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USE OF AN ENGINEERING DATA MANAGEMENT SYSTEM IN THE ANALYSIS OF
SPACE SHUTTLE ORBITER TILES

Gary L. Giles* and Maria Vallas**
NASA Langley Research Center

Bbstract

This paper demonstrates the use of an
engineering data management system to facilitate
the extensive stress analyses of the Space
Shuttle Orbiter thermal protection system.
Descriptions are given of the approach and meth-
ods used (1) to gather, organize, and store the
data, (2) to query data interactively, (3) to
generate graphic displays of the data, and (4)
to access, transform, and prepare the data for
input to a stress analysis program, The rela-
tional information management system was found
to be well suited to the tile analysis problem
because information related to many separate
tiles could be accessed individually from a data
base having a natural organization from an engi-
neering viewpoint, The flexible user features
of the system facilitated changes in data con-
tent and organization which occured during the
development and refinement of the tile analysis
procedure, Additionally, the query language
supported retrieval of data to satisfy a variety
of user-specified conditions.

Introduction

The metal primary structure on the external
surface of the Space Shuttle Orbiter is pro-
tected from the thermal environment by an array
of over 30,000 RSI (reusable surface insulation)
tiles as discussed in reference 1. Assessment
of the integrity of this thermal protection sys-
tem requires that a stress analysis be performed
on each tile., A stress analysis program, refer-
ence 2, was developed for this purpose, The
analysis accounts for the nonlinear material
properties of the strain isolator pads used to
attach the tiles to the metal surface of the
Orbiter, This analysis requires geometry defi-
nition, aerodynamic and vibroacoustic loads,
Orbiter surface deflections, and materials data
for each tile. This data existed in many forms
in various engineering reports. The gathering
and preparation of input data for the analysis
of a single tile was a time-consuming process
(required approximately 1 man-day per tile) when
done by hand., Therefore, there was a need for
the capability for automatic storage and
retrieval of data needed for analysis so that
large numbers of tiles could be analyzed in a
timely manner,
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The purpose of the present paper is to de-
scribe the approach used to incorporate an ad-
vanced engineering data management system in the
analysis process for Space Shuttle Orbiter
tiles. The approach utilizes the Relational In-
formation Management (RIM) system, reference 3,
which was developed as part of the NASA-
sponsored IPAD project, reference 4, The inter-
active query language of the RIM system is used
to make selected on-line retrievals of any
stored data, A FORTRAN interface, which is a
set of user callable RIM subroutines, is used
extensively by other computer programs needed
for communication of data between the nonlinear
analysis program and RIM.

The contents of this paper include a brief
discussion of the nonlinear tile analysis proce-
dure. Next, the organization of the data base
of engineering data needed for tile analysis is
described. Methods of retrieving data from the
data base are discussed and graphical displays
of the tile data are illustrated. The functions
of the computer programs and data files making
up the automated data management/analysis system
are explained, This system automates the entire
process beginning with access of tile data from
RIM through execution of the nonlinear stress
analysis program and display of results. Appli-
cation of this automated system to critical
analysis studies of over 3,000 tiles is de-
scribed. This significant analysis effort was
performed in a timely manner (less than a day)
and is typical of the studies performed to aid
in flight-readiness certification of the tiles
for the first Orbiter flight. The discussion
concludes with general observations and assess-
ments regarding the large-scale engineering
application of relational information management
procedures based on .experience from development
and use of the tile analysis system.

Definitions

The following terms are defined in the con-
text that they are used in this paper:
Attribute An alpha-numeric name used
to identify a column of
data items in a relation.
An organized collection of
interrelated data which is
stored in accessible form
including the actual data
items and all their associ-
ated directory information.
The smallest unit of named
data; herein refers to a
single value of engineering
data.

Data Base

Data Item
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DDL Data Definition Language,
used to establish a data
base schema.

DML Data Manipulation Language,

used to change the contents

or organization of a data
base.

A 1ibrary of FORTRAN-

callable subroutines which

are used to move a tuple
from the data base to an
array in a user program or
vice versa,

A user language containing

Boolean conditional clauses

for selecting desired data.

A two-dimensional table of

data items organized in rows

(tuples) and columns (attri-

butes) and referred to by an

alphanumeric name.

An overall organizational

chart used to describe a

data base. It gives the

names of the attributes and
defines the relations be-
tween them, i.e., a frame-
work into which values of
the data items are fitted.

Tuple A row of data items in a
relation.

FORTRAN Interface

Query Language

Retation

Schema

Tile Modeling and Analysis Procedure

Approximately 8,000 tiles in a large region
of the lower surface of the Orbiter wing and fu-
selage are considered in this study. This
region is shown in figure 1 inside the outlined
area of the lower surface planform which is di-
vided into tile zones W-3, W-4, MF-5, and MF-6.
The geometric planform shapes of each tile in
this region are shown in the computer-generated
plot for the right-hand side of the Orbiter.
Assessment of the structural integrity of these
tiles using a stress analysis procedure requires
the generation of an analytical model for each
tile which represents the tile physical descrip-
tion, material properties, and applied loads.
This section contains characteristics of a typ-
ical tile analytical model and the corresponding
stress analysis procedure.

