
ΝΟΤΙCΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

CONTRACT NAS3-21951

GENERAL DYNAMICS

PRECEDING PAGE BLANK NOT FILMED

1. Report N CR	io. 165323	2. Government Accession No.		3. Recipient's Catalog	y No
4, Title and	Subtitle			5. Report Date	
Sti	idy of Multi-Megawatt	Technology Needs for		19 March 19	81
	otovoltaic Space Power		F	6. Performing Organi	
7. Author(s)			8. Performing Organia	ration Report Nu
D.	M. Peterson, R. L. Pl	easant ·		GDC-ASP-81-	019
9 Performi	ng Organization Name and Address			10. Work Unit No.	
			L L		· — - —
		•		11. Contract or Grant	No.
			Ļ	NAS 3-21951	
		· · ·	<u> </u>	13. Type of Report a	nd Period Covered
-	ng Agency Name and Address	Sama Administration		Contractor 1	Report
Lev	tional Aeronautics and wis Research Center eveland, Ohio	Space Administration		14. Sponsoring Agency	y Code
16. Abstract	megawatt photovoltaid	ossible beneficial miss space power systems in	the 19	90s time fram	e
:	megawatt photovoltaid and the power system To develop the requir postulated, along wit alternatives. Repres missions are selected defined. Concepts for photovol planar arrays, concer engines, thermophotov cell component techno and battery, fuel cel evaluated. Interacti and stationkeeping sy The levels of modular able, and cost effect of alternate approach development which wou technology development	c space power systems in technology needs associ ed technology plan, LEO the various orbital const sentative GEO Radar and i for further study and itaic power approaches a trating arrays, hybrid roltaic approaches; all plogies. AC and DC powe 11, and flywheel energy cons with the electrical	the 19 ated wi and Gi raints LEO Cor the pow re cons systems with vs r manage storage ion er , const nalyzed logy pl is pres systems	990s time fram th these miss 00 missions ar and operation struction Fac ver requiremen didered, inclu using Rankin rious pnotovo concepts are gine injectio ructable, ser l, and the ben an for techno ented. Also, which appear	e ions. al ility ts ding e ltaic hes, n vice- efits logy to
	megawatt photovoltaid and the power system To develop the requir postulated, along wit alternatives. Repres missions are selected defined. Concepts for photovol planar arrays, concer engines, thermophotox cell component techno and battery, fuel cel evaluated. Interacti and stationkeeping sy The levels of modular able, and cost effect of alternate approach development which wou technology development have benefits indepent	t space power systems in technology needs associ red technology plan, LEO th various orbital const sentative GEO Radar and i for further study and itaic power approaches a trating arrays, hybrid voltaic approaches; all plogies. AC and DC powe 1, and flywheel energy cons with the electrical vstem are considered. Tity for efficient, safe vive system design are a les developed. A techno and not otherwise occur its applicable to power ident of the absolute po	the 19 ated wi and GH raints LEO Con the pow re cons systems with va r manag storage ion en , const nalyzed logy pl is pres systems wer lev	990s time fram th these miss co missions ar and operation struction Fac ver requiremen didered, inclu susing Rankin tricus photovo ement approac concepts are ugine injectio ructable, ser l, and the ben an for techno tented. Also, which appear vel are sugges	e ions. al ility ts ding e ltaic hes, n vice- efits logy to
17. Key Wor Sp P1	megawatt photovoltaid and the power system To develop the requir postulated, along wit alternatives. Repres missions are selected defined. Concepts for photovol planar arrays, concer engines, thermophotov cell component techno and battery, fuel cel evaluated. Interacti and stationkeeping sy The levels of modular able, and cost effect of alternate approach development which wou technology development	e space power systems in technology needs associ ed technology plan, LEO the various orbital const sentative GEO Radar and i for further study and itaic power approaches a trating arrays, hybrid voltaic approaches; all ologies. AC and DC powe 11, and flywheel energy ions with the electrical entry for efficient, safe tive system design are a les developed. A techno old not otherwise occur its applicable to power ident of the absolute po	the 19 ated wi and GH raints LEO Con the pow re cons systems with va r manag storage ion er , const nalyzed logy pl is pres systems wer lev	990s time fram th these miss co missions ar and operation struction Fac ver requiremen didered, inclu susing Rankin tricus photovo ement approac concepts are ugine injectio ructable, ser l, and the ben an for techno tented. Also, which appear vel are sugges	e ions. al ility ts ding e ltaic hes, n vice- efits logy to
17. Key Wor Sp P1 Sp	megawatt photovoltaid and the power system To develop the requir postulated, along wit alternatives. Repres missions are selected defined. Concepts for photovol planar arrays, concer engines, thermophotor cell component techno and battery, fuel cel evaluated. Interacti and stationkeeping sy The levels of modular able, and cost effect of alternate approach development which wow technology development have benefits indepent ds (Suggested by Author(s)) ace Power, Solar Conce	e space power systems in technology needs associ ed technology plan, LEO the various orbital const sentative GEO Radar and i for further study and itaic power approaches a trating arrays, hybrid voltaic approaches; all ologies. AC and DC powe 11, and flywheel energy ions with the electrical entry for efficient, safe tive system design are a les developed. A techno old not otherwise occur its applicable to power ident of the absolute po	the 19 ated wi and GH raints LEO Con the pow re cons systems with va r manag storage ion er , const nalyzed logy pl is pres systems wer lev	990s time fram th these miss 00 missions ar and operation struction Fac er requiremen sidered, inclu s using Rankin trious photovo ement approac concepts are agine injectio tructable, ser and the ben an for techno sented. Also, which appear rel are sugges	e ions. al ility ts ding e ltaic hes, n vice- efits logy to

* For sale by the National Technical Information Service, Springfield Virginia 22161

NASA-C-168 (Rev. 10-75)

PRECEDING PAGE BLANK NOT FILMED

FOREWORD

This final report was prepared by General Dynamics Convair Division for NASA Lewis Research Center in compliance with Contract NAS3-21951.

The principal results were developed throughout 1980 with reviews at LeRC on 7 May 1980, 4 September 1980, and 17 December 1980.

Because of the scope of the study, many individuals contributed technical assistance. General Dynamics Convair personnel who significantly contributed to the study include:

Study Manager	D.M. Peterson
Mission Orbital Constraints	L.A. Cowgill
Systems Thermal Analyses	R.L. Pleasant
Cost Analysis	R.C. Risley
Component Design Analysis	T.G. Stern J.W. Mildice C.G. Foster A.T. Wells
Concept Design and Trade Analysis Studies	D.M. Peterson T.G. Stern J.W. Mildice
Dynamics Analysis	R.V. Haltzenberg
Technical Review	M. Cornwall J.G. Fisher

In addition to the General Dynamics personnel involved, information pertaining to advanced photovoltaic cell projections was developed by T.J. Maloney and B.R. Cairns of Varian. They provided Appendix C to this report and their data is used for portions of the projections in Volumes I and II.

The study was conducted in Convair's Advanced Space Programs Department, headed by Vice President W. Rector. The NASA Project Manager is M. Valgora of the Space Propulsion Division. For further information contact:

M. ValgoraD.M. PetersonNASA/LeRCGeneral Dynamics Convair DivisionCleveland, OhioSan Diego, CA 92117(216) 433-4000, Ext. 5186(714) 277-8900, Ext. 2204

This is the second of two volumes comprising the total report. Volume one is the Executive Summary.

TABLE OF CONTENTS

Ŀ

Section			Page
1	INTROI	DUCTION	1-1
2	STUDY	RESULTS	2-1
	2.1	TASK I, BASELINE MISSION IDENTIFICATION	2-1
	2.1.1		2-1
	2.1.2	•	2-1
	2.1.3	Material Processing in Space (MPS)	2-4
	2.1.4	Propellant Processor	2-4
	2.1.5	LEO Space Construction Facility	2-7
	2.1.6	• •	2-10
	2.1.7	Fast Electric Transfer	2-12
	2.1.8	Air Traffic Control Radar Illuminator	2-17
	2.1.9	•	2-22
		Orbital Constraints	2-22
		Mission Selection and Grouping	2-29
	2.1.12	-	2-30
	2.2	TASK II, CANDIDATE POWER SYSTEM CONCEPTS.	
		AND COMPONENT TECHNOLOGIES	2-30
	2.2.1	Concept Identification	2-30
	2.2.2	Planar Array or Low Concentration about Gimbaled	
		Axis (Concentration Ratio, CR , =2)	2-36
	2.2.3	Large Trough Concentrators	2-51
	2.2.4	U I	2-51
	2.2.5		2-63
	2.2.6	• •	2-68
	2.2.7	Operating Options – Planar Silicon Arrays	2-68
	2.2.8	•	2-69
	2.2.9	Large Parabolic Troughs	2-76
	2.2.10	0	2-78
	2.2.11	•	2-88
	2.2.12	-	2-93
	2.2.13		2-93
		Energy Storage	2-93
	2.2.15	10-Megawatt Radar Power System Synthesis TECHNOLOGY GOALS - SENSITIVITY TRADES	2-93
	4.0	AND ANALYSES	2-107
	2.3.1	Thermal Management	2-107 2-107
	2.3.1 2.3.2	Environmental Interactions	2-107 2-115
	2.3.2	Storage, Development and Assembly	2-115 2-122
	2.3.3 2.3.4	Safety	2-122 2-122
	2.3.5	•	2 - 122 2 - 123

vii

TABLE OF CONTENTS, Contd

Section			Pag	<u>e</u>
	2.4	TECHNOLOGY RECOMMENDATIONS	2-138	
	2.4.1	Power Generation Technology Gap Identification	2-138	
	2.4.2	Technology Requirements Definition	2-139	
	2.4.3	Critical Long Lead Technology Identification	2-139	
3	CONCL	USIONS	3-1	
4	REFERI	ENCES	4-1	
Append	ix			
Α	MULTIN	MEGAWATT POWER SYSTEM (MMPS) APPLICATION AND		
	PERFOR	RMANCE SHEETS	A-1	
В	DEFINI	TION OF TECHNOLOGY REQUIREMENTS AND		
		OLOGY PLANS	B-1	
С	TECHN	OLOGY PLANS	C-1	
v			~ 1	

1

LIST OF FIGURES

Figure		Page
2-1	Baseline Mission Identification	2-1
2-2	Potential Missions	2-2
2-3	Satellite Power System - Demorstration Article	2-3
2-4	Material Processing in Space - Processing Cluster	2-5
2-5	Typical Propellant Processor System Schematic	2-6
2-6	Propellant Processor	2-7
2-7	LEO Mission Concept Space Construction Facility	2-8
2-8	Orbiting Space Sciences Observatory (OSSO)	2-11
2-9	Fast Electric Transfer System	2-15
2-10	Foldout Truss Deployable Antenna	2-16
2-11	160 Kilowatt System, 5 Years, P(o) = 0.22 (System)	2-18
2-12	Recommended Mission Concept Provides Conus Redundancy with Only Two Spacecraft	2-19
2-13	Air Traffic Control Bistatic Radar Power Allocation	2-21
2-14	FAA Traffic Control Altern ives	2-23
2-15	RF Power Beaming Satellite	2-24
2-16	Spacecraft Geometry and Definitions	2-25
2-17	Inertial Orientation of Spacecraft	2-27
2-18	Effect of Drag on a Large Planar Array	2-28
2-19	The Power and Array Sizing Chain — LEO Mission Varies with Energy Storage	2-31
2-20	Power System Concepts and Component Technologies	2-30
2-21	Multi-Bandgap Cells Utilize more of the Available Energy	2-33
2-22	Multi-Bandgap Cell Projections were Based on Detailed Cell Analysis	2-34
2-23	A Dual-Band Reflecting Concept for Higher Efficiency	2-35
2-23A	Various Cell Technologies Will Be Possible	2-37
2-24	Planar Array/Antenna Configuration for Radar Spacecraft	2-38
2-25	Space Construction Planar Array	2-39

ix

ì

LIST OF FIGURES, Contd

Figure		Page
2-26	Parabolic Trough Collector for 10 MW Mission	2-40
2-27	Space Construction Facility Utilizing Large Parabolic Trough	2-41
2-28	The Second Configuration Uses a Planar Structure to Support Modularized Concentrators	2- 42
2-29	Space Construction Semi-Parabolic Concentrator/Heat Pipe	2-43
2-30	Rectangular Deployable Truss Beam with Tensioned Solar Blankets for GEO Space Radar	2-44
2-31	Space-Fabricated Truss Beam	2-45
2-32	Planar Array and Antenna Configuration for Radar Spacecraft	2-46
2-33	Space Construction Planar Array	2-47
2-34	Mass Properties for Space Construction Facility	2-48
2-35	Ten Megawatt Fianar Construction Using On Orbit Assembly- Construction Approach	2-49
2-36	Deployment of Hexagonal Array	2-50
2-37	Radar Modifications to Basic Parabolic Trough	2-52
2-38	Space Construction Facility Utilizing Large Parabolic Trough	2-53
2-39	Parabolic Concentrator with Pumped Coolant System	2-54
2-40	Spacecraft Thermal Model for Pumped Coolant System	2-54
2-41	Solar Cell/Coolant Tube Wall/Coolant Cross-Section	2-55
2-42	Heat Transfer Coefficient Versus Velocity for FC-75	2-57
2-43	Temperature Difference Across Coolant Boundary Layer Versus Heat Transfer Coefficient	2-57
2-44	Solar Cell Substrate ATs for Typical Low-k Semiconductor	2-58
2-45	Solar Concentrator Concept Suited to Heat Pipe Use	2-59
2-46	Heat Pipe Arrangement Assumed for Analysis	2-60
2- 47	LEO Mission Concept Space Construction Facility	2-67
2- 48	Three Geosynchronous Operational Modes are Feasible	2-68
2-49	Maximum Power Versus 1 MEV Electron Fluence for 2 Ohm-cm n/p Textured Silicon Cells. At 135.3 MW/cm ² AMO Illumina- tion 20%C from Reference 20	0 80
0 80	tion, 30°C from Reference 20 Efficiency Chains GEO Planar Array	2-72
2-50	EIHCIGHEV UNAINS GEU FIANAF AFFAV	2-73

LIST OF FIGURES, Contd

Figure		Page
2-51	CR=2 Geometry	2-75
2-52	Parabolic Trough Collector	2-77
2-53	Mass Extrapolation — Rankine Cycle Turbine-Generator	2-77
2-54	Hybrid Concentrator - Efficiency Chain	2-79
2-55	Block Diagram and Mass Properties Hybrid Concentrator with Cells at Secondary Focus	2-81
2-56	Efficiency Chain-Hybrid Concentrator with Cells at Secondary Focus	2-82
2-57	Advanced Goal (50% Efficient) Photovoltaic Array	2-83
2-58	Thermophotovoltaic Efficiency Chain	2-84
2-59	Small, Modular Trough Assembly	2-85
2-60	Orbital Geometry	2-87
2-61	Efficiency Chains - LEO Planar Array	2-89
2-62	Efficiency Chains - GEO Planar Array	2-90
2 - 63	Efficiency Chain - LEO Concentrators	2-91
2-64	Efficiency Chain - GEO Concentrators	2-92
2-65	10-Megawatt Radar Sizing – Planar Arrays and Large Concentrators	2-94
2-66	LEO Planar Array Sizing & Mass	2- 95
2-67	2.5 Megawatt Sizing Modular Concentrator (CR=50)	2 - 96
2-68	10 Megawatt Sizing Modular Concentrator (CR=50)	2-9:
2-69	Comparison of Estimates for the Three Power Generation Options (10 MW Space Radar)	2-98
2-70	Cost Comparison - LEO Power Generation	2-99
2-71	Six Energy Storage Technologies were Considered	2-100
2-72	Task II Comparison of Estimates for Alternative Storage Options	2-101
2-73	Typical Multi-Driver, Multi-Receiver System	2-105
2-74	Hybrid Power Management and Control Block Diagram - GEO Radar System	2-106
2-75	Technology Goals	2-107

LIST OF FIGURES, Contd

Figure		Page
2-76	Variation of Coolant Temperature Rise with Passage Height and Velocity	2-109
2-77	Spacecraft Thermal Model for Heat Pipe System	2-111
2-78	Weight/Aperture Area as a Function of Sheet Reflector Thickness and Heat Pipe Spacing	2-112
2-79	Primary Reflector Temperature Distribution as a Function of Heat Pipe Spacing	2-113
2-80	Heat Pipe Temperature as a Function of Heat Pipe Spacing and Reflector Thickness	2-114
2-81	Radiator Heat Rejection View Factor Blockages for Two Representative Small Concentrators	2-116
2-82	Efficiency Chains LEO Planar Array	2-118
2-83	Geometrical Performance - 3 Mini-concentrators	2-124
2-84	Energy Storage - Flywheels and Sodium Sulfur Batteries could Support 30,000-120,000 LEO Cycles over 20-Year Life	2-129
2- 85	Hybrid Power Management and Control Block Diagram LEO SCF System	2-131
2-86	Suggested Potential Distribution	2-133
2-87	GEO Mission – Radar Power Management and Control Approaches	2-137
2-88	Technology Recommendations	2-138

LIST OF TABLES

<u>Table</u>		Page
2-1	Weight Breakdown for Propellant Processor	2-5
2-2	Mass Properties for Space Construction Facility	2-9
2-3	Functional Interface Requirements at Sensor Platform . Docking Points	2-12
2-4	Preliminary Weight Statement (OSSO)	2-13
2-5	Fast Electric Transfer System Weight Targets, kg	2-14
2-6	Mass Properties for the 10 Megawatt Radar - Electrical Ion Engine Propulsion Injection with an AC Power Management System	2-65
2-7	Mass Properties for the 10 Megawatt Radar - Chemical Propulsion Injection	2-65
2-8	Annual Equivalent 1 MEV Electron Fluence for V _{OC} and P _{max} Due to Trapped Protons, Circular Orbits, Inclination 0 Degree, Infinite Backshielding Ssumed from Reference 20	2-71
2-9	Mass Properties, Hybrid Concentrator	2-80
2-10	Power Management Major Components Considered	2-102
2-11	Assumptions for Calculating Radiator Sink Temperatures	2-110
2-12	Summary of Radiator Heat Rejection Fluxes, W/m^2 (Btu/hr-ft ²)	2-110
2-13	Summary of Required Radiator Areas, m^2 (ft ²)	2-111
2-14	BOL Performance - Three Mini-Concentrators	2-125
2-15	Final Trades Support the Minitrough	2-125
2-16	Cost Comparison LEO Power Generation	2-126
2-17	10 MW GEO Radar Mass and Cost Estimates	2-127
2-18	Costs and Benefits of Alternative Energy Storage Options	2-128
2-19	Comparison of Alternative Power Management Options	2-136
2-20	Technology Gap Identification	2-140

xiii

SECTION 1

INTRODUCTION

The ability of man to exploit space will be a function of availability of power and energy in space and the cost of that power. Programs (such as the 25 kW power system) are presently underway to develop and orbit space power ranging in the tens of kilowatts, and new studies are pursuing systems ranging to hundreds of kilowatts. It is envisioned that by the end of the century megawatt capability will power missions which will offer significant benefits to society. This study was constructed to survey possible beneficial missions and identify crucial technologies that must be developed to enable multimegawatt photovoltaic space power systems.

Both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO) applications were examined. LEO orbits offered the obvious advantage of lower insertion costs and initial manned serviceability and constructability, while GEO orbits enable single or dual satellites to support services tied to one terrestrial area.

This study assumes that power levels in the low megawatt range can be realized by the year 2000 if technology development is started early enough to permit an orderly, well planned development approach. Such an approach would also aid in making programmatic decisions on current and near term technology efforts to direct those technologies toward a multimegawatt capability.

By contractual ground rule, a photovoltaic source was selected for the baseline power generation system, rather than solar thermodynamics or nuclear systems. However, to assure that possible beneficial solutions were not overlooked, two alternates employing hybrid photovoltaic/thermodynamic approaches were included for completeness.

The study was divided into four separate tasks:

Potential beneficial missions which require power in the 1 to 10 megawatt average power region were developed in Task I. Based on benefits, two types of missions were selected as study baselines and their power requirements developed.

In Task II, alternative power system concepts and operating options, including alternative component technologies, were identified and compared. One high-risk concept and a low-risk backup approach were selected for further study.

In Task III, the concepts were refined by performing trades and analysis, with particular attention to encironmental interactions and modularity and safety, to establish technology goals. Benefits of the goals were established.

In Task IV, technology efforts which enable megawatt capability were identified and, based on benefit criteria, ranked and recommended.

SECTION 2

STUDY RESULTS

2.1 TASK I, BASELINE MISSION IDENTIFICATION

This part of the study was performed as shown in Figure 2-1.

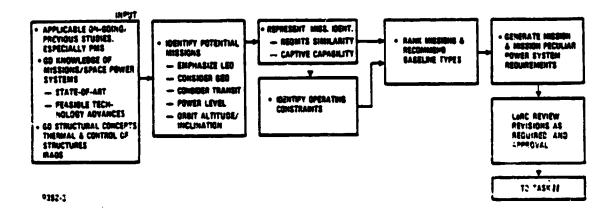


Figure 2-1. Baseline Mission Identification.

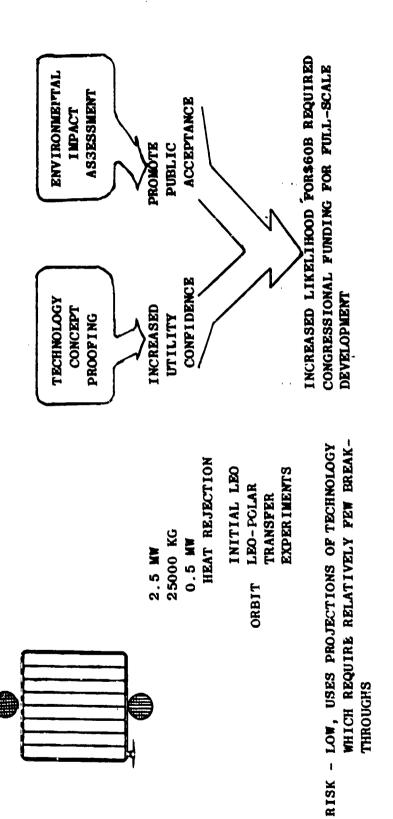
2.1.1 <u>IDENTIFY POTENTIAL MISSIONS</u>. The first step of the study identifies potential missions. Figure 2-2 indicates several of the potential missions which were considered. In addition to those listed in Figure 2-2, one other mission was considered; RF and laser GEO power beaming to LEO user satellites.

