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MLS Vertical Guidance and Navigation For a STOL
Airpiane Landing on an Elevated STOLport

David N. Warner, Jr.

SUMMARY

In contrast to CTOL landing operations, STOL airplanes landing on short
STOLport runways typically begin the flare maneuver before reaching the
runway surface. Vertical guidance procedures have been developed to allow
an autoland flight control system for a STOL airplane to use Microwave
Landing System ?MLS) 4ignals as altitude and sink rate references for flare
initiation, with a transition to radar altimeter after the airplane is over
the runway. The implementation has min{mum impact on the contro’ system and
landing performance. Data is presented which show validation ol the
concepts in a simulator. '

INTRODUCTION

Several papers have been written about the use of the time referenced
scanning beam Microwave Landing System (MLS) for conventional take off and
landing (CTOL) approaches and automatic landings (references 1 and 2). In
these studies, flare was initiated after crossing the tlireshold since the
MLS approach elevation antenna was sited several hundred feet from the
runway threshold. Thus altitude and altitude rate were computed from MLS
elevation and precision distance measuring 2quipment (DME) data until the
airplane reached the runway and then the altitude reference was transitioned
to a radar altimeter pricr to initiation of the flare. This procedure
provided a highly accurate altitude and altitude rate refei@nce for use in
the flare algorithm to provide safe, accurate flare initiations and
automatic landings.

P ey - Tals)

To investigate the use of MLS for automatic landings of powered 1ift
vehicles, a flight test wes conducted with the Augmentor Wing Jet STOL
Research Airplane (AWJSRA), references 3 and 4. This is a powered-1ift STOL
research airplane which has been equipped with a digital flight control
system, referesice 5. The autoland control laws were similar to those used
in CTOL transports but were tailored to the unique characteristics of the
STOL test airplane. At the airport where the STO. autoland flight tests
were conducted, more than 1200 meters (4000 ft) of smooth runway were
available in front of the marked STOLport. As in the CTOL studies, this
long underrun provided ample opportunity to converge the radar altimeter
based sink rate filter. This stable sink rate, along with the accurate
altitude from the radar altimeter, provided a high quality reference for the
flare and automatic landing.

In general, since STOL landing situations typically require that the
glide path intercept point (GPIP), and therefore the MLS approach elevation
antenna, be near the threshold to minimize runway length (reference 6), most



STOLports will not have underrun areas which are long enough to provide an
acceptable radar altimeter signal during the entire flare, This siting
arvangement requires that flare initiation occur before reaching the rurway
threshold and therefore without the use of radar altimeter. Indeed a major
discontinuity in radar altitude may occur, as at the end ¢f an elevated
STOLport (reterence 6).

The use of MLS and the late transition from MLS to radar altimeter pose
three major questions: (1) what procedure should de used to transition from
MLS derived altitude and sink rate to radar altimeter derived altitude and
sink rate for use in the flare law without adversely affecting the automatic
flare performance; (2) does the MLS system proposed for CTOL have the
azimuth, elevation and DME accuvacy needed for STOL operations, and if not,
what accuracies are required; and YS) does the resulting system produce
repeatable, consistent performance that will be acceptable to pilots.

In order to answer these questions, a techniyue for transitioning from
MLS to the radar altimeter after the airplane is over the threshold and
during the flare was developed and evaluated in the presence of varying MLS
bias errors using a fixed based simulation of the Augmentor Wing Jet STOL
Research Airplane. This report describes the technique and presents the
results of the simulation tests. Data is presented which show the
airiations of touchdown distance and sink rate at touchdown as a function of

S errors.

Laterai guidance from MLS azimuth does not appear to pose any
significant problems for STOL Operations (reference 4) and is not discussed.
Although the study focused on an autoland system, the vertical navigation
and guidance methods are equally applicable for flight director approaches
and flare monitoring systems.

PROCEDURES
Simulator Description

The simulation faci1{ty consists of (1) an EAI 8400 digital computer to
simulate the aircraft, STOLport, and MLS system, (2) a digital flight
control system, (3) a simulation cockpit with standard aircraft instruments
along with an advanced mode select panel and electronic CRT displays, and
(4) data cenversion interfaces for data reformatting between the simulation
computer and the flight control computer and the cockpit instruments,

The STOL aircraft modeled in the simulation computer is a mouified
deHavilland C-8A Buffalo airplane, Figure 1, It has two turbofan engines
which provide flow through augmentor flaps and ailerons and through
vectorable exhaust nozzles. This system aliows the airplane to fly at 70
knots on glideslope approaches of ~7.5 degrees flight path angle. All
control surfaces ard 1ift control devices are controlled by servos from the
digital flight control system. More complete descriptions of the airplane
and jts operating characteristics are given in references 7 and 8. The
nonlinear six degrees of freedom simulation model is describud in reference
9.