Tile Physical Description and Modeling

The components in a typical tile installa-
tion are shown in figure 2(a). The tiles are
attached to the Orbiter metal surface or
substrate by an intermediate strain isolator pad
(SIP) as shown in figure 2(b). This pad pre-
vents motion of the Shuttle structure produced by
thermal or aerodynamic loading from cracking the
brittle tile material., This SIP material has
nonlinear stress-displacement properties as
indicated in reference 5. These nonlinear prop-
erties, illustrated in figure 2(c), are obtained
from material tests and are represented in the
analysis procedure as tables of stress-displace-
ment points. A filler bar is used as a thermal
barrier around the perimeter of the SIP to

prevent direct heat radiation or convection to
the skin between tiles. This filler bar is not
attached to the tile and is represented by a ma-
terial curve which allows no tensile stress as
shown in figure 2(c). To provide capability to
analyze all tile configurations, the SIP's are
defined with an arbitrary boundary made up of
linear segments including cutouts for instrumen-
tation or other penetrations. The analysis
process requires integration of stresses over
the SIP. For this purpose, the SIP and/or fill-
er bar surfaces are divided into triangular
regions each containing a mesh of subtriangles
as shown in figure 2(d). The integrated stress
is the sum of contributions of assumed linear
stress distributions over each subtriangle. The
mesh refinement can be varied to give any
desired solution accuracy.

Tile Loads

Stresses in the strain isolator pad are
caused by pressures acting on the tile which
result from the aerodynamic environment, inertia
forces from vibratory motion of the tile, and
deflections of the substrate to which the SIP is
attached. The various tile loading sources
which are considered are shown in figure 3, The
parameters needed to define the steady aerody-
namic loads include the pressure change across a
shock for both separated and unseparated flow,
aerodynamic pressure gradients in the streamwise
and transverse directions, and a reference pres-
sure which is related to the ambient pressure.
Aerobuffet loading is given as forces and
moments measured from wind-tunnel tests. The
load on the tile caused by a lag in venting the
interior tile pressure during Orbiter ascent 1is
taken to be a constant value for all tiles. The
skin friction on the external surface is a func-
tion of the distance of the tile from the
leading edge of the Orbiter planform, a quantity
that is calculated and stored for each tile.

The substrate deformation for vibroacoustic
loading has a specified amplitude and wavelength
corresponding to the structural panel width,

The static substrate deflection is deformation
of the skin between stiffeners on the panel
caused by buckling or pressure differentials
across the skin. In the analysis procedure, the
deflections of the substrate are positioned rel-
ative to the tile to give maximum stress. The
maximum positive ampiitude of the long wave-
length is positioned at the center of the tile
and the maximum negative amplitude of the short
wavelength is positioned under the front corner
of the tile. These substrate deflection posi-

“tions were guided by results presented in

reference 6.

The data needed to describe this load envi-
ronment are defined in relation to aerodynamic
and structural panels defined on the surface of
the Orbiter. The aerodynamic load parameters
are taken to be constant within each of the
aerodynamic panels shown in figure 4. The
boundaries of the wing panels are located at
constant fraction of semispan locations and
constant percent chord locations, the usual
nondimensional coordinates used by aerodynam-
icists. Only two aerodynamic panels, corre-
sponding to the MF-5 and MF-6 tile regions, are
used for the fuselage.



The vibratory inertia loading on the tiles
and corresponding substrate deflection, collec-
tively referred to as vibroacoustic loads, and
the static substrate deflection are defined in
relation to the structural panels shown in
figure 5. The boundaries of the wing structural
panels are along ribs and spars and along frames
and stringers on the fuselage. The vibro-
acoustic tile loading is a function of distance
from the panel boundary,

Tile Analysis Procedure

In the baseline or original TPS configura-
tion, the tiles had uniform properties through
the thickness (undensified tiles)., During early
testing of the undensified TPS tiles under
externally applied loads, failure was found to
occur in the tiles adjacent to the plane where
they were bonded to the SIP. Based on this
observation, it is assumed that the failure
stress is excessive through the thickness or
normal stress in the SIP, If this calculated
normal stress exceeded a specified allowable
stress, the tile was removed and densified
(strengthened by a thin layer of impregnated
material at the tile's inner surface).

A tile analysis program based on the above
considerations was developed to calculate these
normal stresses in the SIP, reference 2. The
analysis procedure is a generalization and
extension of the basic method described in
reference 7. The tile can be assumed to be a
rigid body, as shown in reference 8, with six
degrees of freedom (three translations and three
rotations) at its center of gravity. External
loads are applied to the tile as concentrated
forces, pressures, and/or inertially equivalent
accelerations (g-load). The substrate under the
SIP can be given a prescribed shape to represent
mismatch from the manufacturing process, warpage
of the tile, and/or deformations of the external
surface of the structure such as those caused by
buckling.,

A Newton iteration procedure is used to cal-
culate the displacements and rotations of the
rigid tile for which the reaction forces from
stresses in the SIP and filler bar material are
in static equilibrium with the applied loads.
Once equilibrium is established, the maximum
stress and its location in each SIP is
calculated.

