@ https://ntrs.nasa.gov/search.jsp?R=19820006660 2020-03-21T09:46:53+00:00Z
PR 5
EY RESEA /’@dqd/é,, /@J/ ¥/ 4

IIIIIN!NIINHI(INU I(II !HIIINIIH il

015970

NASA Contractor Report 165812

NASA-CR-165812
iﬂﬁaooouoéo

USE OF TWO-DIMENSIONAL TRANSMISSION PHOTOELASTIC
MODELS TO STUDY STRESSES IN DOUBLE-LAP
BOLTED JOINTS

M. W. Hyer and D. H. Liu

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
Department of Engineering Science and Mechanics
Blacksburg, Virginia 24061

Grant NSG-1621
November 1981

NAS

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

[ER T E

NF01335



TABLE OF CONTENTS

Page
TABLE OF CONTENTS +evvvecennocnnsseuonacnsanansasansennessnnesnnas j
LIST OF FIGURES e v evsceoocceansoaneunnenseoneannsneenesonennonnnnns i
LIST OF TABLES Lttt i ittt ie et iiieeenennnnnanns iv
LIST OF APPENDICIES cvevnvreeneneneanenneennnaneensscnnsnanosonanns v
LIST OF SYMBOLS ¢ v vcvevenonocetoannnonnosasoacssaasossassensnannns vi
INTRODUCTION cvcveevevannsosonsuasonnnsenanonseenesssussacsssasnsas 1
REVIEW OF PAST WORK AND MOTIVATION FOR PRESENT WORK «eceevcervcene... 5
DESIGN AND FABRICATION OF THE MODELS -ccvvvvvennenenneneninnnn., 14
TYPICAL EXPERIMENTAL RESULTS AND THE EXISTENCE OF A
PHOTOELASTIC ISOTROPIC POINT +tcecevnscecenasnscoananosssnnnconsaa 21
DETERMINATION OF STRESSES cevvveveorueentonecnnsonnnesocenannnnns 27
RESULTS cvvevvoreorosoneecencnenanenensnanssenassnsanoansanennnnss 39
DISCUSSIONS AND CONCLUSTONS v eveetnmneaeneenennnnnennsenannnnnnn a7
REFERENCES s+ veveoonncanosnnoeaessanasneenanenssasessnensnsnnnnns 53
TABLES
1. DIMENSIONS OF MODELS ...oeiiieieiaianne, e eiieaeaeeas 56

2. PERCENTAGE OF LOAD REACTED AT EACH HOLE OF INNER LAP .... 57

FIGURES ¢ eteetittineaenninenssnasnenenaseeeesanansaasnceasaasonsas 58
APPENDICES
A.  BRIEF OVERVIEW OF PHATOELASTICITY ..ieiiiiieiiiiiiann, 97

B. ISOCHROMATIC FRINGE ™i™ER (N) AND PRINCIPAL
STRESS DIRECTION (8) NEAR SECOND HOLE IN SHORT
NARROW MODEL v et tttniieeiennreeenansseeensscannosnsnnnns 99

NG~ 14533 7



10.

11.
12.

13.

14.

15.
16.
17.
18.
19.

LIST OF FIGURES

Joint geometry and nomenclatlure ....eveeeeierernenncnnnnnn
Design philosophy of photoelastic joint models ...........

PSM-1 disk and Acrylite disk subjected to identical
diametral compression loads

------------------------------

Geometry of largest model and the load introduction
doublers

-------------------------------------------------

Machining of the models

oooooooooooooooooooooooooooooooooo

Long wide model with aluminum doublers

ooooooooooooooooooo

The nine joint models tested

-----------------------------

Long wide model in the loading frame

---------------------

Typical dark-field isochromatic fringe pattern, medium
length narrow model

--------------------------------------

Close-up view of dark field 1sochrcmatic fringe pattern
around lead hole, long narrow model

----------------------

Apparatus to load each hole 1ndependently

-----------------

Dependence of isotropic point location on percentage of
load reacted by each hole (P, = top hole, P, = bottom
NOTE) veriiieieriiennennnnn. Y, 2

Isotropic point location as a function of amount of
Toad reacted by each hole .. ciuiiiiiiniiiiiiiiiinininennns

Determining load proportioning from 1sotropic point
oo o o o

Descretization of a continuous function .........c.cvu..n.
Two dimensional finite-difference grid on joint model ....
System of finite-difference zones around hole region .....
Isoclinic fringe patterns around RoTe ...viviieineneenennn

Stress gradients at net-section, long mocdels

i

60

61
62
63

64
65

66

67
68

69

70

71
72
73
74
75
76



20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.
31.

32.

33.

34.
35.

36.
37.
38.

39.

Stress gradients at net-section, medium length models ....
Stress gradients at net-section, short models ...........
Stress gradients along centerline, wide models ..........
Stress gradients along centerline, medium width models ...
Stress gradients along centerline, narrow models ........
Splitting stress below second hole, wide models .........
Splitting stress below second hole, medium width models ..
Splitting stress below second hole, narrow models .......

Net-section stress concentration factors, long models ....

Net-section stress concentration factors, medium

length models .iviviiiieiierernenneasoseesoennnsnenassans

Net-section stress concentration factors, short models ...

Bearing-stress stress concentration factors, long

MOAETS 4ttt iieeeeeeeoeeeonsnoenoesocasesonoasosonssassess

Bearing-stress stress concentration factors, medium

Tength models .ovvuiiiriiiiiiiieiiiieriacrsesannsensnnnas

Bearing-stress stress concentration factors, short

MOART S v iteteerneeeeeoonosoonoessasosanoncsescnsasssnsnes

Shear stress along shear-out plane, long models .........

Shear stress along shear-out plane, medium length

MOdETS +ivveeneeoonorosocsssaossonsosssascssansssnnsssnsa
Shear stress along shear-out piane, short modeis ........

Shear stress along maximum shear locus, long models .....

Shear stress along maximum shear locus, medium

Tength models .vveiiiiiiiieiiiieiisenionnesannnnanannas

Shear stress along maximum shear locus, short models ....

Page
77

78
79
80
81
82
83
84
85

86
87

88

89

90
91

92
93
94

95
96



1.
2.

LIST OF TABLES

DIMENSIONS OF MODELS . ivvenninreiiennenerecocnnceaenns

PERCENTAGE OF LOAD TRANSFER AT EACH HOLE OF INNER LAP

iv



A.
B.

LIST OF APPENDICIES

BRIEF OVERVIEW OF PHOTOELASTICITY .veiirrniniiernnernnennanas

ISOCHROMATIC FRINGE NUMBER (N) AND PRINCIPAL STRESS
DIRECTION (6) NEAR SECOND HOLE IN SHORT NARROW MODEL .........



LIST OF SYMBOLS

c calibration constant for photoelastic material, MPa/fringe
(ps1/ fringe)

C distance from center of lead hole to isotropic point
location, mm (1in.)

D hole diameter, mm (1n.)

e distance from the center of the second hole to the free-

end, mm (1n.)

E distance between hole centers, mm (1n.)

F a function used to 11lustrate the finite-difference
scheme

N fringe order 0, *., 1, 1, ...

P total tensile load applied to joint, N (1b) P = P] + P2

P] load reacted by the lead hole, N (1b)

P, load reacted by the second hole, N (1b)

S bearing stress, P/2Dt, MPa (ps1)

t thickness of inner lap, mm (in.)

W width of joint, mm (in.)

X coordinate perpendicular to joint centerline

y coordinate parallel to joint centerline

AX increment 1n x-direction coordinate

Ay increment in y-direction coordinate

0 principal stress direction measure relative to + x
direction

ays Op principal stresses, MPa (psi)

Gy Oy’ Txy stress components in x-y coordinate system, MPa (pst1)

9gross gross stress, P/Wt, MPa (ps1)

vi



INTRODUCTION

For some time there has been an interest in the effects of through-
the-thickness holes and other discontinuities in plates. From a prac-
tical point of view there is generally no way discontinuities in plates
can be avoided. This is particularly true 1n regions where plates must
be connected to other structural members. Because of associated stress
concentrations, failure is most apt to occur at these discontinuities.
Thus attention has been focused on regions of discontinuities, specif-
1cally connector regions. The work reported herein is a further study
of connector regions. It 1s a study of stresses around multiple-hole
connectors and of the influence of connector geometry on these stresses.
The study concentrates on the stress distribution in two-hole connectors
in a double-lap Joint configuration. The two holes are in tandem, or
series, and the joint is subjected to tensile loads along the line
connecting the centers of the two holes. The load 1s trarsferred from
one lap to the other by way of a snug-fitting pins. Figure 1 shows
details of the joint configuration studied and introduces some of the
nomenclature. The geometric quantities which were felt to i1nfluence the
stress distribution in the joint were the width, W, of the joint, the
hole diameter, D, the distance between the holes, E, and the distance
from the second hole to the free end, e. For such joint configurations
the thickness of the inner lap, t, 1s generally made twice the thickness
of each of the outer laps. This 1s done to maintain a balance of stiff-
ness 1n the joint.

A motivating factor for this study was a previous experimental
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study [1,2] of double-lap double-hole joints fabricated from graphite-
epoxy fiber-reinforced composite material. The material was quasi-
isotropic and of the many joints tested to failure, a high percentage of
joints failed in net-section tension at the lead hole in the thicker
inner lap. This effect was practically independent of joint width or
hole diameter and is typical of the failure of brittle materials. (In
this discussion lead hole refers to the hole 1n a particular lap which
reacts the applied load first. The term second hole refers to the other
hole in tandem. Obviously the lead hole for the inner lap is the second
hole for the outer laps and vice versa.) For brittle materials, Tike
fiber-reinforced composites, no yielding occurs and high net-section
loads lead to a sudden catastrophic failure. For ductile materials,
such as aluminum, the danger of net-section failure is lessened by the
yielding of the materials. When one area of a loaded structural com-
ponent is overstressed, the material yields and transfers some of the
load to another region of the component. The question arises as how
possibly the geometric parameters associated with the joint design can
be chosen to minimize net-section stresses, thereby avoiding catastropic
net-section tension failures of brittle materials. The work presented
here is aimed at answering this question. The work is not intended to
answer the question specifically but rather 1t is intended to clarify
the picture of the stress distribution around the holes in isotropic
materials. This stress distribution can then be used with a failure
criterion pertinent to isotropic composite materials, such as the ones
promoted in [3], and information regarding failure can be obtained. The

study here is strictly experimental, using two-dimensional isotropic



transmission photoelastic models of the joints to determine the
stresses.

This report describes the philosophy behind using photoelastic
models, as opposed to analytical techniques, and discusses some of the
philosophy of the particular models used here. Some aspects of the
models are felt to be unique and deserve attention. The machining of
the models was an wmportant aspect of the study and a portion of this
report is devoted to discussing that facet. The fixtures used to load
the Joints were of the type normally associated with tensile testing.
However, the loads needed to be transmitted to the photoelastic model in
such a fashion as to establish a known umiform far-field stress away
from the region of interest, namely the connector region. The mechanism
to transmit the loads smoothly and the rest of the experimental equip-
ment are described.

