
111111111111~~~~~llmrfl]il~fll~ll~l~~ 11111111111 " 
3 117~ ~~~~ ~~970 : 

NASA Contractor Report 165812 

NASA-CR-165812 

Icr<s?- OOOu0~O 

USE OF TWO-DIMENSIONAL TRANSMISSION PHOTOELASTIC 
MODELS TO STUDY STRESSES IN DOUBLE-LAP 
BOLTED JOINTS 

M. W. Hyer and D. H. Liu 

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY 
Department of Engineering Science and Mechanics 
Blacksburg, Virginia 24061 

Grant NSG-1621 
November 1981 

NI\5I\ 
National Aeronautics and 
Space Administration 

Langley Research Center 
Hampton, Virginia 23665 

111111111111111111111111111111111111111111111 
NF01335 

https://ntrs.nasa.gov/search.jsp?R=19820006660 2020-03-21T09:46:53+00:00Z



TABLE OF CONTENTS 

Page 

TABLE OF CONTENTS ................................................ i 

LIST OF FIGURES .................................................. i i 

LIST OF TABLES ................................................... iv 

LIST OF APPENDICIES .............................................. v 

LIST OF SYMBOLS .................................................. vi 

INTRODUCTION ..................................................... 1 

REVIEW OF PAST WORK AND MOTIVATIO~ FOR PRESENT WORK ......... ..... 5 

DES IGN AND FABRICATION OF THE t10DELS ............................. 14 

TYPICAL EXPERIMENTAL RESULTS AND THE EXISTENCE OF A 
PHOTOELASTIC ISOTROPIC POINT ..................................... 21 

DETERMINATION OF STRESSES ........................................ 27 

RESUL TS .......................................................... 39 

DISCUSSIONS AND CONCLUSIONS ...... .... .... ..... .... ..... ...... .... 47 

REFERENCES ....................................................... 53 

TABLES 

1. 

2. 

FIGURES 

APPENDICES 

A. 

DIMENSIONS OF MODELS 

PERCENTAGE OF LOAD REACTED AT EACH HOLE OF INNER LAP .... 

BRIEF OVERVIEW OF PHnTnE~ASTICITY 

B. ISOCHROMATIC FRINGE ~JI"~'3tR. (N) AND PR.INCIPAL 
STRESS DIRECTION (9) ~JEAR SECOND HOLE IN SHORT 

56 

57 

58 

97 

~ARROH ~~ODEL ........................................... 99 



1. 

2. 

3. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

LIST OF FIGURES 

Joint geometry and nomenclature ...........•.•............ 

Design philosophy of photoelastlc Joint models .......... . 

PSM-l disk and Acrylite disk subjected to identical 
dlametral compression loads ...................•....•..... 

Geometry of largest model and the load introduction 
daub 1 ers ...............................•................. 

Machin1ng of the models ...........•.............•........ 

Long wi de model \'11 th a 1 uml num doub' ers .................. . 

The nine j01nt models tested ............................ . 

Long wide model in the loading frame .................... . 

TYPlcal dark-field isochromatlc frlnge pattern. ~edium 
length narrm'>/ model ..................................... . 

Close-up view of dark fleld lsochrcmatic fringe pattern 
around lead hole. long narrow model ..................... . 

Apparatus to load each hole lndependently 

12. Dependence of isotropic Dvlnt location on percentage of 
load reacted by each hole (P, = top hole, P2 = bottom 
hole) ................................................... . 

13. Isotroplc point locatlon as a functlon of amount of 
load reacted by each hole ............................... . 

14. Determinlng load proportloning from lsotroplc pOlnt 
locatlon ......•......................................•... 

15. Descretization of a contlnuous function ................. . 

16. Two dlmensional finite-difference grid on Joint model .... 

17. System of fin1te-differerce zones around hole reglon ..... 

18. Isocllnic frlnge patterns around hole 

19. Stress gradients at net-sectlon, long mOdels ............ . 

ii 

Page 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 



20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

Stress gradients at net-section, medium length models .•.• 

Stress gradients at net-section, short models ....•.••.•.. 

Stress gradients along centerline, wide models •...•...•.• 

Stress gradients along centerline, medium wldth models ... 

Stress gradients along centerline, narrow models ••....... 

Spllttlng stress below second hole, wide models .•.....•.• 

Splitting stress below second hole, medium width models .. 

Splitting stress below second hole, narrow models ...••••. 

Net-section stress concentration factors, long models 

Net-section stress concentration factors, medium 
1 ength mode 15 .................................•.......... 

Net-section stress concentration factors, short models 

Bearing-stress stress concentratlon factors, long 
mode 1 s .•••.••.•.•.•••.•••••••.•..••.•.•••••••••••.••..•.• 

Bearlng-stress stress concentratlon factors, medium 
length models ........................................... . 

Bearing-stress stress concentration factors, short 
models .................................................. . 

Shear stress along shear-out plane, long models . ......... 
Shear stress along shear-out plane, medlum length 
models ................................................... 
Shear stress along shear-out plane, short models ......... 
Shear stress along maximum shear locus, long models ...... 
Shear stress along maXlmum shear locus, medlum 
1 ength models ........................................... . 

39. Shear stress along maXlmum shear locus, short models ..... 

iii 

Page 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 



LIST OF TABLES 

Page 

1. DIMENSIONS OF MODELS .................................•....... 56 

2. PERCENTAGE OF LOAD TRANSFER AT EACH HOLE OF INNER LAP ......•. 57 

iv 



LIST OF APPENDICIES 

Page 

A. BRIEF OVERVIEW OF PHOTOELASTICITY ......................•.••.. 97 

B. ISOCHROMATIC FRINGE NUMBER (N) AND PRINCIPAL STRESS 
DIRECTION (e) NEAR SECOND HOLE IN SHORT NARROW MODEL ..•...... 98 

v 



c 

C 

D 

e 

E 

F 

N 

P 

P1 

P2 

S 

t 

H 

x 

y 

fjx 

fjy 

G 

0 1 ' O2 

ax' ay ' Txy 

agross 

LIST OF SYMBOLS 

ca1lbratlon constant for photoelastlc material, MPa/frlnge 
(ps 1/ fn nge ) 

distance from center of lead hole to isotroplc point 
location, mm (In.) 

hole dlameter, mm (In.) 

distance from the center of the second hole to the free­
end, mm (In.) 

dlstance between hole centers, mm (In.) 

a function used to lllustrate the finlte-dlfference 
scheme 

fringe order 0, 1" 1, l!z, ... 

total tenslle load applled to JOlnt, N (lb) P = Pl + P2 

load reacted by the lead hole, N (lb) 

load reacted by the second hole, N (lb) 

bearlng stress, P/2Dt, MPa (pSl) 

thlckness of lnner lap, mm (in.) 

wldth of JOlnt, mm (In.) 

coordlnate perpendlcular to JOlnt centerline 

coordinate parallel to Joint centerllne 

increment ln x-dlrectlon coordlnate 

increment in y-directlon coordlnate 

prinClpal stress dlrectlon measure relative to + x 
dl rectlOn 

prlnclpal stresses, MPa (psi) 

stress components in x-y coordlnate system, MPa (pSl) 

gross stress, P/Wt, MPa (pSl) 

vi 



INTRODUCTION 

For some time there has been an interest in the effects of through­

the-thickness holes and other dlscontinuities in plates. From a prac­

tical point of view there is generally no way dlscontlnuities in plates 

can be avoided. This is particularly true ln regions where plates must 

be connected to other structural members. Because of associated stress 

concentrations, failure is most apt to occur at these discontinuities. 

Thus attention has been focused on reg10ns of discontinu1ties, specif-

1cally connector reglons. The work reported herein is a further study 

of connector reglons. It lS a study of stresses around multiple-hole 

connectors and of the influence of connector geometry on these stresses. 

The study concentrates on the stress distr1butlon 1n two-hole connectors 

in a double-lap Joint conflguratlon. The two holes are in tandem, or 

series, and the jOlnt is subJected to tensile loads along the line 

connectlng the centers of the two holes. The load 1S trar.sferred from 

one lap to the other by way of a snug-flttlng plns. Figure 1 shows 

detalls of the Joint conf1guration studied and introduces some of the 

nomenclature. The geometrlc quantlties WhlCh were felt to lnfluence the 

stress distributlon in the Joint were the width, W, of the Joint, the 

hole dlameter, D, the distance between the holes, E, and the distance 

from the second hole to the free end, e. For such Joint configurations 

the thickness of the inner lap, t, 1S generally made twice the thickness 

of each of the outer laps. This lS done to maintain a balance of stiff­

ness ln the j01nt. 

A mot1vating factor for this study was a previous experimental 



study [1,2] of double-lap double-hole joints fabricated from graphite­

epoxy fiber-reinforced composite material. The material was quasi­

isotropic and of the many joints tested to failure, a h1gh percentage of 

joints failed in net-section tension at the lead hole in the thicker 

inner lap. This effect was practically 1ndependent of Joint width or 

hole diameter and is typical of the failure of brittle materials. (In 

this discussion lead hole refers to the hole 1n a particular lap which 

reacts the applied load first. The term second hole refers to the other 

hole in tandem. Obv10usly the lead hole for the inner lap is the second 

hole for the outer laps and vice versa.) For brittle materials, like 

fiber-reinforced compos1tes, no Y1elding occurs and high net-section 

loads lead to a sudden catastrophic failure. For ductile materials, 

such as aluminum, the danger of net-section failure is lessened by the 

yielding of the mater1als. When one area of a loaded structural com­

ponent is overstressed, the material yields and transfers some of the 

load to another reg10n of the component. The question arises as how 

possibly the geometr1c parameters assoc1ated w1th the joint design can 

be chosen to minimize net-section stresses, thereby avoiding catastropic 

net-section tension failures of brittle mater1als. The work presented 

here is aimed at answerlng thlS questlon. The work is not intended to 

answer the question specifically but rather lt is intended to clarify 

the picture of the stress distribution around the holes in isotropic 

materials. This stress distrlbutlon can then be used with a failure 

criterion pertinent to isotropic composlte materials, such as the ones 

promoted in [3J, and infon~atlon regarding failure can be obtained. The 

study here is strictly experimental, uSlng two-dimensional isotropic 
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transmission photoelastic models of the Joints to determine the 

stresses. 

This report describes the philosophy beh1nd using photoelastic 

models, as opposed to analytical techniques, and discusses some of the 

philosophy of the particular models used here. Some aspects of the 

models are felt to be unique and deserve attention. The machining of 

the models was an 1mportant aspect of the study and a portlon of this 

report is devoted to discussing that facet. The f1xtures used to load 

the Joints were of the type normally assoc1ated with tensile testing. 

However, the loads needed to be transmitted to the photoelastic model in 

such a fashion as to establlsh a known unlform far-field stress away 

from the reglon of interest, namely the connector region. The mechanism 

to transmit the loads smoothly and the rest of the experlmental equip­

ment are described. 

An ind1catlon of typical photoelastic data obta1ned from the models 

1S illustrated. Whlle present1ng these photoelastic data, the presence 

and 1mportance of a photoelast1c isotrop1c point 1S d1scussed. This 

isotrop1c pOlnt was not necessarily expected to occur. However it 

occurred and it was located on the model centerllne partway between the 

two holes. By the nature of the J01nt stresses, the location of this 

isotropic pOlnt between the holes was related to the percentage of total 

load reacted by each pin in the Joint. Generally the problem of deter­

mining the reactlon at each hole is a stat1cally lndeterminate one. 

Without resorting to stra1n (or displacement) measurements, determining 

the reaction at each hole 1S 1mpossible. As illustrated, the isotropic 

p01nt can be used to circumvent this problem. A separate experiment is 
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required, however, and thlS experlment is described. 