Qrganization of Engineering Data

Tile geometry, material properties, and
applied loads are required as input to the
stress analysis program. To provide timely
results for a large number of tiles, it was
essential to automate the data management and
analysis process, The first task in developing
such a capability was to gather, organize, and
store the required data in a computerized form
which could be accessed from a single source.
This data organization task was completed in
approximately 6 man-months. This effort
required the development of numerous data prepa-
ration programs to convert the engineering data

from its original form to the desired form for
computer storage. A technical description of
the resulting data items and the methodology
used to organize all tile analysis data is given
in this section,

Use of Relational Model

A1l engineering data required to perform a
nonlinear stress analysis of the tiles was
stored using the Relational Information Manage-
ment (RIM) system. RIM, which is based on the
relational model, reference 9, was chosen
because it is well suited to the tile analysis
problem since information related to many sepa-
rate tiles needs to be accessed individually.,
Specifically, each tile is related to geomet-
rical, physical, and material properties and to
a variety of load sources. The data are organ-
ized in the form of tables referred to as rela-
tions. Every relation has a unique user-
assigned name. Typical example relations,
NEWAPANL, STSITRAJ, and NEWLOADS are illustrated
in figure 6. Each column in a relation is
referred to by a name or attribute and each row
is called a tuple. A data definition language
(DDL) is available in RIM for creating a rela-
tion by specifying the names of its attributes,
defining the data type for each attribute to be
either integer, real, or text, and specifying
the dimension of each attribute. These defini-
tions of attributes and relations (collectively
referred to as a schema) are stored in the data
base. Subsequently, other RIM utilities are
used to load tuples of data items into the rela-
tions. Data are selected for retrieval in the
form of a tuple, or multiple tuples. Generally,
data are retrieved by specifying the relation
name which contains the data and a Boolean
expression to be satisfied by the values of the
attributes.

A well-planned schema is important to allow
straightforward, efficient storage and retrieval
of the data. A variety of schema definitions is
possible for a given application. For example,
a very simple schema for the tile analysis prob-
lem is a large, single relation with each tuple
containing all the data required for analysis of
a particular tile., Such a schema would be cum-
bersome to form and/or change.

Herein the data are organized in several
relations each containing a table of data in the
logical form that would normally be used to
solve the engineering problem, This type organ-
ization is illustrated by the relations shown in
figure 6 which are used in the definition of
aerodynamic loads. For clarity, the first
attributes in each relation are the independent
variables followed by attributes for the depend-
ent variables. This convention is illustrated
by relation NEWLOADS at the bottom of figure 6
where the dependent variables SHOCKJUMP and
ABSHKCPRMS which are parameters defining aerody-
namic shock and aerobuffet loads are a function
of the independent variables AEROPANL, MACHNO,
and ALPHA which define a particular aerodynamic
panel, the Mach number, and angle of attack,
respectively.



Many of the relations contain attributes
which are set up to refer or point to corre-
sponding attributes in another relation,
allowing the data to be related in a hierarchi-
cal or network manner. If, as an example, a
tile part number (PARTNO) is specified, the
aerodynamic panel containing the tile is speci-
fied by the identifier AEROPANL in relation
NEWAPANL. A point in the flight trajectory is
specified by selecting a Mach number MACHNO, in
relation STS1TRAJ. The corresponding angle of
attack, ALPHA, dynamic pressure, QPSF, and ambi-
ent atmospheric pressure, PINF, are then
retrieved. Then the aerodynamic panel, Mach
number, and angle of attack are used in relation
NEWLOADS to determine the pressure differential
across a shock, SHOCKJUMP, and an aercbuffet
load parameter, ABSHKCPRMS, The data values for
MACHNO and ALPHA in relation STS1TRAJ do not
have corresponding numerical values in relation
NEWLOADS so interpolation is required.

Schema for Tile Data

A1l relations and attributes used in the
analysis of QOrbiter tiles are shown in figure
7. Each relation name is underlined and fol-
lowed by a list of all attributes in the rela-
tion. These attributes are shown in transposed
form as a column for graphical purposes instead
of as a row corresponding to tuples as shown in
the standard form of figure 6. Some of the
attributes appear in more than one relation in
figure 7 indicating a correspondence or linking
of attributes between relations. Descriptions
of the engineering data contained in the rela-
tions of figure 7 are given in the remainder of
this section.

Geometry and Material Properties Data. Each
tile on the Orbiter is identified by attribute
PARTNO, a unique nine digit part number. Tile
geometry is described by the coordinates of
points at the tile corners. This corner point
definition of geometry restricts the tiles which
can be considered to those whose inner and outer
surfaces have relatively small curvature. The
corner points were originally defined in various
local coordinate systems but were transformed to
a single coordinate system specifying their
location on the Orbiter before storing, This
geometry data was stored in relation XYZO as
shown at the lower left of figure 7. Each tuple
in this relation defines a single tile corner
point with attributes giving the part number,
drawing number, inner or outer surface (mold
line) indicator, the local coordinates, number
of the transformation equation, and the
resulting Orbiter coordinates. Each tile
requires as many tuples as it has corner points.,

To minimize data storage requirements, the
tile geometry is stored for only the right-hand
side of the Orbiter, by taking advantage of the
symmetric tile pattern in the zones considered.
While tile geometry is symmetric, the material
properties associated with the tiles are not
necessarily the same on corresponding tiles.,
During the tile flight certification process,

each tile was loaded to a specified tensile

proof stress using a vacuum chuck and a proof test
fixture. Tiles on opposite sides of the Orbiter
were not necessarily proof loaded to the same
value causing SIP properties, which are depend-
ent on proof load history, to be different.