An indication of typical photoelastic data obtained from the models
1s illustrated. While presenting these photoelastic data, the presence
and importance of a photoelastic isotropic point 1s discussed. This
isotropic point was not necessarily expected to occur. However it
occurred and it was located on the model centerline partway between the
two holes. By the nature of the joint stresses, the location of this
isotropic point between the holes was related to the percentage of total
load reacted by each pin in the joint. Generally the problem of deter-
mining the reaction at each hole is a statically indeterminate one.
Without resorting to strain (or displacement) measurements, determining
the reaction at each hole 1s 1mpossible. As illustrated, the isotropic

point can be used to circumvent this problem. A separate experiment is



required, however, and this experiment is described.

After these discussions, attention is given to obtaining numerical
results. Since photoelastic data yield only information concerning the
principal stress difference and the principal stress direction, other
information is needed to obtain the complete picture of the plane-stress
stress field in the connector region. The approach taken here was to
use an overdetermined solution of the plane-stress equilibrium equations
in finite-difference form. These equations together with the photo-
elastic data gave the desired stress state. That approach is described
and the governing equations are presented.

Finally the discussion centers on the stresses within the joint,
the primary goal of this study. The effect of geometry on some peak
stresses, the stress distributions at the net-section, the stress
distributions along the model centerline, and other important trends are
presented in the body of the text.

It should be noted that certain commercial materials are identified
n this paper in order to specify adequately which materials were investi-
gated in the research effort. In no case does such 1dentification imply
recommendation or endorsement of the product by NASA, nor does it wmply
that the materials are necessarily the only ones or the best ones
available for the purpose. In many cases equivalent materials are

available and would probably produce equivalent results.



REVIEW OF PAST WORK AND MOTIVATION FOR PRESENT APPROACH

Past studies of through-the-thickness holes can be categorized into
two general problem areas: open holes, and; filled or loaded holes.
The former problem area, while receiving much attention over the years,
is not of interest here. The latter category is quite pertinent to the
study of connectors, particularly those studies of loaded holes. The
main issue with the loaded holes, and how they relate to connectors, is
the Toading on the hole. Basically the issue is centered, on how the
Toad is transferred from one part of the connector, through the pin,
rivet, or bolt, and into the other part of the connector. If a plane-
stress stress analysis is conducted, variations of loading through the
thickness of the connector must be ignored. This is usually done. One
of the early investigators to address the hole loading issue was Bickley
[4]. Bickley studied the stresses 1n an infinite plate loaded at a hole
by forces 1n the plane of the plate. The forces acted radially and
circumferentially at the hole edge. Bickley used a plane-stress stress-
function approach to determine the stresses due to point forces, pres-
sure loadings, and shear tractions acting on the hole. In the study the
magnitudes of the pressure and shear loads could vary with circumfer-
ential distance around the hole. The most often quoted of the loadings
Bickley investigated was the cosinusoidal radial loading over 180° of
the hole. This was meant to conveniently represent the forces of a pin,
bolt, or rivet bearing against the hole. Many other investigators have
since used this loading to represent pin action in a hole, several as

recently as the last few years, e.g. [5]. These recent applications
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have been in the context of fiber-reinforced composite materials.

Knight [6] addressed issues similar to Bickley's but was concerned
primarily with the effects of finiteness of the plate. This is a more
practical problem and he used superposition of special solutions to find
the effects of finite width. Solutions were chosen in such a way that
the superposed stresses cancelled each other on boundaries known to be
traction-free. Theocaris [7] also used this approach to study the
problem. The interest in the analysis and design of connectors has
inspired design guides, codes, and rules-of-thumb. Reference [8] is a
typical example of this sort of documentation.

The earlier papers were based on rigorous elasticity analyses while
later papers {not necessarily cited) have used finite-element analyses.
There were many questions concerning the various assumptions in the
theoretical approaches, particularily the assumptions regarding how a
pin actually transmits a load to a hole. Is the Toading actually
cosinusoildal over half the hole? What about the effects of friction
between the pin and the hole? 1Is pin flexibility important? These
questions Ted to several experimental approaches to the problem. Using
photoelasticity, Coker and Filon [9] studied the stresses near the edge
of a hole in a pin-loaded plate. They purposely chose a large enough
plate so finite-width effects were not important. From the photoelastic
data they matched coefficients 1n Bickley's infinite plate stress
function. They studied only one model geometry and, except for a few
anamolies in the results, their findings gave a good indication of the

stress magnification effect at the hole. Bickley actually presented



a comparison between his theoretical predictions and these photoelastic
results. The comparison is quite good. Frocht and Hill [10] used
oversized aluminum specimens, with strain gauges, and photoelastic
models to determine the stresses near the edge of a pin-loaded hole.
They presented stress concentration factors as a function of the ratio
of the hole diameter to specimen width and as a function of pin tol-
erance in the hole. Two important findings of their study were:

(1), stress concentration factors increased with increasing clearance
between the pin and the hole, and; (2), for snug-fitting pins, maximum
stresses did occur at the net-sections.

In a series of papers, several groups of investigators looked at
stresses around holes in pinned connectors using photoelastic tech-
niques. Jessop, Snell, and Holister [11] studied the stress distri-
bution around a circular hole in a flat bar under simple tension. The
hole was fi1lled by snug-fitting pins of varying Young's moduli. They
found that compared with an unfilled hole, the maximum tensile stress at
the net-section was reduced by 15% for all geometries tested. In
addition, varying Young's modulus of the pin had Tittle effect on the
stress distribution. In these studies Young's modulus of the pin varied
from a factor of 1 to a factor of 30 times as great as the Young's
modulus of the connector material. These same investigators later
studied the effects of varying amounts of pin/hole 1nterference on peak
stresses and found that the greater the interference, the lower the
stress concentration factor [12]. The diameter of the hole relative to
the width of the bar also had an effect on the stress concentration

factor. The interpretation of their finding needs to be clarified



because the total peak stress generally increased with increasing inter-
ference fit. However, if the stresses were divided into a mean stress
around the hole, due to the interference fit, and a stress around the
hole due to the far-field applied stress, then the stress concentration
factor due to the applied stress decreased with increasing interference
mean stress. These three authors found the same phenomena when exam-
ining the stresses around holes which were actually loaded by a pin
[13]. An interesting phenomena which was revealed 1n their studies was
the existence of a nonlinear relation between the peak stress and ap-
plied load. This nonlinearity was a function of the interference level.
Lambert and Brailey [14], using photoelasticity, studied this effect and
concluded that friction between the pin and the hole edge, and sep-
aration of the pin and the hole at high loads were responsible for the
nonlinear relation. That work addressed the whole complicated issue of
interaction between the bolt and connector material and is felt to be
valuable. Lambert and Brailey [15] continued to study the effect of
interference on the stresses in pinned connectors. Cox and Brown [16]
also pursued these types of investigations. Theocaris [17] used the
pin-loaded hole as an application of his electrical analogy method for
the evaluation of principal stresses along stress trajectories. The
purpose of his work was not so much the study of pin-loaded connectors
as it was the study of the analogy method. Thus his results are limited
but they follow the same trends Coker and Filon [9] found.

Continuing the optical approach, Nisida and Saito [18] used an

interferometric method coupled with photoelasticity to investigate



stresses around a pin-loaded hole. They presented data on the radial
stress distribution around the hole and concluded that a cosinusoidal
loading did not adequately represent the effect of the pin. However, a
close examination of their data reveals that for the cases they studied,
the cosinusoidal distribution is a very good first approximation. More
recently Oplinger, Parker, and Katz [19] used Moiré interferometry to
study the stresses around the pin-loaded hole in a composite plate.

With the advent of composites, as indicated by the last reference,
the interest in stresses around connector holes continued and in fact
grew. Much of the concern has been with the prevention of the pre-
viously mentioned catastrophic failures. However, since the failure
mechanisms in composites are somewhat statistical in nature and not
fully understood, much of the experimental work to date has centered
around actual ultimate-strength tests. In these tests the joints are
loaded to failure and the failure load is the quantity of primary inter-
est. This is in contrast to the experimental studies concerned with the
deta1ls of stress distribution around the loaded holes 1n isotropic
homogeneous materials. Some of this lack of investigation, however, is
due partly to the lack of a photoelastic material which accurately
represents a composite material. Also some of the failure mechanisms in
composites are three-dimensional in nature and these effects are dif-
ficult to measure experimentaily.

Full-scale testing-to-failure of composite materials is costly in
terms of material and time. Thus some of the earlier analytical methods
were reimplemented and applied to composites. In addition, many new

approaches were used. The introduction of anisotropy into the problem



greatly compiicates the analysis and so many of the new approaches were
aporoximate in nature. Among these arc the finite-element method, both
displacement-based and hybrid, the boundary integral method, colloca-
tion, and finite-difference. There is no need to review all the impor-
tant work in this area. One was mentioned earlier, i.e. [5]. An
excellent review of ail work up to 1978 involving connectors for com-
posite materials was written by Garbo and Ogonowski [20]. Since then
Soni [21] studied failure modes of composite connectcrs using finite-
elements. Recently Crews, Hong, and Raju [22] studied the stresses
around pin-loaded holes in finite-width orthotropic laminates. They
used finite-element analyses, modeling a frictionless steel pin to load
the hole. Some results from their work will be discussed Tater. A
study of wooden connectors, which are orthotropic, was conducted by
Wilkinson [23]. He used a finite-element analysis to model a rigid
steel pin 1n a wooden joint, 1ncluding the effects of friction between
the wood and steel. The analysis, a plane-stress analysis is quite
rigorous and is accompanied by experimental measurements using strain
gages and Moiré interferometry.

As with isotropic materials, a vast majority of all work with
composites connectors has dealt with single-pin connectors. Thus there
is a need to investigate multiple-pin connectors. Because of the lack
of yielding in composite materials, the need is more urgent for these
materials than it is for ductile materials. As with single-pin connec-
tors, there are several approaches which can be used to study stresses
in multiple-hole connectors. These methods are both experimental and

theoretical. It is important to remember that no single approach should
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be used exclusively and, in fact, different methods need to be used as a
cross-check. If one were concerned only with isotropic materials, there
are many arguments that can be made for using a photoelastic approach.
First, within the context of the model, the photoelastic approach gives
an exact solution. There are no approximations or assumptions about
friction, or lack thereof, between the pin and the hole. The issue of
pin flexibility is automatically resolved. The same is true for the
issue of a cosinusoidal loading. With multiple-pin connectors, one
concern is the amount of load transferred to a particular pin. As
mentioned previously, the problem is statically indeterminate. If the
stiffness in the 1nner and outer laps is the same and the tolerances of
all pins in their holes are identical, the load is distributed evenly
among the holes. With the two-pin connector at hand this means each
hole reacts 50% of the total applied load. With an analytical model,
some assumptions regarding the pin/hole tolerance must be made. With
photoelastic models the tolerance problem is inherently a part of the
model. If typical machine-shop tolerances are maintained in making the
model, the effects of slight differences in tolerances among holes will
in actual joints be represented and no assumptions need to be made.
Another advantage of photoelastic models 1s that if the appropriate
optical equipment exists, the approach is quite inexpensive. Isotropic
model materials are readily available and require minimal machine
forces, making the models easy to work with. The effects of model
geometry can be easily studied by remachining a single model or by taking
advantage of the relatively inexpensive material and machining several

models. Even if the appropriate optical equipment does not exist, set-

11



ups to obtain some quantitative information can be constructed without
too much cost. Photoelasticity is also a whole-field measurement tech-
nique. Much can be learned from the density and the shape of the fringe
patterns without resorting to quantitative analysis of the fringe data.
By simply observing the fringe patterns, the effects of a geometry
change in the model can be quickly assessed.

