NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Shape Determination and Control for Large Space Structures

Connie J. Weeks

```
(JPL-Pub-81-71) SHAPE DETERMINATION AND
CONTROL FOR LARGE SPACE STEUCTURES (Jet
Propulsion Lab.) 175 p HC AC8/MF AO1
CSCL 22B
G3/18
    Unclas
    G3/18 0845y
```

October 1, 1981

N/SA

National Aeronautics and
Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Shape Determination and Control for Large Space Structures

Connie J. Weeks

October 1, 1981

N/SA

National Aeronautics and
Space Administration
Jet Propulsion Laooratory
California Institute of Technology
Pasadena, Califomia

The research described in this publication was carried cut by the Jat Propulsion Laboratory, California Institute of Technology, under contract with the National Aeroneutics and Space Administration.

Preface

The wurk contained in this report was performed while Dr. Weeks was employed at the Jet Propulsion Laboratory. Dr. Weeks is currently an Assistant Hrofesscr in the Mechanical and Aerospace Engineering Department at Einceton University, Princeton, New Jersey.

Acknowledgements

The author wishes to thank Dr. Guillermo Rodriguez for his ideas and encouragement, which have contributed considerably to this work. I also wish to thank Vijay Alwar, Kance Edmunds, Massih Hamidi, Jer-Nan Juang, Yu-Hwan Lin, David Schaechter, Eldred Tubbs and Don Wang, for many valuable discussions.

Finally, I wish to thank our technical typist, Sharon Miller, for her consistently excellent work.

Abstract

An integral operator approach is used to derive solutions to static shape determination and control problems associated with large space structures. Problem assumptions include a linear self-adjoint system model, observations and control forces at discrete points, and quadratic performance criteria for the comparison of estimates or control forces.

Results are illustrated by simulations, in the one dimensional case with a flexible beam model, and in the multidimensional case with a finite element model of a large space antenna.

Modal expansions for terms in the solution algorithms are presented, using modes from the static or associated dynamic model. These expansions provide approximate solutions in the event that a closed form analytical solution to the system boundary value problem is not avaiiable.

Table of Contents

Page
List of Iliustrations vid.
List of Tables v111
Table of Symbols 1x
Chapter 1. Introduction and Summary 1
1.1 Background 1
1.2 The Model 3
1.3 Approach and Procedure 5
1.4 A Comment on the Approach 7
Chapter 2. Static Shape Control in One Dimension 9
2.1 Introduction 9
2.2 The Boundary Value Problem 10
2.3 The Green's Function 11
2.4 The Static Shape Control Problem 15
2.5 The General Estimation Problem 19
2.6 Approximations 23
2.7 Conclusions 25
Chapter 3. Static Shape Control for the Flexible Beam 27
3.1 Introduction 27
3.2 Shape Control for a Simply Supported Beam 27
3.3 The Control Problem for the Pinned-Free Beam 33
3.4 The Shape Estimation Problem 37
3.5 Approximations 40
Chapter 4. Shape Control of Structures Governed by Partial Differential Equations 43
4.1 Introduction 43
4.2 The Boundary Value Problem and Green's Function for a Membrane 43
4.3 The Control Problem for ∇^{2} on the Unit Disk 45
4.4 The Estimation Problem 47
4.5 Approximate Solutions 47
4.6 The Static Vibration of a Plate - The Boundary Value Problew and Green's Function 49
4.7 Control Problem for the Operator ∇^{4} 51
4.8 The Estimation Problem for ∇^{4}. 53
4.9 Conclusions 54
Table of Contents (continaed)
Chapter 5. Static Shape Ccntrol for Multidimensional Large Space Stiructuces 55
5.1 Introduction 55
5.2 The Model and the Green's Function 56
5.3 The Shape Control Problem 63
5.4 The Shape Determination Problem 70
5.5 Approximations 72
5.6 Summary and Conclusions 74
Chapter 6. Finfte Element Models: A Large Space Antenna 75
6.1 Introduction 75
6.2 The Finite Element Model 77
6.3 Approximations from the Dynamic Model 83
6.4 The Discrete Control Problem 86
6.5 Applications to a Large Space Antenna 89
Chapter 7. Conclusions and Future Work 111
Appendix A Some Mathematical Background 113
A. 1 A Little Distribution Theory 113
A. 2 The Free Space Solution of $\nabla^{4} \gamma=-\delta(P \mid Q)$ 116
Appendix B The Flexible Beam Program Listings and Output 119
B. 1 The Simply Supported Beam Control Program 120
B. 2 The Pinned-Free Beam Control Program 130
B. 3 The Simply Supported Beam Estimation Program. 139
Appendix C The Large Space Antenna Computer Program and Output 145
C. 1 The Large Space Antenna Computer Program 146
Bibliography 163
Page
Chapter 3: The Flexible Beam
3.1 The Simply Supported Beam 28
3.2 The Green's Function for the Simply Supported Beam 30
3.3 Optimal Shape vs. Desired Shape for the Simple Supported Beam with Two Actuators 32
3.4 The Green's Functions for the Pinned-Free Beam 35
3.5 Shape Control with Rigid Body Modes 38
3.6 Shape Estimation Results for the Simply Supported Beam with 'Three Sensors 41
Chapter 6: The Large Space Antenna
6.1 Ideal Shape, First, Second, and Third Modes 101
6.2 Fourth, Fifth, Sixth, and Seventh Modes 102
6.3 Eighth, Ninth, Tenth, and Eleventh Modes 103
Actual Shape vi. Estimated Shape vs. Corrected Shape for Various Perturbations
$6.4 U^{0}+30 \phi_{3}$ 104
$6.5 \mathrm{U}^{\circ}+25 \phi_{4}$ 105
$6.6 U^{0}+20 \phi_{7}$ 106
$6.7 U^{0}+15 \phi_{2}+10 \phi_{4}$ 107
$6.8 U^{\circ}+10 \phi_{2}+10 \phi_{4}+5 \phi_{6}$ 108
$6.9 \mathrm{U}^{\circ}+10 \phi_{1}+10 \phi_{4}+5 \phi_{8}+5 \phi_{10}$ 109
$6.10 U^{\circ}+10 \phi_{1}+5 \phi_{2}+5 \phi_{3}+5 \phi_{4}+5 \phi_{5}$ 110

List of Tables

Page
Chapter 6: A Large Space Antenna
6.1 Estimation/Control Points on Circle of Different Radif in \times Direction 98
6.2 Results of Shape Estimation/Control for Observations/ Controls in the x, y, or x and y Direction 99
6.3 Measurement and Control Applied to x and y Directions and the x Direction 100

Table of Symbols

Abbreviations

BVP	Boundary Value Problem
FEM	Finite Element Model
LSS	Large
Greek Letters	

Ω	The domain in R^{ℓ}
Γ	The boundary of Ω
ψ	The desired shape
Λ	A diagonal matrix with diagonal elements λ_{1} (section 6.4)
Φ_{i}	Eigenfunctions (modes) of the associated BVP (multidimensional)
γ_{1}	Linear combinations of Green's functions (section 2.4)
γ	Free space solution (Chapter 4, Appendix A)
δ	The dirac delta function
ζ_{i}	The noise in the ebservation y_{1}
0	Angular coordinate of the point P
λ_{j}	Lagrange multiplier (section 2.6)
λ_{j}	Eigenvalue of the Bup
${ }_{1}$	Eigenvalue of the integral operator $K . \mu_{i}=\frac{1}{\lambda_{i}}\left(\right.$ for $\left.\lambda_{i} \neq 0\right)$
ξ, n	x, y coordinates of the point Q in R^{2} (Chapter 4)
$0 . \phi$	Polar coordinates of Q (Chapter 4)
p_{i}, ϕ_{i}	Yolar coordinates of p_{i} (Chapter 4)
中	A test function on 32 (Appendix A)
$中_{1}$	Normalized eigenfunction (mode) of the associated boundary value problem
${ }^{\omega} 1$	System irequencies: $\omega_{i}^{2}=\lambda_{i}$
v^{2}	The Laplacian Operator (Chapter 4)

A	Matrix in the shape control/determination algorithms
B	Vector in the one dimensional shape control law
B_{1}	$1 \leq 1 \leq k_{0}$, the boundary operators for the system $L U=F$
C_{1}	Constant matrices operating on the control vectors F_{i} or the state vectors $U\left(P_{i}\right)$ in the observations
D	A vector in the shape control solution (Chapters 5-6)
D^{1}	A partial differential operator (Appendix A)
F	The forcing function in the multidimensional BVP
F	The vector of forces $\left(f_{1} \ldots \mathrm{f}_{\mathrm{m}}\right)^{T}$ or $\left(F_{1} \mathrm{~T}^{T} \ldots \mathrm{~m}^{T}\right)^{T}$
F_{1}	The control forces applied at positions P_{i} in the multidimensional problem
$G(P \mid Q)$	The $n \times n$ matrix Green's function
$G_{j}(P \mid Q)$	The f th column of G
H	Variation in the vector of disturbances F in the estimation problem (section 5.4)
I	An identity matrix of appropriate dimension
J	The nerformance criterion in the shape determination or shape control problem
K	The integral operator representing the inverse of L
K	The stiffness matrix in a FEM (Chapter 6)
L	The linear differential operator, or $n x n$ matrix of differential operators, which acts on the shape function U
M(P)	The mass matrix in the dynamic BVP
M	Whe mass matrix in the FLM
N	The sum $\sum_{i=1}^{m} n(i)$.
P, Q,R	Points in 82
P_{1}	$1<1<m$, the points in Ω where control forces are to be applied, or observations taken
k^{l}	Euclidean \& space

$n(1)$ by $n(1)$ dimensional weighting matrices in the performance criteria of the control, estimation problems
$R, K^{\cdot 1} \quad$ Block diagonal matrices with diagonal blocks R_{1}, R_{1}^{-1} (Chapters 5.-6)
$R, R^{-1} \quad$ Diagonal matrices with diagonal elements r_{1}, r_{1}^{-1} (Chapters 2-4)
T (superscript) denotes transpose
$U \quad$ The multidimensional (vector) shape function
$\bar{U} \quad$ The vector formed by stacking the vectors $C_{j} U\left(P_{j}\right)$ (Chapters 5-6)
V Another vector function defined on Ω
$V_{1} \quad 1 \leq 1 \leq s$, solutions of the multidimensional homogeneous boundary value problem
$W, W^{-1} \quad$ Piecewise-continuous weighting matrices in the multidimensional performance criteria (Chapters 5-6)

X
The vector of optimal pointwise shape estimates $\left(u\left(P_{1}\right) \ldots u\left(P_{m}\right)\right)^{T}$
$X \quad$ The state vector in the FEll (Chapter 6)
$\mathrm{Y} \quad$ The vector of observations $\left(y_{1} \ldots y_{m}\right)^{T}$ or $\left(Y_{1}{ }^{T} \ldots Y_{m}^{T}\right)^{T}$
$Y_{1} \quad$ The $n(1)$ dimensional observation of $C_{i} U\left(P_{1}\right)$
$z \quad$ The vector of observation aoises $\left(\zeta_{1} \ldots \zeta_{m}\right)^{T}$
$z_{i} \quad$ The noise in the observation Y_{i}

Lower Case letters
$a_{1 j} \quad$ Coefficients of the matrix A in the control/estimation laws (Chapters 2-4)
$b_{i} \quad$ Coefficients of the vector B in the control law (Chapters 2-4)
$c_{i}, c_{i j}$ Constant coefficients
$e_{j} \quad$ The $j t h$ column vector of the identity matrix
f Scalar function representing non-conservative forces acting an the system
$\mathrm{f}_{1} \quad$ Constant scalar force at point $\mathrm{P}_{1}\left(\right.$ or X_{1})
$g(P \mid Q), g(x \mid y) \quad$ The scalar Green's function

h	A variation in the unknown disturkance function f (section 2)
1,1,k, 2	Indices of sequences
k_{0}	The number of boundary conditions
ℓ	The dimension of the domain
ℓ	The length of the flexible beam (Chapter 3)
m	The number of observations, or control forces
n	The dimension of the state
$\mathrm{n}(1)$	The dimension of the observation vector or control force at the point P_{i}
n_{m}	The number of modes (eigenfunctions) used in approximations
p^{1}, q^{1}	The 1 th coordinate of P, Q
\mathbf{r}	The radial coordinate of P (Chapter 4)
r_{i}, r_{i}^{-1}	Scalar weights in the performance criteria (Chapters 2-4)
s	The number of solutions of the homogereous BVP
u	The scalar shape function (Chapters 2-4)
v_{1}	$1 \leq 1 \leq s$, the solutions of the homogeneous BVP
${ }_{1}$	x coordinate of the point P_{1}
y_{1}	Observation of $u\left(P_{1}\right)$

Norms and Products
$\langle U, V\rangle \quad \int_{\Omega} U^{T}(P) V(P) d P$ where U and V are vector functions on Ω
$\langle X, Y\rangle \quad$ where X and Y are vectors, is $X^{T} Y$
$\langle X, X\rangle_{R} \quad$ is the weighted inner product $X^{T}{ }_{R X}$
The norins are those induced by the inner products:

$$
\|u\|^{2}=\langle u, u\rangle \quad\|x\|_{R}^{2}=x^{T} R x \quad\|x\|^{2}=x^{T} x
$$

Other notation is as defined locally.

Static Shape Determination and Control for
 Large Space Structures

Chapter 1. Introduction and Summary

This report presents the results of the development and simulations of algorithms for the static shape deternination and shape control of large space structures (LSS). Observations of positions on the structure, and actuators for subsequent shape control, are assumed located at a relatively few discrete points along its surface.

Quaoratic performance criteria are defined to provide a means of determining "best" shape estimates and control forces. The resulting constrained optimization problems are solved using an integral operator approach, which proves ideal for the mixture of continuous and discrete froblem elements.

Results are illustrated in the one dimensional case with a flexible beam, and in the multidimensional case for a large space antenna.

1.1 Background

The development of the space shuttle has made it possibie to design space structurcs larger than ever before, which may be carried into space and deplnyed os assembled there. Examples of such structures include the space platform, which would support experiments, laboratories, observation instruments and even habitation modules, and the solar power satellite, which would collect and transmit solar energy.

Large space antennae, ranging in diameter frcm 50 meters to one kilometer, are also being planned. They will assist in earth communications, radic and high energy astronomy, the deep space network as orbital relay antennae,
and the remote sensing of soil moisture, salinity concentration and climatic conditions on the earth. The latter information would assist agricultural productivity around the world.

Satisfactory performance of chese large space structures depends upon the competence of their control systems. Three kinds of control systems must be developed: shape, attitude, and orbit transfer and stationkeeping.

In the past, the major deleterious influence on shape was the interaction between the control system, or systems, and the structural dynamics of the spacecraft. Such inteiactions were minimized at the design stage, by guaranteeing a large separation between the modal frequencies of the structure and the control system bandwidth. This is accomplished either by stiffening the structure, which increases its natural frequency (and often its weight): or by reducing the control system bandwidth, which usually reduces the control system performance.

However, in the case of the space structures now being designed, the enormous size, coupled with shuttle payload considerations, requires the use of lightweight, flexible materials. On the other hand, the performance criteria are extremely itringent. Furthermore, other influences, in particular gravity and temperature gradients, will exert significant torques on the structure. Thus design considerations are no longer adequat: for the maintenance of appropriate shape.

The shape control problem is actually the dual problem of shape determination followed by shape concrol. Shape determination must be accomplished by the processing of possibly illaccurate observations of a number of predetermined positions along tho structure. After the shape is estimated, shape control must be accomplished by means of actuators (control
devices) placed at a finite number of discrete (isolated) points, which produce forces or torques in one or more directions at these points. Since the sensing devices and actuators are likely to be both expensive and heavy, in comparison with other structural elements, they will be limited in number and in the choice of their positions.

Thus we require methods for determining and controlling the sitape of continuous structures by means of discrete or pointwise observations and control devices. This is referred to as the continuous-discrete nature of the problem.

Within shape control four categories have been identified: dynamic shape control (control of active vibrations), static shape control, model verification, and engineering verification. This report deals with the problem of static shape control for large space structures.

1.2 The Model

In formulating the general system model it is helpful to consider the shape of the dish of a large space antenna. Its ideal or rest shape is a parabolic shape embedded in three dimensional space. If P is a point on the rest shape, the shape of a distorted antenna may be described by a three or six dimensional shape function $U(P)$, which represents the translational and for rotational displacements in K^{3} of the distorted shape from the ideal shape.

Thus we consider an n dimensional state function $U(P)$, defined on a simply connected domain sa $\in R^{\ell}$. We assume the state is governed by inear dynamics

$$
\begin{equation*}
\text { l. } U(P)=F(P) \quad \text { for } P \in \Omega \tag{1}
\end{equation*}
$$

where L is an $n \times n$ matrix of differential operators.

Associated with the dynamics (1) is a set of inear homogeneous boundary conditions

$$
\begin{equation*}
B_{1}(U)=0, \quad 1 \leq 1 \leq k_{0} \tag{2}
\end{equation*}
$$

on Γ, the boundary of Ω, which wili determine the number of degrees of freedom of the antenna as a whoie. The conditions (2) may represent portions of the boundary which are pinned, simply supported, or free.

We will assume the system (1-2) is self-adjoint.
The n dimensional vector function $F(P)$ in (1) represents forces or torques acting on the system. In the shape estimation problem, F represents the unknown forces producing the shape distortion. F is to be determined, along with the shape itself, by means of a set of, possibly inaccurate, observations

$$
\begin{equation*}
Y_{i}=C_{i} U\left(P_{i}\right)+Z_{i}, \quad 1 \leq i \leq m \tag{3}
\end{equation*}
$$

of the shape at the m positions p_{1}.
In the shape control problem the vector F has the form

$$
\begin{equation*}
F(P)=\sum_{i=1}^{m} C_{i} F_{i} \delta\left(P-P_{1}\right) \tag{4}
\end{equation*}
$$

The representation (4) for 5 corresponds to the assumption that the forces F_{i} are to be applied in one or more dimensions at the positions p_{1}. A force applied to a rotational coordinate is a torque.
'lo provide a measure of the optimal estimates of the shape and disturbance functions, or alternatively the optimal set of control forces, we will define quadratie performance criteria.

Thus the shape determination and shape control problems become constrained optimization problems, consisting of the following problem

Abstract

elements: A continuous state which satisfies a self-adjoint linear boundary value problem, together with a set of m observations or forces applied at discrete points on the structure, anc a quadratic performance criterion, which includes both continuous and discrete components, and serves as a means of comparison of estimates or control forces.

1.3 Approach and Procedure

We will apply an integral operator approach to the solution of both the static shape determination and shape contrul problems in the following manner: for a given forcing function F, the solution U of the boundary problem ($1-2$) may be expressed in terms of an integral operator k :

$$
\begin{equation*}
U(P)=K F=\int_{\Omega} G(P \mid \varrho) F(Q) d Q \tag{5}
\end{equation*}
$$

where the function $G(P \mid()$ is the Green's function, or influence coefficient, corresponding to the system (1-2). The integral operator K in (5) represents the inverse of the operator L on an appropriate space of functions. The Use of the integral expression (5) in place of the differential boundary value problem (1-2) eliminates some or all oi the constraints in the optimization problem, and proves particularly advantageous in the case of a continuous-discrete problem mix.

Procedure

We will begin by solving the static shape control and estimation problems for a onedimensiomal shape function u, in Chapter 2 . The results will be illustrated in Chapter 3 by simulations of a flexible beam, for both simply supported and pinned-iree boundary conditions.

Consideration of the one dimensional case has several advantages: It is easier to use intuition about the results, and it is possible to be specific about the identity of the operator L and its inverse K. Thus exact solutions may be computed, and compared with solutions from modal approximations of the type which must be used in the multidimensional case.

In Chapter 4 the results derived in Chapter 2 are applied to the case that L is a partial differential operator. The static shape distortion of a circular membrane and a rectangular plate are considered as examples. The analytical results are similar to those for an ordinary differential operator, but it is clear that even when the operator L is known, the specific Green's function for a system governed by a partial differential equation may be difficult or impossible to compute. Approximate algorithms using the system modes (eigenfunctions), which can still be computed analytically, are also presented.

In Chapters 5 and 6 rultidimensional shapes, corresponding to most LSS models, are considered. In Chapter 5 the theory is developed. It parallels the theory for the one dimensional case, with some exceptions. The differential operator and the Green's function are matrix operators. Observations and control forces may be applied to only some of the components of the state at each point. Furthermore, in most cases the differential operator L and the system modes are not explicitly known. Thus the modes must be computed experimentally, or by a modeling method such as the finite element method. Approximate solutions based on eigenfunction expansions corresponding to the static model are presented.

In Chapter 6, in order to apply results to a finite elemenc model of a large space antenna, the methods of Chapter 5 are adapied to the use of eigenfunctions supplied by a dynamic (time-varying) model. A derntpion
of the finite element method is presented. The control problem is used to demonstrate the exact correspondence between sclutions of the continuous static problem and the finite dimensional static model of the finite element method. Finally, results are illustrated by simulations, using data from a finite element model of a large space antenna.

Conclusions and future work are stated in Chapter 7.
The appendices include program listings and outputs for the simulations of the flexible beam (Appendix B) and the LSS antenna (Appendix C).

Appendix A contains a simplified sketch of distribution theory, the mathematical theory within which the use of the delta "function" may be considered legitimate. It also contains a proof of the identity of the free space solution of $\nabla^{4} \gamma=-\delta(P-Q)$, which is a part of the Grean's function for the operator ∇^{4}.

1.4 A Comment on the Approach

The integral operator approach is ideally suited to the continuousdiscrete problems of LSS shape control and determination. Physically the Green's function represents the response of the system to a unit impulsive force at one point. Thus, the shape control problem, for example, becomes merely the problem of determining the linear combination of Green's functions or responses at each point which produce the best approximation to the desired shape.

The amalytical problem of handing a continuous-discrete mathematical mixture can prove messy or awkward. The integral equation approach reduces the elements of the shape control and determination problems either to purely discrete or purely continuous problems which are more easily handled.

In addition, no approximations, other than the initial assumptions of linearity and poiniwise application of forces or ebservations, which are common to most engineering approaches, are applied until the final computation of the solution algorithms. This approach has value in both its simplicity and its generality. Intuition about the behavior of the system can be retained to the finai computation stage.

For example, it is easy to determine the additional constraints which must be applied in the case that the system has rigid body modes (eigenfunctions corresponding to zero frequencies), and to understand their ptysical interpretation.

Furthermore, the shape control and estimation algorithms are not dependent on a particular model, since the only dynamical assumptions are that the system is linear and self-adjoint. A change in the model does not necessitate a change in the method, only a change in the eigenfunctions used to approximate elements in the algorithms. The eigenfunctions can be provided by lumped mass finite element models, which are themselves linear and self-adjoint.

Finally, the use of integral operators racher than differential ones possesses these general advantages:
(1) The expression of a solution as antegral equation automatically incorporates the boundary conditions, which must be stipulated separately if the problem is stated as a differential equation.
(2) The integral operator is usually bounded and of ten completely continuous, whereas differential operators are unbounded. Thus resuits concerning eigenfunction expansions, solutions of nonhomogeneous equations etc. are more easfly obtained.
(3) Numerical appriximations and variational techniques which include several other methods of sulving problems with constraints are mure easily applied to fategral rather than differential equations.

Chapter 2. Static Shape Control in One Dimension

2.1 Introduction

In this chaptex we present the general theory for a one dimensional shape, which will be illustrated by a flexible beam model in Chapter 3. While the slizpe of a large space structure is usually modeled as multidimensional, consideration of the one dimensional case possesses several advantages:

1) It is possible to be explicit about the identities of the differential operator L and its inverse, the integral operator K. Thus exact solutinns to the shape determination and control problems may be computed.
2) Intuition about the physical meaning of results may be applied mure easily to the one dimensional case.

Prosedure

In section 2.2 we define the general linear boundary value problem (BVP) satisfied by a one dimensional shape function u, and discuss the existence of solutions. In section 2.3 we define the corresponding Green's function, and demonstrate its role in che solution of the BVP. We discover a mathematical distinction between the problem of shape control and those of attitude control and stationkeeping.

We will state general shape control and determination problems for a one dimensional state in section 2.4 and 2.5 , and use the Green's function to derive algorithms for their solution.

In section 2.6 we will present eigenfunction expansions which may be truncated to provide approximations to elements of the shape control and estimation algorithms. Since in the multidimensional case approximations must be used. it is interesting to compare them to the exact solutions available in the one dimensional case.

Conclusions are stated in section 2.7 .

2.2 The Boundary Value Probiem

Consider a surface which occupies a simple connected region $\Omega \in R^{\ell}$ and is bounded by the curve Γ.

Assume the surface is acted on at each point $P \in \Omega$ by a force $f(P)$, and that the static deformation $u(P)$ of the surface satisfied the partial differential equation

$$
\begin{equation*}
L u=f \tag{6}
\end{equation*}
$$

where L is a linear ordinary or partidl differentialoperator, related to the stiffness of the structure, which also satisfies linear boundary conditions

$$
\begin{equation*}
B_{i}(u)=0, \quad 1 \leq 1 \leq k_{0}, \quad \text { for } P \varepsilon \Gamma \tag{7}
\end{equation*}
$$

Assume the boundaiy conditions (7) are such that the operator L is selfadjoint. That is

$$
\begin{equation*}
\langle L u, v\rangle=\langle u, L v\rangle \tag{8}
\end{equation*}
$$

for any pair of functions (u, v) in an appropriate class which satisfy the boundary conditions. (The term "appropriate class" is purposely vague. See Appendix A.) The inner product $\langle u, v\rangle$ is defined to be the integral

$$
\begin{equation*}
\langle u, v\rangle=\int_{\Omega} u(Q) v(Q) d Q . \tag{9}
\end{equation*}
$$

Solutions of boundary value problems do not always exist. Before the Green's function can be defined and its role in the solution of (6-7) discussed, it is helpful to recall the following rule from linear differential equations, which gives sufficient reasons for the existence of a solution: Consider the self-adjoint boundary value problem (6-7) and its corresponding homogeneous problem

$$
\begin{equation*}
L v=0, \quad B_{i}(v)=0, \quad 1 \leq 1 \leq k_{0} . \tag{10}
\end{equation*}
$$

Then (a) The system (6-7) has a unique solution for each f if and only if the homogeneous system (10) has only the trivial solution.
(b) If (10) has non-trivial solutions, the problem (6-7) has no solution unless the casistency condition
$\langle f, v\rangle=\int_{\Omega} f(Q) v(Q) d Q=0$
is satisfied for every $v(P)$ which is a solution of (10). This rule is a simplification of Theorem 5.1 in Chapter 5.

Remark 2.1: If a solution $u(P)$ of $(6-7)$ exists, and v_{1}, \ldots, v_{s} are independent non-trivial solutions of (10), then u is not a unique solution, since

$$
\begin{equation*}
u+\sum_{i=1}^{s} c_{1} v_{1} \tag{12}
\end{equation*}
$$

is a solution of $(6-7)$ for any set of constants c_{1}.

Remark 2.2: The consistency condition (11) becomes reasonable when we consider that seeking a solution to (6-7) for any function f in some space is equivalent to seeking the inverse of the operator L on that space. If the null space of L is zero (1.e. the solution of (10) is only the trivial solution) then L is one to one and its inverse may be defined. If (10) has non-trivial solutions, L is not one to one and L^{-1} may be defined, if at all, not uniquely on the range of L. The "consistency condition" guarantees Shat f has $n \sigma$ component in the null space of L, hence (with a little more work) that it is in the range of L.

2.3 The Green's Function

We first consider case (a) of the ruie in the previous section. The corresponding homogeneous problem (10) has only the trivial solittion. Then the Green's function for the problem ($0-7$) satisfies

$$
\begin{array}{ll}
L_{g}(P \mid Q)=\delta(P-Q) & \text { for } P, Q \in \Omega, \\
B_{1}(g)=0,1 \leq 1 \leq k_{0}, & \text { for } P \in \Gamma . \tag{14}
\end{array}
$$

It represents the response of the system at the point P to a unit impulsive force at Q. $\delta(P-Q)$ is the dirac delta function.

Since L is seif-adjoint, and both u and g satisfy the boundary conditions, we have

$$
\begin{equation*}
\langle u, L g\rangle=\langle L u, g\rangle \tag{15}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
u(P)=\int u(Q) \delta(P-Q) d Q=\int_{\Omega} g(P \mid Q) f(Q) d Q . \tag{16}
\end{equation*}
$$

Remark 2.3: Because the BVP (6-7) is self-adjoint, $g(P \mid Q)$ is symmetric, that is $g(P \mid Q)=g(Q \mid P)$. [2] This is proved in the multidimensional case as Theorem 5.2 in Chapter 5.

Remark 2.4: The Green's function is the kernel of the compact integral rirator K such that

$$
\begin{equation*}
K f=\int_{\Omega} G(P \mid Q) f(Q) d Q \tag{17}
\end{equation*}
$$

K is clearly the inverse of the operator L, where defined on the range of L, since $K L u=K f=u$ and $L K f=L u=f$.

Remark 2.5: The solution of (13) is called a fundamental solution. The equation (13) is satisfied in a distributional rather than a pointwise sense. That is

$$
\begin{equation*}
\langle\operatorname{Lg}, \phi\rangle=\left\langle G, L *_{\phi}\right\rangle \psi \psi(\xi) \tag{18}
\end{equation*}
$$

for all test functions ϕ. (A test function is an Infinitely differentiable function defined on R^{ℓ} which has compact support. See Appendix A.)

We now consider case (b). Suppost che problem (10) has s independent solutions v_{1}, \ldots, v_{s}, which we assume have been made orthonormal with respect to the inner product (9). We may not define the Green's function as in (13-14) because

$$
\begin{equation*}
\left.<\delta(P-Q), v_{1}\right\rangle=\int_{\Omega} v_{1}(Q) \delta(P-Q) d Q=v_{1}(P) \neq 0 \tag{19}
\end{equation*}
$$

Thus the consistency condition (11) is not satisfied. Therefore, we define the modified Green's function $g(\bar{r} \mid \hat{Q})$ which satisfies

$$
\begin{align*}
& L_{g}(P \mid Q)=\delta(P-Q)-\sum_{1} v_{1}(P) v_{1}(Q) \tag{20}\\
& B_{1}(g)=0, \quad 1 \leq 1 \leq k_{0} . \tag{21}
\end{align*}
$$

We have subtracted the offending components of $\delta(P-Q)$ which lie in the nullspace of L. A solution to this system does exist. It is not unique, however, since the addition of any linear combination of the solutions $v_{1} \ldots, v_{s}$ is also a solution of (20-21). We therefore impose an additional constraini on g :

$$
\begin{equation*}
\left\langle g(P \mid Q), v_{1}\right\rangle=0, \quad 1 \leq 1 \leq s . \tag{22}
\end{equation*}
$$

The function which satisfles (20-22) is the unique Green's function of minimum norm, that 18 , the Green's function which itself has no component in the nullipace of the operator L.

We apply the relation (15) to the modified Green's function. We note that

$$
\langle g, L u\rangle=\int_{\Omega} g(P \mid Q) f(Q) d Q
$$

and

$$
\begin{aligned}
\left\langle u, L_{g}\right\rangle & =\int_{\Omega} u(Q)\left(\delta(P-Q)-\sum_{i} v_{1}(P) v_{1}(Q)\right) \\
& =u(P)=\sum_{i=1}^{g}\left(\int_{\Omega} u(Q) v_{1}(Q) d Q\right) v_{1}(P) \\
& =u(P)-\sum_{i=1}^{8} c_{i} v_{i}(P) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
u(P)=\int_{\Omega} g(P \mid Q) f(Q) d Q+\sum_{i=1}^{g} c_{i} v_{i}(P) \tag{23}
\end{equation*}
$$

The arbitrary constants c_{i} are an expected consequence of Remark 2.1. For reasons given in the next segment, we may neglect the last term of (23).

Rigid Body Modes

As will be seen in the examples, the solutions of the homogeneous BVP(10) are the rigid body modes, or degrees of freedom, of the system. They represent changes in position the structuie may take as a rigid body. The pinned-free beam in section 3.3 has one rigid body mode: it may rotate about the pinned endpoint.

If a structure has free-free toundary conditions: which represent a structure floating freely in space, it may rotate or translate without a change in its shape. In three dimensions this implies up to six rigid body modes.

If the boundary is firmly fixed, the structure lill have no rigid body modes. This is the case with the simply supported baem in Chapter 3, the distorted membrane and plate of Chapter 4 , and the large space antenna with fized hub in Chapter 6.

Since shape distortion is measured with respect to the structure itself, It is rasonable to define a structure-centered coordinate system: the origin and axes are defined to be aiong the structure. To such a coordinate syscem the rigid body modes are invisible, and the solution of (6-7) for case (b) becomes (16), as for case (i). Since the constants in (23) are arbitrary, no generality is lost in this asscmption.

The consistency condition (11) will be seen to imply that no net forces or torques may be applied in the direction of any degree of freedom. Were this not so, an acceleration would result, contradicting the assumed boundary conditions.

This condition (11), coupled with condition (22) on g and the arbitrary constants in (23), imply that the rigid body modes are both invisible to the shape control system and beyond its powers of influence. Translational and rotational motions must be controlled by the other control systems. Attitude control, orbit transfer and stationkeeping. This is the mathematical distinction between the systems mentioned in section 2.1 .

2.4 The static Shape Control Problem

In this section we define a general shape control probiem for one dimensional shape functions. We first solve the control problem assuming case (a) of the rule in section 2.3 . We then discuss the solution for case (b), which is slightly more complicated, due to extra constraints imposed by the consistency condition.

We assume the control devices are located at the points $P_{i}, 1 \leq i \leq m$, along the structure. The general model for the control problem is

$$
\begin{align*}
& L u=\sum_{i=1}^{m} f_{i} \delta\left(P-P_{i}\right) \tag{24}\\
& B_{j}(u)=0, \quad 1 \leq j \leq k_{o} \tag{25}
\end{align*}
$$

where $u(P)$ is the shape, L is a linear differential operator as before, f_{i} is a force to be applied at the point P_{i}, and (25) denotes an appropriate set of boundary conditions.

Let ψ be the desired shape of the space structure. Define the criterion

$$
\begin{equation*}
\left.J(F, u)=\frac{1}{2} \sum_{i=1}^{m} f_{i}^{2} r_{i}+\frac{1}{2} \int_{\Omega}(\psi(Q)-u(0))\right)^{2} d Q \tag{26}
\end{equation*}
$$

as a measure of performance. The constants r_{i} are arbitrary weights and $F=\left(f_{1} \ldots f_{m}\right)^{T}$.

The control problem is to determine the vector of forces $F *$ which together with the corresponding solution u^{*} of (24-25) miaimizes J overall admissible sets (F, u).

Solution of the Control Problem

There are two basic approaches to constrained optimization problems. Une is to use Lagrange multiplier theory. We will use this method to solve part of the shape estimation problem.

The other, perhaps more direct method, is to solve the constraints for an expression for some of the variables in terms of the others. This expression is substituted finto the function of fewer variables, which can be minimized without constraints.

We will use the second approach in the control problem. We first assume the syscem has no rigid body modes:

The solution of (24-25) is given by

$$
\begin{align*}
u(P) & =\int_{J 2} g(P \mid Q)\left[\sum_{i=1}^{m} I_{i} \delta\left(P_{i}-Q\right)\right] d Q \\
& =\sum_{i=1}^{m} f_{i} g\left(P \mid P_{i}\right) \tag{27}
\end{align*}
$$

where $g(P \mid Q)$ satisifes (13-14). Substitution of (27) intu the oriterion (20) yield:

$$
\begin{equation*}
J(F)=\frac{1}{2} \sum_{i=1}^{m} f_{i}^{2} r_{i}+\frac{1}{2} \int_{J 2}\left(\psi(Q)-\sum_{i=1}^{m} f_{i} g\left(Q \mid p_{i}\right)\right)^{2} d Q . \tag{28}
\end{equation*}
$$

The constrained optimization problem (24-26) has become the simpler problem of vinimizing a function of m unknown constants without constrafuts.

