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SUMMARY 

A hal f - sca le  model  of a por t ion  of t h e  NASA Langley  8-Foot  Transonic  Pressure 
Tunnel w a s  used t o  conduct some turbulence  reduction  research  using  screens,  honey- 
comb, and  combinations  thereof. The experimental resu l t s  a r e  compared with  various 
theor ies .  The ax ia l   tu rbulence   reduct ion   for   sc reens  agrees with  the  Prandt l   theory,  
whereas the   l a te ra l   tu rbulence   reduct ion   agrees   wi th   the  Dryden and  Schubauer theory.  
Screens  alone  reduce  axial   turbulence more than   la te ra l   tu rbulence .  Honeycomb alone 
reduces lateral  turbulence more than  axial   turbulence.  Because  of t h i s   d i f f e r e n c e ,  
t he   phys i ca l  mechanism for   decreasing  turbulence  for   screens  and honeycomb must be 
completely  different ,   and  these mechanisms are speculated on herein.  The turbulence 
reduction of a screen when placed downstream  of t h e  honeycomb is  f a r   b e t t e r   t h a n   t h a t  
fo r   t he   s c reen   a lone   w i th   t he   r e su l t   t ha t   t he  honeycomb with a downstream screen is  
an  excellent  combination  for  reducing  turbulence.  

INTRODUCTION 

A more energy e f f i c i e n t   a i r c r a f t  is becoming a desirable   goal .  One method  of 
ach iev ing   th i s   goa l  is to   dec rease   t he   a i r c ra f t   d rag .  It has   been  es t imated  that   the  
o v e r a l l   a i r c r a f t   d r a g   c a n  be  reduced  approximately 40 percent  by achieving  laminar 
f law  over   the  re la t ively  large wing area.   (See  ref.  1 . )  I n   o r d e r   t o  be meaningful, 
laminar  flow a i r f o i l   r e s e a r c h   t e s t s  must be conducted i n  a very low turbulence wind 
tunnel .  One means of straightening  the  f low  and  decreasing  wind-tunnel  turbulence is 
t o  use  screens and honeycomb a s   f l u i d  flow  manipulators,  for example see  references 2 
and 3 .  Because of the  pressure  drop and add i t iona l  power r e q u i r e d   t o  overcome t h e  
drag of the  manipulators when they   a re   ins ta l led   in   the   f low  s t ream,   these  manip- 
u l a t o r s   a r e   g e n e r a l l y   i n s t a l l e d  i n  t h e   s e t t l i n g  chamber a rea  j u s t  upstream of t h e  
contract ion  in   the  lowest   speed  port ion of t he  wind tunnel.  

There a r e  a number of theories   avai lable   for   predict ing  the  performance,   turbu-  
lence  reduction  and  pressure loss, of various  f low  manipulators,   for example, re fe r -  
ences 4 through 13. However, s ince  many of t he   d i f f e ren t   t heo r i e s   a r e   based  on a 
given s e t  of experimental   results  and are therefore   empir ica l   in   na ture ,   these   d i f -  
f e r en t   t heo r i e s   f a i l   t o   p red ic t   cons i s t en t ly   t he   t u rbu lence   r educ t ion   pe r fo rmance   fo r  
a par t icular   manipulator .  For  example, see  references 5 through  10,  and 13. Because 
of these   incons is tenc ies ,   cor re la t ion  of the  data   herein  with  the  var ious  theories  
w a s  attempted  and  additional  manipulator  data were obtained. The r e s u l t s   a r e  
reported  herein.  

The p r e s e n t   t e s t s  were  conducted  with  an  available model flow  duct  used t o  eval- 
uate  turbulence  reduction  modifications  for  the  Langley 8-Foot  Transonic  Pressure 
Tunnel. A discussion of the  f inal   manipulator   configurat ion  selected and a descrip- 
t i o n  of the  f low  duct   used  for   the tests a re   p re sen ted   i n   r e f e rence  14. Some t e s t i n g  
e x p e r i e n c e   d i r e c t l y   r e l a t e d   t o   t h e  development  of t he   f i na l   con f igu ra t ion  is  pre- 
sen ted   in   re fe rence  15. 

The flow  duct  included a one-half  scale  simulated  cooler  and 45O tu rn ing  vane. 
A porous  plate  with 45 percent  open area w a s  i n s t a l l e d  downstream  of t h e  45O tu rn ing  
vane t o   s e r v e  as a uniform  turbulence  generator.  Various  combinations of honeycomb 



and  screen  manipulators  were  tested. The  mean  test  speed  varied  from  7.62  to 
18.29  meters per  second ( 2 5  to 60  feet  per second).  Both  the  axial  turbulence  and 
lateral  turbulence  were  measured  by  using  conventional  hot  wires. The  turbulence 
reduction  was  averaged  over  the  speed  range,  and  the  turbulence  reduction  results  are 
correlated  with  various  theories.  Honeycomb  alone,  screens  alone,  and  honeycomb- 
screen  combinations  were  evaluated. 

SYMBOLS 

Values  are  given  in  both SI and U.S. Customary  Units.  The  measurements  and 
calculations  were  made in U.S. Customary  Units. 
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measure  of  deflection of air  defined  by  difference  between  upstream  and 
downstream  velocity  normalized by upstream  velocity, 0 < B < 1 (see 
ref. 7) 

screen  wire  diameter,  cm  (in.) 

output  voltage  of  hot  wire,  V 

differential  value of E, dE 

rms  voltage  perturbation, @/E 

turbulence  reduction  factor,  turbulence  with  manipulator  divided  by 
turbulence  without  manipulator 

pressure-loss  coefficient,  Ap/q 

constant  value  that K approaches  at  very  high  values  of  Reynolds 
numbers  (see  ref. 7) 

integral  length  scale of initial  turbulence,  m  (ft) 

hot-wire  calibration  constant, k = 1 denotes  slope  of  equation ( 3 ) ;  
k = 2 denotes  intercept  of  equation ( 3 ) ;  j = 2  or 3 denotes  one  wire 
of  cross-wire  probe 

depth  of  honeycomb  cell,  m  (in.) 

screen  mesh,  wires/2.54  cm  (wires/in.) 

fluid  mass-flow  rate 

number  of  data  points 

static-pressure loss across  flow  manipulator,  N/m2 ( lb/f t2 ) 

dynamic  pressure of fluid, 2 pU , N/m ( lb/ft2) 1 2  2 

Reynolds  number 
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S-,Sij 1 hot-wire calibration  constants  (see appendix), i = 1 denotes 
u' ; i = 2  denotes v' ; j = 2 or 3 denotes one  wire of cross-wire 
probe 

U  mean  f hid-f low velocity, m/s (ft/sec) 

U axial  velocity  fluctuation 

U' rms velocity  perturbation in axial direction, /u2/U2 

V lateral  velocity  fluctuation 

V' 
- 

rms  velocity  perturbation  in  lateral direction, \lv2/u2 

a ratio of flow  angle of incidence with respect to  normal to screen 
surface  for  upstream  flow  to  angle of incidence for downstream  flow 

B screen  porosity,  screen  projected  open area divided by total  area 

6 angle of flow  with respect to hot wire 

P fluid mass density, kg/m3 (lb/ft3) 

standard  deviation of value of measured  turbulence 

standard  deviation of mean value of measured  turbulence % 

Subscripts: 

m measured 

nom nominal  value 

U axial  turbulence 

V lateral  turbulence 

t  theoretical 

Abbreviations: 

HC honeycomb 

rms root mean  square 

Designations: 

4M18M,20M, 
28M136M,42M J 

screen-mesh  designations (see  table I) 

1/16 HC,1/8 
1/4 HC,3/8 HC 

honeycomb  designations  (see  table I) 
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MODEL AND INSTRUMENTATION 

The  test  facility  consisted  of  a  flaw  duct  containing  a  half-scale  model  of the 
Langley  8-Foot  Transonic  Pressure  Tunnel  (TPT)  cooling  coils  and  45O  turning  vanes. 
The  cooling  coils  were  simulated  and  were  not  used as.heat exchangers.  All  tests 
were  performed  under  adiabatic  conditions. The duct  cross  section  is 0.46 m 
(18.25  in.)  square and  thus  only  a small section  of  the  full-scale  tunnel  is  simu- 
lated. A sketch  of  the  model  is  shown  in  figure 1. A  porous  plate  0.1588  cm 
(0.0625  in.)  thick  with  0.476-cm-diameter  (0.188-in.)  holes  was  installed.  Alternate 
rows  or  columns  of  holes  were  staggered;  the  horizontal  hole  spacing  was  0.711  cm 
(0.28  in.)  and  the  vertical  spacing  was  1.123 cm (0.442  in.). The  porous  plate  had  a 
45-percent  open  area  and  was  installed  0.61  m (24 in.)  downstream  of  the  trailing 
edge  of  the  45O  turning  vane  measured  along  the  center  line  of  the  duct.  This  plate 
was  installed to generate  a  turbulence  above  that  of  the  basic  duct  and  thereby to 
make  the  results  more  general  rather  than  be  specifically  related to the  8-Foot TPT 
type  cooler  and  turning  vane. 

