Tl = . =

i o
. ° o »
' ‘ @ °| v @‘ »
£ XL ) N
. \o NV ( Ju N~
= "
® Ed had ('L
| ] - -

MRX 300.C0 INC 20.000 W/Mun2 FLUX B8

1 =% 0000 » 3o mw ey
I
0 . B .

MES 18.135 17.912 GLB . 16.738 16.779
NET FROM EM DEC 15 RLLDDEC i5 '




Figure 1-6
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Figure 1-9
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Figure I-11
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Flgure 1-13
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Figure 1-14
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Figure 1-15
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American weather anomalles, distinctly dlfferent from the preceeding and follow=-
Ing years. DIfferences can be noted In the December-January zonal means for
emitted and net fluxes for these years (Flgures 1-16 and 17, respectively). The
fact that the emitted flux (Figure 1-16) In Dec. 76 - Jan. 77 was larger at
higher latitudes (60°N - 90°N) and lower at mid-latitudes (30°N = 90°)N In
comparison to the other years may be Indicative ot the strong and persistent
atmospheric "blocking" patterns which characterized this perlod In the Nothern
Hemisphere. For under such blocking conditlions, the Increased meridional clr-
culation would allow anomalous amounts of warm alr to be advected Into higher
latitudes which, In turn, would result in Increased longwave emission. Conver=
sely, at mid-latitudes, the Increase In cold alr advection assoclated with the
blocking flow would result In decreased longwave emission. Since the NCAR
Community Climate Model (CCM) has recently replicated the blocking situation
found over North America during the 1976/77 winter (Blackman, 1981), our model
experiments planned for the remaining portion of the research perlod of thls
contract Have additional Impetus potentlal.

A more complete documentation of the new NIMBUS-6 results, as well as
preliminary discussion, Is In preparation (Clesielskl, Campbell, and Vonder
Haar, 1981). This speclal report under the present contract will be patterned

after Ellls and Vonder Haar (19/6) and Campbel|l and Vonder Haar (1980).

2.0 Numerical Model Experiment Definition and Tests

Two complementary models are presently under development. The first Is
a statistical-dynamical model patterned after the recent work of Ashe (1979).
It contalns very crude vertical resolution (only two levels; but In principle,
more can be added) and an arblitrary horizontal resolution. The horlzontal

dependence Is represented by spectral components, which have recently been

=[O
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demonstrated superior to a finlte difference grid. Because the dissipation Is
often modeled by horizontal diffusion, It Is useful to use spherical harmonics
a: the spectral basls functions.

In this first model approach, the diabatic forcing Is assumed temporally
constant (e.g., a seasonal average) and we solve for tha steady clrculation as a
response. Translent motions (l.e., weather) are parameterlized as dissipative to
the steady circulation. To make the model tractable, the results understand-
able, and the energetics simple, a dynamical approximation to the primitive
equations Is assumed. At present the "|Inear balance" system Is belng used
because IT Is the simples’ quasi-geostrophlc~type system which Is valid
globally. Desplite the "! near balance" label, the vorticlty and thermodynamic
budgets are fully non-linear. This Is the chlef distinction from the generatlion
of Ilnear models (e.g., Sankar-Rao and Saltzmann) used In the 1960's; In those
ear|ler studles, the mean zonal flow was specifled a prlorl Independent of the
standing eddles. Hence, a large part of the general clirculation was assumed,
and not necessarlly consistent relative to the eddles. Here we take the much
more satisfying appr;ach of finding both the mean flow and the standing eddles
which result from a prescribed statlionary forcing, consisting primarily of
radlative heating/cool Ing, latent haat release, a~d sensible/latent heat flux
from the surface.

Unfortunately, this Important aspect ot reallty also makes the problem much
more difflicult to solve, because a non-|Inear system of equations mucr be
solved. There Is no unlversally appllicable method for finding the non-|Inear
solution; Indeed, there Is not even a guarantee of a unique solution or of any
solution at all. Because ot Ashe's results, we are confldent that a solution

can be obtalned. At present, we are attempting three methods »f solution:
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(1) Iterate In time from a simple Inltlal condition to the asymptotic
steady state.

(2) Use a standard IMSL non-|Inear equation solver. (Unfortunately, thls
method depends cruclaily on Initlal condit!ons, which .*ay not be
sufficlently precise.)

(3) First calculate a |Inear response and then use this solutlion as the
Initlal guess In the Iterative methods (1) and/or (2).

We stil| have a signlficant amount of work to do In this area In order to

obtaln the non-|Iinear solut!on. Because of the notorlous difficulties with

non=lInear systems of equations, there Is no guarantee of success.