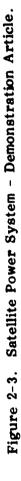
2.1.2 SOLAR POWER SATELLITE (SPS) TECHNOLOGY DEMONSTRATION. The prospect of converting solar energy at geosynchronous orbit continues to represent one of the more likely major future technological/energy thrusts. Its viability is enhanced by its 4 to 1 advantage over terrestrial solar power sources from its locations, and its potential for lower environmental risks than fusion, fission, or coal systems. The major obstacles to a funded SPS program are posed by technical uncertainties, public acceptance of environmental impacts, and skepticism about current economic analyses based on tentative assumptions. Like fusion, the technological approaches involved are varied, and all the effects and impacts of the various alternates have not been fully assessed or demonstrated. Several SPS technology demonstration approaches are viable, including nonphotovoltaic systems which are not part of this study.

Capture probability of the SPS demonstration mission is rated high (Figure 2-3). While it can be argued that some major segments of the SPS, such as the required heavy launch vehicles and space construction techniques, would not be demonstrated

Contraction of the second seco	AIRPORT RADAR Domestic Services	IO MW GEOSTATIONARY O Comstant/except Midnight 20 Yas	
	TRAMSPORTATION FAST ELECTRIC TRANSFER SYST	S KW ALL ALL INTERMITIENT 10 YRS 1405	
	EXPERIMENTS HIGH-ENERGY SCIENCE	1-5 MW 300 NM 20 5 20 YRS 20 YRS	
	PROCESSING PROPELLANTS FROM H ₂ 0	1.5 JAW 260 NM 31 INTESMITTENT 20 YAS	
	MANUFACTURING ENERGY INTENSIVE	1-10 MW 200 Nig 28.5 Internittent 20 Yrs	
	SPS CONCEPT PRODFING	1 MW 250 NM 28 5 INTENT 2 YRS	PE

Figure 2-2. Potential Missions.


2-2


MISSION

OPERATING ORBIT Incliniation Service Servic: Life

TIME PERIOD

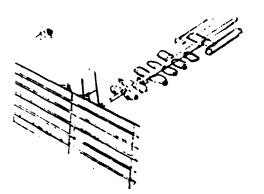
POWER LEVEL

2-3

GDC/AST 81-019

ł

with a shuttle launch demonstrator, the operational environment of high power and high voltage arrays and large, relatively flexible structures differs enough from present or future GEO satellite plans to warrant demonstration up to the limits of shuttle capability. Further, efficient RF conversion, transmissions, and rectification, and concerns about RFI/sidelobe environmental impacts should be addressed with test data for a GEO stabilized large structure. Without the data, environmental skepticism will remain too high for the full public support needed for the program.


This study, therefore, includes the SPS demonstration mission. Orbital inclination is the recommended zero degrees (Ref. 1), weight is 2.5×10^4 Kg, with 2.0 megawatts useful power delivered to a potential load. Although the two pure photovoltaic SPS concept baselines do not include active heat rejection, it is included here as a contingency that may be deleted later. Mission objectives include the demonstration of concept viability, measurements of efficiency and reliability, and data gathering on environmental interaction. These data would increase the credibility of studies leading to full-scale SPS development.

2.1.3 <u>MATERIAL PROCESSING IN SPACE (MPS)</u>. With the advent of the space transportation system, it becomes feasible to consider the manufacturing of high technology drugs, perishable cutting tools, and semiconductor electronics, whenever zero "g" can significantly increase quality or yields. Science Applications, Inc. (SAI) estimated in 1977 (Ref. 2) that up to 25% of the drug market, 50% of the current tool market, and 10% of the semiconductor market (with space segment sales of 15, 38, and 17 billion dollars, respectively) might be economically justifiable. These processes have not yet been proven, but the potential is there. Certainly, if they can be developed, they will provide a significant encouragement for public support of space activities which is now lukewarm because the benefits are not clearly evident.

NASA plans to begin the development of MPS activity in the near future, and some contractor studies have suggested that material-processing clusters could be developed by the late 1990s to meet the needs for material processing in an efficient manner.

Unfortunately, in evaluating a cluster concept for materials processing (Figure 2-4), the conflicting needs of the different processes make a single integrated facility impractical, at least at this time when much basic research is still needed to prove the feasibility of manufacturing in space. Specific issues would be contamination and different basic operational points. Materials processing is a "hot" activity, while bio-processing (drugs) tends to be cold or at room temperature. All the processes require low "g" levels, and clustering complicates the environmental interaction.

2.1.4 <u>PROPELLANT PROCESSOR</u>. In the event that electric propulsion technology is unable to fulfill the requirements for transfer or interplanetary missions in the 1990s because of technical or economic considerations, an orbiting propellant processor was considered as a possible approach processing a high probability

RISKS - CLUSTER INTEGRATION

ORBIT LEO, LATE 1990's 20 YEAR LIFE,

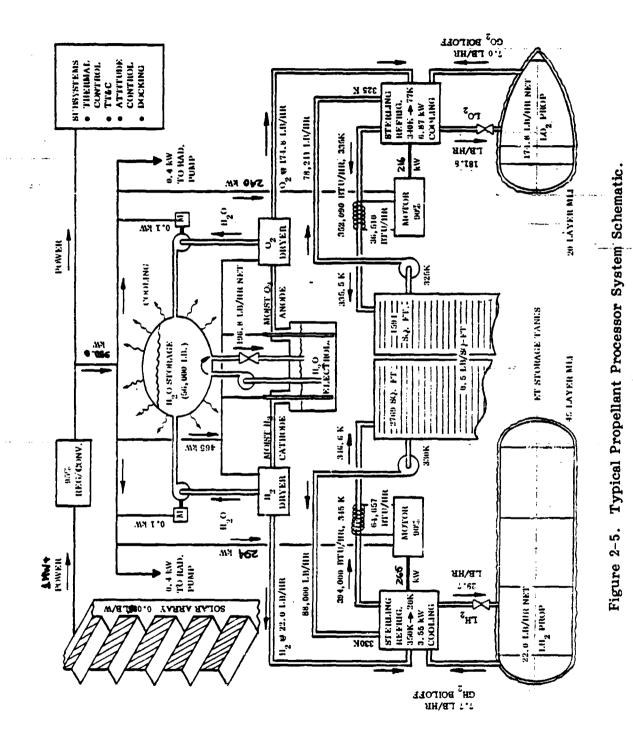
5 X 10⁻⁵ G's

100-200 GROUPED CLUSTER @ 15-30 KW=1.5-6 MEGAWATTS

INTERMITTANT SERVICE OK FOR RE-SUPPLY

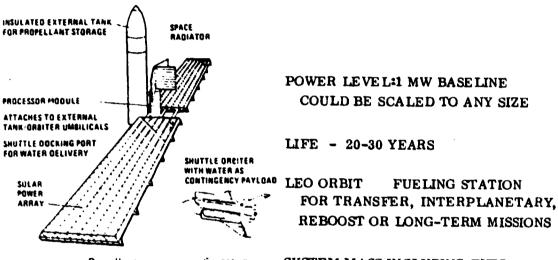
DESIRED WEIGHT NOT INCLUDING MPS UNITS . 25000 Kg

Figure 2-4. Material Processing in Space - Processing Cluster.


of success and the ability for alternative functions. The major advantages of processing LH_2 and LO_2 fuels in LEO include the ability to avoid expenditure of fossil fuels on Earth for electrolysis, the high power density achievable with these more conventional thrusters and the ability to provide full-time multi-100kW power by later incorporating banks of nonregenerative fuel-cells, using the liquified gasses as a power storage medium.

A typical system configuration is shown in Figure 2-5, from which it can be seen that the high power level arises primarily from the requirements for electrolysis and the low coefficient of performance attained in cryogenic cooling. The weight breakdown shown in Table 2-1 indicates that the primary component of mass is the LO_2 tank, and that multiple Shuttle launches or Heavy Lift Launch Vehicle (HLLV) Shuttle derivative would be required.

Table 2-1. Weight Breakdown for Propellant Processor.


LH ₂ Tank	3,600 kg
LO ₂ Tank	21,800
Radiators (2.4 kg/m ²)	1,000
Stirling Cycle Refrigerators (2)	4,100
H ₂ O Tank	250
Electrolyzer	900
Array (1 mw @ 430 w/kg)	2,300
Pumps, Piping, Insulation	2,250
TOTAL SYSTEM	36,200 kg
Initial Water Fill	25,400
Total Operational Weight	61,600 kg
0.5	

ORIGINAL PAGE IS OF POOR QUALITY

The capture probability of this mission is considered to be low (Figure 2-6) for the following reasons:

- a. Ion and Magneto Plasma Discharge (MPD) thrusters are in an advanced state of technology development, and although there are uncertainties, it can be expected that these will be reduced in the time frame considered.
- b. Micro-meteoroid protection of the tanks makes them very heavy, leading to high transportation costs. Completely fail-safe protection is considered unlikely.
- c. The considerable masses of the oxygen tank and the water fuel would require multiple Shuttle launches to implement this system.

Propellant processor configuration

RISK - CATASTROPHIC FAILURE IN EVENT OF METEOROID OR STRAY SATELLITE IMPACT RESULTING IN BREACH OF CONTAINMENT

ş

SYSTEM MASS INCLUDING FUEL -61600 KG

Figure 2-6. Propellant Processor.

2.1.5 LEO SPACE CONSTRUCTION FACILITY. There are two major thrusts that encourage the development of space construction capability. The first arises from the results of many studies that are concluding that the Shuttle System payload capability is volume-limited rather than weight-limited. This implies that more efficient use of STS will result from the ability to load the cargo bay with a dense array of raw materials and the a to perform construction and deployment of basic buildinb locks using an orbiting construction facility. This will allow a variety of structures to be implemented without incurring the penalty of

transporting a separate deployment mechanism to orbit for each. The planar structure of Figure 2-7 is an example. This would be especially true as shuttle performance increases in the 1990s.

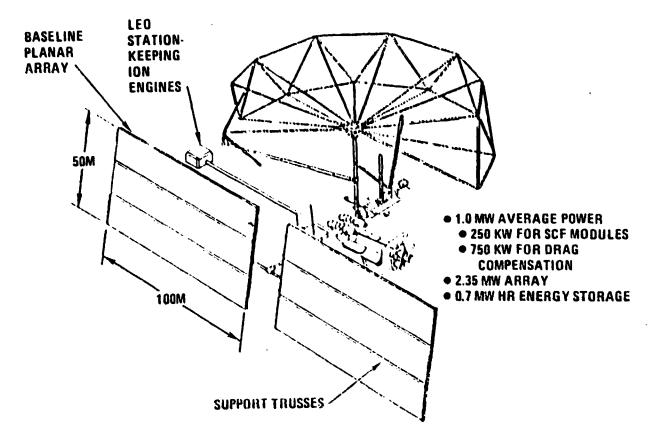


Figure 2-7. LEO Mission Concept Space Construction Facility.

The second thrust is the fact that deeper structures can be more maneuverable and transportable. Perhaps they can be erected in LEO, fully tested, and then deployed intact more easily with this facility. Later in this study, concentrating arrays are shown to have greater benefits (lower cost, higher efficiency) than planar arrays. This also may be true at lower power levels for different missions (Ref. 3). The technology for assembly may be significantly aided by utilizing space-aided construction.

Because of these issues, a space construction facility was selected as a baseline LEO mission.

Since the facility would be used to assemble larger spacecraft, such as those eventually to be stationed at GEO, the baseline design includes ion engines and their propellants required for stationkeeping, as described in the following section on orbital constraints. Final trades could substitute more engines and array

than included in the baseline; these would fire only when the spacecraft is insolated by sunlight, and the energy storage requirement would be decreased accordingly.

A set of baseline design SCF mass properties were developed to be used as input to the stationkeeping analysis. Table 2-2 lists the major components of the facility and their masses. A minimal facility could consist of a beam builder, a manipulator, a device for sheathing the structure in some manner dependent upon the particular application; for example, the construction of solar arrays, or manned stations requiring radiation shielding, pressurized "cherry-pickers" for manned operations, and crew quarters. Capture probability for the mission is high because it will be prerequisite to the deployment of very large space structures, and should enable more effective use of STS.

MASS PROPERTIES		WEIGHT BREAKDOWN		
Required Power	1.00 MW AVG	Beam Builder	15,000 kg	
Energy Storage	0.64 MWH	Crane /Manipulator	20,000	
Array for Energy	0.7 MW	Sheather	5,000	
Storage		"Cherry-Pickers"	12,000	
Total Array	1.7	Crew Quarters	10,000	
With Safety Factor (0.9)	2.35 MW	2.5 MW Array	12,500**	
Distribution (0.9) a	nd	Energy Storage	10,000**	
EOL (0.9)	• •		84,500 kg	
Array Area Required	10,000 m ²	ALTERNATE BREAKDOWN		
(0.17 ŋ)		Robotic Beam Extender(s)	15,000 kg	
Solar Blanket Mass (10,000 x 0.8)	8,000 kg	Crane/Manipulator	20,000	
Truss Mass (4300 m x	3,700	Crew Quarters	20,000	
0.87 kg/m)	·	2.5 MW Array	12,500**	
Odapt * Mass	800	Energy Storage	10,000**	
Total	12,500 kg		77,500 kg	
Electrical Propulsion Mass	100,000 kg			
	······································			

Table 2-2. Mass Properties for Space Construction Facility.

* Orientation Drive and Power Transfer. 2.1.6 <u>ORBITING SPACE SCIENCES OBSERVATORY</u>. The Orbiting Space Sciences Observatory (OSSO) (Figure 2-8) is a large, orbital laboratory facility that could be used by international scientists to increase man's knowledge and understanding of the earth's space environment, the sun, stars, and other celestial bodies. Specifically, OSSO would be employed for research to investigate the earth's upper atmosphere, the ionosphere, the magnetosphere, the interplanetary medium, and their coupling links; and to make observations of solar cosmic ray, X-ray, gamma ray, ultra violet, infrared, and radio emissions not possible from groundbased observatories.

This large orbital facility is an unmanned, multi-purpose scientific observatory that provides central subsystem support (power generation and storage, propulsion, attitude control, telemetry and control communications, computation, and data handling) for a wide variety of user-provided scientific payloads in the Astrophysics and Solar Terrestrial Programs, thereby providing the scientific community with both economic benefits and expanded technological capabilities; e.g., high power, large area sensors, and a wide range of orbit altitudes and inclinations.

The OSSO will be a long-life facility that is initially assembled in low earth orbit (LEO) and is thereafter periodically serviced and refurbished in LEO using the Space Shuttle. Typical mission durations might range from 1 to 2 years. Some of the scientific instruments would stay aboard for multiple mission periods. Others would be updated in accordance with new mission requirements and as new technology evolves.

An advanced electric propulsion system provides the capability to operate over a wide range of earth orbit altitudes and inclinations. Each mission begins and ends in Shuttle-compatible low earth orbit; e.g., 300-500 km altitude and 28.5 to 56 degrees inclination. The electric propulsion system provides the capability for plane changes (range 0 to 104°) and orbit altitude changes (range 300-100,000 km), depending upon the specific mission requirements.

The facility includes a 1000 m diameter antenna that is used for ratio astronomy, gravity wave experiments, inner magnetosphere cold electron dynamics investigations, and various radar applications. The antenna size and figure should make it usable up to about 0.2 GHz.

The large size of the facility makes possible the use of very large experiment equipment items such as the 1000m long dipole antenna of the plasma wave injection facility (PWIF). Figure 2-8 shows the OSSO typically configured for a plasma Physics investigation mission. The extendable tape dipole antenna is used for investigations of magnetic pulsations and wave-particle interaction, and the electron accelerator is used for particle beam injection experiments. Diagnostic instruments such as rf receivers, energetic particle detectors, optical imagers & photometers, magnetometers, and wave detectors are mounted on sensor platforms at the ends of four 600m long experiment mounting arms. For other types of missions, these sensor platforms would carry telescopes, spectrometers, polarimeters, high-energy detectors, and

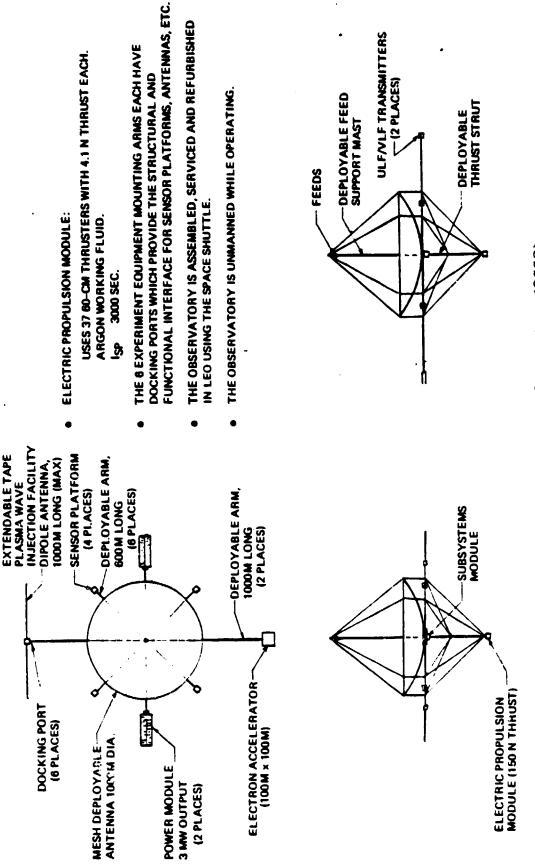


Figure 2-8. Orbiting Space Sciences Observatory (OSSO).

÷ • • • •

2-11

GDC/AST 81-019

their supporting electronics. Some of the telescopes and /or detectors will be cooled to LHe or LH_2 temperatures and will require closed-loop refrigeration for these long term missions.

Standard docking ports are provided at the ends of the six 600m long experiment mounting arms. These provide the structural and functional interface for interchangeable platforms that house the user-supplied scientific experiment equipment. The functional interfaces to be accommodated are listed in Table 2-3.

Structural:	Maximum sensor platform mass = 5,000 kg (each of six)
Electrical Power:	Up to 3 mw at any location (not simultane- ously)
	4 mw total power during operation of experiments
NOTE: High power ex system is oper	periments do not operate while propulsion ating.
Data Handling:	Digital = 50 mbps TV = 4.5 MH _Z , 2 channels simultaneously
Pointing/Attitude Control:	±5 degrees for photovoltaics
NOTE: 1000 m anten	na pointing/attitude control = ±0.2 deg.

Table 2-3.Functional Interface Requirements at Sensor Platform
Docking Points.

The design of the OSSO must assure that the facility will not contaminate or otherwise perturb the local environment and thus invalidate the results of the investigations underway. For this reason, fine pointing control is accomplished using reaction wheels rather than mass-expulsion devices, and the electric propulsion system employs argon as the working fluid. Magnetic fields produced by the electrical power generation and distribution system must also be controlled to acceptably low values.

The total facility is estimated to weigh approximately 80,000 kg at the beginning of a typical mission. A preliminary weight estimate is presented in Table 2-4.

2.1.7 FAST ELECTRIC TRANSFER. The development of larger ion or MPD engines (References 4 and 5) could offer the prospect of relatively fast electric transfer from LEO to GEO.

The number of shuttle flights for propellant transfer would be reduced with this development, and thus the domain of less expensive space transportation extended to GEO altitudes. Even lunar transfer could become less expensive should lunar resources become needed in space.

ELEMENT	MASS, kg
Structure	5,400
Electrical Generation & Storage	18,000
1000m Antenna	2,800
тсс	200
ACS	2,000
Propulsion, dry	7,600
Argon	12,000
Payload Equipment	30,000
Total	78,000

Table 2-4. Preliminary Weight Statement (OSSO).

Successful pursuit of the fast electric transfer system (FETS) concept must recognize a need for technology developments along several lines of effort, including:

- a. Advanced photovoltaic arrays
- b. Light-weight, efficient support structures
- c. Light-weight power bussing
- d. DC to DC power conversion a: MW levels, including possible on-array conditioning
- e. Thermal heat rejection
- f. Long life ion or MPD thrusters

By reason of high specific impulse (5,000 to 10,000 seconds), possible large cost savings are foreseen due to fewer shuttle flights needed for carrying propellants into orbit. Propellant requirements can be ideally determined by the ratio of the ISPs of the various propellants under consideration, but in practice, reduction of total system mass is not this large because the self-powered electric stage is heavier than its counterpart in a chemical OTV.

It is useful to examine a hypothetical design to better reveal the target areas for development to achieve fast electric transfer. Identification and study of the vehicle systems that use and service electrical thrusters may uncover information that is critical to the development of the thruster itself.

For this preliminary examination, Reference 4 was used to estimate thruster performance.

An overall concept for a FETS is shown in Figure 2-9. Two large solar arrays are coupled to the equipment and propulsion module through rotating joints. The structural subsystem is derived from a truss concept patented by General Dynamics i. 1974 and from work accomplished during 1977 and 1978 under an Air Force study for On-Orbit Assembly of a large space antenna. During this study, a lightweight, deployable truss was defined (Figure 2-10). Linear packaging ratios of 10:1 and volumetric ratios of 40:1 are achievable with this concept. For the FETS structure, truss weights of 0.566 lb/ft are projected. Concepts for unfurling and tensioning very large membranes were also defined.