The air  drive  system  (sketched  in  fig.  l(a))  consisted  of  three  tip-air-driven 
high-speed  motors.  The  motor  had  a  blade  passage  frequency  between  2200  and 
5867 HZ= The  motors  were  enclosed  in  an  acoustic-lined  box  with  internal  acoustic 
baffles to  keep  the  motor  noise  from  contaminating  the  measured  turbulence  data. 

The  dimensions of the  screens  chosen  for  evaluation  are  presented  in  table 1. 
The  various  mesh  sizes  were  chosen to  cover  a  wide  range.  A  major  consideration  was 
the  screen  percent  open  area  which m s t  be kept  subcritical  (ref.  51,  namely  at  least 
58 percent  open. 

The  screens  were  permanently  mounted  in  square  frames,  with  a  frame  thickness  or 
screen  spacing  equal  to  between 80 and  100  screen  mesh  sizes.  The  data  in  refer- 
ence 16 indicate  that  almost  all  the  turbulence  decay  occurs  within  50  to  75  screen 
mesh  sizes  downstream  of  the  screen.  Therefore,  whenever  multiple  screens  were  being 
evaluated,  the  corresponding  frame  thickness  provided  assurance  that  turbulence  was 
adequately  decayed  before  the  air  flow  encountered  the  next  manipulator. 

The  honeycomb  characteristics  chosen  for  evaluation  are  also  presented  in 
table 1. The  honeycomb  material  was  aluminum  or  stainless  steel.  One  primary 
criterion  was  that  the  ratio  of  honeycomb  cell  length  to  cell  size  be  between 6 
and 8 (based  on  information  in  ref. 16). 

In general,  the  honeycomb  was  installed  in  the  duct  at  the  farthest  upstream 
position  of  the  manipulator  section  and  the  first  following  screen  was  positioned 
0.3 m ( 1 ft)  downstream  of  the  downstream  end of the  honeycomb.  (See  fig. 1. ) The 
turbulence  decay  data  in  reference 16 indicate  almost  complete  decay  at  a  distance  of 
23  to  25 cm (9 to  10  in. ) downstream  of a simulated  honeycomb  made  of  soda  straws. 
This  distance  corresponds  to  about  50  soda-straw  diameters  or  between 1 to  10  cell- 
depth  dimensions.  For  the  tests  herein,  the  0.3-m  (1-ft)  spacing  corresponds  to  32 
to  200  cell  diameters  or  4.5  to  28  cell-depth  dimensions,  respectively,  for  the  3/8 
to 1/16 cell  size  honeycomb. It is  therefore  assumed  for  the  data  presented  herein 
for  the  honeycomb-screen  combinations  that  the  turbulence  from  the  upstream  honeycomb 
is  almost  completely  decayed  before  encountering  the  first  screen. 

The  instrumentation  utilized  in  this  experiment  is  indicated  in  figure l(b). 
Two hot-wire  probes  were  installed  between  the  porous  plate  and  the  first  manipu- 
lator.  These  hot-wire  probes  measured  the  axial  turbulence  and  were  used to verify 
that  the  turbulence  upstream  of  the  manipulators  had  a  relatively  constant  value. 
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The  remaining hot-wire probes  were  used to measure the axial and lateral turbulence 
downstream of the various manipulators. These hot wires  were located 0.30 m (12 in.) 
downstream of the last downstream manipulator. All the hot wires had fixed locations 
during these  tests  and  all the hot-wire anemometers were operated in  the constant 
temperature mode. The downstream hot wires were isolated from wall vibrations by 
mounting them on a separate floor stand and  using a soft rubber seal between the duct 
wall and hot-wire support arm. The  tungsten wires were platinum coated and had a 
distance between supports of 1.5 mm (0.06 in.). The active wire  sensing length was 
1.25 mm (0.05 in.) and the wire diameter was 4 p (0.00015  in.) resulting in a 
length-to-diameter ratio greater than 300. The single wires were aligned normal to 
their respective probe axes and the probe axes were aligned with the mean flow 
direction. The two cross wires were aligned in parallel planes  with a spacing of 
1 mm (0.04 in.). These  planes  and the axis of the probe were aligned with the mean 
flow direction. The hot-wire data were recorded with a high-pass 2-Hz and a low-pass 
50-kHz  filter. Typical spectra of the axial component of turbulence for various mean 
speeds upstream and downstream of a manipulator are shown in figures  2(a) and 2(b), 
respectively. 

In addition to  the hot-wire instrumentation, two standard acoustic microphones 
were used. Both microphones were mounted flush with the duct wall and were isolated 
from wall vibrations by using independent floor supports and a flexible rubber seal 
in the duct wall. One microphone was located approximately 0.41 m (1.33 ft) down- 
stream of the center line through the  trailing edge of the  turning vane. The other 
microphone was located 0.53 m (1.75 ft) downstream of the most downstream hot 
wires. These microphones were used to detect acoustic noise within  the duct which 
could affect the hot-wire (or turbulence) measurement. A more detailed discussion of 
this problem can be found in reference 15. A sketch of the general dimensions and 
instrumentation location is shown in figure l(b). Typical spectra for the farthest 
downstream microphone  for various speeds are  shown in figure 2(c). 

Three variable capacitance pressure transducers were  used to measure static- 
pressure differences. One pressure transducer was used to determine the pressure 
difference across the manipulator. The other two were used to measure the static and 
difference between total and static pressures within the duct. Further details about 
the model or instrumentation can be found in reference 15. 

HOT-WIRE MEASURING ACCURACY 

To evaluate the accuracy of the hot-wire data, the data reduction equations were 
reviewed. (See appendix.) This review indicated that a direct evaluation of the 
sensitivity of the input parameters  was not possible. Therefore, mean values of all 
the input variables  were chosen. Then  an arbitrary fl0-percent error in each vari- 
able was introduced, one  variable at a time, into the data-reduction equations. The 
results are shown in figure 3. In figure 3(a), the resulting errors in axial and 
lateral turbulence  for input error in  the measured voltages are shown; in fig- 
ure 3(b), the errors for input errors in the hot-wire calibration constants are 
shown. The results show the nominal (mean) value of turbulence  and the fl0-percent 
error range. The  figures show that the axial-turbulence (u') error generally stays 
within the flo-percent band, whereas the lateral-turbulence (v') errors can be much 
larger than f10 percent. The data reduction equations indicate  that errors in 
measurement with the cross-wire probe  will not affect the axial turbulence, but 
errors in the single-wire measurements  will affect the lateral turbulence. In other 
words,  it is more difficult to obtain accurate lateral  turbulence than axial 
turbulence. 
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A further  assessment  of  the  accuracy was made as follows. Recall t h a t  t w o  ho t  
wires ( s i n g l e  wire probes)  w e r e  placed  between  the  porous plate a n d   t h e   f i r s t  manipu- 
lator. (These wires were used t o  ver i fy   tha t   the   tu rbulence   l eav ing   the   porous  plate 
and/or   enter ing  the  manipulators  w a s  r e l a t i v e l y   c o n s t a n t . )  The measured  output  from 
one  (upstream) w i r e  w a s  t abula ted   over  a 30-day per iod.   This   tabulat ion  included 
175 da ta   po in t s ,  5 duc t   ve loc i t i e s ,  2 d i f f e r e n t   h o t  wires (one w a s  broken  during  the 
time pe r iod ) ,  and many different   manipulators .  The r epea tab i l i t y   o f  the da ta  w a s  
e v a l u a t e d   s t a t i s t i c a l l y  (i.e., t h e  mean and  standard  deviation a) f o r  each  of t h e  
f i v e   d u c t   v e l o c i t i e s .  A t  a duct   veloci ty  of 18.3 m/s (60.0 f t / s ) ,  the scatter f o r  
95  percent of t he   da t a  (2a) f e l l   w i t h i n  f12  percent of t he  mean; a t  15.24 m / s  
(50.0 f t / s ) ,  f5.7  percent; a t  12.2 m / s  (40.4 f t / s ) ,  f4.5  percent; a t  9.1 m/s  
(30.0 f t / s ) ,  f4.7  percent;  and a t  7.62 m/s (25.0 f t / s ) ,  f5.4  percent.   Since  the 
18.3-m/s (60.0-f t /s)   duct   veloci ty  was qu i t e   no i sy  and  had a r e l a t i v e l y   l a r g e  
s c a t t e r ,  it w a s  d i s regarded   in  most  of the   da ta   p resented   here in .  The s tandard  
d e v i a t i o n   i n   t h e  mean value of  measured turbulence az var i e s   i nve r se ly   a s   t he  
square  root of t he  number of data  points  averaged (i.e.,  0~ = a x / p .  In   other  
words, t h e   l a r g e r   t h e  number of values  averaged  the more accura te  is t h e  mean value 
(averaged  number). By averaging  the  turbulence  measurements   for   four   veloci t ies ,  
15.24,  12.2,  9.1,  and 7.62 m/s  (50.0, 40.0,  30.0,  and 25.0 f t / s ) ,   t h e   e r r o r   i n   t h e  
mean value  decreases by one-half .   If   the  previously  estimated errors for  one h o t  
wire are assumed t o  apply t o  each  of t he   o the r  wires in  the  system  and  the  turbu- 
lence measurements f o r  one manipulator are averaged  over  the  four  speeds,  an esti- 
mated error of 2.5 t o  3 percen t   r e su l t s .  Of course,   averaging  the measured 
t u r b u l e n c e   l e v e l s   f o r   d i f f e r e n t  mean d u c t   v e l o c i t i e s   r e s u l t s   i n  a pseudoturbulence 
leve l .  However, this   pseudoturbulence  level  w i l l  have less scatter (more accura te )  
and  can  be  used f o r   r e l a t i v e  comparisons  of  different  manipulator  configurations.  