The second model approach makes simllar dynamic approximations, but .
explicitly calculates the time evolution of the flow. Thus, time-dependent i
radlation can be taken from observations (Including the seasonal cycle and the
Interannual variation), applled as a forcing, and the respcnse of the atmosphere
computed. The Indlvidual "synoptic" flows can then be averaged to obtaln
monthly means, seasonal means, and Interannual varlations. Thus, we wll| be
able to find whether or not the atmospheric clrculation Is sensitive to exter-
nally specifled changes In radiative forcing. In turn, this will gulde our
understanding and Interpretation of the present and future radlation budget
measurements from sateilltes.

the prellninary develop=ant of the latter model is belng dore by Adel
Hanna, a Ph. D. student, unier the ausplces of other funding sources. Duane
Stevens Is advising him In this research effort. As this model Is In an early
development stage, results are of a very preliminary nature. Further "tuning”
of the physical parameterl|zation will probably be required In order to attaln an
approximately veritable simulation of the annual average and seasonally-varying

circulation. The following represents some of these preliminary results.
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The second model under discusslor Is a two-level global "llInear bulance"
model. In the horlzontal domaln a rhomboldal spectral truncation Is assumed
(presently, we truncate at zona! wave no. 9). In this section the results of
time Integration of the model up to 120 days, to simulate the Jaruary clrcula-
tlon, are discussed.

The mode| was Inltlated assuming an atmosphere at rest and with constant
molst adlabatic lapse rate (6.5%/km). Assuming a perpetual January forcing, the
solar Inclination Is fixed to that of the first of January. Figure 2-1 shows
the net solar radiation at the top of the model's atmosphere and the net solar
radlation absorbed by the earth's sur face et different latitudes In the model.
Except the Artic Ocean, sea surface temperature were prescribed as the January
climatological values. Orographic effecis are parameterized through the verti-
cal motion at the 1000-mb level.

The winter observational estimations for different varlables were taken
from Newell ot al. (1971). Data for the average Januzry were taken from Oort
and Rasmusson (1971).

a) The Average Zonal Wind

The zonal wind component at different grid points was averaged In
latitude and time (30 days). |In the northern hemisphere (winter hemlsphere)
the average 500-mb zonal w!nd compared well with the observed pattern (Figure
2-2). The same for the 250-mb distribution (Flgure 2-3). The observations

1 1

show a westerly Jet at 30°N (20 m sec™' at 500 mb and 38 m sec” = at 250 mb).

The calculated values place the maximum zonal wind at 23°N with maxima of 15 m

! and 25 m soc" for the 500-mb and 250-mb cases, respectively. |t can also

sec
be notlced that the calculated averages for the perlod 61-90 days show nearly
the seme values as the averages for the perlods 91-120 days In the case of 500

mb, also the same agreement between the 31-60 days average and 91-120 days In

=24
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the case of the 250 mb. This Indicates that the zonal momentum Is reaching a
statistical steady state.

In the southern hemlisphere (summer hemisphere) the calculated values have
less agreement with observations than the northern hemlsphere case. In both the
calculated 500-mb and 250-mb cases, the westerly Jet In the extratroplcal
southern hemisphere Is much damped and shifted. On the contrary, the equatorlal
easter|les are amplifled and broadened to reach the southern hemlsphere mid-
latitudes. The varlablllty between different time averages for both 500 mb and
250 mb may suggest that values at thls reglon need a longer simulation than
already have been done.

b) Meridional Wind Component

The zonal ly averaged meridional wind component Is belng calculated from
the zonal |y-averaged veloclity potential. The latter Is at least one order of
magnltude smal ler than the veloclty stream function (In middle and high
latitudes). Even observational estimates show a large varlabllity between
winter and January cases (Figure 2-4). In the northern hemlsphere the calcu-
lated averaged meridional velocity at 750 mb changes Its sign corresponding to
the vertical mass flux at 500 mb (Figure 2-4), valldating the mass continulty.
In the southern hemisphere the areas of equatorward flux (positive v) are not
simulated since the vertical mass flux Is malnly upward (negative w).

c) Vertical Veloclity

The observed and calculated 500 mb vertical velocity fleld (units IO-‘

i mb sec-‘. respectively) Is shown In Figure 2-5., Agaln In the

mb sec-', 10
northern hemlsphere the calculated values resemble the observed phase but wlih
smal ler amplitudes. The mlidlatitude ascending motions and the subtroplcal
subslidence are well flitted with the observations. The calculated subtropical

subslidence occurs In a rather broad |latitude band In comparison to that which Is

observed. Thls featire may account for the same mass flux to counter the
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decrease of ampl!tude. In the southern hemlisphere maximum shifting with the
ITCZ Is shifted to 30°S with a very weak subsidence In the extratroplcal
latltudes.
d) Molsture Budget

The model uses a simple molsture budget equation In the lower |ayer
with the assumption that the upper ‘ayer Is dry. Preclipltation occurs with
release of latent heat of condensation when the relative humidity of the lower
layer exceeds 80%. The model's atmosphere Is convectlvely adjusted If the
temperatury lapse rate, after the release of latent heat, exceeds the saturated
adlabatic lapse rate. Flgure 2-6 shows the zonally averaged preclipltaticn and
mixing ratio (gm/gm); both have a reasonable distribution except the subtroplical
maxima at 30°N. This Is a result of the critical relative humidity assumed for
precipitation (80%). At the subtropical latitudes the relative humidity may

exceed 80% without any precipltation.
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3.0 Revlew of Concurrent Radlatlon Budget Research by Other Sclentists

During the last year new papers and reports by Ohring, G. Smith et al.,
Gruber, Hansen at al., and others have continued the study of earth radlation
budget and related modelIng. We are reviewing these papers as they relate to
our work on thls project. They will be referenced In our reports In prepara-

tion.
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