The STULport runway model used in this study is shown in figure 2. The
model conforms to the FAA elevated STOLport as Jdocumented in reference 6.
An elevated STOLport model was used to provide a worst-case test of the
propose¢ vertical guidance procedures.

The MLS simulation is patterned after the prototype MLS system which
was installed for flight test evaluations st Crows Landing Navy Auxillary
Landing Field, California. This system has a conical elevation beam and a
planar azimuth beam. Locations of the antennas relative to the runway are
shown in figure 3. The righthand rectangular coordinate system 'is defined
with the origin on the runway opposite the elevation antenna site. The
defining equations for the MLS signals as computed in the simulation
computer are as follows:

DME: R = ((x-XAZ)% + Y2 + (z-27a7)2)1/2
Azimuth: gy, = ~tan”! (Y/(X-XAZ))
Elevation: ¢ = -tan™) ((Z-ZEL)/(X? + (Y-veL)2)1/2)
Where
X, Y, Z = coordinates of airplane
XAZ = X-coordinate of the azinuth antenna and DME, 1363.7m (4474 ft)
ZAZ = Z-coordinate of the azimuth antenna and DME, -1.7m, (-5.5 ft)
YEL Y-coordinate of the elevation antenna, -73.2 m (-240 ft)

ZEL = Z-coordinate of the elevation antenna, -2.4 m (-7.9 ft)

The simulation program has capabilities for adding biases {randomly
selected for each approach) and noise (white or first ordzr correlated
noise)., Derived signals are transmitted serially to the digital flight
control system's computer within its 50 millisecond compute cycle.

The digital flight control system provides various levels of
navigation, guidance, control, and pilot interface functions. Reference 5
describes the various system capabilities in detail. The function of
interest in this study is the automatic guidance and control during glide
slope track and flare to touchdown. The features of the longitudinal axis
control law pertirent to this study are briefly described in the next
section. A more detailed discussion is given in references 3 and 4, along
with a description of the lateral control law.

Longitudinal Axis Control Law

The longitudinal axis control system is shown in figure 4a. Flight
path anglz is controlled with engine RPM with aid from the faster responding
direct 17ft control (DLC) chokes. Long term airspeed trim is controlled
with the elevator with short w;rm-control provided by the vectorable
nozzles. The throtties, nozzles, and pitch attitude are preset using trim



tables, with deviations from trim corrected by the closed loop control laws,
Outputs from the trim tables are coastant below 91 meters (300 feet),

During glide slope track, estimates of glide slope deviation and rate
are produced by a glide slope complementary filter. Inputs to this filter
are raw glide siope deviation derived from elevation and range information
and vertical acceleration. The glide slope error is faded out prior to
flare. A sink rate estimate used in flare is produced in the sink rate
complementary filter. In the flight and simulator evaluation described in
reference 4, radar altitude and vertical acceleration were {nputs to this
sink rate fi1ter, The commanded h/h-dot profile is a straight line from the
preflare sink rate to the desired value for touchdown, beginning at altitude
of 15.2 meters (50 feet), figure 4b. Flare is initiated at a gear height of
19.8 meters (65 feet) when pitch attitude begins to change from preflare
state to the desired touchdown value in a Tinear manner.

Simulation Conditions

Data for this study were taken with the following conditions:
* -7.5 degree glide slope

* ég;tia1ization at X = -4572 m (-15,000 ft), Y = 0, Z = -415m (-1360

* Avionics system initialized for automatic capture and track of
glide slope and automatic flare

* Airspeed of 70 knots

* Approach terminated #y¢omatically at touchdown
* No wind or turbulence

* 30 to 35 runs for each MLS error condition

The effects of MLS bias errors were evaluated by conducting three
series of about 3G approaches each for the cases (1) no biases introduced,
(2) biases introduced on elevation only and (3) biases introduced or DME
only. The elevation and DME biases were randomly selected according to the
criteria shown in Table I. Larger elevation biases than proposed for
operational systems were allowed for the simulator tests to determine the
Timits of acceptability for the system. For comparison, the hiases proposed
for operational systems are also shown in Table I. Random noise, (also
shown in Table I) was used in all three cases except for some baseline data
approaches where no noise or bias were simulated.