During t h e  tes t  program, d i f f i c u l t i e s  were sometimes  encountered in   ove rd r iv ing  
the  amplif iers   for   the  hot-wire   instrumentat ion.  This d i f f i c u l t y  w a s  resolved by t w o  
techniques. The f i r s t  was t o   u s e   t h e  dc of fse t   ava i lab le   wi th in   the   ho t -wire   s igna l -  
conditioning  equipment. The second w a s  t o   t a k e  t w o  rms-output  voltmeter  readings: 
one  reading w a s  taken a t  the  desired  gain  set t ing  (determined by the  tape  recorder  
requirements)  and  the  other a t  the  next  lower ga in   s e t t i ng .  These two ou tpu t   l eve l s  
were compared (for  acceptance),   manually  recorded,  and  averaged  in  the  data-reduction 
process.   In  general ,  t w o  add i t iona l   da t a   po in t s  were averaged a t  each  duct  speed. 
This   averaging   decreased   the   sca t te r   (or   e r ror )   in   the   repor ted   tu rbulence   fur ther .  

On the   bas i s  of the  preceding  discussion,  it is concluded t h a t   t h e  measured  and 
average  axial   turbulence  (pseudoturbulence)   data   presented  have  an  uncertainty of 
approximately 2 percent .  From the  previous  discussion of f i g u r e  3, it is est imated 
tha t   the   average  lateral  turbulence  (pseudoturbulence) may have  an  error  as  high as 
4 percent.  

The hot  wires w i l l  respond t o  acous t i c  waves as w e l l  a s   v o r t i c i t y   ( t u r b u -  
lence).  This  problem  can  be  minimized by keeping  the  acoust ic  energy  wel l  below t h e  
turbulent   energy.   In   other  words,  with  only a few turbulence  manipulators   ( re la t ive 
small turbulence  reduct ion)  and a small pressure  drop  ( lower  drive motor acous t i c  
no ise) ,   the   tu rbulence   energy  w i l l  be r e l a t ive ly   h igh  compared wi th   the   acous t ic  
energy. A comparison  of t h e  microphone  measurements  downstream  of the  manipulator 
( f i g .  2 ( c ) )  with  the  hot-wire-measured  turbulence  frequencies  (f igs.  2 (a )  and 2 ( b ) )  
show tha t   t he   acous t i c   ene rgy   has  a r e l a t i v e l y  small e f f e c t  on t h e   o v e r a l l   h o t - w i r e  
rms vo l t age   ou tpu t   fo r   t he   p re sen t   t e s t s .  

6 



TESTS 

The tests  were  conducted by installing the manipulators, sealing  the duct, and 
running the  tests  over  the velocity  range.  At  each  duct  velocity the output from the 
pressure  transducers  was  read manually on digital voltmeters. The hot-wire rms 
voltage  outputs  were  also  recorded manually. The hot-wire and  acoustic  signals  were 
then  recorded  on an FM tape recorder  for later, more detailed,  data  analysis. For 
the porous  plate only (no other flow  manipulators), the measured axial  and  lateral 
turbulence  at the farthest  downstream  station  were equal (i.e., within the accuracy 
range)  over the entire  operating  speed range. It was therefore  assumed  that 
turbulence  was  nearly  isotropic  entering the downstream  flow manipulators. 

DISCUSSION 

Various  turbulence  reduction  theories (refs. 5 through 10 and 13) have  been 
compared  with the experimental  results  obtained herein. The  results presented are 
actually a small portion of the  total amount  of  data accumulated  during the  test 
program. The  results  presented  are  typical  of  the data  obtained. These  results 
are  presented  in  sections entitled: ( 1)  "Review of Theories," (2) "Screens," 
(3) "Honeycomb and  Honeycomb  Screen Combinations," ( 4 )  "Spectra and Correlation," 
and ( 5) "General  Comments. 

Review of Theories 

The  most important  parameter  defining  screen  performance  (turbulence  reduction) 
is  the pressure-loss coefficient K. The pressure-loss coefficient is defined  as the 
static-pressure loss across the manipulator Ap divided by the dynamic pressure  q 
of the  mean  flow  through the manipulator.  Some common  assumptions in the theories 
are  that the flaw upstream of the manipulator is isotropic  and  homogeneous,  that the 
turbulence  level  is  small  compared  with  the  mean free-stream  level,  and that the 
fluid is  incompressible. 

In reference 8, the  mean  resistance of the screen to turbulence, or the energy 
change across the screen, KE; (where E; is  at the station of the  screen) is 
equated to  the difference  between the upstream  turbulent energy E; and  the 
downstream turbulent  energy E; or KE; = E; - E;. It was  reasoned in reference 8 
that  the turbulence  downstream of the screen cannot change  after it  leaves the 
screen:  in other words, change in turbulence due to the  screens  occurs  on the 
upstream  side only, i.e., E; = E;. Since  the  turbulence velocity is proportional 
to the square  root of the turbulent energy, from the  turbulent energy equation the 

turbulence  reduction  factor  becomes = The experimental  data  presented 

in  references 5 and 8 seem to verify this  theoretical  reduction law. 

U' 1 

"; \sl+x' 

In reference 4, Prandtl  stated  that  screens  can be used to obtain  a  more  uniform 
velocity distribution  across the duct section  and  that  a  moderate velocity difference 

is approximately  lower by the factor -. This  factor  has  subsequently  been  shown 

to equal  one of the boundaries  for  turbulence  reduction  across  a screen. In refer- 
ence 6, Collar  used Bernoulli's equation to equate the loss in  total  head to  the 
local  pressure  drop  through the gauze  (screen).  He then  used  the  momentum  equation 

1 
1 + K  
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t o  de te rmine   the   increase   in  momentum of t h e   f l u i d   i n   a c c e l e r a t i n g   t h r o u g h   t h e  
reduced area of t h e  gauze. Assuming t h a t   t h e   p e r t u r b a t i o n   v e l o c i t i e s  are small 

V' 

compared t o   t h e  mean flow  velocity,  he showed t h a t  - = - 3 2 - K  
v'  2 + K  1 

In   reference 13, a more e labora te   ana lys i s  w a s  presented.  Taylor  and  Batchelor 
accoun ted   fo r   t he   f ac t   t ha t   i f   t he   f l ow is nonnormal t o  the  manipulator  upstream, it 
w i l l  be turned  toward  the  normal downstream. Further ,   they showed from  experimental 
d a t a   t h a t   f o r  a given  screen  over a nominal ve loc i ty   range ,   the  ra t io  ( a )  of t h e  
flow-angle  out of the   sc reen  (6) t o  the   f low  angle   in to   the   sc reen  (8) is  
approximately  constant.   Further,  from t h e  test  d a t a   ( r e f .  5 )  t h e   r a t i o  a equals 

1 .l 
" and t h i s   r a t i o  is approximately  equal t o   t h e  la teral  turbulence  reduct ion 
41 + K 
f ac to r .  By us ing   po ten t ia l   f low  theory  and accoun t ing   fo r   t he  boundary  conditions on 
both  s ides  of the  screen,   they showed ( r e f .  13) t ha t   t he   ax i a l   t u rbu lence   r educ t ion  
factor  squared w a s  e q u a l   t o  

3 2 2'' - tl 1 

and  the lateral  turbulence  reduct ion  factor   squared is equal t o  

+ a - a K )  - (1 + a + K )  2 
V U 

where 

2 (1 + a - aK) 2 E =  
(1 + a - - 4a 2 

and 

(1 + a + K ) ~  - 4 
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As shown i n   r e f e r e n c e  13, t h e   r e s u l t s  of these  equations  can  be  reduced t o  t h e  
ax ia l   tu rbulence   reduct ion   fac tor  of 

l + a - a K  
1 + a + K  

and t h e  lateral  tu rbu lence   r educ t ion   f ac to r   equa l   t o  a. By t h e   d e f i n i t i o n  of 

a = a can  vary  between 0 and 1. In   reference 13, Taylor  and  Batchelor show 

t h a t  when a = 0,  t he i r   ax i a l   t u rbu lence   r educ t ion  is i d e n t i c a l   w i t h   t h a t  of Prandt l  
( r e f .  41, and when a = 1, t he i r   r educ t ion   f ac to r  becomes i d e n t i c a l  t o  Collar  
( r e f .  6 ) .  The theo ry   i n   r e f e rence  13 is the  only one t h a t   p r e s e n t s  a l a t e r a l  
turbulence  reduct ion  factor .  

Screens 

Based on the   tu rbulence   reduct ion   theor ies ,   the  most important  parameter  for 
defining  screen  performance  ( turbulence  reduction) is the   p ressure- loss   coef f i -  
c i e n t  K. I n   f i gu re  4, t he   p re s su re - los s   coe f f i c i en t  is p l o t t e d  as a funct ion of 
the   duc t   ve loc i ty   for   var ious   representa t ive   sc reens   and   sc reen   combina t ions .  