Finally, despite the fact that the vast majority of photoelastic
work in the past has been with isotropic photoelastic materiais, ortho-
tropic photoelastic materials do exist and may become more common in the
future [24,25]. Characterization of these materials, both elastically
and optically, is still an area that needs investigation. However,
eventually problems will ba solved using these materials. The composite
connector problem is one area that should be investigated with ortho-
tropic photoelastic materials when they become available. Thus, some of
the experience gained by fabricating and testing joint models for
1sotropic materials can be applied to the fabrication and testing of
joint models of orthotropic photoelastic materials. In addition, many
stacking sequences of composite materials exhibit in-plane isotropic
elastic behavior. The usual relation between Young's modulus, Poisson's
ratio, and the shear modulus does not hold but the material properties
are not a function of in-plane orientation. Thus, i1nformation gained
from isotropic photoelastic models can be used to aid in the analysis
and design of components fabricated from these quasi-isotropic composite
materials. With these 1deas in mind, a study of the stresses in two-nin
connectors using isotropic photoelastic models was initiated. Appendix

A presents a brief overview of the photoelastic technique as it is used
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in this study.
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DESIGN AND FABRICATION OF THE MODELS

Since many of the composite bolted specimens tested in the pre-
viously mentioned study [1,2] failed in the inner lap, the ideal situa-
tion in the present joint study was to be able to determine the stresses
in the inner lap. Thus the goal was to design models so that the stress
state in the inner lap of a loaded joint could be measured. The general
philosophy for such an experimental design 1s illustrated 1n fig. 2.
This design required the outer laps to be transparent and to not affect
the observation of the inner lap stresses. However, all transparent
materials exhibit some degree of photoelastic response, commonly called
birefringence, when subjected to stress. Glass, for example, exhibits
very little birefringence, while some plastics made especially for
photoelastic model-making exhibit a large birefringent response. Since
in a double-Tap joint both the 1nner and outer lap are subjected to
stresses, the problem called for using two transparent materials, one
which exhibited a high degree of birefringence and one which exhibited
very T1ttle birefringence. Another restraint on the material selection
was to use materials with similar elastic properties. However 1t is the
in-plane stiffnesses of the joint laps which are wmportant and having
identical Young's modul1 is not essential. Cross-sectional areas can be
chosen to compensate for differences in Young's moduli of the two
materials. Poisson's ratio mismatch was not felt to be important but
having similar values of the ratio for the two materials would give a

more accurate representation of an actual joint. Finally, to study the
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effects of geometry, several models would be involved. Thus the
selected materials needed to be easy to work with. The workability of
the material was in the context of cutting, drilling, and the machining
of the material.

Several materials came close to meeting all of the above require-

ments. The materials finally chosen for the model were PSM-11

for
the photoelastic 1nner lap and Acry11te2, and acrylic for the outer
lap. The PSM-1 is a polycarbonate material specifically for photo-
elastic model making and Acrylite is a commonly available plexiglass
material. The PSM-1 material is available in several thicknesses as is
the Acrylite. More importantly, the PSM-1 material is at least an order
of magnitude more sensitive to the photoelastic effect than is the
acrylic. Figure 3 shows a PSM-1 disk and an Acrylite disk subjected to
the same compression loads. It is obvious the PSM-1 is much more sensi-
tive to the photoelastic effect. From the manufacturer’'s data, Young's
moduli for the materials were taken to be: 2.76 GPa (400,000 psi)
tension and compression for the PSM-1, and 3.27 GPa tension, 2.96 GPa
compression (475,000 psi tension, 430,000 psi compression) for the
Acrylite. Poisson's ratio for each material was about 0.38. Based on
these figures, the elastic properties of the PSM-1 and the Acrylite were
assumed to be the same.

The most serious concern in the model design was the modeling of
the actual connector. Although pins have been used in many studies,
bolts and rivets are most commonly used in actual joints. Bolts are
usually used in conjunction with washers. Rivets have heads which cover

about the same area as a washer. In either case a through-the-thickness

1Photoe]astic, Inc. Raleigh, NC 27611
2American Cyanamid, Wayne, NJ 07470
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normal stress is produced around the hole as the bolt is torgued or the
rivet head is formed. The normal stress, through Poisson's ratio, would
add or subtract from the load-induced stresses in the plane of the
joint. In addition, friction between the washer or rivet head and the
joint surface could affect the load transfer to the joint. Through this
friction some of the Toad would be reacted into the joint through shear
(between the washer or rivet head and the surface of the outer lap, or
between the laps) instead of all the load being transferred through
bearing on the hole edge. Both the through-the-thickness stress and the
shearing-in of part of the load are felt to increase the load carrying
capacity of the joint. Ignoring these effects would be conservative.
Thus the connectors i1n photoelastic models were represented by snug-
fitting acrylic dowels. With dowels, as opposed to rivets, or bolts,
the through-the-thickness effects and the shearing effects were absent.
However, because of the lack of the nut or a rivet head, viewing of the
stresses to the edge of the hole was possible. Using acrylic dowels,
Young's modulus of the dowels was the same as Young's moduius of the
joint material.

The polariscope to be used in the study was a split-bench model
with columnating lens 305 mm (12 1in.) n diameter. The load frame
available for the study could accomodate a model 1.2 m (48 in.) long.
These polariscopes dimensions dictated overall model size but other
aspects of the model had a bearing on model design. The most difficult
portion of the model to analyse would be the area around the hole. The
larger the diameter of the holes, the easier 1t would be to determine

the stresses in those regions. In addition, certain geometric or dimen-
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sional portions were important. Joint width-to-hole diameter ratios of
up to 8 wﬂre to be tested. The joints were to have a distance between
hole centérs of up to 6 hole diameters and the holes were to be up to 3
hole diameters from the free end of a lap. Thus the largest model had
to be at least 12 hole diameters long and up to 8 hole diameters wide.

A final consideration in model design was the method of applying
the tensile load to the joint. In actual joints in both the inner and
outer laps, at some distance away from the two holes, a uniform state of
stress exists. The value of this stress can be computed from a simple
force/area calculation. It 1s the interruption of this uniform stress
by the holes which cause weaknesses in joints. When testing actual
Joints or models of joints, care must be taken to insure a somewhat
uniform state of stress exists away from the holes. If this condition
is not enforced, the stress distribution associated with this nonuniform
state of stress could interact with the stress distribution produced by
the holes themselves. With such a situation the stress distribution in
the joint could be 1ncorrectly assessed. To avoid introducing spurious
stress distributions, specimens can be designed long enough so that the
actual joint region takes up, say, the central third of the specimen,
the outer third on either side of the joint region being used to allow a
uniform state of stress to develop between the load introduction and the
test holes. The long specimen approach, though desirable, can be costly
both due to material costs and to machining costs. Thus the approach
taken here, mainly to avoid machining as opposed to excessive material
usage, was to use long aluminum load-introduction doublers. The idea

was to generate a uniform stress state in the doublers and attach them,
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with many small bolts, to the joint model three or four hole diameters
away from the test holes. With many small bolts connecting the doubler
to the joint, the uniform stress state would suffer only a localized
perturbation in the zone around the small connectors.

Taking into account all of the aforementioned factors, the hole
diameter on all models was chosen to be 22.2 mm (0.875 in.). The
largest model tested, accounting for the maximum width, maximum distance
between holes, and maximum distance to the end of the specimen, was 177
mm (7.00 in.) wide. For thi1s largest model the hole centers were 133 mm
(5.25 in.) apart and the free ends of the laps were 66.7 mm (2.63 in.)
from the center of the second hole. Figure 4 shows the geometry of the
largest model as well as the geometry of the load introduction doublers.
The tensile load from the Toad frame was transmitted to the joints by a
single 9.77 mm (0.375 1n.) connector at the end of each doubler. For
both the inner and outer laps, the distance from the row of small con-
nector bolts to the center of the lead holes was 82.6 mm (3.25 in.). An
aluminum spacer, machined to be the same thickness as the inner lap,
actually connected the outer laps to the doubler through a second set of
small bolts. The inner lap was 6.35 nm (0.25 1n.) thick while the outer
laps were each 3.18 mm (0.125 1in.) thick. The thickness of the PSM-1
inner lap varied insignificantly over the area of the model while the
Acrylite outer laps varied up to 20% 1in thickness. The load intro-
duction doublers were designed to be used with all of the model geo-
metries tested.

The actual making of the models produced some concerns. These

concerns were: (1), maintaining accurate tolerances of the specified
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dimensions; (2), insuring accurate alignment of the holes along the
model centerline; (3), insuring identical hole placement and hole dia-
meter in all three laps and; (4), minimizing heat-induced stresses from
the drilling and cutting operations. After much consideration, it was
decided to machine all three pieces simultaneously as a sandwich. The
major effect of this was to insure alignment of the holes. 1In addition,
to minimize the machining stresses around the test holes, the holes were
machined while the three layers were submerged in a coolant. To begin
the machining of the joint, the three laps were clamped together and the
long sides of the model were machined parallel to each other. Then the
rows of small connector holes were drilled in the clamped sandwich,
perpendicular to the long edges. A flat, open, tray-l1ike tank was
mounted on a milling machine and the three pieces placed in it. Preci-
sion steel pins protruded from the bottom of the tank and were used with
the small connector holes to maintain the original alignment of the
three laps. The laps were again clamped lightly together and the tray
filled with coolant. The two test holes were then machined with an
offset cutter. The coolant used throughout the machining operation was
a water-soluable coolant. Figure 5 shows the actual machining opera-
tion. In this photograph the three laps are clamped onto the bottom of,
the coolant tank and one of the test holes is being machined. Figure 6
shows a finished joint model with the aluminum doublers attached and
ready to be tested. Figure 7 shows all the models used in this study.
In these last two photographs a 305 nm (12.0 in.) ruler is present for
size comparison.

The values of 4, 6, and 8 were chosen for the ratios of joint
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width-to-hole diameter, 1.e. W/D = 4, &, and 8. The three iongest
models (at the left i1n fi1g. 7) had a distance of 6 hole diameters be-
tween the centers of the two holes (E = 133 mm (5.25 1n.)) and a dis-
tance of three hole diameters from the center of the second hole to the
free end of the specimen (e = 66.6 mm (2.62 in.)). The three medium
length models (at the center in fig. 7) had a distance of two hole
diameters from the center of the secnnd hole to the free end (e = 55.6
mm (2.19 1n.)) while all other dimensions were the same as the longest
model's. The three shortest models (at the right in fig. 7) had a
distance of four hole diameters between the centers of the holes (E =
88.7 mm (3.50 in.)) and two hole diameters between the center of the
second hole and the free end (e = 66.6 mm (2.62 in.)). The three joint
widths, W, were: 178 mm (7.00 in.), 133 mm (5.25 in.), and 88.9 mm (3.50
in.). Table 1 summarizes the dimensions of all the models tested.