Simultaneous solution of the equations

$$
\begin{equation*}
\frac{\partial J}{\partial f_{i}}-0, \quad 1 \leq 1 \leq m \tag{29}
\end{equation*}
$$

leads to the following necessary condition for an optimal solution $F *=\left(f_{1}{ }^{*} \ldots f_{m}\right)^{T}$.

$$
\begin{equation*}
(R+A) F *=B \tag{30}
\end{equation*}
$$

Tho $m \times m$ matrices R and A have coefficients

$$
\begin{align*}
& k_{1 j}=r_{1} S(1-j) \tag{31}\\
& A_{1 j}=\int_{a} g\left(P_{1} \mid Q\right) g\left(r_{j} \mid Q\right) d Q \tag{32}
\end{align*}
$$

and the m dimensional vector B has coefilcients

$$
\begin{equation*}
\mathrm{B}_{1}=\int_{12} g\left(\varphi_{1} \mid u\right) \psi(Q) d u \tag{33}
\end{equation*}
$$

Once the optimal forces are determined, the optimal shapo uk is siven by (27).

Sulution of the Control Iroblem: Case (b)

We assume that the homogeneous BVP corrospondias to (24-25) has s Independent solut tons $v_{1} \ldots \ldots, v_{s,}$ Ihis is, of course, vquivalent to the assumption that the siructure govorned by (24-25) has s rigid body modes.

In urder for a solution to (24-25) to exist, the consistency condition

$$
\begin{equation*}
0=\left\langle v_{j}, \sum_{i=1}^{m} i_{i} s\left(l-i_{1}\right)\right\rangle=\sum_{i=1}^{m} i_{1} v_{i}\left(l_{1}\right) \tag{34}
\end{equation*}
$$

must be satisifed tor each tunction v. Thus the control problem is to determine tho set of toeces $\left\{f_{f}\right\}$ and shape tunction w wheh minimize the erilerion (20) subfuct to the constralnts $(24-25)$ and (34).

We will assume the courdinate syatom is centered on the apacecralt (reciall the segmont "RIgid Hody Nodes"). The solutien if (29-25) is diven by

$$
\begin{equation*}
u(P)=\sum_{i=1}^{m} f_{i} g\left(P \mid P_{i}\right) \tag{35}
\end{equation*}
$$

where g is the modified Green's function which satisfies (20-22).
We first solve the s constraints (34) for the forces f_{1}, \ldots, f_{s} in terms of the remaining forces f_{s+1}, \ldots, f_{m}.

$$
\begin{equation*}
f_{i}=\sum_{j=s+1}^{m} c_{i j} f_{j}, \quad 1 \leq 1 \leq s \tag{36}
\end{equation*}
$$

It is clear that a necessary condition for any solution to exist is that the number m of forces applied must be at least as great as s, the number of rigid body modes. If we wish to obtain an optimal solution m must be greater than s, since for $m=s$ the condition (34) determines the forces uniquely.

Substitution of (36) into (35) yields

$$
\begin{equation*}
u(P)=\sum_{i=s+1}^{m}\left(g\left(P \mid P_{i}\right)+\sum_{j=1}^{s} c_{j i} g\left(P \mid P_{j}\right) f_{i}\right) \tag{37}
\end{equation*}
$$

Define

$$
\begin{equation*}
r_{i}(P)=g\left(P \mid P_{i}\right)+\sum_{j=1}^{s} c_{j i} g\left(P \mid P_{j}\right) \tag{38}
\end{equation*}
$$

then

$$
\begin{equation*}
u(P)=\sum_{i=s+1}^{m} \gamma_{i}(p) f_{i} \tag{39}
\end{equation*}
$$

We stbstitute expressions (36) and (39) into the performance criterion, which results in

$$
\begin{align*}
J & =\frac{1}{2} \sum_{i=1}^{s}\left(\sum_{j=s+1}^{m} c_{i j} f_{j}\right)^{2} r_{i}+\sum_{i=s+1}^{m} f_{i}^{2} r_{i} \\
& +\frac{1}{2} \int_{s 2}\left(\psi(P)-\sum_{s+1}^{m} r_{i}(P) f_{i}\right)^{2} d P . \tag{40}
\end{align*}
$$

The criterion is now a function of the ($m-s$) constants f_{s+1}, \ldots, f_{m}, without constraints. J is minimized by solving simultaneously the (m-s) conditions

$$
\begin{equation*}
\frac{\partial J}{\partial f_{i}}=0, \quad \pm=s+i, \ldots, m . \tag{41}
\end{equation*}
$$

Let \hat{F} and \hat{B} be (m-s) dimensional vectors with components

$$
\begin{align*}
& \hat{F}_{i}=f_{i+s}^{*} \tag{42}\\
& \hat{B}_{i}=\int_{\Omega} r_{i+s}(P) \psi(P) d P \tag{43}
\end{align*}
$$

and the ($m-s$) square matrices \hat{R} and \hat{A} with components

$$
\begin{align*}
& \hat{R}_{i j}=r_{i+s} \delta(i-j) \tag{44}\\
& \hat{A}_{i j}=\sum r_{k} c_{k i} c_{k j}+\int_{\Omega} r_{i}(P) r_{j}(P) d P \tag{45}
\end{align*}
$$

Then the optimal control law for the control problem (24-26)(34) is

$$
\begin{equation*}
(\hat{R}+\hat{A}) \hat{F}=\hat{B} . \tag{46}
\end{equation*}
$$

Once the optimal forces $f_{s+1}^{*}, \ldots, f_{m}^{*}$ are determined from (46), the optimal forces $f_{1}^{*}, \ldots, f_{s}^{*}$ may be found from (36), and the resulting optimal shape is given by (35).

The non-constant terms in \hat{A} and \hat{B} are linear combinations of terms of the form (32) and (33) respectively.

2.5 The General Estimation Problem

For the estimation problem we assume the shape $u(P)$ satisfies the boundary value problem

$$
\begin{equation*}
\mathrm{Lu}=\mathrm{f}, \quad \mathrm{~B}_{\mathrm{i}}(\mathrm{u})=0, \quad 1 \leq i \leq \mathrm{k}_{\mathrm{o}}, \tag{47}
\end{equation*}
$$

where $f(P)$ is an unknown function representing disturbances or inaccuracies in the model. Sensors placed at the positions $P_{i}, 1 \leq i \leq m$, yield the observations

$$
\begin{equation*}
y_{i}=u\left(P_{i}\right)+\zeta_{i} \tag{48}
\end{equation*}
$$

where ζ_{i} is an unknown constant representing inaccuracy in the observation at P_{i}. Let $Z=\left(\zeta_{1} \ldots \zeta_{m}\right)$, We define the performance criterion

$$
\begin{align*}
J(Z, f) & =\frac{1}{2} \sum_{i=1}^{\ln } \zeta_{i}{ }^{2} r_{i}{ }^{-1}+\frac{1}{2} \int_{\Omega} f^{2}(Q) d Q . \\
& =\frac{1}{2} \sum_{i=1}^{m}\left(y_{i}-u\left(P_{i}\right)\right)^{2} r_{i}{ }^{-1}+\frac{1}{2} \int_{\Omega} f^{2}(Q) d Q . \tag{49}
\end{align*}
$$

The estimation problem is to determine the pair ($\mathrm{u}^{*}, \mathrm{f} *$) which jointly satisfy (47-48) and minimize the criterion (49) over all admissible pairs (u, f).

Solution of the Estimation Problem: Case (a)
We assume there are no rigid body modes. Then the solution to (47)
is given by

$$
\begin{equation*}
u(P)=\int_{\Omega} g(P \mid Q) f(Q) d Q \tag{50}
\end{equation*}
$$

where $g(P \mid Q)$ again satisfies (13-14). Thus

$$
\begin{equation*}
u\left(P_{i}\right)=\int_{\Omega} g\left(P_{i} \mid Q\right) f(Q) d Q . \tag{51}
\end{equation*}
$$

We substitute (51) into the criterion (49), which produces the criterion

$$
\begin{equation*}
J(f)=\frac{1}{2} \sum_{i=1}^{m}\left(y_{i}-\int_{\Omega} g\left(P_{i} \mid Q\right) f(Q) d Q\right)^{2} r_{i}^{-1}+\frac{1}{2} \int_{\Omega} f^{2}(Q) d Q . \tag{52}
\end{equation*}
$$

The problem is now to minimize the functional J without constraints. A necessary condition for a minimum of J at $f *$ is that the differential

$$
\begin{align*}
\partial J(f *, h)=0 & =\sum_{i=1}^{m} r_{i}^{-1}\left(y_{i}-\int_{\Omega} g\left(P_{i} \mid(Q) f *(Q) d Q\right)\left(-\int_{\Omega} g\left(P_{i} \mid Q\right) h\left(Q_{Q}\right) d Q\right)\right. \\
& +\int_{\Omega} f *(Q) h(Q) d Q \tag{53}
\end{align*}
$$

for all admissible variation h . (The unknown noise function f and variation h may be assumed to be in $L_{2}(\Omega)$, for example.) Thus it may be concluded that

$$
\begin{equation*}
f *(P)=\sum_{i=1}^{m} r_{i}^{-1} g\left(P \mid P_{i}\right)\left(y_{i}-u *\left(P_{i}\right)\right) \tag{54}
\end{equation*}
$$

Substitution of this relation into (50) yields the optimal shape estimate

$$
\begin{equation*}
u *(P)=\sum_{i=1}^{m}\left[r_{i}^{-1}\left(y_{i}-u *\left(P_{i}\right)\right) \int_{\Omega} g(P \mid Q) g\left(P_{i} \mid Q\right) d Q\right] . \tag{55}
\end{equation*}
$$

Note that $u^{*}(x)$ is expressed in terms of the unknown discrete shape estimates $u *\left(P_{i}\right)$. Let

$$
\begin{equation*}
x=\left(u^{*}\left(P_{1}\right) \cdot \ldots u^{*}\left(P_{m}\right)\right)^{T} \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
Y=\left(y_{1} \ldots \cdot y_{m}\right)^{T} \tag{57}
\end{equation*}
$$

Evaluation of (55) at $x=x_{j}, j=1, \ldots, m$ yields the following necessary condicion for the vector X :

$$
\begin{equation*}
\left(I+A R^{-1}\right) X=i R^{-1} Y \tag{58}
\end{equation*}
$$

where A and R are the matrices of coefficients (31-32).
Once the vector X has been determined the optimal shape estimate is given by (55).

Solution of the Estimation Problem: Case (b)
We now assume the structure described by (47) has s rigid body modes v_{1}, \ldots, v_{s}, which are orthonormal with respect to the inner product (9). The estimation problem is to determine the pair ($u^{*}, f *$) which minimizes the criterion (49) over all admissible pairs (u,f) which satisfy (47) and the set of consistency conditions

$$
\begin{equation*}
\left\langle f, v_{j}\right\rangle=\int_{\Omega} f(Q) v_{j}(Q) d Q=0, \quad 1 \leq j \leq s . \tag{59}
\end{equation*}
$$

We will show that the solution of the estimation problem for case (b) has the same form as that for case (a):

The solution to (47) is given by (60), where g is the modified Green's function (20-22).

$$
\begin{equation*}
u(P)=\int_{\Omega} g(P \mid Q) f(Q) d Q \tag{60}
\end{equation*}
$$

We evaluate (60) at $p_{i}, 1 \leq i \leq m$, and substitute into the criterion (49) producing the criterion (52). Thus we have eliminated part of the constraints,
the boundary value problem (47). The estimation problem becomes the problem of minimizing the criterion (52) subject to the remaining constraints (59).

We will apply the Lagrange multiplier theorem [3]. We adjoin the constraints to the criterion by means of scalar multipliers $\left\{\lambda_{j}\right\}$:

$$
\begin{align*}
j & =\frac{1}{2} \sum_{i=1}^{m}\left(v_{i}-\int_{\Omega} g\left(P_{i} \mid Q\right) f(Q) d Q\right)^{2} r_{i}^{-1}+\frac{1}{2} \int_{\Omega} f^{2}(Q) d Q \\
& +\frac{1}{2} \sum_{j=1}^{s} \lambda_{j} \int_{\Omega} f(Q) v_{j}(Q) d Q . \tag{61}
\end{align*}
$$

A necessary condition for a minimum of J at $f *$ is that the differentials of J with respect to f and $\lambda_{j}, 1 \leq j \leq s$, are 0 . We have

$$
\begin{equation*}
\frac{\partial J}{\partial \lambda_{j}}=0=\int_{\Omega} f(Q) v_{i}(Q) d Q, \quad 1 \leq j \leq s, \tag{62}
\end{equation*}
$$

and

$$
\begin{align*}
\partial J(f, h) & =\sum_{i=1}^{m}\left(y_{i}-u\left(P_{i}\right)\right) r_{i}^{-1}\left(-\int_{\Omega} g\left(P_{i} \mid Q\right) h(Q) d Q\right) \\
& +\int_{\Omega} f(Q) h(Q) d Q+\sum_{j=1}^{s} \lambda_{j} \int_{\Omega} h(Q) v_{j}(Q) d Q=0 . \tag{63}
\end{align*}
$$

We factor the variation h to one side:

$$
\int_{\Omega} h(Q) d Q\left[-\left(y_{i}-u\left(P_{i}\right)\right) r_{i}^{-1} b\left(P_{i} \mid Q\right)+f(Q)+\sum_{j=1}^{S} \lambda_{j} v_{j}(Q)\right]=0
$$

Since this must be true for all admissible variations h, the bracketed term must be zero. We have

$$
\begin{equation*}
f(Q)=\left(y_{i}-u\left(P_{i}\right)\right) r_{i}^{-1} g\left(P_{i} \mid Q\right)-\sum_{j=1}^{S} \lambda_{j} v_{j}(Q) . \tag{64}
\end{equation*}
$$

We apply the other necessary conditions (6iz).

$$
\begin{align*}
0=\left\langle f, v_{k}\right\rangle & \left.=\sum_{i=1}^{m} r_{i}^{-1}\left(y_{i}-u\left(P_{i}\right)\right) i \int_{\Omega} g\left(P_{i} \mid Q\right) v_{k}(Q) d Q\right) \\
& -\sum_{j=1}^{S} \lambda_{j}\left\langle v_{j}, v_{k}\right\rangle, \quad k=1, \ldots, s . \tag{65}
\end{align*}
$$

The set v_{j} was chosen orthonormal, so $\left\langle v_{j}, v_{k}\right\rangle=\delta(j-k)$.
Furthermore, from condition (22) on the modified Green's function we know that

$$
\begin{equation*}
\int_{\Omega} g\left(P_{1} \mid Q\right) v_{k}(Q) d Q=0, \quad k=1, \ldots, s \tag{66}
\end{equation*}
$$

Thus we have $\lambda_{k}=0$ for $k=1, \ldots, s$.
We may conclude that

$$
\begin{equation*}
f *(Q)=\sum_{i=1}^{m} g\left(P_{i} \mid Q\right) r_{i}^{-1}\left(y_{1}-c_{i} u\left(P_{i}\right)\right) \tag{67}
\end{equation*}
$$

as in case (a), and therefore that the optimal shape estimate u^{*} is also given by (55).

Remark 2.6: Note that because of condition (22) on g , the optimal shape estimate has no component in the direction of the rigid body modes. There may be components in the actual shape, but a shape control system has no means of determining them.

2.6 Approximations

If the Green's function is known, the shape determination and shape control problems may be solved exactly by the methods of this chapter. hüwever, it will be seen in Chapter 4 that when L is a partial differential operator it can be difficult to determine the Green's function. For large space structures, which are multidimensional, the determination of the matrix differential operator L, and consequently the Green's runction, is usually impossible.

However, the Green's function, and the terms in the shape control and determination algorithms which involve the Green's function, may be expressed in terms of series expansions involving eigenvalues and eigenfunctions
corresponding to the BVP (6-7). Truncations of those seriss can serve as approximations of the relevant terms. Even when L is not known the eigenfunctions and frequencies can be computed numerically, for example by the finite element method.

Let $\phi_{1}, \phi_{2}, \ldots$ be the normalized eigenfunctions of the boundary value problem (6-7), corresponding to the non-zero eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$ Then $\left\{\phi_{j}\right\}$ and $\left\{\lambda_{j}\right\}$ satisfy

$$
\begin{array}{ll}
L \phi_{j}(P)=\lambda_{j} \phi_{j}(P) & \text { for } P \in \Omega, \\
B_{i}\left(\phi_{j}\right)=0, \quad 1 \leq 1 \leq k_{0} & \text { for } P \in \Gamma . \tag{69}
\end{array}
$$

Eigenfunctions corresponding to zero eigenvalues are rigid body modes. We have the following expansions:

$$
\begin{equation*}
g(P \mid Q)=\sum_{j} \frac{1}{\lambda_{j}} \phi_{j}(P) \phi_{j}(Q) \tag{70}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} g(P \mid Q) f(Q) d Q=\sum_{j} \frac{1}{\lambda_{k}} \phi_{j}(P)\left\langle\phi_{j}, f\right\rangle \tag{71}
\end{equation*}
$$

Substitution of (70) for f in (71) yields

$$
\begin{equation*}
\int_{\Omega} g(P \mid Q) g(Q \mid R) d Q=\sum_{j} \frac{1}{\lambda_{j}^{2}} \phi_{j}(P) \phi_{j}(R) \tag{72}
\end{equation*}
$$

The expressions (71) and (72) provide approximations for the terms B_{j} and $A_{1 j}$ defined by (33) and (32) in the control and estimation algorithms.

The series expansions (70-72) are standard results of 1 inear operator theory [2]. They are based on the assumptions that the integral operator K defined by

$$
K f=\int_{\Omega} g(P \mid Q) f(Q) d Q
$$

is a symmetric Hilbert-Scin: it operator. The symmetry follows from the self-edfointness of the boundary value problem. An operatoz K is HilbertSchmidt if

$$
\begin{equation*}
\| k| |=\left(\int_{\Omega} \int_{\Omega}|g(P \mid Q)|^{2} d P d Q\right)^{1 / 2}<\infty . \tag{73}
\end{equation*}
$$

In the case that L is an ordinary linear differential operator, as in Chapter 3, the Green's function is continuous on the compact domain Ω, which implies (73). If 8 is not known precisely, ihe property (73) must be assumed.

2.7 Conclusions

An integral operator approach to the continuous-discrete optimization problems of static shape estimation and control proves ideal for these problems. Solutions reduce to the solution of linear equations of dimension less than or equal tu the number of observations, or control forces.

A distinction must be drawn between the solutions for systems with rigid body modes and those without. The co:itrol law for a system with rigid body modes is more complicated, due to the imposition of extra constraints on the forces, which represent the requirement of zero net forces and/or torques in the directions of these modes.

The estimation procedure for a system with rigid body modes is the same as for a system without them, but the resulting estimate has no component in the direction of the rigid body modes, because they are invisible to the shape estimator. The rigid body modes represent changes in attitude and translational movement, which must be the concern of the attitude control, orbit transfer and stationkeeping systems.

In the event that the Green's function cannot de precisely known, approximations to the terms in the control and estimation algorithms may be computed from eigenfunction expansions avallable from linear operator theory. Tae eigenfunctions, of ten called modes or mode shapes, may be computed numerically even when the operator L is not known.

Chapter 3. Static Shape Control for the Flexible Beam

3.1 Introduction

A flexible beam provides a perfect .llustration of static shape iistcrtion and subsequent shape control. Consider a flexible beam which is supported at the end points, and is intenderi to serve as a bookshelf. The desired shape, or rest shape in the absence of outside forces, is strictly horizontal. However, the forces of gravity act continuously along the beam, causing it to sag in the center.

In order to achieve the desired horizontal shape, we apply a third support under the center of the beam. The natural stiffness of the beam together with the applicatisi of this additional force at the center approximately counteract the effects of the gravitational force. Thus we observe static shape control by means of one pointwise force in the ordinary brick and board bookcase.

In this chapter we will solve static shape control and estimation problems for a flexible beam of length ℓ, and boundary conditions representing simply supported, or pinned...free endpoints.

3.2 Shape Control for a Simply Supported Beam

Consider the problem of controlling the static deflection of an elastic beam of length ℓ. Define a coordinate system such that the x-axis passes through the endpoints of the beam, with one end at the origin and the other at $x=\ell$. Suppose control is to be implemented by means of transverse forces f_{i} at positions $x_{i}, l \leq 1 \leq m$, where $0<x_{1}<x_{2} \ldots<x_{m}<\ell$. See Fig. 3.1.

At each point $x \in[0, i]$ denote the deflection by $u(x)$. Assuming no net tensile force on a cross-section, the shape of the beam is governed by the
differential equation

$$
\begin{equation*}
\frac{d^{4} u}{d x^{4}}=\sum_{1=1}^{m} f_{i} \delta\left(x-x_{1}\right) \tag{74}
\end{equation*}
$$

The ends of the beam satisfy the boundary conditions

$$
\begin{equation*}
u(0)=u^{\prime \prime}(0)=0 \quad u(l)=u^{\prime \prime}(0)=0 . \tag{75}
\end{equation*}
$$

Figure 3.1 The Simply Supported Bean

Let $\psi(x)$ be the desired shape of the beam. As a measure of performance we define the criterion

$$
\begin{equation*}
J(u, F)=\frac{1}{2} \sum_{i=1}^{m} f_{i}{ }^{2} r_{i}+\frac{1}{2} \int_{0}^{\ell}(u(x)-\psi(x))^{2} d x \tag{76}
\end{equation*}
$$

where F is the vector of forces $\left(f_{1} \ldots f_{m}\right)^{T}$ and r_{i} are non-negative constant weights whose values are optional.

The object is to determine the set of forces f_{i} * wich together with the solution $u^{\star}(x)$ of (74) minimizes (76) over all possible pairs (u,F).

The existence and uniqueness of a solution to (74-75) follows irom the fact that the associated homogeneous system

$$
\begin{equation*}
\frac{d^{4} v}{d x^{4}}=0, \quad v(0)=v^{\prime \prime}(0)=0, \quad v(\ell)=v^{\prime \prime}(\ell)=0 \tag{77}
\end{equation*}
$$

has only the trivial solution. Consequently the solution of (74-75) is given by

$$
\begin{equation*}
u(x)=\sum_{i=1}^{m} g\left(x \mid x_{i}\right) f_{i} \tag{78}
\end{equation*}
$$

where $g(x \mid \xi)$ is the Green's function which satisfies

$$
\begin{align*}
& \frac{d^{4} g(x \mid \xi)}{d x^{4}}=\delta(x-\xi) \tag{79}\\
& g(0 \mid \xi)=g^{\prime \prime}(0 \mid \xi)=0, \quad g(\ell \mid \xi)=g^{\prime \prime}(l \mid \xi ; \cdot 0 . \tag{80}
\end{align*}
$$

The Green's function represents the response of the beam shape to a unit impulsive force at $x=\xi$.

The solution of $(79-80)$ is

$$
g(x \mid \xi)= \begin{cases}\frac{(\xi-\ell) x}{6 \ell}\left(x^{2}-2 \ell \xi+\xi^{2}\right) & 0 \leq x \leq \xi \tag{81}\\ \frac{(x-\ell) \xi}{6 \ell}\left(x^{2}-2 \ell x+\xi^{2}\right) & \xi \leq x \leq \ell .\end{cases}
$$

Figure 3.2 displays the Green's functions which correspond to impulsive forces at positions $\xi=n\left(\frac{\ell}{8}\right), n=1, \ldots, 7$.

The solution of the control problem: Substitution of the solution into the criterion (?6) yields

$$
\begin{equation*}
J(F)=\frac{1}{2} \sum_{i=1}^{m} f_{i}{ }^{2} r_{i}+\frac{1}{2} \int_{0}^{\ell}\left(\sum_{i=1}^{m} g\left(x \mid x_{i}\right) f_{i}-\psi(x)\right)^{2} d x \tag{82}
\end{equation*}
$$

The problem of minimizing the criterion (16) subject to the constraints (74-75) has become the problem of minimizing a function of m unknown constants without constraints. A necessary condition for J to have a minimum at $F *$ is

$$
\begin{equation*}
\frac{\partial J}{\partial f_{i}}\left(F^{*}\right)=0 \quad 1 \leq i \leq m \tag{83}
\end{equation*}
$$

Ffgure 3.2 The Green's Function for the Simply Supported Beam

This condition becomes

$$
\begin{equation*}
f_{i} r_{i}+\sum_{j=1}^{n i} f_{j}\left(\int_{0}^{l} g\left(x \mid x_{i}\right) g\left(x \mid x_{j}\right) d x=\int_{0}^{l} \psi(x) g\left(x \mid x_{i}\right) d x .\right. \tag{84}
\end{equation*}
$$

If we define

$$
\begin{equation*}
a_{i j}=\int_{c} g\left(x \mid x_{i}\right) g\left(x \mid x_{j}\right) d x, \quad 1 \leq 1, j \leq m \tag{85}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i}=\int_{0}^{l} \psi(x) g\left(\lambda_{1} j_{i}\right) d x, \quad 1 \leq i \leq m, \tag{86}
\end{equation*}
$$

then the necessary condition for a minimum of J at $F *$ is that $F *$ satisfy

$$
\begin{equation*}
(R+A) F^{*}=\dot{j} \tag{87}
\end{equation*}
$$

where R is the $m \times m$ diagonal matrix

A is the $m x$ matrix with coefficients (85), and B is the m dimensional vector with coefficients (86).

The Shape Control Algorithm for the Sinply Supported Beam

1) Compute the constants $a_{i j}$ and b_{j} defined by (85-86). Define R, A, B.
2) Solve (87) to obtain F*.
3) The optimal shape $u^{\star}(x)=\sum_{i=1}^{m} f_{i}{ }^{k} g\left(x \mid x_{i}\right)$.

Figure 3.3 displays the optimal shape vs. the desired shape $\psi(x)=\sin \frac{2 \pi x}{l}$, the second mode of the system ($74-75$), for two actuators at $1 / 4$ and $3 / 40$.

3.3 The Control Problem for the Pinned-Free Beam

A modification of the control algorithm is necessary if the system has rigid body modes, as is the case with the pinned-free beam.

The beam with one pinned and one free end point satisfies the differential equation (74) with boundary conditions

$$
\begin{equation*}
u(0)=u^{\prime \prime}(0)=0 \quad u^{\prime \prime}(\ell)=u^{\prime \prime \prime}(\ell)=0 . \tag{89}
\end{equation*}
$$

We will again use the performance criterion (76). The object is to determine the set of forces $\left\{f_{i}\right\}$ which together with the solution $u(x)$ of (74) (89) minimizes (76) over all possible pairs ($\left.\left\{f_{i}\right\}, u\right)$.

The system (74) (89) has the rigid body mode $v_{1}(x)=\sqrt{\frac{3}{l^{3}}} x$ (normalized). Physically this means the beam can have a non-zero slope or tilt as a rigid body. Mathematically it means that the corresponding homogeneous system

$$
\begin{equation*}
\frac{d^{4} v}{d x} \frac{x^{4}}{4}=0 \quad v(0)=v^{\prime \prime}(0)=0 \quad v^{\prime \prime}(\ell)=v^{\prime \prime \prime}(\ell)=0 \tag{90}
\end{equation*}
$$

has the non-trivial solution $v_{1}(x)$. Thus the system (74)(89) has a solution only if the inner product

$$
\begin{equation*}
\left(\sum_{i=1}^{m} f_{i} \delta\left(x-x_{i}\right), v_{1}\right)=\sqrt{\frac{3}{\ell^{3}}} \sum_{i=1}^{m} f_{i} x_{i}=0 \tag{91}
\end{equation*}
$$

The additional constraint (91) must be added to the problem of determining the optimal control forces.

A solution to (79) with pinned-free boundary conditions does not exist because the inner product $\left\langle\delta(x-\xi), v_{1}>\right.$ is not zero. The "modified" Green's function which is appropriate to the system (74)(89) satisfies

$$
\begin{align*}
& \frac{d^{4} g_{m}(x \mid \xi)}{d x^{4}}=\delta(x-\xi)-\frac{3}{\ell^{3}} x \xi \tag{92}\\
& g_{m}(0 \mid \xi)=g_{m}^{\prime \prime}(0 \mid \xi) \cdot 0 \quad g_{m}^{\prime \prime}(\ell \mid \xi)=g_{m}^{\prime \prime}(\ell \mid \xi)=0 \tag{93}
\end{align*}
$$

We make the additional requirement that $g_{m}(x \mid \xi)$ have no component in the subspace spanned by the rigid body mode.

$$
\begin{equation*}
\left(8_{m}(x \mid \xi), v_{1}\right)=\sqrt{\frac{3}{3}} \int_{0}^{\ell} 8_{m}(x \mid \xi) x d x=0 \tag{94}
\end{equation*}
$$

The modified Green's function which satisfies (92-94) is given by

$$
g_{m}(x \mid \xi)=x \xi \quad\left(\frac{33 \ell}{140}+\frac{\xi^{2}+x^{2}}{4 \ell}-\frac{\xi^{4}+x^{4}}{40 \ell^{3}}\right)- \begin{cases}\frac{\xi^{3} x}{2}+\frac{x^{3}}{6} & 0 \leq x \leq \xi \tag{95}\\ \frac{x^{2} \xi}{2}+\frac{\xi^{2}}{6} & \xi \leq x \leq \ell\end{cases}
$$

Condition (94) guarantees that $g_{m}(x \mid \xi)$ is symmetric and of minimum norm among all solutions of $(92,93)$. Figure 3.4 displays $g_{m}(x \mid \xi)$ for impulsive forces at intervals of $1 / 8 \ell$.

The Green's function (95) represents the response of the pinned-free beam to one of a set of unit impulsive forces which satisfy (91). Figure 3.4 displays the Green's functions for impulsive forces at positions $n\binom{\ell}{8}, n=1, \ldots, 7$.

The solution of (74)(89)(91) is given by

$$
\begin{equation*}
u(x)=\sum_{i=1}^{m} f_{i} y_{m}\left(x \mid x_{i}\right) \tag{96}
\end{equation*}
$$

We solve (91) for f_{1} in terms of the outer :orces and substitute that expression together with (94) into the criterion (76), which results in

$$
\begin{align*}
J(\dot{F}) & =\frac{r_{1}}{2}\left(\sum_{i=2}^{m} \frac{-x}{x_{1}} f_{i}\right)^{2}+\frac{1}{2} \sum_{i=2}^{m} f_{i}^{2} r_{i} \\
& +\frac{1}{2} \int_{0}^{Q}\left(\sum_{i=2}^{m} f_{i}\left(g_{m}\left(x \mid x_{i}\right)-\frac{x_{i}}{x_{1}} g\left(x \mid x_{i}\right)\right)-\psi(x)\right)^{2} d x \tag{97}
\end{align*}
$$

where \dot{F} is the vector $\left(f_{2} \ldots f_{m}\right)^{T}$.
Again, the optimization problem is reduced to one of minimizing a function of unknown constants.

The necessary condition for a minimum at $F *$ is

$$
\begin{equation*}
\frac{\partial J}{\partial f_{1}}\left(\hat{F}_{A}\right)=0 \quad 2 \leq 1 \leq m \tag{98}
\end{equation*}
$$

These conditions result in the following algorithm.
(i) Compute the m dimensional vector B and $m \times m$ matrix A whose coordinates are

$$
\begin{align*}
& b_{i}=\int_{0}^{\ell} g_{m}\left(x \mid x_{1}\right) \psi(x) d x \tag{99}\\
& a_{i j}=\int_{0}^{\ell} g_{m}\left(x \mid x_{1}\right) g_{m}\left(x \mid x_{j}\right) d x \tag{100}
\end{align*}
$$

(ii) Compute the ($m-1$) dimensional vector \hat{B} and ($m-1$) $\times(m-1)$ matrix \hat{A} whose coordinates are

$$
\begin{align*}
\dot{b}_{1} & =b_{i+1}-\frac{x_{i+1}}{x_{1}} b_{1} \tag{101}\\
\dot{a}_{i j} & \left.=r_{1}+a_{11}\right) \frac{x_{i+1} x_{i+1}}{x_{1}{ }^{2}} \\
& +a_{i+1, j+1}-a_{1, i+1} \frac{x_{1+1}}{x_{1}}-a_{1, j+1} \frac{x_{i+1}}{x_{1}} \tag{1002}
\end{align*}
$$

Let R be the $(m-1) \times(m-1)$ diagonal matrix

$$
\hat{R}=\left(\begin{array}{lll}
r_{2} & & \tag{103}\\
& & 0 \\
& \cdot & \\
0 & & \\
& & r_{m}
\end{array}\right)
$$

(1ii) The vector F^{*} of optimal forces satisfies

$$
\begin{equation*}
\dot{(\hat{R}+\hat{A}) \hat{F}}=\hat{B} . \tag{104}
\end{equation*}
$$

The optimal force $f_{1}{ }^{\star}$ is found from (91).
(iv) The optimal shape $u^{*}(x)=\sum_{i=1}^{m} f_{i}{ }^{*} g_{m}\left(x \mid x_{i}\right)$.

Since the optimal shape u^{*} is a linear combination of Green's functions which satisfy (94), it will have no component in the subspace of the rigid body mode. If the desired shape $\psi(x)$ does have such a component, that is if (ψ, v_{1}) is not zero, the optimal shape will approximate the shape

$$
\begin{equation*}
\psi(x)-\left\langle\psi, v_{1}\right\rangle v_{1}(x) . \tag{105}
\end{equation*}
$$

That is, it will approximate the desired shape minus its component in the subspace spanned by $v_{1}(x)$.

As an example, Figure 3.5 displays the desired shape $\psi(x)=\ell x-x^{2}$, the shape which approximates $\frac{3}{4} \ell x-x^{2}$, and the optimal shape plus the missing rigid body mode component $\frac{1}{4} \ell x$.

Those components of the desired shape in the subspace spanned by rigid body modes must be added by the attitude control system. A shape control system constrained to satisfy the boundary conditions cannot affect these components.

3.4 The Shape Estimation Problem

To illustrate the shape estimation algorithm we consider a simply supported beam of length ℓ and unknown shape $u(x)$, which satisfies

$$
\begin{equation*}
\frac{d^{4} u}{d x^{4}}=f(x) \text { on } \quad 0 \leq x \leq \ell, \tag{106}
\end{equation*}
$$

and

$$
\begin{equation*}
u(0)=u^{\prime \prime}(0)=0 \quad u(\ell)=u^{\prime \prime}(\ell)=0 \tag{107}
\end{equation*}
$$

The function $f(x)$ represents minor model inaccuracies or random disturbances acting on the beam.

Assume sensors at positions $x_{i}, 0<x_{1}<\ldots<x_{m}<\ell$, produce observations

$$
\begin{equation*}
y_{1}=u\left(x_{1}\right)+\zeta_{1}, \quad 1 \leq 1 \leq m . \tag{108}
\end{equation*}
$$

As a measure of the accuracy of shape estimates we define the criterion

$$
\begin{equation*}
J(f, u)=\frac{1}{2} \sum_{i=1}^{m}\left(y_{1}-u\left(x_{1}\right)\right)^{2} r_{1}^{-1}+\frac{1}{2} \int_{0}^{\ell} f^{2}(x) d x . \tag{109}
\end{equation*}
$$

The object is to determine the function f * which together with the solution u^{*} of (106-107) minimizes (109) c"er all possible pairs (f,u).

