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MODELING OF THIN-FILM GaAs GROWTH

By

John H. Heinbockel*

SUMMARY

A solid-on-solid Monte Carlo model is constructed for the simulation

crystal growth. The model assumes thermally accommodated adatoms impinge

upon the surface during a At time interval. The surface adatoms are

assigned a random energy from a Boltzmann distribution, and this energy

determines whether the adatoms evaporate, migrate, or revA in stationary

during the At time interval. For each addition or migration of an adato^,

potential wells are adjusted to reflect the absorption, migration, or

desorption potential changes.

INTRODUCTION AND STATEMENT OF PROBLEM

Numerous methods have been applied to obtaining thin film, single

crystals of GaAs, including free-standing wafers, peal films removed from a

single crystal substrate, and films grown on light-weight substrates. One

of the most promising methods is a version of the last technique called
0.
graphoepitaxy." It is generally known that overlayers of crystalline

materials deposited upon smooth microcrystalline substrates tend to be more

or less randomly polycrystalline. The absence of long-range order in the

microcrystalline substrate is reflected in the absence of long-range order

in the overlayer. The basic concept of graphbepitaxy is that, by intro-

ducing an artificial surface relief structure having a long-range order on a

microcrystalline substrate, long-range order can be induced in an overlayer.

In other words, a crystalline film canbe grown on a microcrystalline

substrate.

*Professor, Department of Mathematical Sciences, Old Dominion University,
Norfolk, VA 23508. ^i
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In order to be able to study the dynamics of crystal growth on grat-

ings, a more detailed model of crystal growth is needed. The following is

the development of a solid -on-solid (SOS) model for the simulation of molec-

ular exchange between the solid and vapor phases whereby dynamics are intro-

duced into the model by a random deposition, migration, and desorption of

adatoms at random surface positions.

LIST OF SYMBOLS

ao	 lattice constant (nm)

M
	

size of square array

I
	

integer position

H(I)
	

height at position I

fo

wi

et

E=E(I)

UM

Uo

Ue

Um

f1

f2

f3

f . R,
no,mo

Ums

Ues

potential energy change at site I caused by adatom deposition (eV)

(i = 1,...,8) potential energy changes at sites neighboring I (eV)

time interval (sec)

random energy assigned to site I (eV)

total energy associated with site 1 (eV)

potential energy at site I (eV)

evaporation level (eV)

migration level (eV)

nearest neighbor potential change

second nearest neighbor potential change

third nearest neighbor potential change

Hie potential parameters

migration level (substrate) (eV)

evaporation level (substrate) (eV)



Uos	 potential at site I (substrate) (eV)

K	 Boltzmann constant (8.6 x 10-5 ) (eV/°K)

T	 absolute temperature (°K)

a2 ,a 3 	scale factors for Hie potentials

ii))UnGLUSTER potential energy on (ijk) face for cluster of n-adatoms (eV)
w

E	 median energy for Boltzmann distribution
median

n1 ,m1 ,11 integers associated with (ijk) orientation

A%=Um Uo surface diffusion activation energy (eV)

AUe•O-Uo evaporation energy (eV)

Tr	 reference temperature (°K)

R	 uniform random number

v 1 ,v o	 frequency factors

Ds	 diffusion coefficient

Xs	mean adatom displacement

I	 Rd	 deposition rate

I	 R^	 e	 evaporation rate

R 
	 vertical growth rate

P	 supersaturated vapor pressure

Pe	 equilibrium pressure

MODELING OF GaAs CRYSTAL, GROWTH

i	 Structure of GaAs

By definition, a crystal is any solid with an ordered arrangement of

its atoms. The cyrstal structure of GaAs can be thought of as a lattice

with repeated units of face-centered cubic (fcc) cells. Consider two types

of fcc cells, one with Ga atoms and another with As atoms. Imagine these

two fcc cells coalesced with the same origin at one corner. Now slide the

origin of the As cell along the vector (a /4)[1111 where a is the lattice0	 0	 i

3
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constant. The resulting fcc arsenic cell has its origin displaced to the

point (a 
0 

/4,a 0 /40a 0 /4)  with respect to the gallium fcc origin. These inter-
penetrating fcc cells form a pattern which constitutes the GaAs lattice

structure. The value of the lattice constant is ao n 0.56417 nm.