-Further, tiles which failed the proof test were

removed and densified. The relation TIPSDATA

(upper right of figure 7) contains tuples of »
information for all tiles with an indicator
denoting the right- or left-hand side of the
Orbiter, the part number of the opposite or sym-
metric tile, whether or not the tile has been
strengthened by densification, and the stress
level to which the tile was proof loaded.

The loading history, hence the tile proof
level, affects the material properties of the
strain isolator pad used to attach the tile to
the Orbiter. Two relations, MATINDEX and
MATCURVE, are used to store those material prop-
erties. The first relation, MATINDEX, contains
the following attributes that are parameters
needed to define a particular material curve:
the pad type, either filler bar or SIP; the pad
thickness; the proof test stress; and a corre-
sponding material number, The points on the
stress-displacement curves are stored in rela-
tion MATCURVE for each material number.

Load and Stress Data. The aerodynamic load
parameters are taken to be constant within each
of the aerodynamic panels shown in figure 4.

The aerodynamic panel corresponding to each tile
is given in relation NEWAPANL as shown in figure
7. The set of aerodynamic parameters that give
greatest tile loads within each panel were
reduced from wind-tunnel tests for a range of
Mach numbers and angles of attack and stored in
relation NEWLOADS. All aerodynamic parameters
that were used are shown in figure 7 while only
SHOCKJUMP and ABSHKCPRMS are shown in figure 6
for illustrative purposes. The aerodynamic load
parameters are nondimensionalized with respect
to dynamic pressure for use with various flight
trajectories. The trajectory data for the first
Orbiter flight is given in relation STS1TRAJ.

Data preparation programs were used to
determine the aerodynamic and structural panel
numbers for each tile and calculate the distance
of the tile from the edge of its structural
panel, The corners of the structural panels
shown in figure 5 are defined in relation
SUBPANL and the corresponding data values for
the vibroacoustic loads and substrate deflec-
tions are contained in relations VIBAC and
SUBDEFL as shown in figure 7.

The stresses which were calculated during
this study are stored in relations similar to
STRS4-24-1 as shown in figure 7. The "4-24-1" ”
refers to the date that these stresses were cal-
culated. The actual tile proof stress,
ACTPROOF, is divided by the maximum calculated
stress, STRESSMX, to give the stress ratio,
SRATIO. The values of the stress ratios were
examined to determine the relative safety
margins for the tiles.

(9



Miscellaneous Data. Miscellaneous tile data
are contained in relation DIRECT incliuding the
substrate panel identifier for each tile,
SUBSPANL, and the distance of the tile from the
panel edge, CGTORIB. The tile location with
respect to the Orbiter planform is given by the
tile center of gravity, CGXI and CGYI, and the
distance from the planform leading edge, CGTOLE,
which is used in calculating the skin friction
force. Physical properties of tile thickness,
SIP thickness, and tile density are referred to
by the attributes TILETHCK, SIPTHCK, and
TILEDENS, respectively,

Data Retrieval and Display

The use of the RIM system for managing the
Orbiter tile data was greatly facilitated by its
efficient, flexible, easy-to-use capabilities
for data retrieval. The capabilities provided
ready access to the tile engineering data for
display in a user selected form. The methods
used to retrieve, manipulate, and display the
tile data are discussed in this section.

Query Language

A relational query language, which contains
Boolean conditional clauses for selecting
desired data, is available in RIM, This lan-
guage has the flexibility to support retrieval
of data to satisfy a variety of conditions many
of which were not anticipated during the organi-
zation of the tile data base. The syntax of the
query language statements makes them self-
explanatory. In general, the statements specify
an operation to be performed, specify the rela-
tion containing the data, and define conditions
to be satisfied by data values in selected
attributes of the relation.

Examples of typical queries used in the tile
analysis application are given in Table 1.
Query (a) was used to generate the listing of
tuples from relation NEWLOADS shown in figure
6. The SELECT operation requests printing of
data values in attributes AEROPANL, MACHNO,
ALPHA, SHOCKJUMP, and ABSHKCPRMS from tuples in
relation NEWLOADS which satisfy the conditions
given in the "WHERE" clause. The underlined
words in the example queries define the function
of the query with the other words referring to
any relation names, attribute names, and data
values in the data base that can be used logi-
cally in a statement. For the number of rela-
tions and attributes used in the tile data
schema of figure 7, the interest of a particular
user determines what queries might be made and
the examples in Table 1 are only an illustrative
sample.  Queries similar to (b) are used to
assess the calculated stress data. In the exam-
ple shown, the tuples are printed in ascending
order of the value of SRATIO which is the tile
proof stress divided by the calculated stress.
The TALLY operation in query (c) causes a table
to be printed which contains each of the differ-
ent values of proof stresses that were used and
a tally of the number of tiles corresponding to
each proof stress. The minimum tile thickness
is returned by query (d). Query (e) is used to

determine the number or count of undensified
tiles on the left-hand side of the Orbiter.