Important to the concept is a photovoltaic array of an advanced design. Lightweight, high efficiency, and long life are all important considerations. Studies by General Electric for NASA have shown potential for constructing arrays for approximately 450 watts/kg (array only). For this preliminary definition, array performance is targeted for 430 watts/kg at 260 watts/sq. meter.

Table 2-5 summarizes subsystem weights used to arrive at a total system weight. One of the important tradeoffs recognized is in the area of power conversion. DC to DC converters built to current technology would weigh three or four pounds per kilowatt, which would result in the single heaviest subsystem. A converter appears to be necessary, since the supply voltages for the ion and MPD thrusters are varied, whereas for maximum efficiency the supply voltage array may be 1000 volts. An ideal system might be designed to operate without power conversion. Trades at a system level can reveal information on this possibility. For the purpose of this estimate, a target weight of 1 kg/kw was inserted in the table for power conversion.

Array Support Trusses		Central Module	800
800m at 0.836 kg/m	640	Electronics	300
Payload Trusfer Trusses		Batteries and Power Control	300
360m at 0.836/m 300 kg Berthing devices and fittings 300 kg		Auxiliary Propulsion	500
	600	Argon Containers 15,000 lb capacity	1,000
Array 5.1 mw at 430 w/kg	12,000	Thrusters 30 at 20 kg each	600
Array Deployment Drums Drums (2) 200 kg cable 2500m 160 kg		DC to DC Convertors/on Array Conditioning 1 kg/kw	5,000
motors 40 kg mechanism 40 kg	440	Radiator est. 98% power conversion	
Main Support Truss		20 kg/kw	2,000
110m at 2 % z/m	220	TOTAL	25,500
Rotating Machinery est 5% of array weight	550		dry
Bussing est 5% of array weight	550		

Table 2-5. Fast Electric Transfer System Weight Targets, kg.

RISKS - THE ATTACHED DESCRIPTION BREAK-ICHN SHOWS SOME RISKS IN THE AREA OF THRUSTER TEMPERATURE/ION ENGINE DEVELOP-MENT, AND IN HOW POWER CONVERSION EFFICIENCIES CAN BE INCREASED.

ORBITAL/TRAJECTORY REQUIREMENTS

i

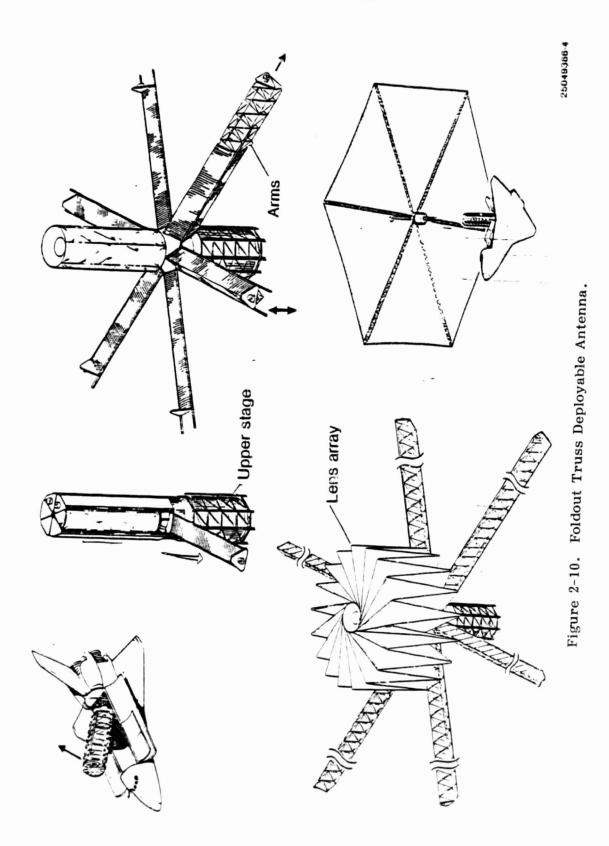
1

DELTAV- 5,800 M/NBC (19,000 FT/SBC) TINE FOR XFER 30 DAYS WEIGHT BUGIE - 25,000 KG COST BOGIE - \$100,000,000 VEHICLE COST

POWER DURING THRUST = 5.1 NW RADIATION DOSAGES TBS

ACCELERATION - .0002 g's. DRAG NEGLIGIBLE SHADOWING 10% LIFE 10 YEARS HEAT REJECTION - NOT REQUIRED - TO BE FURTHER INVESTIGATED IN TASK 111. CAPTURE PROBABILITY - HIGH

Figure 2-9. Fast Electric Transfer System.


2-15

160

×2

h

tİ

A second major area of concern is heat rejection for the thrusters. No weight has been included in the table for radiators. Reference 5 estimates that it can be done for 700 kg per thruster. This may be conservative, and may also impose undue penalty in the event that multiple thrusters are used to unsure long life for the system. Some other way might be studied to solve the heat rejection problem. A bank of sixty MPD thrusters operating at one second on and fiftynine off, might be self-cooled. If this works, it could also prolong thruster life, by distributing firing time across sixty thrusters. An additional system trade is required to establish whether the projected ion engine efficiency and array weight savings are worth the added complication.

Assuming the target weights indicated in Table 2-5 are achievable, the FETS can become an efficient and useful tool for both orbital transfer and planetary exploration. The weights are felt to be realistic, and in some cases conservative. For example, a radiator weight of 2000 kg, could be as low as 900 kg, according to some parametric information produced by the Vought Corporation (Figure 2-11).

With the fast electric transfer system, a GEO transfer time of 30 days is the goal. For the configuration outlined herein, preliminary estimates show a payload transfer capability of 20,000 kg to GEO, carrying sufficient propellants for return to LEO.

<u>Conclusion</u>: Although the Fast Electric transfer stage does provide significant benefits as a vehicle stage, it was not selected as a baseline mission for the study. It was felt that it would be better to select a mission which, in itself, provided new benefits to the public in terms of the actual use of power in orbit for extended time periods.

2.1.8 <u>AIR TRAFFIC CONTROL RADAR ILLUMINATOR</u>. There are approximately 13,000 commercial airports in the United States today. At this time, they have varying degrees of radar coverage for air traffic control/collision avoidance. There are indications from news media reports that the air traffic control and collision avoidance system could benefit from increased accuracy and awareness of the proximity of air traffic. Two ground station transmitters would be required to reliably assure that the area of each airport is illuminated, so that single point failures leave the system operational.

Further, each radar requires its own power, which is generated terrestrially. This generation adds to terrestrial energy usage; and, since beam field strength is relatively high, poses a possible health risk to personnel in close proximity to the transmitter. The above deficiencies can be overcome by careful control, but an alternative is the space generation of energy in the form desired.

Figure 2-12 shows the basic system approach for such a bistatic illuminator, and a baseline spacecraft configuration using planar arrays. A space radar transmitter operating in a bistatic mode would sequentially illuminate the area surrounding up to 1,000 airports. Surrounding the airport, several bistatic receivers would use inexpensive high-speed data processors which will be available in the

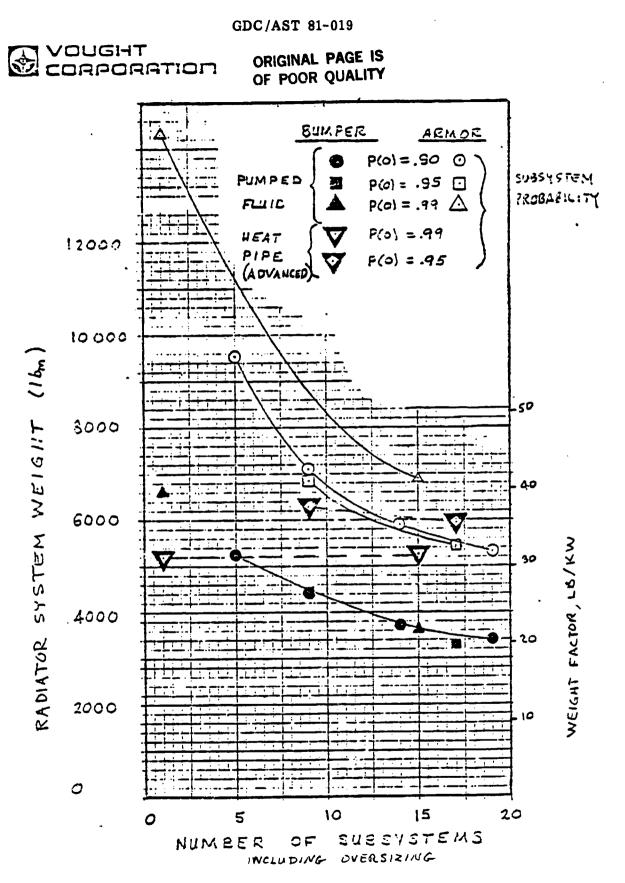
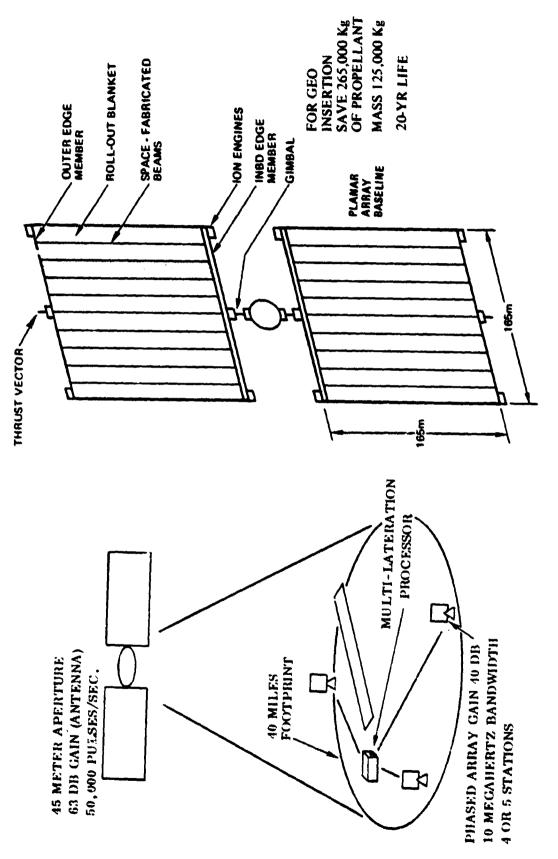
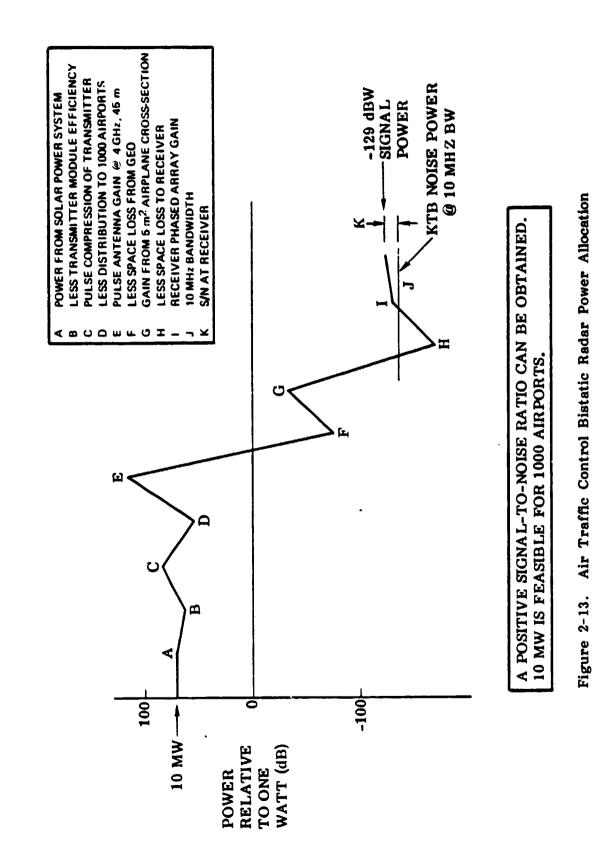



Figure 2-11. 160 Kilowatt System, 5 Years, P(o) = 0.22 (System).


1990s, along with techniques from modern information theory to establish the location of the airplanes within a required error interval. The redundant set of ground system radars would be redistributed to other airports, since the space radar provides redundancy to protect against random or overtly caused failures of the ground radar or power systems. The ground system would provide redundancy in the event of hostile action against the space radar, or some highly improbable catastrophic failure. Airplane transponders would not be required.

Two spacecraft would be spaced so that only one was eclipsed during the spring and fall eclipse periods. This is acceptable because traffic is reduced later at night. The two 15-megawatt solar arrays supply 10 MW to the radar antenna. The 45-meter aperture antenna uses phased array technology to direct the radar beam to up to 1,000 airport areas over the continental United States. The 45meter aperture provides spot sizes of approximately 40-mile diameter from geosynchronous orbit. Using the 10 megawatts from the arrays provides enough energy for a signal-to-noise ratio of about 10 db at the bistatic receivers, for targets with a 5 sq. meter cross-section, which also requires a 10 MHz bandwidth to estimate the velocity and position within 100 ft. Figure 2-13 provides the preliminary link analysis. When the design is done, the bandwidth may be reduced by applying correlation and Kalman filtering to the video and state data, but this analysis assumes further study would be required to analyze these effects more completely to establish final link budgets.

The technology for the planar array baseline radar uses trusses to construct a gridwork upon which solar blankets are mounted; the 45-meter radar antenna concept uses Convair-developed deployable trusses and radar membrane blankets for its construction (Figure 2-10). The membrane, which consists of about one million transmitter modules spaced at intervals of 0.6λ , can be used as a phased array and is also under development at Convair. Each module would radiate 3 watts of power.

The socio-economics of such a system are someshat similar to the proposed SPS, with some exceptions:

- a. The environmental concerns, costs, and risks of the system on the terrestrial RF radiation environment are significantly reduced, because the average energy density can be held below even the Russian safety level of 0.01 mw/ cm², and far below the postulated 25 mw/cm² of the U.S. SPS.
- b. Shuttle launch costs per kilcgram of payload ere greater than the postulated SPS heavy launch vehicles. Therefore, the system effectiveness equations must show gains sufficient to overcome the transportation expenses. The preliminary analysis conducted by Convair for NASA has indicated that the cost of the space-based radar can reduce transportation costs by utilizing centralization to achieve economics of scale. These come about primarily because individual ground radars require at every airport separate backup systems which are operated only intermittently, while the space systems level of redundance can be multiplexed in such a way as to be operational without

•

1

:

2

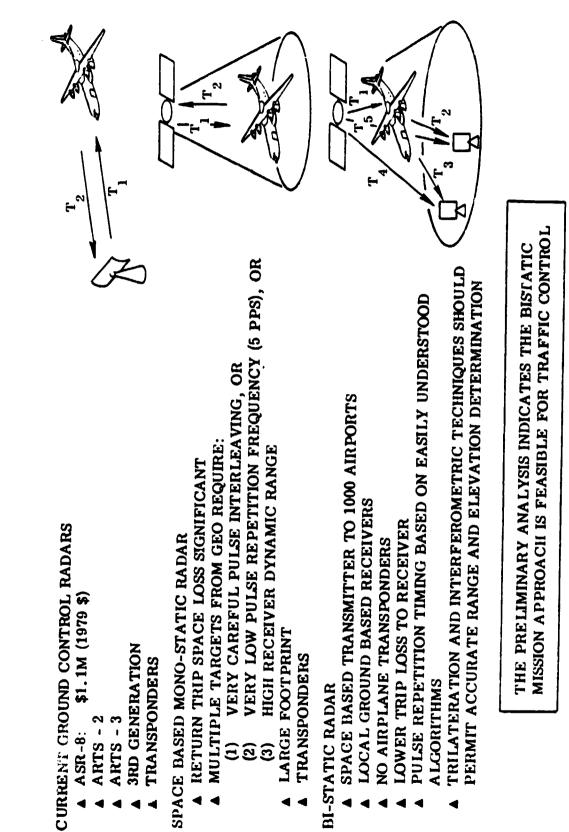
.

ţ

a completely separate additional spacecraft. Low cost is essential however, for the concept to be viable. Figure 2-14 summarizes these considerations.

This analysis of the susceptability of the two alternate approaches to catastrophic and overt destruction has not been completely developed, since it is dependent on the assumed threat and on detailed design.

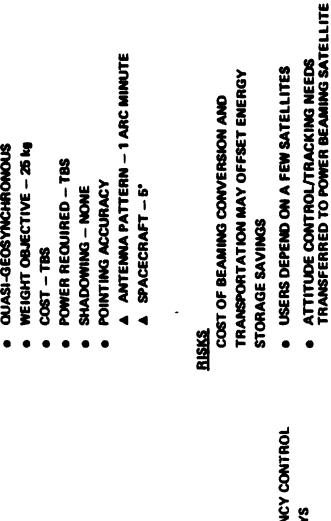
2.1.9 <u>RF POWER BEAMING SATELLITE IN GEO</u>. The Solar Power Satellite (SPS) is economically viable because satellites in GEO receive insolation almost the entire orbital period and thus the photovoltaics have nearly 100% duty cycle. Use of these GEO SPS satellites to beam rf power to LEO satellites provides potential benefits to the space program. Because such satellites (Figure 2-15) would generate the beam power at GEO, the LEO satellites receiving power would:


- a. Require a lower cost rectenna compared to a higher cost solar array. The rectenna would have a 100% duty cycle as compared to the 67% duty cycle the solar array eclipsed LEO satellites may have. The photovoltaic costs associated with LEO energy storage/power generation would also be avoided.
- b. Not require the significant energy storage systems which LEO satellites now need to accommodate the eclipse period.

The weight and cost of energy storage systems such as NICAD batteries, nickel hydrogen batteries, or fuel cells would be avoided.

Initially, the capture probability of such a system is thought to be small. User resistance will probably be high because LEO users would be dependent on the laser power beaming satellite for their energy. However, the benefit of such a satellite strongly depends upon the configuration and design concept which eventually evolves. If a concept could be developed which features an extremely light weight deployable structure for the rectennas and perhaps for the transmitting antenna, the concept might have more viability than appears on first examination. Because the air traffic control radar satellite has much higher capture probability, the RF power beaming satellite will not be considered further.

2.1.10 <u>ORBITAL CONSTRAINTS</u>. The deceleration of structures whose crosssectional area is large increases as their mass decreases and may cause significant orbital decay in LEO. To evaluate these effects for a typical multimegawatt configuration, an analysis of the effects of atmospheric drag was conducted for the spacecraft illustrated in Figure 2-16. The spacecraft configuration is one design concept for a 5-megawatt solar power demonstrator. Components would be delivered into low earth orbit by the Space Shuttle, where they would be assembled into the configuration illustrated.


The General Dynamics program TRAJEX was used to generate a parametric set of orbital flight simulations in which the only perturbing force acting on the spacecraft was atmospheric drag. The effects of rarefied flow aerodynamic forces normal to drag were not simulated. Since these forces act normal to the velocity

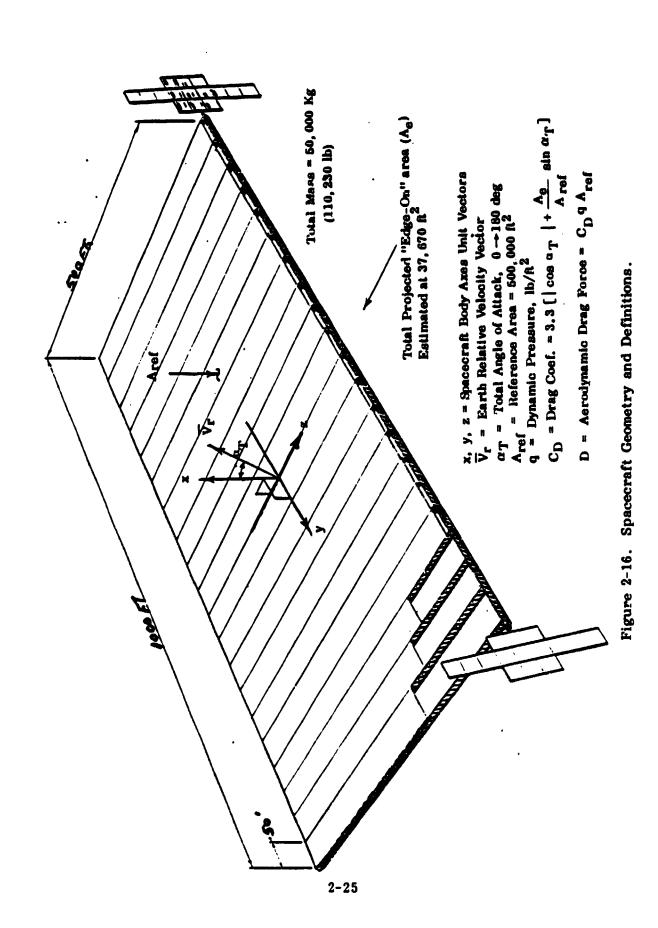
2-23

Figure 2-14. FAA Traffic Control Alternatives.

GDC/AST 81-019

BENEFITS

2-24

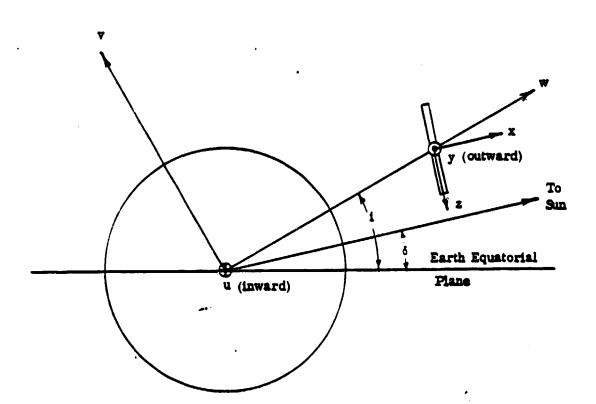

- POWER SATELLITE IN GEO
- ENERGY STORAGE FOR EMERGENCY CONTROL
 - - **SMALLER PHOTOVOLTAIC ARRAYS**
- **ECONOMIES OF SCALE**

ORBIT

OUASI-GEOSYNCHRONOUS

GDC/AST 81-019

Figure 2-15. RF Power Beaming Satellite.