The bias error specification which has been proposed for the MLS
elevation signal in Table I was obtained from reference 10. In that paper,
the bias-type errors are described as Path Following Errors (PFE). A
maximum PFE of 0.55 meter (1.8 feet), (20 ) vertical error due to the
elevation signal at the 15.2 meter (50 feet) Minimum Guidance Altitude (MGA)
was determined. For the CTOL %11de slone of 2.7 degrees, the 15.2 meter (50
feet) MGA is about 305 meters (1000 feet) from the elevation antenna. At
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thst distance the angular PFE is computed to be 0.103 degrees. For the STOL
1ide slope of 7.5 degrees used in this study, the equivalent 0.55 meter
?1.8 feetg maxirum vertical error at an altitude of 15.2 meters (50 feet)
corresponds to an angular error of 0.27 degrees., According to reference 10,
the noise characteristics specification for the elevation signal has not
been defined for tightly coupled, precision approaches., Ruference 11
proposes that the precision DME system accuracy (with 95-percent
probability) be 30.5 meters (100 feet) PFE and 12.2 meters (40 feet) Control
Motion Noise (CMN) at the 15.2 meters (50 feet) MGA location. This
specification is proposed for both CTOL and STOL systems.

Criteria

The intent of the simulator test progrium was to examine the control
system response and the effects of MLS errars when transitioning from MLS
derived altitude to redar altitude during flare. Touchdown rate and
location is plotted as a function of both DME and elevation bias errors in
order to understand their impact on system performance. The data
acquisition was designed to estabiish trends rather than provide a
certification-level evaluation of the control system.

MODIFICATIONS TO LONGITUDINAL CONTROL LAW
Altitude Requirement

A major requirement for successful flare guidance is the accurate
measurement of altitude relative to the runway. As discussed earlfer, this
measurement can most reliably be made using MLS elevation and range signals
before reaching the end of the runway surface. Referring to figure 3, for a
planar elevation signal the altitude car be-computed simply by

h = RTD tane

where h = altitude, R = range to GPIP, = measured elevation angle.
Because the elevation antenna installed at Crows lLanding and modeled for
this study produces a conical beam pattern rather than a planar pattern,
this equation would introduce an error in the derived altitude. The
conicity error in the derived altitude would be significantly large at
altitudes below 30.5 meters (100 feet) in the region where high accuracy is
required. The equations necessary to derive the X, Y, Z position of the
airplane in the rectangular coordinate system rom the conical elevation
angle are highly nonlinear and a closed form solution to the eguations is
very difficult. An approximation method has been developed and tested (ref,
12) which gives an accurate position measurement, minimizing the conicity
errors. The method has two steps as follows:

(1) Using the previous Z estimate and the current MLS azimuth and
range measuraments, compute X and Y.

(2) Then using the filtered X and Y estimates and the current
elevation angle measurement, compute the altitude Z.

The coordinate system is shown in figure 3. The equations for the X
and Y position determination using this method are:
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R = XAZ - (RZ - (ZAD)2)2 cos ¢
Y= o8- (z-)?)E
and for altitude from MLS
= - (X2 # (Y - YEL)2) V2 tane + zEL

siny

hyLs
During glide slope track and flare initiation,

Z= =hys
after transition to radar altimeter,

Z""hRA

where hRA is the altitude measured by the radar altimeter.
Transition

Since the latter part of the flare maneuver occurs after the airplane
passes out of the approach elevation coverage, a transition to radar
altimeter must occur prior to loss of elevation signal. The prototypa MLS
system at Crows Landing (ref, 1) provides an approac: elevation signal that
is usable down to about 6 meters (20 feet) above runway level and has usable
horizontal covarage of about +65 to +70 degrees from the antenna.
Examination of the 7.5 degree elevation glide slope marked on figure 5 shows
that the elevation signal should be valid from the end of the runway surface
at X = -79,2 meters (-260 feet) to X = -27.4 meters (-90 feet) at 6.1 meters
(20 feet) altitude. Thus, tha airplane is simuitaneously within both MLS
elevation signal coverage and over the runway where radar altimeter is
usable for about 51.8 meters (170 feet). This condition provides an
opportunity for transition from MLS derived altitude to radar altitude.