SOS Model

The solid-on-solid (SOS) model is a square array of "blocks" stacked to

form columns. This type of model can be represented by a square array of

integers, where each integer represents the number of "blocks" in each col-

umn perpendicular to some reference plane. The "blocks" can represent atoms

or molecules which are being stacked. Hereafter "blocks" will be referred

to as adatoms. The SOS model is a generalization of the terrace-ledge-kink

model (ref. 1), and the surface elements are those adatoms at the tops of

their columns (see fig. 1). It is assumed that adatoms can be added (or

removed) only to (from) positions over other solid adatoms.

In the SOS model the columns are built up upon an M x M square array by

randomly placing adatoms upon the array and allowing these randomly depos-

ited adatoms to either condense, evaporate, or migrate. The M x M array can

be replaced by a single subscripted array so that only one random number is

needed to select an arbitrary column (ref. 2). This one-to -one correspon-
dence is illustrated in table 1. In the table, note that additional rows

and columns have been added to the array. These augmented rows and columns

will be used to eliminate edge effects and will be assigned periodic bound-

ary conditions. We let H(I) denote the height of a column at some arbi-

trary position I where n + 1 < I < n + W. The periodic boundary condi-

tions imposed upon the heights are that they satisfy the conditions:

(1) Row 0 is the same as row M and

H(I) - H(I + M2 ), I - 10, ... , n + 1;

(2) Row 1 is the same as row M + 1 and

H(I) - H(I + M2 ), I + n,..,, n + M + 1; and

(3) Column 0 is the same as column M and column 1 is the same as col-

umn M + 1 when the columns are displaced by one unit.

4
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Figure 1. SOS model (K - kink site).
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Thus, to each position I (n + l < I < n + !12 ), we can assign a height

H(I) which represents the number of stacked adatoms. Also associated with

a general position I there are neighboring positions which have the posi

tion. indices given in table 2. The SOS model can be described as an array

of interacting columns of varying integer heights. The surface adatoms are

at the tops of columns.

The term "epitaxy" means "an arrangement on" ar.I is used to denote the

growth of one substance upon the crystal surface of a foreign substance.

The term "auto-epitaxy" is the oriented growth of a substance onto itself,

and "heteroepitaxy" is the growth over another material. Obviously, hetero-

epitaxy becomes autoepitaxy after one layer of growth has been deposited.

We will use the SOS model to simulate epitaxial growth.

Potential Energy of Adatoms

The "rules" by which the +;olumns of the SOS model interact will be

governed by the following ideas relating to potential energy and the poten-

tial energy changes which are associated with the adsorption, migration or

desorption of adatoms. We define the following energies:

Uo = Uo m	 potential energy at site I due to surface bonding

and crystal structure

¢o	 potential energy change at site I due to the adsorp-

tion or desorption of adatoms (the same for all

sites)

-wi(i=1,...,8) potential energy changes at neighboring sites when

an adatom is deposited at I (the same for all sites)

E(I)	 random surface energy associated with site I and

time interval At

U(I) = U0 	 total energy during time interval At.
+ E(I)

U
e	 evaporation potential

LL

if



Table 2. Indices associated with neighbors sur-
rounding a general position I within
the M X M array of the SOS model.

I 	 1	 1 	 I - M.+ 1

I - 1	 I	 14. 1

I+ M 1	 I+ M	 I+ M+ 1

r

a
i

8 ;<<



Um	migration potential

All of the above energies are measured in electron volts.

We will develop a Monte Carlo computer simulation of crystal growth

(refs. 3-8) by developing "rules" which determine the SOS kinetics of con-

densation, evaporation, or surface migration of adatoms. Consider first the

adsorption of an adatom onto the surface at some general site I. In addi--

tion'to the change in the potential at I, potential energy changes simultan-

eously occur at the sites neighboring the central site I. The potential

energy changes are depicted by the mnemonic "mask" of table 3 which carl be

placed over the central site I to illustrate what changes must be made in

the surrounding potential wells. We consider next the desorption of an ad-

atom from the surface. In this case the potential energies at I and its

neighboring sites again change and we use the mask of table 3 with opposite

signs on the potential changes.

The case of surface migration is treated as a desorption from a site I

followed by an adsorption at a nearest neighbor site to I together with the

correct potential mask changes associated with each process. A random walk

is performed to determine nearest neighbor migration sites.

The Monte Carlo simulation of crystal growth involves a random deposi-

tion of thermally accommodated surface adatoms during a time interval At.

These deposited adatoms will change the potential energies at the surface

sites under consideration. The values assigned to ^o and

will dictate the changes in potential energies. We assume that the surface

adatoms have a known a priori surface energy distribution f(E) from which

we can assign random energies to the surface adatoms. We let

U(I) . Uo(I) + E(I)	 (1)

denote the total energy assigned to a surface adatom during the time -inter-

val 6t. This total energy is the sum of the potential energy U (I) due to

the structure of the lattice and the random energy E(I) from the assumed

91fc1	 7C till'% de 1e. n. ft ►,en enmxb matarial
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Table 3. Potential energy adjustments asst.^fated
with each site I.