A query can be used to retrieve information
from a single relation. For unanticipated que-
ries, a single relation having all the attri-
butes to satisfy a desired condition may not
exist. In this case, a new relation which
contains the proper attributes may be formed
using the data manipulation language (DML) which
is described next.

Data Manipulation Language

Data manipulation commands are available in
RIM to change the contents and organization of
the data base. Selected data manipulation com-
mands are illustrated by the examples in Table
2. The CHANGE command shown in example (a)
changes the value of the dynamic pressure QPSF
from 622.0 to 612.0 in the first tuple of rela-
tion STS1TRAJ shown in figure 2 where the Mach
number MACHNO equals 0,93, Other commands,
which are not illustrated, are available to
change the contents of a relation by adding or
deleting tuples of information,

The organization of the data base schema can
be changed by extracting or combining attributes
of existing relations to form new relations,
Relational algebra commands with set theoretic.
operations are used for this purpose. These
commands are illustrated in examples (b)-(f) to
create a new relation PLOTDATA which can be used
for plotting the values of tile thickness for
the tiles in aerodynamic panel number 3. The
INTERSECT operation in example (b) forms a new
relation TEMP based upon tile part number,
PARTNG, which contains attributes CGTOLE and
TILETHCK from relation DIRECT and AEROPANL from
relation NEWPANL that have the same tile part
number PARTNO, In exampie (c), the relation
PLOTDATA having attributes PARTNO and TILETHCK
for tiles in aerodynamic panel 3 is created
using the PROJECT operation. In example (d),
the attribute name TILETHCK is changed to VALUE.

In example (e), an inverted file is formed
with tile part number PARTNO in relation
PLOTDATA specified as the key attribute, This
inverted file contains a set of pointers leading
to the storage location of the tuple correspond-
ing to a specified tile part number. Use of
inverted files provides much faster response to
queries involving the key attribute than per-
forming sequential searches through data items
of the specified attribute. Inverted files can
be created and deleted as needed using the BUILD
KEY and DELETE KEY operations. Inverted files
are often needed to provide an acceptable
response time for data access from relations
containing a large number of tuples, but they
require additional auxiliary storage space for
the pointer information, In example (f), the
temporary relation TEMP is removed since it is
no longer needed.

FORTRAN Interface

The FORTRAN interface permits access to the
data base from separate programs. This inter-
face is a library of FORTRAN-callable



subroutines which are used to move a tuple from
the data base to an array in the user program or
vice versa. An example listing which i1lus-
trates the use of the FORTRAN interface is shown
in Table 3. The statements in this listing per-
form the same function as query (b) shown in
Table 1, to print calculated stress information.

Initially, arrays are established to accom-
modate a conditional (WHERE) clause and a tuple
of data each of which can contain a mixture of
real or integer values. The seven words in the
conditional clause are stored in successive
Jocations of the KLAUS1 array. The interface
subroutine RIMHUNT is called to locate all
tuples which satisfy the specified conditional
clause. These tuples are then sorted by ascend-
ing order of the values in the attribute SRATIO
using the RIMSORT interface subroutine. Then
subroutine RIMGET is used to move the tuples
into the program array Al one at a time for
printing until a nonzero value of RIMSTAT is
returned indicating that al)l qualifying tuples
have been accessed.

To support navigation through relations in a
hierarchical or network structure, RIM allows
multiple RIMHUNT condition sets to be in effect
at the same time. For example, the functions
performed in examples (b) and (c) of Table 2
could be handled with the FORTRAN interface by
first using a RIMHUNT to locate all tuples in
relation NEWAPANL which have AEROPANL equal to
3. A second, subordinate RIMHUNT could then be
used to locate all tuples in relation DIRECT
which have the same part number as those tuples
returned by the first RIMHUNT by using the value
of PARTNO in the second conditional clause.

This nesting of RIMHUNT conditions is used
extensively in the data access program of the
automated stress analysis system.

Graphical Display of Data

Graphical displays of the tile data were
important for validating or correcting the data
after it was loaded into the data base. A sepa-
rate plotting program was developed for this
purpose using the FORTRAN interface to retrieve
the stored data. This program generates a plan-
form view of tile geometry with each tile anno-
tated with any related data which can be dis-
played on an interactive terminal and/or off-
line plotter. Such a display is illustrated by
the planform view of tiles in the plot in figure
1.

The tile geometry is provided by the corner
point coordinates in relation XYZ0. The plot-
ting program is greatly simplified by using the
relational algebra capabilities of the data
management system to select which tiles and
which related data values should be used for a
given plot., This selection is achieved by
forming a relation called PLOTDATA containing
tuples with a tile part number and a correspond-
ing attribute to be plotted. Such a relation
can be formed using DML statements as illus-
trated in the previous subsection by commands
(b)-{f) of Table 2. The resulting plot of tile

thicknesses for all tiles in aerodynamic panel 3
is shown in figure 8.