The solution of ($106-107$) is given by

$$
\begin{equation*}
u(x)=\int_{0}^{\ell} g(x \mid \xi) f(\xi) d \xi \tag{110}
\end{equation*}
$$

where $g(x \mid \xi)$ is the Green's function (81). We substitute (110) into the criterion (109); resulting in the criterion

$$
\begin{equation*}
J(f)=\frac{1}{2} \sum_{i=1}^{m} r_{i}^{-1}\left(y_{i}-\int_{0}^{\ell} g\left(x_{i} \mid \xi\right) f(\xi) d \xi\right)^{2}+\frac{1}{2} \int_{0}^{\ell} f(\xi)^{2} d \xi . \tag{111}
\end{equation*}
$$

The estimation problem has reduced to one of minimizing (111) without constraincs. A necessary condition for J to have a minimum at f * is that the Frechet differential

$$
\begin{aligned}
\partial J(f, h) & =\sum_{i=1}^{m} r_{i}^{-1}\left(y_{i}-\int_{0}^{l} g\left(x_{i} \mid \xi\right) f *(\xi) d \xi\right)\left(-\int_{0}^{l} g\left(x_{i} \mid \xi\right) h(\xi) d \xi\right) \\
& +\int_{0}^{l} f *(\xi) h(\xi) d \xi=0
\end{aligned}
$$

for all admissible variations h. This implies

$$
\begin{equation*}
f *(\xi)=\sum_{i=1}^{m} r_{i}^{-1} g\left(x_{i} \mid \xi\right)\left(y_{i}-u *\left(x_{i}\right)\right) \tag{112}
\end{equation*}
$$

Then

$$
\begin{equation*}
u *(x)=\sum_{i=1}^{m} r_{i}^{-1}\left(y_{i}-u^{*}\left(x_{i}\right)\right) \int_{0}^{\ell} g(x \mid \xi) g\left(x_{i} \mid \xi\right) d \xi . \tag{11"}
\end{equation*}
$$

Let

$$
x=\left(u *\left(x_{i}\right) \ldots u^{*}\left(x_{m}\right)\right)^{T}
$$

and

$$
Y=\left(y_{1} \ldots y_{m}\right) .
$$

Evaluation of (113) at $x=x_{j}$ and regrouping of terms yield the following necessary condition for the vector X :

$$
\begin{equation*}
\left(I+A R^{-1}\right) X=A R^{-1} Y \tag{114}
\end{equation*}
$$

where A is the matrix of coefficients (85), and R^{-1} is the diagonal matrix with diagonal entries $r_{1}{ }^{-1}$.

The Shape Estimation Algorithm

(i) Compute the elements of the matrix A given by (85), and define $\mathrm{X}, \mathrm{R}, \mathrm{X}$.
(i1) Solve the system (114) for the vector X.
(iii) The optimal error estimates are given by (112) and $\zeta_{i}=y_{i}-u *\left(x_{i}\right), 1 \leq 1 \leq m$.
(iv) The optimal shape estimate is given by (113).

This algorithm is equally valid for the static beam with other boundary conditions, pzovided the appropriate Green's function is used.

Figure 3.6 displays the optimal shape estimate versus the actual shape $\sin \left(\frac{\pi x}{l}\right)+\frac{1}{2}\left(\frac{2 \pi x}{l}\right)$,
for three exact observations at $\frac{1}{4} \ell, \frac{1}{2} \ell$, and $\frac{3}{4} \ell$.

3.5 Approximations

The approximations presented $£ n$ section 2.6 take the following form on the domain $[0, \ell]$ of the x axis:

$$
\begin{align*}
& g(x \mid \xi)=\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}} \phi_{k}(x) \phi_{k}(\xi) \tag{115}\\
& a_{i j}=\int_{0}^{\ell} g\left(x \mid x_{i}\right) g\left(x \mid x_{j}\right) d x=\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}^{2}} \phi_{k}\left(x_{i}\right) \phi_{k}\left(x_{j}\right) \tag{116}\\
& b_{i}=\int_{c}^{\ell} g\left(x \mid x_{i}\right) \psi(x) d x=\sum_{k=1}^{\infty} \phi_{k}\left(x_{j}\right)\left\langle\phi_{k} \cdot \psi\right\rangle \tag{117}
\end{align*}
$$

where $\left\{x_{i}\right\}$ are the actuator or sensor positions, λ_{k} are the non-zero eigenvalues, and ϕ_{k} are the corresponding normalized eigenfunctions of the assoclated boundary value problems.

Thus for the simply supported beam the approximations based on the first term of each expanaion are given by

$$
\begin{align*}
& \hat{a}_{11}=2 \frac{2^{9}}{\pi^{6}}=\frac{\pi x_{1}}{2}-\frac{\pi x}{2}\left(\frac{\pi x_{2}}{2}\right) \tag{118}\\
& \hat{b}_{1}=2 \frac{f^{3}}{\pi^{4}} \sin \left(\frac{\pi x_{1}}{l}\right)\left(\int_{0}^{k} \psi(x) \sin \left(\frac{\pi x}{l}\right) d x\right) . \tag{119}
\end{align*}
$$

For the ploned-free bear

$$
\begin{equation*}
\hat{a}_{11}=\frac{l^{7}}{\psi^{8}}\left[\frac{\sin \left(-\frac{\mu x_{1}}{l}\right)}{\cos \mu}+\frac{\sinh \left(\frac{\mu x_{i}}{l}\right)}{\cosh \mu}\right]\left[\frac{\sin \left(\frac{\mu x_{1}}{\ell}\right)}{\cos \mu}+\frac{\sinh \left(\frac{\mu x_{1}}{l}\right)}{\cosh \mu}\right] \tag{120}
\end{equation*}
$$

where $\mu=3.927$ satisfies tan μ - canh u.

$$
\begin{equation*}
\hat{b}_{1}=\frac{L^{3}}{\mu^{4}}\left[\frac{\sin \left(\frac{\mu x_{1}}{L}\right)}{\cos \mu}+\frac{\sinh \left(\frac{\mu x_{1}}{L}\right)}{\cosh \mu}\right] \int_{0}^{l} \psi(x)\left(\frac{\sin \frac{\mu x}{L}}{\cos \mu}+\frac{\sinh \left(\frac{\mu x}{L}\right)}{\cosh \mu}\right) d x \tag{121}
\end{equation*}
$$

(the normalizations are approximate).
Approximate algorithms constructed from the first rerm in the eigenfunction expansions were included in the simulations of the exampies in this chapter. The graphs of approximate vs. optimal results were indistinguistiable. Numerical results are included in the program outputs in Appendix B.

It is misleading to generalize from the approximations for the onedimensional cace, for which satisfactory approximations result using only the first term. The expanstons (118-121) telescope rapidly, because the magnitude : $:$ the eigenvalucs incieases rapidly. The frequencies ω_{n} of large space structures increase relatively slowly ($\lambda_{n}=\omega_{n}^{2}$), ss can be observed in the output of the shape control program for a large space antenna, in Appesidix C. For multidimensional structures many more modes (eigen(unctions) must be used.

Chapter 4. Shape Control of Structures Governed by Partial Differential Equations

4.1 Introduction

In Chapter 3 static shape control and estimation problems for one dimensional cases were solved using Green's function techniques. In this chapter corresponding results for structures defined on multidimensional domains, governed by partial differential equations, are presented. It will be observed that the solutions are very similar to those for one dimensional domains. The mejor difference is that it becomes difficult to determine the analytical form of the Green's function, so that expressions in terms of eigenfunction expansions must be used.

We consider as examples the shape distortion of membranes and plates which in equilibrium position ile in a plane. A membrane, such as a drumhead, or the mesh of an antenna, is distinguished from a plate by the absence of bending resistance. The restoring forces of a membrane are due exclusively to tension whereas plates have bending stiffness. Consequently, membranes may be considered to be governed by the harmonic uperator ∇^{2}, while plates are governed by the biharmonic operator $\nabla^{4}=\nabla^{2}\left(\nabla^{2}\right)$.

This distinction hetween second and fourth order dyramics is analogous to the modeling distinction between a string and a flexible beam in the one dimensional case.

Fo: convenience, in this chapter we consider only systems without rigid body modes.

4.2 The Boundary Value Problem and Green's Function for a Membrane

Under suitable assumptions the shape distortion of a membrane is modeled by the differential equation

$$
\begin{equation*}
\nabla^{2} u=f(P), \quad F E \Omega \tag{122}
\end{equation*}
$$

where ∇^{2} is the Laplacian operator and certain kuown physical constants have been incorporated into the forcing function f. Eq. (122) is known as Poisson's equation.

We will choose the boundary conditions so that conditins (6-8) are satisfied for the operator $\nabla^{2}=L$. We will then discuss the setermination of the Green's function $g(P \mid Q)$, and exhibit the solutions to the control and estimation problems for the unit disk. Finally we will exhibit approximate solutions using the eigenfunction expansions (70-72).

Green's theorem for the Laplacian operator takes the usual form
$\int_{\Omega}\left(v \nabla^{2} \omega-\omega \nabla^{2} v\right) d P=\int_{\Omega}\left(v \frac{\partial \omega}{\partial n}-\omega \frac{\partial v}{\partial n}\right) d s$.
If we impose either of the boundary conditions $u(P)=0$ or $\frac{\partial u}{\partial n}=0$ for $p \varepsilon \Gamma$, the right side of (123) will be zero for functions ω and v which satisfy the boundary condition, and the operator ∇^{2} will be self-adjoint.

For convenience we eliminate the latter boundary condition, since the homogeneous system

$$
\begin{equation*}
v^{2} u=f, \frac{\partial u}{\partial n}=0 \tag{124}
\end{equation*}
$$

has the non-trivial solution $u \equiv C$.

The Green's Function
The Green's function for the system

$$
\begin{equation*}
V^{2} u=f, \quad u(P)=0 \quad P E I \tag{125}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\nabla^{2} g(x, y, \xi, \eta)=\delta(x-\xi) \quad \delta(y-\eta) \tag{126}
\end{equation*}
$$

in rectangular coordinates $P(x, y), Q(\xi, y)$ and

$$
\begin{equation*}
\nabla^{2} g(r, \theta, \phi, \phi)=\frac{\delta(r-\phi) \delta(\theta-\phi)}{r} \tag{127}
\end{equation*}
$$

In the polar coordinates $P=r e^{i \theta}, Q=p e^{1 \phi}$. In both cases $g \equiv 0$ on Γ.
The function $\gamma=\frac{1}{2 \pi} \log R$, where R is the distance $\overline{Q P}$, can be shown to satisfy $\nabla^{2} \gamma=\delta(P \mid Q)$. It is called the $f:$ ee space solution since it is not required to satisfy the boundary conditions.

Thus the Green's function is given by

$$
\begin{equation*}
g(P \mid Q)=\frac{1}{2 \pi} \quad \log K+\hat{g}(P \mid Q) \tag{128}
\end{equation*}
$$

where $\hat{g}(P \mid Q)$ satisfies

$$
\begin{equation*}
v^{2} \hat{g}=0 \text { on } \Omega, \hat{g}=-\frac{1}{2 \pi} \log R \text { on } \Gamma . \tag{129}
\end{equation*}
$$

The theory of analytic functions may be applied on convenient regions to determine \hat{g}, hence also to determine g. For Ω equal to the unit circle $|z| \leq 1$,

$$
\begin{equation*}
g(r, \theta, \theta, \phi)=\frac{1}{4 \pi} \log \left[\frac{r^{2}-2 r \theta \cos (0-\phi)+\rho^{2}}{1-2 r \rho \cos (\theta-\phi)+r^{2} v^{2}}\right] \tag{130}
\end{equation*}
$$

for P, Q in polar coordinates [7].

Remark 4.1: Through the use of conformal mapping it is possible to determine the Green's function for some otaer regions, but in general it is not possible to determine the exact function g.
4.3 The Control Problem for ∇^{2} on the Lnit Disk

The control problem for the Laplacian on the unit disk corresponds to the problem of controlling the shape of a circular net or drumhead to a desired shape $\psi\left(r, b^{3}\right)$ by means of pointwise forces. Thus we desire to determine the set of forces $\left\{f_{j}\right\}$ at positions $p_{j}=\rho_{j} e^{i \phi_{j}}, 1 \leq j=n$
which togethar with the solution $u(r, \theta)$ of

$$
\begin{align*}
& \nabla^{2} u(r, \theta)=\sum_{j=1}^{m} f_{j} \frac{\delta\left(r-\rho_{j}\right) \delta\left(\theta-\phi_{j}\right)}{r} \tag{131}\\
& u(1, \theta)=0 \tag{132}
\end{align*}
$$

minimizes the performance criterion

$$
\begin{equation*}
J(F, u)=\frac{1}{2} \sum_{j=1}^{m} f_{j}^{2} r_{j}+\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{1}[\psi(r, \theta)-u(r, \theta)]^{2} r d r d \theta \tag{133}
\end{equation*}
$$

over all possible sets (u, F), where

$$
\begin{equation*}
F=\left(f_{1} \ldots f_{m}\right)^{T} . \tag{134}
\end{equation*}
$$

The optimal shape for the problem (131-132) is given by

$$
\begin{align*}
u \star(r, \theta) & =\sum_{j=1}^{m} f_{j}{ }^{\star} g\left(r, \theta, p_{j} s \phi_{j}\right) \\
& =\frac{1}{4 \pi} \sum_{j=1}^{m} f_{j}{ }^{*} \log \left[\frac{r^{2}-2 r \rho_{j} \cos \left(\theta-\phi_{j}\right)+\rho_{j}{ }^{2}}{1-2 r \rho_{j} \cos \left(\theta-\phi_{j}\right)+r^{2} \rho_{j}{ }^{2}}\right] \tag{135}
\end{align*}
$$

and the vector of optimal forces F^{*} satisfies $(R+A) F^{*}=B$, where $R=\left(R_{i j}\right)$ and $A=\left(A_{i j}\right)$ are $m x$ matrices such that

$$
R_{i j}=r_{i} \delta(i-j)
$$

and

$$
\begin{equation*}
A_{i j}=\int_{0}^{2 \pi} \int_{0}^{1} g\left(r, \theta, \rho_{1}, \phi_{i}\right) g\left(r, \theta, \rho_{j}, \phi_{j}\right) r d r d \theta \tag{136}
\end{equation*}
$$

and $B=b_{1}$) is an m dimensional vector such that

$$
\begin{equation*}
b_{1}=\int_{0}^{2 \pi} \int_{0}^{1} \psi(r, \theta) g\left(r, \theta, \rho_{1}, \phi_{1}\right) r d r d \theta . \tag{137}
\end{equation*}
$$

4.4 The Estimation Problem

The corresponding estimation problem for ∇^{2} on the unit disk is, given the shape observations

$$
\begin{equation*}
y_{i}=u\left(\rho_{i}, \phi_{i}\right)+\zeta_{i}, \quad 1 \leq i \leq m, \tag{138}
\end{equation*}
$$

at positions $P_{i}=\rho_{i} e^{i \phi_{i}}$, to determine the error function $f(r, \theta)$ and corresponding shape function $u(r, \theta)$ which satisfy

$$
\begin{equation*}
\nabla^{2} u(r, \theta)=f(r, \theta), u(1, \theta)=0 \tag{139}
\end{equation*}
$$

and minimize the criterion

$$
\begin{equation*}
J(F, u)=\frac{1}{2} \sum_{i=1}^{m}\left(y_{i}-u\left({ }_{i}, \phi_{i}\right)^{2} r_{i}^{-1}+\frac{1}{2} \int_{0}^{\pi} \int_{0}^{1} f^{2} i r, \theta\right) r d r d \theta \tag{140}
\end{equation*}
$$

The results of Section 2.4 yield the optimal error estimates

$$
\begin{align*}
& \zeta_{i} *=y_{i}-u *\left(\rho_{i}, \phi_{i}\right) \\
& f^{*}(r, \theta)=\frac{1}{4 \pi} \sum_{i=1}^{m} r_{i}^{-1} \zeta_{i}^{*} \log \left[\frac{r^{2}-2 r \rho_{i} \cos \left(\theta-\phi_{j}\right)+\rho_{j}^{2}}{1-2 r \rho_{j} \cos \left(\theta-\phi_{j}\right)+r^{2} \rho_{j}^{2}}\right] \tag{142}
\end{align*}
$$

where the vector $X=\left(u^{*}\left(P_{1}\right) \ldots u^{*}\left(P_{m}\right)\right)^{T}$ satisfies

$$
\begin{equation*}
\left(I+A R^{-1}\right) X=A R^{-1} Y \tag{143}
\end{equation*}
$$

The matrices R and A are as in (136) and Y is the vector of observations $\left(y_{i} \ldots y_{m}\right)^{T}$. The corresponding optimal shape estimate is then given by

$$
\begin{equation*}
u^{*}(r, \theta)=\sum_{i=1}^{m}\left[r_{i}^{-1} \zeta_{i} * \int_{0}^{\pi} \int_{0}^{1} g(r, \theta, \rho, \phi) g\left(r, \theta, \rho p_{i}, \phi_{i}\right) \rho d \rho d \phi\right] . \tag{144}
\end{equation*}
$$

4.5 Approximate Solutions

For simplicity it may be desirable to compute approximations to the solution (135-137) and (141-143) using eigenfunction expansions. The eigenvalues and (normalized) eigenfunctions corresponding to

$$
\nabla^{2} \varphi(r, \theta)=\lambda \oplus(r, \theta), \varphi(1, \theta)=0
$$

are

$$
\Phi_{o n}(r)=\sqrt{\frac{1}{\pi}} \frac{J_{0}\left(\lambda_{o n}^{1 / 2} r\right)}{J_{1}\left(\lambda_{o n}^{1 / 2}\right)} \quad n=1,2, \ldots
$$

corresponding to the eigenvalues $\lambda_{\text {on }}$ which satisfy

$$
J_{0}\left(\lambda_{o n}\right)=0, \quad n=1,2, \ldots
$$

and

$$
\begin{array}{ll}
\varphi_{\operatorname{mnc}}(r, \theta)=\sqrt{\frac{2}{\pi}}\binom{\frac{J_{m}\left(\lambda_{\operatorname{mn}} r\right)}{1 / 2}}{J_{m+1}\left(\lambda_{m n}\right)} & \cos m \theta \\
\Phi_{\operatorname{mns}}(r, \theta)=\sqrt{\frac{2}{\pi}}\binom{\frac{J_{M}\left(\lambda_{\operatorname{mn}} r\right)}{1 / 2}}{J_{m+1}\left(\lambda_{\operatorname{mn}}\right)} & \sin m \theta \\
1 \leq m, n<\infty
\end{array}
$$

corresponding to the eigenvalues λ_{mn} which satisfy

$$
J_{m}\left(\lambda_{m n}^{1 / 2}\right)=0,
$$

where $J_{1}, 0 \leq i<\infty$ are, of course, the Bessel functions.
Thus, a first approximation to the forces $\left\{f_{1}\right\}$ in the control law. using the eigenvalue $\lambda_{00}=(2.405)^{2}$ and eigenfunction

$$
\phi_{00}(r)=\sqrt{\frac{1}{\pi}} \frac{J_{0}(2.405 r)}{J_{1}(2.405)}
$$

satisfies

$$
\begin{equation*}
(R+\hat{A}) \hat{F}=\hat{B}, \tag{145}
\end{equation*}
$$

where R is as before, $\hat{F}_{\mathrm{F}}=\left(\hat{\mathrm{f}}_{1} \ldots \hat{\mathrm{f}}_{\mathrm{m}}\right)^{\mathrm{T}}$ is the vector of approximate forces, and \hat{A} and \hat{B} are the approximate matrix and vector with coefficients

$$
\begin{equation*}
\hat{a}_{1 j}=\frac{1}{\lambda_{00}^{2}} \phi_{00}\left(\rho_{1}\right) \phi_{00}\left(\rho_{j}\right) \tag{146}
\end{equation*}
$$

$$
\begin{equation*}
\left.\hat{b}_{1}=\frac{1}{\lambda_{00}} \varphi_{00}\left(\rho_{j}\right)<\varphi_{00}, \psi\right\rangle, \quad 1 \leq 1, j \leq m . \tag{147}
\end{equation*}
$$

The shape corresponding to the approximate forces in (145) is given by

$$
\begin{equation*}
\hat{u} *(r, \theta)=\sum_{i=1}^{m} \hat{f}_{i} g\left(r, \theta, p_{i}, \phi_{i}\right) \tag{148}
\end{equation*}
$$

since the Green's function still represents the response to a unit force at $P_{i}=\rho_{i} e^{i \phi_{i}}$.

Using the same approximations (146) for the matrix A, the pointwise shape estimation vector X may be approximately computed from

$$
\begin{equation*}
\left(I+\hat{A R}^{-1}\right) \hat{X}=\hat{A} R^{-1} Y \tag{149}
\end{equation*}
$$

where $\hat{X}=\left(\hat{u}\left(Q_{1}\right) \ldots \hat{u}\left(Q_{m}\right)\right)$ is the approximation to X, and R^{-1} and Y are as in (136)(138). The approximate estimates are then given by

$$
\begin{array}{ll}
\hat{\zeta}_{i}=y_{i}-\hat{u}\left(p_{i}\right), & 1 \leq 1 \leq m \\
\hat{f}(r)=\frac{1}{\lambda_{00}} \sum_{i=1}^{m} r_{i}^{-1} \hat{\zeta}_{i} \Phi_{00}(r) \Phi_{00}\left(\rho_{i}\right) & \\
\hat{u}(r)=\frac{1}{\lambda_{00}^{2}} \sum_{i=1}^{m} r_{i}^{-1} \hat{\zeta}_{i} \Phi_{00}(r) \Phi_{00}\left(p_{i}\right) \tag{152}
\end{array}
$$

Approximations of greater accuracy may be obtained by including the next largest eigenvalues and their corresponding eigenfunctions.

4.6 The Static Vibration of a Plate - The Boundary Value Problem and Green's Function

The static vibrations of a plate may be modeled by the partial differential equation

$$
\begin{equation*}
\nabla^{4} u=f(P), \quad P_{\varepsilon \Omega} \tag{153}
\end{equation*}
$$

where $\nabla^{4}=\nabla^{2}\left(\nabla^{2}\right)$ is the biharmonic operator, and again certain physical constants have been included in the forcing function for simplicity.

We wish again to choose the boundary conditions such that the boundary value problem is aelf-adjoint. Green's theorem for the cperator ∇^{4} takes the form

$$
\begin{equation*}
\int_{\Omega}\left(v^{4} \omega-\omega \nabla^{4} v\right) d P=\int_{\Gamma}\left[v \frac{\partial}{\partial n}\left(\nabla^{2} \omega\right)-\omega \frac{\partial}{\partial n}\left(\nabla^{2} v\right)+\left(\nabla^{2} v\right)\left(\frac{\partial \omega}{\partial n}\right)-\left(\nabla^{2} \omega\right) \frac{\partial v}{\partial n}\right] \tag{154}
\end{equation*}
$$

The problem of boundary conditions for plate vibrations is much more difficult than for the membrane. A useful discussion of boundary conditions is contained in [4].

The Simply Supported Rectangular Plate

Conaider aniform rectangular plate on the domain $\Omega=\{(x, y) \mid 0 \leq x \leq a$, $0 \leq y \leq t\}$. The boundary conditions for a simply supported edge are

$$
\begin{equation*}
u=0 \text { and } \frac{\partial^{2} u}{\partial n^{2}}+\frac{v}{R} \frac{\partial u}{\partial n}=0 \tag{155}
\end{equation*}
$$

where n is the normal vector to the edge and R is the radius of curvature. For atraight edge $R=\infty$. Furthermore, since u is constant along the edge, $\frac{\partial u}{\partial s}=0$. Thus

$$
\begin{equation*}
\nabla^{2} u=\frac{\partial^{2} u}{\partial n^{2}}+\frac{1}{R} \frac{\partial u}{\partial n}+\frac{\partial^{2} u}{\partial s^{2}}=\frac{\partial^{2} u}{\partial n^{2}} \tag{156}
\end{equation*}
$$

and the boundary conditions for a simply supported straight edge are

$$
\begin{equation*}
u=\nabla^{2} u=0 \tag{157}
\end{equation*}
$$

Clearly the conditions (157) make the right side of (154) equal to zero.
Thus ∇^{4} is self-adjoint for the simply supported rectangle.

The Green's Function

The Green's function for the simply supported rectangle should satisfy

$$
\begin{align*}
& \nabla^{4} g(x, y, \xi, n)=\delta(x-\xi) \delta(y-n) \tag{158}\\
& g=\nabla^{2} g=0 \quad \text { on } x=0, a \quad \text { and } y=0, b \tag{159}
\end{align*}
$$

The free space solution $\gamma(P \mid Q)$ which satisfies $\nabla^{4} \gamma=\delta(P \mid Q)$ is

$$
\begin{equation*}
r\left(P \left\lvert\, Q=\frac{-1}{8 \pi} r^{2} \log r\right.\right. \tag{160}
\end{equation*}
$$

where r represents the distance $\overline{P Q}$. This is proved in Appendix A. Thus, the Green's function

$$
\begin{equation*}
g(P \mid Q)=\gamma(P \mid Q)+\hat{g}(P \mid Q) \tag{161}
\end{equation*}
$$

where the function \hat{g} satisfies $\nabla^{4} g(P \mid Q)=0$, plus boundary conditions such that g satisfies (157).

The function g in (161) is no longer necessarily harmonic, as was the function in (129). It musi in additior satisfy two sets of boundary conditions. Thus it is much more diffisult to determine the exect function $g(P \mid Q)$ for a given set of boundary conditions. The Green's functions and solutions to the shape control and estimation problems will therefore be exhibited in terms of eigenfunction expansions.

4.7 Control Problem for the Operator ∇^{4}

On the rectangle $0 \leq x \leq a, 0 \leq y \leq b$, we desire to determine the set of forces $\left\{f_{i}\right\}$ at positions $P_{i}=\left(x_{i}, y_{i}\right), 1 \leq 1 \leq m$, which together with the solution $u(x, y)$ of

$$
\begin{align*}
& \nabla^{4} u=\sum_{i=1}^{m} f_{i} \delta\left(x-x_{1}\right) \delta\left(y-y_{1}\right) \tag{162}\\
& u=\nabla^{2} u \text { on } x=0, a \text { and } y=0, b \tag{163}
\end{align*}
$$

minimize the performance criterion

$$
\begin{equation*}
J(F, u)=\frac{1}{2} \sum_{i=1}^{m} f_{i}^{2} r_{i}+\frac{1}{2} \int_{0}^{a} \int_{0}^{b}(\psi(x, y)-u(x, y))^{2} d y d x \tag{164}
\end{equation*}
$$

overall admissible pairs (F, u).
The optimal shape for the problem (162-164) is given by

$$
\begin{equation*}
u^{*}(x, y)=\sum_{i=1}^{m} f_{i}^{*} g\left(x, y, x_{1}, y_{i}\right) \tag{165}
\end{equation*}
$$

where the vectur of optimal forces $\left.F *=\left(f_{1} * \ldots f_{m}\right)^{*}\right)$ satisfies

$$
\begin{equation*}
(R+A) F^{\star}=B \tag{166}
\end{equation*}
$$

The $m \times m$ matrices R^{-1} and A have coordinates

$$
\begin{align*}
& R_{1 j}=r_{1} \delta(1-j) \tag{167}\\
& a_{i j}=\int_{0}^{a} \int_{0}^{b} g\left(x, y, x_{1}, y_{1} ; g\left(x, y, x_{j}, y_{j}\right) d y d x\right. \tag{168}
\end{align*}
$$

and the vector B has coordinates

$$
\begin{equation*}
b_{1}=\int_{0}^{a} \int_{0}^{b} \psi(x, y) g\left(x, y, x_{1}, y_{1}\right) d y d x \tag{169}
\end{equation*}
$$

Since a complete analytical form for the Green's function is not know, we use the eigenfunctions

$$
\begin{equation*}
\phi_{k i}(x, y)=\frac{2}{\sqrt{a b}} \sin \frac{k \pi x}{a} \sin \frac{l \pi y}{b} \tag{170}
\end{equation*}
$$

and corresponding eigenvalues

$$
\begin{equation*}
\lambda_{k_{i}}=\pi^{4}\left[\left(\frac{k}{k}\right)^{2}+\left(\frac{l}{b}\right)^{2}\right]^{2} \tag{171}
\end{equation*}
$$

to represent the solutions (166-169). Thus
$u^{*}(x, y)=\sum_{1=1}^{m} \sum_{k, l=1}^{\infty} 4 f_{1} \frac{\sin \frac{k \pi x}{a} \sin \frac{k \pi x_{1}}{a} \sin \frac{\ell \pi y}{b} \sin \frac{l \pi y_{1}}{b}}{\pi^{4} a b\left[\left(\frac{k}{a}\right)^{2}+\left(\frac{l}{b}\right)^{2}\right]^{2}}$
where the forces f_{i} satisfy (166), and the coefficients of the matrix A and vector B in (167-168) are given by

$$
\begin{align*}
& a_{1 j}=\sum_{k, l}^{\infty} \frac{4}{a b \lambda_{k l}^{2}}\left(\sin \frac{k \pi x_{1}}{a} \sin \frac{k \pi x_{j}}{a} \sin \frac{\ell \pi y_{1}}{b} \sin \frac{2 \pi y_{j}}{b}\right) \tag{173}\\
& b_{1}=\sum_{k, l=1}^{\infty} \frac{2}{\sqrt{a b} \lambda_{k l}}\left(\sin \frac{\pi x_{1}}{a} \sin \frac{\ell \pi y_{1}}{b}\right)\left\langle\varphi_{k l, \psi\rangle}\right. \tag{174}
\end{align*}
$$

where

$$
\begin{equation*}
\left\langle\phi_{k \ell}, \psi\right\rangle=\sqrt{\frac{4}{a b}} \int_{0}^{a} \int_{0}^{b} \psi(x, y)\left(\sin \frac{k \pi x}{a}\right)\left(\sin \frac{2 \pi y}{b}\right) d y d x \tag{175}
\end{equation*}
$$

Approximations are avallable by taking the first few terms in k and ℓ.

4.8 The Estimation Problem for ∇^{4}

The shape estimation problem for a rectangular plate is given the shape observations

$$
\begin{equation*}
Y_{1}=u\left(x_{1}, y_{1}\right)+\zeta_{1}, \quad 1 \leq 1 \leq m, \tag{176}
\end{equation*}
$$

to determine the error function $f(x, y)$ and corresponding shape function $u(x, y)$ which satisfy

$$
\begin{align*}
& \nabla^{4} u(x, y)=f(x, y), \tag{177}\\
& u=\nabla^{2} u=0 \quad \text { for } x=0, a \text { and } y=0, b
\end{align*}
$$

and minimize the criterion

$$
\begin{equation*}
J(f, u)=\frac{1}{2} \sum_{i}^{\text {m }}\left(y_{1}-u\left(x_{1}, y_{i}\right)\right)^{2} r_{1}^{-1}+\frac{1}{2} \int_{0}^{a} \int_{0}^{b} f^{2}(x, y) d y d x . \tag{178}
\end{equation*}
$$

The necessary condition for an optimal solution is that the vector $X=\left(u^{*}\left(x_{1}, y_{1}\right) \cdot . \cdot u^{\star}\left(x_{m}, y_{m}\right)\right.$ satisfy

$$
\begin{equation*}
\left(I+A R^{-1} X\right)=A R^{-1} Y \tag{179}
\end{equation*}
$$

where $u^{*}\left(\lambda_{i}, y_{i}\right)$ is the optimal shape estimate at the point $\left(x_{1}, y_{i}\right)$, the matrices A and R are defined by (167-168), and $Y=\left(Y_{1} \ldots Y_{m}\right)$. The optimal noise estimates are

$$
\begin{align*}
& \zeta_{1}{ }^{\star}=y_{1}-u^{\star}\left(x_{i}, y_{1}\right), \quad 1 \leq 1 \leq m, \tag{180}\\
& f^{\star}(x, y)=\sum_{i=1}^{m} r_{i}^{-1} \zeta_{1}^{\star} G\left(x, y, x_{1}, y_{1}\right) \tag{181}
\end{align*}
$$

and the optimal shape estimate is

$$
\begin{equation*}
u^{*}(x, y)=\sum_{i=1}^{m}\left[r_{1}^{-1} \zeta_{1}^{*} \int_{0}^{a} \int_{0}^{b} g(x, y, \xi, \eta)_{g}\left(x_{1}, y_{1}, \xi, n\right) \text { dnd } \xi .\right. \tag{182}
\end{equation*}
$$

To compute the vector X in (179) we use (173) for the elements of the matrix A. Then

$$
\begin{equation*}
f *(x, y)=\sum_{i=1}^{m} \sum_{k, l=1}^{\infty} \frac{4}{a b \lambda_{k \ell}}\left[\sin \frac{k \pi x}{a} \sin \frac{k \pi x_{1}}{a} \sin \frac{\ell \pi y}{b} \sin \frac{\ell \pi y_{1}}{b}\right] . \tag{183}
\end{equation*}
$$

Finally, applying the expansion (72) to the optimal shape estimate (182),

$$
u *(x, y)=\sum_{i=1}^{m} \sum_{k, l=1}^{\infty}\left[r_{i}^{-1} \zeta_{i} * \frac{4}{a b \lambda_{k \ell}{ }^{2}} \sin \frac{k \pi x}{a} \sin \frac{k \pi x_{1}}{a} \sin \frac{\ell \pi y}{b} \sin \frac{\ell \pi y_{1}}{b}\right]
$$

Again, approximations are obtained by taking the first few terns in k and ℓ.

4.9 Conclusions

Green's function techniques have been applied to the solution of shape control and estimation problems which have associated boundary value problems involving partial differential equations, in a manner analogous to those involving ordinary differential equations. In the case of a multidimensional domain, however, precise knowledge of the analytical form of the Green's function is usually not avallable. Solutions may be expressed in terms of eigenfunction expansions.

Although this chapter deals with systems which do not have rigid body modes, the techniques and solutions bear such a resemblance to those of the one dimensional case that an extension to systems with rigid body modes follows readily.

Chapter 5. Static Shape Control for Multidimensional Large Space Structures

5.1 Introduction

This chapter addresses the problems of static shape control and shape determination for multidimensional strictures. Chapters 2-4 have addressed these problems for scalar shape functions, representing displacement in one direction, defined on one or multidimensional domains. However, large space structures are modeled as multidimensional states, representing translations and/or rotations in three dimensional space.

We again use an integral operator approach based on assumptions of linear self-adjoint dynamics and boundary conditions. As might be expected, algorithms which are similar in appearance ailse.

However, there are important differences in interpretation and procedure. These include matrix, rather than scalar, differential and integral operators, controls and observations applied to only a part of the state, and the necessity for using approximate eigenfunctions provided by experimental or numerical methods, since the exact operators and corresponding eigenfunctions are usually not known. The algorithms derived in this chapter will be adapted to the use of modes from a dynanic finite element model, and illustrated by simulated results, in Chapter 6.

Procedure

In section 5.2 we define the multidimensicnal linear boundary value problem for a large space structure, and discuss the existence of solutions. We then define Green's functions for a multidimensional boundary value problem, buth with and without rigid bady modes, and derive solutions to the boundary valuz problem for both cases.

In section 5.3 we define and solve the shape control problem for a large space structure. Wio discuss examples of the constraints imposed on the control forces by the resence of rigid body modes. In section 5.4 we define and solve the shape determination problem.

We present eigenfunction expangions for the more general multidimensional terms in the algorithms, which involve Green's functions, in section 5.5. A sumpary and conciusions are stated in Section 5.6.

5.2 The Model and the Green's Function

Consider a multidimensional system represented by the n dimensional state $U(F)$, defined on a simply connected domain $\Omega \in R^{\ell}$. Suppose the system is geverned by linear dynamics
$L U=F \quad$ for $P \in \Omega$
where L is an $n \times n$ matrix of differential operators. $F(P)$ is an n dimensional vector function, or distribution, defined on Ω, which represents forces or torques acting on the system.

Suppose the system satisfies k_{0} linear boundary conditions

$$
\begin{equation*}
B_{1}(U)=0, \quad 1 \leq 1 \leq k_{0}, \quad \text { for } P \in \Gamma \tag{186}
\end{equation*}
$$

where ? is the boundary of Ω. We will assume the boundary value problem (185-186) is self-adjoint, that is that $L^{*}=\mathrm{L}$ and

$$
\begin{equation*}
\langle L U, V\rangle=\langle U, L V\rangle \tag{187}
\end{equation*}
$$

where U and V are any two admissible functions which satisfy the boundary conditions and $\langle U, V\rangle$ is the inner produc

$$
\begin{equation*}
\langle U, V\rangle=\int_{\Omega} U^{T}(P) V(P) d P \tag{188}
\end{equation*}
$$

We will also require the usual vector inner product

$$
\begin{equation*}
\langle X, Y\rangle=X^{T} Y=Y^{T} X . \tag{189}
\end{equation*}
$$

We will use the norms induced by ($188-189$) and the weighted seminorm

$$
\begin{equation*}
\|X\|_{R}^{2}=\langle X, X\rangle_{R}=X^{T} R X \tag{190}
\end{equation*}
$$

X and Y are vectors in the same space and R is a symmetric square matrix of appropriate dimension such that $R \geq 0$.