ź

vector, their effect would be to perturb orbital inclination and/or eccentricity without changing orbital energy. The corresponding station-keeping velocity corrections are believed to be small compared to the corrections for drag. The oblate earth terms in the gravitation function were set to zero to isolate the effects of atmospheric drag. The effect of solar radiation pressure was not included in this analysis since it is small compared to the effect of aerodynamic pressure. Reference 6 gives a value of about $9 \times 10^{-8} \text{ lb/ft}^2$ for solar radiation pressure at earth, whereas a nominal aerodynamic pressure of about $1 \times 10^{-6} \text{ lb/ft}^2$ is indicated for the highest circular orbit considered in this analysis (225 nautical miles). The nominal upper atmosphere densities defined by the 1976 U.S. Standard Atmosphere of Reference 7 were simulated by applying a correction factor to the densities computed by the older atmosphere model (Reference 8) used in the TRAJEX Computer Frogram. The densities defined by the 3-sigma cold atmopshere model of Section 7 of Reference 9 were used to compute data for maximum drag.

Drag characteristics of the spacecraft are based on data obtained from Chapter V of Reference 10. Drag coefficient was implemented as a function of total angle of attach as defined in Figure 2-16. A flat plate drag coefficient, $C_D = 3.3$, was assumed where C_D is based on projected area perpendicular to the free stream. Free molecular flow, a non-tumbling spacecraft, and diffuse reflection of impinging gas particles were assumed. The computed drag force was applied in the direction of the negative relative velocity vector in the TRAJEX simulations. Figure 2-17 defines the alignment of the spacecraft body axes with respect to the TRAJEX inertial u,v,w coordinate system (Reference 11). The matrix of direction cosines relating the spacecraft body axes to the inertial coordinate system is shown. The incrtially fixed spacecraft attitude is defined as a function of orbit inclination and solar declination such that the flat plane of the spacecraft is always normal to the earth-sun line.

Figure 2-18 summarizes the results of this study. Each data point on the nominal atmosphere curves corresponds to a TRAJEX simulation. These simulations included a range of orbit inclinations from zero to 90 degrees, solar declinations of -23.5 degrees and +23.5 degrees, and altitudes of 150 nautical miles and 225 nautical miles. The 3-sigma dense atmosphere curves were obtained by multiplying the nominal drag loss values from the computer simulations by the ratio of the dispersed atmosphere density to nominal density, since drag loss is directly proportional to atmospheric density for the cases considered here. Note that minimum drag losses occur when the difference between orbital inclination and solar declination is equal to 90 degrees. Reference to Figure 2-17 shows that this corresponds to the case in which the spacecraft is always aligned in the minimum drag attitude, that is, "edge-on" to the direction of motion. It should be noted that, for simplicity, the projected frontal area for the "edge-on" case was conservatively assumed to be 37,670 ft², corresponding to the long dimension of the rectangular spacecraft. In reality, the average projected area of the leading edge will be somewhat smaller over a full orbit because of the apparent spacecraft rotation with respect to the earth-relative velocity vector.

x, y, z = Spacecraft Body Axes Unit Vectors

- u, v, w = Earth Centered Inertial Coordinate System Unit Vectors
 - i = Orbital Inclination

.

 δ = Solar Declination

Direction Cosines of the Spacecraft x, y, z Body Axes with the Inertial u, v, w Axes (TRAJEX Input Format):

$$SMS(1) = \cos (x, u), \cos (x, v), \cos (x, w),$$

$$SMS(4) = \cos (y, u), \cos (y, v), \cos (y, w),$$

$$SMS(7) = \cos (z, u), \cos (z, v), \cos (z, w),$$

$$\downarrow \downarrow$$

$$0, -\sin (i - \delta), \cos (i - \delta),$$

$$-1, 0, 0,$$

$$0, -\cos (i - \delta), -\sin (i - \delta),$$

Figure 2-17. Inertial Orientation of Spacecraft.

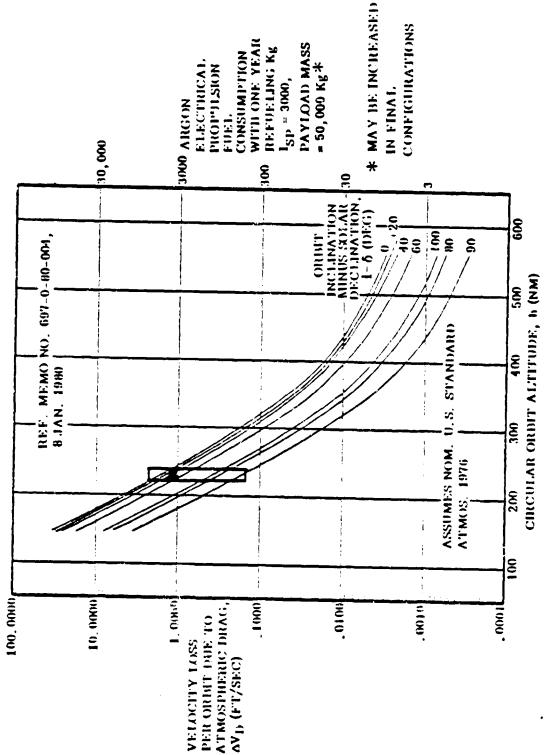


Figure 2-18. Effect of Drag on a Large Planar Array.

2-28

GDC/AST 81-019

Maximum drag loss occurs when the orbit inclination is equal to the solar declination. Figure 2-17 shows that in this configuration, the spacecraft is alternately moving from "broadside" to "edge-on" with respect to its attitude relative to the direction of motion. This is the expected position for large structures hanging down from the Space Construction Facility, to minimize gravity gradient torques.

In sizing the stationkeeping propulsion system for the spacecraft, the minimum required thrust level would be determined by the maximum drag force expected to be encountered during the lifetime of the spacecraft. For a 150 nautical mile circular orbit, the maximum drag force would be about 93 pounds. This corresponds to a three-sigma dense atmosphere and maximum projected frontal area. For 225 nautical miles, the corresponding maximum drag force would be about 15 pounds. For preliminary estimates of propellant loading requirements, a velocity correction capability someshere between those shown in Figure 2-18 for 3-sigma dense and nominal atmospheres should be used; to assume a nominal atmosphere would be nonconservative since drag force dispersions resulting from a 3-sigma cold (dense) atmosphere are greater than those resulting from a 3-sigma hot atmosphere. (See Section 7 of Reference 11.)

When the data for drag were used to calculate the propellant mass required for a 20-year mission life, up to 2×10^6 kg of chemical stationkeeping propellant mass were found to be required (Hydrazine, ISP = 225), whereas only 100,000 kg of mass would be required for electric propulsion, with an assumed Ion Engine ISP of 5000 and a 225 mile altitude.

It should be noted that the amount of propellant required for stationkeeping depends on engine specific impulse, altitude, and spacecraft mass. This study assumed a 225 n.mi. shuttle orbit, an engine ISP of 5,000 and without Orbital Maneuvering System (OMS) Kits installed. Spacecraft mass was 50,000 Kg. This mass influences propellant usage, because the velocity loss per orbit is the integral of acceleration, and the more massive the spacecraft, the smaller the velocity loss per orbit. For a fully configured space construction facility with five times the 50,000 Kg mass for which Figure 2-3 applies, and for a higher OMS-aided 300-mile orbit and an ISP of 5,000, the chemical propellants required could decrease to as low as 40,000 Kg. However, the electrical propulsion propellant mass would still be about 5% of this value, and even with these lower masses of propellance, the expected chemical propellant transportation costs are approximately equal to the extra array costs, and therefore ion engine stationkeeping is viable.

2.1.11 MISSION SELECTION AND GROUPING. The foregoing discussion highlights the fact that two GEO missions emerged as potentially very beneficial to the needs of the country in the 1990s. They were the Radar illuminator and the Solar Power Satellite (SPS) demonstrator. Both beam R.F. power to a relatively small area on earth.

Because the SPS is being studied extensively elsewhere, it was decided to focus this study effort on the Radar illuminator mission. The Radar mission also has the attractiveness of focusing on a problem of concern to all who fly: assuring the safety of the traveling public.

The selection of a LEO Space Construction Facility to implement the GEO power beaming missions was a corollary to the LEO selection.

2.1.12 <u>POWER REQUIREMENTS</u>. As described above, the power requirements for the radar satellites were established so that one or two satellites could handle up to 1,000 airports. Final requirements would be dependent on the operational planning. However, to minimize wasted orbital slots, the satellites were sized at the high end of the power range studied -- 10 mW each.

The power requirements developed for the space construction facility assumed that the drig caused by the interaction of the atmosphere at LEO with the array frontal apertare was compensated for by electrical propulsion, with shuttle-supplied, station between the atmosphere and the item being assembled by the station was also supplied by electrical propulsion.

For ion engines, a 1.0 megawatt requirement will provide the stationkeeping with electrical propulsion at 225 n.mi. These power requirements interact with the energy storage component characteristics, as shown in Figure 2-19 (on the following page) which specifies the power generation capability for the various storage technologies. To accommodate any option, a 2.5 megawatt sizing was used.

2.2 TASK II, CANDIDATE POWER SYSTEM CONCEPTS AND COMPONENT TECH-NOLOGIES

Figure 2-20 shows how candidate power system concepts were developed, components were identified, and preliminary system synthesis were accomplished.

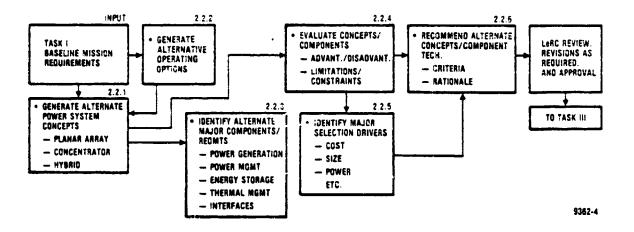
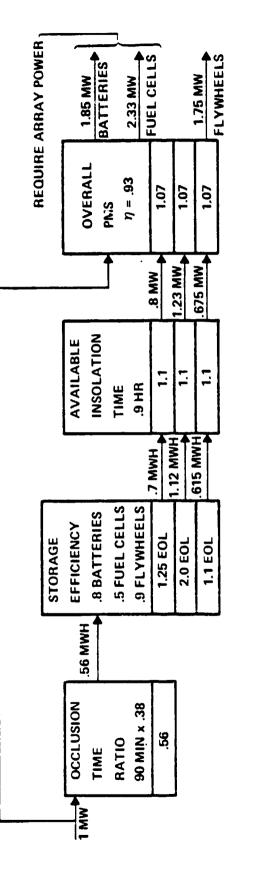


Figure 2-20. Power System Concepts and Component Technologies.

2.2.1 <u>CONCEPT IDENTIFICATION</u>. Three types of power generation concepts were developed: planar array, pure photovoltaic concentrator, and hybrid photovoltaic/thermal heat engine concepts. They were considered in conjunction


Figure 2-19. The Power and Array Sizing Chain --- LEO Mission Varies with Energy Storage.

•

Construction and an end of the second

IF EOL FUEL CELL η = .8, THEIR REQUIREMENTS WILL

MATCH BATTERIES

GDC/AST 81-019

with two types of power management and distribution systems, ac and dc; and three types of energy storage systems: batteries, fuel cell/electrolysis, and inertial (flywheel) storage.

2.2.1.1 <u>Cell Configurations Considered</u>. Three configurations of photovoltaic cells were considered for power generation use:

- a. Multi-bandgap (three bandgaps) cells with high projected efficiencies. (Figure 2-21.)
- b. Two cells or two-bandgap cells, with some form of spectrum splitting or dual energy used.
- c. Single-bandgap cells such as todays silicon and gallium aluminum arsenide.

2.2.1.1.1 <u>Multi-Bandgap Cell Data</u>. The analysis accomplished by this study was performed using data provided to General Dynamics by the Varian Corporation as part of a trade-of-data agreement between the two corporations. Figure 2-22 shows the performance predicted for three junctions Gallium Arsenide cells with three-micron diffusion lengths for various concentration ratios and temperatures. Appendix C describes the approaches and expected performance in more detail.

2.2.1.1.2 Two-Cell Configurations. There is some concern that multi-bandgap cell technology will never really achieve its ultimate desired goals. To provide a viable plan, this study also projected an approach which uses two cells as a backup to provide two-band operation. Two possible configurations for two-cell systems were considered. In one configuration, a high-bandgap Gallium Arsenide cell floats on top of a lower-bandgap Gallium Arsenide or silicon cell. These type cells have been referred to as "Gallicon" cells in the literature. Basically, the spectral splitting is achieved inherently by the design; the two cells are bonded together with a transparent bonding material which can survive the temperature extremes of space. A second approach considered involves using energy which the high-bandgap cell does not use, and reflecting it because of the geometrical configuration on to the lower-bandgap cell. A typical configuration for such a reflection is shown in Figure 2-23. This figure also shows what the ideal energy utilization might be from the high-bandgap Gallium Arsenide cell when combined with the lower-bandgap Gallium Arsenide or silicon cell. In the figure, the lowerbandgap cell is a silicon cell. If the lower-bandgap cell were to be a Gallium Arsenide cell, the cutoff point for the infrared energy might be at a slightly lower wavelength (around 650 millimicrons) and the second lower-bandgap cell would probably cease performance between 900 millimicrons and 1 micrometer.

The data used for this two-cell Gallium Arsenide configuration was provided by Varian as part of the interchange agreement, and is also further described in Appendix C.

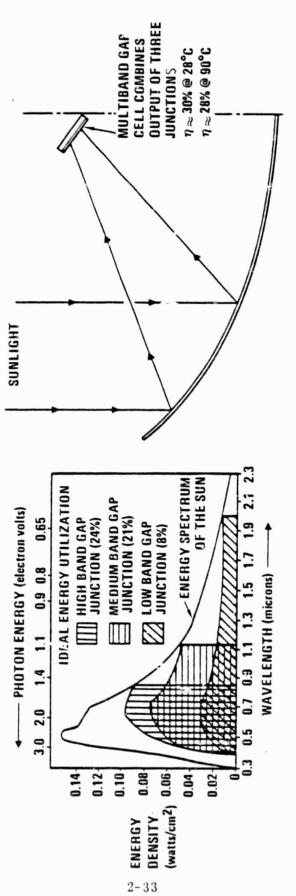
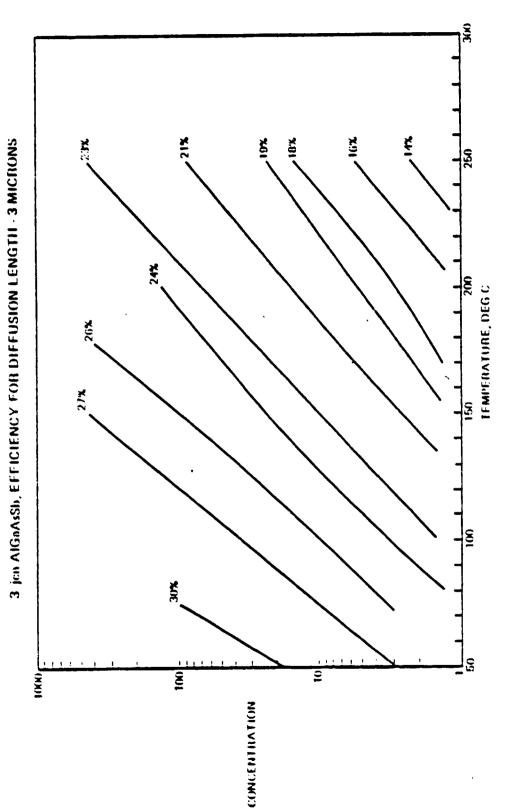
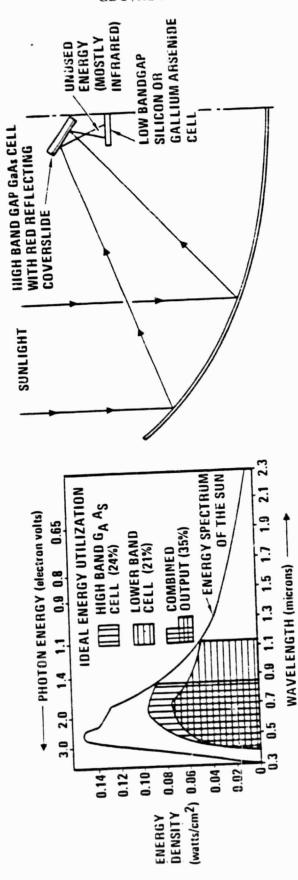




Figure 2-21. Multi-Bandgap Cells Utilize more of the Available Energy.

GDC/AST 81-019

2 - 35

GDC/AST 81-019

2.2.1.1.3 <u>Single-Band Cells</u>. The single-bandgap cells considered were those emerging from the laboratory today, but with slightly higher efficiency projections. Back surface reflectors were employed to eliminate the unused infrared energy, a "low cost", lower efficiency, silicon cell was also considered, since such cells may be available from the DOE "low cost" photovoltaic program.

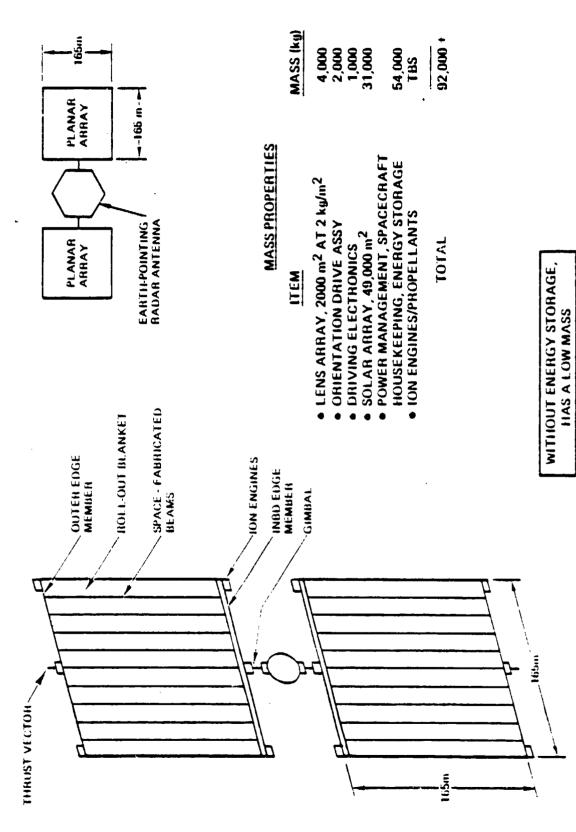
2.2.1.1.4 <u>Cell Configuration Summary</u>. Figure 2-23a summaries the various cell technologies which will be available for use in planar arrays and concentrators. The projected characteristics are summaries from the Component Application and Performance estimates which are presented in Appendix A. These estimates were developed from Vendor discussions and consultations with NASA component engineers.

2.2.1.2 Power Generation Configuration Geometries. Six alternate geometrical configurations of spacecraft were investigated. They are shown in Figures 2-24 through 2-29. Three configurations satisfied the requirements of a 10-megawatt radar satellite operating in geosynchronous orbit (23.5 degrees). Three satisfied a LEO space construction mission objective at 28-degree inclination. Preliminary study of another configuration, the very-high-concentration-ratio (CR=2000) spherical paraboloid, revealed a concern which weighs against its selection: if the spacecraft should accidently tip off the sun line, the truss structure attaching the focal electronics to the spacecraft could be destroyed by the concentrated solar beam. Further, the thermal analysis indicates theremal impedance of the high concentration (\geq 200) systems is significant, and, very high velocity (>50 ft/sec) liquid cooling is required. The spherical paraboloid was therefore dropped from consideration.

2.2.2 PLANAR ARRAY OR LOW CONCENTRATION ABOUT GIMBALED AXIS (CON-CENTRATION RATIO, CR, =2). These types of systems are extensions of today's technology. A truss structure is used to hold solar cell blankets, and (in the case of the CR=2 concentrator) the blanket and two flat mirrors are positioned so that their surface is at an angle of 60 degrees with respect to the sun line, doubling the solar blanket insolation. Several alternate truss approaches exist. Figure 2-30 shows a deployable space truss beam utilized in a rectangular configuration over which rows of solar blankets are tensioned.

An alternate, space-fabricated, composite truss, (Figure 2-31), can also be used to build up the rectangular structure, tension the blankets, and hold the mirrors.

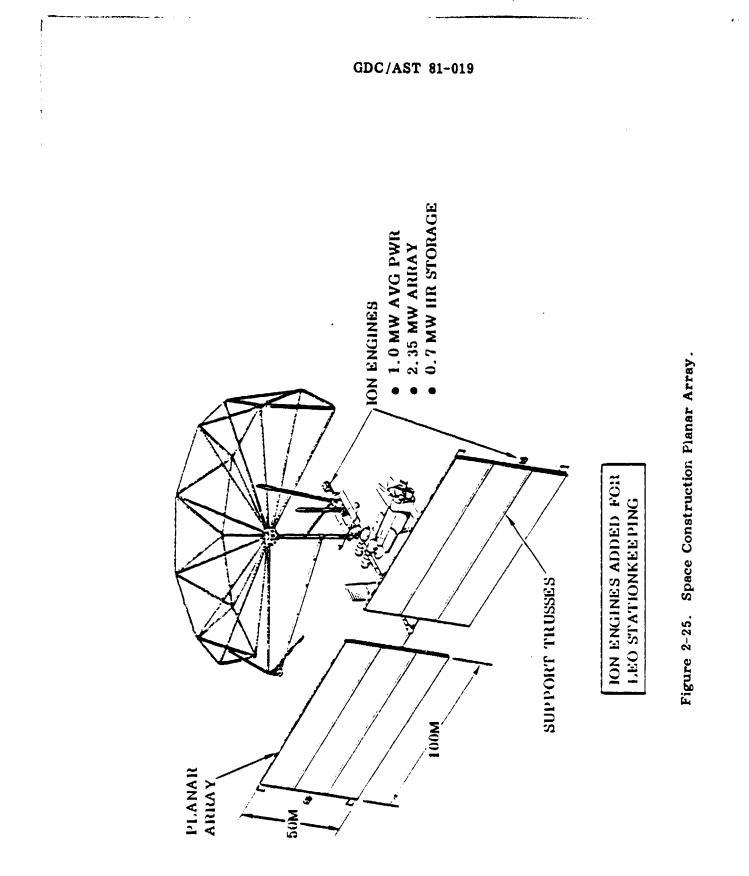
Figure 2-32 indicates the configuration to be studied for the radar satellite with the antenna installation splitting the planar array into two equal rectangular sections. Figures 2-32 and 2-34 show the space construction configuration with the same type of split array, the differences being in the dimensions of the arrays and mass properties of the central construction module compared to the radar core antenna.