During the tile study, graphic displays were
used to assess the calculated stress data.
Although data for each tile zone were stored in
a separate data base, it was sometimes desirabie
to have composite pictures of the calculated
results. For this purpose, the data in all
pertinent relations were combined in a common
data base. Such a common data base was used to
create the display of 1,000 undensified tiles on
the lower surface of the Orbiter in figure 9.
These tiles are annotated with an integer 1-10.
Each integer indicates a group of 100 tiles from
a table sorted in order of decreasing criti-
cality of their calculated stresses (i.e.,
ascending values of SRATIO).

Automated Data Management/Analysis System

The data management system RIM together
with the analysis programs were combined into a
system which was used to calculate, display, and
interpret tile analysis results. The resuiting
automated data management/analysis system is a
collection of computer programs and data files
needed for data communication between the non-
linear stress analysis program (ref. 2) and RIM
(ref. 3). This system can be used in three
different modes as indicated in figure 10. The
first mode is to use the RIM Interactive Execu-
tive as a stand-alone system and access any of
the desired engineering data using the DDL, DML,
and query languages of RIM. This capability is
usually accessed from an interactive terminal
with keyboard input and printed output. In the
second mode, graphical displays of selected data
are generated on an on-line terminal and/or
off-1ine plotter using the separate program
developed for this purpose. The third user mode
js to perform automated stress analysis. This
mode requires use of pre- and postprocessors
containing several computer programs and data
files to connect the stress analysis program
with the RIM data files. The development of the
pre- and post-processors was a significant task
requiring the same level of effort as the crea-
tion of the tile data base itself. Neither the
stress analysis program nor RIM were modified
during development of the automated system,

User-prepared input data are required to
select the tiles and to specify load conditions
to be used in a particular analysis. This
information is used by the preprocessor to
extract all data from the RIM data files which
are required for a stress analysis and to gener-
ate an analytical model of the tile and its
applied loads.

The preprocessor makes extensive use of the
RIM FORTRAN interface subroutines. These sub-
routines are used to support repetitive queries
that are tailored to extract all data necessary
to analyze the selected tile part numbers at the
specified Mach number selected from a prescribed
Shuttle Orbiter flight trajectory. The resulting



analytical model is in the form of a card image
input file which is used by the nonlinear stress
analysis program. The maximum stress on each
SIP is computed for each load case that is spec-
jfied, thus completing the automated stress
analysis process. This calculated stress infor-
mation is usually subsequently processed to
determine the load case which produces the
largest stress for each tile. These stress
vaues are compared with the allowable stresses
and then all pertinent stress data are stored in
the RIM data files using a postprocessor.
Various user initiated queries are then made to
assess the calculated stress data.

The analysis system is operational on the
CDC NOS 1.3 operating system. NOS control
statements are used to invoke programs and data
files as needed in the stress analysis process.
Because of computing time requirements for the
nonlinear stress analysis procedure, interactive
use of the system is effective when only a few
cases are to be analyzed. For the analysis of a
Jarge number of tiles and/or load cases, opera-
tion of the system in a batch mode is desirable.

Use of Automated Analysis System

The automated data management/analysis
system required a 10 man-month effort for devel-
opment. Approximately 60 percent of the effort
was required to gather, organize, and store the
data into RIM and the other 40 percent involved
the development of computer programs to serve as
an interface between the stress analysis program
and the RIM data base. The data base contains
approximately 600,000 words of engineering data
necessary to analyze the 8,000 tiles on the
Jower surface of the wing and fuselage (figure
1). An additional 250,000 words of data is used
for schema descriptions and inverted files that
are retained so that 850,000 words of disk
storage are required.

The largest application of this system was
the analysis of all 3,137 undensified tiles on
the lower surface of the Orbiter. A nonlinear
stress analysis performed for each of these
tiles required approximately 9.5 hours of
central processing time on COC CYBER 175
computers, This analysis was divided into
several individual runs, each involving approxi-
mately 100 tiles, This division into smaller
runs was a precautionary measure to minimize the
effect of a software or hardware malfunction.
1t also allowed an opportunity for incremental
review of results while taking advantage of the
multiprograming capabilities of the CYBER
computer, Over 3,000 tiles were analyzed in one
day in contrast to the previous manual analysis
which required 1 man-day per tile. A typical
analysis of 100 tiles required 0.8 minutes for
execution of the data access and analytical
model generation programs and 20.0 minutes for
the nonlinear stress analysis program. Thus,
the data access and model generation time is
minor compared to the time required for stress
analysis. Accordingly, it is cost-effective to

regenerate the analytical models of the tiles
for input into the stress analysis program each
time an analysis is made rather than save the
models on auxiliary storage.