-w7 	-Wg	 -Wl

t
	 _w6	 ^O	 -wl

-w5	 -w4	 -w3



1,

dependent migration level Um, then the adatom will remain at the site I.

If U(I) is greater than some material-dependent evaporation level Ue , then

the adatom will evaporate from the surface. For U m < U < U e , then surface

migration is allowed to occur. During each time interval At there is a

random deposition of adatoms upon the surface. Each of these new adatoms to-

gether with the other surface adatoms is assigned a random energy and tested

to determine if it remains on the surface, migrates, or evaporates from the

surface.

This type of model can simulate the atomic or molecular exchange be-

tween vapor and solid phases of crystal growth. We assume that an adatom is

a two-component species of Ga and As. Also, in the Monte Carlo simulation,

it is assumed that the rate of impingement of adatoms is independent of the

neighboring surface configurations. The number of thermally accommodated

adatoms which arrive on the surface is given by

Pvio(2)
(2nmKT)'

where P is the vapor pressure, M is the vapor adatom mass, K is

Boltzmann's constant, and T is the absolute temperature.

The rates associated with evaporation and migration of adatoms depend'

upon the neighboring potentials which must be broken during these processes

and also upon the random surface energy distribution which is assumed. The

fate of a surface adatom depends upon its total energy U at any instant of

time as well as upon where this energy lies with respect to the condensation

and evaporation energy levels Um and Ue.

In assuming values to the potential changes^ o and ^i,is1,...,8, we

must take into account the type of crystal structure and orientation we are

trying to simulate with our SOS model. Consider figure 2 which illustrates

the GaAs fcc structure. For growth on the (100) face we can set up a corres

pondence between a central site, the nearest neighbor sites, second nearest

neighbor sites, and the adatom potential changes for the mask in table 3

i	 (i.e., wl - ¢2, w2	 01, etc.). Similarly, we can set up the correspondences

illustrated in figures 2 (b and c) for the (111) and (110) orientations.

11



In figure 2 we must choose ^p, 2 ,f3 in such a way that, when the

first level of adatoms covers the surface, theft the potential distribution

must return to its original value. We will require that adjustments be made

in the potential energy changes during the transition from heteroepitaxy to

autoepitaxy. Here we let a negative sign denote an attractive potential.

By simply adding adatoms to a surface it is readily verified that the poten-

tial changes must adhere to the rules given in table 4 if after one layer

the potential energy returns to its initial value.

We can assign arbitrary values to the neighbor potential changes ^1,

h43 or we can assume a (m
0 

,n 
0 ) 

Mie potential, with m 
0 

< n 
0 , 

(ref, 9):

1(

R*1r° - no 	 \m°R 	 mo 
(R*
R 1

which is illustrated in figure 3. Here R*
n

obtains its minimum value of *(1 - ° 1mo / •
various R*/R values.

(3)

is the distance at which 0

Tattle 5 gives values of 0/0 * for

The values assigned to the mask potential changes are not necessarily

the same for the different orientations: for example, the 01,02,03 values

for each case in table 4 could have different values.

If we assume a (3,9) Mie potential and an fcc crystal, we can calculate

the potential changes caused by adding adatoms to neighboring sites. If we

leave the central position empty and fill nearest neighbor sites first, then

second nearest neighbor sites, followed by adatoms to third nearest neighbor

sites, and then fill in the central position, we will obtain the curves in

figure 4. In figure 4 the lower curves are when the site I is initially

empty and the upper curves are for the site I initially occupied by an ad-

atom. An examination of figure 4 shows that, if we add a random energy to

the curves illustrated, then the upper curves represent the potential ener-

gies associated with groups of adatoms clustering about I. If we consider a

cluster of adatoms which is smaller than some critical cluster size, then

this cluster will be unstable in the sense that an adatom at site I will

I
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Figure 2.	 GaAs cell with growth patterns and potential changes for ( '100),
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Table 4.	 Potential changes for addition of an adatom to an
arbitrary site.