The measurements and calculations for this study were made in U.S.
Customary Units. Dimensional numerical values are given in both SI and

U.S. Customary Units.

2]
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TYPICAL EXPERIMENTAL RESULTS AND THE EXISTENCE
OF A PHOTOELASTIC ISOTROPIC POINT

Figure 8 illustrates the Tong wide model in the loading frame. The
loading frame was a hand operated screw-type frame and was fitted with
a load cell to monitor the loads on the models. The cell was located
above the model and 1s visible 1n the figure. Dead-weight loadings were
periodically used to check the calibration of the load cell. Since the
polariscope was a split bench model and since the models with their
doublers were quite large, the load frame was mounted on castors so it
could be rolled in and out between the halves of the polariscope. This
arrangement made 1t simpie to work on the models while they were 1in the
load frame and made it easy to change models in the frame. The polar-
iscope light source was a 250-watt mercury vapor source. The source was
fitted with a fi1lter so that in addition to viewing the model with white
1ight, monochromatic 1ight of the sodium green wavelength, 571 nm (22.5
X 1070 1n.), could be used.

The viewing of the model and the taking of photoelastic data were
accomplished by a variety of methods. The main goal of all the methods
was to be able to determine accurately the geometric location of all the
fringes. Three methods to do thi1s emerged as the most convenient.
Enlarged black and white photographs of the model as a whole served as a
permanent record of the fringe pattern generated in a specific model
subjected to a specific loading. Using scribe marks on the specimens,
these photographs provided accurate information on the fringe locations.

Figure 9 shows the dark-field fringe pattern in the medium length narrow
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model subjected to 1121 N (250 1b.) tensile force. The free end of the
inner lap is at the bottom of the photograph and is clearly visible.

The near perfect symmetry, about the vertical centerline, of the fringe
pattern in the figure is typical of the symmetry observed in all tests.
This 1ndicated that 1in the plane of the model the joint was subjected to
pure tensile loads with no side-to-side bending induced by the loading
frame or the aluminum doublers. This also indicated the good alignment
of the two test holes. The symmetry was evident in all tests.

For a more detailed look at the fringe patterns, a traveling tele-
scope was used. The telescope could focus on a small region of the
model, such as a region below the Tead hole. The Tocation and number of
the higher order fringes could then be recorded. Figure 10 shows a
typical close-up view of the fringe pattern using the telescope. This
photograph shows the fringes near the bottom hole in the long narrow
model. Notice that the symmetry of the fringe pattern is generally
preserved even at this scale. In addition, a region on the hole bound-
ary containing a singular point is visible and is illustrated 1n the
figure. This singular point 1s characterized by the fact that the
1sochromatic fringes emanating from either side of the point on the hole
boundary diverge in opposite directions.

The third way of obtaining information from the model was to pro-
ject the image of the fringe pattern onto tracing paper. The fringe
images, as well as an outline of the model, were traced on the paper and
the fringe locations determined from this tracing. This method was used
more for recording the location of the 1soclinic fringe pattern than it

was for studying the isochromatic fringe patterns. It was more conven-
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ient to record the location of the isochromatic fringe patterns with
either of the two photographic methods described. Knowing fringe loca-
tion is important. It is necessary to know the locus of points for a
particular fringe; or, it is necessary to know the fringe information at
given locations. Both approaches to data acquisition yield the same
information but one or the other is a necessary step in the photoelastic
technique.

One of the most interesting aspects of this study was totally
unexpected. When the i1mage shown in fig. 9 was first seen it was
viewed with white li1ght. An unusual feature was immediately apparent.
The small circular spot on the model centerline, about one-quarter of
the distance between the holes, was actually black. Except for the
corners and this spot, all fringes were colored. This black spot, a
fringe of order zero, indicates either.an 1sotropic point or a singular
point. These are explained as follows.

The photoelastic effect, as it is being used in this study, mea-
sures the differences in the numerical value of the principal stresses.
The number of fringes times a calibration constant gives the numerical
value of the difference in principal stresses,

oy - 0y = N, (m
¢ being the calibration constant in Pa/fringe (psi/fringe) and N being
the fringe order. The fringe order being zero 1mplies

0y - 0y = 0, (2)
which requires either

0y = 0y = 0 (3)
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or

0y =0, = ? (4)

The former case is referred to as a singular point, that is, both

principal stresses are zero. This can occur on the boundary or in the
interior of the model. As was just pointed out, singular points existed
on the hole boundaries of the joint models. This is because the pin
separated from the hole (lost contact) over a region of the hole. Thus
the radial and shear stresses on the hole were zero in that region. In
addition, the circumferential stresses changed sign around the circum-
ference of the hole and passed through zero at some point. This zero
point was in the region where the dowel had separated from the hole. A
point of zero stress occurred and so both principal stresses were zero,

eq. 3. The second case, eq. 4, 1s referred to as an 1sotropic point,

so-called because the principal stresses, though unknown, are equal. At
an isotropic point a state of hydrostatic-like stress state exists.

With a hydrostatic stress, the stresses being either tensile or compres-
sive, the stresses are the same in all directions and hence the term
isotropic.

It was hypothesized that the vertical location of the 1sotropic
point, relative to the distance between the hole centers, depended on
the percentage of total load reacted by each hole. If the hypothesis
were true, the isotropic point Tocation would be a very convenient way
to assess load transfer. To test the hypothesis, the outer laps of the
first model tested were removed and a scheme to load each hole indepen-
dently was devised. This apparatus is shown in fig. 11. The plexiglass

dowels were inserted into the holes of the inner lap and a hanger,
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utilizing dead weights and attached to the bottom dowel, was used to
load the bottom hole a known amount. The loading screw mechanism at the
top of the load frame actually translated the model up and down as the
screw rotated. A flexible braided-wire harness was fixed to the sides
of the load frame and was looped over the top dowel. As the model was
translated up by loading screw, the harness loaded the top hole while
the dead weights loaded the bottom hole. The load cell registered the
total load and knowing the dead-weight load on the bottom hole, the load
on the top hole could be computed. To help locate the isotropic point
on the model, a grid, marked to the resolution of 2.54 mm (0.1 in.), was
scribed on the model's centerline. With the ability to vary each hole
Toad independently, the vertical location of the isotropic point was
determined for a variety of load conditions. Its location versus hole
loading was determined for Tow and high total load levels; for constant
total load and variable upper and lower hole loads; for constant lower
hole Toad and variable upper and total hole loads; interchanging the two
dowels; and various other conditions. In each case, the location of the
isotropic point had the same very specific relation to the percentage of
load reacted by each hole. Figure 12 shows the movement of the iso-
tropic point as a function of hole loading. It is clear the percentage
of load on each hole affects the position of the isotropic point.

Figure 13 represents experimental data for some of the many conditions
tested. Plotted on the vertical axis is the nondimensional distance of
the isotropic point, C, from the center of the top hole. The horizontal
axis represents the proportion of total load, P, reacted by the lead

hole, P]. The data from all conditions clustered tightly about a
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relationship which appeared to be slightly nonlinear. The nonlinearity
was felt to be due to the changes in the contact area of the pin in the
hole as the Toad level in each hole changed. This is a geometric non-
linearity. (Note: The data shown 1n fi1g. 13 is not for the particular
Joint shown in fig. 9 or the joint shown in fig. 12.)

Thus as shown in fig. 14, with the plexiglass laps back in place
and having run a series of experiments to produce a curve as shown in
fig. 13, the location of the 1sotropic point could be observed. Working
backwards, the percentage of load reacted by each hole could be deter-
mined. For each of the nine models tested, data as in fig. 13 was
obtained. Then with the outer laps in place, the percentage of load
reacted by each hole was recorded for each model at the load level used
to record photoelastic data. Table 2 presents the load and stress
levels used for testing each model and indicates the load proportioning

characteristics.
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DETERMINATION OF STRESSES

As mentioned at the begining, the primary goal of this study was to
provide an accurate picture of the stress state in the inner lap of the
model. It was not necessary to compute the stresses at every point in
the model but certainly 1t was required to know the stresses at a large
number of points around the two holes. To have a complete picture of
the stress state at a point in a plane-stress condition, three quan-
tities must be known. The most logical quantities, and the ultimate
interest in this case, are the two normal stresses and the shear stress.
Referring to fig. 1 and using the usual nomenclature for stress, these
three stresses are Oy Gy, and Txy. There are other quantities which,
1f known, would lead to knowing the stress state at a point. For exam-
ple, 1f one knew the sum of principal stresses, the difference of prin-
cipal stresses, and the principal stress direction, then the three
stresses could be uniquely determined. Since 1n transmission photo-
elasticity only the difference in principal stresses and the principal
stress directions are known, the obtaining of 04 and Ops OF ultimately
ay and oy, requires a knowledge of a third quantity. Several approaches
have been used by researchers to provide a third condition. One method
requires measuring the change in thickness of the model as the loads are
applied. Since the change of thickness of a model 1s proportional to
the sum of the principal strains, various mechanical and optical methods

have been applied to measure this change. For 1sotropic elasticity,

using the elastic properties of the model material, the sum of principal
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stresses can be determined from the sum of principal strains. Another
approach, introduced by Post [26], utilizes the fact that oy can be made
to produce one set of fringes and 0, can be made to produce a second set
of fringes. The viewing of these two sets of fringes provides the
needed information. Since in isotropic elasticity the sum of the prin-
cipal stresses satisfies Laplace's equation, the electrical analogy of
Theocaris [17] and the analytical approach of Dally and Erisman [27]
have been used to obtain the sum of the principal stresses as a third
known quantity. A fourth method, and the one used here, relies on
information obtained from the plane-stress equilibrium equations to
provide a complete picture of the state of stress at a point. The key
to this method is that the stresses obtained from the photoelastic data
are made to satisfy the plane-stress equilibrium equations. Two popular
versions of this technique are the shear-difference method [28], and the
integration of the equilibrium equations along principal stress direc-
tions [29]. This latter approach was pioneered by Filon [9]. The
shear-difference method is also an integration of the equilibrium equa-
tions so both approaches rely on known boundary data (or known data
elsewhere) to obtain numerical values of the stresses. The shear-
difference method 1s subject to large error because generally the inte-
gration proceeds along paths quite far from the known boundary data.
Unless some other stress information is known along the integration
path, the numerical errors of approximate integration can accumulate.
With Filon's method, since the principal stress directions are usually
curved paths, the integration is along a curved path. The method is

more accurate than the shear-aifference approach but generally there is
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interest in stresses along lines other than these curved paths and so
the application is Timited. Filon's method works well along lines which
are lines of symmetry for both the loading and model geometry because
these Tines of symmetry are generally principal stress directions.