The tile schema shown in figure 7 is the one
used at the conclusion of the study. DOuring the

~developmnt of an automated analysis system to

access this data, many changes in data organiza-
tion and data content were made. These changes
reflected the evolutionary nature of an engi-
neering analysis process. For example, during
development of the system, there was a contin-
uing modification of the Toads data as various
wind-tunnel tests were completed accompanied by
changes in criteria used to apply these loads to
the tiles in combinations to give realistic
design conditions, Hence, an important feature
of an engineering data management system is the
flexibility for changing the contents, not only
addition or deletion of data items but also
reorganization or restructuring of the data base
schema.

The integrity of the software system and
security of the data are manifested by the fact
that no data were inadvertently destroyed or
lost because of system malfunction during devel-
opment and use of the tile analysis system. The
use of the automated system proved to be suc-
cessful in producing analysis results for large
numbers of tiles in a timely manner. These
results aided in the flight-readiness certifica-
tion of the tiles for the first Orbiter flight
and aided in determining which tiles should be
removed and densified between the first and
second Orbiter flights.

Observations and Assessments

The application of an engineering data man-
agement system was found to be very effective
for the analysis of Space Shuttle Orbiter
tiles. By use of this system, thousands of
tiles can be analyzed in 1 day in contrast to
the 1 man-day of effort per tile required when
input was prepared manually. The experiences of
organizing the tile data base, developing
programs to provide communication between the
data base and the analysis program, and use of
the resulting automated system led to the
following general observations and assessments
regarding application of engineering data
management systems:

1. The selection of a data management
system is highly dependent on the application.
In the present application, each tile is related
to geometrical, physical, and material proper-
ties and to a variety of load sources. A rela-
tional system is, therefore, well suited to the
tile analysis problem because such information
related to many separate tiles needs to be
accessed individually.

2. The capability to have attributes in one
relation point to attributes in other relations
in a hierarchical or network structure is impor-
tant to allow a natural organization of the tile
analysis data from an engineering viewpoint.



3. The same attribute was often used in
different relations but the numerical values of
the data items did not necessarily correspond
because the values came from diverse sources.
Hence, in this engineering application the
requirement for interpolation for data values
between tuples was prevalent.

4. The evolutionary nature of an engi-
neering analysis process makes it important to
have a data manipulation language to change the
contents of the data base not only by addition
or deletion of data items but also by reorgani-
zation of the data base schema,

5. The use of a relational query language,
including set theoretic operations and Boolean
expressions, supports retrieval of data to sat-
isfy a variety of conditions that may not be
anticipated in advance.

6. The DDL, DML, and query languages in the
RIM Interactive Executive provided efficient,
flexible, easy-to-use capabilities for data
storage, manipulation, and retrieval. These
languages required a minimum "learning curve."
Proficient use of RIM was made in less than 1
man-month by the authors of this paper, who had
no previous experience with relational data
management systems.

7. Interface subroutines are essential to
permit the accessing of data from separate anal-
ysis programs, Development of programs to com-
municate between a data base and engineering
programs is a significant task and requires the
same level of effort as creating the data base.

8. Pre- and postprocessors are used to
connect the previously existing nonlinear stress
analysis program to the RIM data base. This
interface approach allowed stand-alone versions
of the analysis program and RIM to be used to
perform many special purpose analyses needed to
guide development and provide independent
accuracy checks of the automated system,

9. Graphical displays are essential for

checking and assessing the contents of a large
engineering data base.

Concluding Remarks

An automated system which combines advanced
engineering data management procedures with a
nonlinear stress analysis process has been used
to analyze large numbers of tiles on the Space
Shuttle Orbiter. This development illustrates a
large-scale engineering application of rela-
tional information management software for
relating each tile to its geometrical, physical,
and material properties, and to a variety of
applied loads. Descriptions are given of the
approach and methods used (1) to gather, organ-
ize, and store the data, (2) to query data
interactively, (3) to generate graphic displays
of the data, and (4) to access, transform, and
prepare the data for input to a stress analysis
program. The relational information management

system was found to be well suited to the tile
analysis problem because information related to
many separate tiles could be accessed
individually from a data base having a natural
organization from an engineering viewpoint. The
flexible user features of the system facilitated

- changes in data content and organization which

occurred during the development and refinement
of the tile analysis procedure. Additionally,
the query language supported retrieval of data
to satisfy a variety of user-specified
conditions.
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Table 1 Example usage of query language

SELECT AEROPANL MACHNO ALPHA SHOCKJUMP +
ABSHKCPRMS FROM NEWLOADS WHERE AEROPANL +
EQ 4 AND MACHNO GE .95 AND MACHNO LE 1.10

SELECT ALL FROM STRS4-24-1 SORTED BY SRATIO +
WAERE SRATIO GE .750 AND SRATTO LE .825

TALLY ACTPROOF FROM TIPSDATA WHERE +
DENSTFIED EQ N

COMPUTE MIN TILETHK FROM DIRECT

COMPUTE COUNT DENSIFIED FROM TIPSDATA +
WHERE DENSIFIED EQ N AND LEFTORRT EQ L

Table 2 Example usage of data manipulation language

(a)

(b)