The flow  pressure loss through a screen  can  be a funct ion of  numerous  param- 
eters, f o r  example, s c reen   so l id i ty   ( r e f .   13 ) ,  Reynolds number ( r e f .  7 ) ,  and Mach 
number ( r e f .   17 ) .  For t h e  tests he re in ,   t he  Reynolds number based on the   sc reen  
wire  diameter is  r e l a t i v e l y  low,  namely,  from 100 t o  600. Therefore ,   var ia t ions   in  
t he  Reynolds number can  have a l a r g e   e f f e c t  on the   p re s su re  loss, and  the computed 
pressure- loss   coef f ic ien t  w a s  determined by us ing   the   p rocedures   in   re fe rence  7. In  
reference 7, t he   p re s su re - los s   coe f f i c i en t  K is e q u a l   t o  

K = K  + -  55.2 
0 

RW 

where 

0.95f3 

Projec ted  open area = ( l  - MD) 2 6 =  To ta l  area 

% = Reynolds number based on w i r e  diameter 
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The  variation of pressure loss across  the  screen  with  velocity  is  shown in 
figure 5 ,  the  corresponding  calculated  values  (from  ref. 7 )  are  shown  as  dashed 
lines.  The  agreement  with  the  measured  results is  not  good,  quantitative  errors  in 
the  calculated  results  being  as  great  as 50 percent,  although  the  calculated  results 
do  show  the  correct  trends  with  velocity  and  screen  physical  characteristics.  The 
prediction  from  reference 7 is  semiempirical  as  indicated  by  experimental  verifying 
information. The lack  of  correlation  with  the  data  herein  implies  that  the  pressure 
drop  across  the  screens  may  be  dependent on other  parameters  not  considered 
previously,  such  as  upstream  incoming  turbulence  level  or  scale  of  turbulence. 

The  measured  turbulence  reduction  divided  by  the  theoretical  turbulence 
reduction  is  plotted in  figure 6 as  a  function  of  test  velocity. The theoretical 
turbulence  reduction  information  was  obtained  from  references 5 and 8, namely 

1 

\Il+rc 
. The  results  show  both  the  axial u' and  lateral v' turbulence  reduction - 

u'  and  v'  being the  rms  velocity  perturbation  along the  respective  axes.  The 
measured  turbulence  reduction  was  obtained by measuring  the  turbulence  with  the 
manipulators  installed  and  dividing  these  values  by  the  measured  turbulence  without 
the  manipulators.  The  measurements  were  made  in  the  same  physical  location  with or 
without  the  manipulators.  If  it  is  assumed  that  the  upstream  turbulence  (upstream  of 
the  manipulators)  is  the  same  with  and  without  the  presence  of  the  manipulators,  then 
the  previously  described  turbulence  reduction  is  equal  to  the  ratio  of  the  downstream 
turbulence  with  the  manipulator to  the  downstream  turbulence  without  the  manipulator; 
that  is, 

u' upstream 
u' downstream without  manipulator 

U = (- u'  upstream 
u' downstream with  manipulator 

- - u'  downstream  with  manipulator 
fu  u'  downstream  without  manipulator 

Recall  that  one  of  the  upstream  hot  wires  was  used  to  verify  that  the  turbulence  was 
constant  for  all  manipulators,  including  an  open  duct;  therefore,  this  assumption  has 
been  verified  at  least  for  the  axial  component.  Perfect  correlation  would  result  in 
a  value  of  one  for  the  ordinate  in  figure 6. The  important  point  in  figure 6 is that 
the  lateral  turbulence  reduction v' is  predicted  fairly  well  by  the  theory,  whereas 
the  measured  axial  turbulence  reduction  is  approximately 25 percent  lower  than  the 
values  predicted  by  theory. The  axial  and  lateral  turbulence  do  not  have  the  same 
reduction. If the  measured  and  the  theoretical  reduction  varied  with  the  same 
function of speed,  then  the  ratio  of  these  two  reduction  factors  would  be  independent 
of speed.  Even  though  there  is  considerable  scatter  in  the  data  in  figure 6, the 
mean  data  do  not  vary  much  with  speed. 

Shown  in  figure 7 is  a  plot  of  the  turbulence  reduction  factor  for  various 
screen  mesh  sizes.  Values  of  both  axial  and  lateral  turbulence  reduction  are 
shown. As discussed  with  regard  to  figure 6, the  ratio  of  measured  and  theoretical 
turbulence  reduction  does  not  vary  significantly  with  speed;  in  order to minimize 
the  experimental  scatter,  improve  the  accuracy,  and  simplify  the  evaluation  of  the 
correlation  as  a  function  of  screen  mesh  size,  the  data  were  averaged  over  the  speed 
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range. The theore t ica l   tu rbulence   reduct ion   fac tors   p resented  are also  based on t h e  
ari thmetic  average  value of the   p ressure- loss   coef f ic ien t   over   the  speed range. 
Figure 7 is presented t o  compare, more e a s i l y ,   t h e   d i f f e r e n t   t h e o r e t i c a l   p r e d i c t i o n s  

fo r   d i f f e ren t   s c reens .  The theory  from  references 5 and 8 ,  namely 

aga in   p lo t ted   wi th   the  same conc lus ion   a s   i n   f i gu re  6. Because  of the   l ack  of 

co r re l a t ion   fo r   t he   ax i a l   t u rbu lence ,   t he   t heo ry   i n   r e f e rence  4, namely - 

is also shown. This   re fe rence   p resents   the   reduct ion  as a smoothing e f f e c t  of t h e  
mean flow  and  not as a turbulence   reduct ion   fac tor .  However, re fe rence  13 implied 
tha t   t he   f ac to r   cou ld  be  used as a tu rbu lence   r educ t ion   f ac to r   ( t h i s  is  d i scussed   i n  
more d e t a i l  later i n   t h i s  report). This   reduct ion   fac tor   on ly   appl ies   to   ax ia l  
turbulence.  A comparison of t h i s   t h e o r y   ( i n   r e f .  4 )  with  the measured r e s u l t s   i n  
f i g u r e  7 shows improved cor re la t ion   wi th   the  measured axial   turbulence  reduct ion 
data.  

1 
\II+' is 

1 
1 + K' 

Also shown i n   f i g u r e  7 is the  theoret ical   turbulence  reduct ion  using  the 

theory from reference 6, namely a reduct ion  factor   equal  t o  - 2 - K  
2 + K' This 

theory  and  that   presented  in   reference 4 a r e  shown in   r e f e rence  13 t o  be degen- 

e r a t e  cases of t he  more general   theory,  namely 

experimental ly   determined  to   be  equal   to  - . These t h e o r e t i c a l   r e s u l t s   a r e  1.1 

a l s o  shown i n   f i g u r e  7. d l  + K 

l + a - a K  
l + a + K  

. In   reference 13, a is 

The theory   in   re fe rence  7 is derived on the   bas i s  of  smoothing  of axial   f low 
nonuniformities  rather  than  turbulence  reduction  (Case (i) i n   r e f .  7 . )  The f i n a l  
r e s u l t s  are 

U'  downstream - 
U '  2 - B + K  

- 2 - B - K ( l  - B )  

upstream 

where 

For B = 0 t he   t heo ry   degene ra t e s   t o   t he   t heo ry   i n   r e f e rence  6 and f o r  B = 1 t h e  
r e s u l t s   a r e   i d e n t i c a l   t o   t h e   t h e o r y   i n   r e f e r e n c e  4. This  theory is  not  shown i n  
f i g u r e  7 because  the t w o  extremes  are  already shown. Figure 7 shows t h a t   t h e  
measured ax ia l   tu rbulence   reduct ion  seems to   agree   wi th   the   theory  of reference 4 
and  the measured lateral turbulence  reduct ion seems t o  agree  with  the  theory of 
reference 5. 

In   reducing   tu rbulence ,  mltiple screens are of ten   used   ( re f .  5 ) .  From t h e  
previous  discussion,  it is s e e n   t h a t   t h e   a x i a l  and l a t e r a l   t u r b u l e n c e s  are not  
reduced  the same amount a f t e r   t h e  flow  has  passed  through  one  screen.  (See  fig. 7.) 
However, almost a l l  the   tu rbulence   reduct ion   theor ies  assume tha t   the   ups t ream 
turbulence is i s o t r o p i c .   A f t e r   t h e   f l u i d  passes through  one  screen,  this  flow 
r e q u i r e s   s u f f i c i e n t   d i s t a n c e   t o  become i so t ropic   for   the   succeeding   sc reens .  With 
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t h i s   p recau t ion ,   t he   co r re l a t ion   w i th   ava i l ab le   t heo r i e s  w i l l  proceed by assuming 
that  the  upstream  turbulence  for  each  succeeding  screen is isotropic. 