To be able to determine the stresses at arbitrary points in the
model with a minimum of error, an approach originally presented by
Berghaus [30] was adopted. The method uses the finite-difference form
of the plane-stress equilibrium equations, the photoelastic fringe data,
and the boundary conditions as set of overdetermined equations which are
solved in the Teast-square sense. The solution of the equations are the
three stress components which satisfy, in a least-square sense, equili-
brium, the photoelastic data, and the boundary conditions. The over-
determined technique as 1t is used here 1s different from the version
Berghaus reported but credit that investigator with the basic 1dea. An
explaination of the approach follows.

Referring to the joint nomencliature in fig. 1, the equilibrium

equations which applied in this situation are,

1o} T

_X s XY
5x T Ay 0 (5)
9T o)

D AU A (6)
dX dy

The photoelastic data can be represented by

gy = 0y = cN (7)

6 (principal stress direction) = known (8)

The photoelastic equations can be put 1n another form, namely,

oy - Oy = ¢cN cos(26) (9)
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T = %ﬂ sin(20) (10)

These equations are the result of applying a stress transformation from
principal stress coordinates to the x-y coordinates. With this usage,

9 is the angle the principal stress directions make relative to the x-
axis of fig. 1 (+6 goes from +x to +y). In the nomenclature of photo-
elasticity, the principal stress direction, 6, is often referred to as
the the isocline parameter. It should be pointed out that eqs. 5-10 are
valid at every point in the model. Finally, the boundary data consists
of knowing one, two, or three of the three stresses at a selected point
or a locus of points in the model.

The photoelastic and the boundary conditions are algebraic equa-
tions while the equilibrium equations are partial differential equa-
tions. The exact solutions to the equilibrium equations are generally
not obtainable in domains with complicated boundaries. Thus some form
of discretization, e.g. finite-element or finite-difference, is required
to obtain appoximate solutions. The finite-difference discretization of
the equilibrium equations are a set of algebraic equations which have as
unknowns the stresses at discrete points in the model. Applying the
photoelastic equations and the boundary conditions at these same points
provide more algebraic equations relating the stresses at these points.
A1l of these equations can then be solved for the stresses.

As 1s well known, the finite-difference scheme relies on the
approximation of the derivative of the function at a point by using
values of the function in the neighborhood of the point. The three

common methods of approximation are referred to as the forward dif-
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ference, the backward difference, and the central difference. Referring
to fig. 15, the forward difference for the evaluation of the first

derivative of some function F(x) at point x = x; is given by
F

aFl _ Fwm o F

T S (11)
dx X=x; AX .

The backwards difference is given by
dF o i 1-1
dx - AX (12)

=X.
X 1

while the central difference is given by

Fier = Fig

dF
- it (13)

dx' _
X—Xi

A more comprehensive treatment of the finite-difference formulation can
be obtained in [31]. With the finite-difference approach, interest cen-
ters on the values of the function at a discrete number of points.
Extending this notion to two-dimensions and to the probiem at hand, the
finite-difference representation of the equilibrium equations depends on
writing the partial derivatives of stresses in terms of stresses at
discrete points in a two-dimensional grid. Figure 16 shows such a grid
superimposed on a jJoint model. With the particular partial differential
equations to be approximated in this problem, and with the particular
geometric properties of the regions to be analyzed, the finite-differ-
ence equations take on a different form from one point to the next

1n such a grid. For example, at point A in fig. 16, the finite-dif-

ference representations of both 3/3x and 3/%y must use the forward
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difference. The equilibrium equations at such a point i,j take the form

ox - Oy +/A\-i(/TX - T
1+1,3 1,5 Y Y X3,

0 (14)

T + éﬁ-o -0 T
g Mg Ay( Yi,001 0 Vi)

1]
(]

(15)

T
Xy1+1

Along 1ine AB, but not including points A or B, 3/3x can be represented
by the central difference while 3/3y must be represented by the forward
difference. The equilibrium equations at this type of point i,j then
take the form

4+ 20X -1 1 =0 (16)

.
o -0 X [ S ATECS B AT

Xi‘” i X

1-1,3

T -1 2AX N
. + 28X - =
Vi Misa Ty [Oyi,3+1 V1.g ’ )

For an interior point, say E, both derivatives can be represented by the

central difference. The equilibrium equations for such a point i,3 then

become
AX
o -0 + = (T -1 J =0 (18)
Xi41,3 1.1, YUY g Xy,3-1
AX
T -1 + ——-[o -0 } =0 (19)
Wia,g o Mg Y Uhgn Yiga
For the point i,) the photoelastic equations become
o -0 = ¢cN cos(26. ) (20)
1,0 Y. 1 12
cN]
Txy1 ;" 2’3 sin(26. J) . (21)

where Ni i is the 1sochromatic fringe number at the point and 6, ; %s

b b

the principal stress direction, relative to the x-axis, at the point.
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The boundary conditions are expressible as one or more of the
following relations at the points i,j which are on the boundaries of the
grid region:

o, = known, o = known, Ty, . ° known (22-24)
PN LN 1,J
For example, in fig. 16, the first and third of these equations would be
enforced (with the stresses set to zero) at each grid point on line AD.
The two equilibrium equations, the two photoelastic equations, and
the boundary conditions constitute a set of linear algebraic equations
for the three stresses in the grid. With this scheme there are always
more equations than there are unknown stresses. For example, if region
ABCD in fig. 16 represents a 6 x 5 grid, there would be 30 x 3 unknown
stresses. There would be 30 x 2 equilibrium equations, 30 x 2 photo-
elastic equations, and 5 x 2 boundary conditions (cx ® Ty T 0 on AD).
This represents 130 equations for 90 unknowns, an overdetermined set of
equations. These equations can only be satisfied in the least-square
sense. An advantage of the least-square method, however, is that
certain equations can be weighted to have more influence on the solu-
tion. For example, in fig. 16 it 1s known with certainty that the side

AD is traction free. Thus instead of using

o =0 and T =0 (25-26)
i, i,

along that edge, the equations can be weighted to be

50, =0 and ST%’j =0. (27-28)

This approach causes these known conditions to have a stronger influence
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on the solution. Other uses of this weighting of known conditions are
discussed later.

Rather than solve for all of the stresses in the model at one time,
by using one large solution grid superimposed on the model, the model
was broken into zones. This 1dea is shown in fig. 17. A system of
zones was established around each hole. The stresses were determined in
a zone-by-zone fashion, starting with zone 0 and proceeding with zones
1, 2, 3, 4, and 5 in that order. There were several reasons for adop-
ting this zone scheme. The primary reason was that it kept the problem
tractable. Instead of solving for the stresses at, say, 400 points
(1200 unknowns) simultaneously, the stresses in one zone were computed
and examined for their plausibility. If the stresses did not seem rea-
sonable, looking for possible errors was relatively easy since only the
data from a certain region of the model were involved. If the computed
stresses in the first zone looked reasonabie, stresses in the second
zone were computed and checked, and soc forth for the other zones.
Another advantage of this approach was that the mesh size in each zone
could be different to reflect steep stress gradients. Variable mesh
finite-difference schemes could be used but this zone approach was much
simplier. Also with this scheme the grid size in, say, zone 5 could be
refined and the stresses recomputed without having to recompute the
stresses in all the other zones. Since the fringe patterns were sym-
metric about the centerline, only one-half of the model was analysed.
The fringe data were taken from just one-half of the modei. An alter-
nate approach would have been to gather data from both the left and

right sides of the model and then average it. The averaged data could
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then have been used to do the one-half model analysis. This approach
involved more data gathering and the effort was not felt to be war-
ranted.

The zone concept and the overdetermined nature of the governing
equations were a key to having confidence in the computed stresses.
This confidence is traceable to the solution of the first zone, a zone
which represented a cross-section of the joint. For zone 1 associated
with the lead hole

W/2
oydx =P
-W/2

) (29)

where P2 is the load transferred to the second hole. The value of P2
for each model was determined from the total applied load and the
isotropic point location, Table 2. For a zone 1 below the second hole

W/2
oydx =0 (30)
-W/2

for all models. By approximating the integrals using Simpson's rule and
using the values of oy at the various grid points across the joint
width, a check on global equilibrium was possible. This type of calcu-
lation was done as a first step 1n the stress analysis but then these
integrals, in discretized form, could be used as additional algebraic
equations to be enforced in a least-square sense. Since there was a
high degree of certainty in these integral equations, the algebraic
representation of them could be weighted to influence the solution.
Actually, the stresses computed in zone 1 before enforcing the integral

equilibrium equations came quite close to satisfying equilibrium anyway.
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This provided confidence in the stress analysis.

The stresses of zone 1 calculations provided a firm basis on which
to base the other zone's calculations. Using zone 1 calculations to
help compute the stresses in the other zones was accomplished by consid-
ering the stresses at the upper grid points in zone 1 as boundary condi-
tions on the lower grid points in zones 2, 3, and 5. For zones 3 and 5,
with their finer meshes, stresses at grid points between the grid points
of zone 1 were needed. The stress values at these intermediate zone 3
and 5 grid points were determined by using a cubic spline interpolation
between the known stresses at the zone 1 grid points.

Cubic spline interpolation was used in one other facet of this
numerical scheme. The photoelastic equations, eqs. 20 and 21, require
the isochromatic fringe value, Ni,j’ at every point in the grid.

Looking at fig. 2 with the superimposed grid in mind, it is obvious the
integer and half-order fringes would rarely intersect a grid point.
Thus the fractional fringe orders at each grid point were needed.
Rather than use scme scheme such as Tardy compensation, a cubic spline
was used to interpolate the fringes at the grid points. This interpo-
lation was based on the known x and y coordinates of the integer and
half-order fringe points on the model.

To this point 1n the discussion the determination of the principal
stress directions has not been mentioned. To compute the stresses at
every point 1n the grid, the principal stress direction at each point,
ei,j’ must be known. Whereas the acrylic outer laps had Tittle influ-
ence on the isochromatic fringe pattern of the inner lap, the outer laps

strongly 1nfluenced the isoclinic fringe pattern. There was no way the
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principal stress directions of the inner lap could be determined with
the outer laps in place. Fortunately the equipment used to determine
the variation of isotropic point location could be utilized. This was
done as follow: With the outer laps in place and the model loaded, the
isotropic point location was noted. The model was unloaded and the
outer laps removed. Then the model was reloaded with the apparatus
shown in fig. 11. By adjusting the load on each hole, the isotropic
point location was made to coincide with the location it had when the
outer Taps were in place. The principal stress directions at each grid
point could then be determined directly from the polariscope mechanism
designed to do this. There was concern that the independent hole-
loading apparatus did not produce the same hole loading as the outer
laps did. This concern was in the context of contact area and distor-
tion of the acrylic dowel within the hole. It appeared, however, that
the principal stress directions were not as sensitive to these para-
meters as were the isochromatic fringes. Small variations in the per-
centage of load reacted by each hole and variations in the total load
level did not significantly change the principal stress directions.
This was fortunate because it was felt there was no alternative to
determining principal stress directions. Appendix B shows typical
values of N and & at the grid point locations.

Finally, as is noted by the zone identification 1n fig. 17, the
region to the lower left of the hole does not have a grid on it.
Figure 10 shows a typical isochromatic fringe pattern in this region and
as can be seen, the fringe locations can be determined quite accurately.