Examination of the longitudinal control law (figure 4) indicates the
requirements for measurement of altitude. During glide slope track,
altitude derived from MLS is used to compute the glide slope track error
h and for initializing the calculation of sink rate using a complementary
f??ter for use during flare (reference 4). The next use of measured
altitude is for initiating and controlling the flare manetver. This is
accomplished by use of the numerous gain schedulers which compute commands
for sink rate and pitch attitude as functions of altitude. In the original
mechanization altitude was provided by the radar altimeter. Flare begins
with pitch rotation starting at 19.8 meters (65 feat). Sink rate arrest
starts at 15.2 meters (50 feei). Since, as previously mentioned, the
airplane on a 7.5 degree glide slope passes over the end of the runway at
12.8 meters (42 feet) altitude and passes out of MLS elevation coverage at
about 6.1 meters (20 feat) altitude, transition to a radar altitude
reference must occur during the flare maneuver,

Two methods have been identified for transitioning from MLS derived
altitude to radar altitude. The simpler method is simply to switch. An
alternative is a blending transition. The switch is acceptable as long as a
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negligible bias exists between the two altitude measuremerts., In reality,
some bias will normally exist because of errors in the MLS signals and in
the radar altimeter. If a switch were to occur at the landing threshold (at
X = -48,.8 meters (-160 feet)) and an elevation error of 0,05 degree and DME
error of 12.2 meters (40 feet) were presenrt, the derived altitude would be
in error by about 1.7 meters (5.5 feet). The control law is sensitive to
{nstantaneous altitude measurement changes which tend to produce
undesirable, rapid control response,

The more preferable solution, therefore, appears to be a slower,
blending transition. The criteria for controlling this blending can be
either altitude or distance along the runway. The use of altitude has the
disadvantage of having the location along the runway shift as different
glide slopes are selected, possibly moving the transition to a location
where ,ne or the other signal {» lost for part of the blend. Since Timiting
the transition zone to a specific section of the runway is important, the
test for switching from MLS altitude to radar z1titude is best based on
ejther raw DME or computed distance along the runway, which in turn strongly
depends on DME. Distance along the runway (X coordinate, figure 3) {s
available from the navigation subsystem of the digital flight control system
being used, so it was used as the control parameter for this study.

Since the MLS elevation signal will be available over the runway from X
= -79,2 meters (-90 feet), the blending transition can be done over this
distance, If the determinatisn of X is in error, however, part of the
transition would move into a region where either the radar altimeter may
have large errors or the elevation signal is lost. Either situation could
put large errors into the altitude calculation and, therefore, transients
jnto the control system. Near touchdown, the X-position is primarily
dependent on the DME., Since bias error in the DME is expected to be at
least 15.2 meters (50 feet) on a 2-sigma basis, a transition zone of 15.2
to 18,2 meters (50 to 60 feet) appears to be the maximum distance available.
For the simulator tests, the transition zone was between X = -64.0 m (-210
feet) and X = -45,7 m (~150 feet). To provide a gradual shift from MLS to
radar altitude, the following blending equations were used for altitude,

hoy = (hpa) ~[¥ - (-46 hoa = hyr o)
BL ( RA) [%gz*§'(:%gy] ( RA ~ "MLS
and Z= =h
BL
An example of this blending transition is shown in figure 6.
Sink Rate Requirement

Flare monitoring systems and control laws for flare guidance typically
require an accurate determination of vertical velocity, or sink rate. The
flare guidance system used in this study uses the derived sink rate to
produce an error signal from a commanded sink rate profile, figure 4o. The
commanded sink rate decreases 1inearly with altitude from the existing
preflare sink rate at 15.2 meters (50 feet) to the desired touchdown value.
The result is an exponential flare. Prior to flare, the glide slope track
control law uses a vertical rate error relative to the glide slope. Gain
schedulers transition the derived sink rate linearly frim glide slope to
altitude based information throughout the flare. This tends to minimize the
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impact of small terrain irregularities, A more complete description #f this
flare law implementation is given in reference 4,