After these discussions, attention is glven to obtainlng numerical 

results. Since photoelastic data yield only information concerning the 

principal stress difference and the principal stress direction, other 

informatlon is needed to obtain the complete picture of the plane-stress 

stress field in the connector reglon. The approach taken here was to 

use an overdetermined solution of the plane-stress equilibrium equatlons 

in finite-difference form. These equations together with the photo­

elastic data gave the desired stress state. That approach is described 

and the governing equations are presented. 

Finally the dlScussion centers on the stresses within the joint, 

the primary goal of this study. The effect of geometry on some peak 

stresses, the stress distrlbutions at the net-section, the stress 

distrlbutions along the model centerllne, and other important trends are 

presented in the body of the text. 

It should be noted that certaln commercial materials are identified 

ln this paper ln order to specify adequately which materials were investi­

gated in the research effort. In no case does such ldentification imply 

recommendation or endorsement of the product by NASA, nor does it lmply 

that the materials are necessarily the only ones or the best ones 

available for the purpose. In many cases equlvalent materials are 

available and would probably produce equivalent results. 

4 



REVIEW OF PAST WORK AND MOTIVATION FOR PRESENT APPROACH 

Past studies of through-the-thickness holes can be categorized into 

two general problem areas: open holes, and; filled or loaded holes. 

The former problem area, while receivlng much attention over the years, 

is not of interest here. The latter category is quite pertinent to the 

study of connectors, particularly those studies of loaded holes. The 

main issue with the loaded holes, and how they relate to connectors, is 

the loading on the hole. Basically the issue is centered, on how the 

load is transferred from one part of the connector, through the pin, 

rivet, or bolt, and into the other part of the connector. If a plane­

stress stress analysis is conducted, variations of loading through the 

thlckness of the connector must be 19nored. ThlS is usually done. One 

of the early investlgators to address the hole loading issue was Bickley 

[4J. Bickley studied the stresses ln an infinite plate loaded at a hole 

by forces ln the plane of the plate. The forces acted radially and 

circumferentially at the hole edge. Bickley used a plane-stress stress­

function approach to determine the stresses due to point forces, pres­

sure loadings, and shear tractions actlng on the hole. In the study the 

magnitudes of the pressure and shear loads could vary with circumfer­

ential distance around the hole. The most often quoted of the loadings 

Bickley investlgated was the coslnusoldal radlal loading over 180 0 of 

the hole. This was meant to conveniently represent the forces of a pin, 

bolt, or rlvet bearlng against the hole. Many other investigators have 

since used this loading to represent pin action in a hole, several as 

recently as the last few years, e.g. [5J. These recent applications 
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have been in the context of fiber-reinforced composite materials. 

Knight [6J addressed issues similar to Bickley's but was concerned 

primarily with the effects of finiteness of the plate. This is a more 

practical problem and he used superposition of special solutions to find 

the effects of finite width. Solutions were chosen in such a way that 

the superposed stresses cancelled each other on boundarles known to be 

traction-free. Theocaris [7J also used this approach to study the 

problem. The interest in the analysis and design of connectors has 

inspired design guides, codes, and rules-of-thumb. Reference [8J is a 

typical example of this sort of documentation. 

The earlier papers were based on rlgorous elasticity analyses while 

later papers (not necessarily cited) have used finite-element analyses. 

There were many questlons concernlng the various assumptions in the 

theoretical approaches, partlcularily the assumptlons regarding how a 

pln actually transmits a load to a hole. Is the loading actually 

cosinusoldal over half the hole? What about the effects of friction 

between the pin and the hole? Is pin flexlbility important? These 

questions led to several experimental approaches to the problem. Using 

photoelasticity, Coker and Filon [9J studied the stresses near the edge 

of a hole in a pln-loaded plate. They purposely chose a large enough 

plate so finlte-width effects were not important. From the photoelastic 

data they matched coefficlents ln Blckley's infinite plate stress 

function. They studled only one model geometry and, except for a few 

anamolies in the results, their findings gave a good indication of the 

stress magnification effect at the hole. Blckley actually presented 
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a comparison between his theoretical predictions and these photoelastic 

results. The comparison is quite good. Frocht and Hill [lOJ used 

oversized aluminum speClmens, with strain gauges, and photoelastic 

models to determine the stresses near the edge of a pin-loaded hole. 

They presented stress concentration factors as a function of the ratio 

of the hole diameter to speclmen width and as a function of pin tol­

erance in the hole. Two important findings of their study were: 

(1), stress concentration factors increased with increasing clearance 

between the pin and the hole, and; (2), for snug-fitting pins, maximum 

stresses did occur at the net-sections. 

In a serles of papers, several groups of investigators looked at 

stresses around holes in pinned connectors using photoelastic tech­

niques. Jessop, Snell, and Holister [llJ studied the stress distri­

butlon around a circular hole in a flat bar under simple tension. The 

hole was fllled by snug-fltting pins of varying Young's moduli. They 

found that compared wlth an unfilled hole, the maximum tensile stress at 

the net-section was reduced by 15% for all geometries tested. In 

addition, varying Young's modulus of the pin had little effect on the 

stress distribution. In these studies Young's modulus of the pin varied 

from a factor of 1 to a factor of 30 times as great as the Young's 

modulus of the connector material. These same investigators later 

studied the effects of varying amounts of pln/hole lnterference on peak 

stresses and found that the greater the interference, the lower the 

stress concentration factor [12J. The diameter of the hole relative to 

the width of the bar also had an effect on the stress concentration 

factor. The interpretation of their flnding needs to be clarlfied 
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because the total peak stress generally increased with increasing inter­

ference fit. However, if the stresses were divided into a mean stress 

around the hole, due to the interference fit, and a stress around the 

hole due to the far-field applied stress, then the stress concentration 

factor due to the applied stress decreased with increasing interference 

mean stress. These three authors found the same phenomena when exam­

ining the stresses around holes which were actually loaded by a pin 

[13J. An interesting phenomena Wh1Ch was revealed 1n their studies was 

the existence of a nonlinear relation between the peak stress and ap­

plied load. This nonl1near1ty was a function of the interference level. 

Lambert and Brailey [14J, using photoelasticity, studied this effect and 

concluded that friction between the pin and the hole edge, and sep­

aration of the p1n and the hole at hlgh loads were responsible for the 

nonlinear relation. That work addressed the whole complicated issue of 

interaction between the bolt and connector mater1al and is felt to be 

valuable. Lambert and Brailey [15J continued to study the effect of 

interference on the stresses in pinned connectors. Cox and Brown [16J 

also pursued these types of investigations. Theocaris [17J used the 

pin-loaded hole as an appl1cation of his electrical analogy method for 

the evaluation of principal stresses along stress traJectories. The 

purpose of his work was not so much the study of pin-loaded connectors 

as it was the study of the analogy method. Thus his results are limited 

but they follow the same trends Coker and Filon [9J found. 

Continuing the optical approach, Nisida and Salto [18J used an 

interferometric method coupled with photoelastic1ty to investigate 
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stresses around a pin-loaded hole. They presented data on the radial 

stress distribution around the hole and concluded that a cosinusoidal 

loading did not adequately represent the effect of the pin. However, a 

close examination of their data reveals that for the cases they studied, 

the cosinusoidal distribution is a very good first approximation. More 

recently Opllnger, Parker, and Katz [19J used Moir~ interferometry to 

study the stresses around the pin-loaded hole in a composite plate. 

With the advent of composites, as indicated by the last reference, 

the interest in stresses around connector holes continued and in fact 

grew. Much of the concern has been with the prevention of the pre­

viously mentioned catastrophic failures. However, since the failure 

mechanisms in composites are somewhat statistical in nature and not 

fully understood, much of the experimental work to date has centered 

around actual ultimate-strength tests. In these tests the joints are 

loaded to failure and the failure load is the quantity of primary inter­

est. This is in contrast to the experimental studies concerned wlth the 

detalls of stress distrlbutlon around the loaded holes 1n isotropic 

homogeneous mater1als. Some of this lack of investigation, however, is 

due partly to the lack of a photoelastic material which accurately 

represents a composite material. Also some of the failure mechanisms in 

composites are three-dimensional in nature and these effects are dif­

ficult to measure experimentally. 

Full-scale test1ng-to-failure of compos1te materials is costly in 

terms of material and t1me. Thus some of the earlier analytical methods 

were reimplemented and applied to composites. In addition, many new 

approaches were used. The introduction of anisotropy into the problem 
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greatly compllcates the analysis and so many of thp ne\v approaches were 

approximate in n~ture. A~ong thes€ arc the finlte-element method, both 

displacement-based and hybrid, the boundary integral method, colloca­

tion, and finite-difference. There is no need to review all the impor­

tant work in this area. One was mentloned earlle~, i.e. [5J. An 

excellent review of all work up to 1978 involving connectors for com­

posite materials was written by Garbo and Ogonowski [20J. Slnce then 

Soni [21J studied failure modes of composite connectors using flnite­

elements. Recently Crews, Hong, and RaJu [22J studied the stresses 

around pin-loaded holes ln finite-width orthotropic laminates. They 

used finite-element analyses, modellng a frictl0nless steel pin to load 

the hole. Some results from thelr work will b~ dlscussed later. A 

study of \'1ooden connectors, Whl ch are orthotropi c, was conducted by 

Wilkinson [23J. He used a flnite-element analysis to model a rigid 

steel pin ln a wooden joint, lncluding the effects of frictlon between 

the wood and steel. The analysls, a plane-stress analysis is quite 

rlgorous and is accompanied by experimental measurements using strain 

gages and ~loi re interferometry. 

As with isotropic materials, a vast maJonty of all work with 

composites connectors has dealt with single-pin connectors. Thus there 

is a need to investigate multiple-pln connectors. Because of the lack 

of yielding in composlte materials, the need is more urgent for these 

materials than it is for ductlle materials. As wlth slngle-pin connec­

tors, there are several approaches which can be used to study stresses 

in multiple-hole connectors. These methods are both experimental and 

theoretlcal. It is important to remember that no single approach should 
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be used exclusively and, 1n fact, different methods need to be used as a 

cross-check. If one were concerned only with isotropic materials, there 

are many arguments that can be made for using a photoelastic approach. 

First, within the context of the model, the photoelastic approach gives 

an exact solution. There are no approximations or assumptions about 

friction, or lack thereof, between the pin and the hole. The issue of 

pin flexibility is automatlcally resolved. The same is true for the 

issue of a cosinusoidal loading. With multlple-pin connectors, one 

concern is the amount of load transferred to a particular pin. As 

mentioned prevlously, the problem is statically lndeterminate. If the 

stiffness in the 1nner and outer laps is the same and the tolerances of 

all pins in their holes are identical, the load is distributed evenly 

among the holes. Wlth the two-pin connector at hand this means each 

hole reacts 50% of the total applled load. With an analytical model, 

some assumptions regarding the pln/hole tolerance must be made. With 

photoelastlc models the tolerance problem is inherently a part of the 

model. If typical machine-shop tolerances are malntained in making the 

model, the effects of slight dlfferences in tolerances among holes will 

in actual Joints be represented and no assumptions need to be made. 

Another advantage of photoelastic models lS that if the appropriate 

optical equipment exists, the approach is quite inexpensive. Isotropic 

model materlals are readlly available and require minimal machine 

forces, making the models easy to work w1th. The effects of model 

geometry can be easily stud1ed by remachin1ng a slngle model or by tak1ng 

advantage of the relatively inexpenslve mater1al and machining several 

models. Even if the appropriate optlcal equipment does not exist, set-
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ups to obtain some quantitat;ve lnformation can be constructed without 

too much cost. Photoelasticlty is also a whole-field measurement tech­

nique. Much can be learned from the denslty and the shape of the fringe 

patterns without resortlng to quantitative analysis of the fringe data. 