The reasons for the model formulation (185-186) become apparent wen one considers an LSS (large space structure) antenna. The domain consists of the subset of chree dimensional space occupied by the undistorted ideal shape, a perfect paraboloid. The state might be three dimensional also, representing vector displacements of points on the distorted antenna from their ideal positions. Boundary conditions represent a pinned antenna which may not rotate or translate as a rigid body in any direction, a freefree antenna which may rotate or translate along any of the three axes, or conditions between these two extremems.

Other state representations are possible. It may be convenient to consider a six dimensional state whien represents translations and rotations of a fint about the three axes. This is the case if torques are to be as control mechanisms, in addition to translational forces. A torque can be considered an impulsive force applied to a rotational coordinate of the state.

Solutions of Boundary Value Problems

We consider under what circumstances solutions to boundary value problem (185-186) exist, and what form the solutions take if they do exist. We will apply the following alternative theorem for boundary value problems:

Theorem 5.1: Consider the boundary value problem

$$
\begin{equation*}
\operatorname{LUJ}=F, B_{i}(U)=0, \quad 1 \leq i \leq k_{0}, \tag{191}
\end{equation*}
$$

its corresponding homogencous problem

$$
\begin{equation*}
L U=0, B_{i}(U)=0, \quad 1 \leq i \leq k_{0}, \tag{.192}
\end{equation*}
$$

and the related homogeneous adjoint problem

$$
\begin{equation*}
L * V=0, B_{i}^{*}(V)=0, \quad 1 \leq i \leq k_{0} . \tag{193}
\end{equation*}
$$

L is an $\mathrm{n} \times \mathrm{n}$ matrix of linear differential operators, L^{*} is its adjoint, U and V are vector functions defined on the simply connected domain Ω, and B_{i} and $B_{i}{ }^{*}$ are adjoint linear boundary operators defined on Γ, the boundary of Ω.

Then: (a) if the problem (192) has only the trivial solution $U \equiv 0$, so does the problem (193), and (191) has a unique solution.
(b) if (192) has s independent solutions U_{1}, \ldots, U_{s}, then (193) has s independent solutions V_{1}, \ldots, V_{s}, and (191) has solutions if and only if

$$
\begin{equation*}
\left\langle V_{i}, F\right\rangle=\int_{\Omega} V_{1}^{T}(P) F(P) d P=0, \quad 1 \leq i \leq s . \tag{194}
\end{equation*}
$$

If the conditions (194) are satisfied, the general solution of (191) has the form

$$
\begin{equation*}
U(P)=\hat{U}(P)+\sum c_{i} U_{i}(P) \tag{195}
\end{equation*}
$$

where \hat{U} is a particular solution of (191), the c_{i} are constants and U_{i}, $1 \leq i \leq s$ are the solutions of (192).

For discussions and proof of alternative theorems see [2].
We have assumed the linear operator L and boundary conditions $B_{i}=0,1 \leq 1 \leq k$, are such that the boundary value problem (191) is selfadjoint, that is that $L^{*}=L$ and $B_{i} *=B_{i}, 1 \leq i \leq k$. Thus (192) and (193) are equivalent for our purposes.

To observe the form the solutions actually take, we define Green's functions for the cases (a) and (b) of Theorem 5.1.

Green's Functions

We first consider case (a) of Theorem 5.1, that the homogeneous boundary value problem has only the solution $U \equiv 0$. This is equivalent to the physical assumption that the system has no rigid body modes.

Define the n vector functions $G_{j}(P \mid Q), 1 \leq j \leq n$, to satisfy

$$
\begin{align*}
& L G_{j}(P \mid Q)=e_{j} \delta(P-Q) \\
&=e_{j} \delta\left(P^{1}-q^{1}\right) \ldots \delta\left(P^{\ell}-q^{\ell}\right) \tag{196}\\
& B_{i}\left(G_{j}\right)=0, \quad P \& \Gamma \tag{197}
\end{align*}
$$

The unit vector e_{j} has zeros in all coordinates except the j th, where it has the value one. The points $P\left(p^{l} \ldots p^{\ell}\right)^{T}$ and $Q\left(q^{1} \ldots q^{\ell}\right)$ in (196) lie in Ω.
$G_{j}(P \mid Q)$ represents the response of the system to a unit impulsive force applied to the jth coordinate of the structure at the point Q.

Define $G(P \mid Q)$ to be the $n x n$ matrix function with columns $G \in G(P \mid Q)$ is the desired Green's function for the boundary value problem (191). The ijth coordinate $G_{i j}(P \mid Q)$ represents the response of the ith coordinate of the statc at P to a unit impulsive force applied to the jth coordinate of the state at Q. We may write

$$
\begin{align*}
& L G(P \mid Q)=I_{n} \delta(P-Q) \tag{198}\\
& B_{i}(G)=0, \quad 1 \leq i \leq k_{0}, \tag{199}
\end{align*}
$$

if it is understood that the boundary conditions in (199) are to be applied to each column of C individually,

The property derived in the next theorem will be useful when writing the solution of (291) In terms of the Green's function G.

Theorem 5.2 Let $G(P \mid Q)$ be the function defined by $(196-197)$. Then $G(P \mid Q)=G(Q \mid P)$.

Proof: For the moment we drop the assumption that the boundary value problem (191) Is seif-adjoint. Let $G_{j}(P \mid Q)$ and $H_{i}(P \mid R)$ be functions defined on Ω such that -

$$
\begin{array}{lll}
L G_{j}(P \mid Q)=e_{j} \delta(P-Q), & B_{v}\left(G_{j}\right)=0, & 1 \leq v \leq k . \\
L * H_{i}(P \mid R)=e_{i} \delta(P-R) & B_{v}^{*}\left(H_{i}\right)=0, & 1 \leq v \leq k .
\end{array}
$$

Since G_{j} and H_{i} satisfy adjoint boundary value problems,

$$
\left\langle G_{j}, L \star H_{i}\right\rangle=\left\langle L G_{j}, H_{i}\right\rangle, \quad 1 \leq 1,1 \leq n .
$$

Thus

$$
\int_{\Omega} G_{j}^{T}(P \mid Q) e_{i} \delta(P-R) d P=\int_{\Omega} e_{j}^{T} \delta(P-Q) H_{i}(P \mid R) d P
$$

Evaluation of the integrals yields

$$
\begin{align*}
& G_{j}^{T}(R \mid Q) e_{i}=e_{j}^{T} H_{i}(Q \mid R) . \tag{200}\\
& G_{i j}(R \mid Q)=H_{j i}(Q \mid R)
\end{align*}
$$

Sut now we recall that $L^{*}=1$ and $B_{i} *=B_{i}$. Thus $H_{j i}(Q \mid R)=G_{j i}(Q \mid R)$. Substitution into (200)yields

$$
G_{i j}(R \mid Q)=G_{j i}(Q \mid R), \quad 1 \leq 1, \quad j \leq n
$$

We now seek the solution to the boundary value problem (191), assuming case (a) of Theorem 5.1. Let $U(P)$ be a solution of (191). Then

$$
\left\langle U_{i} L G_{j}\right\rangle=\int_{\Omega} U^{T}(P) e_{j} \delta(P-Q) d P=U_{j}(Q)
$$

where the U_{j} is the j th coordinate of U. By Green's theorem

$$
\left\langle L G_{j}, U\right\rangle=\left\langle G_{j}, L U\right\rangle=\int_{\Omega} G_{j}^{T}(P \mid Q) F(P) d P .
$$

Thus,

$$
U_{j}(Q)=\int_{\Omega} G_{j}^{T}(P \mid Q) F(P) d P, \quad i \leq j \leq n .
$$

If we apply this argument to all coordinates $1 \leq j \doteq n$, we have

$$
U(Q)=\int_{\Omega} G^{T}(P \mid Q) F(P) d P=\int_{\Omega} G(Q \mid P) F(P) d P
$$

by Theorem 5.2. A change of variables yields the solution

$$
\begin{equation*}
U(P)=\int_{\Omega} G(P \mid Q) F(Q) d Q . \tag{201}
\end{equation*}
$$

The Modified Green's Function

We now consider case (b) of Theorem 5.1. We assume the boundary value problem (191) has s independent solutions V_{1}, \ldots, V_{s}, which we assume are orthonormal. If they are not, a Gram-Schmidt orthogonalization process can be applied to generate an orthonormal set.

Define the following vector functions:

$$
\begin{align*}
& L G_{j}(P \mid Q)=\left[\delta(P-Q)-\sum_{i=1}^{\delta} V_{i}(P) V_{i}^{T}(Q)\right] e_{j} \tag{202}\\
& B_{i}\left(G_{j}\right)=0, \quad 1 \leq i \leq k, \tag{203}
\end{align*}
$$

where e_{j} is the j th column of the nxn identity matrix.
Note that the right hand side of (202) has zero components in the space spanned by the functions $\left\{V_{i}\right\}$, that is that its inner product with these functions is zero. Thus by Theorem 5.1 a solution, in the distributional sense, to these problems exists.

The solutions G_{j} which satisfy (202) are not uniquely determined, since the addition of any linear combination of solutions to the homogeneous problem (192) yields another solution. Thus we are free to impose another condition. We require that

$$
\begin{equation*}
\left\langle G_{j}, v_{i}\right\rangle=0, \quad 1 \leq 1 \leq s, 1 \leq j \leq n . \tag{204}
\end{equation*}
$$

Mathematically this means we seek the solutions to (202-203) of minimum norm, those which lie in the orthogonal complement of the nullspace of the operation L - the space spanned by the solutions $\left\{V_{i}\right\}$. Thus the functions G_{j} have no components in the direction of the rigid body modes. Solutions of (202-204) are unique.

Let $G(P \mid Q)$ be the $n \times n$ matrix function whose columns are the functions G_{j} which satisfy (202-204), that is $G=\left[G_{1}|\ldots| G_{n} j\right.$. Then G satisfies

$$
\begin{array}{ll}
L G=I_{n} \delta(P-Q)-\sum_{1}^{\delta} V_{i}(P)\left(V_{i}(Q)\right)^{T} \\
B_{i}(G)=0, & 1 \leq i \leq k . \tag{205}\\
\left\langle G, V_{i}\right\rangle=0, & 1 \leq i \leq s .
\end{array}
$$

$G(P \mid Q)$ is called the modified Green's function for the system (191), assuming case (b) of Theorem 5.1. The property derived in Theorem 5.2 may also be shown to be true for modified Green's functions.

We seek a solution U to the boundary value problem (191) for case
(b) of Theorem 5.1. We assume

$$
\begin{equation*}
\left\langle F, v_{i}\right\rangle=0, \quad 1 \leq i \leq s, \tag{2015}
\end{equation*}
$$

since without these conditions a solution does not exist. We will apply Green's theorem to the inner product <u, LG>. From (205)

$$
\begin{aligned}
\langle U, L G\rangle & \left.=\int_{\Omega} U^{1}(P) \backslash I_{n} \delta(P-Q)-\sum_{i=1}^{s} V_{i}(P) v_{i}^{T}(Q)\right] d P \\
& =U^{T}(Q)-\sum_{1}^{s}\left(\int_{\Omega} U^{T}(P) v_{i}(P) d P\right) v_{i}(Q)^{T}
\end{aligned}
$$

But

$$
\begin{aligned}
\left\langle U, V_{i}\right\rangle & =\int_{\Omega} U^{T}(P) V_{i}(P) d P \\
& =\text { some constant } c_{i}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\langle U, L G\rangle=U^{T}(Q)-\sum c_{i} V_{i}(Q)^{T} \tag{207}
\end{equation*}
$$

On the other hand, because the boundary value problem is self-adjoint

$$
\begin{equation*}
\langle U, L G\rangle=\langle L U, G\rangle=\int_{\Omega} F^{T}(P) G(P \mid Q) d P \tag{208}
\end{equation*}
$$

Equating (207) \& (208) and taking the transpose, we have

$$
U(Q)=\sum c_{1} v_{i}(Q)+\int_{\Omega} G^{T}(P \mid Q) F(P) d P
$$

We apply Theorem 5.2 and a change of variables:

$$
\begin{equation*}
U(P)=\int_{\Omega} G(P \mid Q) F(Q) d Q+\sum c_{i} v_{i}(P) \tag{209}
\end{equation*}
$$

As one might expect from Theorem 5.1, the solution includes an arbitrary linear combination of rigid body modes, or solutions to the homogeneous problem.

Remark 5.1 Naturally if a force is applied which does not satisfy the constraints (206), the system will still respond, but the boundary conditions will be violated. The conditions (206) usually translate physically into conditions that net forces or torques in one or more directions must be zero.

Without loss of generality, we can define a coordinate system with respect to the space vehicle itself. In the case of the antenna we define the xy plane tangent to the hub of the antenna and the 2 axis along the axis of the paraboloid. We may fix the x axis along a particular rib. With the coordinate system so defined, we may ignore the rigid body modes, since rotations and translations of the antenna as a rigid body occur with respect to another coordinate system.

We can then consider the solution of (191) to be

$$
\begin{equation*}
U(P)=\int_{\Omega} G(P \mid Q) F(Q) d Q \tag{210}
\end{equation*}
$$

where $G(P \mid Q)$ is the modified Green's function which satisfies (202-204).

5.3 The Shape Control Problem

Static shape control forces may be applied to some or all of the coordinates of the muitidimensional state. Thus we define the following control problem:

Let $\psi(P)$ be the desired shape of the space structure. Determine the set of control vectors F_{i} of (predetermined) dimension $n(1), i \leq 1 \leq m$, such that the reaulting shape $U(P)$, which satisfies the dynamics

$$
\begin{equation*}
L U=\sum_{i=1}^{m} C_{1} F_{i} \delta\left(P-P_{i}\right) \tag{211}
\end{equation*}
$$

and boundary conditions

$$
\begin{equation*}
B_{i}(U)=0, \quad 1 \leq 1 \leq k_{0}, \tag{212}
\end{equation*}
$$

most closely approximates the desired shape ψ on Ω. The measure of best approximation is that the set ($F_{1} *, \ldots, F_{m}^{*}, U^{*}$) minimize the performance criterion

$$
\left.J=\frac{1}{2} \sum_{1}^{m}\left\|F_{i}\right\|_{R_{i}}^{2}+\frac{1}{2} \int_{\Omega}\|\psi(P)-U(P)\|_{W(P)}^{2} d\right)
$$

over all possible sets which satisfy (211-212).
The constant $n \times n(i)$ matrices C_{i} distribute the control vector F_{1} over the coordinates of the state U at $P_{i} . \delta\left(P-P_{i}\right)$ is the dirac delta function for the multidimensional point P_{i}.

The $n(1) \times n(i)$ matrices R_{i} are symatric and $R_{1} \geq 0$.
$W(P)$ is a piecewise continuous symmetric positive definite matrix defined on Ω.

We first assume the homogeneous system

$$
\begin{equation*}
L U=0, B_{i}(U)=0, \quad 1 \leq 1 \leq k_{0}, \tag{214}
\end{equation*}
$$

has only the solution $U \equiv 0$.
We apply the solution derived in section 5.2 to the boundary value problem (211-212):

$$
\begin{align*}
U(P) & =\int_{Q} G(P \mid Q)\left[\sum_{1}^{\mathrm{m}} C_{i} F_{i} \delta\left(Q-P_{1}\right)\right] d Q \tag{215}\\
& =\sum_{i=1}^{\mathrm{m}} G\left(P \mid P_{i}\right) C_{1} F_{1}
\end{align*}
$$

where $G(P \mid Q)$ is the appropriate Green's function. We substitute (215) into the criterion (213), which becomes a functional depending solely on the discrete unknowns F_{i}.

$$
\begin{equation*}
J=\frac{1}{2} \sum_{1}^{m}\left\|F_{i}\right\|_{R_{i}}^{2}+\frac{1}{2} \int_{\Omega}\left\|i \psi(P)-\sum_{i=1}^{m} G\left(P \mid P_{i}\right) C_{i} F_{1}\right\|_{W}^{2} d P \tag{216}
\end{equation*}
$$

We seek the minimum of J with respect to the constant vectors F_{j} :

$$
\begin{align*}
\frac{\partial J}{\partial F_{j}} & =F_{j}^{T} R_{j}+\int_{\Omega}\left[\Psi(P)-\sum_{i=1}^{m} G\left(P \mid P_{i}\right) C_{i} F_{i}\right]^{T} W(P)\left[-G\left(P \mid P_{j}\right) C_{j}\right] d P \tag{217}\\
& =0 . \quad 1 \leq j \leq m .
\end{align*}
$$

Thus

$$
\begin{align*}
R_{j} F_{j} & +\sum_{i=1}^{m} C_{j}^{T}\left(\int_{\Omega} G\left(P_{j} \mid P\right) G\left(P \mid P_{i}\right) d P\right) C_{i} F_{i} \\
& =C_{j}^{T} \int_{\Omega} G\left(P_{j} \mid P\right) W(P) \psi(P) d P \quad \text { for } 1 \leq j \leq m . \tag{218}
\end{align*}
$$

Let $N=\sum_{i=1}^{m} n(i)$.
Let R be the block diagonal square matrix with diagonal blocks R_{1}, \ldots, R_{m}.

Let A be the $N \times N$ matrix of $n(1)$ by $n(j)$ blocks $A_{1 j}$, where

$$
\begin{equation*}
A_{i j}=C_{i}^{T}\left(\int_{\Omega} G\left(F_{i} \mid P\right) W(P) G\left(P \mid P_{j}\right) d P\right) C_{j} \tag{220}
\end{equation*}
$$

Let D be the N dimensional vector

$$
\begin{equation*}
D=\left[D_{1}^{T} \ldots D_{m}^{T}\right]^{T} \tag{221}
\end{equation*}
$$

where

$$
D_{j}=C_{j}^{T} \int_{\Omega} G\left(P_{j} \mid P\right) W(P) \psi(P) d P
$$

Let F be the N dimensional vector of unknown control forces:

$$
\begin{equation*}
F=\left(F_{1}^{T} \ldots F_{m}^{T}\right)^{T} \tag{222}
\end{equation*}
$$

Then the vector $F *$ of the optimal control forces satifies

$$
\begin{equation*}
(R+A) F *=D \tag{223}
\end{equation*}
$$

Once the vector $F *$ has been determined, the optimal shape $U *(P)$ is given by

$$
\begin{equation*}
U *(P)=\sum_{i=1}^{m} G\left(P \mid P_{i}\right) C_{i} F_{i}^{*} \tag{224}
\end{equation*}
$$

The Shape Control Problem for Systems with Rigid Body Modes

We now assume that the homogeneous boundary value problem has s solutions $V_{1}(P), \ldots, V_{s}(P)$. We let $G(P \mid Q)$ denote the modified Green's function which satisfies (205).

In order for a solution $(211,212)$ to exist, the right hand side of
(211) must satisfy the additional set of constraints (206). That is

$$
\left\langle V_{i}, \sum_{j=1}^{\mathbb{M}} C_{j} F_{j} \delta\left(P-P_{j}\right)\right\rangle=0, \quad 1 \leq 1 \leq s,
$$

which by definition is the set of conditions

$$
\int v_{i}^{T}(P) \sum_{j=1}^{\mathrm{m}} C_{j} F_{j} \delta\left(P-P_{j}\right) d P=0,1 \leq i \leq s .
$$

Evaluating the integral yields

$$
\begin{equation*}
\sum_{j=1}^{\mathrm{m}} v_{i}^{T}\left(P_{j}\right) c_{j} F_{j}=0, \quad 1 \leq 1 \leq s . \tag{225}
\end{equation*}
$$

The shape control probiem is now to find the set of forces $\left\{F_{i}\right\}$ and shape $U(P)$ which satisfy (211-212) (225), and minimize the criterion (213) cver all possible sets.

Examples of Constraints

Example 5.1: A three dimensional static with three rigid body modes.
Suppose the state $U(P)$ is three-dimensional, representing the displacement vector of the actual position of the structure corresponding to the point P from its ideal position, and the antenna has three rigid body modes representing translations along any of the three axes. An orthogonal basis for the space spanned by these rigio body modes is

$$
V_{1}=\left(\begin{array}{l}
1 \\
n \\
\therefore
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text { and } \quad v_{j}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Note that if $U(P)$ is a three-dimensional state then

$$
\mathrm{U}(\mathrm{P})+\sum_{i=1}^{j} c_{1} V_{1}
$$

does represent a translation of that state.
The constraints (225) become

$$
\begin{equation*}
\sum_{j=1}^{m}\left(C_{j} F_{j}\right)^{1}=0 \quad 1 \leq i \leq 3 \tag{226}
\end{equation*}
$$

where $\left(C_{j} F_{j}\right)^{i}$ is the ith coordinate of $C_{j} F_{j}$. This is equivalent to the condition that the net force applied in any direction of the state U over all the points P_{i} is zero. If the sum of the forces in any direction is zero, no net acceleration is spplizd to the structure as a whole, which is in keeping with the free boundary conditions.

Example 5.2:A six-dimensional state.
If torques are to be applied as part of the control scheme it may be convenient to consider a six-dimensional state, the first three components of which represent displacements as before, and the second three components of which represent rotations.

A torque is an impulsive force applied to a rotational coordinate. Suppose that the system has six rigid body modes, representing constant translations or rotations from an ideal position. A basis for the space of rigid body modes is $(100000)^{\mathrm{T}},\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right)^{\mathrm{T}},\left(\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}\right)^{\mathrm{T}}$, $(000100)^{T},(000010)^{T}$ and $(000001)^{T}$. The later thret vectors represent unit rotations about the three axes.

The constraints (225) again become

$$
\begin{equation*}
\sum_{j=1}^{m}\left(C_{j} F_{j}\right)^{1}=0, \quad 1 \leq i \leq 6 . \tag{227}
\end{equation*}
$$

These constraints represent the fact that the net sum of forces or torques applied to any coordinate of the state must be zero, a requirement which guarantee zero translational or rotational acceleration applied to the state.

Example 5.3: A three-dimensional state with six rigid body modes.
Suppose for computational convenience we wish to consider a threedimensional state, but the vehicle is allowed to both rotate and translate along three axes as a rigid body. One basis for the six rigid body modes is

$$
\begin{aligned}
& \mathrm{V}_{1}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{\mathrm{T}} \\
& \mathrm{~V}_{2}=\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right)^{\mathrm{T}}
\end{aligned} \mathrm{~V}_{3}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)^{\mathrm{T}}=\mathrm{T}_{1} \mathrm{P} \quad \mathrm{~V}_{5}(\mathrm{P})=\mathrm{T}_{2} \mathrm{P} \quad \mathrm{~V}_{6}(\mathrm{P})=\mathrm{T}_{3} \mathrm{P} ~ \$ ~ \$
$$

where

$$
T_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \quad T_{2}=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)
$$

and

$$
T_{3}=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

T_{1}, T_{2} and T_{3} represent rotations by an angle θ about the x, y, and 2 axes respectively.

The first three constraints yield the same conditions as in example 5.1. The last three constraints yield

$$
\begin{equation*}
\sum_{j=1}^{\mathrm{W}} \mathrm{P}_{j}^{\mathrm{T}} \mathrm{~T}_{i}{ }^{\mathrm{T}} \mathrm{C}_{j} \mathrm{~F}_{j}=0 \quad 1 \leq 1 \leq 3 \tag{228}
\end{equation*}
$$

For the rigid body mode $V_{4}(P)=T_{1} P$ this is

$$
\begin{equation*}
\sum_{j=1}^{m}\left[p_{j}^{1}\left(p_{j}^{2} \cos \theta-p_{j}^{3} \sin \theta\right),\left(p_{j}^{2} \sin \theta+p_{j}^{3} \cos \theta\right)\right] C_{j} F_{j}=0 \tag{229}
\end{equation*}
$$

This expression is the requirement that the sum of the forces applied times the displacements at the points where the forces are applied must be zero. But this is fust one of the constraints which resulted from rotational rigid body modes in example 5.2 : the sum of the torques must be zero.

It is easily seen that the condition that the sum of the torques be zero for each coordinate is satisfied if the constraints (228) are satisfied. Thus, the constraints for six rigid body modes are the same, however ike state vector is defined.

The procedure for finding the set of optimal control vectors for systems with rigid body modes is as follows:
i) Substi: ute the solution (215) into the criterion (213)
ii) Solve the constraints (225) for some of the control vectors in terms of the others.
iii) Substitute the expressions derived in (ii) into the criterion J, which now bec:ses a function of fewer control vectors.
iv) Minimize J with respect to this smaller set of contrel vectors. The minimization process wiil result in a system of linear equations which, when solved, yield the identity of the optimal set of these vectors. The other control vectors may then be determined from (ii).

The pinned-free beam in section 3.3 was an example of this procedure in the case of a onedimensional state.

5.4 The Shape Deteraination Problem

The desired shape ψ in the control problem in the last section will be based on the difference between the catimated shape and the ideal parabolic shape. The estimated shape must be computed from observations of some or all of the components of the state, taken at number of predetermined points along the structure.

Thus we geek to determine the estimates of the noise vector $\mathcal{F}(P)$ and shape function $U(P)_{2}$ defined on Ω, based on the observations

$$
\begin{equation*}
Y_{i}=C_{i} U\left(P_{i}\right)+2_{i}, \quad 1 \leq 1 \leq m, \tag{230}
\end{equation*}
$$

which minimize the performance criterion

$$
\begin{equation*}
J=\frac{1}{2} \sum_{1=1}^{m}\left\|Y_{1}-C_{1} U\left(P_{1}\right)\right\|_{R_{1}-1}^{2}+\frac{1}{2} \int_{\Omega}\|F(P)\|_{W^{-1}(P)} d P \tag{231}
\end{equation*}
$$

over all admissible sets $\{U, F\}$ which satisfy

$$
\begin{equation*}
L U=F, \ddot{F} \in \Omega \quad \text { and } B_{i}(U)=0 \quad 1 \leq: \leq k_{0}, P \in \Gamma \text {. } \tag{232}
\end{equation*}
$$

Th. $\quad \operatorname{lant}^{\text {matrices }} C_{1}$ are $n(1) \times n$, the $n(1)$ dimensional vectors Z_{i} reprisint noise or inaccuracies in the observations $Y_{1}, W(P)$ is a continuous pusiti:e definite matrix on Ω, and R_{i} are $n(\%) \times n(1)$ constant positive definite matrices.

We wi:1 assume the boundary value problem (232) has no rigid body modes. The estimation algorithm for systems with rigid body modes is the same, with the exception of the fact that the rigid body modes themselves cannot be estimated. The derivation of this fact follows as in section 2.5 .

We will evalaute the solution (210) of the boundary value problem (232) at the points $P_{1}, 1 \leq 1 \leq m$, and substitute into the criterion J.

$$
\begin{gather*}
u\left(P_{i}\right)=\int_{\Omega} G\left(P_{i} \mid Q\right) F(Q) d Q \tag{233}\\
J=\frac{1}{2} \sum_{1}^{m}\left\|Y_{i}-c_{i} \int_{\Omega} G\left(P_{i} \mid Q\right) F(Q) d Q\right\|\left\|_{R_{i}^{-1}}^{2}+\frac{1}{2} \int_{\Omega}\right\| F(Q) \|_{W^{-1}}^{2} d(! \tag{234}
\end{gather*}
$$

The criterion is now solely a function of the continuous unknown vector function $F(Q)$. To minimize J with respect to F we find the Frechet derivative $\partial J(F, H)$, where H is any admissible variation, and set it equal to zero.

$$
\begin{aligned}
\partial J(F, H) & \left.=\sum_{1}^{m} Y_{i}-C_{i} \int_{\Omega} G\left(P_{i} \mid Q\right) F(Q) d Q\right]^{T} R_{i}^{-1}\left[-C_{i} \int_{\Omega} G\left(P_{i} \mid Q\right) H(Q) d Q\right] \\
& +\int_{\Omega} F(U)^{T} W^{-1}(Q) H(Q) d Q=0 .
\end{aligned}
$$

If we transpose the equation, 1 actor out H and recall (233), we have

$$
\int_{\Omega} H^{T}(Q) W^{-1}(Q)\left[F(Q)+\sum_{i=1}^{m} G\left(Q \mid P_{i}\right) C_{i} T_{i} R_{i}^{-1}\left(C_{i} u\left(P_{i}\right)-Y_{i}\right)\right]=0
$$

Since thi:; must be true for all imssible variations H, we have

$$
\begin{equation*}
F(Q)=W(P) \sum_{i=1}^{m} G\left(0!: C_{i} T_{i}^{-1}\left(Y_{i}-C_{i} U\left(P_{i}\right)\right)\right. \tag{235}
\end{equation*}
$$

Ve still do not know the optimal estimate of F at this point, because the estimates $C_{i} U\left(P_{i}\right)$ are still not known. We substitute (235) into (233).

$$
\begin{equation*}
U\left(P_{j}\right)=\int_{\Omega} G\left(P_{j} \mid Q\right) W(Q)\left[\sum_{i=1}^{m} G\left(\Omega \mid F_{i}\right) C_{i} T_{i}\left(Y_{i}-C_{i} U\left(P_{i}\right)\right)\right. \tag{236}
\end{equation*}
$$

Then we have, for $1 \leq j \leq m$,

$$
\begin{align*}
U\left(P_{j}\right) & +\sum_{i=1}^{m}\left(\int_{\Omega} G\left(P_{j} \mid Q\right) X(Q) G\left(Q \mid P_{i}\right) d Q\right) c_{i} T_{i} c_{i} U\left(P_{i}\right) \\
& \left.=\sum_{i=1}^{m} \int_{\Omega} G\left(P_{j} \mid Q\right) Q(Q) G\left(Q \mid P_{i}\right) d Q\right) c_{i}^{T} R_{i} Y_{i} . \tag{237}
\end{align*}
$$

We will solve this set of matix equations for the vectors $C_{j} U\left(P_{j}\right)$, $1=j \leq m$. Multiply bu:.i sides on the left $u y C_{j}$. Again define $N=\sum_{i=1}^{m} r_{l}(i)$. (Recall that $n(i)$ is the dimension of Y_{i}.)

Let A be the matrix of mblocks by blocks, where the j th block

$$
\begin{equation*}
A_{j!}=C_{j}\left(\int_{\Omega} G\left(P_{j} \mid Q\right) Q(Q) G\left(Q \mid P_{i}\right) d Q\right) C_{i} T_{1} \tag{238}
\end{equation*}
$$

is an $n(j)$ by $n(i)$ matrix. Thus A is $N \times N$.
Let R^{-1} be the $N \times N$ block diagonal matrix with blocks
$R_{i j}^{-1}=R_{i}^{-1} \delta(i-j)$.

Let $U *\left(P_{i}\right)$ be the optimal estimate of the shape function U at P_{i}, and let \bar{U} be the N dimensional vector formed by "stacking" the $n(1)$ dimensional.

$$
\begin{equation*}
\text { vectors } C_{i} U *\left(P_{1}\right) \tag{240}
\end{equation*}
$$

Let Y be the N dimensional vector

$$
\begin{equation*}
\left(Y_{1}^{T} \ldots Y_{m}^{T}\right)^{T} \tag{241}
\end{equation*}
$$

Then the vector if sa:isfies the system of linear equations

$$
\begin{equation*}
\left(I_{N}+A R^{-1}\right) \bar{U}=A R^{-1} Y \tag{242}
\end{equation*}
$$

Once the vector \bar{U} is known, the optimal estimate F * of the noise vector F is given by

$$
\begin{equation*}
F *(P)=W(P) \sum_{i=1}^{m} G\left(Y \mid P_{i}\right) C_{i}^{T} R_{i}^{-1}\left(Y_{i}-C_{i} U *\left(P_{i}\right)\right) . \tag{243}
\end{equation*}
$$

The optimal shape estimate $U *(P)$ is then given by

$$
\begin{equation*}
U \star(P)=\sum_{i=1}^{m}\left(\int_{\Omega} G(P \mid Q) W(Q) G\left(Q \mid P_{i}\right) d Q\right) C_{i}^{T} R_{i}^{-1}\left(Y_{i}-C_{i} U \star\left(P_{i}\right)\right) \tag{244}
\end{equation*}
$$

5.5 Approximations

In this section approximations will be presented, which involve eigenfunctions corresponding to the static boundary value problems (211-212) (232) which parallel those in section ©.6.

However, most finfte element models for large space structures are dynamic, rather than time-invariant. Therefore. in the next chapter, approximations will be developed for the use of eigenfunctions from the dynamic modei corresponding to (185-186).

It was demonstrated in Theorem 5.2 , section 5.2 , ti,at $G(P \mid Q)$ was symmetric. We will also assume that $G(P \mid Q)$ is a Hilbert-Schmidt kernel, that is that

$$
\begin{equation*}
\int_{\Omega}\|G(P \mid Q)\|^{2} \mathrm{dPdQ}<\infty . \tag{245}
\end{equation*}
$$

Let K be the integral operator with the Green's function as kernel. Then for $F(P)$ in the domain of K,

$$
\begin{equation*}
K f=\int_{\Omega} G(P \mid Q) f(Q) d Q \tag{246}
\end{equation*}
$$

Let $\mu_{1} \geq \mu_{2} \geq \mu_{3} \geq \ldots$ be the non-zero eigenvalues of K, and $\phi_{1}, \phi_{2}, \ldots$ be the associated eigenfunctions, such that

$$
\begin{equation*}
K \phi_{i}=\mu_{i} \phi_{i} . \tag{247}
\end{equation*}
$$

The non-zerc eigen alues $\left\{\mu_{i}\right\}$ of k are the inverses of the non-zero eigenvalues of L, and the eigenfunctions $\left\{\phi_{i}\right\}$ are also the corresponding eigen.functions of L .

We will assume the eigenfunctions $\left\{\phi_{i}\right\}$ have been normalized with respect to the inner product (188).

From integral operator theory we have the following expansion for the Green's function:

$$
\begin{equation*}
G(i \mid Q)=\sum_{i=1}^{\infty} \mu_{i} \phi_{i}(P) \phi_{i}^{T}(Q) \tag{248}
\end{equation*}
$$

If we assume, es 1. Chapter 2 , that W is the identity (matrix) on Ω, we have the following expansions:

$$
\begin{equation*}
\int_{\Omega} G(P \mid Q) G\left(Q|R\rangle d Q=\sum_{i} u_{i}^{2} \phi_{i}(P) \phi_{i}^{T}(R)\right. \tag{249}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} G(P \mid Q) \psi(Q) d Q=\sum_{i} \mu_{i} \phi_{i}(P)\left\langle\phi_{i}, \psi\right\rangle \tag{250}
\end{equation*}
$$

These expressions are generailzations to the multidimensional case of the approximations offered in Chapter 2.

If W is not the identity matrix, (249-250) become

$$
\begin{equation*}
\int_{\Omega} G(P \mid Q) W(Q) G(Q \mid R) d Q=\sum_{i} \sum_{j} \mu_{i} \mu_{j} \phi_{i}(P) \phi_{j}^{T}(Q)\left\langle\phi_{i}, \phi_{j}\right\rangle_{W} \tag{251}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} G(P \mid Q) W(Q) \psi(Q) d Q=\sum_{i=1}^{\infty} \mu_{i} \phi_{i}(P)\left\langle\phi_{i}, \psi\right\rangle_{W} . \tag{252}
\end{equation*}
$$

2.6 Summary and Conclusions

Procedures for static shape control and determination of multidimensional large space structures were derived in this chapter, under the assumptions that tire structures were continuous, governed by linear self-adjoint boundary value problems, and that the control forces are applied and observations taken at a number of predetermined points along the structure. Approximate optimal control functions and shape estimates, in terms of eigenfunctions corresponding to the static model, were presented.