Sink rate was originally determined in this system by blending the
radar altitude with vertical acceleration in a complementary 7ilter, figure
7, starting at 152 meters (500 feet) above ground Tevel when the precision
radar altitude signal became valid. This procedure was successful because
(a) 1372 meters (4500 feet) of runway was available short of the STOLport
markings and (b) the sink rate filter wvs converged long bafore the estimate
was needrd to begin the flare. The filter was initialized at glide slope
capture and computed the vertical rate until touchdown. For this study, the
use of MLS derived altitude was the inpu? to the filter until the airplane
was ove the STOLport runway where the radar altitude could provide a valid
reference, Use of the altitude referance with blending transition from MLS
to radar altimeter, described previously, was investigated. During the
blending an erroneous sink rate is detected if a bias exists between the MLS
and radar altitudes. The effect on the complementary filter is to produce a
large transient in the output which takes several seconds to decay. For a
bias of about 1.5 meters (5 feet) (figure 8a), the response is as shown in
figure 8b. To prevent the transient, a procedure was developed to compute
the bias between the MLS ard vadar altitudes after the airplane {s uver the
runway while MLS-derived altitude is used as input to the f{lter. Then, as
shown in figure 7, the filter input hep, was switched to vradar altitude plus
the computed bias. This procedure reMbves tha erroneous rates from the
filter input and produces the response shown in figure 8c. For programming
convenience, the bijas was computed during the altitude blending interval
with the altitude input to the fi{lter being switched at the end ¢f the
blending interval. Note that the biased altitude described here {s used
only for computation of an accurate, transient-free sink rate during flare,
not as the altitude wmeasurement.

RESULTS AND DISCUSSION

An evaluation of the proposed implementat:ion was conducted in the
fixed-base STOL simulator described previously. The effect on the control
system of the transition from MLS-derived altitude to radar altitude was
determined by changes in the touchdown sink rate end touchdown distance
along the runway. Since the primary disturbance to the system during the
transition comes from biases in the MLS elevation and DME signals, the
system performance was tested with a variety of biases. The control system
produced the statistical results shown in Table II. Graphical presentations
of these data are shown in figures 9 and 10, where the cumulative percent of
occurrences are plotted for each bias condition. The straight lines are
drawn through the mean and + 1-sigma values and the individual touchdown
data are marked.

Because of the fundamental control system requirement to provide a
tightiy controlled sink rate, the sink rate at touchdown is not affected
significantly by biases, figure 9. Therefore, the mean sink rate at
touchdown was essen<iially identical for all three test conditions. The
standari deviation is somewhat higher for the elevation biases. There is
more variation in touchdown distance between the bias conditions. The
touchdown distances for the elevation biases were similar to the no-bias
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fiights. However, the DME bias conditions encountered produced a wider
variation in touchdown distance, figure 10, Tha Tonger mean touchdown
distance may be caused at ieast partially by ths DME biases between +15.2
meters (+50 feet) and +25.9 metars (+85 feet), which were used to test their
effect on the control system. Biases longer than =15.2 meters (-50 feet)
were eliminated because they caused initiation of the MLS to radar
transition before the end of the runway and thus the large radar altimeter
error introduced large transients into the control system,

Correlation between the MLS biases and the touchdown states are more
easily scen in Figures 11 and 12. The least squsres straight line fit to
the data points are shown as a sciid 1ine in the pluts, Thaire is some
correlation of sink rate and touchdown distance with the elevation bias,
Figure 11, However, the 1imits of the elevation biases used in the tests
were much larger than expected in operational systems. At small elevation
biases, no significant correlation appears to exist between either sink rate
or touchdown distance and biases in the elevation signal., This result was
expected, since, for small biases, tne vertical error is very small at the
short distances involved during the flare maneuver and the high bandwidth
sink rate control system was able to eliminate the error before touchdown.

Figure 12 shows that there 1s no correlation between sink rate and DME
bias. However, touchdown dispersions do correlate with DME bias errors.
Positive biases cause the -lerived distance along the runway to be further
out than the actuai distance. Likewise, the derived altitude is higher than
the actual altitude before the transition to radar altitude is made. These
errors cause the flare maneuvers to be started lower and further along the
runway than normal. The control system used in the test had the bandwidth
necessary to arrest the sink rate to the value commanded for touchdown.
Starting the flare Tate along the runway merely caused the touchdown to be
further down the runway. Negative biases produce correspondingly shorter
touchdowns. For maximum DME biases of + 15.2 meters (+ 50 feet) or less,
the touchdown dispersion is not excessive. The data recorded vhere DME
biases were between +15.2 meters (50 feet) and 25.9 meters (85 feet)
generally follow the trends set where the biases were in the +15.2 meters (+
50 feet) range. At the longer positive biases, the transition zone is moved
toward the GPIP and into a region where the elevation signal may be lost.

In the simulator, the signal was assumed to be valid; and, since the radar
altimeter was valid, no transients were introduced into the system. As
noted previously, negative DME biases longer than 15.2 meters (50 feet)
produced unsatisfactory results and so are n¢t plotted in figure 12.