TECHNOLOGY	CHARACTERISTICS	REMARKS	RISKS
PLANAR			
SINGLE CRYSTAL CZ SILICON	5 cm X 5 cm X 50μ η = 14-16% BOL	MELUABLE, NUI ANNEALABLE, MATURE TECHNOLOGY.	MEDIUM FUR RADIATION RESISTANT, WELDABLE CELLS
EFG/DENDRITIC WEB RIBBON SILICON	5 cm X 8 cm X 300μ η = 13 -15% (BOL)	EFFICIENCY VIA LASER RECRYSTAL- IZATION. LOWER COST THAN CZ.	MEDIUM NO EXPERIENCE WITH SPACE APPLICATION
AMORPHOUS SILICON	η = 6%	EFFICIENCY UP TO 16% VIA LASERS OR TANDEM JUNCTIONS NOT ANNEALABLE /	MEDIUM SPACE QUALIFICATION REQUIRED
GaAs	2 cm X 4 cm X 50μ η = 16-20%	RADIATION RESISTANT BUT ALSO GREATER COST. ANNEALABLE LOW TEMPERATURE	MELDABLE CELLS
MULTIBANDGAP	η = 23-25%	MULTIPLE LAYER CONSTRUCTION. COST UNLIKELY TO BE OFFSET BY HIGHER EFFICIENCY. COMPLEXITY REQUIRED THICKER CELLS FOR YIELD.	HIGH EARLY STAGE OF DEVELOPMENT
CONCENTRATOR			
ETCHED GROOVE SILICON	η = 16-19% @ 50-1000 SUNS	HIGH CONCENTRATION RATIOS ALLOW HIGHER CELL COSTS WHILE REDUCING SYSTEM COSTS	MEDIUM REQUIRES SPACE DEMONSTRATION
GaAs	η = 16-19% @ 1000 SUNS	LOWER TEMPERATURE COEFFICIENT AND CONTINUOUS ANNEALING AT LOW TEMPERATURE ALLOW BENEFITS FROM HIGHER CONCENTRATION	MEDIUM REQUIRES SPACE DEMONSTRATION
MULTIBAND GAP	= 25-28%	MULTIPLE LAYER STRUCTURE	HIGH COSTS, RELIABILITY UNCERTAIN
GaAs TWO CELL	= 23%	ANNEALABLE	MEDIUM REQUIRES SPACE DEMONSTRATION
SILICON VERTICAL JUNCTION	= 18%	NOT ANNEALABLE	HIGH THERMOCYCLING TESTING NEEDED
SILICON-THERMO- CONCENTRATOR	r≂ 20%	NOT ANNEALABLE	HIGH REQUIRES SIGNIFI- CANT DEVELOPMENT
	Figure 2-23a. Variou	Various Cell Technologies Will Be Possible.	

2-37

GDC/AST 81-019

•~ •


`

È

GDC/AST 81-019

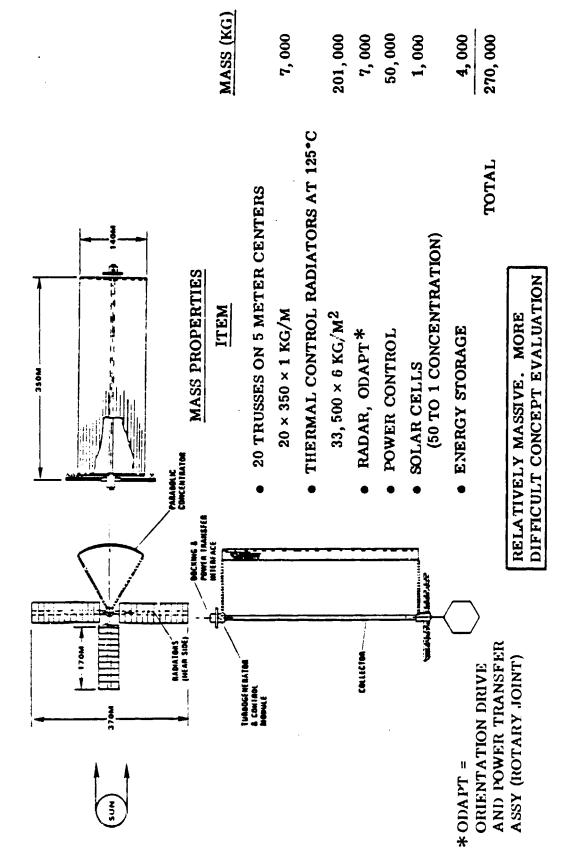


Figure 2-26. Parabolic Trough Collector for 10 MW Mission.

•

GDC/AST 81-019

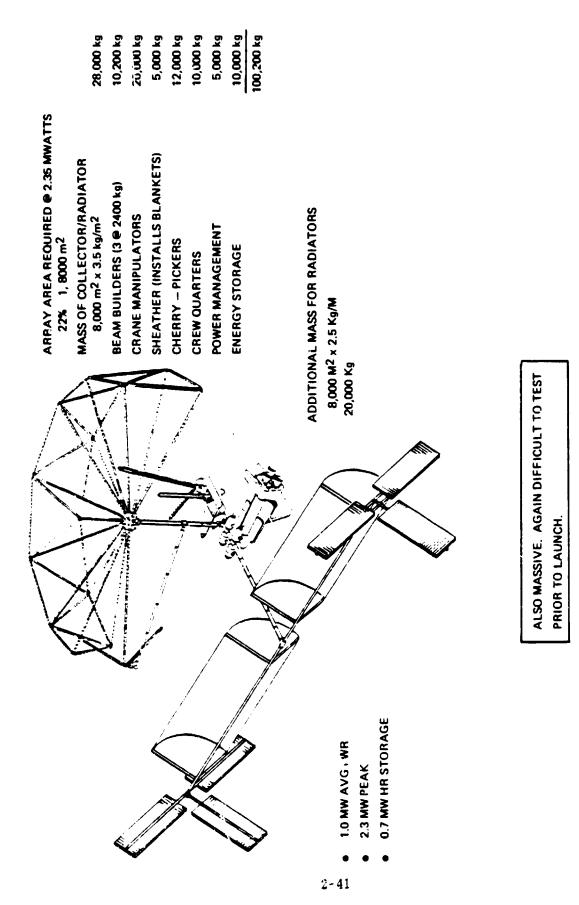
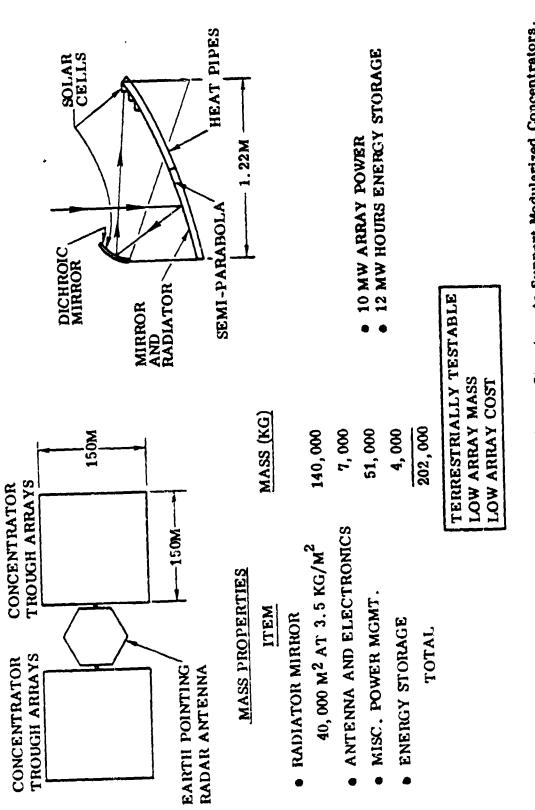
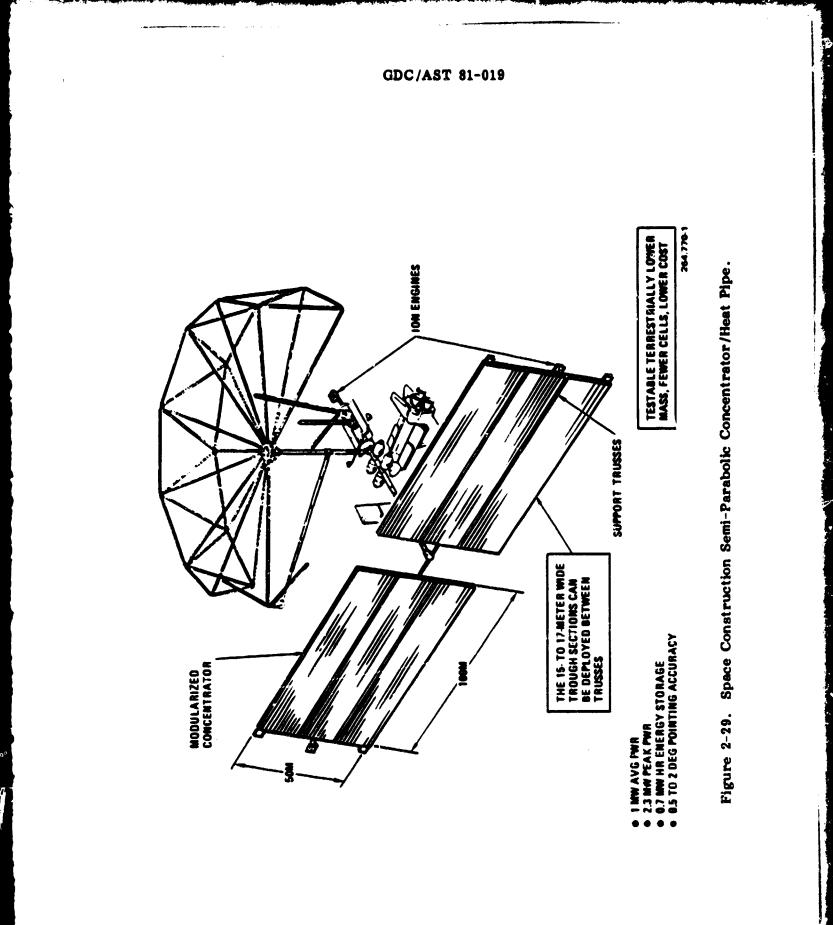
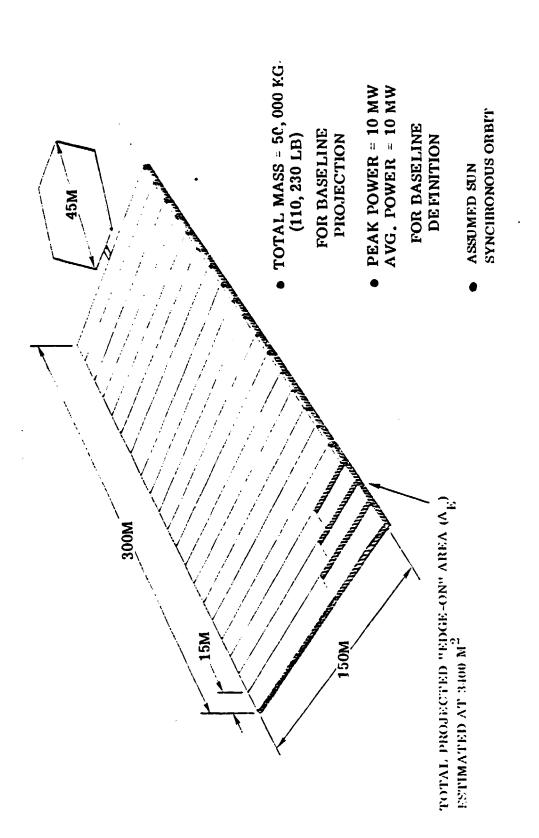



Figure 2-27. Space Construction Facility Utilizing Large Parabolic Trough.

GDC/AST 81-019

ł


1


ł

ł

Figure 2-28. The Second Configuration uses a Planar Structure to Support Modularized Concentrators.

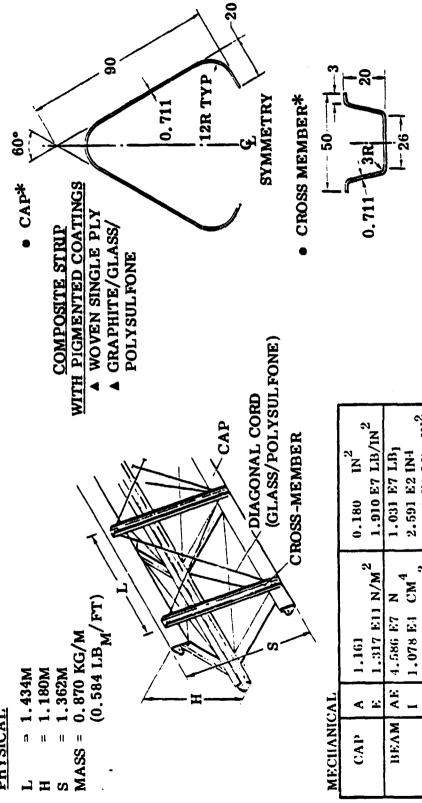
シント・シアンプライ

ORIGINAL PAGE IS POOR QUALITY

GDC/AST 81-019

OF

í


Rectangular Deployable Truss Beam with Tensioned Solar Blankets for GEO Space Radar. Figure 2-30.

BEAM CHARACTERISTICS

× -

ľ

2-45

*DIMENSIONS: MILLIMETERS

4.949 E9 LB1-IN² 3.871 E6 LB₁-IN²

N-M² N-M²

1.078 E4 1.420 E7 1.111 E4

KG EI

PLANAR ARRAY ARRII POINTING RADAR ANTENNA RADAR ANTENNA

í

MASS PROPERTIES

		MASS (KG)
	IT'EM	
LEN	LENS ARRAY, 2000 M ² .AT 2 KG/M ²	4,000
TRI	TRUSSES AND ODAPTS, 600 + 1400	.2, 000
DRI	DRIVING ELECTRONICS	1,000
SOL	SOLAR ARRAY, 50,000 M^2 AT .8 KG/M ²	40, 000
POV	POWER MANAGEMENT/SPACECRAFT	84,000
ЛОН	HOUSEKEEPING, ENERGY STORAGE	131.000
	TOTAL	

Figure 2-32. Planar Array and Antenna Configuration for Radar Spacecraft.

;;;;;

ł

......

•••

GDC/AST 81-019

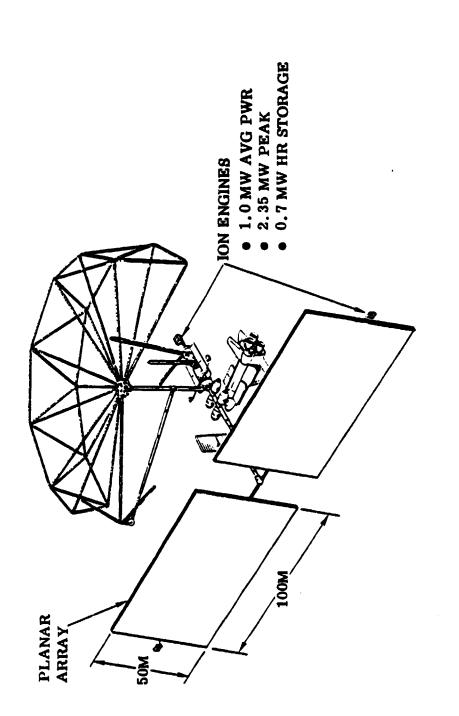
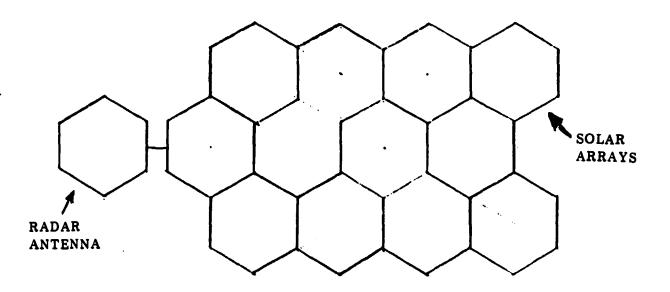


Figure 2-33. Space Construction Planar Array.

GDC/AST 81-019

١

ì


.....

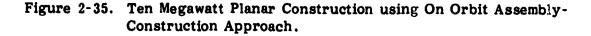

MASS PROPERTIES - SPACE CONST	CONSTRUCTION STATION	WEIGHT BREAKDOWN FOR SPACE CONSTRUCTION FACILITY	PACE
REQUIRED POWER	1.00 M WATTS AVG.	BEAM BUILDER CRANE/MANIPULATOR	15000 Kg 20000
ENERGY STORAGE	.64 M WT. HRS	SHEATHER	5000
ARRAY FOR ENERGY STORAGE	STITEM M 7.	"CHERRY - PICKERS" Crew Quarters 2 5 mw Array	12000 10000 12500 *
TOTAL ARRAY	1.7	ENERGY STORAGE	10000 * 84500
WITH SAFETY FACTOR (.9)	2.35 M WATTS	ALTERNATE BREAKDOWN	
DISTRIBUTION (. 9) AND EOL (. 9)	-	ROBO'FIC BEAM EXTENDER(S) CRANE/MANIPULATOR	
ARRAY AREA REQUIRED (.17,m)	10000 M ²	CREW QUARTERS 2.5 MW ARRAY ENERGY STORAGE	20000 12500 * <u>10000</u> * 77500
SULAR BLANKET MASS (10,000 x .8)	8) 8,000 Kg		
TRUSS MASS (4300 x .87 Kg/M)	3,700 Kg	* DEPEND ON STUDY OUTPUTS - SUBJECT TO CHANGE	. SUBJECT TO
ODALT MASS **	800 Kg 12,500 Kg		
**ORIENTATION DRIVE AND PO	ND POWER TRANSFER ASSEMBLY	SLY	

Figure 2-34. Mass Properties for Space Construction Facility.

In addition to the rectangular structure, the hexagonal shape and construction approach developed during Contract F04701-77-C-0178 (DOD/STS On-Orbit Assembly Concept Design Study) was examined for use as the structural backbone (Figure 2-35). The system employs a center shaft to hold the solar blankets during shuttle orbital insertion. During deployment, the arrays are then spooled from the shaft by arms which extend and pull the blankets away from the center shaft (Figure 2-36). Six shuttle flights would be required to complete the spacecraft deployment into LEO, and the spool shafts become a superfluous weight penalty of approximately 6000 kg after deployment. Also, the star configuration is usable for planar blanket approach but not the linear (x2) concentrator. Because of this added mass for the star system, it has been ruled out as a candidate for planar arrays in the multimegawatt range.

In developing the planar configurations, it is apparent that consideration should have been given to the alternate material concepts for solar cells being developed for terrestrial application by various university and industrial groups for DCE. This approach was excluded at this time, for the following reasons: The only driver which will be influential in this approach is cost. Certainly risk, radiation sensitivity, LEO drag, and mass/volume are significantly increased. The viability of a 20-30 year life is extremely hard to evaluate. It does mean that risk would be significantly increased with little prospect for achieving significantly better. This does not mean the edge-defined film grown, dendritic web, or amorphous cells have been rejected. They will be considered as a part of Tasks 2.2.4 and 2.2.5.

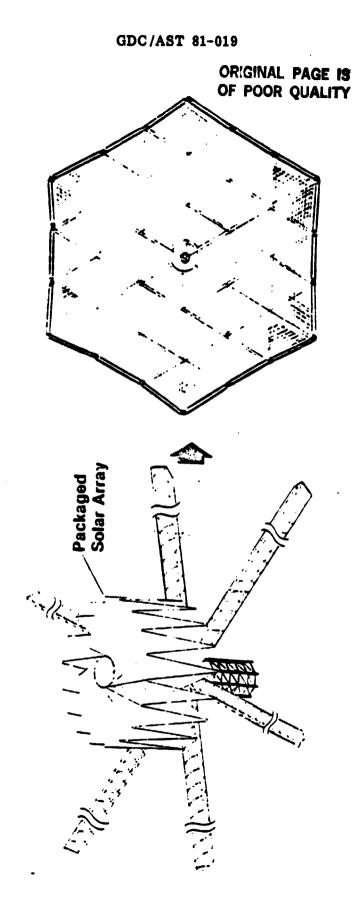


Figure 2-36. Deployment of Hexagonal Array.

2.2.3 <u>LARGE TROUGH CONCENTRATORS</u>. These designs use parabolic concentrators modified to accommodate the basic missions (antennas or construction module added). The concentrator (shown in Figure 2-37) has a blanket of aluminized Mylar attached to a truss frame which is parabolic when viewed from the end. To establish the mass properties and dimensions of the configuration for the two missions (those specified by Figures 2-37 and 2-38), the thermal aspects of the problem were first analyzed.

2.2.4 <u>THERMAL MANAGEMENT REQUIREMENTS</u>. Multimegawatt photovoltaic space power systems will require thermal management of the collected heat energy. Cooling and temperature control are required for the solar cells, the mission-specific payload equipment, and subsystem equipment. Thermal management requirements for orbiting spacecraft equipment have been well studied and thoroughly documented in the literature. The thermal analysis performed for this study therefore addresses only thermal management of the solar cells.