As one would expect, the problem formulations and solutions for multidimensional states bear a strong resemblance to those for scalar state formulations derived in Chapter 2. This is due to the commonality among linear self-adjoint systems.

However, there are significant differences in interpretation and procedure. The differential and integral oprators become matrix operators rather than scalar. Observations and control forces may now be applied to parts of the state, on to linear combinations of state components, rather than to all of the state. The additional constraints imposed in the case of rigit body modes must be interpreted and handled with aore care.

Finally, it is now nearly impossible to know the differential and integral operators, or their eigenfunctions, with analytical precision. hpproximations must be supplied using eigenfunctions computed experimentally or by a numerical method such as the finite element method.

Chapter 6. Finite Element Models:

A Large Space Antenna

6.1 Introduction

In Chapter 5 static shape determination and shape control algorithms were derived for a multidimensional model defined on a multidimensional domain, the situation most likely to correspend to large space structures. It was assumed the structural models satisfied static self-adjoint linear boundary value problems of the form

$$
\begin{equation*}
L U(P)=F(P), B_{i} U(P)=0, \quad 1 \leq 1 \leq k_{0}, \tag{253}
\end{equation*}
$$

where $U(P)$ represents an \mathfrak{n} dimensional state vector of displacements at the point $\mathrm{P} \varepsilon \Omega$, L is an $\mathrm{n} \times \mathrm{n}$ matrix of differential operators and B_{i}, $1 \leq i \leq k_{0}$, are linea: boundary operators defined on the boundary Γ of Ω.

Terms in the solution algorithms for the stati. shape estimation and control problems involved the Green's function, or impulse coefficient, of the associated boundary value problem. Since it is highly unlikely that the precise Green's function for such a problem is known, approximations to these terms by means of expansions involving the eigenvalues and eigenfunctions which satisfy the corresponding eigenvalue problem

$$
\begin{equation*}
L \phi_{j}=\lambda_{j} \phi_{j}, \quad B_{i} \phi_{j}=0, \quad 1 \leq 1 \leq k_{0}, \tag{254}
\end{equation*}
$$

were presented.
However, it is likely that the most convenient eigenfunctions will be those supplied by a finite eleant model, which approximate those for the dynamical boundary value problem

$$
\begin{align*}
& M(P) \frac{\partial^{2} U(P, t)}{\partial t^{2}}+L U(P, t)=F(P, t), P \varepsilon \Omega, \tag{255}\\
& B_{i} U(P, t)=0, \quad 1 \leq 1 \leq k_{0}, P \varepsilon \Gamma \tag{256}
\end{align*}
$$

associated with the static problem (253). These eigenfunctions satisfy

$$
\begin{align*}
& L \hat{\phi}_{j}(P)-\lambda_{j} M(P) \hat{\phi}_{j}(P)=0, \quad P \varepsilon \Omega, \tag{257}\\
& B_{i} \hat{\phi}_{j}(P)=0, \quad 1 \leq i \leq k_{0}, P \varepsilon \Gamma, \tag{258}
\end{align*}
$$

and arc orthonormal with respect to the norm induced by the weighted inner product

$$
\begin{equation*}
\langle U, V\rangle_{M}=\int_{\Omega} U^{T}(P) M(P) U(P) d P \tag{259}
\end{equation*}
$$

rather than the usual inner product

$$
\begin{equation*}
\langle U, V\rangle=\int_{\Omega} U^{T}(P) V(P) d P \tag{260}
\end{equation*}
$$

This chapter investigates the modifications necessary for the use of the eigenfunctions $\left\{\hat{\phi}_{j}\right\}$ which satisfy (257-258), rather than those for the static problem.

The finite element method is outlined in section 6.2. In section 6.3 eigenfunction approximations are derived for terms which involved the static Green's function, using eigenfunctions for the dynamic problem. In comparison, we solve the discrete static control problem in section 6.4 in order to demonstrate the remarkable consistency between the discrete and continuous solutions.

Finally in section 6.5 we present specific examples of algorithms for multidimensional shape determination and control, which are illustrated by simulations using an available finite element model of a large space antenna. Tables : ud plots of results are included at the end of the chapter.

For convenience, only the case that there are no rigid body modes, or non-trivial solutione of the unforced (homogeneous) boundary value problem, will be considered. T? extension of these results to the case of system does have rigid body mudes is obvious.

6.2 The Finite Element Model

The finite element method is a modification of the Rayleigh-Ritz procedure for solving self-adjoint boundary value problems. The RayleighRitz method will be described briefly first. It is based on two principles: 1) The unique solution of the self-adjoint boundary value problem which governs a system is equivalent to the unique function in a certain class which minimizes an integral, or functional, which usually represents the energy of the system.

Examples of such equivalences are the following:
Example 6.1: The solution of the system of inear equations $A x^{*}=b$, where A is a symetric matrix, is equivalent to the unique vector x^{*} which minimizes the functicnal $J(x)=\frac{1}{2}\langle A x, x\rangle-\langle b, x\rangle$.

This equivalence is equally applicable if A is a self-adjoint
linear operator. [10]
Example 6.2: The function $y \varepsilon c^{2}[0,1]$ is the unique solution of the boundary value problem

$$
\begin{align*}
& -\frac{d}{d x}\left(p(x) \frac{d y}{d x}\right)+q(x) y=f(x), \quad 0 \leq x \leq 1, \tag{261}\\
& y(0)=y(1)=0 \tag{262}
\end{align*}
$$

if and only if y is the unique function in $C_{0}{ }^{2}[0,1]$ which minimizes the integral
$J(u)=\int_{0}^{1}\left\{p(x)\left[u^{\prime}(x)\right\}^{2}+q(x)[u(x)]^{2}-2 f(x) u(x)\right\} d x$.
(Ref. [11]).
2) The second principle of the Rayleigh-Ritz metnod is that the furictional J is not minimized over all appropriate functions (in example 6.2. for example, $;$ is minimized over those functions in $C_{o}{ }^{2}[0,1]$ which satisfy (252)). It is minimized over a smaller set consisting of linear
combinations of certain basis functions $\phi_{1} \ldots . . \phi_{n}$, referred to as coordinate functions, which are defined on the region and satisfy the boundary conditions.

Thus, the solution of the linear boundary value problem becomes the question of determining the set of constants $\varepsilon_{1}, \ldots, c_{n}$ such that the function $f=\sum_{i=1}^{n} c_{i} \phi_{i}$ minimizes J overall such sets, a finite dimensional problem. In effect we are finding the best approximation of the solution to the original problem in terms of the functions ϕ_{i}. The trick in the RayleighRitz method is to find a sequence of suitable functions $\left\{\phi_{i}\right\}$ such that as n goes to infinity the functions $f_{n}=\sum_{i=1}^{n} c_{1} \phi_{i}$ converge t : ine solution of the boundary value problem. Frequently used sets $\left\{\phi_{\mathrm{y}}\right.$ \} are piecevis? linear polynomials and cubic splines.

The finite element method is a modification of the Rayleigh-Ritz method for more complicated structures, wioch cannot be described accurately by as simple an equation as (261). The domajit of the strysiture is divided into smaller regions, or elements, which are increannected at a discrete number of nodal points.

The displacements of the ... ructure at the nodal points form the unknown constants. The displacemen at one node represent translations, rotations or higher order terms in one or several dimensions. Within an element, a set of displacement functions is chosen to define displacements between the nodal points in terms of the displacements at them. These functions correspond to the coordinate functions of the Rayleigh-Ritz method.

A state vector X representing the displacements at all the nodal points is formed. The usual order in the vector is that all displacements for the first node are first, followed by all displacements for the second node, and so on.

The object of the finite element method is to determine the state vector, or displacements, which will yield the closest approximation to the actual displacement pattern of the structure. The derivation of the equation that this vector satisfies is an application of the following principle which is analogous to the first principle of the Rayleigh-Ritz method.

Hamilton's Principle: Let $L=T-V$ be the Lagrangian of a system, where T is the total kinetic energy and V is the potential energy. Then the actual Fith of the system in time, $X(t)$, renders the integral.

$$
\int_{t_{1}}^{t_{2}} L(X, \dot{X}, t) d t
$$

stationary with respect to all possible neighboring paths the system may take between times t_{1} and t_{2}. Therefore the Frechet differential

$$
\partial J(X, H)=\left.\frac{d}{d \alpha} \int_{t_{1}}^{t_{2}} L(X+\alpha H, \dot{X}+\alpha H, t) d t\right|_{\alpha=0}=0
$$

for all admissible variations H. This is a classical problem in the Calculus of Variations, which leads to the Euler-Lagrange equations for the system:

$$
\begin{equation*}
L_{x}(X, \dot{X}, t)-\frac{d}{d t} L_{\dot{x}}(X, \dot{X}, t)=0 \tag{264}
\end{equation*}
$$

(Ref. [3], p. 181).
For dynamic finite element models
$T=\frac{1}{2} \dot{X}^{T} M \dot{X}$ and $V=\frac{1}{2} X^{T} K X$.
M and K are square symmetric matrices and M is positive definite.
The mass matrix M arises out of an analysis of the inertial forces acting at the nodes. The coefficients $M_{i j}$ of M are referred to as mass influence coefficients, which relate the accelerations at the nodes to the resulting inertial forces. $M_{i j}$ is the force at coordinate i due to a unit acceleration at coordinate j. The total inertial forces acting on the system may be expressed in vector form by $F_{I}=M \ddot{X}$.

The stiffness matrix K arises out of an analysis of the elastic force relationships at the nodes. The stiffness influence coefficient $k_{i f}$ represents the force at the coordinate i due to a unit displacement. of coordinate j. In vector form the elastic forces acting on the system X may be written $F_{s}=K X$. The stiffness matrix K in the discrete system corresponds to the linear operator L in the continuous aystems (253) or (255).

The coefficients of M and K are computed by integrations over each element using the coordinate functions.

If the Euler-Lagrange equations (264) are evaluated for the finite element model the following equations result:
for a conservative system: $M \ddot{X}+K X=0$
and, if a vector of nonconservative (outside) forces $F(t)$ is acting on the system: $\quad \mathbb{M X}+K X=F(t)$.

In a static system $\ddot{X}=0$, which yields a system of linear equations as a necessary condition for the state X :
$K X=F$.
The final step in the finite element method is to solve (267) or (268) for X, the vector of nodal displacements, given a known force vector F.

The system (267) is self-adjoint if and only if the weighted inner produce

$$
\begin{equation*}
\langle X, Y\rangle_{M}=X^{i^{\prime}} M Y=Y^{T} T_{X} \tag{269}
\end{equation*}
$$

is used. Consequently there exists a complete set of eigenvectors (modes) $\left\{\phi_{i}\right\}, 1 \leq i \leq N_{0}$, where N_{0} is the dimension of the state X, and corresponding eigenvalues $\left\{\hat{\lambda}_{1}\right\}$, such that

$$
\begin{equation*}
\dot{\lambda}_{i} M \hat{\phi}_{i}=K \hat{\phi}_{i}, \quad 1 \leq i \leq N_{0} . \tag{270}
\end{equation*}
$$

The eigenvalue $\hat{\lambda}_{i}=\omega_{i}{ }^{2}$, where ω_{i} is the frequency corresponding to the mode, or eigenvector, $\hat{\phi}_{i}$.

Eigenvectors corresponding to different eigenvalues are orthogonal under the norm (269). We assume they have been normalized with respect to that norm. The solution of (267) is given by

$$
\begin{equation*}
x(t)=\sum_{i=1}^{N_{0}} c_{1}(t) \hat{\phi}_{1} \tag{271}
\end{equation*}
$$

where $C_{i}(t)$ satisfied $\ddot{C}_{1}+\omega_{i}^{2} C_{i}=\left\langle F, \hat{\phi}_{i}{ }^{2} M\right.$.
Thus, given a known vector F of non-conservative forces the solution of (269) is expressed in terms of the eigenvectors $\hat{\boldsymbol{\phi}}_{1}$ and frequencies which satisfy (270). These are the modes and frequencies supplied by the finite element method, which must be used to approximate the static shape control and determination algorithms.

Because of computational limitations, only a fraction of the tfcal number of modes are actually computed.

The solution of (268) is discussed in section 6.4.
In summary, the basic steps of the finite element method are as follows:

Summary of the Finite Element Method
i) The domain is divided into a number of elements, which are interconnected at a discrete number of nodal points.
i1) A state vector X is formed, representing the displacements of which knowledge is desired at each node. Displacements within an element are exprensed in terms of coordinate functions. The unknown constants in the displacement functions are the displacements at surrounding nodes.
(ii) The mass matrix M and stiffness matrix K are computed. The state vector X there satisfies $M X X X=F$, for dynamical systems, or $K X=F$, for static systems, where F is a vector representing outside forces acting on the system.
iv) The modes $\left\{\hat{\phi}_{1}\right\}$ and frequencies $\left\{\omega_{1}\right\}$ which satisfy $\omega_{i}^{2} M \hat{\phi}_{1}=K \hat{\phi}_{i}$ are then computed. Solutions to the model may be expressed in terms of these modes.

The Lumped Mass Method

A simplification of the finite element method, the lumped mass method, is frequently used for models of large space structures at JPL. The entire mass of the structure is assumed to be concentrated at the nodal points, which are intercomected by massiess segments. Thus no coordinate functions need be defined. The mass matrix is a diagonal matrix, with identical entries for all translations corresponding to the same node, and zeros for rotations or higher order terms [12].

6.3 Approximations from the Dynamic Model

Given the eigenfunctions $\left\{\hat{\phi}_{1}\right\}$ which satisfy (257-8) and are orthonormal with respect to the weighted norm (259), we wish to generate approximations to terms in the shape control and determination algorithms. The eigenfunctions (270) supplied by the finite element method are discrete approximations to those of (25?-8).

If the Green's function $G(\underline{P} \mid \Omega)$ is not known, we require approximations for the following quantities:

$$
\begin{align*}
& G(P \mid Q) \tag{272}\\
& \int_{\Omega} G(P \mid Q) W(Q) G(Q \mid R) d Q \tag{273}\\
& \int_{\Omega} G(P \mid Q) W(Q) \psi(Q) d Q
\end{align*}
$$

where $\psi(Q)$ is a known function and $W(Q)$ is a symuetric positive definite matrix.

We will first assume that we have available the continuous eigenfunctions for which the finite element method provides approximations. For convenience from this point forward we drop the hats oii these eigenfunctions, which satisfy the following properties:

$$
\begin{align*}
& L \phi_{j}(P)=\lambda_{j} M(P) \phi_{j}, P \in \Omega \tag{275}\\
& B_{i} \phi_{j}(P)=0, \quad 1 \leq i \leq k_{0}, \quad P \in r \tag{276}\\
& \left\langle\phi_{j}, \phi_{1}\right\rangle_{m}=\int_{j_{d}} \phi_{j}^{T}(P) M(P) \phi_{i}(P\rangle d P=\delta(1-j) . \tag{27i}
\end{align*}
$$

Properties (275) and (277) easily yield the following property:

$$
\begin{equation*}
\left\langle\Phi_{j}, L \phi_{i}\right\rangle=\int_{\Omega} \phi_{j}^{T}(P) L \cdot \phi_{i}(P) d P=\lambda_{j} \delta(i-j) . \tag{278}
\end{equation*}
$$

The application of the Green's function (198-9) to solve the boundary value problem (275-6) yields

$$
\begin{equation*}
\phi_{j}(P)=\lambda_{j} \int_{\Omega} G(P \mid Q) M(Q) \phi_{j}(Q) d Q . \tag{279}
\end{equation*}
$$

If there are no eigenfunctions ϕ_{1} corresponding to the eigenvalue $\lambda=0$, that is, if the nullspace of the operator L is only the zero vector, the functions $\left\{\phi_{1}\right)$ form a complete set for all functions in autable class which satisfy the boundary conditions.

If there are eigenfunctions corresponding to $\lambda=0$, the modified Green's Function defined in Chanter 5 has no component in the nullsnace which is spanned by these functions. Therefore in either case the column vector $G_{j}(P \mid Q)$ can be expanded in terms of the eigenfurctions ϕ_{1} corresponding to nor.-zero eigenvalues:

$$
\begin{equation*}
G_{j}(P \mid Q)=\sum_{i} \phi_{i}\left(P j \gamma_{j i}(Q)\right. \tag{280}
\end{equation*}
$$

where $\gamma_{j 1}(Q)$ are continuous scalar functions defined on Ω. If we define $\gamma_{j}(Q)=\left(\gamma_{j l}(Q) \ldots \gamma_{j n}(Q)\right)$, then

$$
\begin{equation*}
G(P \mid Q)=\sum_{j} \phi_{j}(P) \gamma_{j}(Q) . \tag{281}
\end{equation*}
$$

In order to determine γ_{j}, we multiply both sides of (281) on the left by $\phi_{i}{ }^{T}(P) M(P)$ and integrate over Ω.

$$
\int_{\Omega} Y_{i}^{T}(P) M(P) G(P \mid Q) d P=\sum_{j} \int_{\Omega} \phi_{i}{ }^{T}(P) M(P) \phi_{j}(P) \gamma_{j}(Q) d P .
$$

If we apply the orthogonality relationship (277):

$$
\begin{equation*}
\int_{\Omega} \phi_{i}^{T}(P) M(P) G(P \mid Q) d P=\gamma_{i}(Q) \tag{282}
\end{equation*}
$$

If (282) is compared with (279) it is observed that $\gamma_{1}(Q)=\frac{1}{\lambda_{1}} \phi_{1}^{T}(Q)$, and

$$
\begin{equation*}
G(P \mid Q)=\sum_{i} \frac{1}{\lambda_{i}} \phi_{i}(P) \phi_{i}^{T}(Q) . \tag{283}
\end{equation*}
$$

where the sum is over the non-zero eigenvalues and eigenfurctions of the system (255-6).

We use the expression (283) to find expansions for (273-4) :

$$
\begin{align*}
\int_{\Omega} G(P \mid Q) W(Q) \psi(Q) d Q & =\sum_{i} \frac{1}{\lambda_{i}} \int_{\Omega} \phi_{i}(P) \phi_{i}{ }^{T}(Q) W(Q) \psi(Q) d Q \\
& =\sum_{i} \frac{1}{\lambda_{1}} \phi_{i}(P) \int \phi_{i}{ }^{T}(Q) W(Q) \psi(Q) d Q \\
& =\sum_{i} \frac{1}{\lambda_{i}} \phi_{i}(P)\left\langle\phi_{i}, \psi\right\rangle_{W} . \tag{284}
\end{align*}
$$

Finally we evaluate expression (273):

$$
\begin{align*}
& \int_{\Omega} G(P \mid Q) W(Q) G(Q \mid R) d Q \\
&=\int_{\Omega}\left(\sum_{i} \frac{1}{\lambda_{i}} \phi_{i}(P) \phi_{i}^{T}(Q)\right) W(Q)\left(\sum_{j} \frac{1}{\lambda_{i}} \phi_{j}(Q) \phi_{j}^{T}(R)\right) d Q \\
&=\sum_{i} \sum_{j} \frac{1}{\lambda_{i} \lambda_{j}} \phi_{i}(P) \phi_{j}^{T}(R)\left\langle\phi_{i}, \phi_{j}\right\rangle_{W} \tag{285}
\end{align*}
$$

In the event that the matrix $W(P)$ is chosen to be the mass matrix $M(P)$, the relation (285) becomes

$$
\begin{equation*}
\int_{\Omega} G(P \mid Q) M(Q) G(Q \mid R) d Q=\sum_{i} \frac{1}{\lambda_{i}^{2}} \phi_{i}(P) \phi_{i}{ }^{T}(Q) . \tag{286}
\end{equation*}
$$

The expressions for (272-4) in terms of eigenfunction for the dynamic problem are very similar to those in terms of eigenfunction for the static problem. The major different: is the loss of orthogonality with respect to an unweighted inner product.

$$
c-2
$$

Section 6.4 The Discrete Control Problem

It is satisfying, although not unexpected, to note the resemblence between the solutions of the shape control and determination problems for continuous and discrete models. For example, the discrete control probl. a analogous to the problem (211-212) is as follows:

Let X be an N_{0} dimensional state vector representing the displacements for a sequence of nodal points along a structure. Let Y represent the vector of desired displacements. Suppose m scalar forces F_{j} are to be applied to coordinates $r(j)$ of the vector X in order to achieve the desired "shape" Y. Then the control problem is to determine the control vector X which is the solution of

$$
\begin{equation*}
K X=C F \tag{7}
\end{equation*}
$$

and minimizes the criterion

$$
\begin{equation*}
J=\frac{1}{2}\|F\|_{R}^{2}+\frac{1}{2}\|X-Y\|_{M}^{2} \tag{288}
\end{equation*}
$$

over all pairs (F, X) which satisfy (287).
C is an $N_{0} x$ matrix with entries $C_{i j}=\delta(1-r(j)) . R$ is a symmetric constant $m \times m$ matrix, and M is the mass matrix of the corresponding dynamical model. Since we are considering systems without rigid body modes, there are no nontrivial solutions of $\mathrm{KX}=0$. Thus K is non-singular, and the solution of (287) is given by

$$
\begin{equation*}
X=K^{-1} C F \tag{289}
\end{equation*}
$$

when F is known.
Finding K^{-1} is analogous to finding the inverse of the operator L, that is to finding the Green's function such that the solution of $\mathrm{LU}=\mathrm{F}$ plus boundary conditions may be expressed as

$$
U=L^{-1} F=\int_{\Omega} G(P \mid Q) F(Q) d Q .
$$

As in the continuous case, while it is easy to refer to K^{-1} in theory, in practice the system dimension N_{0} is on the order of 10^{3}, so it is desirable to find a means of approximating K^{-1} rather than actuelly computing it.

We substitute (289) into the criterion J:

$$
\begin{equation*}
J=\frac{1}{2}\left(F^{T} R F\right)+\frac{1}{2}\left(K^{-1} C F-Y\right)^{T} M\left(K^{-1} C F-Y\right) \tag{290}
\end{equation*}
$$

We minimize (290) with respect to the unknown vector F :

$$
\frac{\partial J}{\partial f}=F^{T} R+\left(K^{-1} C F-Y\right)^{T} M K^{-1} C=0 .
$$

This equation results in the following necessary condition for F :

$$
\begin{equation*}
\left(R+C^{T} K^{-1} M K^{-1} C\right) F=C^{T} K^{-1} M Y \text {. } \tag{291}
\end{equation*}
$$

Once F is known from this m dimensional system of equations, the optimal shape X is given by (289).

Since it is awkward to compute K^{-1}, we seek eigenfunction expansions for it, and the terms $K^{-1} \mathrm{M} \mathrm{K}^{-1}$ and $K^{-1} \mathrm{M} Y$. We assume we have available the eigenfunctions and eigenvalues of the corresponding dynamical system $M \ddot{X}+K X=F$, which satisfy (270), together with the orthogonality conditions

$$
\begin{equation*}
\left\langle\phi_{i}, \phi_{j}\right\rangle_{M}=\delta(i-j) \tag{292}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\phi_{i}, \phi_{j}\right\rangle_{K}=\phi_{i}^{T} K \phi_{j}=\lambda_{i} \varepsilon(i-j) \tag{293}
\end{equation*}
$$

Let ϕ be the N_{0} by N_{0} matrix $\left|\phi_{1}\right| \ldots\left|\phi_{N_{0}}\right|$. Then

$$
\begin{equation*}
\phi^{T} K \phi=\Lambda \tag{294}
\end{equation*}
$$

where Λ is the diagonal matrix with diagonal entries $\lambda_{1}, 1 \leq 1 \leq N_{0}$. Thus

$$
K=\left(\Phi^{-1}\right) \wedge \Phi^{-1}
$$

and

$$
\begin{equation*}
x^{-1}=\Lambda^{-1} \varphi^{T}=\sum_{i=1}^{N_{0}} \frac{\phi_{i} \phi_{i}^{T}}{\lambda_{i}} \tag{295}
\end{equation*}
$$

Furtharmore

$$
\begin{align*}
K^{-1} M K & =\left(\sum_{1}^{N_{0}} \frac{1}{\lambda_{i}} \phi_{i} \phi_{i}{ }^{T}\right) M\left(\sum_{i}^{N_{0}} \frac{1}{\lambda_{j}} \phi_{j} \phi_{j}^{T}\right) \\
& =\sum_{i=1}^{N_{0}} \sum_{j=1}^{N_{0}} \frac{1}{\lambda_{i} \lambda_{j}} \phi_{i} \phi_{j}^{T}\left\langle\phi_{i}, \phi_{j}\right\rangle_{M} \\
& =\sum_{i=1}^{N_{0}} \frac{1}{\lambda_{i}^{2}} \phi_{i} \phi_{i}^{T} \tag{296}
\end{align*}
$$

and

$$
\begin{equation*}
K^{-1} M Y=\sum_{i=1}^{N_{0}} \frac{1}{\lambda_{i}}-\phi_{i}\left\langle\phi_{i}, Y\right\rangle M \tag{297}
\end{equation*}
$$

Note the marked resemblence between the discrete expressions (295-7) the analogous expressions (283-4)(286) in the continuous problem.

6.5 Applications to a Large Space Antenna

In this section we present actual algorithms for the shape determination and control of a large space structure, subject to the choice of certain constants, which may be varied in simulations. The algorithms are illustrated using eigenfunctions and frequencies provided by a finite element model of a large space antenna, which has been developed at JPL.

The model is constructed by the lumped mass method described at the end of section 6.2. It assumes 18 ribs and 882 nodal points locatea on 14 concentric circular cross-sections of the mesh. The ribs are assumed to be very stiff in comparison with the mesh. The tub of the antenna is assumed to be firmly fixed to the bus of a more massive spacecraft, so that there are no rigid body modes.

Avallable data on the model includes the rest coordinates in R^{3}, which represent the positions of the nodes on the ideal shape U°, the masses at each node, and 33 modes and frequencies.

We will restate the problems and algorithms to incorporate two subtle refinements necessary for the application to a large space antenna.

The first arises from the fact that the mode shapes and Green's function represent displacements of the antenna from its ideal shape. The actual antenna shape is the sum of its ideal, or rest shape U°, a perfect parabolodd, and its displacement. Thus the Green's function represents the displacement of the antenna from its ideal shape due to a unit impulsive force at one point.

The second refinement is that shape estimation is accumplished first, and the resulting shape estimate li* is used as the desired shape in the control problem. Once the forces necessary to control the ideal shape to
the shape estimate are determined, the negative of those forces will bring the estimated shape to the optimal corrected shape.

After the full algorithms are stated, we state the corresponding approximations used in the simulations, which are based on the expansions developed in section 6.3.

The results of the simulations include tables representing comparisons of results for varying choices of control and observation positions, number of modes in the approximations, weighting matrices and choices of actual distorted shapes. Plots of the first eleven mode shapes, and the actual distorted shape, estimated shape and corrected shape for various initially distorted antenna.

The computer program listing and output for the shape control of a large space antenna are found in Appendix C.

The Shape Estimation Problem

Consider an n dimensional space structure, the shape $U(P)$ of which satisfies the following linear self-adjoint boundary value problem on the \& dimensional domain Ω with boundary Γ :

$$
\begin{array}{ll}
L U(P)=F(P), & P \varepsilon \Omega \\
B_{j} U(P)=0, & 1 \leq j \leq k_{0}, \quad P \in \Gamma . \tag{299}
\end{array}
$$

L is an nxn matrix of linear differential operators, which is related to the stiffness of the structure. $B_{j}, 1 \leq j \leq k_{0}$, ars linear homogeneous boundary conditions. F is a vector function of unknown disturbances.

The shape estimation problem is to determine the unknown disturbance function F^{*} and shape function U^{*}, based on the in observation vectors

$$
\begin{equation*}
Y_{1}=C_{i} U\left(P_{1}\right)+Z_{1}, \quad 1 \leq 1 \leq m, \tag{300}
\end{equation*}
$$

which satisfy (298-9) and minimize the performance criterion (301) over all possible pairs (F, U) which satisfy ($298-9$). The vectors Z_{i} represent. noise in the observations.

$$
\begin{equation*}
J=\frac{1}{2} \sum_{i=1}^{m}\left\|z_{i}\right\|_{R_{i}}^{2}-1+\frac{1}{2} \int_{\Omega}\|F(P)\|_{W}^{2}-1(P) d P \tag{301}
\end{equation*}
$$

R_{i} and W are symmetric positive definite weighting matrices of appropriate dimensions.

The Static Shape Control Problem

Given the optimal shape estimate $U *(P)$, the shape control problem is to determine the set of m control forces \hat{F}_{i}, applied at the positions P_{1}, which together with the resulting shape $\hat{U}(P)$ which satisfies

$$
\begin{array}{ll}
L U(P)=\sum_{i=1}^{m} C_{i} F_{i} \delta\left(P-P_{i}\right), & P \in \Omega \\
B_{i} U(P)=0, & 1 \leq j \leq k, \tag{303}
\end{array} P \in \Gamma
$$

minimizes the criterion

$$
\begin{equation*}
j=\frac{1}{2} \sum\left\|F_{1}\right\|_{\hat{R}_{1}}^{2}+\frac{1}{2} \int_{\Omega}\|U(P)-U \star(P)\|_{\hat{W}(P)}^{2} d P \tag{304}
\end{equation*}
$$

over all possible sets $\left\{U,\left\{F_{i}\right\}\right\}$ which satisfy (302-3). The matrices \hat{R}_{1} are positive semidefinite and the matrix \hat{W} is positive definite.

The forces $F_{i}, 1 \leq i \leq m$, when applied to the positions P_{i} of the ideal shape U°, will produce the closest approximaition to U^{*} obtainable by the pointwise application of forces at those positions. Consequently, because the system is linear, the application of the negatives of the forces \hat{F}_{i} to positions P_{i} on the estimated shape $U *$ will produce the optimal shape correction of $U *$ to the desired shape U^{*}.

The Shape Determination Algorithm

Assume the positions F_{1}, observations Y_{1} and their directions determined by C_{i} are known. Choose the weighting matrices R_{i} and W in the criterion (301). Then
i) . Compute the block matrices $A_{1 j} i \leq 1, j \leq m, g i v e n$ by

$$
\begin{equation*}
A_{i j}=C_{i}^{T}\left(\int_{\Omega} G\left(P_{i} \mid P\right) W(P) G\left(P \mid P_{j}\right) d P\right) C_{j} \tag{305}
\end{equation*}
$$

where $G(P \mid Q)$ is the associated Green's function for the system.
ii) Form the matrix A whose block coordinates are $A_{i j}$ and the diagonal block ratrix R^{-1} whose diagonal blocks are R_{i}^{-1}. Form the vector Y by "stacking" the observations Y_{1}.
111) Compute the solution $\overline{\mathrm{U}}$ of the system

$$
\begin{equation*}
\left[I+A R^{-1}\right] O=A R^{-1} Y \tag{306}
\end{equation*}
$$

The vector \bar{U} contains the optimal pointwise shape estimates $C_{i} U *\left(P_{i}\right)$.
iv) The estimate of the continuous optimal shape distortion ΔU^{*} is given by

$$
\begin{equation*}
\Delta U *(P)=\sum_{i=1}^{m}\left(\int_{\Omega} G(P \mid Q) W(Q) G\left(Q \mid P_{i}\right) d Q\right) C_{i}^{T} R_{i}^{-1}\left(Y_{i}-C_{i} U *\left(P_{i}\right)\right) \tag{307}
\end{equation*}
$$

The optimal shape esimate is $U^{*}=U^{0}+\Delta U^{*}$.

The Optimal Shape Control Algorithm

Assume again that the positions P_{i} and matrices C_{i}, \hat{R}_{i} and \hat{W} have been chosen. Assume also that the desired shape or optimal shape estimate U* is available. Then
i) Compute the block matrices $A_{i j}$ given by (305) and the vector elements D_{j} given by

$$
\begin{equation*}
D_{j}=C_{j}^{T} \int_{\Omega} G\left(P_{j} \mid P\right) U *(P) d P \tag{308}
\end{equation*}
$$

ii) Form the block matrix whose block components are $A_{i j}, 1 \leq 1, j \leq m$. Form the block diagonal matrix \hat{R} whose diagonal elements are \hat{R}_{1}, and the vector D by "stacking" the vectors D_{j}.
111) Solve the system (309) of liaear equations for the vector of optimal forces \hat{F}.

$$
\begin{equation*}
(R+A) \hat{F}=D \tag{309}
\end{equation*}
$$

iv) The optimal shape correction resulting from tir application of these forces at the points P_{i} is

$$
\begin{equation*}
\Delta \hat{U}=\sum_{i=1}^{\dot{\mathrm{m}}} G\left(P \mid P_{i}\right) C_{i} F_{i} \star \tag{310}
\end{equation*}
$$

If the negative of the forces \hat{F}_{i} is applied to the shape estimate $U *$, the resulting shape is $U *-\Delta \hat{U}$, the optimal currected zhape.

Approximate Algorithms

We assume the weighting matrices W and \hat{W} are chosen to be the mass matrix of the dynamical model which corresponds to the static model (253). The eigenfunctions ϕ_{k} and frequencies ω_{k} for that model satisfy

$$
\omega_{k}^{2} \mathrm{M} \phi_{\mathrm{k}}=\mathrm{L} \phi_{\mathrm{k}}
$$

Then an approximate Green's function, based on the first n_{m} wodes, is given by

$$
\begin{equation*}
G(P \mid Q)=\sum_{k=1}^{n_{m}} \frac{1}{w_{k}^{2}} \phi_{k}(P) \phi_{k}^{T}(Q) . \tag{311}
\end{equation*}
$$

Furthermore, the elements $A_{i j} \quad$ and $D_{j} \quad$ in the shape control and determination algorithms are given by
and

$$
\begin{equation*}
A_{1 j}=C_{i}{ }^{T}\left(\sum_{k=1}^{n_{m}} \frac{1}{\omega_{R}^{4}} \phi_{k}\left(P_{i}\right) \phi_{k}^{T}\left(P_{j}\right)\right) C_{j} \tag{312}
\end{equation*}
$$

$$
\begin{equation*}
D_{j}=C_{j} \sum_{k=1}^{n_{m}} \frac{1}{u_{k}^{2}} \phi_{k}\left(P_{j}\right)\left\langle\phi_{k}, U *\right\rangle_{M} . \tag{313}
\end{equation*}
$$

Substitution of (311) Into the expression (307) for the optimal shape estimate U* yielde

$$
\begin{equation*}
U *(P)=\left.\left.\sum_{1=1}^{p} \sum_{k=1}^{n_{m}} \frac{1}{\omega_{k}^{4}}\right|_{k}(P)\right|_{k} ^{T}\left(P_{1}\right) C_{i}^{T} R_{i}^{-1}\left(Y_{1}-C_{1} V^{*}\left(P_{1}\right)\right) \tag{314}
\end{equation*}
$$

Thus the coefficient of the mode $\phi_{k}(P)$ in the approximate shape estimate 1s

$$
\begin{equation*}
\frac{1}{\omega_{k}{ }^{\prime}} \sum_{i=1}^{\text {m }}\left(C_{1} \phi_{k}\left(P_{i}\right)\right)^{T} R_{1}\left(Y_{1}-C_{1} U *\left(P_{i}\right)\right) \tag{315}
\end{equation*}
$$

These computed estimated modal coefficients may be compared to the actual coefficients of the known distorted shape. Representative comparisons may be found in the tables at the end of this chapter.

Substitution of expression (311) into the expresion (310) of the optimal shape correction $\Delta \hat{E}$ yields

$$
\begin{equation*}
\Delta \hat{U}=\sum_{1=1}^{m} \sum_{k=1}^{n_{m}} \frac{1}{\omega_{k}^{2}} \phi_{k}(P) \phi_{k}^{T}\left(P_{1}\right) C_{i} \hat{F}_{1} \tag{316}
\end{equation*}
$$

Thus the coefficient of the mode $\phi_{k}(P)$ in the optimal shape correction $\Delta \hat{U}$ is

$$
\begin{equation*}
\frac{1}{\omega_{k}^{2}} \sum_{i=1}^{m} \phi_{k}\left(P_{i}\right) c_{i} \hat{F}_{i} \tag{317}
\end{equation*}
$$

Comparisons of these terms with the actual coefficients are also found in the tables.