Unfortunately the principal stress directions 1n this region were quite
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difficult to determine. Once they were determined it was apparent that,
if the determination was accurate, the principal directions changed
rapidly over a small distance. Figure 18 shows a typical isoclinic
fringe pattern in this region. An overdetermined solution scheme based
on polar coordinates was developed and the stresses computed. In light
of the rapid variation of the principal stress directions the calcu-
lations were viewed as suspect. Much effort went into this particular
problem but to avoid presenting possibly misleading information, no

results from this portion of the study are presented.
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RESULTS

With the numerical method described in the previous chapter, peak
stresses, stress concentration factors, spatial distributions of
stresses, and other stress-dependent trends could be determined for each
model. With 9 models and 3 components of stress at each finite-dif-
ference grid point, a complete description of the stress distribution 1n
all models involved an overwhelming amount of information. This infor-
mation 1s not included in this report, but rather important trends and
peak values are presented. The stress i1nformation presented here 1s
based on gross-section (far-field) stress of 1.97 MPa (286 psi). This

gross-section stress 1s defined as

B~

9ross ~ Wt (31)

Thus for the wide models, the applied tensile load was 2224 N (500 1b},
for the medium width models the load was 1668 N (375 1b), and for the
narrower models the load was 112 N (250 1b).

Another stress commonly used in discussing pinned joints, bearing
stress, 1s used to describe stresses in these models. For clarity in
definition, this stress needs some discussion. For a single hole con-

nector, bearing stress is defined as

S = (32)

O]©
prsd

In this discussion, since roughly one-half the total load is acting on

each hole, bearing stress is defined to be

P
S = 75t (33)
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This definition is applied to both holes. Even though the gross-section
stress was the same for all models tested, the bearing stress was not.

Figures 19, 20, and 21 show the trend, with distance away from the
hole-edge, of the Oy stresses at the net-section. These stresses are
associated with net-section failures. The stresses in the figures have
been normalized to hole-edge values. The figures are, respectively, for
the long, medium length, and short models. For most cases the stresses
are shown for a distance of up to 3 hole radii away from the edge. This
is done to show the stress gradients. The stresses have been normalized
to unity at the hole-edge and the stresses are shown for both the top
and bottom holes. In some figures shown some plotting symbols appear to
be missing, indicating the stresses were not computed. It may be that
the symbol is hidden by other symbols grouped closely together. How-
ever, in some cases (e.g. narrow width models of medium length, fig. 20,
open circles) computation was stopped a few radii away from the hole.
This was due to difficulty in interpreting the principal stress direc-
tions in certain regions of the model. In certain models where the
stresses did not vary rapidly, the isoclinic fringes were not sharp and
distinct. 1In all cases (except for the region at the lower side of the
hole mentioned at the end of the previous chapter) the areas were not of
prime interest. From the figures it is obvious there was not much
difference from model to model or between the lead hole and the second
hole in the stress gradients at the net-section.

Figures 22, 23, and 24 show the spatial behavior of the oy stresses

on the centerline below the holes. Since these stresses are compres-
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sive, they are associated with the crushing or bearing failure of the
material around the hole. For the second hole these stresses by defini-
tion drop to zero at the free end of the model. For the top hole, these
centerline stresses also vanish but become tensile as the second hole is
approached. If the distance between the two holes is large enough these
tensile stresses become one-half the gross stress. A study of stresses
in the region between the 1sotropic point and the second hole for a long
wide model [32] showed these tensile stresses were not perfectly uniform
across the width but that they were close to achieving uniformity. A
similar study for other model geometries was not conducted.

Figures 25, 26, and 27 are quite interesting. These figures show
the normalized o stresses below the second hole. These stresses have
been normalized to the maximum value of stress along the center]ine.‘ As
can be seen, in all cases these stresses go from compressive at the hole
edge to tensile within a hole radius of the hole edge. In most cases
the maximum tensile stress occurs at the free end while the maximum
compressive stress occurs at the hole edge. The compressive stress at
the hole edge is felt to be due to friction between the dowel and the
hole. Wilkinson [23] noted a similar effect 1n a study of wooden joints
with steel pins. Oplinger and Ganhdi [33] showed that including the
effects of friction can change the sign of the hoop stress around the
hole. Their study was done for orthotropic materials. The large ten-
sile stress near the free end can lead to the splitting of the joints
along the centerline. Such an effect was noted by Matthews [34] during
a study of glass-epoxy connectors. The connectors which failed in that

study were weak 1n the width direction but this points out that the
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splitting stresses should not be 1gnored even though they may be small
compared with, say, peak net-section stresses.

Figures 28, 29, and 30 illustrate the net-section stress concen-
tration factor, based on the gross stress, for the various models. The
stress concentration factor for each hole in each model is computed two
ways. The stress concentration factor based on the assumption 50% of
the load is reacted at each hole, eq. 33, is shown with open symbols.
The stress concentration factor based on the actual percentage of load
reacted at each hole, from Table 2, is shown 1n solid symbols. Since
all the loads were close to 50-50, there is not much difference in the
two sets of numbers. The solid lines on each figure are hand-faired and
represent what are felt to be trends. These will be discussed later.

As can be seen, the stress concentration factor for the lead hole
is always greater than the stress concentration factor for the second
hole and both stress concentration factors increase with increasing W/D.
On these figures stress concentration factors obtained by other inves-
tigators for single-hole connectors are indicated. The second-hole
stress concentration factors should correspond closely to the single-
hole values of other investigators if the gross stress for the single-
hole connectors is doubled (halving their stress concentration factors)
and the width, W, and the distance to the free end, e, are similar.

Coker, et al. [9] tested a single model with the hole about 12
diameters from the free end. The value of W/D for the connector was

about 8. The data for this test are shown on the three figures although

it most aptly may belong on the figure of the long model, fig. 28, e/D =
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3. Finite element results from the single-hole connector study of
Crews, et al. [22] are also shown on the figures. The dashed line is
their trend with W/D for a quasi-isotropic material and for a model much
longer than the ones tested in this study, namely models with an e/D =
10. For wide joints, however, their study shows e/D does not signifi-
cantly affect stress concentration factors for e/D > 2 or 3. Thus there
is some justification in comparing their results with the present
results. De Jong [35] studied infinitely long isotropic and orthotropic
single-hole connectors and Ogonowski [5] looked at finite-sized single-
hole isotropic and orthotropic connectors with an e/D of 2. Both inves-
tigators' pertinent results are shown on the three figures. Nisida, et
al. [18] tested models with a W/D of 10 and various values of e/D. On
the figures are their values of the stress concentration factors ob-
tained for various values of e/D. On figs. 28, 29, and 30 the data for
two tests of Jessop, et al. [13] are shown. From their paper it is not
clear what the lengths of their models were.

It might be expected that the wide long model stress concentration
factor should not be too different than an infinite plate solution.
Comparisons using gross stress for infinitely wide plates are of course
meaningless. However, 1f bearing stress is used (stress at net-section
hole edge/S of eq. 33), the long wide model has a bearing-stress stress
concentration factor of 0.97. Bickley's [4] infinite plate single
connector has a bearing-stress stress concentration factor of 0.81. De
Jong computed a value of 0.82. The bearing-stress stress concentration
factors for all the cases shown in Figures 28, 29, and 30 can be com-

puted knowing the net-section stress concentration factor and the value
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of W/D.

Figures 31, 32, and 33 show the stress concentration factors for
the radial compressive stress below the hole, on the joint centerline.
The stress concentration factors in these figures are based on the
bearing stress for the hole, eq. 33. The data on these figures have no
discernable trend with the value of W/D. Although, on the whole, they
seem higher for the shorter specimens. Based on the results of other
investigators for single-hole connectors, the stress concentration
factors for the second hole were not expected to vary much with the
geometry of the models. For reasons discussed later, the stress concen-
tration factors for the lead hole were not expected to vary much with
model geometry either. Furthermore, 1t was not expected that the values
for the stress concentration factors of the lead hole would be too
different fram the values for the second hole. On these figures are
data for the results of other investigators studying single-pin connec-
tors. Nisida, et al. [18] obtained stress concentration values of 1.02,
1.14, 1.11, and 1.25 for e/D values of 1.0, 1.5, 2.5, and 4.0, respec-
tively. This was for an e/D = 10. Bickley [4] obtained a value of 1.27
for the infinte plate single-hole connectors. Coker, et al. [9] ob-
tained a number slightly less than unity. Crews, et al. [22] did not
study the compressive radial stress as extensively as they studied the
net-section tensile stress. However, their results for quasi-isotropic
materials indicate that for wide specimens (W/D = 20) there is little
sensitivity of the stress concentration factor to e/D, ranging from

slightly less than unity for e/D = 1.00 to about 1.25 for e/D » ». They
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also show that for long specimens (e/D = 10) the stress concentration
factor is about 1.25 for widths W/D = 2 to W/D -~ ». De Jong [35]
obtained a value of 1.16 for values of W/D ranging from 2.5 to « for
infinitely long specimens.

It should be mentioned that the stress studied directly under the
hole is a contact stress. Any irregularities in the surfaces of the two
contacting materials can cause extremely high and/or irregular local
stresses. Such a situation can be seen in fig. 10. To the right of the
semi-circular fringe which straddles the centerline just below the hole
there is a smaller semi-circular fringe at the hole edge. This smaller
fringe is due to a high localized stress from a surface irregularity on
e1ther the pin or the hole. When interpreting fringe values at the hole
edge, these surface irregularities can induce fringes which effect the
results of stress calculations. This results in essentially a 'noisy’
stress calculation. Photoelastic material like PSM-1 is particularly
sensitive to these 1rregularities. This is felt to be the reason for
much of the scatter observed in figs. 31-33.

The behavior of another important stress, the shear stress, is
shown in figs. 34-36. These figures show the shear stress normalized by
the gross stress, Txy/ggross’ along a line parallel to the centerline,
starting at the net-section hole edge and proceeding towards the free
end of the joint. This line, or plane if the thickness of the joint is
considered, is referred to by some 1nvestigators as the shear-out plane.
If the shear stresses along this line become excessive, the pins could
shear out towards the end of the joint. The figures show these shear

stresses for both the lead and second holes. Although the figures

45



appear cluttered, if there is interest in a particular joint geometry,
the trend and peak values can be easily picked out. A1l values of the
shear stress tend to reach a maximum within a hole radius of the net-
section hole edge. In addition, the second hole seems to have higher
peak stresses for all joints. Crews, et al. [22] studied this stress
and found that the shear stress divided by the bearing stress reached a
maximum value of between 0.5 and 0.75, depending on joint geometry, for
a quasi-isotropic material. These findings are consistent with the
findings presented in figs. 34-36.