A correlation  of  the  measured  and  theoretical   turbulence  reduction  factor 
averaged  over  the  speed  range  for  multiple  screens is p r e s e n t e d   i n   f i g u r e s  8 
and 9. The t h e o r i e s  from  references 4 and 5 are presented  because  they  agreed w i t h  
measured turbulence   reduct ion   in   the  axial  and lateral  d i rec t ions ,   respec t ive ly  
( f i g .  7 ) .  The order  of t h e   f i r s t   f o u r   s c r e e n   c o n f i g u r a t i o n s  on the   absc i s sa  of 
f igu re  8 w a s  s e l e c t e d  t o  i n d i c a t e   t h e   e f f e c t  of   adding  screens  in   ser ies .   In  
f i g u r e  8 a l l   s c r e e n s  had a 10.2-cm (4- in . )   separat ion  dis tance,   except   the one 
case   t ha t  w i l l  be  discussed  subsequently. When us ing   mul t ip le   sc reens ,  it is  
poss ib le  t o  estimate the  theoret ical   performance by t w o  methods. First, t h e  
recommended procedure  ( ref .  8)  i s  t o  assume t h a t  each  screen  acts  independently 
and compute the   r educ t ion   f ac to r  of   each   sc reen   separa te ly ,   and   then   ml t ip ly   these  

reduct ion   fac tors   toge ther  i. e. , 1 

tha t   t he   t o t a l   p re s su re - los s   coe f f i c i en t  1s e q u a l   t o   t h e  sum of those of t h e  
individual   screens  and  proceed  to  compute the   r educ t ion   f ac to r   fo r   t he   equ iva len t  
system i.e., replace the  individual   screens  with one sc reen   t ha t   has  a pressure  

loss equal   to   the  sum of the   ind iv idua l   sc reens ,  + CK . Both  of these  es t imates  

a re   p re sen ted   i n   f i gu re  8. As e x p e c t e d ,   t h e   c o r r e l a t i o n   i n d i c a t e s   t h a t   t h e   f i r s t  
p rocedure   resu l t s   in   the   bes t   cor re la t ion ,  namely t o  assume t h a t  each  screen  operates 
as an  independent  unit.  Also, it appears   that   the   axial   and la teral  turbulence 
reduct ion  agrees   best   wi th   the  theories   in   references 4 and  5,   respectively.  
Further,  as the  number of sc reens   increases ,   the   theory  i n  reference 4 is somewhat 
op t imis t i c  and  reference 5 is less o p t i m i s t i c   a s  compared with  the  experimental 
data.  The last  two sc reen   t e s t   cond i t ions ,  shown i n   f i g u r e  8, are f o r   t h e  t w o  
screens with a 20.3 cm (8 in . )   spac ing  and f o r   t h e  two screens   the  same d is tance  
apart   but  one screen mesh ro t a t ed  45O wi th   respec t   to   the   o ther .  The t e s t   d a t a  show 
t h a t   t h e r e  is very l i t t l e  d i f fe rence  i n  t u rbu lence   r educ t ion   fo r   e i t he r  of t h e s e   l a s t  
two conditions compared wi th   t ha t   fo r   t he  two screens  with a 10 .2  cm ( 4  in . )   spacing.  

( lTm) . The second p o s s i b i l i t y  is t o  assume 

( 
-) 

Addit ional   data   using  mult iple   screens  with a much coarser  mesh are   p resented  
i n   f i g u r e  9. The r e su l t i ng   co r re l a t ion   aga in   i nd ica t e s   t ha t   t he   l a t e ra l   t u rbu lence  
reduction  agrees  well   with  the  theory i n  reference 5. Also,  t he   ax i a l   t u rbu lence  
reduction seems to   agree   bes t   wi th   the   theory  of reference 4,  however, the  cor-  
r e l a t i o n  is not   as  good a s   w i th   t he   l a t e ra l   t u rbu lence .  

Honeycomb 

There are only  l imited  data  available  about  the  performance of honeycomb i n   t h e  
l i t e ra ture .   F igure  10 is a p l o t  of the   s ta t ic -pressure   d rop   as  a function  of 
ve loc i ty   for   the   var ious   ce l l -d iameter  and cel l -depth honeycombs used in   t he   s tudy .  
The data  were obtained from  an in t e rpo la t ion  and ex t r apo la t ion  of the  manufacturer ' s  
r e s u l t s .  The only  data  measured  herein were f o r   t h e  1/4 HC (1/4-in.  honeycomb). ~ l l  
the  honeycomb depths   tes ted were chosen  with a r a t i o  of cell  l e n g t h   t o  cel l  diameter 
between 6 and 8. Presented   in   re fe rence  10 is a theory  for   determining  the  pressure 
loss f o r  a honeycomb tha t   has   fu l ly   deve loped   tu rbulen t   f low  wi th in   each   ce l l   bu t  
t hese   da t a   a r e   no t   i nc luded   i n   f i gu re  10. This is because  the  cell- length Reynolds 
number f o r   t h e   t e s t e d  1/4 HC is about 40 000,  and  from reference 10 t h e   c e l l  flow 
would not  be fu l ly   t u rbu len t ;   t he re fo re ,   t h i s   t heo ry  is  not  expected  to  apply.  The 
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comparison  of  the  manufacturer's  data  with  the  measured  honeycomb  pressure  loss  shown 
in  figure 10 is  not  very  good. 

Another  method  for  estimating  the  pressure loss for  the  honeycomb  is  suggested 
and  described  as  follows.  This  method  is  valid  for  Reynolds  numbers (R), based  on 
the  cell  depth,  values  less  than  about 100 000. Then  it  can  be  assumed  that  the  cell 
flow  is  two  dimensional  with  a  laminar  boundary  layer.  The  equivalent  skin  friction 
based  on  wetted  area  is  determined  from 1. 328/R1I2 (e.g., see ref. 18). In  turn,  the 
total  wetted  honeycomb  surface  area  for  one  unit  of  cross  sectional  area  and  the  drag 
or  pressure  loss  per  unit  of  area  is  determined.  The  results  of  applying  this 
procedure to  the 1/4 HC are  shown  in  figure 10. The  agreement  is  good. 

When  honeycomb  is  used to reduce  turbulence,  it  is  usually  used  in  combination 
with  screens.  Figure 1 1  presents  the  measured  turbulence  reduction  for  honeycomb 
alone  and  for  honeycomb  with  various  downstream  screen  combinations. In addition, 
various  theoretical  reduction  factors  are  presented. 

As mentioned  previously,  there  is  very  little  experimental  or  theoretical 
honeycomb  turbulence  reduction  information  available.  Since  there  is  no  theoretical 
design  information  available  (except  ref. lo), it  might  be  constructive to  use  the 
theory  for  screens to  predict  the  performance  of  honeycomb  and  honeycomb  Screen 
combinations. A review  of  the  theoretical  derivations  for  the  turbulence  reduction 
for  screens  indicates  that  the  details  of  the  manipulator  are  very  general,  that  is, 
a  device  with  a  pressure  drop.  In fact, in  reference 13, the  turbulence  reduction  is 
developed  as  a  function  of  a  parameter a. As  by  definition, a is  equal  to  the 
ratio  of  the  flow  angle  of  incidence  with  respect to the  normal  existing  in  the 
manipulator to  the  flow  angle  of  incidence  with  respect to  the  normal  entering  the 
manipulator.  For  honeycomb,  if  the  flow  always  exits  normal  and  therefore a = 0, 
then  the  theoretical  turbulence  reduction  is  identical  to  that  in  reference 4, namely 

1 
1 + K' 
the  turbulence  reduction  is  identical  to  that  in  reference 6, namely - 2 - K  

2 + K' Both of 

these  limits  are  presented  in  figure 11. A l s o ,  since  screens  are  involved,  the 
theory  in  reference 5 is  shown  (recall  that  this  theory  predicts  the  lateral 
turbulence  reduction  for  screens  adequately).  The  decay  requirements  described  in 
reference 16 have  been  satisfied as discussed  in  the  section  entitled  "Model  and 
Instrumentation."  The  theoretical  and  experimental  turbulence  reduction  in  figure 1 1  
show  poor  correlation.  In  particular,  the  measured  axial  and  lateral  turbulence  both 
are  lower  than  the  theory  for  honeycomb  alone  and  for  honeycomb  with  screens.  Note 
that  the  turbulence  downstream  of  the  honeycomb  alone  is  not  isotropic  since  the 
axial  and  lateral  turbulence  are  not  equal.  This  turbulence  is  also  the  upstream 
turbulence  for  the  screens  in  the  honeycomb-screen  combinations.  Because  of  the  lack 
of correlation  with  the  honeycomb  alone,  the  data  were  retabulated  and  plotted in 
figure 12. 

Also,  if  there  is  no  turning  of  the  flow  in  going  through  the  manipulator, 

The data  of  figure 12 are  presented  with  the  turbulence  shed  from  the  honeycomb 
representing  the  duct  turbulence  without  the  manipulator,  and  the  turbulence 
downstream  of  the  honeycomb  and  screen  combination  representing  the  turbulence  with 
the  manipulator. In  other  words  the  turbulence  downstream  of  the  honeycomb  replaced 
the  "baseline"  turbulence of the  empty  duct. The  correlation  of  theory  and 
experiment  in  figure 12 is  not  good.  The  theory  in  reference 6 is  optimistic  for 
the 28M and 36M screens.  One  very  important  point in figures 1 1  and 12 is  that, 
with  honeycomb  alone or with  the  honeycomb-screen  combination,  the  measured  lateral 
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turbulence  is  reduced  more  than  the  axial  turbulence. This effect  is  unlike  screens 
alone  where  the  axial  turbulence  is  reduced  more  than  the  lateral  turbulence.  This 
fact  implies  that  the  mechanism  by  which  these  two  manipulators  (honeycomb  and 
screens)  reduce  turbulence  are  different. 