Potential Changes
4 For Distances

Crystal Relation Between Addition to to Neighboring

Face Neighbor Potentials Arbitrary Site I Sites

-w7	 -W8

-w6	 0 -W2

-w5	 -W4 -w3

-0 1 -02 ao

100 00	 44 , + 42 00 -01 r2  ao

-01 -02

-01 -02 jaO

j	 111 00	 6^ 1 + 242 00 2 ao

1 
2

-^2 V2 
ao

L	 2

ro,-'0 2 -03 ^T3 	 a
ao

110 ^O - 24 1 + 42 + 4$3 -01	 ^O -^I ^2a0 —

L	
-02 -^3



Figure 3. (no,mo) Mie pocential function. 	 i
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Table 5. Hie potentials.

M
n R/R -1 R/R-1/2 R/R1/3

3 6 -1 -0.582 -0.548
3 7 -1.3.33 -0.736 -0.428
3 8 -1.666 -0.880 -0.500
3 9 -2 -1.016 -0.570
4 7 -0.75 -0.349 -0.173
4 8 -1 -0.437 -0.210
4 9 -1.25 -0.518 -0.242
4 10 -1.5 -0.594 -0.273
4 11 -1.75 -0.665 -0.303
4 12 -2.0 -0.734 -0.332
5 8 -0.6 -0.220 -0.090
5 9 -0.8 -0.274 -0.108
5 10 -1.0 -0.322 -0.124
5 11 -1.2 -0,366 -0.138
6 9 -0.5 -0.143 -0.048
6 10 -0.666 -0.177 -0.058
6 11 -0.833 -0.207 -0.065
6 12 -1.0 -0.234 -0.073
7 11 -0.57 -0.116 -0.031
7 12 -0.714 -0.135 -0.035

w I
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i
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i
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SITE I INITIALLY
FILLED

(111)

I

CLUSTER POSITIONS
ABOUT SITE I

(110)

w -4^
c^

xU
-6^

_g0

(110)

SITE I INITIALLY	 Lj\
EMPTY	 (111)

I

N
w	 4^H
H

d
2^

W'
Z
W

0

H
w
0
a

z

2	 4	 6
	

g	 A	 10
CLUSTER SIZE ABOUT SITE I

^j

Figure . 4. Change in potential energy at site I due to deposition of
adatoms to neighboring sites (nearest neighbors filled first
with assumed (3,9) Mie potential)
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have a probability of greater than 1 / 2 of leaving the cluster. In the case

where the cluster size is greater than the critical cluster size, then we

desire such a cluster to be stable in the sense that an adatom at site I

will have a probability of less than one-half of leaving the cluster.

For a (mo ,n0 ) Hie potential, we can express the second and third near-

est neighbor potentials h!O in terms of the nearest neighbor potential

and we can write

x201
(4)

^3 aO1

where a2 ,a3 are appropriate scale factors (see, for example, table 5).

Using the potential masks of table 4, we can calculate the potential ener -
gies at an arbitrary site I for different crystal orientations and various

cluster sizes about the central site. These various potentials are given in

table 6 for arbitrary Uo , a2 ,a3 ,01 values.

In our computer model we will assign a value to 
0 , 

the potential

change due to the addition of an adatom at site I. 'then from the (m0 , no)

Mie potential and the relations ^ o - 40 1 + 402 - (4 + 4M241 ( 1 00 case), ^0

(0 1 + 42 - (6 + 2a241  (111 case) and o o - 41 + 242 +403 - (2 + 2a2

+ 4a3 t1 ( 110 case), we can determine the nearest neighbor potential change

01 and from equation (4) the other potential changes for nonneares t neigh-

bors. In our model we will use a (4,10) Mie potential (refs. 9, 10).

The data presented in figure 4 and table 5 can be used to make a rough

limited estimate of the nearest neighbor potential $1 in the following

sense: we assume that the surface thermodynamics can be attributed to the

property of clusters. Using the Gibb's free energy of formation of a spher -

ical cluster of radius r as

AG -  4a r 2 3 
r 

r  VT In P

e

where r - radius of cluster, c - surface vapor interface energy, V - molecu-

lar volume, T - absolute temperature, P - supersaturated vapor pressure, Pe

equilibrium pressure (P/Pe _ supersaturation). (See figure 5 for a dia

gram of potential energy.) Here AG is a maximum at

18
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r = r =

Kr In PPe

This is the radius of the critical, cluster. If a cluster has a radius r

which is smaller than r , then the cluster will be unstable and an adatom

will have a probability of greater than one-half of leaving the cluster.

Alternatively, if the radius of the cluster is larger than r , then an ad-

atom will have a probability of less than one-half of leaving the cluster.