By simply observlng the frlnge patterns, the effects of a geometry 

change in the model can be quickly assessed. 

Flnally, despite the fact that the vast majority of photoelastic 

work in the past has been with isotropic photoelastlc materials, ortho­

tropic photoelastlc materlals do exist and may become more common in the 

future [24,25J. Characterlzatlon of these materials, both elastically 

and opt1cally, is still an area that needs investigation. However, 

eventually problems will be solved using these materlals. The composite 

connector problem is one area that should be 1nvestigated w1th ortho­

tropic photoelastic materlals when they become available. Thus, some of 

the experience gal ned by fabricatlng and testing Joint models for 

lsotropic materials can be applled to the fabrlcat10n and testing of 

jOlnt models of orthotroplc photoelastlc materials. In addition, many 

stacklng sequences of composite materlals exhiblt in-plane isotropic 

elastic behavior. The usual relatlon between Young's modulus, Poisson's 

ratio, and the shear modulus does not hold but the material properties 

are not a function of in-plane or1entat1on. Thus, lnformatl0n gained 

from isotrop1c photoelastic models can be used to a1d in the analysis 

and design of components fabrlcated from these quasi-lsotropic composite 

materlals. vJith these ldeas 1n m1nd, a study of the stresses in t\'/o-pin 

connectors using isotroplc photoelastlc models was initiated. Appendix 

A presents a brief overview of the photoelastlc technique as it is used 
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in this study. 
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DESIGN AND FABRICATION OF THE MODELS 

Since many of the composite bolted specimens tested in the pre­

v10usly mentioned study [1,2J failed in the inner lap, the ideal situa­

tion in the present J01nt study ~as to be able to determ1ne the stresses 

1n the inner lap. Thus the goal was to des1gn models so that the stress 

state in the inner lap of a loaded J01nt could be measured. The general 

ph1losophy for such an exper1mental design 1S illustrated 1n fig. 2. 

This design requ1red the outer laps to be transparent and to not affect 

the observat1on of the inner lap stresses. However, all transparent 

materials exh1bit some degree of photoelast1c response, commonly called 

birefringence, when subjected to stress. Glass, for example, exhibits 

very little birefringence, while some plastics made especially for 

photoelast1c model-mak1ng exhibit a large b1refr1ngent response. Since 

in a double-lap j01nt both the 1nner and outer lap are subjected to 

stresses, the problem called for uS1ng two transparent materiuls, one 

which exhib1ted a h1gh degree of birefringence and one which exh1bited 

very l1ttle b1refr1ngence. Another restra1nt on the material selection 

was to use mater1als w1th s1m1lar elast1c properties. However 1t is the 

in-plane st1ffnesses of the J01nt laps which are 1mportant and having 

ident1cal Young's modul1 is not essent1al. Cross-sectional areas can be 

chosen to compensate for differences in Young's moduli of the two 

materials. POlsson's ratlo mismatch was not felt to be lmportant but 

havlng slmilar values of the ratlo for the two materials would give a 

more accurate representation of an actual Joint. Finally, to study the 
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effects of geometry, several models would be involved. Thus the 

selected materials needed to be easy to work with. The workability of 

the material was in the context of cutting, drilling, and the machining 

of the materi a 1. 

Several mater1als came close to meeting all of the above require-

ments. The materials finally chosen for the model \I/ere PSM-11 for 

the photoelastic 1nner lap and Acryl1te2, and acrylic for the outer 

lap. The PSM-l is a polycarbonate material specifically for photo­

elastic model making and Acrylite is a commonly ava1lable plex1glass 

material. The PSM-l material is available 1n several thicknesses as is 

the Acrylite. More importantly, the PSM-l material is at least an order 

of magnitude more sensitive to the photoelastic effect than is the 

acrylic. Figure 3 shows a PSr~-l disk and an Acrylite disk subjected to 

the same compreSS10n loads. It is obvious the PSM-l is much more sensi­

tive to the photoelast1c effect. From the manufacturer's data, Young's 

moduli for the mater1als were taken to be: 2.76 GPa (400,000 psi) 

tension and compression for the PSM-l, and 3.27 GPa tension, 2.96 GPa 

compression (475,000 psi tension, 430,000 PS1 compression) for the 

Acrylite. Poisson's rat10 for each material was about 0.38. Based on 

these figures, the elastic propert1es of the PSM-l and the Acrylite were 

assumed to be the same. 

The most serl0US concern 1n the model design was the modeling of 

the actual connector. Although pins have been used in many studies, 

bolts and rlvets are most co~monly used In actual Joints. Bolts are 

usually used 1n conJ~nctlon w1th washers. Rivets have heads which cover 

about the same area as a washer. In either case a through-the-thickness 

1Photoelastic, Inc. Raleigh, NC 27611 
2AfTlerican Cyanam1d, Hayne, NJ ()7470 
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normal stress is produced around the hole as the bolt is torqued or the 

rivet head is formed. The normal stress, through Poisson's ratio, would 

add or subtract from the load-induced stresses in the plane of the 

joint. In addition, frict10n between the washer or rivet head and the 

joint surface could affect the load transfer to the Joint. Through this 

fr1ction some of the load would be reacted 1nto the joint through shear 

(between the washer or rivet head and the surface of the outer lap, or 

between the laps) instead of all the load being transferred through 

bearing on the hole edge. Both the through-the-th1ckness stress and the 

shearing-in of part of the load are felt to increase the load carrying 

capacity of the joint. Ignoring these effects would be conservative. 

Thus the connectors 1n photoelastic models were represented by snug­

fitting acrylic dowels. Hith dowels, as opposed to rivets, or bolts, 

the through-the-thickness effects and the shearing effects were absent. 

However, because of the lack of the nut or a rivet head, v1ewing of the 

stresses to the edge of the hole was possible. Using acrylic dowels, 

Young's modulus of the dowels was the same as Young's modulus of the 

j 01 n t rna te rl a 1 • 

The polariscope to be used in the study was a split-bench model 

w1th columnating lens 305 mm (12 In.) ln diameter. The load frame 

available for the study could accomodate a model 1.2 m (48 in.) long. 

These polariscopes dlmensions dlctated overall model size but other 

aspects of the model had a bearing on model design. The most difficult 

portion of the model to analyse would be the area around the hole. The 

larger the diameter of the holes, the easier lt would be to determine 

the stresses in those regions. In additlon, certain geometric or dimen-
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sional portions were important. Joint width-to-ho1e diameter ratios of 

up to 8 wlre to be tested. The joints were to have a distance between 
: 

hole centers of up to 6 hole diameters and the holes were to be up to 3 

hole diameters from the free end of a lap. Thus the largest model had 

to be at least 12 hole diameters long and up to 8 hole diameters wide. 

A final consideration in model design was the method of applying 

the tensile load to the joint. In actual joints ln both the inner and 

outer laps, at some distance away from the two holes, a uniform state of 

stress exists. The value of this stress can be computed from a simple 

force/area calculation. It 1S the interruption of this uniform stress 

by the holes which cause weaknesses in joints. When testing actual 

Joints or models of JOlnts, care must be taken to insure a somewhat 

uniform state of stress exists away from the holes. If this condition 

is not enforced, the stress distribution associated with this nonuniform 

state of stress could interact with the stress distribution produced by 

the holes themselves. With such a situation the stress distribution in 

the Joint could be 1ncorrectly assessed. To avoid introducing spurious 

stress distrlbutions, specimens can be designed long enough so that the 

actual joint region takes up, say, the central third of the specimen, 

the outer third on either s1de of the Joint region being used to allow a 

uniform state of stress to develop between the load introduction and the 

test holes. The long spec1men approach, though desirable, can be costly 

both due to materlal costs and to machln1ng costs. Thus the approach 

taken here, mainly to avold machining as opposed to exceSSlve material 

usage, was to use long alumlnum load-lntroduction doublers. The idea 

was to generate a uniform stress state in the doublers and attach them, 
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with many small bolts, to the joint model three or four hole diameters 

away from the test holes. With many small bolts connecting the doubler 

to the joint, the uniform stress state would suffer only a localized 

perturbation in the zone around the small connectors. 

Taking into account all of the aforementioned factors, the hole 

diameter on all models was chosen to be 22.2 mm (0.875 in.). The 

largest model tested, accounting for the maximum width, maximum distance 

between holes, and maximum distance to the end of the specimen, was 177 

mm (7.00 in.) wide. For thlS largest model the hole centers were 133 mm 

(5.25 in.) apart and the free ends of the laps were 66.7 mm (2.63 in.) 

from the center of the second hole. Figure 4 shows the geometry of the 

largest model as well as the geometry of the load introductlon doublers. 

The tensile load from the load frame was transmitted to the Joints by a 

single 9.77 mm (0.375 In.) connector at the end of each doubler. For 

both the inner and outer laps, the distance from the row of small con­

nector bolts to the center of the lead holes was 82.6 mm (3.25 in.). An 

aluminum spacer, machined to be the same thickness as the inner lap, 

actually connected the outer laps to the doubler through a second set of 

small bolts. The lnner lap \'1as 6.35 mm (0.25 In.) thick while the outer 

laps were each 3.18 mm (0.125 In.) thick. The thickness of the PSM-l 

inner lap varied insignificantly over the area of the model while the 

Acryllte outer laps vaned up to 20% In thlckness. The load intro­

ductlon doublers were designed to be used with all of the model geo­

metries tested. 

The actual making of the models produced some concerns. These 

concerns were: (1), maintalning accurate tolerances of the speclfied 
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dimensions; (2), insuring accurate alignment of the holes along the 

model centerline; (3), insuring identical hole placement and hole dia­

meter in all three laps and; (4), minimizing heat-induced stresses from 

the drilling and cutting operations. After much consideration, it was 

declded to machine all three pieces simultaneously as a sandwich. The 

maJor effect of this was to insure alignment of the holes. In addition, 

to minimize the machining stresses around the test holes, the holes were 

machined while the three layers were submerged in a coolant. To begin 

the machining of the joint, the three laps were clamped together and the 

long sides of the model were machined parallel to each other. Then the 

rows of small connector holes were drilled in the clamped sandwich, 

perpendicular to the long edges. A flat, open, tray-like tank was 

mounted on a milling machine and the three pieces placed in it. Preci­

sion steel pins protruded from the bottom of the tank and were used with 

the small connector holes to maintain the origlnal alignment of the 

three laps. The laps were again clamped lightly together and the tray 

filled with coolant. The two test holes were then machined with an 

offset cutter. The coolant used throughout the machining operation was 

a water-soluable coolant. Figure 5 shows the actual machining opera­

tion. In this photograph the three laps are clamped onto the bottom of, 

the coolant tank and one of the test holes is being machined. Figure 6 

shows a finished joint model wlth the aluminum doublers attached and 

ready to be tested. Figure 7 shows all the models used in this study. 

In these last two photographs a 305 mm (12.0 in.) ruler is present for 

size comparison. 

The values of 4, 6, and 8 were chosen for the ratlos of joint 
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width-to-hole dlameter. l.e. WID = 4. 6, and 8. The three longest 

models (at the left ln fl~. 7) had a distance of 6 hole diameters be­

tween the centers of the two holes {E = 133 mm (5.25 In.)) and a dlS­

tance of three hole dlameters from the center of the second hole to the 

free end of the specimen (e = 66.6 mm (2.62 in.)). The three medium 

length models (at the center in fig. 7) had a dlstance of two hole 

dlameters from the center of thp secnnrl hole to the free end {e = 55.6 

mm (2.19 In.)) whlle all other dimenslons were the same as the longest 

model's. The three shortest models (at the right in flg. 7) had a 

distance of four hole dlameters between the centers of the holes (E = 

88.7 mm (3.50 In.)) and two hole diameters between the center of the 

second hole and the tree enrl (p = 66.6 mm (2.~2 in.)). The three Joint 

\'/ldths. W. were: 178 mm (7.00 In.). 133 mm (5.25 in.). and 88.9 mm (3.50 

In.). Table 1 summarlzes the dlmenslons of all the models tested. 