Figures 13  and 14 present  plots  of  the  turbulence  reduction  ratio  for  various 
honeycomb  cell  sizes.  The  results  are  for  a  combination  of  honeycomb  and  screens. 
The data  in  figure  13  were  obtained  with  a  2-Hz  high-pass  filter  and  in  figure 14 
with  a  100-Hz  filter.  These  data  were  obtained  to  determine  if  there  is  an  optimum 
honeycomb  cell  size  for  the  same  input  turbulence.  Recall  that  all  the  data 
presented  have  a  ra*io  of  honeycomb  cell  length to cell  diameter  between 6 and 8. 
It appears  that  the 1/8 HC  and  screen  combination  may  provide  the  best  performance; 
however,  the  differences  are  not  great  enough  to  reach  any  conclusion.  It  is 
possible  that  the  incoming  turbulence  scale  has  an  effect  on  honeycomb  cell  size  and 
subsequent  performances  to  reduce  the  v'  component. 

Spectra  and  Correlations 

This  section  presents  representative  spectra  amplitude  as  a  function  of 
frequency  for  the  hot-wire  data. All the  plots  presented  are  log-log  plots  and  all 
spectra  are  for  a  duct  speed  of  18.2  m/s  (60  ft/s).  The  spectra  are  presented to aid 
in  determining  the  mechanism  and  to  reinforce  the  previously  described  findings 
concerning  screens  and  honeycomb  turbulence  reduction.  The  u'  spectra  were 
obtained  from  an  analysis  of  the  recorded  single  hot-wire  output.  The  v'  spectra 
were  obtained  from  an  analysis  of  the  recorded  difference  between  the  two  cross  hot- 
wire  signals. The  latter  procedure  requires  that  the  two  cross  wires  have  the  same 
sensitivity,  which  they  do  not.  However,  the  data  used to  represent  the  resulting 
lateral  turbulence  spectra  presented  do  provide  general  trend  information.  Since  the 
levels  presented  do  not  include  the  hot-wire  sensitivities,  the  ordinate  scale  of  the 
spectra  is  relative  rather  than  absolute. 

The axial  and  lateral  spectra  for  screens  alone  are  shown  in  figures  15(a) 
and  (b),  respectively.  The  screen  data  can  be  compared  with  the  data  for  the  open 
duct  (porous  plate)  which  are  shown  as  a  solid  line  in  the  figures.  The  42M  screen 
(42  wires  per  inch  (2.54  cm))  reduces  the u' component  of  turbulence  more  than  the 
8M screen.  (See  fig.  lS(aI.1  This  is  as  expected  because  the  pressure-loss 
coefficient  for  the  42M  screen  is  larger  than  that  for  the  8M  screen.  Screens  alone 
reduce  the  level  of  turbulence  at  frequencies  below  1000  Hz.  The  axial  turbulence  is 
reduced  more  than  the  lateral  turbulence,  as  was  shown  previously  for  the  averaged 
rms  turbulence. 

Spectra  for  the 1/4 HC  axial  and  lateral  turbulence  are  presented  in  fig- 
ures  16(a)  and  (b),  respectively.  Two  different  curves  for  the  honeycomb  are  shown 
with  the  hot  wire  0.30  m  (12  in.)  and  0.91  m (36 in.)  downstream  of  the  honeycomb. 
As shown  previously,  the  honeycomb  alone  decreases  the  lateral  turbulence  more  than 
the  axial  turbulence.  Further,  as  might  be  expected,  figure  16(b)  shows  that  the 
honeycomb  reduced  the  large-scale low frequencies  much  more  than  the  small-scale 
high-frequencies  of  turbulence.  In  fact,  some of the  small-scale  high-frequency 
lateral  turbulence  (scale  smaller  than  the  honeycomb  cell  size)  could  pass  right 
through  the  honeycomb.  The  small-scale  high-frequency  turbulence  is  the  turbulence 
that  decays  most  rapidly  due to  fluid  viscosity.  Comparing  the  curves  for  the  0.30-m 
(12-in.)  and  the  0.91-m  (36-in.)  distance  downstream  of  the  honeycomb  in  figure 16 
shows  that  the  high-frequency  turbulence  decays  the  most  rapidly.  At  the  0.30-m 
(12-in.)  distance,  the  honeycomb  actually  increases  the  turbulence  level  for  the 
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v' component  above  that  of  the  open  duct  for  frequencies  above  about 2000 Hz. This 
implies  that the  honeycomb  transfers  the  large-scale v' turbulent  energy to the 
small-scale  high  frequency  region.  (Generally it is  the  large-scale  eddies  that 
contain  most  of the  turbulent  energy.)  Comparing  figures 15 and 16, it  is  evident 
that,  because  of  the  difference  in  the  spectra  downstream  of  the  two  types  of 
manipulators,  the  turbulence  reduction  mechanism  for  screens  and  honeycomb  is 
different. 

This  same  effect  can  be  seen  more  clearly  in  figure 17 where  the  spectra  for  the 
screen  alone  and  honeycomb  alone  for  the  0.30-m  (12-in.)  distance  are  replotted on 
the  same  figure. As indicated  previously,  the  screen  reduces  the  turbulence  level 
rather  uniformly  across  the  spectra.  Whereas  the  honeycomb  alone  reduces  the 
turbulence  level  mostly  in  the  low-frequency  portion  of  the  spectra. It is  the  low- 
frequency  portion  of  the  spectra  where  the  energy-containing  eddies  exit. 

Spectra  for  the  axial  and  lateral  turbulence  for  honeycomb  alone  and  honeycomb 
and  screen  combinations  are  presented  in  figure 18. Recall  that  the  hot  wire  is 
always 0.30 m ( 1 2  in.)  downstream  of  the  last  manipulator;  therefore,  for  the 
honeycomb  screen  combinations  the  hot  wire  is  farther  downstream  of  the  honeycomb 
alone. Thus,  the  small-scale  high-frequency  turbulence  downstream  of  the  honeycomb 
has  had  more  time to decay.  (See  fig. 16. )  Figure 18 shows  that  the  previously 
described  separate  honeycomb  and  screen  mechanisms  for  reducing  turbulence  are 
present. 

Note  that  the  spectra  show  the  existence  of  a  discrete  frequency  at  about 450 Hz 
that  becomes  more  pronounced  as  the  overall  level  of  turbulence is reduced.  This 
frequency  is  due to  a  standing  acoustic  wave  within  the  duct  and  is  described  more 
fully  in  reference 15. 

Information  about  the  integral  length  scale  of  turbulence  is  provided by  fig- 
ures 19 and 20. The  integral  time  scale  is  usually  defined  as  the  area  under  the 
autocorrelation  curve.  For  the  case  herein,  the  single  hot  wire  which  measured  the 
u' component  of  turbulence  was  used to determine  the  autocorrelation  curve,  with  the 
integral  length  scale  being  determined by multiplying  the  integral  time  scale  by  the 
velocity. 

Shown  in  figure 19 is  a  plot  of  the  integral  length  scale  against  the  duct 
velocity.  The  integral  scale  for  the  open  duct  and  numerous  combinations  of  screens 
only  are  presented. A least-squares-fit  straight  line  is  drawn  through  the  open-duct 
data  and  all  the  screen  data.  The  integral  length  scale  can  be  directly  related to 
the  turbulence  spectra.  For  example,  a  relatively  small  integral  scale  is  associated 
with  high-frequency  turbulence,  whereas  a  large  integral  scale  is  associated  with 
low-frequency  turbulence. 

A great  deal  of  scatter  in  the  data  is  shown  in  figure 19 although  the  least- 
squares-fit  straight  line  indicates  that  screens  seem to  decrease  the  scale  of 
turbulence  when  comparing  screens  and  open-duct  data.  This  implies  that  the  overall 
effect  of  adding  screens  is to  decrease  the low frequencies  more  than  the  high 
frequencies.  The  intermediate  effect  of  adding  screens  may  be to  decrease  the  lower 
frequencies  of  turbulence  and to  reintroduce  small-scale  turbulence  from  the  wires. 
The previously  described  spectra  of  turbulence  indicated  that  for  screens  the  overall 
rms  levels  were  decreased  and  the  integral  scale  indicates  that  the  overall  frequency 
content  is  shifted to the  higher  frequencies. 
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Since  the  hot  wire  was  at  a  constant  distance  downsteam  of  the  last  screen,  the 
variation  of  integral  length  scale  of  turbulence  with  speed  must  be  interpreted 
carefully  because  the  time  required  for  the  fluid to traverse  the  constant  distance 
to the  hot  wire  decreases  as  the  speed  increases.  Thus,  as  speed  increases,  there is 
less  time  for  viscous  decay,  and  it  is  the  higher  frequencies  that  decay  more  rapidly 
due  to  viscous  decay. 

Shown  in  figure 20 is  a  plot  of  the  integral  length  scale  of  turbulence  as  a 
function  of  velocity, for  honeycomb  only  and  various  honeycomb-screen  combinations. 
A least-squares-fit  straight  line  is  drawn  through  the  open-duct  and  the  honeycomb 
data  at  the  two  downstream  distances.  The  large  increase  in  the  integral  length 
scale  for  the  honeycomb  at  the  two  distances  downstream  is  an  indication  of  the  rapid 
viscous  decay  of  the  high  frequencies  of  turbulence.  The  relatively  large  difference 
in  integral  length  scale  of  turbulence  between  the 0.30 m ( 1 2  in.)  and 0 .91  m ( 3 6  
in.)  indicates  that  the  high-frequency  turbulence  decayed  while  the  fluid  traversed 
the  extra  distance. 