These ideas can be incorporated into our model in a limited sense as

follows: We let U  = 0 denote the evaporation level; and DU e then

represents the desorption energy of a surface adatom and A  = U  - U  or

U =
 

-,&U  , for 6U , the activation energy for migration, we have U - U
oe	 m	 m	 o

4U 
M  

By using the results of table 5, other potential energies can be

visualized inside the potential well. Usually, DU 
el 

AU  
m 

are measured at

reference Tr , and it will be assumed that these values are temperature

independent. We also assume that the thermally accommodated adatoms have a

Boltzmann distribution which has the median value Emedian KT  In 2, where

K is-Boltzmann's constant. If we assume a critical cluster size and choose

^0 
such that this cluster has an equal probability of growing larger or

smaller, we have for the different crystal orientations the requirement

that, when a median energy from the Boltzmann distribution is added to the

energy of an adatom associated with a critical cluster, we obtain

= U

migration	 (5)
energy

Uo + gn ¢ l	
KTr In 2

energy of critical	 median
cluster adatom	 energy

Equation (5) enables us to determine $1 such that 50 percent of the

adatoms will remain at the site I, while 50 percent of the adatoms will

desorb from the site I. An example which will illustrate the use of equa-

tion (5) is given in the next section. Also, the limitations of using equa-

Lion (5) to assign a value to	 will be discussed.
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Table 6.	 Potential energies at arbitrary site I.

' Potential at Site I
Uo + 901Cluster

Size n 100 lit 110

0 Uo Uo Uo

1 Uo + (4 + 4a2)^ 1 Uo + (6 + 2a2 )^ 1 t'o + (2 + 2a2 + 4a3)¢1

2 Uo +03 + 4(x2 ) ^ 1 Uo + { 5 + 2ad) l Uo + (1 + 2a2 + 4Q3 ) f 1

3 Uo + (2 + 4a2)f1 Uo + (4 + 2a2)¢1 Uo + (2a2 + 4a3)01

4 Uo + 0 + 402)^1 Uo + 0 + 2a2 )^ 1 Uo + (a2 + 4a3)f1

5 Uo + 4a2 ^ 1 Uo + (2 + 2a2 )^, Uo + "01

6 Uo + 3a2^ 1 Uo + 0 + %41 UQ + 3a3^1

7 Uo + 2a2 f, Uo + 202^1 Uo + 2a01

8 Uo + 0'2^1 U 	
+ a2^1

Uo + a3fi

9 Uo Uo Uo

0



-	 -- .

Energy Distribution and Random Walk

In our model of crystal growth we assume that the thermally accommo-

dated adatoms possess a Boltzmann distribution for their surface energies.

This distributions can be Expressed as

f (E) - KT exp	 EKT	 (6))

It has the cumulative distribution function:

E
F(E) j f(E)dE - 1 - exp- EE
	 (7)

0	 (

We can generate a random variate E from this Boltzmann distribution by

using the inverse function associated with the cumulative distribution [eq.

(7)]. For R, a uniform random number between 0 and 1, the random energy is

given by

E - -ICS In (1 R)	 (8)

The mean of this distribution is KT and the median is given by

Emedian - Kr In 2
	 (9)

We will choose the nearest neighbor potential ^1 by assuming a criti-
cal cluster size (refs. 11, 12) from table 6. FGr example, if we choose 3

as the critical cluster size, then we desire that an adatom added to site I

will have a probability of less than one-half of leaving the cluster. For a

(100) orientation, we require that

U (100) + E	 = U
3CLUSTER	 median	 m

or

Uo+ (2+4a 2) f 1 +Krr In 2=Um



This requires that we choose f1 to satisfy

U - U = KTr In 2	 AU - KTr In 2

	

m o 	 m
(2 + 4a 2 )	 (2 + 4a2)

where A Um is the surface diffusion activation energy. For this choice

of ^1 we will then have the following inequalities;

for cluster sizes greater than three,

U 5100 +E	 <U , n> 3
nCLUS ER	 median	 m

for cluster sizes less than three,

U (100) +E	 >U, n<3
nCLUSTER	 median	 m

The appropriate choice of Um then produces the stability and instability

characteristics associated with various size clusters.

In general, we can replace the denominator in equation (10) by the mare-

general expression gn - (nl + mlal + t1a2) where nl ,ml ,il are integers asso-

ciated with different crystal orientations. This produces the more general

expression

AU -Kf In 

1	 gn

For the nearest neighbor potential c age associated with a gn critical

cluster and surface orientation of table 6. In equation (11) the Hie poten-

tial is assumed, and second, third nearest neighbors' potential changes are

given by

^2 _ x201 , 03 - a30 1
and Tr is a reference temperature.