The measurements anrl calculations for this study were made in U.S. 

Cus toma ry Unl ts . Dmens i ana 1 nll'11p.rl ca 1 va 1 ues are gi yen in both S I and 

1I. S. Cus toma ry Units. 
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TYPICAL EXPERIMENTAL RESULTS AND THE EXISTENCE 
OF A PHOTOELASTIC ISOTROPIC POINT 

Flgure 8 illustrates the long wide model in the loading frame. The 

loading frame was a hand operated screw-type frame and was fltted with 

a load cell to monitor the loads on the models. The cell was located 

above the model and lS vislble ln the flgure. Dead-weight load~ngs were 

periodically used to check the callbratlon of the load cell. Since the 

polariscope was a Spllt bench model and Slnce the models with their 

doublers were quite large, the load frame was mounted on castors so it 

could be rolled in and out between the halves of the polariscope. This 

arrangement made lt simple to work on the models whlle they were ln the 

load frame and made it easy to change models ln the frame. The polar-

iscope light source was a 250-watt mercury vapor source. The source was 

fitted with a fllter so that ln addltion to vlewlng the model with white 

llght, monochromatic llght of the sodlum green wavelength, 571 nm (22.5 

x 10-6 In.), could be used. 

The viewlng of the model and the taklng of photoelastic data were 

accompllshed by a varlety of methods. The main goal of all the methods 

was to be able to determlne accurately the geometrlc location of all the 

fringes. Three methods to do thlS emerged as the most convenient. 

Enlarged black and whlte photographs of the model as a whole served as a 

permanent record of the frlnge pattern generated ln a speclfic model 

subjected to a specific loadlng. USlng scribe marks on the specimens, 

these photographs provided accurate lnformation on the fringe locations. 

Flgure 9 shows the dark-field frlnge pattern in the medlum length narrow 
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model subjected to 1121 N (250 lb.) tensile force. The free end of the 

inner lap is at the bottom of the photograph and is clearly visible. 

The near perfect symmetry, about the vertical centerline, of the fringe 

pattern in the figure is tYP1cal of the symmetry observed ln all tests. 

Th1S 1ndicated that 1n the plane of the model the Joint was subjected to 

pure tensile loads with no side-to-s1de bending induced by the loading 

frame or the alum1num doublers. ThlS also ind1cated the good allgnment 

of the two test holes. The symmetry was eVldent in all tests. 

For a more detalled look at the fr1nge patterns, a travel1ng tele­

scope was used. The telescope could focus on a small region of the 

model, such as a reg10n below the lead hole. The location and number of 

the higher order fringes could then be recorded. Figure 10 shows a 

typical close-up view of the fr1nge pattern using the telescope. This 

photograph shows the fr1nges near the bottom hole in the long narrow 

model. Not1ce that the symmetry of the fringe pattern is generally 

preserved even at this scale. In add1tion, a reg10n on the hole bound­

ary conta1ning a singular p01nt is visible and is illustrated 1n the 

figure. This singular point 1S character1zed by the fact that the 

lsochromatic fringes emanat1ng from either side of the point on the hole 

boundary diverge in OPPos1te d1rections. 

The th1rd way of obtain1ng lnformation from the model was to pro­

ject the image of the frlnge pattern onto tracing paper. The fringe 

images, as well as an outline of the model, were traced on the paper and 

the fringe locations determined from this tracing. This method was used 

more for recording the location of the lsoclinic fringe pattern than it 

was for studying the isochromatic fringe patterns. It was more conven-
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ient to record the location of the isochromatic fringe patterns wlth 

either of the two photographic methods described. Knowing fringe loca­

tion is important. It is necessary to know the locus of pOlnts for a 

particular frlnge; or, it is necessary to know the fringe information at 

given locations. Both approaches to data acquisition yield the same 

information but one or the other is a necessary step in the photoelastic 

technique. 

One of the most lnteresting aspects of this study was totally 

unexpected. When the lmage shown in flg. 9 was first seen it was 

viewed with white llght. An unusual feature was immediately apparent. -

The small clrcular spot on the model centerline, about one-quarter of 

the dlstance between the holes, was actually black. Except for the 

corners and this spot, all frlnges were colored. This black spot, a 

fringe of order zero, indlcates elther.an lsotropic point or a slngular 

point. These are explalned as follows. 

The photoelastlc effect, as it is belng used in this study, mea-

sures the dlfferences ln the numerlcal value of the principal stresses. 

The number of frlnges times a calibration constant glves the numerical 

value of the difference ln princlpa1 stresses, 

(1) 

c being the calibratlon constant in Pa/fringe (psl/fringe) and N being 

the fringe order. The frlnge order belng zero lmp11es 

0
1 

- O
2 

= 0, (2) 

WhlCh requires elther 

0=0 = 0 1 2 
(3) 

23 



or 

(4) 

The former case is referred to as a singular point, that is, both 

principal stresses are zero. Th1S can occur on the boundary or in the 

interior of the model. As ~as Just pointed out, singular points existed 

on the hole boundaries of the Joint models. This is because the pin 

separated from the hole (lost contact) over a region of the hole. Thus 

the radial and shear stresses on the hole were zero in that region. In 

addition, the circumferential stresses changed sign around the circum­

ference of the hole and passed through zero at some point. This zero 

point was in the reg10n where the dowel had separated from the hole. A 

point of zero stress occurred and so both principal stresses were zero, 

eq. 3. The second case, eq. 4, 1S referred to as an lsotropic point, 

so-called because the princ1pal stresses, though unknown, are equal. At 

an isotropic point a state of hydrostatlc-llke stress state exists. 

With a hydrostatic stress, the stresses be1ng either tensile or compres­

sive, the stresses are the same in all directions and hence the term 

isotropic. 

It was hypothes1zed that the vertical locat1on of the lsotropic 

point, relat1ve to the d1stance between the hole centers, depended on 

the percentage of total load reacted by each hole. If the hypothesis 

were true, the isotropic point locat1on would be a very convenient way 

to assess load transfer. To test the hypothes1s, the outer laps of the 

flrst model tested were removed and a scheme to load each hole indepen­

dently was devised. This apparatus is shown in fig. 11. The p1exiglass 

dowels were inserted into the holes of the inner lap and a hanger, 
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utilizing dead weights and attached to the bottom dowel, was used to 

load the bottom hole a known amount. The loading screw mechanism at the 

top of the load frame actually translated the model up and down as the 

screw rotated. A flexible braided-wire harness was fixed to the sides 

of the load frame and was looped over the top dowel. As the model was 

translated up by loading screw, the harness loaded the top hole while 

the dead weights loaded the bottom hole. The load cell registered the 

total load and knowlng the dead-weight load on the bottom hole, the load 

on the top hole could be computed. To help locate the isotropic point 

on the model, a grld, marked to the reso1utlon of 2.54 mm (0.1 in.), was 

scribed on the model's centerline. With the ability to vary each hole 

load independently, the vertical location of the isotropic point was 

determined for a variety of load conditions. Its location versus hole 

loading was determined for low and high total load levels; for constant 

total load and variable upper and lower hole loads; for constant lower 

hole load and variable upper and total hole loads; interchanglng the two 

dowels; and various other condltions. In each case, the location of the 

isotropic point had the same very specific relation to the percentage of 

load reacted by each hole. Figure 12 shows the move~ent of the iso­

tropic point as a function of hole loading. It is clear the percentage 

of load on each hole affects the positlon of the isotropic point. 

Figure 13 represents experimental data for some of the many conditions 

tested. Plotted on the vertical axis is the nondimenslona1 distance of 

the isotropic point, C, from the center of the top hole. The horizontal 

axis represents the proportion of total load, P, reacted by the lead 

hole, Pl. The data from all conditions clustered tightly about a 
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relatlonshlp which appeared to be slightly nonllnear. The nonlinearity 

was felt to be due to the changes in the contact area of the pin in the 

hole as the load level in each hole changed. This is a geometric non­

linearity. (Note: The data shown ln flg. 13 is not for the particular 

JOlnt shown in fig. 9 or the jOlnt shown in flg. 12.) 

Thus as shown in fig. 14, with the plexlglass laps back in place 

and having run a series of experlments to produce a curve as shown in 

fig. 13, the location of the lsotropic pOlnt could be observed. Working 

backwards, the percentage of load reacted by each hole could be deter­

mined. For each of the nine models tested, data as ln flg. 13 was 

obtained. Then wlth the outer laps in place, the percentage of load 

reacted by each hole was recorded for each model at the load level used 

to record photoelastic data. Table 2 presents the load and stress 

levels used for testlng each model and lndlcates the load proportloning 

characteristics. 
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DETERMINATION OF STRESSES 

As mentioned at the beglnlng, the primary goal of this study was to 

provide an accurate plcture of the stress state in the inner lap of the 

model. It was not necessary to compute the stresses at every point in 

the model but certalnly lt was required to know the stresses at a large 

number of pOlnts around the two holes. To have a complete plcture of 

the stress state at a pOlnt ln a plane-stress conditlon, three quan­

tlties must be known. The most loglcal quantitles, and the ultimate 

interest in this case, are the two normal stresses and the shear stress. 

Referrlng to fig. 1 and uSlng the usual nomenclature for stress, these 

three stresses are ox' 0y' and Txy' There are other quantities which, 

lf known, would lead to knowlng the stress state at a point. For exam­

ple, lf one knew the sum of prlnclpal stresses, the dlfference of prln­

cipa1 stresses, and the princlpa1 stress dlrection, then the three 

stresses could be uniquely determlned. Since ln transmlSSlon photo-

elastlclty only the dlfference in prlnclpa1 stresses and the princlpal 

stress directlons are known, the obtalnlng of 01 and 02' or ultimately 

° and ° , requlres a knowledge of a third quantlty. Several approaches x y 

have been used by researchers to provide a thlrd cond,tion. One method 

requlres measurlng the change ln thlckness of the model as the loads are 

applled. S1nce the change of th1ckness of a model 1S proportional to 

the sum of the principal stralns, varlOUS mechanical and optlcal methods 

have been applled to measure thlS change. For lsotroplc elasticity, 

using the elastic properties of the model materlal, the sum of princlpal 
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stresses can be determined from the sum of principal strains. Another 

approach, introduced by Post [26J, util1zes the fact that 0, can be made 

to produce one set of fr1nges and 02 can be made to produce a second set 

of fringes. The view1ng of tnese two sets of fringes provides the 

needed informat10n. Since in isotropic elasticity the sum of the prin­

cipal stresses satisfies Laplace's equat10n, the electrical analogy of 

Theocar1s [17] and the analytical approach of Dally and Erisman [27J 

have been used to obtaln the sum of the princlpal stresses as a third 

known quantity. A fourth method, and the one used here, relies on 

lnformation obtained from the plane-stress equilibrium equations to 

provide a complete p1cture of the state of stress at a point. The key 

to this method is that the stresses obtained from the photoelastic data 

are made to satisfy the plane-stress equilibrlum equat10ns. Two popular 

verSlons of this technique are the shear-dlfference method [28J, and the 

integration of the equllibrium equatlons along prlncipal stress direc­

tions [29J. This latter approach was ploneered by Filon [9J. The 

shear-difference method is also an 1ntegrat1on of the equillbrium equa­

tlons so both approaches rely on known boundary data (or known data 

elsewhere) to obtain numerical values of the stresses. The shear­

difference method 1S subJect to large error because generally the inte­

gration proceeds along paths qU1te far from the known boundary data. 