Solar cells used in planar space solar arrays (without solar concentration) tend to operate near 60°C (140°F). The portion of absorbed solar energy not converted to electrical energy (approx. 85%) is radiated back to space from front and back sides of the array. Use of a high emittance coating on the array back side provides sufficient cooling. No liquid cooling or other heat removal is required.

It was initially assumed that fluid cooling is required for solar cells used in space solar concentration systems, at least for large paraboloids. The cooling system which removes heat from the cells and transports it to a radiator where it is radiated to space can be either a pumped fluid or a heat pipe system. In both cases, the cooling liquid is required to be as close to the cell as possible to prevent excessive cell temperatures. Effectiveness and limitations of each of the heat transport methods are discussed in the following sections.

2.2.4.1 <u>Pumped Liquid Heat Removal</u>. The parabolic concentrator system shown in Figure 2-39 is a representative application for a pumped coolant system and will be used as a basis for the following discussion.

The coolant is pumped in parallel tubes across the solar cells in the short direction to minimize pressure drop and coolant temperature rise. The coolant then flows in larger manifolds along the long edge of the solar cells to the radiators at the end of the concentrator. Fluid routing is not defined beyond that described above.

Evaluation of the pumped coolant approach will be based on the coolant-to-solar cell temperature difference, with emphasis on convective heat transfer at the coolant/tube wall interface. The latter analysis will investigate fluid velocities, convective heat transfer coefficients, and resulting temperature differences across the coolant convective boundary layer.

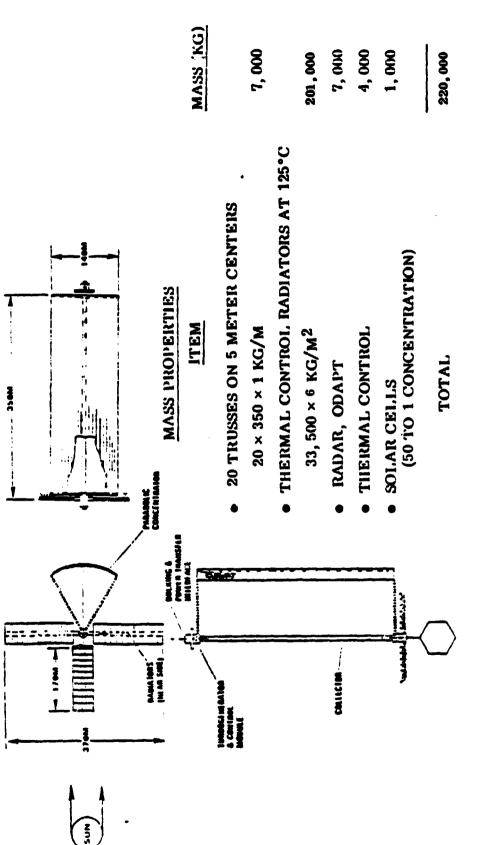
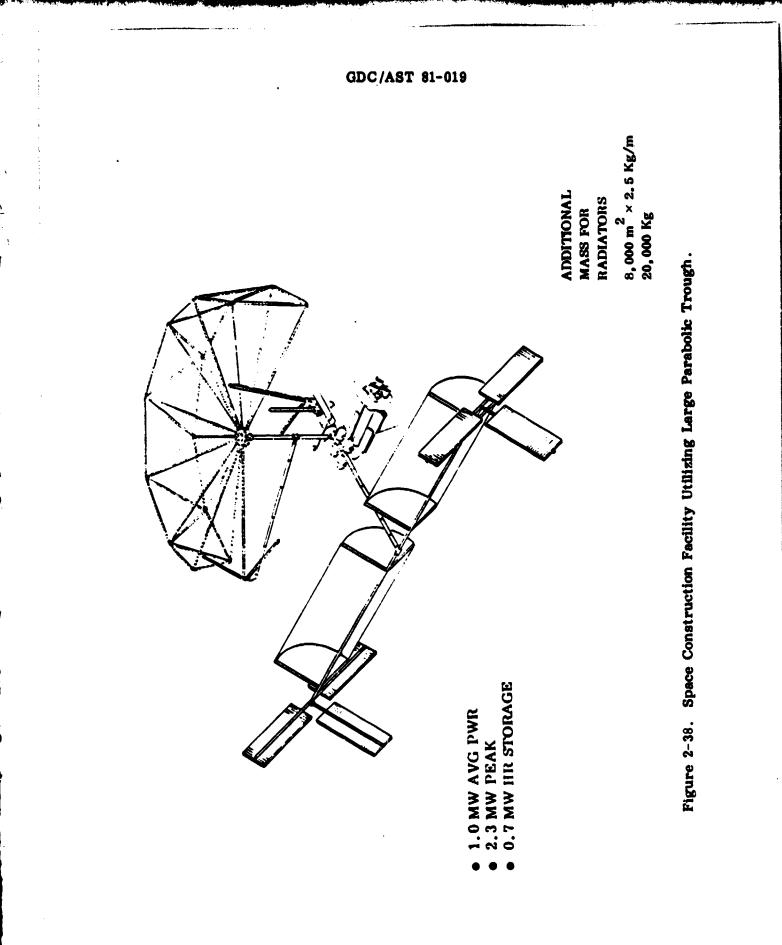



Figure 2-37. Radar Modifications to Basic Parabolic Trough.

GDC/AST 81-019

• •

ţ

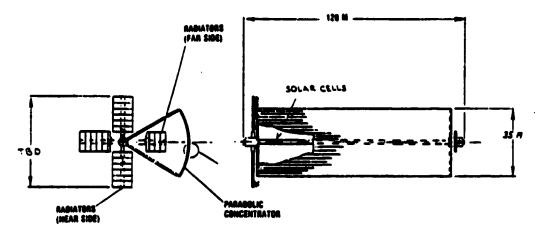
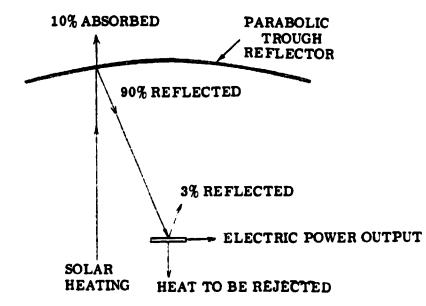



Figure 2-39. Parabolic Concentrator with Pumped Coolant System.

2.2.4.1.1 <u>Heat Load Model</u>. The spacecraft thermal model employed to determine the heat load on the pumped coolant system solar cells is shown in Figure 2-40. The solar cell flux to be removed by the heat rejection system Q_{rej} , is related to the concentration ratio, C_r , by:

$$Q_{rej} = 1000 C_r Watts/M^2$$
 (Eq. 1)

$$Q_{rej} = 318 C_r Btu/hr-ft^2$$
 (Eq. 1a)

2.2.4.1.2 <u>Coolant-to-Solar-Ce</u>: \triangle <u>Temperatures</u>. The portion of the concentrated solar energy absorbed by the solar cells which must be removed by the cooling system will conduct through the cell substrate and tubing wall and be transferred across the fluid boundary layer (see Figure 2-41).

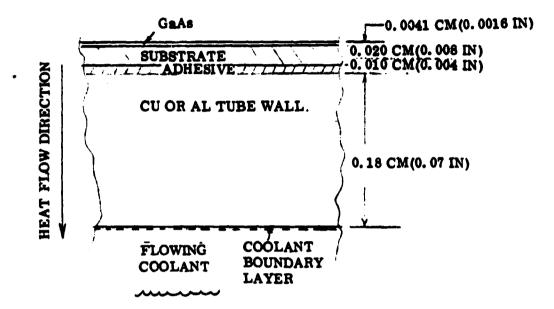


Figure 2-41. Solar Cell/Coolant Tube Wall/Coolant Cross-Section.

Heating of the solar cells by concetrated solar energy will establish Δ temperatures across the various layers of material according to the following:

SI Units, ΔT in °C

Solar cell substrate	$\Delta T_{ss} = 0.204 \frac{C_{r}}{k}$	
Substrate adhesive	ΔT ₃₈ = 0.107 C _r	(Eq. 2)
Copper tube wall	$\Delta T_{tw} = 0.00516 C_r$	
Fluid boundary layer	$\Delta T_{bl} = 1003 \frac{C_r}{h}$	

English Units, ΔT in °F

Solar cell substrate	$\Delta T = 0.212 \frac{C_r}{k}$	
Substrate adhesive	$\Delta T_{ss} = 0.192 C_{r}$	(Eq. 2a)
Copper tube wall	$\Delta T_{tw} = 0.00928 C_r$	
Fluid boundary layer	$\Delta T_{bl} = 318 \frac{C_r}{h}$	

where: k = substrate material thermal conductivity, w/m-°C (Btu/hr-ft-°F)h = coolant heat transfer coefficient, w/m²-°C (Btu/hr-ft²-°F)

The wolar cells will reside at a temperature established by the coolant temperature plus the sum of the four Δ temperatures given above. The total solar-cell-to-coolant temperature difference is seen to be proportional to the concentration ratio, C_r . A concentration ratio of 50:1 will be used here as an example for investigating cell temperatures.

Temperature difference across the boundary layer, ΔT_{bl} , is seen above to be inversely proportional to the convective film heat transfer coefficient, h. The heat transfer coefficient for fully developed turbulent forced convection flow in a tube is given by the following equation:

h = 0.023
$$\frac{k}{d} = \frac{\rho v d}{\mu} = 0.8 = \frac{C_p \mu}{k}$$
 (Eq. 3)

where:

h = heat transfer coefficient, $w/m^2-\circ C$ (Btu/hr-ft^{2-o}F)

k = coolant thermal conductivity, w/m-°C (Btu/hr-ft-°F)

- d = tube diameter, m (ft)
- v = coolant velocity, m/sec (ft/sec)
- $\mu = \text{coolant viscosity, kg/m-sec (lb/ft-sec)}$

 $\rho = \text{coolant density, kg/m}^3 (lb/ft^3)$

Cp = coolant specific heat, joule/kg-°C (Btu/lb-°F)

For a given tube diameter and coolant, the heat transfer coefficient is related to velocity by

$$h = Ky^{0.8}$$
 (Eq. 4)

Earlier studies conducted at Convair (Reference 12) compared fourteen fluids for heat transfer performance in pumped-coolant space-radiator systems. Water has by far the best performance, but because of its relatively high freezing temperature is generally unsuitable for space radiators. Coolants Freon-21 (DuPont) and FC-75 (Minnesota Mining and Manufacturing) have about the same heat transfer coefficient and are next to water in performance. However, Freon-21 has an excessively high vapor pressure at the temperature range foreseen in this application (e.g. $12.1 \times 10^5 \text{ N/m}^2$ at 93° C or 175 psi at 200° F). FC-75 therefore appears to be the most suitable coolant. Its vapor pressure is less than $13.8 \times 10^4 \text{ N/m}^2$ at 93° C (20 psi at 200° F).

Using the properties of FC-75 and assuming a 1.9 cm (3/4 in) tube diameter, Equation 3 gives the relationship between velocity and heat transfer coefficient seen in Figure 2-42.

In terms of heat flux, the \triangle temperature across the convective film is given by:

$$\Delta T = \frac{q/h}{h}$$

where: Q/A = heat flux transferred into coolant, w/m^2 (Btu/hr-ft²)

(Eq. 5)

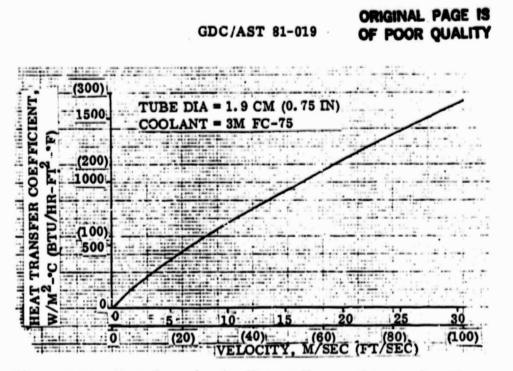
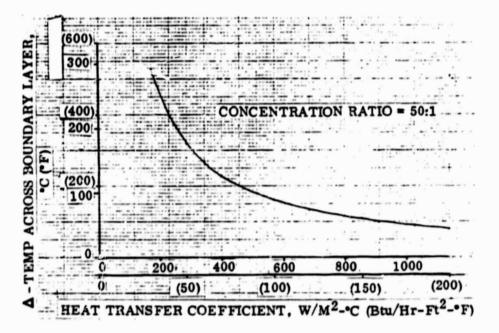
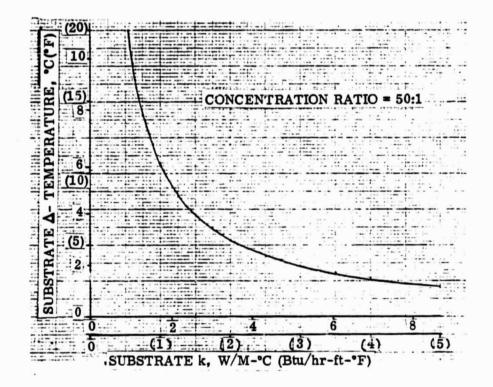
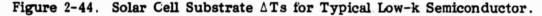


Figure 2-42. Heat Transfer Coefficient Versus Velocity for FC-75.

For a concentration ratio of 50, the heat flux to be removed is approximately 50,200 w/m² (15,900 Btu/hr-ft²). This assumes a 10% loss by absorption at the primary reflector, a 3% loss by reflection at the solar cells, and electrical energy developed by a 17% cell efficiency, all of which are removed before reaching the cell cooling system (Figure 2-40). The resulting film Δ temperature is seen in Figure 2-43 as a function of heat transfer coefficient.


Figure 2-13. Temperature Difference Across Coolant Boundary Layer Versus Heat Transfer Coefficient.

VT: MIC 2009, 30

From Figures 2-42 and 2-43, high heat transfer coefficients and correspondingly high velocities, 9.1 to 15 m/sec, (30 to 50 ft/sec) are seen to be required to bring the coolant boundary layer Δ temperature down even to the 50-80°C (90-144°F) range. This is seen as a critical limitation with the pumped coolant approach to cooling solar cells in a concentrator system.

Since substrate material has not yet been defined for this analysis and candidate materials cover a range of k values, the potential cell substrate Δ temperatures, ΔT_{SS} , also cover a range of values. The spread of ΔT_{SS} values shown in Figure 2-44 is representative of low-k semiconductors and is seen to be low compared to predicted coolant film Δ temperatures (typically over 55°C or 100°F). As an example, candidate substrate material SiO₂ has a thermal conductivity of 2.1 w/m-°C (1.2 Btu/hr-ft-°F) which results in $\Delta T_{SS} = 5°C$ (9°F).

The solar cell substrate can be bonded to the cooling tube using an Ablestick preform adhesive (Ableform 506) which has a thermal conductivity of approximately 0.80 w/m-°C (0.46 Btu/hr-ft-°F). Required thickness is approximately 0.01 cm (0.004 in). The resulting $\Delta T_{SS} = 5.3^{\circ}C$ (9.6°F) at a 50:1 concentration ratio.

Copper tubing wall \triangle temperature is only 0.25°C (0.45°F) for a thickness of 0.18 cm (0.07 in) and a concentration ratio of 50:1. Thus, tubing wall \triangle Ts can be ignored in solar cell temperature predictions.

GDC/AST 81-019 OF POOR QUALITY

The above discussion has shown that the coolant boundary layer ΔT makes up nearly all the coolant-to-solar-cell ΔT . It has also shown that the overall ΔT is proportional to concentration ratio, C_r . Analysis to size the radiators required to reject the heat picked up by the fluid in cooling the solar cells appears later in this report.

2.2.4.2 <u>Heat Removal By Heat Pipes</u>. Heat pipe use in a multimegawatt space power system is generally limited to applications where transport distances are considerably less than the major dimensions of the spacecraft. A representative solar concentrator concept well suited to heat pipe use is that shown in Figure 2-45. A version of μ was, unknown the author at a much later date first suggested in Reference 13.

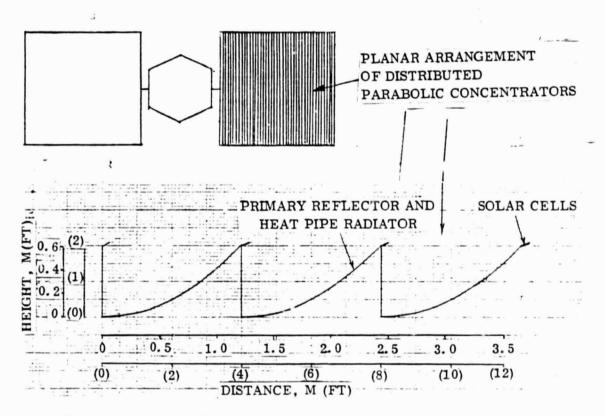


Figure 2-45. Solar Concentrator Concept Suited to Heat Pipe Use.

The array consists of a number of small concentrating parabolic reflectors, $0.6m \times 1.2m$ (2 ft x 4 ft) in cross-section, arranged in a plane. The primary reflector acts as a heat pipe radiator for the solar cells on the adjacent concentrator. For a 50:1 concentrator, the solar cell strip is approximately 2.5 cm (one inch) wide. The assumed heat pipe arrangement for removing heat from the cells and distributing it to the heat pipe radiator is that shown in Figure 2-46. The heat pipe cross-section is representative only. Other designs, such as a wide heat pipe saddle, are possible and could result in a lighter weight. The following sections discuss

heat transport limitations, wick design, fluid selection, thermal modeling, and solar cell-to-radiator temperature drops for this heat pipe application.

2.2.4.2.1 <u>Heat Transport Limitations</u>. Four limiting conditions have been identified for heat pipe performance (Reference 14). That is, the heat pipe will continue to operate under increasing heat loads until one of the following conditions occurs: sonic limitation, entrainment limitation, wicking limitation, or boiling limitation. The sonic limitation occurs when the working fluid vapor flowing to the condenser section reaches sonic velocity. The entrainment limitation occurs with excessively high dynamic vapor pressure. In this case, some of the liquid in the wick-return system is picked up and entrained in the vapor, which is flowing in the opposite direction. Wicking limitation is reached when the pressure drop due to resistance of liquid and vapor flows balances the capillary pumping pressure. Boiling limitation occurs when the heat flux into the evaporator section is great enough to cause nucleate boiling (bubbles), which interferes with the liquid return.

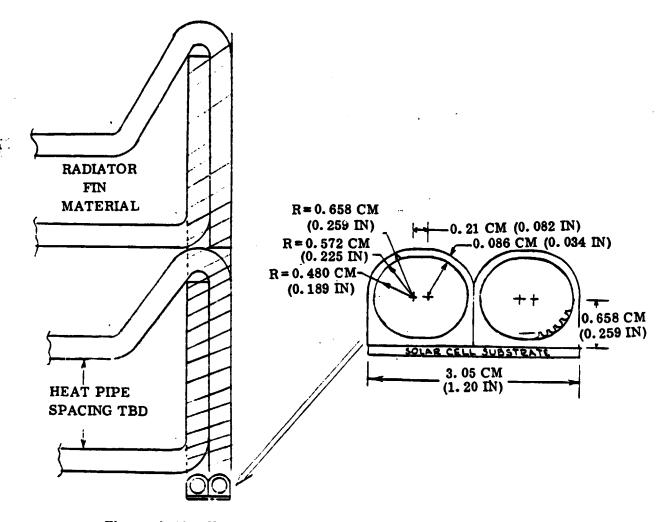


Figure 2-46. Heat Pipe Arrangement Assumed for Analysis.

For this application, the boiling limitation is the most likely of the four to be encountered because of the small solar cell (evaporator) area. The analysis, therefore, investigated the maximum flux the evaporator can accommodate without boiling, and the effects wicking design and fluid selection have on this max flux. The wicking limitation is also a potential limiting condition, but was not analyzed in this study.

Reference 14 has developed in equation for boiling limitation maximum heat rate into the evaporator section, and this equation is given below:

$$Q_{\text{max}} = \frac{2T_g \circ [\pi K_e Z_e (r_i + r_g)]}{h_{fg} \rho_g r_b (r_i - r_g) J}$$
(Eq. 6)

where: $Q_{max} = max$ heat rate into evaporator, watts (Btu/hr)

- T_{σ} = vapor temperature, °K (°R)
- σ = liquid surface tension, Kg/m (lb/ft)
- K_e = effective radial thermal conductivity of the liquid filled wick, w/m-°K (Btu/hr-ft-°F)
- $Z_e = evaporator length, m (ft)$
- $r_i = wick outer radius, m (ft)$
- $\mathbf{r}_{\mathbf{g}}$ = wick inner radius, m (ft)
- $h_{f\sigma}$ = heat of vaporization of the working fluid joule/Kg (Btu/lb)
- ρ_g = vapor density, Kg/m³ (lb/ft³)
- r_b = radius of wick capillary cavity where bubble originates, ft (taken to be 0.025 cm (0.01 inch) = 2.5 x 10⁻⁴ m (8.33 x 10⁻⁴ ft)
- J = conversion factor of 0.102 m Kg/joile (778 ft-lb/Btu) for correct units

2.2.4.2.2 <u>Wick Configuration</u>. The effective radial thermal conductivity of the fluid-filled wick, K_e , is strongly dependent on the wick configuration. Equation 7 gives effective thermal conductivity for parallel paths of fluid and wick material in an axial groove heat pipe.

$$K_{e} = \varepsilon K_{f} + (1 - \varepsilon) K_{w}$$
 (Eq. ?)

where: $K_f = liquid$ thermal conductivity, $w/m-{}^{\circ}K$ (Btu/hr-ft- ${}^{\circ}F$)

 K_w = wick material thermal conductivity, w/m-°K (Btu/hr-ft-°F)

 ε = volume fraction of the liquid, dimensionless

Equation 8 gives effective thermal conductivity for distributed cylinders, arranged to form a screen, surrounded by the fluid.

$$K_{e} = \frac{K_{f} [K_{f} + K_{w} - (1 - \varepsilon) (K_{f} - K_{w})]}{[K_{f} + K_{w} + (1 + \varepsilon) (K_{f} - K_{w})]}$$
(Eq. 8)

Effective thermal conductivities of 59 and 5.9 w/m- $^{\circ}$ K (40 and 3.4 Btu/hr-ft- $^{\circ}$ F) were calculated for axial groove and screen aluminum/water heat pipes, respectively. Because of the significantly higher conductivity, only axial groove heat pipes were considered from this point on.