Results of the Simulations

The tables 6.1-6.3 at the end of this chapter exhibit representative results for the following choices of variables. Figures 6.4-6.10 illustrate the results of shape determination and control simulation for selected distorted shapes.

Control/Observation Positions: The control and observation points were chosen colocated both in position and direction. Since conventional stability questions do not arise in static problems, colocation serves
the convenience of the programer, but is not neceasary for accuracy. Either nine or eighteen points were chosen on a given circle. Thue they were located on every rib or every other rib on the circle; The second, fifth, eighth nd eleventh circles were tried. [Table 6.1]

The forces/observations were chosen to be all in the x direction $\left.i c_{1}=(100)\right)$, the y direction $\left(C_{1}=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)\right.$), the 2 direction $\left(C_{1}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)\right.$), or both in the x and y directions at each point ($u_{1}=$ il 10). Table 6.2 compares results for the same shape and varying numbers of points and directions. The results for the 2 direction are not included (see remarks below).

Modes: The number of modes used in the approximations was either 7 or 11. Plots of the first eleven modes are contained in Figure 6.1-6.3.

Weighting Matrices: The weighting matrix $W(P)$ was chosen to be the mass matrix M of the finite element model. This is a natural choice when using modes from the same model. since the innar product for the space spanned by the modes is weighted by M.

The weights R_{i} and \hat{R}_{i} are ecalars in these simulations. They are chosen to be the same number R in both the control and estimation problems. The criteria was that R be as swall as possible, while large enough that the matrix ($R I+A$) is invertible. The correct choice of R varies from circle to circle, but appears to be half-way in order of magnitude from the minimum and maximum elements of the matrix A.

Observations: A good test of an estimation algorithm is its performance when given exact observations of a known shape distortion. This provides a means of comparison of the accuracy of the results. The program was provided with the modal coefficients of several known distorted shapes, irom which it computed exact observations. It uses the exact observations in the shape estimation algorithm.

Abstract

It should be remembered when observing regulte that the mode shapes represent dieplecements of the antenn from its wetural or ideal shape U^{*}. Thus $1 f$, $\|$ represente the combination of sudes in the distcxred shape of the antenna, the actual shape in $U^{*}+\Delta U=U$.

Result:

1) As long as the value of the weighting factor R is chosen mall sough, it does not appear to mater on which circle the observations are chosen. [Table 6.1] There is one exception: the innermost circie may not be used. secause of the assumption that the hid is fixad, the values of all the modes on this circle are zero.
2) Good results are obtained from observation/control forces applied only in the x direction, or aquivalently only in the y direction. Thus 1f. observations and/or control forces may be applied in these, or in zadial dirfistens, safisfactory results can be obtained. [Table 6.2]

On the other hand, when observations/control forces were applied Ir tine z direction, results were very poor (and are not included in the tables). Examination of the modes reveals two reasons: The first is that In the lower order modes there is very little displacement in the 2 direction. This is due to the assumption that the ribs are very stiff in comparison with the mesh, so the lower order modes consist of ribs being pinched together at some points and spaced apart in others. (Figures 6.16.3). The second reason is that the changes in the z direction do not vary much on the same circle. Control/observation points on two circles simultaneously were tried, but resulis, although better, were still poor.

For a fixed number of observations, slightly better results are obtained if they are taken ac different points in one direction, rather than in several directions at fewer points [Tables 0.2 ani $6.3 i$.
3) More control/observarion points than modes should be used. Aeide from the faci chat this is easily observed from the daca, it is a macter of common sense. Both problem. involve the determination of the coefficiente of each of the modes. One must have at least as many picces of independent data as one has unknowns.

However, it is estimated that there will be from 50 to 150 observatiors caken of LSS antena. Since it is unlikeiy that 150 modes will be, or could be, used in the modeling, this restriction does not actually pose a problem.

Table Symbols
\$1 The ith mode.
V^{0} The rest shape, or ideal shape, of the antenna,
ΔU The modal displacements of the actual distorted shape.
U The actual distorted shape: $U=U^{0}+\Delta U$.
ΔU^{*} The modal displacements of the shape estimate.
U^{*} The estimated shape: $J^{\star}=U^{*}+\Delta U^{*}$.
$\Delta \hat{U}$ The modal displacerents of the shape resuicing from the application of the control forces.
\hat{U} The antenna shape resulting from the application of control forces: $\dot{U}=U^{e}+i \hat{U}$.
Table 6.1

$$
\begin{aligned}
& \text { Estimation/Control Points on Circles of Different Radii } \\
& 9 \text { observation points, } x \text { direction, } 7 \text { modes. Actual Shape }=U^{\circ}+10 \phi_{1}+5 \phi_{2}+5 \phi_{3}+5 \phi_{4}+5 \phi_{5}
\end{aligned}
$$

Actual Coeff.	Second Circie$R=10^{-12}$		Fifth Circle$R=10^{-10}$		$\begin{gathered} \text { Eight Circle } \\ R=10^{-9} \end{gathered}$		Eleventh Circle$R=10^{-8}$	
$\Delta \mathrm{U}$	$\Delta \mathrm{U}$ *	$\Delta \hat{U}$	$\triangle U^{*}$	$\Delta \hat{U}$	$\Delta \mathrm{U} *$	$\Delta \hat{U}$	ΔU^{*}	$\Delta \hat{U}$
$\phi_{1} 10$.	10.000	9.998	9.998	9.997	10.000	9.999	9.997	9.997
$\phi_{2} 5$.	5.000	4.999	5.001	5.002	5.002	5.001	4.999	4.997
	4.997	4.995	4.998	4.996	4.999	4.998	4.996	4.993
$\phi_{4} \quad 5$.	4.998	4.997	4.997	4.996	4.999	4.997	4.996	4.994
$\Phi_{5} \quad 5$.	5.004	5.004	4.999	5.000	5.000	5.001	5.000	5.001
$\phi_{6} \quad 0$. 000	. 001	. 004	. 005	. 002	. 003	. 003	. 003
$\phi_{7} \quad 0$.	-. 001	\cdots	. 001	-. 000	. 001	. 000	-. 001	-. 003

Table 6.2

 On the Fifth Circle, with 7 or 11 modes used in approximations, and 9 or 18 points in the x, y or x and y direction. The actual shape is $\mathrm{U}^{\circ}+10 \phi_{2}+10 \phi_{4}+5 \phi_{6} . \quad \mathrm{R}=10^{-10}$.

Table 6.3
Measurements and Controls applied to both x and y directions at 9 points vs. x direction only at 18 points, on the fifth circle

Actual Shape: $U^{\circ}+10 \phi_{1}+1 C_{4}+5 \phi_{8}+5 \phi_{10}$
11 modes used in approximations. $R=10^{-10}$.

Actual Coefficient		9×2		18 x	
	U^{\bullet}	U*	U	U*	U
ϕ_{1}	10.	10.010	10.010	10.0	9.994
ϕ_{2}	0.	. 000	. 000	-. 001	-. 001
ϕ_{3}	0.	. 004	. 004	-. 000	-. 001
ϕ_{4}	10.	10.011	10.010	9.996	9.994
ϕ_{5}	0.	-. 006	-. 006	. 004	. 005
Φ_{6}	0.	-. 003	-. 003	. 001	. 001
ϕ_{7}	0.	. 007	. 007	. 001	. 002
ϕ_{8}	5.	5.255	5.111	4.996	4.994
ϕ_{9}	0.	-. 551	-. 559	. 003	. 003
${ }^{+} 10$	5.	4.644	4.791	5.003	5.003
${ }^{1} 11$	0.	. 488	. 530	. 000	. 000

For a fixed number of observations, it appears betcer to take them at different points in the same direction, rather than to take observations of several directions at fewer points.

FIRST MODE

THIRD MODE

FIFTH MODE

SEVENTH MODE
Figure 6. 2 Fourth, Fifth, Sixth, and Seventh Modes

ELEVENTH MODE
Figure 6.3 Eighth, Ninth, Tenth, and Eleventh Modes

Figure $6.41^{\circ}+3043$

ACTUAL SHAPE $\mathcal{U}^{\circ}+25 \psi_{4}$

ESTIMATED SHAPE

CORRECTED SHAPE

Figure $6.5 \quad U^{0}+25 \phi_{4}$

ESTIMATED SHAPE

CORRECTED SHAPE

Figure 6. $0 \quad U^{0}+20 \phi 7$

ACTUAL SHAPE $\mathcal{U}^{\rho}+15 \phi_{2}+10 \phi_{4}$

Figure $6.74^{6}+15 v_{2}+1044$

ACTUAL SHAPE $\mathcal{U}^{\rho}+10 \phi_{2}+10 \phi_{4}+5 \phi_{6}$

Hisure $6.8 \quad 1^{\circ}+10 \omega_{2}+10 \Phi_{4}+5 t_{0}$

ESTIMATED SHAPE

Figure $6.1011^{6}+10 i_{1}+5+2+5 i_{3}+54_{4}+3 \phi_{5}$

Chapter 7. Conclusions and Future Work

It is possible to aseurately determine and consol the static shape of a large space structure by meass of a number of control devices and sensor measurements at discrete points along the structure.

An integral operator approach to the continuous-discrete optimization prublems of static shape estimaiion and control proves ideal for these problems. Soiutions reduce so the solution of linear equations of dimensioa less than oi equai to the number of observations, or control forces.

Elements of the linear equations involve the Green's function, or influence coefficient, of the structure, which represents the response of the structure to a force at one point. In the event that the Green's function cannot be computed analytically, approximations based on modal expansions have been presented, involving modes either fram the static or associated dynamics model, which may be computed experimentaliy, or numerically.

The distinction between the shape control system and the attitude control, orbit and stationkeeping system arises in connection with the rigid body modes of the structure. The rigid body modes represent translations and/or rotations in space of the structure as whole clearly a coucern of the attitude control, orjit and stationkeeping systems.

Un the other tand, the rixid body modes are indetectable to the shape conirol system. Furthermore, a shape control system may not apply a net force in the direction of a rigid body mode, te correct it, since this would violate the boundary assumptions upon which shape control forces are computed. The bater restristion places additional conctraints on the shape cantrol forces in the casc that rigid body modes are possible.

The use of modal expansions for terms in the shape control and determination algorithms invites the inevitable trademof between accuracy
and computational difficulty. If a few modes are used and the structural distortion involves significanc components in higher order modes, the shape control and determination schemes will not be accurate. Or the other hand, the use of many modes increases the necessary storage, time and expense of computation. A compensating factor is that while dynamic shape control must be accomplished on buard the spacecraft, and within a short response time, static shape control may be accomplished by ground computers over a much longer period of time. Thus, the use of modal approximations may not present a difficulty.

Future Work

The solutions of both the shape determination and control problems depend on the solutions of linear systems which have dimensions on the order of the number of observations or control forces applied. It is estimated that actual large space antennae will require from 50 to 150 observation points for static control. It is therefore desirable to develop a geometric scanning algorithm, which would successively process data sets of antenna sections in an adaptive manner.

Despite the fact that linearity and self-adjointness are common engineering assumptions, it is probable that large space structures will not always have these characteristics. It is anticipated that the integral equation techniques used here will be applied to an iterative technique for the solution of non-linear problems, and that it will be adapted for the solution of non-self-adjoint problems.

Appendix A. Some Mathematical Background

A. 1 A Little Distribution Theory

We should give some consideration to what is meant mathematically by a solution to (13-14) or (24-25).

A classical or strict solution to an ath order differential equation $L u=f$ is an n times differentiable function y which "satisfies" the differential equation: $\mathrm{Ly}=\mathrm{f}$ on $[\mathrm{a}, \mathrm{b}]$.

Clearly it is not possible for a function to be both n times differentiable and to exhibit delta function behavior in a combination of its derivatives.

A rigorous development of the theory of solutions of equations of the type (13) may be found in distribution theory:

Distribution theory was developed to provide a rigoruus framework for "functions" such as the delta function. One cannot deduce from the definition

$$
\delta(x)= \begin{cases}0 & x \neq 0 \\ 0 & x=0\end{cases}
$$

that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(x) d x=1 \tag{318}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(x) \phi(x) d x=\phi(0), \tag{319}
\end{equation*}
$$

or even that such expressions are meaningful. Thus a pointwise definition of the δ function does not characterize it.

On the other hand, if the δ function is defined by (319), the other infurmation about it can be deduced. Jaus $\delta(x$; is defined by its action on other functions ihrough the inner product

$$
\langle\delta, \phi\rangle=\int_{-\infty}^{\infty} \phi(x) \delta(x) d x=\phi(0) .
$$

In distribution theory this concept is extended to an entire collection of generalized functions, or distributions. Rather than characterizing distributions by pointwise values, they are defined by their "action" on a specific class of functions, called test functions. Test functions are infinitely differentiable functions on R^{ℓ} which vanish outside of some bounded domain. Eligible test functions for boundary value problems on the interval $[a, b]$ must vanish outside of $[a, b]$. For problems defined on Ω. the test functions must vanish outside of Ω.

On one dimensional domains, a distribistion t "acts" on a test function through the inner product
$\langle t, \phi\rangle=\int_{\infty}^{\infty} t(x) \phi(x) d x$.
Two distributions t_{1} and t_{2} are equal if $\left\langle t_{1}, \phi\right\rangle=\left\langle t_{2}, \phi\right\rangle$ for all eligible test functions $\$$.

The derivative of a distribution t is defined by $\left\langle t^{\prime}, \phi\right\rangle=\left\langle t,-\phi^{\prime}\right\rangle$. The ath derivative is defined by $\left\langle t^{(n)}, \phi\right\rangle-\left\langle t_{1}(-1)^{n} \frac{d}{d x}{ }^{n} \phi\right\rangle$. Note that again the definition describes actions on test functions rather than suine pointwise behavior.

If $s<R^{\ell}$, we denote a partial differential oferator on $s z$ by

$$
u^{k}=\frac{a^{k_{1}+\ldots k_{l}}}{a_{1}^{k_{1}} \ldots x_{l}^{k_{l}}}
$$

where k is the vector $\left(k_{1}, \ldots, k_{\ell}\right)$ and $|k|=k_{1}+\ldots+k_{\ell}$. As 37 example of this notation, if $\ell=3$, a point in \mathbb{R}^{3} is denoted ly $\left(x_{1}, x_{2}, x_{3}\right)$, and $K=(2,0,5)$, then

$$
\mathrm{D}^{K}=\frac{\partial^{7}}{\partial x_{1}^{2}}{ }^{2}-x_{3} 5
$$

In R^{ℓ} a distribution T acts on test function through the inner product $\langle T, \phi\rangle=\int_{\Omega} T(P) \varphi(P) d P$.

Again, two distribution T_{1} and T_{2} are equal if $\left\langle T_{1}, \phi\right\rangle=\left\langle T_{2}\right.$, $\left.\phi\right\rangle$ for all eligible test functions Φ, and the derivatives of T are defined by

$$
\left\langle D^{K} T, \phi\right\rangle=(-1)^{|K|}\left\langle T, D^{K} \varphi\right\rangle .
$$

By this new definition of the derivative, since test functions are infinitely differentiable, distributions are infinitely differentiable. Finally, the distribution T is a genpialized solution of $L U=F$ if $\langle L T, \phi\rangle=\langle F, \phi\rangle$ for all test functions \rangle. This removes the problem with finding solutions to (13), that is, how a function may be n times differentiable and yet have delta function behavior in a combination of its derivatives.

If I corresponds to a pointwise defined function which satisfies $\mathrm{LT}=\mathrm{F}$ bit is not sufficiently differentiable it is called a weak sclution. If T corresponds to a function which is sufficiently differentiable sc. that the differential operations in $L T=F$ may be performed in the classical sense, T is a classical solution, or strict solution. Classical solutions are easily shown to be generalized (distributional) solutions, so none of these solutions is lost by appealing to distribution theory.

Examples

A.1) $X \frac{d t}{d x}=0$ has the classical solution $t=C$. It also has the weak solution $t=H(x)$ (the heavy side atep function).
A.2) $x^{2} \frac{d t}{d x}=0$ has che generalized or distributional solutioi; $t-\delta(x)$, which is neither a weak solution nor atrict solution.
A.3) Green's functions, which are solutions of L - $\delta(x-\xi)$ are weak solutions, since they may be defined pointwise but lack sufficient ilfferentiability to be atrict solutiona.

The use of the alternative theorem 6.1, and the assumption of the existence of complete orthonormal eigenfunction expansicns which are the basis of che approximations, depend on the assumption that the operators L and K be defined in Hilbert spaces. The Hilbert spaces which can accommodate members such as the deita function are known as Sobolev spaces. An excellent treatment of Sobolev spaces is contained in [9].

A. 2 The Free Space Solution of $\nabla^{4} \gamma=-\delta(P \mid Q)$

The equation

$$
\begin{equation*}
\nabla^{4} \gamma=-\delta(P \mid Q) \tag{320}
\end{equation*}
$$

represents the response of a plate in free space at the point P to a unit negative impulsive force at \mathbb{Q}.

Theorem: A fundamental solution of (320) is given by

$$
\begin{equation*}
\gamma(x, y, \xi, \eta)=\frac{1}{8 \pi} R^{2} \log R \tag{321}
\end{equation*}
$$

where R is the distance $\overline{P Q}$.

Proof: We wish to show that (321) defines a solution in the distributional sense. Thus it is necessary to show that

$$
\left\langle\nabla^{4} \gamma, \phi\right\rangle=\left\langle\gamma,\left(\nabla^{4}\right)^{*} \phi\right\rangle=-\phi(Q)
$$

for all test functions ϕ, where the inner produce $\langle u, v\rangle$ in free space is

Let R_{ε} be a circle of radius ε about Q.

The iunction (321) is continuous except for a removable singularity at $R=0$. Thus it is locally integrable and

$$
\int_{R^{2}} \gamma(P)\left(\nabla^{4} \phi(P)\right) d P=\lim _{\varepsilon \rightarrow 0} \int_{R^{2}-R_{\varepsilon}} \gamma(P)\left(\nabla^{4} \phi(P)\right) d P
$$

We apply Green's theorem, making use of the fact that vanishes for sufficiently large R to eliminate the surface integral at infinity. Thus

$$
\begin{aligned}
\int_{R^{2}-R_{\varepsilon}} \gamma(P)\left(\nabla^{4} \phi(P)\right) d P & =\int_{R^{2}-R_{\varepsilon}} \nabla^{4} \gamma(P) \phi(P) d P \\
& -\int_{\partial R_{\varepsilon}}\left[\frac{\partial}{\partial n}\left(\nabla^{2} \phi\right)-\phi \frac{\partial}{\partial n}\left(\nabla^{2} \gamma\right)\right] d s \\
& -\int_{\partial R_{E}}\left[\left(\nabla^{2} \gamma\right) \frac{\partial \phi}{\partial n}-\nabla^{2} \phi\left(\frac{\partial \gamma}{\partial n}\right)\right] d s .
\end{aligned}
$$

On $R^{2}-R_{c}, \nabla^{4}=0 . \quad$ The first integral on the right is zero. On the boundary of $R_{\varepsilon}, d s=E d \theta$ and $\frac{\partial}{\partial n}=-\frac{\partial}{\partial R}$.

$$
\begin{align*}
& \text { Therefore } \int_{R^{2}-R_{E}} \gamma(P) \nabla^{4} \phi(P) d P \\
& =c \int_{0}^{2 \pi}\left[\frac{\partial}{\partial R}\left(\nabla^{2} \phi\right)-\phi \frac{\partial}{\partial R}\left(\nabla^{2} \gamma\right)\right] d \theta \\
& +c \cdot \int_{0}^{2 \pi}\left[\nabla^{2} \gamma\left(\frac{\partial \phi}{\partial R}\right)-\nabla^{2} \phi\left(\frac{\partial \gamma}{\partial R}\right)\right] d \theta \tag{322}
\end{align*}
$$

Now $\frac{\partial Y}{\partial R}=\frac{r}{4 \pi}\left(\log r+\frac{1}{2}\right)$.

$$
\nabla^{2} Y=\frac{1}{2 n} \quad(\log r+1)
$$

and

$$
\frac{\partial}{\partial r}\left(\nabla^{2} \gamma\right)=\frac{1}{2 \pi r}
$$

Furthermore, the tist function has continuous derivatives of all orders which have compact support in R^{2}. Hence ϕ and any of the derivatives are bounded on all of R^{2}. Thus

$$
\left|\frac{\partial}{\partial R}\left(\nabla^{2} \phi\right)\right| \leq M_{1},\left|\nabla^{2} \phi\right| \leq M_{2} \text { and }\left|\frac{\partial}{\partial R}\right| \leq M_{3} \text { in } R^{2} .
$$

We apply these relations to the elements of (322):

$$
\begin{aligned}
& \left|\varepsilon \int_{0}^{2 \pi} \gamma \frac{\partial}{\partial R}\left(\nabla^{2} \phi\right) d \theta\right| \leq M_{1} \varepsilon^{3} \log \varepsilon(2 \pi)=o(\varepsilon) . \\
& \left|\varepsilon \int_{0}^{2 \pi} \nabla^{2} \gamma\left(\frac{\partial \phi}{\partial R}\right) d \theta\right| \leq \frac{\varepsilon}{2 \pi}(\log \varepsilon+1) M_{3}(2 \pi)=O(\varepsilon) \\
& \left|\varepsilon \int_{0}^{2 \pi} \nabla^{2} \phi\left(\frac{\partial \gamma}{\partial R}\right) d \theta\right| \leq M_{2}\left(\frac{\varepsilon}{4 \pi}\right)^{2}\left(10 g \varepsilon+\frac{1}{2}\right)(2 \pi)=o(\varepsilon) .
\end{aligned}
$$

Finally,

$$
-\varepsilon \int_{0}^{2 \pi} \phi(R) \frac{\partial}{\partial R}\left(\nabla^{2} \gamma\right) d \theta=\frac{-1}{2 \pi} \int_{0}^{\pi} \phi(\theta) d \theta .
$$

Taking the limit as $\varepsilon \rightarrow 0$, only the last term provides a contribution. We can conclude

$$
\int_{R} r\left(\nabla^{4} \phi\right) d Q=-\phi(Q)
$$

Appendix B. The Flexible Beam Program Listings and Ou'sput

B. 1 The Simply Supported Beam Control Program
 B. 2 The Pinned-Free Beam Control Program
 B. 3 The Simply Supported Beam Estimation Program

B. 1 The Simply Supported Beam Control Program Listing

```
1*
2*
34
**
5
**
7*
0*
10.
11*
12*
130
14*
15*
16*
17.
16*
19*
23:
21.
22*
23*
24*
<5*
26:
て7*
23*
<4.
0)*
31*
COMMON STAKT,HSTAFIMMINFHPAXOERMAX,XL,KEY,X2(IG1 *AM
REAL A(12.15).O(13): NORK(5)).A2(1).12)
REAL 2(50).U(5U),FS1(5C),VEL
Rcal AA(10,13),d3(12),UA(50)
Real YZ(10),YY(ICC)
REAL Q(15)
CATA YZ/10.O.F
OATA O/LJ#1.ES/
OAIA NEINOL&NCO/ 1,10.10/
UATA 2(1) OU(1),PSI(L):UA/1)/4*2./
C
3.
THIS PROGRAK CONPLIES TIE OPIIMAL LISCGiTG iGRCES
FOR THE SHAPE CONIROL PROQLEM FOR THE SIMOLY IJPOCRTEJ
obam. Airc graphs the resultiag shafe vs tre cessigei shafeg.
the guauratic cost is also compjtej.
please cefine tme folloming vapiables.
XL IS THE leNgTh jF THE SEAM.
NM IS THE NUMEER CF ACTUATORS.
NP 15 PME NJMaER OF POIVTS ALONJ TAE DEAY AI NHION YOJ
GISh tre graphS TO be plotiec.
NP IS LESS THAN OR EGUAL TO j).
xZ(I), 1=1,\ldots..oNm ake the actualcr fCSITICAS.
dE CERTAIN XZ(I) ls -cİdEEV J. AVO XL.
```



```
IN INE JJAURATIC OJST CRITERIOV.
IF L(I)=j.all d, itt marRIX G+A MAY dE SIAEULAF, RESHLTjAE
IN NO SOLJTION.
RECCMMEVL O= 1.E=S * Y&**7
PLEASE GHOOJE ONE JF THE FOL.OWLNU OPTI J'NS.
JOFT=1 OWLY EXAET JOTIMALFOFCES NILL jE =OVSIUEPEJ.
JOFT=Z CXMCT OFIIMAL FORCES ATU FIFST AFFFOXI*GIJChS
    OASEJ OV EIGEVFUNCTION EXPANSIJYJ ARE TO 3E CJVIIJEQEJ.
```



```
PLEASE GVOOSE JNE JF THL ? JLLONING OPTIJJj.
KOFI OETERMI!GCS WHNT GRAPTSS AFE GEALFAVCÜ.
KOPT=1 NC SHAPRS. THE OP\JMGL FCFLESO SHAFE ABG LCEY
    NLLL SE כRIVTED.
```

1080	C	THE SUEROUTINE AVEE COYPUTES THE EXACT VEETOR A．
109＊	c	
1150		CALL BVEC（t）
111°		0050 İ20AM
1120		$x=x 2(1)$
$113{ }^{\circ}$		C1 $=x+(x-2 \cdot 0 x L)$
$124 *$		$00 \mathrm{SJ} \mathrm{J}=1 . \mathrm{Mm}$
1150		Y－x2id）
116	C	
117＊		C2 $=Y \cdot Y-2 \cdot * L+Y$
116		C3：$X \in X+Y$ ¢ Y
1190		C4 $\mathrm{X} \times \mathrm{X} \boldsymbol{X}+\mathrm{Y}=\mathrm{Y}$
120	c	
121＊		
122＊		
123＊		
124＊		
125＊		
126 ＊		
127＊		
128＊		73．－（Y＊Y－x＊x）©．S＊（x L＊x＊x＋C2）
129＊	50	CONTINUE
$130 *$		LO 51 J＝2，NM
1310		Ј」こコ－1
132＊		0051 ［＝1．JJ
133＊		（J．I）
13＊＊	51	CONTINJE
135＊		WRITE（0．2）
130＊		
1370		
130＊		
130%		$0060 \mathrm{~J}=1$ ANM
140 ．		
1410	00	comilnue
142＊		00 61 1＝1．94
1430		A6（1）I）$=10$（1． 11 －O（I）
144＊	01	COATIVUE
145＊		
146	C	
147＊	c	SOR IS L JPL LIAEAK COUATION SOLVIAG SUEfCGTIAE．
148＊	C	
140\％		
153 ．		
151＊		GO 1040
152＊	33	HRITE（0．31）
153＊	31	FGEMAT（ISX．2GHUMAIRIX IS KEARLY SIAGULAR）
154＊		GO TO 5JJ
1550	46	IFIJOPT．EU．11 6010176
250%	c	
157＊	c	
158＊	c	HERg TAL APPROXIMATE VAlUES JF A YJ A ARE CJYPJTEJ．
1590．	6	
100.		
161＊	c	
10＜．		$0015)$（E1．Y4
103 ．		$x=x 2111$
104 ．		vo 152 $2=1.9 \mathrm{~m}$

165＊		$Y=x$ 2（J）
106%		
167＊	150	CONTIMUE
1080		White（0．2）
1690．		
170.	c	
1710	c	THE SU3，ROUTINE GA2 COMPUTES AN APPROXIMATE VECTOP B．
17\％	C	
173．		CALL BAP（ax）
174＊		
175.		00163 I＝1，NM
1760		CO $100 \mathrm{~J}=1$ M ${ }^{\text {P }}$
117.		AOC（I．J）$=$ AAII，J）
178＊	100	CONTINUE
1790		U0 165 I＝1．N4
180.		AU（I．I）$=$ AQ（1．1）－O（1）
181．	165	continue
102＊		
183＊	6	
1800	c	SCR is a jpl lincaf countion solviag storacuitine．
185＊	c	
180＊		
1070 1600 100	170	
1690．		WFITS（0．171）C
190	171	FORMAT（III．7X．17nini exact cost ls．E15．5 i
191．		IF（JOPT，［0．1） 6010175
1420		CALL COST（AGOQ，AM，${ }^{\text {C）}}$
193＊		WRITE（0．172）C
104＊＊	172	
175		WRITC（0．194）
1900	175	1F（JOPY．EO．1）WRIIL（0：295）
1．7＊		WRITC（0．2）
1\％80	6	
199.	c	HERE TAL SHAPĖ ARE COYPUYES．
2uj＊	c	
291．	c	
2い号	c	Uidi is the y valle of the dim fodat ch the gratr cf thi
2030	c	OPTIMAL SAAPE．
20゙4＊	c	Lidill is the y valle of the ith folat ca the graft cf
205＊	c	APPROXIMATE SHAPE．
260	c	PSilll iS ite y value of the jit falat ch the grapm cF
207＊	6	Uisigis stape，
2030		co $200 \mathrm{~N}=2.1$ P
2Jき＊		$2(k)=(x-1)$ UEL
210．		$x=2(x)$
211．		PS $(1 x)=x L * x-x * x$
212＊		$U(K)=C$.
213＊		UA（K）$=$ J．
414＊		
215＊		
210＊		
217＊		uc 10 1d\％
く10＊＊	100	
21：	les	
くくう。		if（jofl．ve．z）uo 10 120
2al＊		UA1＊）

22:*	190	comtinue
2290		IFIJOPT-11 101.101.192
224*	192	WRITE(G)I90) X,PSI(X)IU(K)
2230		60 10 260
276*	192	
227	194	
228*		1 13HAPPROX. SHAPEI
2290	195	
233*	196	
2310	200	continue
232*		NP2:2 - NF
233*		UC 215 I=1.NP
230.		YY(1):PS(11)01.23
2350		
2360	215	cunitnue
2370		
23d*	c	
2300	250	CALL BGAPLT
240.		
241*		(ALL MSCAL (ZAAP-AGPYYRP2.AG)
2420		
2430		1 'USSPLACEMENT*-1̇)
244*		Chll P.graf
245*		¢ALL PI.AXIS 1-2, XLEN,0.1
246*		Call plcjav(z.u.ve ovitiotici)
247*		CALL PLCURV(Z,PSIUP.ATz.1]Cz)
2*6:		CALL PLCJEVIZ,VA,YP,NT3,IIC3)
2494		CALL PLCUFU(XZ,YZONMONTSOTICS)
$\begin{aligned} & 25 j 0 \\ & 2510 \end{aligned}$		
252*		
253*		Gu 10 1270.271..872.273.274.875.2761.AM
2540	270	
$253 *$		$6010<60$
< $56{ }^{\circ}$	270	
< 570		co io ach
2580	271	
4500		$6010<00$
20)*	612	
2010		G0 10 <du
203*	273	
2030		- 10.00
$204 *$	274	
<0s**		Go io $0^{0} 0$
2060	275	
2076	<60	iF(KOFT.EG.4) u0 10 49u
2080		CHLL AUPPLI
2.40	360	CHLL Eutitl
273*		
27.		
[120		
273*		d 'LISPLKCESENY.1̇)
27**		call Piuaar
2150		CALL PLaxis(-z.xtin.0.)
2700		Call P! CJuv(zourvo.vilitlull
$\begin{aligned} & 2710 \\ & 2100 \end{aligned}$		

279*		
260*		
201*		111
202*		
2630	126	
264.		6010 33C
265*	320	CALL PLIEXT3.4.7.0..1.U.412HOVE GCTUATOR.12.1\%
2060		6010330
287*	321	CALL PLTEXTI3.J.7.J..1.0..23ATAO ACTUATO2S.13.1\%
206*		6010330
$\begin{aligned} & 2090 \\ & 2000 \end{aligned}$	322	6010330
291.	323	CALL PLTEXT(3.3.7. J., 1.0..184. JUK AGTVATJPE.14.1)
292*		6010330
293*	324	
294.		6010330
2950	325	
296*	330	IFIKOPT.EG.2) $=0$ 10 490
297*		CALL AUVPLT
2900	350	CALL EGAPLT
299**		CALL PLFORM(OLIV.INO-ẊCN, YLEN)
3000		
301.		
302.		1 'UISPLACEMENT*-1al
303*		call plgraf
3u4*		CALL FLAXISI-ãoxtinou.s
3350		CALL PLCJPV(z.PSI,NP.WT2,TIC2)
3000		CALL PLCURVIZOLAORF ONT3.IICJI
317*		CALL PLGJRVIXZ,12,N",VYSWTICS
348.		
3000		
310.		135.11
311.		G0 10 (373.371.312.373.374.375.376).44
3120	376	
3.30		6010490
3140	370	
3150		5010 +4J
3100	371	
3176		G) 10 + ¢)
3180	372	
318.		Oc 10 - ${ }^{\text {cos }}$
$3<0 \cdot$	373	
321 *		6010 -9\%
364*	374	CALL PITEXI(3.3.7.U.1.0.014HFJVE ACTLATGES.86.1)
3230		j0 10 40
3240	315	
325*	440	cominis:
3600		Call auvfli
327*	4*2	CONTINJE
120*		ChLL EAMP!
J290.	6	
330.	Su0	Step
336*		EMJ
10 of womaliat732 bifi.unl		On: te ujajvjstics.
		sups:7.070

```
    SUGROLTINE GAP(d)
    COMMON STAKT,HSTAZ AHYINOMMAX&EZMAXEXLEXEYOXZ11NI,VM
    FEAL B(20)
C THIS SLEFOUTINE CCPPUTES AN APPROXIHATE E VECTOR FCF
THE SIAPLY SUPPORTEU OEAM.
IATESRATIONS ARL ?ERFORMEU GY THE JPL OUAJRATJRES jJJRJJIINE.
ROMES ANO ROM2 ARE PART OF THAT SUERCUTIAE.
PSI IS THE LESIREL SHAPE.
P!=3.14159
DO 5J 1=1.NM
```



```
PSI=XL *X-X*X
    FOFX=FSI*SIN(PI=X/XL)
    CALL RUM2
        1F(K.EG.1) GO TO 10
        #(1)=ANS*SIN(PI* K2(1)/XL)*2.*(XL**3)/(PI**4)
        CON1INUE
        RETURM
        ENC
```

c
SUコROJTINE BVEじ(う)

REAL j(13)
C
C THIS SUDROJTIVE CJAFJTES THE EXACT G VĖTJP FOR TME
C SJMFLY SUPFOETEU EEMM.