Figures 37-39 show further trends of the shear stress. Each figure
has two parts. To the right in each figure is an indication of the
locus of points of maximum shear stresses below the lower-most point of
the second hole. To the left in each figure, the values of the shear
stresses normalized by the gross stress along this locus are shown. As
can be seen, for all model geometries, the locus of maximum shear stress
occurs on the center line side of the shear-out plane near the hole and
then moves outside the shear-out plane as the free end of the joint is
approached. From figs. 34-36 and figs. 37-39, it appears the maximum
T,., shear stress under the hole does not occur on the shear-out plane

Xy
but occurs somewhat closer to the joint center line.
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DISCUSSIONS AND CONCLUSIONS

As the result of this study, a technique has been developed for the
investigation of double-lap, double-pin joints. This technique is based
on the use of transmission photoelastic models of the joints. Methods
were developed for making the models, for loading them, and for trans-
lating the photoelastic data into stress information. All of these
phases of the technique 1nvolved either extending previously published
methods or developing new approaches. The techniques developed were
specialized to this particular study but certainly can be used as a
basis for other photoelastic work. More wmportant than the development
of a new technique, though, was the acquisition of valuable engineering
information regarding joints.

The existence of a photoelastic 1sotropic point, and its relation
to the load sharing between the two pins, is a unique discovery. It 1s
felt that this technique can be used to study the load sharing between
pins when one pin is deliberately made to be much smaller or much larger
than the hole. This would represent the situation where one pin in a
connector is accidently missized. It may be possible to determine what
degree of missizing 1s required 1n a model to have the load propor-
tioning be, for example, 30-70 instead of 50-50. In addition, it is
felt the photoelastic 1sotropic point may have value in actual metal or
composite connectors. Such a point probably exists in photoelastic
reflective coatings and these coatings could be applied to actual

joints. Determining the redistribution of the load from one pin to
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another as the hole elongates during the fatigue of a multiple-pin joint
may be possible with the coating technique.

The trends in peak values of the stresses for the various joint
geometries provide other engineering information. This information is
presented in figs. 21-39. While figs. 21-23 show net-section stress
gradients normalized to the hole-edge stress value, considering both the
gross stress value of 1.97 MPa (286 psi) used for all models and the
net-section stress concentration factor of figs. 28-30, actual stress
values can be determined. Since there is little difference between the
stress gradients among the models or between the lead hole and second
hole, failure criteria based on the average stress over some charac-
teristic distance from the hole edge would not seem to be dependent on
model geometry. That would lend credibility to idea that these charac-
teristic distances are material properties [3], a phenomena observed
when testing composite specimens with holes.

While the net-section stress gradients show 1ittle sensitivity to
model geometry, the net-section stress concentration factors, figs. 28-
30 do. There is particular sensitivity of the stress concentration
factors to the numerical value of W/D. The solid lines in figs. 28-30,
as stated before, are hand-faired straight Tines through the data deter-
mined from this experiment. There really was not enough data to justify
a least-square fit and in the region a straight line was felt to be a
good estimate of the true relation in this region. The single-pin
connectors studies of other investigators seemed to cluster around the

straight-line fit of the data in this study with Crews et al.'s data
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[22] being on the upper end. Their analysis assumed a frictionless but
flexible steel pin whereas de Jong [35] assumed a perfectly rigid fric-
tionless pin. Ogonowski [5], as mentioned before, used the radial
cosinusoidal distribution over one half the hole opening. It is felt
that friction would have a small effect, if any, on the net-section
stress concentration factor. All the friction effects between the hole
and the pin take place on the circumference of the hole below the net-
section location. In the experiments of other investigators, the re-
sults are for single-pin connectors about the stiffness of plexiglass
and with pins as stiff or only slightly stiffer than the joint material.
The pins in all the studies were of some kind of plastic. The results
of Nisida et al. [18] seem to be out of 1ine with the other jnvesti-
gator's data. In addition to providing stress concentration factors for
double-pin joints, figs. 27-29 are a good summary of pertinent work on
single-hole connectors and show a comparison among recent investiga-
tions.

As expected, the stress concentrations factors for the lead holes
are higher than the stress concentration factors for the second holes
and obviously dictate the design of a joint 1f net-section tension
fai1lure 1s a concern. There does not seem to be an obvious trend of
stress concentration factors with model length, although the stress
concentraticn factors for the second holes of the shorter joints are
less than the stress concentration factors for the second holes of the
other joints. If indeed the stress concentration factors are lower, it

is due to the close proximty of the lead hole in this short joint
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design rather than the short distance to the free edge. This can be
said because the distance from the second hole to the free end is the
same for the medium length models and the short models and the medium
length model's stress concentration factors for the second hole are
about the same as the stress concentration factors for the longer
model's second holes. Why the stress concentration factors for the lead
hole of the medium length model with a W/D of 6 is low (fig. 29,
squares) is a puzzle.

It is interesting to note that even for the narrow models with the
shorter distance from the second hole to the free end, the oy stress was
actually zero at the outside edge of the second hole net-section (figs.
20 and 21, closed circles). This indicates that even for these models,
material and weight could be saved by rounding the free-end, starting at
the net-section with the rounding radius.

Like the net-section stress gradients, the stress gradients below
the hole along the joint center lines are alil similar. The gradients
appear to be insensitive to model geometry. It appears that the longer
models are longer than needed both between the holes and from the second
hole to the free end. The compressive stresses are very low for at
least a hole radius from the free end. In addition, as mentioned be-
fore, the compressive stresses below the lead hole become tensile as the
second hole is approached. There 15 no need for the stresses to become
uniform in this region and so the iengths can be made shorter and thus
provide a lighter joint.

The lack of any discernable geometric effects on the bearing stress
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stress concentration factors below the holes, figs. 31-33, also empha-
sizes the fact the shorter joint is as effective as either of the other
designs. It is felt the bearing stress at the lower diameter of the
hole is primarily a function of hole diameter, and of course pin tol-
erance in the hole. This bearing stress is such a localized phenomena
that other geometric characteristics of the joint produce only a second-
order effect on the bearing stress. Since all models have the same hole
size, and ostensibly the same pin/hole tolerance, the bearing-stress
stress concentration factors for all holes, lead and second, should be
about the same. The fact that the lead hole has 50% of the load passing
by really should not affect the bearing stress for that hole. The lead
hole can be considered as the algebraic sum of a single-pin connector,
for the portion of the load reacted by 1t, and an open hole tensile
strip, for the portion of the load passing by it. The open-hole con-
nector has no bearing stress and so the bearing stress at the bottom of
the lead hole is due to the single-pin connector effect reacting one
half the load, the same as the second hole. Therefore the lead hole and
the second hole should be no different when it comes to bearing stress.
Actual hole size can be important and probably does effect the bearing
stress more than any other geometric parameter of the joint. Globally,
the problem of determining joint stresses is a linear elastic problem.
However, the interaction of the hole and pin is nonlinear and so actual
hole size, as opposed to some value of W/D, 1s important. Since in this
study all holes were of the same size, not much can be said about this

jssue. This area needs further investigation. However, for holes in the
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19-25 mm range (0.75 to 1.00 in.), a bearing-stress stress concentration
factor of 1.5 would give conservative design for both holes. As with
the net-section stress concentration factors, figs. 31-33 provide a good
comparison of recent investigations.

Examination of the shear stresses below and near the holes, figs.
34-39, reveal some interesting trends. For all geometries, the shear
stresses at the lead hole were less than the corresponding stresses at
the second hole. In addition, it appears that the wider the joint, the
larger the value of 1 /o

Xy’ “gross’
34-36, and along the maximum shear locus, figs. 37-39. At first thought

both along the shear-out plane, figs.

1t would seem that the narrow Joint would produce higher stresses be-
cause the Toad must pass the hole via a narrow piece of net-section

material. However, for a given o , Wider joints lead to higher

gross
total loads which must be reacted by the hole. This obviously 1s what
leads to the higher shear stress. The distance from the second hole to
the free end did not seem to have a large influence on the shear stress.
As seen in figs. 37-39, the locus of maximum shearing stress below the
hole is not quite coincident with the shear-out plane. The shear stress
on the joint centerline is zero and so there are large shear stress
gradients on lines perpendicular to the joint centerline. This 1s more
pronounced in regions within a hole radius of the bottoms of the holes.
The maximum shear stress locus obviously proceeds 1nto the section below
the hole that was difficult to analyze. It is felt that interrogation

of existing photoelastic data in this region could lead to a completion

of the locus to the hole edge.

52



10.

11.

12.

REFERENCES

Hyer, M. W. and Lightfoot, M. C., "Ultimate Strength of High-Load
Capacity Composite Bolted Joints," ASTM STP-674 Composite Mate-
rials: Testing and Design, Fifth Conference, 1979, p. 118-136.

Hyer, M. W., Perry, J. A. and Lightfoot, M.C., "Load Transfer in
Composite Bolted Joints," AIAA Paper 80-0779-CP, presented at 21st
SDM Meeting, Seattle, Washington, May 1980.

Whitney, J. M. and Nusimer, R. J., "Stress Failure Criteria for
Laminated Composites Containing Stress Concentrations," Journal of
Composite Materials, Vol. 8, July 1974, p. 253-265.

Bickley, W. G., "The Distribution of Stress Round a Circular Hole
in a Plate," Phil. Trans. Royal Soc. (London), Vol. 227 A, July
1928, p. 383-415.

Ogonowski, J. M., "Analytical Study of Finite Geometry Plates with
Stress Concentrations, paper no. 80-0778, Proceedings of 21st SDM
Conference, AIAA/ASME/ASCE/AHS, p. 694-698 (part 2), 1980.

Knight, R. C. "The Action of a Rivet in a Plate of Finite Breadth,"
Phil. Mag., Series 7, Vol. 19, No. 127, March 1935, p. 517-540.

Theocaris, P. S., "The Stress Distribution in a Strip Loaded in
Tension by Means of a Central Pin," Trans. ASME, Journal of
Applied Mechanics, Vol. 23, No. 1, March 1956, p. 85-90.

Fisher, J. W. and Struik, J. H., A Guide to Design Criteria for
Bolted and Riveted Joints. New York: John Wiley & Sons, Inc.,
1974.

Coker, E. G. and Filon, L. N. G., A Treatise on Photoelasticity.
Revised by Jessop, H. T. Cambridge, England: Cambridge University
Press, 1957, p. 524-530.

Frocht, M. M. and Hil1l, H. N., "Stress-Concentration Factors Around
a Central Circular Hole 1n a Plate Loaded Through Pin in the Hole,"
Journal of Applied Mechanics, Vol. 7, No. 1, March 1940, p. A-5 -A-
9.

Jessop, H. T., and Snell, C. and Holister, G. S., "Photoelastic
Investigations 1n Connections with the Fatigue Strength of Bolted
Joints," The Aeronautical Quarterly, Vol. 6, Part 3, August 1955,
p. 230-239.

Jessop, H. T., Snell, C. and Holister, G. S., "Photoelastic Inves-
tigation on Plates with Single Interference-Fit Pins with Load
Applied to Plate only," The Aeronautical Quarterly, Vol. 7, Part 4,
November 1956, p. 297-314.

53



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Jessop, H. T., Snell, C. and Holister, G. S., “Photoelastic Inves-
tigations on Plates with Single Interference-Fit Pins with Load
Applied (a) to Pin Only and (b) to Pin and Plate Simultaneously,"
The Aeronautical Quarterly, Vol. 9, Part 2, May 1958, p. 147-163.

Lambert, T. H. and Brailey, R. J., "The Influence of the Coeffi-
cient of Frinction on the Elastic Stress Concentration Factor for
a Pin-Jointed Connection," The Aeronautical Quarterly, Vol. 13,
Part 1, February 1962, p. 17-29.