Unless some other stress lnformation is known along the lntegration 

path, the numerical errors of apprOXlmate integratlon can accumulate. 

With Filon's method, since the princ1pal stress directions are usually 

curved oaths, the integration is a10ng a curved path. The method is 

more accurate than the shear-aifference approach but generally there is 

28 



interest in stresses along lines other than these curved paths and so 

the appl1cation is limited. Filon1s method works well along lines which 

are lines of symmetry for both the loading and model geometry because 

these lines of symmetry are generally principal stress directions. 

To be able to determlne the stresses at arbitrary points in the 

model w1th a minimum of error, an approach orig1nally presented by 

Berghaus [30J was adopted. The method uses the finite-difference form 

of the plane-stress equilibrlum equations, the photoelastic fringe data, 

and the boundary condit1ons as set of overdetermined equations which are 

solved in the least-square sense. The solution of the equat10ns are the 

three stress components Wh1Ch sat1sfy, in a least-square sense, equili-

brium, the photoelastic data, and the boundary conditions. The over-

determined techn1que as 1t is used here 1S different from the version 

Berghaus reported but credlt that investlgator with the basic 1dea. An 

explaination of the approach follows. 

Referrlng to the J01nt nomenclature 1n fig. 1, the equilibrium 

equations which appl1ed in this situation are, 

aTxy+~= o . ax ay 
The photoelastlc data can be represented by 

01 - 02 = cN 

e (pr1ncipal stress d1rect1on) = known 

The photoelast1c equat10ns can be put 1n another form, namely, 

° - ° = cN c05(2e) x y 
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Lxy = ~N sin(2e) (10) 

These equations are the result of applying a stress transformation from 

prlncipal stress coordinates to the x-y coordinates. With this usage, 

e is the angle the prlncipal stress directions make relative to the x­

aX1S of flg. 1 (+e goes from +x to +y). In the nomenclature of photo­

elast1city, the pr1nc1pal stress direct1on, a, is often referred to as 

the the isocline parameter. It should be pointed out that eqs. 5-10 are 

valid at every point in the model. Finally, the boundary data consists 

of knowing one, two, or three of the three stresses at a selected point 

or a locus of p01nts in the model. 

The photoelastic and the boundary cond1tions are algebraic equa­

tions while the equilibr1um equations are partial d1fferential equa­

t10ns. The exact Solut1ons to the equilibr1um equations are generally 

not obtainable in domains with compllcated boundar1es. Thus some form 

of discretizat10n, e.g. f1n1te-element or fin1te-difference, is required 

to obtain aPPox1mate solutions. The finite-difference discretization of 

the equilibrium equations are a set of algebralc equat10ns Wh1Ch have as 

unknowns the stresses at discrete points in the model. Applying the 

photoelastic equations and the boundary condit1ons at these same points 

provide more algebraic equations relat1ng the stresses at these points. 

All of these equations can then be solved for the stresses. 

As 1S well known, the flnlte-dlfference scheme relies on the 

approximation of the derlvative of the function at a point by using 

values of the function in the neighborhood of the p01nt. The three 

common ~ethods of approximat1on are referred to as the forward dif-
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ference, the backward dlfference, and the central difference. Referring 

to fig. 15, the forward dlfference for the evaluation of the first 

derivative of some function F(x) at point x = xi is given by 

dF/ ,;:: 
dx x=x. 

1 

The backwards difference is glven by 

dF/ ,;:: 
dx x=x. 

1 

F. - F 1 
1 1 -

f1x 

while the central difference is given by 

dFI = F1+1 - Fi _l 
dx 2~x x=x· 

1 

(11 ) 

(12 ) 

(l3 ) 

A more comprehens1ve treatment of the finite-d1fference formulation can 

be obta1ned 1n [31J. Wlth the finite-difference approach, interest cen­

ters on the values of the function at a discrete number of points. 

Extending this notion to two-d1mensions and to the problem at hand, the 

finite-difference representation of the equilibrium equations depends on 

writing the part1al derlvatlves of stresses in terms of stresses at 

discrete points in a two-dimensional grid. Figure 16 shows such a grid 

superimposed on a Joint model. With the particular partial differential 

equations to be approxlmated in this problem, and with the particular 

geometric properties of the reglons to be analyzed, the finite-differ­

ence equations take on a different form from one pOlnt to the next 

1n such a grid. For example, at point A in fig. 16, the finite-dif-

fere~ce representations of both a/ax and a/ay must use the forward 

31 



dlfference. The equl11brlum equations at such a pOlnt i,j take the form 

~x r 0 (14 ) ax - a + - T - Txy .. ) = X . f:..y xy i ,J+ 1 1+ 1 ,J 1 ,J 1 ,J 

T - T 
+ ~~ ( a y 1 ,J + 1 - a y 1 ,J) = 0 (15 ) 

XY1+l,j xY',J 

Along llne AB, but not lncluding p01nts A or B, a/ax can be represented 

by the central difference wh11e a/ay must be represented by the forward 

dlfference. The eqllll1brlum equatlons at th1S type of point i,j then 

take the form 

a _ a + 2~x (T -T) 
X . + l' x f:..y xy 1 ,J + 1 xy 1 ,J 1 ,J 1-1,J 

= 0 (16 ) 

TXY1+l,J - Txy. 1 + 2~x (a - a 1 
1- ,J fl..y Yi ,J+l Y1,J) 

= 0 (17) 

For an lnterior point, say E, both derivatlves can be represented by the 

central dlfference. The equillbrlum equatlons for such a p01nt i,J then 

become 

a xi + 1 ,J - a Xl _ 1 , J + ~~ ( T xy 1 , J + 1 - T xy 1 , J _ 1) = 0 
(18 ) 

T - T + ~x fa - a ) = 0 
XYi+l,J XY1-l,J ~Y Y1,J+l Yi,J-l 

(19 ) 

For the p01nt i,J the photoelastlc equatlons become 

a - a = cN cos(28 1 ) 
xi,J Y1,J 1,J ,J 

(20) 

cN 
T xy = ~ sin (28 .1 ) 1,J 2 1,J 

(21) 

where N .. is the 1sochromatic fnnge number at the point and 8 . 'is 1,J 1,J 
the princlpal stress direct1on, relatlve to the x-axis, at the point. 
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The boundary conditions are expressible as one or more of the 

following relations at the points i,j which are on the boundaries of the 

grid region: 

a = known, a = known, 
Xi,j Yi,J 

T = known xy .. 
1 ,J 

(22-24) 

For example, in flg. 16, the first and third of these equations would be 

enforced (with the stresses set to zero) at each grid point on line AD. 

The two equl11brlum equations, the two photoelastic equations, and 

the boundary conditions constitute a set of linear algebraic equations 

for the three stresses in the grld. With this scheme there are always 

more equations than there are unknown stresses. For example, if region 

ABeD in fig. 16 represents a 6 x 5 grld, there would be 30 x 3 unknown 

stresses. There would be 30 x 2 equillbrlum equatl0ns, 30 x 2 photo­

elastic equations, and 5 x 2 boundary conditions (ax = Txy = 0 on AD). 

This represents 130 equatlons for 90 unknowns, an overdetermined set of 

equations. These equat10ns can only be satisfled in the least-square 

sense. An advantage of the least-square method, however, is that 

certaln equations can be weighted to have more influence on the solu­

tion. For example, in fig. 16 it 1S known with certainty that the side 

AD is traction free. Thus instead of uS1ng 

a = 0 x· . 
1 ,J 

and = 0 

along that edge, the equat10ns can be welghted to be 

5a = 0 and x· 
1 ,J 

5Txy . = 0 . 
1 ,J 

(25-26) 

(27-28) 

ThlS approach causes these known condltions to have a stronger lnf1uence 
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on the solution. Other uses of this weighting of known conditions are 

discussed later. 

Rather than solve for all of the stresses in the model at one time, 

by using one large solution grid superimposed on the model, the model 

was broken lnto zones. This ldea is shown in fig. 17. A system of 

zones was established around each hole. The stresses were determined in 

a zone-by-zone fashion, starting with zone 0 and proceeding with zones 

1, 2, 3, 4, and 5 in that order. There were several reasons for adop­

ting this zone scheme. The primary reason was that it kept the problem 

tractable. Instead of solving for the stresses at, say, 400 points 

(1200 unknowns) slmultaneously, the stresses in one zone were computed 

and examined for their plausibility. If the stresses did not seem rea­

sonable, looking for possible errors was relatively easy since only the 

data from a certaln region of the model were lnvolved. If the computed 

stresses in the flrst zone looked reasonable, stresses in the second 

zone were computed and checked, and so forth for the other zones. 

Another advantage of this approach was that the mesh size in each zone 

could be different to reflect steep stress gradients. Variable mesh 

finite-difference schemes could be used but this zone approach was much 

simplier. Also with thlS scheme the grld size ln, say, zone 5 could be 

refined and the stresses recomputed wlthout having to recompute the 

stresses in all the other zones. Since the fringe patterns were sym­

metric about the centerllne, only one-half of the model was analysed. 

The frlnge data were taken from Just one-half of the model. An alter­

nate approach would have been to gather data from both the left and 

right sldes of the model and then average it. The averaged data could 
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then have been used to do the one-half model analysis. This approach 

involved more data gathering and the effort was not felt to be war-

ranted. 

The zone concept and the overdetermined nature of the governing 

equations were a key to having confidence in the computed stresses. 

This confidence is traceable to the solution of the first zone, a zone 

which represented a cross-section of the joint. For zone 1 associated 

with the lead hole 

W/2 

J 0ydX = P2 ' 
-W/2 

(29) 

where P2 is the load transferred to the second hole. The value of P2 
for each model was determined from the total applied load and the 

isotropic point location, Table 2. For a zone 1 below the second hole 

W/2 

J 0ydX = 0 (30) 

-W/2 

for all models. By approxlmating the integrals using Simpson's rule and 

using the values of Gy at the varlOUS grid points across the joint 

width, a check on global equilibrium was possible. This type of calcu-

lation was done as a flrst step ln the stress analysis but then these 

integrals, in discretized form, could be used as additional algebraic 

equations to be enforced in a least-square sense. Since there was a 

high degree of certainty ln these integral equations, the algebraic 

representation of them could be welghted to influence the solution. 

Actually, the stresses computed in zone 1 before enforcing the integral 

equilibrium equations came qUlte close to satisfYlng equilibrium anyway. 
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This provided confidence in the stress analysis. 

The stresses of zone 1 calculations provided a firm basis on which 

to base the other zone's calculations. Using zone 1 calculations to 

help compute the stresses in the other zones was accomplished by consid­

erlng the stresses at the upper grid p01nts in zone 1 as boundary condi-

tions on the lower grid points 1n zones 2, 3, and 5. For zones 3 and 5, 

with their finer meshes, stresses at grid points between the grid points 

of zone 1 were needed. The stress values at these intermediate zone 3 

and 5 grid points were determ1ned by using a cubic spline interpolation 

between the known stresses at the zone 1 grid points. 

Cubic spline interpolat10n was used in one other facet of this 

numerical scheme. The photoelastic equations, eqs. 20 and 21, require 

the isochromat1c fringe value, N;,j' at every p01nt in the grid. 

Looking at fig. 2 with the super1mposed gr1d in m1nd, it is ObV10US the 

integer and half-order fringes would rarely intersect a gr1d point. 

Thus the fractional fringe orders at each gr1d pOint were needed. 