General  Comments 

The  previously  presented  turbulence  reduction  has  been  replotted  in  figures 2 1  
and 22 in  order  to  obtain  a  different  perspective. The  different  theories  in  fig- 
ure 21 show  a  large  variation  in  predicted  turbulence  reduction.  More  disturbing  is 
the  existence  of  experimental  data,  presented  in  many  of  the  referenced  reports  that 
support  the  validity  of  each  individual  theory.  For  example,  references 5 and 8 
present  data  that  correlate  with  the  theory  in  reference 13. Further,  references.6, 
7, 8, 9, and 13 present  data  to  correlate  with  the  respective  theories  presented.  In 
most  cases,  the  theories  presented  are  quite  simple  potential  flow  solutions  assum- 
ing  an  inviscid  fluid.  The  Reynolds  number  effect,  which  is a viscous  effect,  dis- 
cussed  previously  with  regard  to  the  screen  pressure loss has  been  neglected  in  the 
theories.  The  pressure-loss  coefficient  which  is  obviously  an  important  parameter 
for  smoothing  out  the  mean  stream  flow  may  not  be  the  primary  parameter  for  decreas- 
ing  turbulence.  Certainly,  scale  of  turbulence,  in  general,  is  expected  to  be  much 
smaller  than  the  general  scale  of  mean  flow  nonuniformities.  Using  only  the  rms 
value  of  turbulence  in  only  the  axial  direction  does  not  provide  a  very  thorough 
definition of the  complete  three-dimensional  vorticity  field.  Apparently  the  theo- 
ries  greatly  simplify  a  very  complex  problem  and  provide  a  large  variation  in  the 
predicted  turbulence  reduction. 

Figure 22 is  a  plot of the  turbulence  reduction  factor  for  honeycomb  as  a 
function  of  the  pressure-loss  coefficient.  One  of  the  theoretical  curves  is  from 
reference 4 or  reference 13 with a = 0. The  other  theoretical  curves  were  obtained 
from  reference 10. The  theory  in  reference 10 is  a  function  of  the  pressure-loss 
coefficient  and  ratio  of  the  internal  length  scale  of  turbulence to  cell  length 
L/R. For  the  tests  conducted  herein,  this  ratio  is  estimated to be 0.4 and 0.7; 
therefore,  the  theoretical  curves  for  these  ratios  are  presented. 

Reference 10 assumes  that  the  cell  flow  is  fully  turbulent  and  shows  that  the 
honeycomb  completely  suppresses  the  transverse  component  of  the  velocity  immedi- 
ately  downstream  of  the  honeycomb.  The  data  presented  herein  were  measured 30.0 cm 
( 1 2  in.)  downstream  of  the  honeycomb;  therefore,  if  the  lateral  turbulence  was 
completely  suppressed  immediately  downstream  of  the  honeycomb,  the  fluid  would  still 
have  some  time  to  become  isotropic  by  the  time  it  reached  the  measuring  station.  The 
test  data  herein  certainly  show  that  the  honeycomb  decreases  the  lateral  turbulence 
more  than  the  axial  turbulence.  (See  fig. 1 1 . )  
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The one  test  point,  for  the  honeycomb  alone,  in  figure 22 does  not  correlate 
with  the  theories  presented.  The  theory  in  reference 4 is  pessimistic  and  the  theory 
in reference 10 is  very  optimistic. The  flow  within  the  honeycomb  cell  for  the  data 
presented  was  not  fully  turbulent  and  therefore  the  prediction  in  reference 10 is  not 
expected  to  apply.  There  is  no  theory  available  for  predicting  the  turbulence 
reduction  of  the  honeycomb  when  the  cell  flow  is  laminar. 

The data in  figure 11 for  honeycomb  alone  indicate  that  the  honeycomb  alone 
outperforms  all  the  screen  theories.  Previously,  it  was  shown  that  for  screens 

alone,  the  axial  turbulence  decreases  as - and  the  lateral  turbulence 

decreases as ' . Figure 12 shows  that  screens  behind  the  honeycomb  perform 

as - which  is  better  than  screens  alone.  This  implies  that  the  turbulence 
reduction  for  screens  is  a  function  of  the  upstream  turbulence  in  addition to the 
pressure-loss  coefficient.  None  of  the  available  theories  include  the  upstream 
turbulence  parameter  as  a  variable. 

1 + K  

\J1+x 
2 + K' 

Figures 6 through 9 show  that  screens  alone  reduce  the  axial  turbulence  more 
than  the  lateral  turbulence.  Figure 11 shows  that  for  honeycomb  alone,  the  lateral 
turbulence  is  reduced  more  than  the  axial  turbulence.  (Ultimately,  the  turbulence  is 
converted  into  heat  by  means of fluid  viscosity.)  Both  types of manipulators  reduce 
turbulence  by  changing  the  form  of  the  turbulence  and  encouraging  viscous  action. 
For  the  same  pressure-loss  coefficient,  it  appears,  based  on  the  present  data,  that 
the  best  turbulence  reduction  can  be  obtained  with  a  honeycomb  and  downstream  screen 
combination. 

Because  of  the  difference  in  turbulence  reduction  factors  for  screens  alone, 
honeycomb  alone,  and  screens  in  combination  with  honeycomb,  their  mechanism  of 
reducing  turbulence  must  be  different.  In  fact,  the  mechanism  for  manipulating  the 
turbulence  is  quite  complex  and  little  understood.  Because  of  the  laws  of  energy  and 
momentum  conservation,  the  manipulators  basically  change  the  characteristics  of  the 
turbulence.  In  addition,  the  manipulators  create  their own shed  turbulence  which  is 
added  to  the  flow  stream.  During  this  flow  manipulation,  viscosity  is  acting  con- 
tinuously  but  not  equally  on  all  frequencies  and/or  scales  of  the  turbulence. 

Assuming  for  the  moment  that  the  turbulence  is  very  low  frequency,  then  the 
behavior  of  the  manipulator  due to  mean  velocities  only  can  be  used to describe  the 
behavior  due to turbulence.  Because  of  the  honeycomb  cell  depth, it  becomes  dif- 
ficult  to  imagine  how  any  mean  lateral  velocity  can  exit  downstream  of  the  honey- 
comb.  On  the  other  hand,  it  is  difficult to  imagine  how  the  honeycomb  can  modify 
the  axial  velocity  distribution  since  the  pressure loss is  quite  small  but  not 
negligible.  Screens  operating  with  an  axial  velocity  variation  will  have  a  ten- 
dency  to  smooth  out  (spread  out)  the  higher  velocity  regions  into  the  lower  velocity 
regions  and  result  in  a  more  uniform  flow.  This  difference  in  performance  of  screens 
and  honeycomb  arises  because  of  the  relatively  higher  pressure loss across  the 
screens  as  compared  with  that  across  the  honeycomb. As the  mean  flow  angle  with 
respect to  the  normal  to  the  screen  increases,  the  openness  area  of  the  screen 
decreases as  the  cosine  of  the  angle  with  respect to the  normal.  Therefore,  screens 
will  not  be  expected to  turn  or  straighten  the  flaw  dramatically  as  compared  with 
honeycomb. The  behavior of the  mean  flow  is  now  used  to  describe  the  behavior  of 
turbulent  velocities.  This  information  will  then  be  applied to  the  manipulator 
performance  described  herein. 
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The tes t  da ta   ind ica te   tha t   for   sc reen   a lone ,   the   ax ia l   tu rbulence  is reduced 
more than   the  la teral  turbulence.  This information is consis tent   with  the  expected 
behavior of screens  based on these  deductions of mean flow.  Further,  from  the test 
data, it appea r s   t ha t   t he  honeycomb is an  excel lent   suppressor  of la teral  turbulence; 
t h i s  i s  also  consis tent   with  the  deduct ions of mean flow. However, the  experimental  
da t a   i nd ica t e   t he  honeycomb alone is a good suppressor of ax ia l   t u rbu lence  which is 
incons i s t en t   w i th   t he  mean flow  deduction. However, by inc luding   v i scous   e f fec ts ,  
this   behavior   could  be  visual ized as great ly   reducing la teral  tu rbu lence   d i r ec t ly  
with a subsequent   reduct ion   in   ax ia l   tu rbulence  as a r e s u l t  of  an  exchange  of  energy 
between  axes as the.   turbulence  tends t o  become i s o t r o p i c  downstream. Such a 
mechanism might  explain  the  fact   brought  out  in  connection  with  f igure 11 t h a t  
honeycomb reduced  axial   turbulence as much a s  a sc reen   wh i l e   r educ ing   l a t e ra l  
turbulence  even more. Therefore,  screens  and honeycomb behave different ly .   Screens 
a r e  more effect ive  in   reducing  axial   turbulence  and  the honeycomb is more e f f e c t i v e  
in   r educ ing   l a t e ra l   t u rbu lence .  

The data  show tha t   s c reens  downstream  of t h e  honeycomb have a better  performance 
than  screens  alone.  It appears   tha t   tu rbulence  downstream  of t h e  honeycomb is higher  
i n   t h e   a x i a l   d i r e c t i o n   t h a n   i n   t h e   l a t e r a l   d i r e c t i o n ,  and it is ax ia l   t u rbu lence   t ha t  
sc reens   a re  most capable of reducing.  Therefore,  the  combination  of honeycomb t o  
reduce  the  la teral   turbulence  fol lowed by a screen   to   reduce   the   ax ia l   tu rbulence  
l e f t  by the  honeycomb provides   an  excel lent   combinat ion  for   reducing  overal l  
turbulence.  