We can thus summarize the Monte Carlo simulation model as follows:

(1) We assign an initial geometry and characteristics to a sub-
..

strate. In addition to geometry considerations, we assign a

u

(10)

(11)



uniform potential (UOS ) together with evaporation (Ue8 ) and mi-

gration (U	 ) levels.
ms

(2)	 Heteroepitaxy is assumed to occur during deposition of the first

layer.	 A flat uniform surface would have potential changes from

a uniform value of	 Uos	 everywhere on the substrate to a value

of U	 everywhere after the first layer covers the substrate.	 Be-
0

cause of this change from heteropitaxy to autoepitaxy, the ini-

tial layer potential mask is adjusted by a value of U 	 - U
o	 os

from which we can obtain the heteroepitaxy -to-autoepitaxy poten-

tial change.

(3)	 We assume 'Hie potentials for both the substrate and growing mate-

rial.	 The nearest neighbor potential change 	 ^1	 is determined

by	 AU 	 - Um - Uo , which is the surface diffusion activation

energy,, temperature, critical cluster size, and surface orien-

tation.	 The second and third nearest neighbor potential changes

¢2103	 are determined by the Hie potential scale factors 	 a2,a3,

and 02 ' a2019 03 ' a0i we can then construct the appropriate
i

potential masks depicted in table 4 for both the substrate and

the growing materials.

(4) During a time interval At we let adatoms impinge upon the sur-

face and update the potentials Uo.

(5) During the At interval, each of the surface adatoms is assigned

a random energy (E) from a Boltzmann distribution and the total

energy at each adatom surface site is tested. For U - U  + E,

the total energy, we let the adatom:

evaporate if	 U > U ;

'r

	

	 migrate if	 Um < U < Ue ; and

remain stationary if U < Um.

During the heteroepitaxy, we use the values Ue S ,U
ms
 to deter

mine the fate of an adatom, and for autoepitaxy we use the val-

ues U and U .
e	 m

(6) We record and update all potential changes and height changes

which occur during the growth process together with other sta-
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tistical measures of crystal growth to which we may want to as-

sign a quantitative value.

(7) The process continues until some stopping condition is satis-

fied. Some stopping conditions are that (a) layers exceed a

certain value or (b) time exceeds a certain value.

During the surface migration of an adatom, we allow it to random walk

to a nearest neighbor site only. Only those nearest neighbor sites which

are unoccupied and at the same or a lower level are considered first for the

random walk. If all the nearest neighbor sites on the same level are fil-

led, then the adatom is allowed to random walk to a nearest neighbor site by

hopping up to the next highest level. The flowchart of the computer simu-

lation is illustrated in figure 6.

The limitations in calculating 0 1 , rather than assigning a value to

0
(which is more general), are as follows: let C o

	 t
- KT In 2, then from

equation (11) we can construct the following linear relation ¢O = m(QUm - Co)
where the values of the slope m are given for different cases:

Critic1	 Orientation
Cluster Size	 100	 111	 110

2	 m - 4(1 + a 2 )	 m - ( 6 + 2a2 )	 m - (2 + 2a2 + 1
 4a3)

	

3 + 4a2 	5 + 2a2 	1 + 2a2 + 4a3

3	
m-4(1+a2)	 m-(6+2a2)	 m- (2+2a2+4a3)

2 + 4a 2 	4 + 2a 2 	2a2 + 4a3	 (12)

4	 4(i + a 2 )	 - 6 + 2a2	 - (2 + 2a2 + 4a3 )

	

M - 1 + 4a2	 m 3 + 2a2	
m	

a2+ 4a3

These relations imply that for DU
m	 o
large enough, U + 0 0 > 0; conse

quently these adatoms will evaporate from the surface. Clearly, we do not

want	 to be dependent upon the choice of AUm
 As a consequence, the

o 
cluster interpretation still exists, yet we must assign a value to 00 which

is independent of AU
m
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READ IN VALUE OF PARAMETERS

INITIALIZATION OF SUBSTRATE
GEOMETRY AND POTENTIALS

a^

	

	
IMPINGEMENT OF L RANDOM

ADATOMS DURING TIME INTERVAL At

UNIFORM DISTRIBUTION: GENERATE L
RANDOM SITES AND DEPOSIT ADATOMS AT THESE
SITES AND CHANGE POTENTIALS BY USING
APPROPRIATE MASK

DO FOR ALL SURFACE ADATOMS (SITE I)

BOLTZMAN DISTRIBUTION: GENERATE RANDOM
SURFACE ENERGY E(I)

TEST POTENTIAL AT SITE I, U - Uo(I) + E(I)

IF U < m THEN ADATOM REMAINS AT SITE

IF U > U  THEN EVAPORATION FROM SITE

IF n < U < Ue THEN MIGRATION TO NEW SITE

CONDENSATION: LEAVE ADATOM 	 MIGRATION: RANDOM WALK FROM	 EVAPORATION: ADATOM REMOVED
AT SITE I	 SITE I TO NEAREST NEIGHBOR SITE	 FROM SURFACE AND POTENTIALS

UPDATE POTENTIALS BY EVAPORATING 	 UPDATED
ADATOM FROM I AND DEPOSITING
ADATOM AT NNS.