Rather than use some scheme such as Tardy compensation, a cubic spline 

was used to 1nterpolate the fringes at the grid points. This interpo­

lation was based on the known x and y coordinates of the integer and 

half-order fringe points on the model. 

To this p01nt 1n the d1Scussion the determination of the principal 

stress directions has not been ment10ned. To compute the stresses at 

every point 1n the gr1d, the pr1ncipal stress direction at each point, 

e. " must be known. 
1 ,J 

Whereas the acryl1c outer laps had little influ-

ence on the isochromatic fringe pattern of the inner lap, the outer laps 

strongly lnfluenced the isocl1nic fringe pattern. There was no way the 
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principal stress directions of the inner lap could be determined with 

the outer laps in place. Fortunately the equipment used to determine 

the variation of isotropic point location could be utilized. This was 

done as follow: With the outer laps in place and the model loaded, the 

isotropic point location was noted. The model was unloaded and the 

outer laps removed. Then the model was reloaded with the apparatus 

shown in fig. 11. By adjusting the load on each hole, the isotropic 

point location was made to coinc1de w1th the locat1on it had when the 

outer laps were in place. The principal stress directions at each grid 

point could then be determined directly from the polariscope mechanism 

designed to do this. There was concern that the independent ho1e­

loading apparatus did not produce the same hole loading as the outer 

laps did. This concern was in the context of contact area and distor­

tion of the acrylic dowel w1thin the hole. It appeared, however, that 

the principal stress d1rections were not as sensitive to these para­

meters as were the isochromatic fr1nges. Small variations in the per­

centage of load reacted by each hole and variations in the total load 

level did not significantly change the principal stress directions. 

Th1S was fortunate because it was felt there was no alternative to 

determining principal stress directions. Appendix B shows typical 

values of Nand e at the grid point locations. 

Finally, as is noted by the zone identificatl0n 1n fig. 17, the 

region to the lower left of the hole does not have a grid on it. 

Figure 10 shows a typical isochromatlc frlnge pattern in this region and 

as can be seen, the frlnge locations can be determined qUlte accurately. 

Unfortunately the prlncipal stress directions ln this region were quite 
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difficult to determine. Once they were determined it was apparent that, 

if the determination was accurate, the principal directions changed 

rapidly over a small distance. Figure 18 shows a typical isoclinic 

fringe pattern in this region. An overdetermined solution scheme based 

on polar coordinates was developed and the stresses computed. In light 

of the rapid variation of the principal stress directions the calcu­

lations were viewed as suspect. Much effort went into this particular 

problem but to avoid presenting possibly misleading information, no 

results from this portion of the study are presented. 
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RESULTS 

With the numerical method described in the previous chapter, peak 

stresses, stress concentrat1on factors, spat1al distributions of 

stresses, and other stress-dependent trends could be determined for each 

model. W1th 9 models and 3 components of stress at each fin1te-d1f-

ference gr1d point, a complete descr1pt1on of the stress d1stribution 1n 

all models involved an overwhelm1ng amount of information. Th1S infor­

mation 1S not included in th1S report, but rather important trends and 

peak values are presented. The stress 1nformation presented here 1S 

based on gross-sect1on (far-field) stress of 1.97 MPa (286 psi). This 

gross-sect10n stress 1S defined as 

P o =-gross Wt (31) 

Thus for the wide models, the appl1ed tensile load was 2224 N (500 lb), 

for the med1um width models the load was 1668 N (375 lb), and for the 

narrower models the load was 112 N (250 lb). 

Another stress commonly used in discuss1ng pinned J01nts, bearing 

stress, 1S used to descr1be stresses in these models. For clarity in 

defin1tion, this stress needs some d1Scussion. For a single hole con-

nector, bear1ng stress is defined as 

P S =­Dt (32 ) 

In this discuss10n, Slnce roughly one-half the total load is actlng on 

each hole, bearlng stress is defined to be 

- P 
S - 2Dt (33) 
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This definition is applied to both holes. Even though the gross-section 

stress was the same for all models tested, the bearing stress was not. 

Figures 19, 20, and 21 show the trend, with distance away from the 

hole-edge, of the 0y stresses at the net-section. These stresses are 

associated with net-section failures. The stresses in the figures have 

been normalized to hole-edge values. The figures are, respectively, for 

the long, medium length, and short models. For most cases the stresses 

are shown for a distance of up to 3 hole radii away from the edge. This 

is done to show the stress gradients. The stresses have been normalized 

to unity at the hole-edge and the stresses are shown for both the top 

and bottom holes. In some figures shown some plotting symbols appear to 

be missing, indicating the stresses were not computed. It may be that 

the symbol is hidden by other symbols grouped closely together. How­

ever, in some cases (e.g. narrow width models of medium length, fig. 20, 

open circles) computation was stopped a few radii away from the hole. 

ThlS was due to dlfficulty in interpreting the principal stress direc­

tlons in certain regions of the model. In certain models where the 

stresses did not vary rapidly, the isoclinic fringes were not sharp and 

distinct. In all cases (except for the reglon at the lower side of the 

hole mentioned at the end of the previous chapter) the areas were not of 

prlme interest. From the flgures it is obvious there was not much 

difference from model to model or between the lead hole and the second 

hole in the stress gradients at the net-section. 

Figures 22, 23, and 24 show the spatial behavior of the cry stresses 

on the centerline below the holes. Slnce these stresses are compres-
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sive, they are associated with the crushing or bearing failure of the 

material around the hole. For the second hole these stresses by defini­

tion drop to zero at the free end of the model. For the top hole, these 

centerline stresses also vanish but become tensile as the second hole is 

approached. If the distance between the two holes is large enough these 

tensile stresses become one-half the gross stress. A study of stresses 

in the region between the lsotropic pOlnt and the second hole for a long 

wide model [32J showed these tensile stresses were not perfectly uniform 

across the wldth but that they were close to achieving uniformity. A 

similar study for other model geometrles was not conducted. 

Figures 25, 26, and 27 are quite interesting. These figures show 

the normalized ax stresses below the second hole. These stresses have 

been normalized to the maximum value of stress along the centerline. As 

can be seen, in all cases these stresses go from compressive at the hole 

edge to tensile within a hole radius of the hole edge. In most cases 

the maximum tensile stress occurs at the free end while the maximum 

compressive stress occurs at the hole edge. The compresslve stress at 

the hole edge is felt to be due to frlction between the dowel and the 

hole. Wilkinson [23J noted a similar effect 1n a study of wooden Joints 

with steel pins. Oplinger and Ganhdi [33J showed that including the 

effects of frictlon can change the sign of the hoop stress around the 

hole. Their study was done for orthotropic materials. The large ten­

sile stress near the free end can lead to the splitting of the joints 

along the centerline. Such an effect was noted by Matthews [34J during 

a study of glass-epoxy connectors. The connectors which failed in that 

study were weak 1n the width direction but th1S points out that the 
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splitting stresses should not be 19nored even though they may be small 

compared with, say, peak net-section stresses. 

Figures 28, 29, and 30 illustrate the net-section stress concen­

tration factor, based on the gross stress, for the various models. The 

stress concentration factor for each hole in each model is computed two 

ways. The stress concentration factor based on the assumption 50% of 

the load is reacted at each hole, eq. 33, is shown w1th open symbols. 

The stress concentration factor based on the actual percentage of load 

reacted at each hole, from Table 2, is shown 1n SOlld symbols. Since 

all the loads were close to 50-50, there is not much difference in the 

two sets of numbers. The solid lines on each figure are hand-faired and 

represent what are felt to be trends. These will be discussed later. 

As can be seen, the stress concentration factor for the lead hole 

is always greater than the stress concentration factor for the second 

hole and both stress concentration factors increase with increasing WID. 

On these figures stress concentration factors obta1ned by other inves­

tigators for single-hole connectors are 1ndicated. The second-hole 

stress concentration factors should correspond closely to the single­

hole values of other investigators if the gross stress for the slngle­

hole connectors is doubled (halving their stress concentration factors) 

and the width, W, and the distance to the free end, e, are sim11ar. 

Coker, et al. [9J tested a single model with the hole about 12 

diameters from the free end. The value of WID for the connector was 

about 8. The data for this test are shown on the three figures although 

it most aptly may belong on the figure of the long model, fig. 28, e/D = 
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3. Finite element results from the single-hole connector study of 

Crews, et ale [22J are also shown on the figures. The dashed line is 

the1r trend with WID for a quasi-isotropic mater1al and for a model much 

longer than the ones tested in this study, namely models with an e/D = 
10. For wide Joints, however, their study shows e/D does not signifi­

cantly affect stress concentration factors for e/D > 2 or 3. Thus there 

is some justification in comparing their results with the present 

results. De Jong [35J studied infinitely long isotropic and orthotropic 

single-hole connectors and Ogonowski [5J looked at finite-sized single­

hole isotropic and orthotropic connectors with an e/D of 2. Both inves­

tigators' pertinent results are shown on the three figures. Nisida, et 

ale [18J tested models with a WID of 10 and various values of e/D. On 

the figures are their values of the stress concentration factors ob­

tained for various values of e/D. On figs. 28, 29, and 30 the data for 

two tests of Jessop, et ale [13J are shown. From their paper it is not 

clear what the lengths of their models were. 

It mlght be expected that the wide long model stress concentration 

factor should not be too different than an infinite plate solution. 

Comparisons using gross stress for infinitely wide plates are of course 

meaningless. However, 1f bearing stress is used (stress at net-section 

hole edge/S of eq. 33), the long wide model has a bearing-stress stress 

concentrat10n factor of 0.97. Bickley's [4J lnfinite plate single 

connector has a bearing-stress stress concentration factor of 0.81. De 

Jong computed a value of 0.82. The bearing-stress stress concentration 

factors for all the cases shown in Figures 28, 29, and 30 can be com­

puted knowing the net-section stress concentration factor and the value 
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of WID. 

Figures 31,32, and 33 show the stress concentration factors for 

the radial compressive stress below the hole, on the joint centerline. 

The stress concentration factors in these figures are based on the 

bearing stress for the hole, eq. 33. The data on these figures have no 

discernable trend with the value of WID. Although, on the whole, they 

seem higher for the shorter specimens. Based on the results of other 

investigators for single-hole connectors, the stress concentration 

factors for the second hole were not expected to vary much with the 

geometry of the models. For reasons dlscussed later, the stress concen­

tration factors for the lead hole were not expected to vary much with 

model geometry elther. Furthermore, lt was not expected that the values 

for the stress concentration factors of the lead hole would be too 

different from the values for the second hole. On these flgures are 

data for the results of other investigators studying single-pln connec­

tors. Nisida, et al. [18J obtalned stress concentration values of 1.02, 

1.14,1.11, and 1.25 for e/D values of 1.0,1.5,2.5, and 4.0, respec­

tively. This was for an e/D = 10. Bickley [4J obtained a value of 1.27 

for the infinte plate single-hole connectors. Coker, et al. [9J ob­

tained a number slightly less than unlty. Crews, et al. [22J did not 

study the compressive radial stress as extensively as they studled the 

net-section tensile stress. However, their results for quasi-isotropic 

materials indicate that for wlde specimens (W/D = 20) there is little 

sensitivity of the stress concentration factor to e/D, ranglng from 

slightly less than unlty for e/D = 1.00 to about 1.25 for e/D + 00. They 
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also show that for long specimens (e/D = 10) the stress concentration 

factor is about 1.25 for widths WID = 2 to WID + 00. De Jong [35J 

obtained a value of 1.16 for values of WID ranging from 2.5 to 00 for 

infinitely long specimens. 