2.2.4.2.3 <u>Fluid Selection</u>. A number of potential heat pipe fluids were investigated and eliminated. Water freezes at too high a temperature. Methane liquid surface tension approaches zero at -84°C (-120°F) and is only usable at temperatures below this.

Ammonia has a vapor pressure of $13.8 \times 10^5 \text{ N/m}^2$ (200 psi) at 38°C (100°F), which is excessively high. The Minnesota Mining and Manufacturing fluorocarbons FC-43, FC-75, and FC-78 have acceptably low vapor pressures and freezing temperatures. They were compared for boiling limitation performance; i.e., for maximum evaporator heat rate without boiling.

Equation 6 was used to calculate boiling limit maximum heat rate (which was then converted to heat flux and equivalent suns). At a gas temperature of $66^{\circ}C$ ($150^{\circ}F$), the fluids FC-43, FC-75, and FC-78 were found to accommodate heating equivalent to 47.6, 8.1, and 3.6 suns. For a 50:1 concentration ratio and typical system losses and efficiency, the *i* eat pipe is required to remove heating approximately equal to 31 suns. FC-43 was, therefore, selected as a suitable working fluid.

To determine how warm the evaporator temperature can be allowed to operate, Equation 6 was also used to determine FC-43 boiling limit heating at 100°C (212°F) and 150°C (302°F). Maximum fluxes corresponding to 38 suns (at 100°C) and 25 suns (at 150°C) were calculated. The nature of the working fluid (FC-43) properties causes the allowable heat flux entering the evaporator to decrease with increasing temperature. A concentrated solar flux of 31 suns could theoretically be accommodated at a heat pipe evaporator temperature of 127°C (260°F). However, because of the uncertainty of r_b (radius where bubble originates) in Equation 6 and for a margin of safety, 100°C (212°F) will be taken as the maximum allowable heat pipe evaporator temperature for this analysis.

2.2.4.2.4 <u>Solar Cell-to-Heat Pipe Temperature Drops</u>. Maximum operating temperature of the solar cell is set by the maximum allowable evaporator temperature (100°C) plus the cell-to-heat pipe temperature drops. Note that the solar cell operates at a greater efficiency at lower temperatures, but that this requires thicker radiation fin material between heat pipes and/or closer heat pipe spacing, both of which increase weight. Radiator fin sizing and heat pipe spacing are covered in Subsection 2.3. The design point for this analysis is based on the maximum allowable evaporator temperature which results in the lightest weight per unit aperture area.

The ΔT across the cell substrate is identical to that for the pumped coolant system described in Subsection 2.2.4.1. Values are typically 1 to 10°C (2 to 18°F), depending on the thermal conductivity of the substrate material (Figure 2-44). A cell substrate ΔT of 5°C (9°F) is taken to be a typical value for this example. Similarly, the ΔT across the cell adhesive is also identical to that for the pumped coolant system. Bond line ΔT was shown to be 5.3°C (9°F) for an Ablestick preform adhesive "Ableform 506."

Radial temperature drop across the liquid filled evaporator wick is given by the following equation:

$$T_e - T_g = Q (r_i - r_g) / [\pi K_e Z_e (r_i + r_g)]$$
 (Eq. 9)

where: $T_e =$ temperature of heat pipe wall at evaporator, °C (°F)

 T_g = temperature of fluid vapor at evaporator, °C (°F)

Q = heat rate into the evaporator, watts (Btu/hr)

 r_i = inside radius of heat pipe wall = outside radius of wick, m (ft)

 r_{g} = radius of gas passageway = inside radius of wick, m (ft)

 K_e = effective thermal conductivity of wick, w/m-°C (Btu/hr-ft-°F)

 Z_e = length of evaporator, m (ft)

At a heat flux into the heat pipe evaporator of approximately 30 suns (for $C_r = 50:1$), the above equation gives a Δ temperature across a typical axial groove wick of less than 1°C (2°F). Note that this ΔT compares to the 50-80°C (90-144°F) ΔT across a pumped coolant boundary layer as described in Subsection 2.2.4.1.

Maximum allowable cell operating temperature based on the heat pipe evaporator boiling limitation is therefore $100 + 5 + 5 + 1 = 111^{\circ}C$ (232°F).

The foregoing analysis indicates that it is possible to conceive of attainable designs - albeit massive ones - which could be developed into modular concentrating systems.

During the Task III modularity studies, these approaches were refined further in an effort to minimize mass and cost.

2.2.5 OPERATING OPTIONS. During Task I, the preliminary power system requirements for the 10-megawatt radar and 2.5 MW Space Construction Facility were synthesized. These preliminary requirements assumed that ion engines were utilized to accomplish GEO injection of the 10-MW Radar and LEO stationkeeping of the Space Construction Facility. During Task II, these requirements were synthesized more accurately, based on the data generated for array specific powers, energy storage specific energies, and based on possible power system topologies and power system to ion engine interfaces. These calculations continued to support the use of ion engines in both configurations, as described below.

2.2.5.1 Ion Engine GEO Orbital Transfer and LEO Orbital Stationkeeping. Because by ground rules, this study concerned itself with multimegawatt electrical power systems, the natural first choice for a system to provide the thrust for LEO to GEO transfer and LEO stationkeep is an electrical propulsion system. Both ion engine and MPD thrusters could have been considered, but, since the potential efficiency of ion engine systems appears to be greater (Reference 15), they were used as a study baseline. Later trades should be conducted to establish the quantified benefits and liabilities of an MPD approach. However, with ISPs of 5,000 to 10,000 and efficiencies of 50%, even MPD systems seem to be beneficial compared to chamical propulsion, as discussed in the following section.

2.2.5.2 <u>Ion Engine Projections</u>. The projections of argon electrical ion engine propulsion technology have been described by Byers et al. (References 15 and 17). In this study, their equations and results were used to develop the expected spacecraft performance for the two study missions. Particular results that affected the study were:

- a. Argon engines that have a diameter of 50 cm, efficiency of 0.75, ISP of 5,000 at a net beam voltage of 900 VDC (V_B) appear feasible, and were used in system configuration development.
- b. Beam and discharge voltages were regulated by the receiving AC power supply for the AC system, or by the DC regulator for the DC system.
- c. Thruster and gimbal mass was assumed to be 27 kg based on Figure 4 of Reference 6.

2.2.5.3 <u>GEO Electrical Injection Calculations</u>. Based on these projections, calculations were then made of the Argon propellants mass, thruster quantity, form, and cost of propellants transportation, and mass for the 10-MW space radar GEO orbit injection; total system mass was 141,000 kg, as shown in Table 2-6, which lists the breakdown of these mass properties.

2.2.5.4 <u>Chemical Injection</u>. A calculation of the mass of propellants required to inject the Space Radar into GEO orbit using chemical propulsion was also made. At ISPs of 450, the indicated total system mass would be about 443,000 kg, using a tank engine and electronics mass fraction of 0.12. Table 2-7 summarizes this data.

The chemical system orbital trajectory was based on a nine-burn injection with a 25-hour coast phase, as was developed in a study of low thrust OTV concepts for GEO injection (Reference 18).

For both the electrical and chemical systems, the cost to GEO orbit was also calculated, including the cost of money for the orbital transfer time, assuming a \$1,000 M spacecraft investment, \$1,000/kg shuttle transportation cost, and 15% interest rate.

2-64

「おいたのです」となった」

· · · · · · · · · · · · · · · · · · ·	
10 Megawatt Solar Array - Small, modular, low-light-loss concentrator	55,000
Radar Membrane Array - Orientation drive and electronics	7,000
Power Management System	52,000
Argon Ion Engines and Gimbals, at a 5,000 ISP, V _B = 900 VDC, 50 cm diameter, 108 thrusters 6 27 Kg each	3,000
Storage / Tankage / Structure / Miscellaneous	8,000
Subtotal	125,000
Argon Propellant Mass	16,000
	141,000
Trip time	
30 days with continuous thrust, more likely 60 days with intermittent thrusting and extra velocity to be	
gained.	
gained. Total Cost to Orbit plus Money Cost	≈ \$200 M
-	
Total Cost to Orbit plus Money Cost Table 2-7. Mass Properties for the 10 Megawatt Rad	
Total Cost to Orbit plus Money Cost Table 2-7. Mass Properties for the 10 Megawatt Rad Chemical Propulsion Injection. 10 Megawatt Solar Array - Small, modular, low-light-loss	ar —
Total Cost to Orbit plus Money Cost Table 2-7. Mass Properties for the 10 Megawatt Rad Chemical Propulsion Injection. 10 Megawatt Solar Array - Small, modular, low-light-loss concentrator	lar — 55,000 Kg 7,000 Kg
Total Cost to Orbit plus Money Cost Table 2-7. Mass Properties for the 10 Megawatt Rad Chemical Propulsion Injection. 10 Megawatt Solar Array - Small, modular, low-light-loss concentrator Radar Membrane Array - Orientation drive and electronics	lar — 55,000 Kg 7,000 Kg
Total Cost to Orbit plus Money Cost Table 2-7. Mass Properties for the 10 Megawatt Rad Chemical Propulsion Injection. 10 Megawatt Solar Array - Small, modular, low-light-loss concentrator Radar Membrane Array - Orientation drive and electronics AC Power Management System or DC/DC Power Management	lar — 55,000 Kg 7,000 Kg 40,000 Kg
Total Cost to Orbit plus Money Cost Table 2-7. Mass Properties for the 10 Megawatt Rad Chemical Propulsion Injection. 10 Megawatt Solar Array - Small, modular, low-light-loss concentrator Radar Membrane Array - Orientation drive and electronics AC Power Management System or DC/DC Power Management Emergency Storage/Electronics	lar — 55,000 Kg 7,000 Kg 40,000 Kg 2,000 Kg
Total Cost to Orbit plus Money Cost Table 2-7. Mass Properties for the 10 Megawatt Rad Chemical Propulsion Injection. 10 Megawatt Solar Array - Small, modular, low-light-loss concentrator Radar Membrane Array - Orientation drive and electronics AC Power Management System or DC/DC Power Management Emergency Storage/Electronics Electronics, Engine/Tank Mass at 0.12 Mass Fraction Subtotal Propellant Mass at 450 ISP (Hydrogen/Oxygen, 1990s	Lar — 55,000 Kg 7,000 Kg 40,000 Kg 2,000 Kg 36,000 Kg
Total Cost to Orbit plus Money Cost Table 2-7. Mass Properties for the 10 Megawatt Rad Chemical Propulsion Injection. 10 Megawatt Solar Array — Small, modular, low-light-loss concentrator Radar Membrane Array — Orientation drive and electronics AC Power Management System or DC/DC Power Management Emergency Storage/Electronics Electronics, Engine/Tank Mass at 0.12 Mass Fraction Subtotal	Lar — 55,000 Kg 7,000 Kg 40,000 Kg 2,000 Kg 36,000 Kg 140,000 Kg
Total Cost to Orbit plus Money Cost Table 2-7. Mass Properties for the 10 Megawatt Rad Chemical Propulsion Injection. 10 Megawatt Solar Array — Small, modular, low-light-loss concentrator Radar Membrane Array — Orientation drive and electronics AC Power Management System or DC/DC Power Management Emergency Storage/Electronics Electronics, Engine/Tank Mass at 0.12 Mass Fraction Subtotal Propellant Mass at 450 ISP (Hydrogen/Oxygen, 1990s projection)	Lar — 55,000 Kg 7,000 Kg 40,000 Kg 2,000 Kg 36,000 Kg 140,000 Kg 303,000 Kg

Table 2-6. Mass Properties for the 10 Megawatt Radar — Electrical Ion Engine Propulsion Injection with an AC Power Management System.

The data shown in the tables clearly indicates the benefits of electrical propulsion for the 10-MW Radar Mission.

2.2.5.5 LEO Space Construction Facility. The Space Construction Facility requires engines to maintain it in low earth orbit against the drag forces caused by the reaction between the upper atmosphere and the large planar arrays, which it would be fabricating and assembling in space. To minimize gravity gradient effects, the large space structure under construction would probably be assembled outward from the bottom of the spacecraft (towards the earth). Since the majority of the mass of the system would come from the array under construction, crew quarters, and construction materials to counteract the drag forces should be located where they can thrust the spacecraft away from the earth's horizontal plane. By locating them on two truss frames as shown in Figure 2-47, the thrust vector can be kept along the center of gravity of the composite system of arrays and spacecraft modular components. Because these components comprise the major mass, it is assumed that, for this facility, if electrical propulsion stationkeeping is utilized, all the engine power will transverse through the rotary joint. Based on this conceptual design, calculations of the benefits and liabilities of electrical and chemical stationkeeping were made.

2.2.5.6 <u>Stationkeeping for the Space Construction Facility using Chemical or</u> <u>Electrical Stationkeeping Engines</u>. As discussed in Subsection 2.1, large solar arrays in the megawatt class will have a significant amount of drag that could cause their premature reentry before they have been transported out of low earth orbit to GEO synchronous orbit. To provide a stationkeeping acceleration, either chemical or electrical propulsion could be employed. Calculations were made of the anount of propellants and the cost of transporting the propellants to LEO using the shuttle for both chemical and electrical propulsion systems. The mass properties of the combined Space Construction Facility and 10-MW radar given in Table 2-6 were used to compute both the drag of the combined system and the propellant mass and transportation cost. The velocity loss caused by drag was decreased to 0.2 meter/sec/orbit because of the increased total mass of the entire system.

2.2.5.7 <u>Chemical Propulsion Versus Electrical Propulsion</u>. For the chemical system, a hydrazine ISP of 235 was assumed to be the maximum possible value that might be obtained. Tank and engine mass fractions of 0.12 were again used.

2.2.5.8 <u>Electrical Propulsion</u>. For electrical propulsion, the characteristics of the argon ion engine system were assumed to be identical to those described in Subsection 2.2.5.2, namely:

- a. Argon engines that have a diameter of 50 cm, efficiency of 0.75, ISP of 5,000 at a net beam voltage of 900 VDC (V_B) appears feasible and were used in system configuration development.
- b. Beam and discharge voltages were regulated by the receiving AC power supply for the AC system or by a DC regulator for the DC system.
- c. Thruster and gimbal mass characteristics can be predicted from Figure of Reference 16.

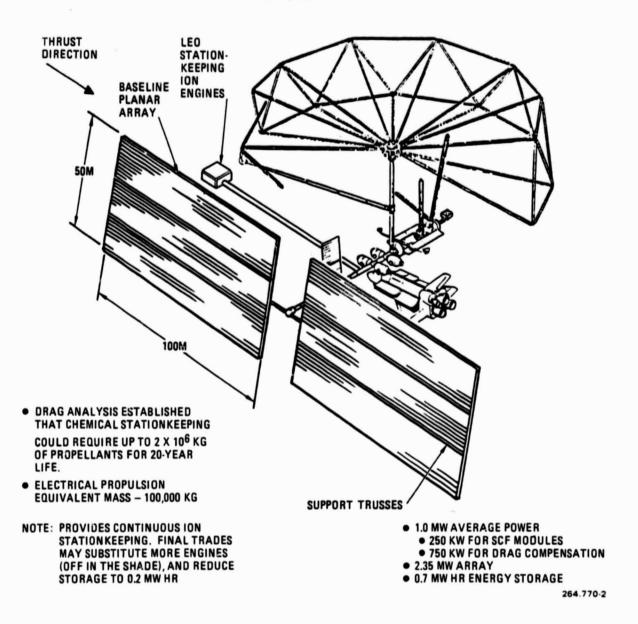


Figure 2-47. LEO Mission Concept Space Construction Facility.

Based on these projections and estimates, the propellant masses and transportation costs at \$1,000/kg shown in Table 2-7 were calculated, projecting ion engine system costs of \$13,500/kg for electrical systems (Reference 19) and hydrazine engine costs of \$12,000 per 6-pound thruster.

The conclusions reached from these updated calculations were that ion engine propulsion paid for itself in about 6 months and thereafter was less costly. Therefore, the power system structuring was accomplished using ion engine electrical propulsion requirements for both missions.

2.2.6 <u>GEOSYNCHRONOUS OPERATIONAL MODES</u>. Figure 2-48 shows the three possible geosynchronous operational modes. One mode is the normal mode used by geosynchronous satellites today. In this mode, the satellite rotates in the equatorial plane of the earth. A second possible mode is to drive the satellite with the ione engine systems so the satellite itself maintains sun synchronism. The effectiveness of this approach depends on the ultimate ISP of the ion engine system developed. For a system with an ISP of 3000, 15,000 kilograms per year of propellants would be required. However, if ISPs can be increased, perhaps this propellant usage would go down, and the sun-synchronous approach becomes more beneficial. Note that in this sun-synchronous mode, the satellite is actually inclined enough from the equatorial plane to avoid the shadow of the earth. The third operational mode involves simply the spaced apart placement of the two satellites, and the acceptance of the midnight power outage during the time interval when utilization on the earth has become significantly less.

2.2.7 OPERATING OPTIONS - PLANAR SILICON ARRAYS. There are several possible operating options that are reasonable alternatives to consider for the LEO and GEO spacecraft.

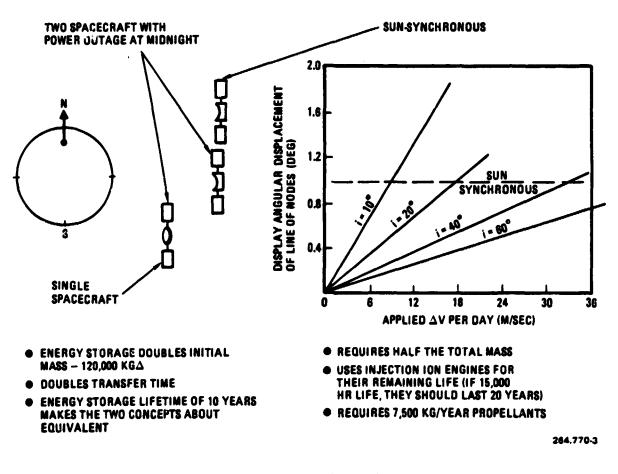


Figure 2-48. Three Geosynchronous Operational Modes are Feasible.

One of these involves the servicing of the spacecrait at approximately 4-year intervals to add modules to the photovoltaic arrays and to the energy storage systems to supplement degraded arrays/batteries. The advantage of this approach is that the cost of the supplemental hardware would be incurred later in the life cycle, and the higher cost of overdesigned hardware avoided. In addition, the added hardware would start its life cycle at peak efficiency, rather than in a degraded condition. Therefore, Planar silicon array costs were based on this approach.

Since the orbital injection degradation of the silicon arrays would require oversizing them by 50%, the operating option selected was to first inject a 10-MW radar with BOL LEO capability of about 20-MW, then, at 4-year intervals, maintain the array generation capability with orbital transfer vehicle supplied supplemental modules. No attempt was made to optimize this interval and its coverside interaction. Later studies, with more accurate costing, could accomplish this analysis.

2.2.8 <u>POWER GENERATION SYNTHESIS AND EVALUATION</u>. The last subtask for Task II involved the analysis of the various component technologies for the three concept configurations (Planar Array, Large Trough, and Modular Trough).

2.2.8.1 <u>Planar Array Component Technologies</u>. The planar array baseline uses silicon solar cells combined with a kapton blanket stretched between truss members with a 15-meter spacing between members. The baseline array assumes that the 18% efficient cells at Air Mass One (AM1) described in recent laboratory news releases can be qualified and upgraded to be 16 to 17% efficient in space at IOC (36°C GEO and 60°C LEO) (see Silicon data sheet in Appendix A). The launch packaging of the baseline system appears to be accomplishable in a volumetrically efficient manner since the trusses would be fabricated from rolls and spools of material that have relatively high mass densities. For example, the estimated density for cap material is approximately 6.06 lb/in^3 , while the ideal shuttle density is 0.003 lb/in^3 . Likewise, the estimated density of rolls of solar blankets would be on the order of 0.03 lb/in^3 . The estimated number of flights to orbit planar arrays can then be based on the shuttle cargo payload bay mass capability. The 15 meter truss spacing of the planar array was established for two reasons; they are:

- a, Reasonable maximum for the width of a roll of solar cell blankets when packaged in the shuttle, compared to the 17-meter length of the cargo bay.
- b. Calculations of the g-level capability of a 150-meter truss when loaded with the solar blanket shows that the torsional cap buckling load capability of 600 lb was not exceeded. (The yield point is 900 lb, but a safety factor of 1.5 was used). To allow the 0.005g loads required when thicker and heavier solar cells are used, the cap thickness of the baseline space-fabricated beam was changed from 0.76 mm (0.030 in.) to 0.93 mm (0.036 in.) and truss height from 1.18M (3.87 ft) to 1.62m (5.31 ft). The beam mass per unit length increased from 0.87 kg/m² to 1.15 kg/m² for planar arrays. For concentrators with even heavier mass per unit area, a truss mass of 3.5 kg/m was used.