CONTINUE	 ,

CALCULATE: STATISTICAL AVERAGES OF VARIOUS
	

e

' EASURES" OF CRYSTAL GROWTH - OUTPUT DATA

S	 AGAIN?

110

GRAPHICS

STOP

_	 Figure 6. Flow chart of model.	
t
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ADDITIONAL CONSIDERATIONS AND ASSUMPTIONS

With reference to figure 7, we have the following situation: When

material is deposited upon an ideally flat substrate, the potential wells

will change from U	 to U after one layer of material covers the sub-
os	 o

strate. In order to accomplish this change, we alter the potential mask of

table 4 by replacing 0o by 00 + Uo - Uos for all first-layer locations.

For layers greater than one, we revert back to the masks of table 4.

The interatomic potential possesses the general characteristics of fig-

ure 7. If we assume that R 1	R2	 a  is the interatomic spacing, then

{	 the first-layer potential adjustment will be U  - Uos as above. If, how-

ever, there is a misfit dislocation in the atomic spacing of the substrate

and deposited material, then the first-layer potential adjustment will be in

terms of the different potentials at R1 and R2 and will vary accordingly

upon the misfit distance. The first-layer potential adjustments will, in

i
general, have to be corrected as we move along the misfit direction as sug-

gested by figure 8. This will require much additional bookkeeping of poten-

tial values and changes with distance.
I

Imagine that we move an adatom along the flat surface. For each dis-

placement S, measured from some fixed reference, the adatom will experience

a potential attraction or repulsion which is determined by the Mie poten-

tial.	 For each value of S = O,al,2al,..., there will be an associated po-

tential change which can be calculated for each position. This would require

that the potential masks of the first layer would each have to be adjusted

based upon the assumed geometry and calculated Hie potential values.

For a heterogeneous surface, the evaporation potential changes will

vary from site to site as will the nearest neighbor migration levels. If we

let Uij denote the potential well at a position i,j and denote by AU 

the average evaporation energy, and AU
m 

the average migration energy, then

associated with each site potential U
,j 

there are nearest neighbor migra-

tion levels 
AUm'1'AUm 2'	

in each of the nearest neighbor directions, as

illustrated in figure 9. These additional concepts will require a more de-

tailed computer model to keep track of all the potential changes and updates,
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We begin our study with the oversimplified model flow charted in Figure

6 where we assume a (4,10) Mie potential and let the critical cluster size

determine 01 and consequently 00. For future studies we will assign

values to 0o independent of AVm values and try to determine the feasi-

bility of extending the concepts to an A-B model. The following section

summarizes the processes 'which the model considers.

SUMMARY AND DESCRIPTION OF GROWTH PROCESS

We simulate the number of adatoms impinging upon an area of the

substrate during a time interval At. These adatoms impinge at random

positions on the surface and will be absorbed, migrate, or desorb depending

upon their energy states during the time interval At. The deposited

adatoms will form clusters (refs. 10, 13). The sizes and shapes of these

clusters will be determined by the energies of the potential wells, the

deposition rates, the migration levels, and the surface temperature which

affect the surface energy Boltzmann distribution.

When conditions are such that surface diffusion controls the growth,

the clusters that form will increase in size and eventually coalesce with

other clusters. After the clusters coalesce, the islands of clusters will

have empty spaces-between them which will fill in and disappear by the ran-

dom deposition of adatoms.

The surface energy is an important mechanism which controls the ;surface

diffusion and mass transport of surface adatoms since this diffusion process

enables clusters to form, then grow and finally merge with other clusters.