It should be ment~oned that the stress studied directly under the 

hole is a contact stress. Any irregularlties in the surfaces of the two 

contacting materials can cause extremely high and/or irregular local 

stresses. Such a situation can be seen in fig. 10. To the right of the 

semi-circular fringe WhlCh straddles the centerline just below the hole 

there is a smaller semi-circular fringe at the hole edge. This smaller 

fringe is due to a high localized stress from a surface irregularity on 

elther the pin or the hole. When interpreting fringe values at the hole 

edge, these surface irregularities can induce fringes which effect the 

results of stress calculations. This results in essentially a Inoisyl 

stress calculation. Photoelastic material like PSM-l is particularly 

sensitive to these lrregularlties. ThlS is felt to be the reason for 

much of the scatter observed in figs. 31-33. 

The behavlor of another important stress, the shear stress, is 

shown in figs. 34-36. These figures show the shear stress normalized by 

the gross stress, Lxy/0gross' along a line parallel to the centerline, 

starting at the net-section hole edge and proceeding towards the free 

end of the jOlnt. ThlS line, or plane if the thickness of the joint is 

considered, is referred to by some lnvestigators as the shear-out plane. 

If the shear stresses along this line become excessive, the pins could 

shear out towards the end of the Joint. The figures show these shear 

stresses for both the lead and second holes. Although the figures 
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appear cluttered, if there is interest in a particular joint geometry, 

the trend and peak values can be easily picked out. All values of the 

shear stress tend to reach a maximum within a hole radius of the net-

section hole edge. In addition, the second hole seems to have higher 

peak stresses for all joints. Crews, et ale [22] studied this stress 

and found that the shear stress divided by the bearing stress reached a 

maximum value of between 0.5 and 0.75, depending on joint geometry, for 

a quasi-isotropic material. These findings are consistent with the 

flndings presented in figs. 34-36. 

Figures 37-39 show further trends of the shear stress. Each figure 

has two parts. To the right in each figure is an lndication of the 

locus of points of maximum shear stresses below the lower-most point of 

the second hole. To the left in each figure, the values of the shear 

stresses normalized by the gross stress along this locus are shown. As 

can be seen, for all model geometries, the locus of maximum shear stress 

occurs on the center line side of the shear-out plane near the hole and 

then moves outside the shear-out plane as the free end of the joint is 

approached. From figs. 34-36 and figs. 37-39, it appears the maximum 

.xy shear stress under the hole does not occur on the shear-out plane 

but occurs somewhat closer to the Joint center line. 
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DISCUSSIONS AND CONCLUSIONS 

As the result of th1S study, a technique has been developed for the 

investigation of double-lap, double-pin joints. This technique is based 

on the use of transm1SS1on photoelastic models of the joints. Methods 

were developed for making the models, for loading them, and for trans­

lat1ng the photoelastic data 1nto stress information. All of these 

phases of the technique 1nvolved either extending previously publ1shed 

methods or develop1ng new approaches. The techniques developed were 

specialized to th1S part1cular study but certainly can be used as a 

bas1s for other photoelastic work. More 1mportant than the development 

of a new techn1que, though, was the acqu1sit1on of valuable engineering 

information regard1ng J01nts. 

The eX1stence of a photoelast1c 1sotropic point, and its relation 

to the load sharing between the two p1ns, is a unique discovery. It 1S 

felt that this techn1que can be used to study the load sharing between 

pins when one pin is deliberately made to be much smaller or much larger 

than the hole. This would represent the sltuat10n where one pin in a 

connector is accidently miss1zed. It may be possible to determ1ne what 

degree of miss1z1ng 1S requ1red 1n a model to have the load propor­

tion1ng be, for example, 30-70 instead of 50-50. In addition, it is 

felt the photoelast1c 1sotrop1c p01nt may have value in actual metal or 

composite connectors. Such a point probably exists in photoelast1c 

reflective coat1ngs and these coat1ngs could be appl1ed to actual 

Joints. Determining the red1str1bution of the load from one pin to 
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another as the hole elongates during the fatigue of a multiple-pin joint 

may be possible with the coating technique. 

The trends in peak values of the stresses for the various Joint 

geometries provide other englneering information. This information is 

presented in figs. 21-39. While figs. 21-23 show net-section stress 

gradients normalized to the hole-edge stress value, considering both the 

gross stress value of 1.97 MPa (286 psi) used for all models and the 

net-section stress concentration factor of figs. 28-30, actual stress 

values can be determined. Since there is little difference between the 

stress gradients among the models or between the lead hole and second 

hole, failure criteria based on the average stress over some charac­

teristic distance from the hole edge would not seem to be dependent on 

model geometry. That would lend credibility to idea that these charac­

teristic dlstances are materlal properties [3J, a phenomena observed 

when testing composlte specimens with holes. 

Whl1e the net-section stress gradients show little sensitivity to 

model geometry, the net-sectlon stress concentration factors, figs. 28-

30 do. There is particular sensltlvlty of the stress concentration 

factors to the numerical value of WID. The solid lines in figs. 28-30, 

as stated before, are hand-faired straight lines through the data deter­

mlned from this experiment. There really was not enough data to justify 

a least-square fit and in the region a straight line was felt to be a 

good estlmate of the true relatlon in this region. The single-pin 

connectors studies of other lnvestlgators seemed to cluster around the 

stralght-1ine fit of the data in this study wlth Crews et al.'s data 
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[22J being on the upper end. Their analysis assumed a frictionless but 

flexible steel pin whereas de Jong [35J assumed a perfectly rigid fric­

tionless pin. Ogonowski [5J, as mentioned before, used the radial 

cosinusoidal distribution over one half the hole opening. It is felt 

that friction would have a small effect, if any, on the net-section 

stress concentration factor. All the frlction effects between the hole 

and the pin take place on the circumference of the hole below the net­

section location. In the experiments of other investigators, the re­

sults are for single-pin connectors about the stiffness of plexiglass 

and with pins as stiff or only slightly stiffer than the joint material. 

The pins in all the studies were of some kind of plastic. The results 

of Nislda et al. [18J seem to be out of llne with the other investi­

gator's data. In additlon to providing stress concentration factors for 

double-pin joints, flgS. 27-29 are a good summary of pertinent work on 

single-hole connectors and show a comparlson among recent investiga­

tions. 

As expected, the stress concentratlons factors for the lead holes 

are higher than the stress concentration factors for the second holes 

and ObVlously dlctate the deslgn of a Joint lf net-section tension 

fallure 1S a concern. There does not seem to be an obvious trend of 

stress concentration factors with model length, although the stress 

concentration factors for the second holes of the shorter Joints are 

less than the stress concentration factors for the second holes of the 

other JOlnts. If indeed the stress concentratlon factors are lower, it 

is due to the close proxlm1ty of the lead hole in this short Joint 
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design rather than the short distance to the free edge. This can be 

said because the distance from the second hole to the free end is the 

same for the medium length models and the short models and the medium 

length model's stress concentration factors for the second hole are 

about the same as the stress concentration factors for the longer 

model's second holes. Why the stress concentration factors for the lead 

hole of the medium length model with a WID of 6 is low (fig. 29, 

squares) is a puzzle. 

It is interesting to note that even for the narrow models with the 

shorter distance from the second hole to the free end, the 0y stress was 

actually zero at the outside edge of the second hole net-section (figs. 

20 and 21, closed circles). This indicates that even for these models, 

material and we1ght could be saved by rounding the free-end, starting at 

the net-section with the rounding radius. 

Like the net-section stress gradlents, the stress gradients below 

the hole along the joint center lines are all similar. The gradients 

appear to be insensitive to model geometry. It appears that the longer 

models are longer than needed both between the holes and from the second 

hole to the free end. The compressive stresses are very low for at 

least a hole radius from the free end. In addition, as mentioned be-

fore, the compressive stresses below the lead hole become tensile as the 

second hole is approached. There 1S no need for the stresses to become 

uniform in this reglon and so the lengths can be made shorter and thus 

provide a lighter joint. 

The lack of any discernable geometric effects on the bearing stress 
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stress concentration factors below the holes, figs. 31-33, also empha­

sizes the fact the shorter Joint is as effective as either of the other 

designs. It is felt the bearing stress at the lower diameter of the 

hole is primarily a function of hole diameter, and of course pin tol­

erance in the hole. This bearing stress is such a localized phenomena 

that other geometric characteristics of the joint produce only a second­

order effect on the bear1ng stress. Since all models have the same hole 

size, and ostensibly the same pin/hole tolerance, the bearing-stress 

stress concentration factors for all holes, lead and second, should be 

about the same. The fact that the lead hole has 50% of the load passing 

by really should not affect the bearing stress for that hole. The lead 

hole can be considered as the algebraic sum of a single-pin connector, 

for the portion of the load reacted by lt, and an open hole tensile 

strip, for the port10n of the load passing by it. The open-hole con­

nector has no bear1ng stress and so the bear1ng stress at the bottom of 

the lead hole is due to the slngle-pin connector effect reacting one 

half the load, the same as the second hole. Therefore the lead hole and 

the second hole should be no d1fferent when it comes to bearing stress. 

Actual hole Slze can be important and probably does effect the bearing 

stress more than any other geometr1c parameter of the joint. Globally, 

the problem of determining joint stresses is a linear elastic problem. 

However, the interaction of the hole and pin is nonlinear and so actual 

hole size, as opposed to some value of WID, 1S lmportant. Since in this 

study all holes were of the same size, not much can be said about this 

issue. This area needs further investigatlon. However, for holes in the 
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19-25 mm range (0.75 to 1.00 in.), a bearing-stress stress concentration 

factor of 1.5 would give conservative design for both holes. As with 

the net-section stress concentration factors, figs. 31-33 provide a good 

comparison of recent investlgatlons. 

Examination of the shear stresses below and near the holes, figs. 

34-39, reveal some interestlng trends. For all geometries, the shear 

stresses at the lead hole were less than the corresponding stresses at 

the second hole. In additlon, it appears that the wlder the Joint, the 

larger the value of Txy/Ogross' both along the shear-out plane, figs. 

34-36, and along the maXlmum shear locus, flgS. 37-39. At first thought 

lt would seem that the narrow Joint would produce hlgher stresses be­

cause the load must pnSS the hole via a narrow piece of net-section 

material. However, for a given 0gross' wider joints lead to higher 

total loads WhlCh must be reacted by the hole. ThlS ObVlously lS what 

leads to the hlgher shear stress. The dlstance from the second hole to 

the free end dld not seem to have a large influence on the shear stress. 

As seen in figs. 37-39, the locus of maximum shearing stress below the 

hole is not quite cOlncldent with the shear-out plane. The shear stress 

on the Joint centerllne is zero and so there are large shear stress 

gradients on lines perpendicular to the JOlnt centerline. This lS more 

pronounced in regions wlthin a hole radius of the bottoms of the holes. 