いい jう $i=1$, घ.
z=xi(1)

If(x, ©T, Z) 50 TJ 1ン

Gu $10 \ll$
$1=\quad u=\left(x-X_{L}\right) * z *(z * i-2 * * L * x+x=x)$
$\mathrm{G}=\mathrm{G} /(\mathrm{B}+\mathrm{AL})$
F: =3.1+1う
PSi=x*xL-x*x

Cみに Fったく
1f(*....1) 50 io 1)
七(i) = n : 5
Cよかな」の」
fetifn
©...

```
2. COMMON START, ASTAR EHMIMPHMAX,EFMAX:XL,XEY,XZ(1J)
30
```

IF(A.CG.1100 10 10
C=.g-C + ANS
hiturn
ENu

```

\section*{Output}


The Exact a matrix


THE EXACT MATRIX \(6+a\)


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{THE EXACT COST IS} & \multicolumn{2}{|l|}{.02204*30} \\
\hline THE & APPRROXIMATE & cost is & .03505+30 & \\
\hline & POSITION & OESIFEU SHAPE & SHAPC & APPROX. SHAFE \\
\hline & 5.00 & . \(47500 \cdot 03\) & .40412-03 & .40267-c.3 \\
\hline & 10.00 & . \(80000+03\) & - 79850-03 & .79458023 \\
\hline & 15.00 & . 12750.04 & .11734*04 & . 11064 -64 \\
\hline & 20.00 & - 100000.94 & \(=15191+34\) & \(.15137 \cdot 34\) \\
\hline & 25.00 & . \(28750+04\) & -1625?-04 & . 18212 * 4 \\
\hline & 30.3 & . \(21000+04\) & - 20443 *04 & .20823+34 \\
\hline & 35.00 & -22750004 & . \(2<819+40\) & . 22983 +44 \\
\hline & 40.3 & . \(24000 \cdot 24\) & . \(24430+24\) & .2447u*34 \\
\hline & 45.00 & -24753+04 & .25373044 & -254.0004 \\
\hline & 51.03 & . \(250000+04\) & . \(23072+34\) & . 25130034 \\
\hline & 35.00 & - \(247500 \cdot 04\) & . \(25373+04\) & . 25426.04 \\
\hline & 00.03 & . 24000004 & - \(54435+34\) & .24473034 \\
\hline & 05.00 & - \(22750 \cdot 04\) & .22919.34 & . \(22433+C 4\) \\
\hline & 70. 3.3 & . \(21030+34\) & .20843*34 & .23823034 \\
\hline & 75.00 & .1075u*u4 & -10257004 & -16216.c4 \\
\hline & 80.30 & . 10030004 & . 25193004 & .1513744 \\
\hline & 05.00 & - 227500.64 & .11734.04 & .11004-14 \\
\hline & 40. 3 & -9.1)00+13 & - 7885) +33 & .78420033 \\
\hline & 45.00 & . \(47500+03\) & -46412.0? & -40267*3 \\
\hline & 130.03 & . 30303 & . .3J0J & . 20020 \\
\hline
\end{tabular}

ASYM, P PUNLTSII9d/040006PLIJ
aplotap

    C
    c
    C
    C
C
```

```
```

C KOPTEA EXACT, APPROXIMATE, AND DESIRED SMAPES ON ONE GRAPM.

```
```

C KOPTEA EXACT, APPROXIMATE, AND DESIRED SMAPES ON ONE GRAPM.
KOPTE6 BOTH ANDS.
KOPTE6 BOTH ANDS.
KOPT=6
KOPT=6
JOPT=2
JOPT=2
IF(KOPT.ST.2) JOPTE2
IF(KOPT.ST.2) JOPTE2
NM=2
NM=2
XL= 170.
XL= 170.
NP:29
NP:29
DO 1 1=1,NM
DO 1 1=1,NM
xZ(I)=I*.5 *XL
xZ(I)=I*.5 *XL
CONTINUF
CONTINUF
URITEI6,2) XL

```
```

 URITEI6,2) XL
    ```
```



```
```

 CALL VOUT(XZ,NM,S3.3SNOTHE VECTOR OF ACTUATOR POSITIONS)
    ```
```

 CALL VOUT(XZ,NM,S3.3SNOTHE VECTOR OF ACTUATOR POSITIONS)
 DELE ML/NP
 DELE ML/NP
 NP=NP+1
 NP=NP+1
 THESE CONSTANTS ARE NECESSARY FOR TME PLOTTING SURROUTINESE
 THESE CONSTANTS ARE NECESSARY FOR TME PLOTTING SURROUTINESE
 XLTN=8.
 XLTN=8.
 YLEN:6.
 YLEN:6.
 NGE%
 NGE%
 NT=6
 NT=6
 T1C1=0**
 T1C1=0**
 T1C2=000
 T1C2=000
 TIC 3=*/*
 TIC 3=*/*
 T1C4=***
 T1C4=***
 THESE CONSTANTS ARE RECESSARY FOR THE MATRIX INVERSICN ROUTINE SOR.
 THESE CONSTANTS ARE RECESSARY FOR THE MATRIX INVERSICN ROUTINE SOR.
 ROA=1^
 ROA=1^
 NCB=1
 NCB=1
 NR=1
 NR=1
 M = K2(1)
 M = K2(1)
 M=VM=1
 M=VM=1
 THE FOLLOUING VARIABLES ARE NECESSARY FOR THE JPL QUADRATURES
 THE FOLLOUING VARIABLES ARE NECESSARY FOR THE JPL QUADRATURES
 SURR JUYINE.
 SURR JUYINE.
 STMRT=C.
 STMRT=C.
 NSTAR=.01*RL
 NSTAR=.01*RL
 HM|N= M!-1.E=0
 HM|N= M!-1.E=0
 HMAK=.65*YL
 HMAK=.65*YL
 ERYAYE10E-5
 ERYAYE10E-5
 KEY=?
 KEY=?
 C HERE THE EIACT LITTLE A MATRIX AND B VECTOR ARE COMPJTED.
 C HERE THE EIACT LITTLE A MATRIX AND B VECTOR ARE COMPJTED.
 CALL AMAT(A)
 CALL AMAT(A)
 CALL PVEC{B|
 CALL PVEC{B|
 CALL MOUTIA,NOA,VH,NM,2O,2JNDTHF LITTLE A MATRIXI
 CALL MOUTIA,NOA,VH,NM,2O,2JNDTHF LITTLE A MATRIXI
 CALL YOUTIHEYM, 20.2JMOTHE LITTLE G VECTOR)
    ```
    CALL YOUTIHEYM, 20.2JMOTHE LITTLE G VECTOR)
```

```
***
9! C
31* C
52*
33*
54*
55.
56*
97.
56
99*
60%
62.
+0.
83*
64*
65.
66
67.
69*
69*
70.
71*
7?.
7.
74*
75.
76*
77.
78. C
79.
80.
H2*
B2.
P**
8**
8%.
ES:C
A7* C
H0. C
49. C
9?*
41.
9.
9.1.
94.
94*
Qf. 
97. C
99. C
07. C
163*
```

| 105. | C | HERE THE 816 M MTRIX AND E YECTOR AREC COMPUTED． |
| :---: | :---: | :---: |
| 126＊ | C | |
| 1＂7＊ | | |
| 108＊ | | |
| 1：9\％ | | 0075 JE2onn |
| 1100 | | |
| 111＊ | | |
| 112＊ | 75 | CONTINUE |
| 113． | | |
| 114＊ | | C．ALL VOUT（BIG．凶．17．17MUTHE BIG B VECTOR） |
| 115： | | CALL VOUTEO，NM． 28.28 HOFOR TNIS HEIGNTING VECTOR Q |
| 126 | C | |
| 11？＊ | C | HERE THE EXACT YEIGHTED MATRIX A＋Q IS COMPUTED． |
| 118＊ | C | |
| 129． | | $0080 \mathrm{I}=1$ ，M |
| 120 ． | | $0080 \mathrm{~J}=1, \mathrm{M}$ |
| 121＊ | | |
| 122＊ | 81 | CONTINUE |
| 123＊ | | DO $85 \quad 1=1 . \mathrm{M}$ |
| 224＊ | | $A 0(1,1)=A 0(1+1)+0(1+1)$ |
| 125＊ | 85 | COVTINUE |
| 126＊ | | CALL MOUTIAG\＆NDA，M．M．24．24HJTHE MATAIX QIG A PLUS O） |
| 127＊ | C | |
| 128. | C | NOM YE SOLVE FOR TME EXACT OPTIMAL FORCES F2 TO FM． |
| 129． | C | |
| 13； | | |
| 131． | | GO 1095 |
| 132＊ | 90 | WRITE（6，91） |
| 133． | 91 | FORMAT（／／／／＊10X．25HMATRIX IS NEARLY SINGULAR） |
| 134． | | GOTO 53： |
| ：35＊ | 95 | CALL VOUT\＆BIG．M．2J． 2 OHSTHE FORCES F2 TOFM） |
| 136＊ | C | |
| 137＊ | C | WE COMPUTE THE ENTIRE VECTOR OF OPTIMAL FORCES． |
| 138＊ | C | |
| 139. | | $F(1)=5$ |
| 14U＊ | | CO 1 ¢0 1＝1，M |
| 141＊ | | $F(1)=F(1)-E I G(1)+\times 2(1+1) / \mathrm{M}$ |
| この年， | | F（1） 1 ）$=$ EIG（1） |
| ：43． | 1：5 | COVTINUE |
| 344＊ | | CALL VOUTEFAM－27．29HOTHE VECTOR OF OPTIMAL FORCES） |
| 345＊ | C | |
| 146＊ | | 1FIJOPT．EQ．11 60 TO 175 |
| 1＊7． | C | |
| 24\％＊ | 6 | ＊＊＊＊THE APPAOXIMATIONS＊＊＊＊＊＊ |
| 149＊ | | no $105 \quad 1=1.10$ |
| 35．＊ | | |
| 151． | | $\theta(I)=(X L * *)-1 . E=7$ |
| 152＊ | 135 | CONTINUE |
| 15？＊ | C | |
| 1．9． | | $V=\mathrm{V} .927$ |
| 155． | | V2＝7．： 69 |
| 155＊ | C | |
| 1：7． | C | V AVO V2 SATISFY TAN V＝TARM V． |
| 15H． | C | THE TIRST FIGENVALUE IS（V／XL）＊＊4． |
| ：59． | c | THE SCCONO EJGENVALUE IS（V2／XL）＊＊${ }^{\text {a }}$ |
| 1ヶご | C | |
| 16．1＊ | C | FIRST COMPUTE TME EIGEAFUNCTION VALUES AT XZAI） |

| 162* | c | |
| :---: | :---: | :---: |
| 163: | | DO 1101210 Nm |
| 164* | | |
| 165 * | | ARC2EV2-XZ(1)/XL |
| 166* | | |
| 167 * | | |
| 168 * | | |
| 16: | 115 | COMTINUE |
| 170. | C | |
| 171** | | the approximate little a matrix. |
| 172. | C | |
| 173. | | 0012 y rin (\% |
| 179** | | 0012 J J1. NM |
| 175* | | |
| $176 *$ | | |
| 177 | | |
| 178* | 123 | CONTINUE |
| 179* | C | |
| 180* | | Noy fhe approximate little B vector. |
| 181* | C | |
| 182 * | | DO $13012 i * N M$ |
| 183. | | KEY=9 |
| 124* | | CALL ROMESISTART, ML, T, FOFT, HSTAR, HMIN, MHAX,ERMAX,AMS*K*KEV) |
| 185 * | 13 | HANT $=.75 \cdot X L$ - T-T*T |
| $186 *$ | | ARG:V+T/XL |
| 187 * | | P=(-1.4142) =S ! MAARG8**019695*(EXP(AR6)-EXP(-AR6)) |
| $198 *$ | | FOFTEUANT*P |
| 1890 | | CALL ROM2 |
| 199. | | IF (K.E0.1) 60 T0 10 |
| 191* | | |
| 192 。 | 130 | CONTINUE |
| 198* | | CALL VOUTSPHT, MH.15,15HSTHE PHI VEC(OR) |
| 194* | | CALL MOUT (AA,NOA,NH,NH, $32,32 \mathrm{HOTHE}$ APPROXIMATE LITTLE A MATRIX) |
| 195. | | |
| 196* | c | |
| 197* | c | here me compute the bio approximate a and e. |
| 198* | C | |
| 197* | | DO $1401=2 \cdot \mathrm{N4}$ |
| 20. | | REA(1-1) 2 RA(1)-XZ(1)-8A(1)/X1 |
| 201. | | CO $140 \mathrm{~J}=2 . \mathrm{NH}$ |
| 202. | | |
| 23. | | |
| 2:** | 140 | continue |
| \% 5 - | | |
| 2\%** | | |
| 2:7* | c | |
| 208. | c | here the approximate veighted matrix big a o is computed. |
| 209. | c | |
| 210. | | DO $1501=1 . \mathrm{M}$ |
| 211* | | CO $152 \mathrm{~J}=1 . \mathrm{m}$ |
| 212* | | AOA(I, J)=A日A (ly) |
| 2:3. | 153 | CONTINUE |
| 214* | | $001551=1.0$ |
| 215* | | AOA(1, 1) =AQA(1, 1)*O(1*1) |
| 215* | 155 | CONTINUF. |
| 217* | | |
| 218* | | |

```
219*
220*
221.
222*
223*
224*
225*
228*
227*
228.
229*
230.
231*
232*
233*
234*
233.
236*
237*
239*
239*
24:*
241*
242.
243*
244*
245*
245*
247.
248*
249.
250
2E1.
752*
253.
254*
255.
256*
C67.
25g*
259%
260*
C61* C
262.
243*
264*
26.5*
245*
267*
269.
if9*
27i*
<71*
272*
:73.
274.
27E.
160
    CALL VOU
    00 170I=I.M
```



```
    FA(1-1) EBBA1I)
    CONTINUE
    CALL VOUTIFA,NM,32,3SHOTHE APPROXIMATE FORCE VEETOR F%
    60T0 105
    WRITE(6.178)
    GOTO 185
```



```
    1 2X,13MAPPROK. SHAPE\
    vAITE{E&179)
180
C
C HERE YE COMPUTE THE SHAPES:
C
185
    0021:151,NO
    X(1)=(1-1)*OEL
    T=\(1)
    PSI(1)=.75*T*XL-T*T
    U(1)=0.
    UA(I)=0.
    DO 2:75 J=1.NM
    Z=xZ(J)
```



```
    1F(T.GT.2) 60 T0 195
    G=H-(2*2*T**5*(T**)!/6.)
    GOTO 20S
    195 G=H-(T*T* 2**5* (2**3)/6*)
    2?g U(I)=U(1)&G*F(J)
    1F(JOPT.EO.1) 60 10 205
    UA(I)=UA(I)+G*FA(J)
    2:5 CONTINUE
    JF (JOPT.EO.1) GJ T0 2:e
    \RITE(6,2:61 T,PS1(I),U(1)|UA(1)
    246 FOQMMTI/,1X,F10.2.6E15.5)
    50 10 21;
    2:A URITE(S.2:Tb) T,PSICII*U(I)
    21: CONTINUE
C
C Y IS FOR SCALING PURPOSES.
C
    NP2 =2*NP
        nO 215 1:1.NP
        Y(1)=PSI(1)
        \\!-vP)=U(I)
        CONTIMUE
    215
C
C
C
C
C
25: CALL BGNPLT
here de generate tme plots.
```



```
    CALL PLFORM(OLINLIN*,YLENOYLCN)
    CALL PLSCAL(X,NP,NG,Y,NP2,NG)
    CALL PLAEELT*TME FLEXIBLE EEAM EXPERIMEMT*. 28,*LEMGTMOEGODISPLACE
IMENT*12)
```

```
276
277.
278*
279*
200*
201.
282*
283.
2A4*
285.
286.
287*
2RS.
28%*
290.
291*
292*
293*
290.
295*
296*
297.
298*
293*
3!0*
32.
362*
333*
794*
305.
306*
507*
303.
349*
310*
311*
312*
313.
314*
315*
316*
3:7%
318*
319*
129*
321*
322*
323*
324*
325.
326*
327.
3こと.
327*
330.
```



```
371 CALL PLITXT(3.3.7.0..1.0..13HTVO ACTUATORS.13.1)
    601046?
372 CALL PLTEXT43.2.7.C.01:J..1FHTHEEE ACTUATORS.15.1)
```

| 3330 | | 6010490 |
| :---: | :---: | :---: |
| 314． | 373 | |
| 3350 | | 6010490 |
| 336 。 | 374 | CALL PLPEXT43．3．7．0．tioderamfive ACTUATOA3－14．18 |
| 337． | | 5010499 |
| 33月． | 379 | |
| 3390 | 490 | CALL ENOPL |
| 34.0 | 500 | STDP |
| 34＊＊ | | CNO |
| 1. | | SUBROUTINE AMAT（A） |
| 2 － | | |
| 3. | | QEAL M（10．16） |
| 4＊ | | 005 CJEIGM |
| 5 － | | $005^{\wedge} 18 \mathrm{NaNm}$ |
| 6 | | |
| $7 *$ | | |
| 8 － | | |
| 9. | 10 | |
| 10 | | |
| 11＊ | | If（x，Gioxi） 601015 |
| 12 ＊ | | $C 1=H I=(X I * X I * X / 2 * *(X * *)(6)$ |
| 1：＊ | | to TO 16 |
| 14＊ | 15 | |
| 15＊ | 16 | If（x．GT－XJ）GO TV 23 |
| 16＊ | | |
| 17＊ | | 601021 |
| 18． | 20 | |
| 19. | 21 | |
| $21 *$ | | Call ROM2 |
| 21． | | 1F（K．EO．1） 601010 |
| 22＊ | | A（J，I）EANS |
| 23＊ | 5） | CONTINUE |
| 24． | | DO64 172．Nm |
| －¢ \％ | | 11＝1－1 |
| ＊） | | ก0 6 $11 . J=1.11$ |
| \％ 7 | | |
| 28. | 6； | CONTINUE |
| 2\％0 | | REIURA |
| $3!*$ | | FND |
| 1 ＊ | | SUGROUTINF BVECSB） |
| $2 \cdot$ | | |
| 3 | | REAL BEI ${ }^{\text {Cl }}$ |
| ＊＊ | | DO 5： $1=1 . N \mathrm{M}$ |
| 5. | | Zこaで11 |
| $4 *$ | | |
| $7 *$ | 11 | |
| 4＊ | | IFIX．GT， 2 ）fin in is |
| 9＊ | | |
| 1^{*} | | 50 10 24 |
| ：1＊ | 19 | |
| 22＊ | 20 | PSJこ．75＊）＊（L－K＊X |
| 35． | | |
| ；＊ | | CALL RSM？ |
| $1!$ | | IFIK．（G．1） 6010 1＊ |
| ： 5 | | $f \cdot 11)=$ aids |
| 17. | $5{ }^{\text {a }}$ | COVTINuT |
| ：\％ | | AETURN |
| j＊＊ | | 5 NO |

Output


```
the vecton of actuator positions
    1 10 2 5.0800003*01 1.0302050402
thE littLE a matrix
\begin{tabular}{|c|c|c|c|}
\hline & & COL & COL \\
\hline ROW & 1 & 2.4259911*39 & -4.2531314.39 \\
\hline ROU & 2 & - \(4.1531314+09\) & 7.1462926*29 \\
\hline the & Litte & vector & \\
\hline 1 & 102 & 5.4873537-08 & -9.4246317*38 \\
\hline
\end{tabular}
```

the big a matrix
COL 1
RCd $13.3462782+10$
THE RIG E VECTOR
1 10 1 -2.13993J9.39
FOR THIS HEIGHTING VECTOR O
1 TO 20.30000000 .0003202
THE Matrix 3IG plus o
nov $1 \quad \begin{gathered}\text { COL } \\ 3.3462782+12\end{gathered}$
THE FORCES F 2 TO FM
1 10 1 -6.2961186-92
THE VECTOR OF OPTIMAL FORCES
1 TO 2 1.2192237-01 -6.0961186-12
THE PHI VECTOR
1 T0 $2 \quad-1.169: 319+32 \quad 1.9992210+32$
THE APPRGXIMATE LITTLE MATRIX

| | | COL | COL 2 |
| :---: | :---: | :---: | :---: |
| ROU | 1 | 2.4204669430 | -4.1487159+09 |
| Rod | 2 | -4.8487153*29 | 7.1311938449 |

TME APPROXIMATE LITTLE B VEGTOR
$190 \quad 544816966 \cdot 38 \quad-9.3747169038$
phe eig appzex a matrix
ROA $1 \quad 3 \quad$ COL $3.3447921+13$
the dig approx b vector
1 TO 1 -2.0335:70*39
ine approx matrix eig a plus o
Row $1 \quad 3 \quad \begin{gathered}\text { COL } \\ 3.34 E 7921.13\end{gathered}$
THE OPPKOXIMATE FIRESS 2 TU FM


```
TME APPROXIMATE FORCE vECTOR F
    1 T0 2 1.2157462-08 -6.3737309-32
```

| P0S ! 780 m | OESInco smape | CPTIMAL EtiAPL | APPROX. SMAPE |
| :---: | :---: | :---: | :---: |
| . 00 | .00095 | . 80000 | .02333 |
| 5.05 | -39000-23 | -C 357403 | -23953-33 |
| 23.20 | -65:22-23 | .52572073 | - 1226 -83 |
| 15.73 | -90093093 | -75850.03 | -74933-32 |
| 23.00 | .11000-04 | -96409-03 | -96373-23 |
| 25.00 | . $12500+24$ | . 21510094 | -11477-34 |
| 30.0: | -13503*34 | -12973-97 | - 22936 : 24 |
| 35.28 | .140300.94 | -13985*24 | -8354 .-7 |
| 43.00 | . 24025004 | . 14453.04 | -14412*14 |
| -5.00 | -13500004 | . 14316004 | -14276-29 |
| 53.22 | -1295000.04 | . $13434 \cdot 24$ | -13436.?4 |
| 55.85 | -123090.4 | -1:5:5060 | -11931-:9 |
| 6).** | -90:30.33 | - -69:3-3s | -96026-03 |
| 63.92 | -6560:-73 | -60329+33 | -6A164-23 |
| 72.29 | .353:0** | -34051*23 | -343n3-13 |
| 75.30 | -20320 | -. 35698.32 | -.85E75*: |
| 82.09 | -0.00030.13 | -.46229*03 | -.46397-33 |
| 25.20 | -.8593:*: | -.91537-*3 | -.91276.!3 |
| 32.0: | -.1359:4.94 | -.159:3034 | - -15e73034 |
| 35.: | -.195.j. * | -.183:5.9* | -.19-71. ${ }^{\text {a }}$ |
| 122.30 | - 25 ccou-j | -.23012+94 | -.23745. 24 |

B. 3 The S1mply Supported 3eam Estimation Program Liating

| 03： | | |
| :---: | :---: | :---: |
| $04 *$ | | |
| 65. | | 3＋（XL＊＊$-Y * * 3) *(1,13) *.(5 . * X L * X L * C 3 * 4 * * X L * 4 * C 4)=(X L * X L-Y * Y) *(X L *$ |
| 66. | | |
| 67＊ | | $3 * * 7-X * *) / 7 .-X L * 5 *(Y * * 6-X * * 6)+0<*(Y * * 5-X * * 5) *(C 2 * 2 . * X L * X L+X * x)-$ |
| －8＊ | | |
| $04 *$ | | |
| 70＊ | 5 | CONTINUE |
| 71＊ | | $0061=2$ NM |
| 12＊ | | $11=1-1$ |
| $73 *$ | | 20 o Jこう，İ |
| 74＊ | | A（I．J）$=$ A（J．I） |
| 75＊ | － | cuntinut |
| 76＊ | | |
| $17 *$ | \checkmark | |
| 78. | c | here de comfutj a＊d． |
| 14． | c | |
| 00＊ | | 10＜ $1=1$ ，NM |
| $01 *$ | | A0（1） |
| 82. | | U0＜ $2 \mathrm{~J}=1$ ，NM |
| $83 *$ | | |
| d4： | 2」 | continue |
| 85． | | CaLl VOUT（AB，NM，1E，15HUTHE VECTIRR A＊d） |
| 00＊ | c | |
| 67. | c | mefit computc a＊w． |
| d8＊ | c | |
| 69. | | CC＜ 5 1＝1， hl^{\prime} |
| Y0． | | บO $25 \mathrm{~J}=1$ ，Nm |
| 91. | | AC（1，J）＝A（1．J） |
| 92. | 25 | CONTINUE |
| 43. | | |
| 94＊ | | AG（İI）＝ac（iol）＊Q（I） |
| $95 *$ | 34 | continue |
| 96 ＊ | | |
| $47 *$ | \downarrow | |
| 98. | c | hekr we solve for ith jptimal shape at positious xz． |
| 99＊＊ | c | |
| 100＊ | | |
| 101＊ | | CALL VOUTIAE，NR．0̈40¢4HUOPTIPAL SHAFE PCSITICAS） |
| 1Jく＊ | | Lic ro 4J |
| 103＊ | 52 | Whitelo．30） |
| 104＊ | 36 | |
| 165＊ | | Gu 10 bue |
| 1 Uo． | \checkmark | |
| $1 い 70$ | 6 | fugh ak lupplit the optipal shapt． |
| 1 U8． | c | |
| 1じ\％ | 46 | LO $451=10100$ |
| 110． | | |
| 1110 | 43 | cubitnje |
| 112． | | U0 5J $1=1$ oivn |
| 1130 | | LO $56-5=0$ dif |
| 114＊ | | |
| 1150 | | $x=x 211)$ |
| 1：0\％ | | $Y=2(5)$ |
| 110＊ | | 6 1028 |
| 117＊ | 31 | $x=2(J)$ |
| 11＊＊ | | Y＝xil） |

 \(C \&=Y+\gamma-2.0 x L+y\)
 \(C 1=X+\left(X-2+X_{1}\right)\)
 c \(3=x \cdot x+y+y\)
 \(c 4=X \in X * Y * Y\)

CONIINUE
URIIE(0.50)
GORMAT(1/H.1X.I2HTME MATRIXS)
WRITE $(0,58)(X 2(I), 1=1, W$ M $)$
fukpatifilx.Fiu.áalueis.bi
FORMAT (//fo18Xe1UE1 je5)
U(I)=C.
UO $3 J 1=2$ © AP
WR1JL(0.57) 2(1): (S(J.1), Jこに, NM)
U(i) $=0$.
UO OU J=1•AM

CONTINUE
WKITE (0.2)
Wh1IE(0.00)
UU OS 1:1.NP
PSI(I):XL+2(1)-2(1)**2
SCL(I) $=$ U(I) 1.1
$\operatorname{SCL}(1 * W P)=(5!!1) \neq 1.1$
WRITE(0.07) Z(L), DSI(I) U(I:
CONTINUE
FURVAT(foFiJ.2.4.2 5.5)

MLEN二8.
YLEN=0.
Nu二1

「リじごと"
11くらご*。
NTI=2
MTE $=0$
NT3=-1
CALL BGNPLI
CALL PLTORMI'L!N.IN', Y:LN.YLEVI
CALL PLSCAL (Z ONP AGG SCLONPZ ONG)
CALL PLABELTSHAPE ESTIMATIJNFOR THE SIMPLY SJPPJNTEJ Jt AY*。

CALL PLURAY
CALL PLAXIS(-2.XLEN*J.)

CALL FLLUKG(ZOU,AP,NTIOIICくI
LALL PLLUKY(Z.PSI. サP, VT2, TIL3)

ION ACTUAL SHAPL, 3 S.1)

| 1770 | 76 | CALL PLIEXII3.4.7.U..10.0.12HOAE ACIUATOR.12.1) |
| :---: | :---: | :---: |
| 1/8. | | G9 10 a) |
| 1740 | 71 | |
| 10.* | | ©0 To os |
| 1010 | 72 | |
| 10 C | | co to ins |
| 1030 | 79 | CALL PLTEXİ3.3070.4.080.0.14HF OUR ACTUATOFS.14.1) |
| $104 *$ | | vo ro os |
| 1030 | 34 | |
| $100 \cdot$ | | vo to ou |
| 1870 | 13 | |
| 1d8* | as | CALL EITHPLT |
| 184. | SiU | Stip |
| 14. | | Eno |

| | $.2500 .3+00$ | ．500050．3 | ．75030033 |
| :---: | :---: | :---: | :---: |
| ． 03 | － $23560-04$ | ． 32959 －u4 | －23c71－C4 |
| ． 10 | ．．4055v－04 | －051u®－u4 | －45301－34 |
| ． 15 | ．00353－64 | ．95061－04 | ．070 1－ci4 |
| － 20 | ．00411－04 | －1く380－us | －86045－34 |
| ． 25 | ．16023－03 | ．14902－i3 | ． $10458-63$ |
| ． 30 | ．12137－03 | －17．351－03 | －11989－33 |
| －33 | ．13340－03 | 16761－63 | ．13213－43 |
| ． 4. | ．14222－03 | －2034a－33 | ．14125－33 |

| －45 | ．14744－03 | －2J82t－33 | ．14093－33 |
| :---: | :---: | :---: | :---: |
| －5u | ．14902－03 | ．21081－43 | ．149C2－C3 |
| ． 55 | ．14693－03 | ．20321－03 | －14744－33 |
| －00 | －14123－03 | ．26046－03 | ． $24222-63$ |
| ． 85 | ．1321j－03 | －10781－03 | ．13340－03 |
| ． 70 | ．1198c－03 | ．17051－43 | ．12197－63 |
| ． 73 | －1045t－J3 | ．14902－03 | －100is－j3 |
| －80 | －80645－u4 | 14380－33 | ．88431－64 |
| －do | ．07021－u4 | －93603－04 | －68331－34 |
| ． 90 | －45591－64 | ．63109－0．04 | －40558－44 |
| ． 95 | －＜3071－04 | ．32959－04 | －く35d7－34 |
| 1.00 | － $20500-49$ | －ל8935－cも | ．10335－60 |

| PQSITION | actual shapi | ESTIA. ShAPE |
| :---: | :---: | :---: |
| . 20 | - دJu00 | . 00030 |
| . 05 | .47500-61 | -41587-61 |
| .10 | -9unco-idr | .81910-01 |
| . 15 | . $12750+36$ | . 11479 - |
| . 20 | . 16.500 .00 | .15416000 |
| - 23 | . $18750+00$ | . 18421 ¢ |
| . 30 | - $21000+00$ | . 2.2929000 |
| . 35 | . $2<750+00$ | . 22402 - Ju |
| .4J | . 24000000 | . $24319+00$ |
| . 45 | . $24750+00$ | . 25169 +J0 |
| . 53 | -25000+00 | . $25453+00$ |
| . 55 | . 24750006 | . 25104000 |
| . 63 | - 24000*50 | -24320030 |
| . 65 | - $<2750 \cdot 00$ | -22403000 |
| . 70 | -21000400 | . 20932 -00 |
| .75 | . 10750.00 | . $18423+00$ |
| .80 | . 1000000 | . 15418000 |
| . 85 | . 12750.00 | -11478+u0 |
| . 94 | -96500-01 | - 81402-u1 |
| .95 | -4750コ-21 | -41590-31 |
| 1.04 | .74500-08 | .15469-64 |

Appendix C. The Large Space Antenna Computer Progran and Output

146 OI POOR QUALITY

C. 1 The Large Space Antenna Computer Program Listing

```
OIMENSION MDN(20),FREC(50)
```

OIMENSION MDN(20),FREC(50)
DIM\&NSIUN M(BAZ),Y(AR2), 2(AB2), 8LUGS(ES2)
DIM\&NSIUN M(BAZ),Y(AR2), 2(AB2), 8LUGS(ES2)
OIMENSION VECTOR(PG4B),U(AB2), V(AN2), (PAC)
OIMENSION VECTOR(PG4B),U(AB2), V(AN2), (PAC)
DIMENOION OCNK(1E),C(1A),F(1H),A(18,1R),AA(18,1A)
DIMENOION OCNK(1E),C(1A),F(1H),A(18,1R),AA(18,1A)
DIMEASIUN PHI(11,1日)
DIMEASIUN PHI(11,1日)
NIMFNSIGN RETA(II)
NIMFNSIGN RETA(II)
IIMENSION AGPMA(11), COEF(1I). WORK(%GN)
IIMENSION AGPMA(11), COEF(1I). WORK(%GN)
OIMENSION Y8TAM(1B).AY(18),USTAP(1A)
OIMENSION Y8TAM(1B).AY(18),USTAP(1A)
IHTEGER IPT(16),JPT(1A)
IHTEGER IPT(16),JPT(1A)
INTEGER SSED(2428), ISEQ(8AD)
INTEGER SSED(2428), ISEQ(8AD)
GQUIVALENCE (IS(1),VECPOR(1)), (VECTOQ(AGS),V(1))
GQUIVALENCE (IS(1),VECPOR(1)), (VECTOQ(AGS),V(1))
FPUTVALENCE (N(i),VECPOR(I765))

```
FPUTVALENCE (N(i),VECPOR(I765))
```



```
STATIC SHAPE ESTIMATION AND CONPMOL NF A LAKGE SPACE ANTENNA.
```

```
STATIC SHAPE ESTIMATION AND CONPMOL NF A LAKGE SPACE ANTENNA.
```



```
THTS PQNGRAY ESTIMATES ANO CODTNCLLS TME STATIC UISPOATIOM IF A
```

THTS PQNGRAY ESTIMATES ANO CODTNCLLS TME STATIC UISPOATIOM IF A
LAGGF SFACE AVTENNA, |RING QEST CGIRDINATES, MIOES AWN FGEGUENCIES
LAGGF SFACE AVTENNA, |RING QEST CGIRDINATES, MIOES AWN FGEGUENCIES
SUDHLIED NY A FINITE ELEMENP MIDFL.