CHANGE QPSF TO 612.0 IN STS1TRAJ +
WHERE MACHNO EQ 0.93

INTERSECT DIRECT WITH NEWAPANL FORMING TEMP +
USING PARTNO CGTOLE TILETHCK AEROPANL

PROJECT PLOTDATA FROM TEMP USING +
PARTND TILETHCK WHERE AEROPANL EQ 3

RENAME TILETHCK TO VALUE IN PLOTDATA

BUILD KEY FOR PARTNO IN PLOTDATA

REMOVE TEMP

MF-35

Table 3 Example usage of FORTRAN interface

DIMENSION KLAUSL(50),CLAUS1(50),KA1(100),A1(100)
EQUIVALENCE (KLAUS1,CLAUS1),(KAL,A1)
0

0
0 N

KLAUS1(1) = 10HSRATIO
KLAUS1(2) = 10HGE
CLAUS1(3) = 0.750
KLAUS1(4) = 10HAND
KLAUSL(5) = 10HSRATIO
KLAUS1(6) = 10HLE
CLAUS1(7) = 0.825

CALL RIMHUNT (10HSTRS4-24-1,KLAUS,7,1)
CALL RIMSORT (10HSRATIO)
9 CONTINUE
CALL RIMGET (10HSTRS4-24-1,A1,1)
IF (RIMSTAT.EQ.0) 1,2
1 WRITE(6,5) KA1(1),KAL(2),A1(3),A1(4),A1(5),AL(6)
5 FORMAT (1X,2110,4F10.3)
GO TO 9
2 CONTINUE
0
0
0

Fig. 1

Regions of Orbiter tiles included in automated data management system.
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Fig. 2 Analytical modeling of thermal protection system.
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Fig. 3 Applied loads used in tile stress analysis.
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Fig. 5 Structural panels used in the definition
of substrate deflections and vibro-
acoustic loads.

RELATION NEWAPANL

X0¢

0.6935504
0.7106694
0.7709775
0.2424351
0.4900482

QPSF

622. 00000
62700000
63200000
635, 00000
636. 00000

ALPHA

-4. 0000000
-4. 0000000
-4, 0000000
4.0000000
4, 0000000
4. 0000000

CHORD ~ AEROPANL

662.01055 3

990. 32901 4

780.20517 4

334.80461 5

459.88206 6
PINF

1019.4700

979.47000

910. 97000

844, 65000

719.02000

SHOCKJUMP ABSHKCPRMS
0.5940000 0.1100000
0. 5360000 0. 0630000
0. 5260000 0. 0730000
0.5770000 0. 1100000
0.4250000 0. 0630000
0.4880000 0.0730000

Fig. 6 Sample relations showing typical data

PARTNO ETA
191013071 0.3339951
190002121 0, 2211589
191013152 0.2933740
191014066 0, 6409095
191012155 0.4378044
RELATION STSITRAJ
MACHNO ALPHA
0.9300000  -3.6300000
0.9600000  -3.7000000
1.0000000  -3.8600000
1.0400000  -3.8600000
1.1200000  -3.7100000
RELATION NEWLOADS
AEROPANL  MACHNO
4 0.9500000
4 1.0500000
4 11000000
4 0.9500000
4 1..0500000
4 1.1000000
values.
DIRECT SUBDEFL
PARTNO SUBSPANL
DRAWNO LOADNO
DASHNO FLTCOND
ARRAYNO DEFLSKIN
IMLPTS DEFLSTRNG
OMLPTS WAVESKIN
SUBSPANL WAVESTRNG
CGTORIB
RIBTORIB VIBAC (WING
CGTOLE
TILESIZE
NODEOROR ONOFFRIB
o
cK
SIFHOK HACHNO
GPEAK
TILEDENS st
xvz0 VIBAC (FUSL)
PARTNO
e e
IMLOML VIBPANL
FROMFRAME
XLOCAL FROMCL
YLOCAL MACHNO
ZL0CAL
GPEAK
TRANSF o
XORBITER N
YORBITER
Z0RBITER
Fig. 7

analysis.

STSITRAJ NEWAPANL TIPSDATA
MACHNO PARTNO PARTNO
ALPHA £TA LEFTORRT
QPSF XoC OPPPARTNO
PINF CHORD DENSIFIED
AEROPANL ACTPROOF
NEWLOADS
AEROPANL FORCEMOM MATINDEX
MACHNO AEROPANL PADTYPE
ALPHA MACHNO SIPTHCK
SHOCKIUMP TILETHCK PROOF
SEPARJUMP BLTHCK MATNO
AEROGRX XsL
AEROGRY FORCEZ MATCURVE
ABSHKCPRMS MOMENTY
ABSEPCPRMS m‘;‘f
REFPRESS STRS4 - 24 - 1 RN
PARTNO
SUBPANL, LDCASE
SUBSPANL MACHNO
X1 STRESSMX
N ACTPROOF
71 SRATIO
X4
Y4
24

Schema for all data used in Orbiter tﬂe‘
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Fig. 8 Thicknesses of selected tiles in aero-
dynamic panel number 3.

Fig. 9 Priority groupings of calculated stress
divided by proof stress for undensified
tiles (1 most critical).
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STRESS
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Fig. 10 Automated data management/analysis system

for Orbiter tiles.
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