The maximum shear stress locus obviously proceeds lnto the section below 

the hole that was dlfflcult to analyze. It lS felt that interrogation 

of existing photoelastlc data ln this region could lead to a completion 

of the locus to the hole edge. 
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Table 1 

DIMENSION OF MODELS* 

W E e 
Model mm Il1TI mm 

(i n. ) (i n. ) (in.) 

long, wide 178 133 66.7 
(7.00) (5.25) (2.62) 

long, medium 133 133 66.7 
width (5.25) (5.25) (2.62) 

long, narrow 88.9 133 66.7 
(3.50) (5.25) (2.62) 

medium length, 178 133 44.4 
wide (7.00) (5.25) (1. 75) 

medium length 133 133 44.4 
medium width (5.25) (5.25) (1. 75) 

medium length, 88.9 133 44.4 
narrow (3.50) (5.25) (1. 75) 

short, wide 178 88.9 44.4 
(7.00) (3.50) (1. 75) 

short, 133 88.9 44.4 
medium width (5.25) (3.50) (1.75) 

short, narrow 88.9 88.9 44.4 
(3.50) (3.50) (1. 75) 

*refer to fig. 1 for definition of W, E, D, and e 
D = 22.2 mm (0.875 in.) in all cases 
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WID E/D e/D 

8 6 3 

6 6 3 

4 6 3 

8 6 2 

6 6 2 

4 6 2 

8 4 2 

6 4 2 

4 4 2 



Table 2 

PERCENTAGE OF LOAD REACTED AT EACH HOLE OF INNER LAP 

Model Percentage of Load Percentage of Load 
at Lead Hole at Second Hole 

long, wlde 52% 48% 
long, 53 47 medlum width 
long, narrow 48 52 
medium length, 45 55 wide 
medlum length, 48 52 medium width 
medium length, 48 52 narrow 
short, wide 55 45 
short, 48 52 medlum width 
short, narrow 40 60 
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Flg. JOlnt geometry and nomenclature 
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optlcal elements 

Fig. 2 Deslgn phllosophy of photoelastlc JOlnt models 
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Fig. 3 PSM-l disk and Acrylite disk subjected 
to identical diametral compression loads 
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Fig. 4 Geometry of largest model and the load introductlon doublers 



Fig. 5 Machining of the models 



Fig. 6 Long wide model with aluminum doublers 



Fig. 7 The nine joint models tested 



Fig. 8 Long wide model in the loading frame 
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Fig. 9 Typical dark-field isochromatic fringe pattern, 
medium length narrow model 
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Fig. 10 Close-up view of dark-field isocllromatic fringe pattern around lead hole, long narrow model 



Fig. 11 Apparatus to load each hole independently 
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Fig. 12 Dependence of isotropic point location on percentage of load 
reacted by each hole (P l = top hole, P2 = bottom hole) 
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Fig. 13 Isotropic point location as a functlon of amount of load 
reacted by each hole 

70 



C 
E 

0.8 

0.4 

0.2 

E 

* 

T 

p 

- x _-+-isotropic 
point 

-OP , 2 

isotroplc point location with 
outer laps in place 
----..,....---- ---- --~ - - - ---

I 

I , 

, 
proportion of total load : 
reacted by 1 ead ho 1 e ---.,1 

O.O-+------T----~I------~---~----~~~~I----T---~ 

0.0 0.2 0.4 0.6 0.8 

Pl/P 

Fig. 14 Determining load proportloning from isotropic point location 
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APPENDIX A 

BRIEF OVERVIEW OF PHOTOELASTICITY 

When light passes from air 1nto a transparent solid, its velocity 

decreases. Certa1n transparent mater1als have the property that if the 

light vector enters the material in a specif1c direction the velocity 

decreases even more than if the light vector were oriented 90° to thft 

direction. Since the phenomenon 1S related to the orientation of the 
\ 

llght vector, polarlzed light is used so this direction can be control-

led. The property of havlng two propogation veloclties in a single 

material is called birefrlngence, the prefix Ibi I referring to the two 

possible speeds. When the light reemerges 1nto the air, certain light 

wave trains are out of phase with each other because of the different 

veloc1ties wh1le 1n the materials. If the reemergent light is v1ewed 

with the proper optical elements, these two wave trains can be made to 

interfere. If the phase Sh1ft of these two wave trains is just right, 

there is destructive interference and no light appears to emerge from 

the birefringent material. Most all transparent materials exhibit 

b1refr1ngence to some degree. However, there are certain materials that 

exhib1t b1refr1ngence which varies strongly when they are subjected to 

stress. If one of these birefr1ngent materials 1S stressed so the 
I 

stresses vary throughout and polar1zed light is passed through it, an 

observer w1ll see patterns of dark and lignt fringes. These fringes 

correspond to the locus of p01nts where the stress level in the materlal 

is such as to cause destruct1ve and construct1ve 1nterference. Pr10r 

cal1bration w1ll allow determ1nat1on of tnose stress levels which cause 
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interference. Thus the frlnge pattern can be interpreted in terms of 

stresses. 

Photoelasticlty as just described allows direct measurement of two 

quantlties, (1) dlfference in prlncipal stresses (01 - 02) and (2), 

orientation of the princlpal stresses. In tVJO-dlmensional plane stress 

problems, to completely describe the stress state three quantltites must 

be known: °1, 02 and the principal stress dlrectlon, or; 0x,Oy 

and Txy. Photoelast1city does not directly give a third quant1ty. In 

many app1icat1ons the maX1mum stress occurs at a free boundary \vhere one 

of the princ1pa1 stresses 1S zero. The other pr1ncipa1 stress can then 

be determined directly from the fr1nge count. ~hen it is requlred to 

know the state of stress at a point where neither of the princlpal 

stresses is zero, a thlrd plece of 1nformat1on 1S requlred. Th1S third 

plece of 1nformatlon can be obtalned experlmentally, or it can be the 
\ 

enforcement of one or more of the equatlons of elastlclty. The deter-

mlnatlon of 0 , a , and T is referred to as the separatlon of x y xy 

stresses. 
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APPENDIX B 

ISOCHROMATIC FRINGE NUMBER (N) AND PRINCIPAL 
STRESS DIRECTION (8) NEAR SECOND HOLE IN SHORT NARROW MODEL 

The isochromatic frlnge lnformation, N, and the isoclinic fringe 

information, e, at each point for the short narrow model 1S presented in 

this append1x. These data are typical of the data for all models. 

For conven1ence, the data are grouped by the zones used in the 

finite-difference calculatlons. The grld points are identified by the 

letter/number system shown on the accompanylng diagram. 
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Zone 3 I K M 0 Q 

9 N 2.91 2.31 1.72 1.43 1. 18 
e 72.10 74.00 79.40 83.60 87.30 

11 N 2.40 2.15 1.65 1.40 1.22 
e 74.50 80.00 85.20 89.50 93.50 

13 N 2.13 1. 89 1.60 1. 39 1.20 
e 65.20 74.00 78.00 81.00 82.40 

15 N 1.87 1.64 1.42 1. 27 1. lS 
e 58.20 65.30 70.00 72.40 76.30 

17 N 1.63 1. 54 1.40 1. 27 1.09 
e 5~.20 61. 30 66.00 68.50 71. 70 

Zone 4 I J K L M N 0 p Q 

N 3.50 2.S7 1.85 1. 50 1.33 1. 16 1.00 0.91 0.87 
e 90.00 87.80 85.50 83.20 81.00 78.80 76.S0 74.20 72.00 

2 N 3.91 2.85 2.02 1. 58 1.36 1. 19 1.04 0.95 0.89 
e 80.00 70.40 77 .60 78.80 78.00 76.70 75.40 74.10 72.80 

3 N 4.13 3.04 2.17 1.68 1.42 1. 23 1.08 0.98 0.91 
e 72.30 73.00 73.60 74.30 7S.00 74.60 74.30 74.00 73.60 

4 N 4.05 3.07 2.28 1.80 1.52 1.30 1. 12 1.01 0.95 
e 66.70 67.S0 68.80 70.10 78.50 72.20 73.00 73.70 74.50 

5 N 3.79 2.99 2.33 1. 90 1.62 1. 37 1. 17 1.05 0.98 
e 60.00 62.00 64.00 66.00 68.00 69.80 71.60 73.50 75.30 

6 N 3.53 2.88 2.33 1. 95 1.68 1.43 1.22 1.09 1. 01 
e 59.00 62.90 66.50 68.70 70.90 72.70 74.60 76.50 78.30 

7 N 3.30 2.77 2.31 1. 97 1. 71 1.45 1.28 1. 13 1.04 
a 58.50 63.80 69.90 71.40 73.70 75.60 77 .60 79.S0 81.30 

8 N 3.10 2.69 2.30 1. 98 1.72 1. 51 1.35 1.21 1. 10 
6 68.40 68.40 71.50 74.10 76.50 78.00 80.60 82.50 84.30 

9 N 2.91 2.62 2.31 1. 99 1.72 1. 55 1.43 1. 31 1. 18 
a 72.10 73.00 74.00 76.70 79.40 81.50 83.60 85.50 87.30 
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Zone 0 A E I M Q R S T U 

19 N 1. 01 1.07 1.07 0.96 0.74 0.49 0.28 0.10 0.00 
e 0.00 14.00 31.20 43.20 48.00 52.00 57.00 84.00 90.00 

20 N 1. 17 1.05 0.91 0.73 0.55 0.37 0.20 0.03 0.00 
e 0.00 7.00 23.00 35.00 38.00 41.00 42.00 80.00 90.00 

21 N 1.63 1. 50 1.09 0.73 0.50 0.30 0.01 0.00 0.00 
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zone 1 A E I M Q R S T U 

17 N 1. 74 1. 71 1.63 1.40 1.09 0.72 0.40 0.17 0.00 
9 0.00 30.00 58.00 66.00 71. 70 81.50 86.50 90.00 90.00 

18 N 1. 36 1. 33 1.27 1. 15 0.92 0.62 0.35 O. 16 0.00 
e 0.00 21.50 38.00 50.50 57.00 63.00 75.00 84.00 90.00 

19 N 1. 01 1. 07 1.07 0.96 0.74 0.49 0.28 0.10 0.00 
e 0.00 14.00 31.20 43.20 48.00 52.00 57.00 84.00 90.00 

Zone 2 Q R S T U 

N 0.87 0.65 0.47 0.19 0.00 
0 72.00 72.00 72.00 90.00 90.00 v 

5 N 0.98 0.68 0.43 0.21 0.00 
~ 75.30 78.50 80.20 90.00 90.00 v 

9 N 1. 18 0.77 0.47 0.23 0.00 
e 87.30 90.00 90.00 90.00 90.00 

13 N 1. 20 0.82 0.44 0.19 0.00 
" 82.40 88.00 90.00 90.00 90.CO C' 

17 N 1.09 0.72 0.40 0.17 0.00 
::l 71. 7 81.50 86.50 90.00 90.00 v 
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Zone 5 A B C D E F G H I 

9 N 3.43 3.18 3.11 3.31 3.52 3.49 3.31 3.10 2.91 
e 0.00 6.30 36.20 41.60 42.00 50.20 65.50 65.10 72.10 

10 N 3.20 3.04 2.98 3.08 3.19 3.14 2.98 2.80 2.63 
e 0.00 18.00 40.50 57.20 64.20 66.00 68.20 70.00 77.50 

11 N 3.00 2.91 2.86 2.88 2.90 2.83 2.70 2.55 2.40 
e 0.00 13.30 32.33 44.30 56.50 63.90 67.20 71.00 74.50 

12 N 2.83 2.78 2.74 2.72 2.69 2.61 2.50 2.38 2.25 
e 0.00 10.20 28.70 38.20 50.50 67.00 63.80 67.00 71.20 

13 N 2.63 2.61 2.58 2.55 2.50 2.44 2.35 2.25 2.13 
e 0.00 11.40 25.20 33.20 44.20 51.00 58.30 62.10 65.20 

14 N 2.37 2.36 2.35 2.33 2.30 2.25 2.20 2.10 2.00 
e 0.00 10.10 22.30 29.20 40.00 46.90 54.00 57.70 62.10 

15 N 2.10 2.11 2.11 2.10 2.09 2.06 2.02 1. 95 1.87 
6 0.00 8.40 18.20 27.00 35.40 42.30 49.30 55.30 58.20 

16 N 1. 90 1. 90 1. 91 1. 90 1. 90 l.88 1.85 1.80 l. 75 
e 0.00 8.50 16.90 23.50 33.60 41.00 45.20 52.30 56.00 

17 N 1. 74 l. 74 1. 73 l.72 1. 71 1. 70 1.68 1.66 1.63 
8 0.00 7.10 13.60 22.10 31.90 28.10 44.20 48.00 58.20 
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