```
SUDHLIED NY A FINITE ELEMENP MIDFL.
```



```
ONYHYS, UR NOSES, LMCATEO UN IA CORISECUYIVE CIPCLES.
```

ONYHYS, UR NOSES, LMCATEO UN IA CORISECUYIVE CIPCLES.
IT IS ASSUMES THAT THE HUR IF INE ANTEMNA IS RIGINLY ATYACHFO,
IT IS ASSUMES THAT THE HUR IF INE ANTEMNA IS RIGINLY ATYACHFO,
SIT THAT THFGE ARE NO RIGID GODV MIONES.
SIT THAT THFGE ARE NO RIGID GODV MIONES.
PHFRE AGE SS FREDUENPIES ANO CNRRESRINDING EIGENFUNCTIONS
PHFRE AGE SS FREDUENPIES ANO CNRRESRINDING EIGENFUNCTIONS
(HONFS) +IJW THIS MNDEL.
(HONFS) +IJW THIS MNDEL.
TMPS PRGGGAW READS FRUN THF TFMPOKGFY FILE FIXFOANP, WHICH IS
TMPS PRGGGAW READS FRUN THF TFMPOKGFY FILE FIXFOANP, WHICH IS
CQFATED FR|M TME TAPE 1960 RY QUANING MNELIMINARY OHPGMAM

```
CQFATED FR|M TME TAPE 1960 RY QUANING MNELIMINARY OHPGMAM
```



```
A!rgust 14, lqBo, aY veJav alwak.
```

A!rgust 14, lqBo, aY veJav alwak.
THG ANALYSIS ON WHICM THIS PNPGGAH IS RASFDIS FOUNO IN

```
THG ANALYSIS ON WHICM THIS PNPGGAH IS RASFDIS FOUNO IN
```



```
FIRITE ELEMENI mUTHFL' QY CTNNIIE WFERS.
```

```
FIRITE ELEMENI mUTHFL' QY CTNNIIE WFERS.
```



```
PORHFLTHO.
```

```
PORHFLTHO.
```



```
A:AN APPLIEN TO TWE SAHE OIRECTIINS IT FACH GIIIT.
```

```
A:AN APPLIEN TO TWE SAHE OIRECTIINS IT FACH GIIIT.
```

| 47 | 1 | |
| :---: | :---: | :---: |
| \leq at | （ | |
| 310 | r | |
| のn | ＋ | |
| の1＊ | C | |
| n）${ }^{\text {a }}$ | c | |
| ${ }^{*}{ }^{4}$ | C | |
| $4{ }^{4}$ | r | |
| H 5 \％ | C | |
| hat | e | |
| W7＊ | r | |
| 人成 | C | |
| Wat | ！ | |
| 7 7\％ | $!$ | |
| 11% | \％ | |
| $1{ }^{1}$ | r | |
| 13＊ | P | |
| $14 *$ | r | |
| 7% | r | |
| 16＊ | r | |
| 77＊ | r | |
| 1ヵ年 | r | |
| 79\％ | C | Thif Samt valus in．Jon INFuT．．． |
| Ar＊ | t | |
| A1＊ | c | Haptitu＊ |
| A2\％ | P | |
| 6 ${ }^{\text {¢ }}$ | r | |
| ＊ 4 | r. | |
| ＊5＊ | C | |
| ${ }^{\text {a }} 6$ | r | |
| A 7 ＊ | r | |
| － \％$^{\text {\％}}$ | c | |
| A9\％ | r | |
| 90\％ | t | |
| Q1＊ | P． | |
| 92\％ | r | |
| 98 | P | |
| 94＊ | P | Wt．HBttaEl，Id tnt MHGgKam．．．．．．．．．．．． |
| 74＊ | $\stackrel{\square}{5}$ | |
| 96 | r | |
| 71＊ | C | |
| サッ＊ | C | |
| －7＊ | r． | |
| $1^{\text {のn }}$ | r | |
| 101\％ | r | （f『（P）． |
| 172＊ | r | |
| 10 | r | |
| $1^{\text {A }} 4$ | r | |
| 1＇s＊ | r | |
| $1^{*}{ }^{*}$ | C | |
| 1：9\％ | P | |
| 1い」 | r | |
| $:^{\text {a }} 10$ | C | |
| 110 | r | |
| 111 | r | |
| 1＇20 | 1 | Cifip． |

```
\(114 \%\)
\(115 \%\)
116% C
117* C
11%* C
110: C
120% C
121% r
122% c
12.% C
174*
125*
126:
12A:
129:
110%
131*
132*
143:
190:
135% r
136*
137*
13A:
50悉
140*
101% c
14?*
44事
14a事
19り卑
&an音
147%
14g*
140早
130%
151%
1524
153%
13a*
1450
156% C
137%
158%
154%
100%
14!
10?%
1^5*
140%
1^5%
1AB4
1*7%
146夏
140%
170%
```



```
c
```

c
SED IS TME NIMAENING OF THE NONES.
SED IS TME NIMAENING OF THE NONES.
NC IS IME NUMBEG OF MLOT PUNMANDS.
NC IS IME NUMBEG OF MLOT PUNMANDS.
JSEg is tME SFOUENCt OF PLOT COmmanNs.
JSEg is tME SFOUENCt OF PLOT COmmanNs.
Th* lasp cimcle mas neen neleten fanm fhe Plots

```
    Th* lasp cimcle mas neen neleten fanm fhe Plots
```



```
    TA TME UATG STATFMHENY, IA TME SURROUTINE DKAm. AND REMIIVE
```

 TA TME UATG STATFMHENY, IA TME SURROUTINE DKAm. AND REMIIVE
 ThE ng LCIJP IMVOLVING 25 r.UNPINUE.
 ThE ng LCIJP IMVOLVING 25 r.UNPINUE.
 MCQ IS THP HEADING ON PHE PILE.
 MCQ IS THP HEADING ON PHE PILE.
 vOOES IS THE NUMGEN UF NIDPSEBAR.
 vOOES IS THE NUMGEN UF NIDPSEBAR.
 NFQEG is thE vumeEN OF FNEDUGNCIESESO.
    ```
    NFQEG is thE vumeEN OF FNEDUGNCIESESO.
```



```
        gata cahos.o.
```

```
        gata cahos.o.
```



```
        CATA NC.AM.ANPT/2140.1101月/
```

 CATA NC.AM.ANPT/2140.1101月/
 FIFPH CIHCLE
 FIFPH CIHCLE
 0ATA 1HT/127,13n,133,130,139,142,145,148,151,144,157,16n,145,166,
 0ATA 1HT/127,13n,133,130,139,142,145,148,151,144,157,16n,145,166,
 1 149,19P.175,178/
 1 149,19P.175,178/
 vaTA JWT/IA%|/
 vaTA JWT/IA%|/
 15168"
 15168"
 InPT8.
 InPT8.
 ARE1.vE-10
 ARE1.vE-10
 R20.**R
 R20.**R
 *egn Hblit Cuitmamo Sequenret
 *egn Hblit Cuitmamo Sequenret
 latan(b,pl)(JSEG(I),IEIOAR)
 latan(b,pl)(JSEG(I),IEIOAR)
 Fn*uat(pOIa)
 Fn*uat(pOIa)
 mgR -E DELETE PME LAST CJHCLE FKOH PME OLOT CUI *ANOS.
 mgR -E DELETE PME LAST CJHCLE FKOH PME OLOT CUI *ANOS.
 On 24 KREI,NI:
 On 24 KREI,NI:
 J.EIanS(JSt.b(kK))
    ```
        J.EIanS(JSt.b(kK))
```



```
        15F!(kK):-ds
```

 15F!(kK):-ds
 CHattrut
 CHattrut
 C
    ```
        C
```



```
        lif po lad,bizz
```

 lif po lad,bizz
 13EC!l)E1
 13EC!l)E1
 e4 conymut
 e4 conymut
 E
 E
 IF(IOHP.t.al) G! P!i 9{!
 IF(IOHP.t.al) G! P!i 9{!
 lall Mlu?S
    ```
        lall Mlu?S
```

```
171*
```

171*
172*
172*
113*
113*
174*
174*
175%
175%
176*
176*
171*
171*
196%
196%
19%
19%
100%
100%
181*
181*
1月2*
1月2*
1A3*
1A3*
104%
104%
105:
105:
186%
186%
109*
109*
1880
1880
180:
180:
190%
190%
198*
198*
192:
192:
193*
193*
194*
194*
195:
195:
196:
196:
107:
107:
1984
1984
199:
199:
200:
200:
20:*
20:*
202:
202:
201:
201:
204*
204*
205*
205*
206%
206%
207*
207*
200*
200*
200:
200:
210%
210%
211*
211*
212%
212%
113*
113*
214*
214*
215*
215*
216:
216:
217*
217*
21月*
21月*
2190
2190
220:
220:
2810
2810
?22*
?22*
22s0
22s0
824:
824:
225*
225*
<20:
<20:
327:
327:
CALL PLOT(0,0,4,0,-3)
CALL PLOT(0,0,4,0,-3)
CALL PLOT(0,0,4,0,-3)
CALL PAC'OR(,0040)
CALL PAC'OR(,0040)
CALL PAC'OR(,0040)
CONTGNUE
CONTGNUE
CONTGNUE
*
*
*
c
c
c
UO INEI,NM
UO INEI,NM
UO INEI,NM
COEFIINJOO.
COEFIINJOO.
COEFIINJOO.
META(IN)*O.
META(IN)*O.
META(IN)*O.
CONTINUE
CONTINUE
CONTINUE
DO 90 JNag,NPT
DO 90 JNag,NPT
DO 90 JNag,NPT
OCHK(JN)=O.
OCHK(JN)=O.
OCHK(JN)=O.
ysTAM(JN)=0.
ysTAM(JN)=0.
ysTAM(JN)=0.
AY(JN)EO.
AY(JN)EO.
AY(JN)EO.
MSPAN(JNIE:.
MSPAN(JNIE:.
MSPAN(JNIE:.
continut
continut
continut
REWIND ES
REWIND ES
REWIND ES
HEAD(4s)(MOR(K),KA1,20)
HEAD(4s)(MOR(K),KA1,20)
HEAD(4s)(MOR(K),KA1,20)
REAO(W5)NODES,NFRED
REAO(W5)NODES,NFRED
REAO(W5)NODES,NFRED
NCMEPKINODESES
NCMEPKINODESES
NCMEPKINODESES
x(I).4(l), <(l) ARE PHE COOROINATES OF NODE \&.
x(I).4(l), <(l) ARE PHE COOROINATES OF NODE \&.
x(I).4(l), <(l) ARE PHE COOROINATES OF NODE \&.
READ(45)(X(1),Y(1),2(1),181,NODES)
READ(45)(X(1),Y(1),2(1),181,NODES)
READ(45)(X(1),Y(1),2(1),181,NODES)
F
F
F
C SlugS(I) IS PME mASS AT NODE I.
C SlugS(I) IS PME mASS AT NODE I.
C SlugS(I) IS PME mASS AT NODE I.
w(an(4s)(slugs(I),Im,m,NOES)
w(an(4s)(slugs(I),Im,m,NOES)
w(an(4s)(slugs(I),Im,m,NOES)
MEAD(45)(FREO(I),IEI,NFREQ)
MEAD(45)(FREO(I),IEI,NFREQ)
MEAD(45)(FREO(I),IEI,NFREQ)
WMTEE(0,10)(MDR(K),KE1,20)

```
        WMTEE(0,10)(MDR(K),KE1,20)
```

 WMTEE(0,10)(MDR(K),KE1,20)
    ```



```

 WEITE(b,12) (FREO(K), xAS, NFRED)
    ```
        WEITE(b,12) (FREO(K), xAS, NFRED)
```

 WEITE(b,12) (FREO(K), xAS, NFRED)
 12 FOMMAI(5x,GE!5,8,1)
 12 FOMMAI(5x,GE!5,8,1)
 12 FOMMAI(5x,GE!5,8,1)
 WRITE(O,14)NNOES
 WRITE(O,14)NNOES
 WRITE(O,14)NNOES
 14 FOMMAT(/1,0OX,INO. OF NOOES : 1,34)
 14 FOMMAT(/1,0OX,INO. OF NOOES : 1,34)
 14 FOMMAT(/1,0OX,INO. OF NOOES : 1,34)
 whitF (6,15)
 whitF (6,15)
 whitF (6,15)
 wnTE (6,16)
    ```
            wnTE (6,16)
```

 wnTE (6,16)
    ```



```

 178')
    ```
        178')
```

 178')
 10 FOMMAT(/, 2x,'NONE',8x.'DIRECTIONT)
 10 FOMMAT(/, 2x,'NONE',8x.'DIRECTIONT)
 10 FOMMAT(/, 2x,'NONE',8x.'DIRECTIONT)
 DO 3n IEI,NPT
 DO 3n IEI,NPT
 DO 3n IEI,NPT
 jsejpi(i)
 jsejpi(i)
 jsejpi(i)
 IF(38-2) 17,10,19
 IF(38-2) 17,10,19
 IF(38-2) 17,10,19
 17 WRIPE(0,22) IPT(1)
 17 WRIPE(0,22) IPT(1)
 17 WRIPE(0,22) IPT(1)
 GM in 2C
 GM in 2C
 GM in 2C
 WMTTF(0,23) g&T(1)
 WMTTF(0,23) g&T(1)
 WMTTF(0,23) g&T(1)
 00 9% 20
 00 9% 20
 00 9% 20
 19 WM!f(n,z*) IPT(1)
 19 WM!f(n,z*) IPT(1)
 19 WM!f(n,z*) IPT(1)
 20 CONTINUE
 20 CONTINUE
 20 CONTINUE
 22 Fnomat(f,2x,i4,0x,'x!)
 22 Fnomat(f,2x,i4,0x,'x!)
 22 Fnomat(f,2x,i4,0x,'x!)
 3) rommar(1,2y,inori,
 3) rommar(1,2y,inori,
 3) rommar(1,2y,inori,
 24 FOMMAP(/.2x,I4,6x,'21)
 24 FOMMAP(/.2x,I4,6x,'21)
 24 FOMMAP(/.2x,I4,6x,'21)
 c
 c
 c
 UO 1OO KFSI,NM
 UO 1OO KFSI,NM
 UO 1OO KFSI,NM
 c
 c
 c
 F
 F
 F
 ntans is a cmeck tl seE thay tme tape is geling mean pmomemby.
    ```
        ntans is a cmeck tl seE thay tme tape is geling mean pmomemby.
```

 ntans is a cmeck tl seE thay tme tape is geling mean pmomemby.
    ```
```

220* C NTMNS B(8B2)E2646.
2:0%
331%
2324
233*
234*
235*
230%
2394
238*
234%
2404
241%
2424
243*
245*
246*
24%
240%
2494
2504
251*
252%
253*
254*
255:
256%
259% 50
25A%
259:
260: C
261% c
242% C
2630
264%
265* c
2664
267%
268*
269%
270%
271%
2724
2730
274*
?75* e
27月*
277%
278%
274*
200%
201%
2820
283%
284:

```
```

229: C NITR IS PME MODE (EIǴNNUECTON) NUMBEM.

```
229: C NITR IS PME MODE (EIǴNNUECTON) NUMBEM.
```

C FR IS TME FREDUENCY.

```
C FR IS TME FREDUENCY.
    REAO(US)KFR,FK,NPMNS, (VECYOR (K),KEI,NTRNE)
    REAO(US)KFR,FK,NPMNS, (VECYOR (K),KEI,NTRNE)
    SF(NCMECK.NE.NTRNSIGO TO 12S
    SF(NCMECK.NE.NTRNSIGO TO 12S
C Mif(I,J), IEI,NM AND JEI,NPI HOLOS TME VALULE OF MOOE I
C Mif(I,J), IEI,NM AND JEI,NPI HOLOS TME VALULE OF MOOE I
    AT NODE IPT(S) IN THE OINECTION JPT(J).
    AT NODE IPT(S) IN THE OINECTION JPT(J).
        ON 35 101,N%T
        ON 35 101,N%T
        JEPPY(%)
        JEPPY(%)
        j80jpi(1)
        j80jpi(1)
        if (j8-i) 30,51,32
        if (j8-i) 30,51,32
        0nt(ak,i)au(d)
        0nt(ak,i)au(d)
        60 90 33
        60 90 33
        Pmi(xF,i)av(s)
        Pmi(xF,i)av(s)
        6n PO 33
        6n PO 33
        PH{(KF,I)Em(J)
        PH{(KF,I)Em(J)
        CONTINUE
        CONTINUE
        continuE
        continuE
        DO 5n IEs,modes
        DO 5n IEs,modes
    MEFE WE CDNPUTE YNE KNOWN OISYORTED SMAPE.
    MEFE WE CDNPUTE YNE KNOWN OISYORTED SMAPE.
        x(I)EX(I)+AGPNA(XF)&U(I)
        x(I)EX(I)+AGPNA(XF)&U(I)
        Y(I)@Y(I)+ALPHA(KF)@V(I)
        Y(I)@Y(I)+ALPHA(KF)@V(I)
        z(I)=2(I)*AGPHA(KF)##(I)
        z(I)=2(I)*AGPHA(KF)##(I)
        CONYTNUE
        CONYTNUE
        EONTINUE
        EONTINUE
        IF(IOPP,E0.1) 60 10 105
        IF(IOPP,E0.1) 60 10 105
            C
            C
            c
            c
        HEGE WE P.OT THE KNOWN DISYORTEO SAAPE.
        HEGE WE P.OT THE KNOWN DISYORTEO SAAPE.
        OMAH IS A SUBRUUYINE RREAPES BY G. RODRIGUEZ TO DLOT PMKEE
        OMAH IS A SUBRUUYINE RREAPES BY G. RODRIGUEZ TO DLOT PMKEE
        OIMENSIONAL SURFACES. IT CALLS THE SUAROUTINE TMANS.
        OIMENSIONAL SURFACES. IT CALLS THE SUAROUTINE TMANS.
        CALL DRAM(X,Y,z,JsEO,IEEQ)
        CALL DRAM(X,Y,z,JsEO,IEEQ)
        CALL PACPOR(1.0)
        CALL PACPOR(1.0)
        CALL PLOT(10.0.0.0,=3)
        CALL PLOT(10.0.0.0,=3)
        CALL FACPUR(.0060)
        CALL FACPUR(.0060)
        luS CONTINUE
        luS CONTINUE
        CALG MOLT(PHI,NM,NM,NPT,15,15HOPME MATRIX PHI)
        CALG MOLT(PHI,NM,NM,NPT,15,15HOPME MATRIX PHI)
        c
        c
        e meqE me compufe fhe matrix a ano pmf vector of emact ossfavations
        e meqE me compufe fhe matrix a ano pmf vector of emact ossfavations
        YSTAR.
        YSTAR.
        ON 100 1:1,N#T
        ON 100 1:1,N#T
        O(ijev.
        O(ijev.
        OM100 JE1,NFT
        OM100 JE1,NFT
        *(1,j)=0.
        *(1,j)=0.
        enappmue
        enappmue
        no 2ON IKEI,NM
```

 no 2ON IKEI,NM
    ```
```

2454
204%
2070
8)
284%
20*
2910
292*
2910
244*
293%
2964
207*
29A%
2900
300%
301%
3n2%
3030
304*
3030
306*
307%
308年
3n9*
3100
311*
5120
313:
\$14*
315*
310%
317%
318%
310%
320%
321早
322*
323草
324*
525%
32**
327*
328%
1294
530%
13%
32%
430
35*
\$15*
156*
319% C
33A*
1390 r.
10.)
141*

```
```

 OD 2NO IBI,MPT
    ```
    OD 2NO IBI,MPT
    COEF(1)e0.
```

 COEF(1)e0.
    ```


```

 00200 JEI,NPP
    ```
```

 00200 JEI,NPP
    ```


```

 CONTIMUF
    ```
    CONTIMUF
    CALG MNUP(A,NPT,MPP,NPT,IS,IGMOTME MATMIM A)
    CALG MNUP(A,NPT,MPP,NPT,IS,IGMOTME MATMIM A)
    CALG VOUT(FSPAM,MPT,30,JOMOPME VEGPRM OF OHSERYATIONG YE)
    CALG VOUT(FSPAM,MPT,30,JOMOPME VEGPRM OF OHSERYATIONG YE)
    COmPuTATION OF PH& PRODUCP A(YSTAMSEAY
    COmPuTATION OF PH& PRODUCP A(YSTAMSEAY
        OU 20& %EI,NPT
        OU 20& %EI,NPT
        On zNE Jei,NPT
        On zNE Jei,NPT
        AV(I)#AV(&)&A(IOJ) # YTAM(J)
        AV(I)#AV(&)&A(IOJ) # YTAM(J)
202 CONTINUE
202 CONTINUE
        CALL VUUT(AY, NPT, IS.IAMOPME VECTON AV)
        CALL VUUT(AY, NPT, IS.IAMOPME VECTON AV)
C
C
P. MERE WE NDO THE R MATRIX FO THE A MATHIX.
P. MERE WE NDO THE R MATRIX FO THE A MATHIX.
C
C
6
6
23
23
204
204
205 CALL NOUT(A,NPT,NPT,NPT,15,15H01 'E MATMIX A&#)
```

205 CALL NOUT(A,NPT,NPT,NPT,15,15H01 'E MATMIX A\&\#)

```


```

OU E!C 8:D.N%P

```
OU E!C 8:D.N%P
USTAM(1)花(1)
USTAM(1)花(1)
OO P10 jus, N0, 
OO P10 jus, N0, 
A(!,j)=A(I,J)
A(!,j)=A(I,J)
CONTIMUS
CONTIMUS
C
C
C
C
C MEQF WE MOPF TO SOLVE THF SYSTEM (W&A)UCEAY* 
C MEQF WE MOPF TO SOLVE THF SYSTEM (W&A)UCEAY* 
C STR IS A JOL GINEAR EQUATION SOLUTION HDITIME.
C STR IS A JOL GINEAR EQUATION SOLUTION HDITIME.
C
C
    EALL %OH(AA,NPT,NPT,H8TAR,NPT,1.8230,WDOK)
```

 EALL %OH(AA,NPT,NPT,H8TAR,NPT,1.8230,WDOK)
    ```


```

 OO 21S IEI,NPT
    ```
    OO 21S IEI,NPT
    00 21S J01,NPT
    00 21S J01,NPT
    OCHF(I)EOCHK(I)*A(I,N) UBPAH(J)
    OCHF(I)EOCHK(I)*A(I,N) UBPAH(J)
215 conTINUE
215 conTINUE
    CALG VOUI(OCNK,APT,19,19MOTHE VEETOK (APW)UC)
    CALG VOUI(OCNK,APT,19,19MOTHE VEETOK (APW)UC)
    Dत <>(1)&,Nm
```

 Dत <>(1)&,Nm
    ```


```

 DU 220 JEI,NET
    ```
```

 DU 220 JEI,NET
    ```


```

220 CONTINUE

```
```

220 CONTINUE

```




```

C

```
C
C WITW WE CUMPUPE TME ESTIMATED SHAPE,
C WITW WE CUMPUPE TME ESTIMATED SHAPE,
f
f
r
r
O&w{dL 4}
O&w{dL 4}
WEs0(4b)(NDN(K),WEl, 20)
```

WEs0(4b)(NDN(K),WEl, 20)

```
\begin{tabular}{|c|c|c|}
\hline 302＊ & &  \\
\hline 3430 & & NCNECAHMODEAEs \\
\hline 3044 & &  \\
\hline 3458 & & Meao（48）（alves（8），fai，modra） \\
\hline 3468 & &  \\
\hline 3490 & &  \\
\hline \(340 \%\) & &  \\
\hline 1690 & & IFPNCMER，NE，MTRNSJ00 T0 183 \\
\hline 3508 & & OO 200 IEIoNODES \\
\hline 3510 & &  \\
\hline 3820 & &  \\
\hline 353＊ & &  \\
\hline \(354 *\) & 240 & conttmue \\
\hline \(355 *\) & &  \\
\hline \(356 *\) & C & \\
\hline 3170 & c & MERE WE Plot pme estimapeo smafe． \\
\hline \(358 \%\) & C & \\
\hline 3590 & &  \\
\hline 360 & & Calt facpon \((1,0)\) \\
\hline 3610 & & CALL PLOP（10．，0．0．03） \\
\hline 3624 & & CALL ACTOM（．000．3） \\
\hline 363 & c & \\
\hline 364＊ & c & \\
\hline 305＊ & & 60 P0 300 \\
\hline 34．6 & 250 & Unipe（to Est） \\
\hline 30．7＊ & & tsi60181801 \\
\hline 318＊ & E51 & Format（ismogemonaphis is neamby ifngulati \\
\hline 3690 & & White（0，252） \\
\hline 3100 & 232 &  \\
\hline \(371 \%\) & & IF（ISIE．5Y．6）60 P0 100 \\
\hline 3120 & & White（t，2ss） \\
\hline 3730 & 253 & POMNAT（／fisy，23MAEDEFINE THE MAPRIE A AR； \\
\hline 3740 & & Do 200 10i，NPT \\
\hline 3150 & &  \\
\hline 310＊ & 260 & continue \\
\hline 597＊ & & MRE10．tRM \\
\hline 3180 & & Map．tirn \\
\hline 3190 & & 6n Pe 205 \\
\hline 380\％ & c & \\
\hline \(361 *\) & 300 & COnTinut \\
\hline 302＊ & c & WEMP WE COMMUTE THE VECYOR O IN PME COMPAOL PROALEM． \\
\hline 303＊ & & DO 310 IESiNm \\
\hline \(364 *\) & & On 310 J＊sinPT \\
\hline 3050 & &  \\
\hline 306＊ & 310 & conitnue \\
\hline 3n7＊ & & CALG VOUT（ 0, MPT， 13,13 MOTME VECTMA D） \\
\hline 3 AB & 315 &  \\
\hline 34.4 & & U⿴囗十介P（6，204）WR \\
\hline 500\％ & & On 980 801，NET \\
\hline 301\％ & & （1）0c（l） \\
\hline 302\％ & & OCHK（8）a0． \\
\hline 3130 & & CO 32C Jui，Net \\
\hline 304＊ & & AA（1，d）\({ }_{\text {a }}(1, d)\) \\
\hline \(395 *\) & 320 & cuntinut \\
\hline 306＊ & c & \\
\hline 39\％\％ & \(c\) & \\
\hline 308＊ & \(c\) &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { 309: } \\
& \text { 400: }
\end{aligned}
\] & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(C\)
\(C\)}} \\
\hline 4010 & & \\
\hline -92* & & CALG SnM (AM,NPT, WPY, F, NPY, 1, 5350 , WOMK) \\
\hline - 30 & &  \\
\hline anct & & Do 30s luiompr \\
\hline 0050 & & On zas jesonPt \\
\hline -0, & &  \\
\hline -07* & 125 & Cintinue \\
\hline \(408{ }^{\circ}\) & &  \\
\hline 4094 & & no sin leipmm \\
\hline 810 & &  \\
\hline 911* & & DS 330 JBI, MPP \\
\hline 4120 & &  \\
\hline 43* & 330 & COntimue \\
\hline 614* & &  \\
\hline 4150 & & 1) \\
\hline 416 & & CALL VIUU'(ALPMA, NM, 3a, Зamotme vFcpon of actual cnefficiental \\
\hline 417* & c & \\
\hline 610* & c & \\
\hline 4198 & c & NOW WE COMPUTE THE SMAPE ROJUSTMENT. \\
\hline 420\% & e & \\
\hline \(4{ }^{40}\) & C & \\
\hline 4220 & & Do 335181.0 Nm \\
\hline \(423 *\) & &  \\
\hline 42** & 335 & COnfinut \\
\hline 425* & & CEmINt 45 \\
\hline 420* & & MraCes) (MON (K), KE1,20) \\
\hline 427* & & MEAO(US)NODES, MFREO \\
\hline 428* & & Yenftenenudese 3 \\
\hline 420* & &  \\
\hline 43 ¢ & & WEanf45)(tuUGS(1), 1-1, NOOFA) \\
\hline 4318 & & EEAD(ts) (FMED(1).JE1, NFME日) \\
\hline 432* & & On Tac aferinm \\
\hline 4330 & &  \\
\hline 444 & &  \\
\hline 4350 & & DO SAE 1EI, VODES \\
\hline 430 & &  \\
\hline 4370 & &  \\
\hline -30" & &  \\
\hline 430\% & 340 & Continut \\
\hline 440 & & If , iPPT.EC.I) 60 io 500 \\
\hline \(4{ }^{4}\) 1* & \(c\) & \\
\hline 402* & 6 & mat me plut eme cormectro shapeg \\
\hline 403* & 6 & \\
\hline 4** & &  \\
\hline 4050 & & Call factue \((1.0)\) \\
\hline 440 & & Call PLU'(10.0, O, O: \(=3\) ) \\
\hline 94\% & & (HL ACTUR(.0n6a) \\
\hline N40* & & \(6111_{11} 00\) \\
\hline ひ46\% & 450 & - Fitil (n,25!) \\
\hline 490 & & Istrsisicol \\
\hline \(4{ }^{46}\) & & FF(1816.69.10) 6n in avo \\
\hline 4520 & & -rtte (0, ess) \\
\hline 4530 & & no tan tasider \\
\hline \[
4540
\] & & \[
A(1,1)=A(1,1) \notin
\] \\
\hline \[
45 \%
\] & 360 & CTnTinut \\
\hline
\end{tabular}
```

| 456* | | MRE10.*RA |
| :---: | :---: | :---: |
| 439* | | **9.*触 |
| 458\% | | 0070315 |
| 450 | C | |
| 460\% | c | |
| 461\% | 125 | CONPINUE |
| 462* | 400 | continue |
| 463* | 500 | CONTINUE |
| 464* | | IFIIOPY.E0.1) 50 P0 510 |
| 465* | | CALL PLOP (10.s0.8999) |
| 466: | 510 | CONTINUE |
| 467 | | SYOP |
| 468* | | Eivs |

```


```

SUBROLTINE TRANS{X,Y,Z,XP,YP)
QEAL K,Y,Z,XP,YP
THETAE30.0
OR=3.1416/180.0
MPE(X-Y)*CDB (THETA*OF)
VPg(X*F)*SIN(THETA早OR)*2
MEPURN
ENO

```
Output
fhenufmetea

\begin{tabular}{|c|c|c|c|c|c|}
\hline .213a0nstanz & -730na 307+ap & . \(23500397+02\) & .fexamivatny & -2xathisoons & -pascaspiphz \\
\hline -zannalzion? & . P8ns117s.0? & .25nmilis.ne &  &  &  \\
\hline -x0ynpronata & -ntoptionat & -antisnatanp & -aา710040n) & -maypantarap & -atryantoon? \\
\hline -nntanpananp & -ntraszafor & -bntanaparay & -nctannza*uz &  & -930n3>11*n7 \\
\hline -98908pilanz & -93958A2n+02 & -92934A20007 & .98nv9anats &  &  \\
\hline -611 Mivasone & -932anciecos & - \(0388 \mathrm{mal2anz}\) & & & \\
\hline
\end{tabular}
-naltinne and oinectinna ne comtholionsemuation pithts

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & col & COL & COL & CHL & mL & C＇L & Cil & \(\mathrm{cm}_{2}\) \\
\hline Rn＊ & 1 & 1．2a312an＝nt & －1．0899an5－0， & －2．04nastoun， & － 7 ．risinios－ri & －3．13pa 109001 & －3．13nal90－119 & －2．799anna－Cl & －r．00Rexas－at \\
\hline nn＊ & ？ &  & 4，3M96770－c4 & 9．90555196－C7 & P－5117＞an－nt & 3，A19193001 & 4．3MSpnasoni & 3，B3apannool & 2，5n＞a214－01 \\
\hline nou & ， & －4．aizianjona & －1．93a90．32－01 & －2．715asapent & \(\rightarrow\)－9t9kplnonl & －2．2079970．31 &  & A．054754n－ct & 1．050nkaroni \\
\hline RTM & 4 & 1，apphationt & －4．ns1956a－0\％ & 1．1904aR5－nt & C．arsarsoment & 4, Pneplaseol & 2．5s7pansent & －rapanily－np & －7．018404P－01 \\
\hline Rr．a． & 5 &  & 1．0170n35001 & 2，h171161－nt & 1，Ahanpro－rt & －1．1098914001 &  & －s，an5009000nt & －2．05p2ali－01 \\
\hline 0 mm & ： & 3．rpznasiond & －1．solicaseo & 20， &  & －a． & \(\rightarrow{ }^{-1}\) & 1－raparacon & 2，n573404001 \\
\hline nnu & ， & G．nssamin－na & i．nsaarsenc & 2．panizen－0i & \(1 . \operatorname{norassa-ni~}\) & －3．14nsnes－01 & －2．7999¢n9－n！ & p．anhainionit & p，assestanl \\
\hline nhw & ： & 2．1717321－04 & i－staparas－01 & a．9pabat3－n） & －3．annopat－n！ & －2．173ana－01 & 3．319n72anni & p．9pTrahamit & －1．009nnip－01 \\
\hline anm & ir & 1．3ヶn5ırbons & 3．3014753．02 & Pa596a＞00－71 & \(\rightarrow\)－Pasmphnon！ & －3．150444901 & P．015715n－01 & fitsrapnconi &  \\
\hline RH\％ & 11 & －4．2tiantoen & －1．0591091－01 & tomannozasol & P．inmoanami & －2．91151140n & －Pantiana－ni & 3．15001ntont & n，30 3n－704－n？ \\
\hline & & Cnt & COL 10 & COL 11 & 0 Cl 1？ & CaL is & COL 94 & CIL is & CM It \\
\hline RIN： & \(\frac{1}{5}\) & －1．0n906890．A & －1．263129，\({ }^{\text {a }} 1007\) & 1．0A99005－nt & ？ 0 nanas70001 & 2．759n193－n！ &  & 3．13naloment &  \\
\hline \％nu & ？ & 10 1 Pr9atioul & － & 込 & ， & S．stileheor & Pratily－01 & & \\
\hline anm & － & －i．spantofent & －1．52760asona & －．091nsan－nk &  & －x．seanisoor & －¢，＞ancrapooi & －2．ssiphnjon！ &  \\
\hline nh． & 5 & －1．a7607＞P－n＞ & －2．2513423－04 & －1．a17nns5－n1 & \(\cdots\)－atrlation & －1．abaspre－n & －1094910－n1 & 3．apponhton！ &  \\
\hline Rnis & ＊ & 7.19176610 Cz & 3，2220450008 & 1．520001A＝01 & 1．05azationt & －1，ARSOPA4－Cl &  & －7．235apitan & 1，arphomio01 \\
\hline all & \％ & 1．3n5n2ns－01 & 1.1763297004 & －1．5n13091－03 & P．4595A95－01 & 3，96n3atsool & S． \(254 \mathrm{altio03}\) & －3．paspianory & －3，59R1045001 \\
\hline MnM & \(\stackrel{\square}{0}\) & －5．0950h1400\％ & －0．03s530R－0s & －1．85anspena & －2tantiza－ & －1．3074359003 & \(3.7504023-n 1\) & R．19 Jasnax & －f．04thintent \\
\hline nnu & 0 & －1．4170093－01 & －4．1717327－04 & －1．5natavaeot & －1．024n40 \({ }^{\text {and }}\) & 3， 5 Parzat－n！ & 2．17BAPn＝01 & －8．3190¢7anort &  \\
\hline 品い & 10 &  &  & 3．sn1isabnn？ &  & －p．nansinton & －3．1803947－n1 & gealsnimnont & 2．TVratiorat \\
\hline & 11 & －1．atoliazest & －n．2714470004 & －1．4551093－01 & 1.0 nvocpamit & 3．1sonmegont & －7．911514004 & －2onopiancont & S．354910700 \\
\hline nn＊ & & \[
\mathrm{col}_{2.0 \mathrm{arasag}}^{51}
\] &  & & & & & & \\
\hline now： & & 2．9n2as35－n1 & 9.9790437002 & & & & & & \\
\hline and & ， & \(1.150 n 6540 n 1\) & 1．17994An－n！ & & & & & & \\
\hline anw & \({ }^{\circ}\) & 2．01641192－01 & 1．5944700－01 & & & & & & \\
\hline nox & 5 & 2．092251001 & 1，160723－07 & & & & & & \\
\hline nnı & － & 2．bspransent & 9.191246100 ？ & & & & & & \\
\hline not & ！ & －3．1s3anang & \(1.309 n 269.01\) & & & & & & \\
\hline Rnu & 7 & －2．an9shmon & 1．01791997－¢1 & & & & & & \\
\hline nnu & 10 & －2．67517） & －1．94n97 x9－n？ & & & & & & \\
\hline nna & 11 & R．343A70h－0\％ & －1．017314ア－n） & & & & & & \\
\hline \multicolumn{10}{|l|}{pue mathixa} \\
\hline & & col & ctio & CHI & r．7． 4 & cmi & C！ll \({ }^{\text {a }}\) & CO & col \\
\hline \(\operatorname{mon}_{\substack{\text { and } \\ 0}}\) & ！ &  &  &  &  & Ffaphalstoll &  & On，0apastn－11 &  \\
\hline phas & 1 & 5，apirannola & －י＂ravilor &  & \(00_{\text {an：Alonnon？}}\) & －1．oدnsantory & －1．＂tannra－¢ & ，„in¢＞＞17－nt & －1．8Saplypoon \\
\hline nnu & a & －2．404597＞－19 & －9．12418120．7a &  & P，rinntivank &  &  &  &  \\
\hline & & & & & & & & &  \\
\hline
\end{tabular}



5


-




n


\[
=
\]



uv.dentis \(\div\)


등


-




\(2.712119400 n\)





\(-\)

E.
ㄹ

- A. 3234.507-91
-2.017n99440n
\(\stackrel{3}{3}\)




COL 13

-

\[
\approx
\]

\(m\)

\[
=
\]

\[
\begin{aligned}
& 20 \\
& 0 \\
& 0
\end{aligned}
\]
\(4901470-10\)
\(630590 n e 0 y\)

\[
\div
\]
른






(ADB) My \(\circ\)
0.
\(i\)
\(i\)
0
0 cretual corpiteiputs

 T0 11 2.1n014nionr 9.003249300 C
 tue matain aan
rOL 2






\section*{Bibliography}
1) "Large Space Structures - Challenge of the Eighties," Special Section Astronautics and Aeronautics, October 1978, Vo1. 16, No. 10, pp. 22-51.
2) Stakgold, I., Green's Functions and Boundary Value Problems, 1st ed., Wiley, New York, 1979.
3) Luenberger, David, Optimization by Vector Space Methods, Wiley, New York, 1969.
4) Meirovitch, Leonard, Analytical Methods in Vibrations, MacMillan, London, 1967.
5) Leissa, A.W., "The Free Vibration of Rectangular Plates," Journal of Sound and Vibration, Vo1. 31(3), 1973, pp. 257-293.
6) Roach, G.F., Green's Functions: Introductory Theory with Applications, Van Nostrand, London, 1970.
7) Hildebrand, Francis B., Advanced Calculus for Applications, Second Edition, Prentice-Hall, N.J., 1976.
8) Sobolev, S.L., Partial Differential Equations of Mathematical Physics, Addison-Wesley Publishing Company, Reading, Massachusetts. 1964.
9) Aubin, J.P., Applied Functional Analysis, John Wiley \& Sons, New York, 1979.
10) Blum, E., Numerical Analysis and Computation: Theory and Practice, Addison Wesley, Reading, Mass. 1972.
11) Burden, R., Faires, J., Reynolds, A., Numerical Analysis, Prindle, Weber and Schmidt, Boston, Mass. 1978.
12) Clough, R. and Penzien, J., Dynamics of Structures, McGraw Hill, 1975.
13) Zienkiewicz, O.C., The Finite Element Method in Engineering Science, McGraw-Hil1, London 1971.```