From the data presented, small MLS elevation ard DME biases and noise
do not appear to present any significant problems for the proposed
procedures of transitioning from MLS derived altitude to radar altimeter
during the fiare maneuver. The autoland system used in the evaluation had
enough bandwidth to hold the sink rate at touchdown within ¢luze limits.
Touchdown distance was not a feedback parameter in the control system and
thus tended to be more variable than sink rate. Other system designs may
differ in their response to the altitude reference errors which can occur
during the flare maneuver, However, the altitude and longitudinal distance
estimate errors will be small, particularly at the two-sigma level of
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elezation and DME biases recommended for operational MLS sysiems at STOL=
ports.

The MLS sput*fications which have been proposed for CTOL runways appear
to be adequate fur STOLports with one or two exceptions, While the proposed
approach elevation accuracy specifications ap?ear satisfactory, coverage of
the signal over the runway in the flare zcne 1imits the distance available
for the altitude reference transition. 'rhe coverage assumed for the
simulator tests appears to be adequate. Care should be taken in the
development of operational systems to provide at least a similar coverage.

A more critical specification is the DME Path Following Error (hiy i. The
30.5 meters (100 feet) (2 o) proposed PFE does not allow suffici:iii aijtance
to transition from MLS derived altitude to a radar altitude. Foi the STOL-
port geometry proposed by the FAA and used in this study, a maximum PFE
(improbable event level) of + 15.2 maters (+ 50 feet) is required, This
interpolates to about 6.1 meters (20 feet) at 95% probability level. Some
relaxation of this tight specification could be made by moving the approach
elevation antenna further down the runway at the expense of reducing the
available stopping distance. A second alternutive is lengthening the
underrun, now set at 30,5 meters (100 feet). Extending the underrun to at
least 80 meters (260 feet) would be required to safely accommodate a PFE of
30.5 meters (100 feet).

Although no pilot evaluation of the modified system was made, the Tanding
performance data compared favorably with that obtained during fiight testing
of the unmodified system over an extended runway surface. Those flight
tests indicated that the repeatability consistency of performance obtained
is acceptable to pilots for nonmal aircraft operatizi,

CONCLUSIONS

A modification to a conventional autoland system has been developed
which allows the use of MLS for initiation of an automatic flare maneuver by
a STOL airplane, After initiation of the flare using MLS and after crossing
the threshold, a transition can be made to radar altimeter with a minimum
effect on the control systeém response. A blending transition from MLS to
radar altimeter is quite adequate for the altitude reference., The procedure
of switching from MLS derived altitude to a biased radar altitude as input
to the sink rate filter har been shown to provide an accurate,
transient-free vertical velocity for use in the flare control algorithm.

The MLS spacifications proposed for CTOL operations proved to be
acceptable for STOLport operations with the exception of the DME Path
Following Error (bias) specification. The 20.5 meters (2 o) preposed PFE
for CTOL systems should be reduced to about 6 meters for satisfaccory
automatic landings, particularly on an elevated STOLport runway.

Based on these simulation results, the autoland procedure developed in

this study is capable of producing repeatable, consistent performance which
should be accepable for normmal operation.
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TABLE I: MLS ERROR COMBINATIONS

Comb%gggyon Function Units (2125) (22:s§
Test EL deg 0.5 .03
Conditions DME m 30.5 12,2
B
Proposed EL deg 0.27 0.05
Specs DME m 30,5 12.2

TAELE II: TOUCHDOWN STATISTICS

hTD(m/sec) Xy (@)
Condition No. of Approaches Mean Sigma  Mean Sigma
No biases 32 1.1 0.04  99.7 4.6
Elevation biases 34 1.1 0.06 99.4 5.8
DME biases (+50.2m) 24 1.1 0.04 101.2 7.3
DME biases $-15.2m) 30 1.1 0.04 103.9 9.1
+30. 5m)
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POO GL is

Figure 1.- Augmentor wing jet STOL research aircraft.
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ELEVATED RUNWAY REQUIRES LATE BLEND FROM
MLS GLIDESLCPE TC RADAR [ALTIMETER

Figure 2,~ Elevated STOLport runway.
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YEL = -73 m (240 ft;

XAZ = 1364 m (4474 ft)

Figure 3.~ Geometry of MLS antennas using a runway-oriented system.
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Figure 5.- MLS elevation signal coverage.
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Figure 6.- Blending transition from MLS to radio altitude (20 ft DME bias).
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Figure 10.~ Distance along runway at touchdown.
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