Lambert, T. H. and Brailey, R. J., "The Use of an Interference-Fit
Bushing to Improve Fatigue Life of a Pin-Jointed Connection," The
Aeronautical Quarterly, Vol. 13, Part 3, August 1963, p. 275-284.

Cox, H. L. and Brown, A. F. C., "Stresses Round Pins in Holes," The
Aeronautical Quarterly, Vol. 15, Part 4, November 1964, p. 357-372.

Theocaris, P. S., "On an Electrical Analogy Method for the Sep-
aration of Principal Stresses along Stress Trajectories,” SESA
Proceedings, Vol. XIV, No. 2, 1957, p. 11-20.

Nisida, M. and Saito, H., "Stress Distributions in a Semi-Infinite
Plate Due to a Pin Determined by Interferometric Method," Experi-
mental Mechanics, Vol. 6, No. 5, May 1966, p. 273-279.

Oplinger, D. W., Parker, B. S. and Katz, A., "Moiré Measurements of
Strains and Deformation 1n Pin-Loaded Composite Plates," Extended
Summaries, 1979 Spring Meeting, SESA, 14 Fairfield Drive, Brook-
f1eld Center, CT 06805.

Garbo, S. P. and Ogonowski, J. M., "Effect of Variances and Manu-
facturing Tolerances on the Design Strength and Life of Mechan-
ically Fastened Composite Joints," AFFDL-TR-78-179, September 1978.

Soni, S. R., "Failure Analysis of Composite Laminates with a
Fastener Hole," ASTM STP 749 Joining of Composite Materials, 1981,
p. 145-164.

Crews, J. H., Jr., Hong, C. S. and Raju, I. S., "Stress-Concentra-
tion Factors for Finite Orthotropic Laminates with a Pin-lLoaded
Hole," NASA TP 1862, May 1981.

Wilkinson, T. L., "Stress i1n the Neighborhood of Loaded Holes 1in
Wood with Application to Bolted Joints," Ph.D. Thesis, University
of Wisconsin-Madison, December 1978, available from University
Microfilms, Ann Arbor, Michigan.

Sampson, R. C., "A Stress-Optic Law for Photoelastic Analsysis of
Orthotropic Composites," Experimental Mechanics, Vol. 10, No. 5,
May 1970, p. 210-215.

54



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Prabhakaran, R., "Fabrication of Birefringent Anisotropic Model
Materials," Experimental Mechanics, Vol. 20, No. 9, September 1980,
p. 320-321.

Post, D., "A New Photoelastic Interferometer Suitable for Static
and Dynamic Measurements," SESA Proceedings, Vol. XII, No. 1, 1954,
p. 141-202.

Dally, J. W. and Erisman, E. R., "An Analytical Separation Method
for Photoelasticity," Experimental Mechanics, Vol. 6, No. 10,
November 1966, p. 493-499.

Dally, J. W. and Riley, W. F., Experimental Stress Analysis, 2nd
ed. New York: McGraw Hill Book Co., 1978.

Frocht, M. M., Photoelasticity, Vol. 1. New York: John Wiley &
Sons, Inc., 1941

Berghaus, D. G., "Overdetermined Photoelastic Solution Using Least
Squares," Experimental Mechanics, Vol. 13, No. 3, March 1973, p.
97-194.

Smith, G. D., Numerical Solution of Partial Differential Equations.
Oxford, England: Oxford University Press, 1964.

Hyer, M. W., Use of Two-Dimensional Transmission Photoelastic
Models to Study Stresses in Double-Lap Bolted Joints: Load Transfer

and Stresses in the Inner Lap, Virginia Polytechnic Institute and

State University, College of Engineering Report, VPI-E-80-9, March
1980.

Oplinger, 0. W. and Gandhi, D. R., "Analytical Studies of Struc-
tural Performance in Mechanically Fastened Composite Plates,"
AMMRC-MS-74-8, 1974.

Matthews, F. L. and Hirst, I. R., "The Variation of Bearing
Strength with Load Direction," Symposium: Jointing in Fibre Rein-
forced Plastics. Surrey, England: IPC Science and Technology Press

Limited, 1978.

de Jong, T., "Stresses Around Pin-Loaded Hole in Elastically
Orthotropic or Isotropic Plates," Journal of Composite Materials,
Vol. 11, July 1977, p. 313-331.

55



Table 1

DIMENSION OF MODELS*

W E e
Model mm mm mm
(in.) (in.) (in.)

. 178 133 66.7
long, wide (7.00)  (5.25)  (2.62)
Tong, medium 133 133 66.7

width (5.25) (5.25) (2.62)

88.9 133 66.7
long, narrow (3.50) (5.25) (2.62)

medium length, 178 133 44.4
wide (7.00) (5.25) (1.75)
medium length 133 133 44 .4
medium width  (5.25) (5.25) (1.75)
medium length, 88.9 133 44 .4
narrow (3.50) (5.25) (1.75)

. 178 88.9 44 .4

short, wide (7.00)  (3.50) (1.75)
short, 133 88.9 44.4
medium width  (5.25) (3.50) (1.75)
88.9 88.9 44.4

short, narrow (3'cq) (3.50) (1.75)

*refer to fig. 1 for definition of W, E, D, and e
D =22.2 mm (0.875 in.) in all cases
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Table 2
PERCENTAGE OF LOAD REACTED AT EACH HOLE OF INNER LAP

Percentage of Load Percentage of Load

Model at Lead Hole at Second Hole
Tong, wide 52% 48%
Tong,

medium width 53 Y
Tong, narrow 48 52
medium length,

wide 45 >
medium length,

medium width 48 >
medium Tength,

narrow 48 v
short, wide 55 45
short,

medium width 48 °
short, narrow 40 60
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Fig. 1 Joint geometry and nomenclature
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Fig. 2 Design philosophy of photoelastic joint models

59



Fig. 3 PSM-1 disk and Acrylite disk subjected
to identical diametral compression loads

60



L9

A-’——::::====,__————— aluminum doublers ——___—-§=::::::r--‘

- — )1 [ 1L e ——

el | ] . | A\ ] e~

= 73T T —

AN
aluminum spacer-——// \Q§\——Acrylite 3.18 mm (0.125 in.) thick

PSM-1 6.38 mm (0.250 in.) thick

///j77p-sma11 connector bolts ————\\\

T A /7 \ T
10 o) (o] :
|
1Ol © test holes O | load transmitted
: °ol° ‘i— ; © : from load frame
i
olel O O o o
1O ff o 0,
10 O 0 :
:O (0] 0|
1ol o o |
o (0] O
| ]
scale: | |
25 mm (1 in.)

Fig. 4 Geometry of largest model and the load introduction doublers
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Fig. 5

Machining of the models
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Fig. 6 Long wide model with aluminum doublers
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Fig. 7 The nine joint

models tested
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Fig. 8 Long wide model in the loading frame
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Fig. 9 Typical dark-field isochromatic fringe pattern,
medium length narrow model
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singular point

Fig. 10 Close-up view of dark-field isochromatic fringe pattern around lead hole, Tong narrow model




Fig. 11 Apparatus to load each hole independently
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Fig. 12 Dependence of isotropic point location on percentage of load
reacted by each hole (P] = top hole, P2 = bottom hole)
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Fig. 13 Isotropic point location as a function of amount of load
reacted by each hole
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Fig. 14 Determining load proportioning from isotropic point location
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Fig. 16 Two dimensional finite-difference grid on joint model
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Fig. 18 Isoclinic fringe pattern around hole
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APPENDIX A
BRIEF OVERVIEW OF PHOTOELASTICITY

When light passes from air into a transparent solid, its velocity
decreases. Certain transparent materials have the property that if the
light vector enters the material in a specific direction the velocity
decreases even more than if the 1ight vector were oriented 90° to th?t
direction. Since the phenomenon 15 related to the orientation of thé
11ght vector, polarized light is used so this direction can be contr&]-
led. The property of having two propogation velocities in a single
material is called birefringence, the prefix 'bi' referring to the two
possible speeds. When the light reemerges into the air, certain light
wave trains are out of phase with each other because of the different
velocities while 1n the materials. If the reemergent light is viewed
with the proper optical elements, these two wave trains can be made to
interfere. If the phase shift of these two wave trains is just right,
there is destructive interference and no light appears to emerge from
the birefringent material. Most all transparent materials exhibit
birefringence to some degree. However, there are certain materials that
exhibit birefringence which varies strongly when they are subjected to
stress. If one of these birefringent materials 1s stressed so the E
stresses vary throughout and polarized light is passed through it, ag
observer will see patterns of dark and light fringes. These fringes
correspond to the locus of points where the stress level in the material

is such as to cause destructive and constructive interference. Prior

calibration will allow determination of tnose stress levels which cause
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interference. Thus the fringe pattern can be interpreted in terms of
stresses.

Photoelasticity as just described allows direct measurement of two
gquantities, (1) difference in principal stresses (o] - 02) and (2),
orientation of the principal stresses. In two-dimensional plane stress
problems, to completely describe the stress state three quantitites must
be known: 015 Ty and the principal stress direction, or; ox,cy
and Txy' Photoelasticity does not directly give a third quantity. In
many applications the maximum stress occurs at a free boundary where one
of the principal stresses 1s zero. The other principal stress can then
be determined directly from the fringe count. When it is required to
know the state of stress at a pecint where neither of the principal
stresses is zero, a third piece of information 1s required. This third
p1eFe of information can be obtained experimentally, or it can be the
enforcement of one or more of the equations of elasticity. The deter-
mination of Iy Oy, and Txy is referred to as the separation of

stresses.
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APPENDIX B
ISOCHROMATIC FRINGE NUMBER (N) AND PRINCIPAL

STRESS DIRECTION (&) NEAR SECOND HOLE IN SHORT NARROW MODEL

The isochromatic fringe information, N, and the isoclinic fringe
information, 6, at each point for the short narrow model 1s presented in
this appendix. These data are typical of the data for all models.

For convenience, the data are grouped by the zones used in the %

finite-difference calculations. The grid points are identified by thé

letter/number system shown on the accompanying diagram.
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Zone 5 A B C D

9 N 3.43 2.1 3.11  3.31 .
6 0.00 6.30 36.20 41.60 42.
10 N 3.20 3.04 2.98 3.08 .
e 0.00 18.00 40.50 57.20 64.
11 N 3.00 2.91 2.86 2.88 .
6 0.00 13.30 32.33 44.30 56.
12 N 2.83 2.78 2.74 2.72 .
& 0.00 10.20 28.70 38.20 50.
13 N 2.63 2.61 2.58 2.55
6 0.00 11.40 25.20 33.20 44
14 N 2.37 2.36 2.35 2.33 .
8 0.00 10.10 22.30 29.20 40.
15 Noo2.10 2,11 2.11 0 2.10 .
& 0.00 8.40 18.20 27.00 35.
16 N 1.90 1.90 1.91 1.90 .
9 0.00 8.50 16.90 23.50 33.
17 NO1.74 1.74 1,73 1.72
8 0.00 7.10 13.60 22.10 31
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