CONCLUDING =MARKS 

Tests of screens,  honeycomb, and various  combinations  of  these  turbulence 
manipulators  have  been  conducted. The a x i a l  and l a t e r a l   t u r b u l e n c e  and  pressure loss 
for  these  manipulators  have  been  measured.  Various  theories  intended t o  p r e d i c t   t h e  
turbulence  reduct ion  are   discussed and compared wi th   exper imenta l   resu l t s .  For t h e  
s a m e  isotropic   upstream  turbulence,   screens  reduce  axial   turbulence more t h a n   l a t e r a l  
turbulence.  The ax ia l   tu rbulence   reduct ion   for   sc reens   agrees   wi th   the   Prandt l  

theory -- 
1 + K' whereas   the  la teral   turbulence  reduct ion  agrees   with  the Dryden and 

Schubauer  theory 

on the   o the r  hand,   reduces  the  la teral   turbulence more than   the   ax ia l   tu rbulence .  
Because of t h i s   d i f f e rence ,   t he   phys i ca l  mechanism fo r   dec reas ing   t u rbu lence   fo r  
screens  and honeycomb must  be completely  different ,   and  these mechanisms are spec- 
u l a t ed  on herein.  The turbulence  reduction of a screen when placed downstream  of a 
honeycomb is  f a r   b e t t e r   t h a n   t h a t   f o r   t h e   s c r e e n   a l o n e   w i t h   t h e   r e s u l t   t h a t   t h e  
honeycomb with a downstream screen is an excellent  combination  for  reducing 
turbulence.  

1 

41+K 
(where K is the   p ressure- loss   coef f ic ien t ) .  Honeycomb, 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
November 20, 198 1 
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APPENDIX 

EQUATIONS FOR AXIAL AND  LATERAL  TURBULENCE  MEASUREMENT 

The equations  derived in this  appendix  were  used to determine the axial  and 
lateral turbulence  from  a  single  wire at 900  to  the  flow and to cross  wires at some 
angle to the flow. The  equations  are  standard  equations  (for example, see ref. 19) 
for using  hot  wires  in  a  constant  temperature  mode  and  are  presented  herein  for 
completeness. The output  voltage is 

where 

m  f h i d  mass-flow rate, pU 

6 angle of flow with respect to hot  wire 

The  differential of E can be written as 

For the low airspeeds used herein (U < 30.0 m/s (100.0 ft/s),  it is permissible to 
assume that the density is constant so that 

and hence 

dE (l/E) aE  dU + (1/E)  aE - =  
E w u )  au U a6 

Let e = de and u = dU so that 

- =  e a l n E g + a l n E d 6  
E a l n u u  a6 
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APPENDIX 

A s s u m e  t h a t  u and v are small per turba t ions   about   the  mean 

U U 

If   the   f low  angle  is de = a r c   t a n  - = then V V 

u + u  

L e t  e '  = 

rms values  and 
turbulence: 

u '  = and  v' = c, where p, \lu2, and \lv2 r ep resen t   t he  u '  U 

mult iply by 100 so t h a t  e ' ,  u ' ,  and  v '   represent  percent rms 

Define  the  hot-wire   sensi t ivi t ies  by S1 and S2, where 

- a In  E 
'1 a In  u - ( S e n s i t i v i t y  of w i r e  t o  U )  

- 
s2 - 

a In  E 
as (Sens i t iv i ty   o f  w i r e  t o  6 )  

These s e n s i t i v i t i e s  w i l l  be determined by c a l i b r a t i o n  of  each  individual  hot wire. 
The data  reduction  equation  then becomes 

A s s u m e  a three-wire  system where t h e   a x i s  of  one wire is a t  90° t o   t h e   f l o w  and the  
o ther  t w o  wires are a t  about f 4 5 O  t o   t h e  flow. The f i r s t  wire w i l l  not  respond t o  
v (S2 = 0 ) ; therefore ,  
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APPENDIX 

For wires 2 and 3: 

I 

e2 = Sl2u' + S22v' 

Solve the single-wire equation for the u' component of turbulence 

e' 1 u' = - 

Square the two equations for bhe cross wires, mltiply the first by S13S23 and the 
second by S12s22, and subtract the  two equations so that the cross-product term is 
eliminated and 

s13s23(e;2 - s2 12 u12) - s 12 s 22 (e'' 3 - sl3uv2) 2 = (s13s23s22 - '12'22':3) 2 

Solve for v' and recall that the u' component of turbulence is known from the 
single  wire (eq. (1 ) ) so that 

( s 13 s 23 sL 22 - s12s22s;3) 

This is the lateral component of turbulence. 

The sensitivity of the single wire S1 is determined by measuring the wire 
output (dc volts)  over the velocity range U of interest, and determining the slope 

for  a plot of  In E against In U '). Similarly, the sensitivities to U, 

and S13, are determined for the other  two cross wires. The sensitivities S22 

a In 

s12 
and are determined by measuring the cross-wire dc-voltage output €or a number 
of small angle variations 6. These sentivities  are then determined from the 

slope of a plot of In E against 6 €or the  two cross wires. All these 

sensitivities must be  measured in a relatively low-turbulence environment. Since 
these sensitivities (S22 and S 2 3 )  vary somewhat with speed, they are determined €or 
various speeds and  they are expanded and redefined as follows: 

s22 = L12U + L22 

'23 = L13u -+ L23 
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TABLE 1.- PHYSICAL  PROPERTIES OF FLOW MANIPULATORS 

( a )  Screens 

D e s i g n a t i o n  

4M 
8M 
2 OM 
28M 
3 6M 
42M 

Mesh, 
w i r e s / i n .  (2.54 an) 

4 
8 

20 
28 
36 
42 

Wire d i a m e t e r  

c m  i n .  

0.1270 
.0660 
.0230 
.o 190 
.O 165 
0 140 

0.0500 
.0260 
.0090 
.0075 
.0065 
.0055 

Open area, 
percent 

64 
63 
67 
62 
59 
59 

(b) H o n e y c o m b  

C e l l  s i ze  

i n .  mm i n .  c m  i n .  c m  

Material gage C e l l  l ength  
D e s i g n a t i o n  

1/16 HC 

.003 .0762 3 .OO 7.62 3/8 -952 3/8 HC 

.003 ,0762 1.50  3.81 1 /4 .635 1/4 HC 

.oo 1 .0254 .75  1.90 1 /8 .318 1/8 HC 
0.001 0.0254  0.50 1.27 1/16 0.159 

C e l l  l ength  
C e l l  s ize  

8 
6 
6 
8 
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( a )  Plan view of flow duct. (b) General  dimensions. 

Figure 1.- One-half scale model used in  turbulence  reduction program. 
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( a )  H o t  wire upstream of manipulator. 

Figure 2.- Typical  hot-wire and acoust ic  microphone spectra i n  flow stream for  various  speeds. Hot-wire ,: 
spec t ra   a re   for   ax ia l   tu rbulence .  Note 10-dB sh i f t   i n   o rd ina te   o r ig in   fo r  each  speed  range. 
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Figure 2.- Continued. 
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Figure 3.- Calculated  turbulence  using  typical  input  values and introducing  fl0-percent  error 
for  one variable  ( indicated on abscissa) .  Up f l a g  on symbol corresponds t o  +lo-percent  error 
i n  one input  variable and down f l a g  corresponds t o  -10-percent error .  
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Figure 4.- Pressure-loss  coefficient  as  function of  duct  velocity  for various 
screens  and  screen combinations. 
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Figure 8.- Turbulence reduction  factor  for  various  screen and screen  combinations. 
Note two 20M screens  at  different  screen  spacing and  two 20M screens  with  the 
wire weaves at  45O to each other. 
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Figure 10.- Static-pressure loss across  honeycomb as function of velocity. 
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Figure 12.- Turbulence reduction  factor  for  screens downstream of 1/4 HC. Turbulence 
reduction from HC is not  included in  screen  turbulence  reduction. (Turbulence 
downstream of HC i s  considered  turbulence  without  manipulator.) 
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Open duct 

Frequency, Hz 

( a )  Axial  turbulence, u ' .  

Figure 15.-  Spectra of turbulence  €or two screens and  no screens. Coordinate scale  
relative  to  other  presented  spectra  only. 
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Figure 15. - Concluded. 
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(a )  Axial  turbulence, u'. 

Figure 16.- Spectra of turbulence  for 1/4 HC a t  two  downstream distances and  no 
honeycomb. Ordinate scale  relative  to  other  presented  spectra  only. 
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( a )  Axial turbulence,  u'.  

Figure 17.- Comparison of spec t ra   for  open duct, honeycomb only, and screen  only. 
Ordinate   scale   re la t ive  to   other   presented  spectra   only.  
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Figure 17.- Concluded. 
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Figure 18 .- Comparison of spectra of turbulence for open  duct, honeycomb only, 
and honeycomb with  screens.  Ordinate scale r e l a t i v e  t o  other   presented 
spectra only. 
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screens.  Least-square-fit  straight-line  through data shown. 
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