We assume that thermally accommodated adatoms are described by a Boltzmann

distribution

f(E)	 1 exp (=E l E > 0 (13)
KT	 \ KT n

which has a mean E = KT, mode of Emode 0, and median of
Emedian = KT In 2_.
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Note that for i s , the average lifetime of a monomer adatom on the

surface before it desorbs from the surface, we may write

T W -L exp AUe
s U 1	 Kr

where AU
e 

is the evaporation energy from the surface to the vapor and U1

is a frequency factor on the order of 10-12 to 10-13 seconds at room temper-

ature. Letting Ds denote the monomer diffusion coefficient we write

Ds s do?'uo exp 
^U

AUm	
(15)

KT

where. AU is the activation energy necessary for an adatom to jump a lat

tide distance do to a neighboring site and 
o  

is the frequency factor for

the jump. For diffusion -dominated phenomena, the adatoms form clusters by

way of collisions on the surface. The value of AU
m depends upon where the

monomer is located (i.e. kink site, edge, free adatom, etc.). We will

assume that AU  is associated with a kink site energy change. From the

Einstein relation

.	 Dsx s = XS	 (16)

where s is the mean adatom displacement, we can write

U	 AU - AU
Xs do u1 exp	

e2Kr m

	
(17)

Now if diffusion is the dominant mechanism for growth, then X s > do and

we require that AU  > AUm.

Also associated with the growth mechanism are the deposition rate-and

migration range and how these quantities interact. For example, with a low

deposition rate and large values for AU and small AU• there will be a
e	 m

high probability for surface migration of adatoms deposited. This surface

diffusion is a random walk process which continues until the adatom is

absorbed by the surface or else desorbs back to the vapor. At the other ex-

treme, if the deposition rate is much greater than the diffusion rate, then

the adatoms are being deposited before other adatoms can migrate away by

surface diffusion. The large deposition rate creates the interaction of

adatoms and the resultant cluster formation.

(14)
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The size of the crystal formed will depend upon:

(1) the surface mobility of the adatoms;

(2) the smoothness of the substrate as a growing surface (i.e., the

rougher the surface, the more nucleation sites available and the

higher the probability of anisotropic column growth. Also,

there will be a reduced surface mobility of adatoms);

(3) the deposition rate and the kinetic theory of interaction and

chemical bonding of adatoms on the surface which will tend to

increase the average energy of surface adatoms (i.e.. for those

substrates where there is a strong interaction between adatoms,

then the adatom surface mobility will be reduced);

(4) the activation energies for surface diffusion and evaporation;

and

(5) the orientation of the critical clusters and their density at

the onset of nucleation.

If the surface energy distribution is such that at low temperatures the

adatom surface migration is small, then the crystal growth is mainly from

condensation on random surface sites. If Rd is the deposition rate and Re

the evaporation rate from a surface section which has W adatoms and d
0

is the depth of a layer, then

R  - do (Rd - RP)	
(18)

M2

is the average growth rate.

If the substrate material is amorphous in structure,- then the potential

wells will not be periodic in nature. This will decrease the surface mobil-
1

ity of adatoms and the impinging adatoms will tend to condense in the neigh-

borhood of impingement.

The epitaxial relationship between the substrate material and the con-

densating material, in regards to preferential oriented absorption, depends

upon the relativepotential wells and consequent reaction between the con -

densate and substrate adatoms. It is assumed that this: process is random in

nature and that the higher index faces grow more rapidly than the lower in-

dex faces and will eventually disappear as is suggested in figure 10. 	 ;r
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PRELIMINARY COMPUTER RESULTS

A computer program following the flow chart in figure 6 was constructed

Time intervals of At = 0.025 and At = 0.01 were utilized for the deposition

of adatoms, where deposition rates of 200 and 400 adatoms per second were

used G um/hr = 0.2778 nm /sec = 200.. adatoms/sec for a 20 x 20 array).

During each At time interval the surface adatoms were assigned a random

energy from a Boltzmann distribution and the poten-tial energies were

adjusted by using the potential masks of table 4. The potential changes in

table 4 were approximated by assigning a value to AU and then calculating
m

the nearest neighbor potential change ^1 from the re-lation of equation

(10). The other neighboring potential changes were calculated by assuming

a (m ,n ) Mie potential where 02 - 0201 and 03 . 0301• 'these potential
0 0
changes then produced $ = EI , which depends upon the particular orienta-

tion being modeled.

Some preliminary results obtained from the computer simulations are

given in the following figures. In these figures, the initial substrate

geometry was assumed flat with a ledge of height one along the top row of a

20 x 20 array. Figure 11 illustrates the graphic display option of crystal

growth that is available. Note in the center of this figure the critical

cluster of size 4 for a (100) orientation of crystal growth. Figures 12(a)

and (b) illustrate the vertical growth rate vs. time for various orienta-

tions and migration levels. Note that for AU  large (near AU e )  there is

more evaporation of adatoms from the surface and consequently there is a

lower growth rate. Note also that the (111) orientation has a larger growth

rate than the (100) or (110) orientations.
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