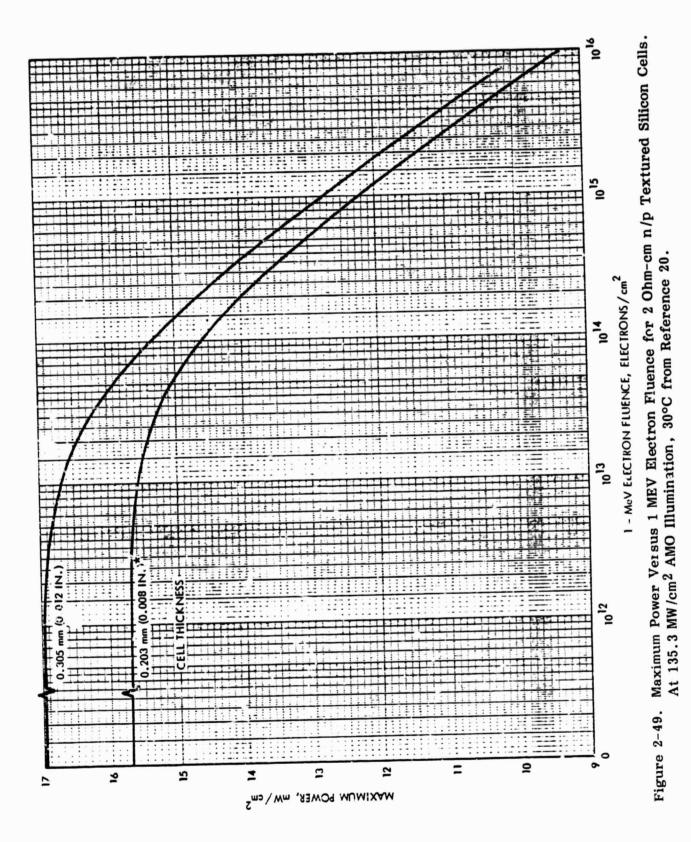
The study did not attempt to particularly optimize the thickness of the coverslides to be employed versus cost versus radiation degradation over time. The rationale was simply that these factors will depend on economic factors prevailing at the time of the decision, such as discounted rates of return, cost of money, and cost of the ion engines. Instead, a GEO baseline with 0.15mm coverslides was used for comparison purposes. This represents the transit time from LEO to GEO and was based on using the full 10-megawatt output capability of the array to drive the 104 ion engines, but only with a duty cycle of 10% of the orbital time, i.e., the trip time used by Byers, et.al., in Reference 17 was increased one order of magnitude, to calculate the proton radiation exposure that was then averaged, based on the data from Table 2-8 (Reference 20) to be 2×10^{16} equivalent 1 MEV electrons per year. This dosages results in the efficiency chain loss of about 58%, as shown in Figures 2-49 and 2-50. The reader is cautioned that this estimate may be somewhat pessimistic, later trajectory studies may decrease exposure time. It could also be optimistic, if ISPs 5000 seconds are not achieved. Nonetheless, such a severe degradation would make today's silicon technology less attractive. On the other hand, for the LEO mission, without this exposure, the silicon blankets are significantly more attractive.

2.2.8.1.1 <u>Cost of the Baseline Planar Array</u>. The cost of the baseline planar array was estimated using conservative factors. The intent was to consider the alternative approaches and evaluate them against a baseline whose cost attainability is not in question.

Today's space solar arrays typically cost \$300 to \$500 per watt. Costing studies of the arrays reveal these costs are split roughly 50-50 between the cost of the solar cells themselves and the cost of the cover slides, blanket, module assembly, and assembly and test. The solar cells, made of single crystal si___on, are currently becoming available terrestrially at \$8 to \$14 per watt. Even when the cost of space requirements (such as weldability, wraparound contacts and more stringent quality) are added, the cost should be \$20 to \$50 per watt for reasonable volume, therefore, an optimistic \$20 per watt will be used for the cell. This cost will be doubled to include the cost of cell assembly on the blanket. Total cost will be raised to \$40 per watt.

2.2.8.1.2 <u>Alternative Planar Array Configurations</u>. Several alternate planar array configurations were considered in addition to the baseline:

- a. Lower efficiency, low-cost silicon approaches
- b. Planar and CR=2 Gallium Arsenide configurations
- c. Encapsulated blanket approaches
- d. Honeycomb panel arrays
- e. Multibar.d planar CR=2 arrays


Annual Equivalent 1 MEV Electron Fluence for V_{oc} and P_{max} Due to Trapped Protons. Circular Orbits, inclination 0 Degree, Infinite Backshielding Assumed from Reference 20. Table 2-8.

į

EQUIV. 1 NEV ELECTROM FLUENCE FOR VOC AND PNAX - CINCULAR DABIT, INC - D DEGRÉE. Due 10 geomís trapped protons, ref. 205, 205, And AP7.

01 370	DUE TO GEONIS TRAFTED PU		DV()450 4EF. 4750	4761 AND 477.					
ALTC CM. N. J	ALTITUDE	é	LU-305-5		THICKNESS	6n/Cn2(Cn)	1-126-01	1.486-01	3.336-01
		(12.945-31	(1.646-3)	(1.526-2)	(3.056-2)	(5-946-2)	(7.446-2)	(1-326-1)
3.044.02	5.546+02		11.311.5	6.496+10	2.486.10	1.926+10	1.546+10	1.406.13	1.146+16
4.504.02	0.316.02	+1+	1.1.5.1.1	4.001.13	1.556+13	9.916.12	6.86E.12	5.376.12	3.496+12
4.006+02	1.116.03	÷15	1.1	4.256+14	1.766+14	1.016+14	6.456+13	4.766.13	2.016+13
8.00E+02	1.486.03	•1•	A.77E+15	3.126+15	1.416.15	7.346+14	4.296+34	2.936+14	1.976.14
1.00[]	1.056.03	1.001.17	2.905+16	1.176+16	5.006+15	2.466+15	1.356+15	0.036+14	4.306+14
1.256.03	2.326.03	11	9.446.16	3.476+16	1.516+16	4.456+15	3.346.19	2.006+1>	9.426+14
1.506+63	2.706+03	117	1.946+17	A. 2 DE + 14	3.566+16	1.306+10	6.23E+15	3.946.15	1.346.15
1.756.03	3.246.03	•10	4.226+17	1.426+17	7.706+16	2.666+16	1.006.10	5.726+15	1.976+15
2.006+03	3.716.03	•1•	7.425+17	3.436+17	1.426+17	4.496+16	1.696+16	8.406+15	2.556 .15
2.256.03	4.17[.03	•1•	1.106.19	9.226+17	2.13[.17	6.236+16	2.216+16	1.056+16	3.046+15
2.501.03	4.43E+03	•1•	1.425.10	A. 326+17	2.541+17	4.906.14	2.336+16	1.046+14	2.746115
2.756+03	5.106.03	•1•	1.576+10	5.91E+17	2.736127	7.016+16	2.236+16	9.016+15	2.466415
3.006.03	5.546+03	-19	1.50€.1	A. 76E+17	2.646117	6.47E+16	1.956+10	6.236-15	1.0% +1>
3.506+03	6.49E.03	-1-	1.466+17	5.196+17	1.906.17	4.536+16	1.416+16	6.06E+15	1.406+15
4.006+03	7.416.03	• • •	2.746+10	4.796+17	1.056+17	2.076+16	9.58€+15	4.346+15	1.146+19
	6.346.03		3.736+18	4.106+17	6.27E+16	1.966+16	4.776+15	2.05€+15	4.976+14
5.001+03	9.266+03	02+:	3.216.11	2.8.76.17	3.436+14	7.436+15	1.946+15	7.346+14].446+14
5.566.03	1.025+04	•~•	2.546.10	1. 416+17	1.866+16	3.406+15	7.936+14	2.776.14	4.716+13
6.00E+03	1.116.04	£	1.976+1P	1.056+17	8.866415	1.466+15	3.196.14	1.046+14	1.446+13
7.0uf +03	1.306+04	12+	1.105.10	1.716+14	1.466-15	2.446+14	4.70[+13	1.476+13	2.016+12
B. 46 E 10 3	1.486+04	3.306+21	4.496417	A. 96E +15	3.31f+14	4.416+13	7.906+12	2.316.12	2.046+11
9.006.03	1.476.04	4.426+21	1.446417	1.526+15	3.516+13	4.426+12	7.616.11	2.136+11	- 166 -
1.00E+04	1.856+04	5.446.21	4.1361.4	2.446414	3.546+12	4.326+11	7.196.10	1.946+10	2.146 109
3.146.04	2.016.04	1.956.22	9.945.15	1.766+13	3.676+10	5.626+64	•		•
1.296+04	2.226+04	6.94E+22	1.746.15	1.194+12	1.256.09	5.05E+05		•	:
1.306+04	2.416.04	1.306.24	1.576+14	1.146+20	1.141.06	•	•	•	•
1.466+04	2.596+04	8.245.24	1 . 4 4 L + 1 X	2.136+00	•		•		
	2.766+04	٠	9.5AF+12	4.11E+07	•	•	•	<u>.</u>	•
1.046+04	2.966.64	3.676+25	4.905+12	1.576+07	•		•	••	:
1.706.04	3.156.04	2.916+29	3.445.12	0.196.06			•	••	
1.805.44].]46+04	٠	2.1+356.4	1.016+07	•	••	•		•

2-71

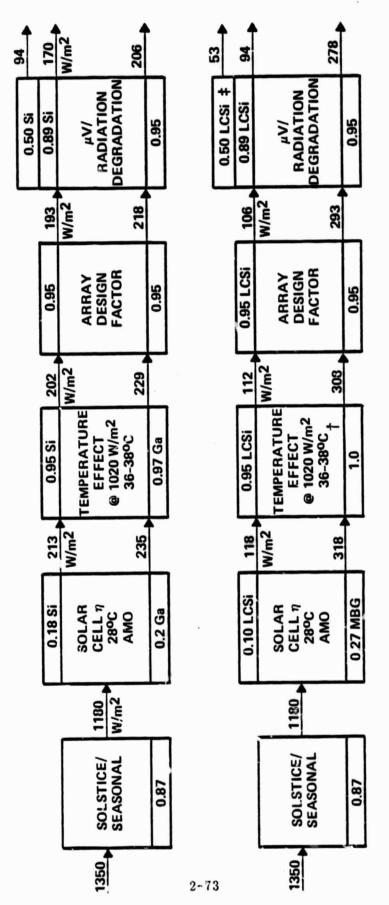


Figure 2-50. Efficiency Chains GEO Planar Array.

GDC/AST 81-019

•

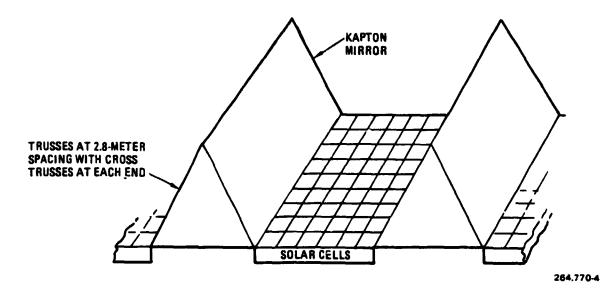
۲

The alternatives were scoped to provide a selection of possible configurations from the baseline up to relatively higher risk options. Some are theoretical only (multi-bandgap cells for example) and have not been demonstrated yet in the laboratory.

2.2.8.1.3 <u>Advanced Silicon Technologies</u>. The DOE/JPL Low Cost Solar Array Program is developing silicon solar cell technology in several areas applicable to space usage. Ribbon cells, using EFG or dentritic webs promise lower cost. So do amorphous cells. These processes, as they will exist in 1990s, initially produce either single crystal, polycrystaline, or amorphous wafers. With laser echniques, the polycrystaline and amorphous wafers may be annealable into single crystal surfaces. Since the 1985, DOE goals specify initiatives across the entire scope of this activity. This study assumes that the technology and cost of silicon cells will, by 1990, be driver to the point where the manufacture of cells can be accomplished for \$0.5/watt, plus space requirements and standards, that would raise the price to \$5-\$20/watt.

<u>Transportation Costs for Advanced Silicon Cells</u>. The silicon technologies considered included alternatives that assumed that terrestrial laser annealing of cells will accomplish what will be alternatives in which the cells remain polycrystaline and amorphous. The baseline array area would be increased to accommodate the lower efficiency cells. Less obvious is the effect of radiation on the life of such systems and how they could be "space qualified."

For purposes of this study, the assumption is made that "space qualification" will introduce cost of \$35/watt for the cells, just as in the case of the baseline and that the baseline and that the savings in cell cost of \$15/watt are offset by extra transportation costs of \$5/watt and extra assembly and test costs of \$20/m² (the array is twice as large).


The conclusion is that the decreased efficiency that would require increased flights and increased assembly costs will always cost more totally than the cell cost savings. Note that this conclusion is only valid for lower efficiency cells. If laser annealed or largely single crystal ribbons can be fabricated, the distinction is lost, and these approaches should then be "spaced qualified".

2.2.8.1.4 <u>Single Bandgap Gallium Arsenide</u>. By the 1990s, single bandgap GaA1As cells with efficiencies of 16% (air mass zero, 125°C) could reduce the area requirements of the planar array blanket about 45%.

Since Gallium Arsenide density using 50-µm cells adds 16% to the specific array mass, an extra 7% penalty is paid. This penalty is made up by the improved radiation performance of the Gallium Arsenide, which is assumed to be self annealing, or reannealable using heating circuits and, therefore, does not exhibit the approximately 6-7% loss caused by the 5-year radiation flux that degrades the silicon. (The 6-7% assume: silicon array supplements at 5-year intervals as discussed in the operating options section). <u>Galium Arsenide Planar Array Mass.</u> The Gallium Arsenide planar array mass has been estimated based on the same blanket and truss concept used for the silicon planar arrays. The cells themselves have a higher mass (129%) due to the 5.3 gm/cm³ density of Gallium Arsenide, however, the cover slides are thinner, because self annealing of the GaA $\frac{1}{4}$ As is assumed. The array design factor was also assumed to be 0.95; it accounts for intercell spacing for thermal expansion.

2.2.8.1.5 Low Concentration Ratio Gallium Arsenide Concentrators. A Gallium Arsenide concentration system with a concentration ratio of about two as proposed for one of the SPS prototype concepts is a viable planar type option. The mass of the system is slightly lower than the planar array mass, since the extra mass of trusses required to position the mylar mirrors is offset by the reduced blanket mass of one half of the number of solar cells. This discussion assumes that the geometry of the array is as shown in Figure 2-51. Array design factor was assumed to be 0.9; the additional 0.05 is caused by temperature mismatch power loss. Low radiation degradation is assumed (0.98), due to the self annealing characteristic of the Gallium Arsenide at 125°C or at a slightly higher temperature with electronic annealing.

The first order analysis of the area required for Gallium Arsenide arrays indicates blanket areas of 47,000 and 23,500 m² for CRs of 1 and 1.9 respectively. Because Gallium cost \$40/watt for 10 times the price of silicon, cells cost of \$20 to \$40/watt seems more reasonable for the 1-10 megawatt systems. This price accounts for the extra costs associated with space qualification and the yield loss. To keep the comparison with silicon consistent, $$4,000/m^2$ is used for blanket assembly and test cost.

2.2.8.1.6 <u>Planar Multi-Bandgap Arrays</u>. Planar multi-bandgap arrays are configurable with the hypothetical multi-bandgap cells being investigated at Hughes Research, Varian, and several universities. Two alternates were considered; a variation of the baseline planar array and a low concentration (CR=2) linear trough similar to the SPS Gallium Arsenide alternate. The first order analysis of the configurations assumed that the planar array would operate at approximately 36°C in GEO and 60°C in LEO and the linear trough at approximately 125°C in both orbits. The cells were assumed to be stacked with a series V_{mp} at 28°C AM0 of 1.1 + 0.8 + 0.5 VDC. The temperature coefficient for the three series cells was included in the calculations provided by Varian Associates. (See Appendix C).

The rediction environment was assumed to cause insignificant degradation; circuit grading provided will self anneal briefly when the array has degraded 2 to 3%. Cover slide density was a low $5.6 \times 10^{-3} \text{ gm/cm}^2$ ($2.6 \times 10^{-3} \text{ gm/cm}^3$).

With these assumptions, first order calculations for the GEO planar array would require $36,000 \text{ m}^2$ of area and have a mass of 61,200 kg. The cost of manufacturing multi-bandgap cells was assumed higher than silicon or Gallium Arsenide because of the many process steps — and insentive to quantity reductions, which normally would occur because of increased yield. A value of \$1007watt will remain appropriate. Thus, cost benefits do not appear to be likely for this technology; the drivers and benefits will more likely come from the fact that gain in performance may benefit SEPS or FETS type missions if a lower thickness cell can eventually be made.

2.2.9 LARGE PARABOLIC TROUGHS. Task II evaluated large parabolic trough concentrators to see whether economies of scale could provide significant benefits. Figure 2-52 shows the configuration evaluated. Cross-members run the length of the trough to support aluminized Mylar which reflects incident insolation onto the solar cells which lie along the focal line of the trough. Radiators on both the far and near side radiate waste heat from the solar cells. The solar cells themselves were actively cooled using fluid cooling loops. The basic problem associated with the configuration turned out to be the mass of the radiators (refer to Subsection 2.2.12, Figure 2-64). Because of the requirements for micrometeoroid protection, they were large and relatively massive compared to concentrating and planar array approaches with smaller cell sizes apertures.

2.2.9.1 <u>Hybrid Approaches</u>. In an effort to try to establish whether reduced radiator size could be achieved, two configurations were evaluated that used the waste heat provided by the cooling system to drive Rankine turbine systems. Figure 2-53 is a graph of data provided by the Sunstrand Corporation for the upscaling of their "KIPS" Rankine Combined Rotating Unit Mass. This unit includes the Turbine, Generator, and Condenser. From the data asemptote, a specific mass of 7 kg/kW was obtained and used for the hybrid system calculations. The first hybrid provided solar cells on the primary target area as part

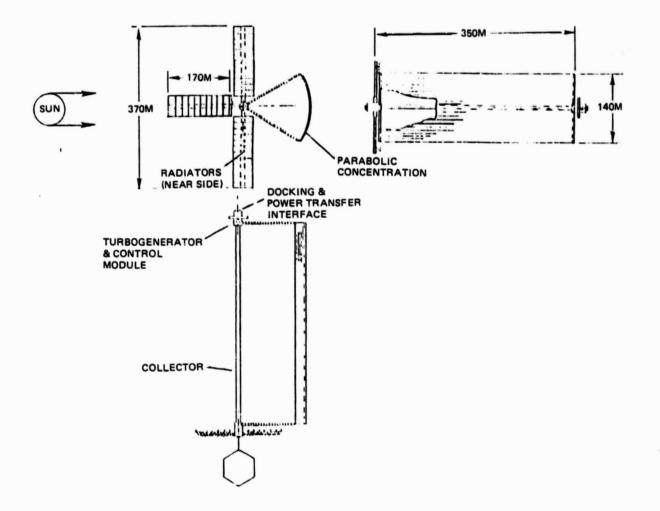
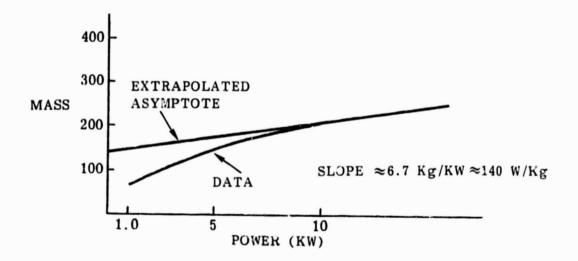
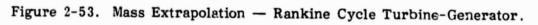




Figure 2-52. Parabolic Trough Collector.

of the Mylar blanket. The solar cells themselves reflected waste heat because of blue-red filters on their front surface, and in this way the portion of the solar spectrum unused by the solar cells could provide heat to the turbine system (see Figure 2-54 and Table 2-9). This heat was collected along the focal line of the parabola. In the second configuration, the mirror itself remained aluminized Mylar (see Figures 2-55 and 2-56). Cells at the secondary focal line simply absorbed the entire spectrum, and an attempt was made to use the waste heat by driving a Rankine turbine. In both cases, the amount of radiator area required to radiate the waste heat, and its mass, offset the gains provided by the Rankine system turbine.

2.2.9.2 Paraboloids of Revolution. The fourth large-scale configuration considered utilized a paraboloid of revolution to focus energy in three dimensions on the focus of the mirror system. It is shown in Figure 2-57. The system uses the thermophotovoltaic approach developed by Stanford University. The energy illuminates a 2,100° Kelvin absorber that then reradiates energy at its black body temperature to a surrounding group of silicon solar cells. Because the energy of illumination peaks near the bandgap of the silicon cells, the system may have very high efficiencies, when it is compared with normal silicon cells up-radiated with the normal solar spectrum. Nonetheless, there is considerable waste heat required to be dissipated from the silicon cells during the operation of the system, and this makes for large massive radiators just as in the case of the parabolic trough concentrators. In addition, the 2,100° Kelvin illuminator has some concerns associated with its life. This is because the tungsten absorber element involved has a lifetime that has been estimated by various researchers at from 7-10 years (Reference 21). Another concern is whether the pointing angle error might cause destruction of the truss assembly holding the illuminator and cell assembly. The problem is that this significant amount of energy might actually cause the supports to melt. This is not true of other concentrating configurations considered, because the concentration ratio is not as high as the concentration ratio of about 2,000 required for the large thermophotovoltaic concentrator. Figure 2-58 shows the efficiency chain projected for the thermophotovoltaic concentrator. Notice that the specific power is relatively high, but that ultimate costs will probably be affected by the significantly higher risk.

2.2.10 <u>MODULAR TROUGH CONCENTRATORS</u>. The most effective approach developed during Tasks II and III was a small, low-light-loss parabolic louver concentrator. As defined during Task III, this approach used a series of parabolic louvers to reflect sunlight to a single-band, dual-band, or multi-bandgap cell configuration (Figure 2-59). The benefits of this concept over others considered were:

a. The concentration ratio of between 30 and 100 permitted a reduction in total solar cell area and its attendant cost reduction, while at the same time enabling a cell operating temperature of between 90 and 100°C, with a reasonable specific power (250 W/kg) when constructed from mirror whose thickness is between 0.25 and 0.5 mm (10 to 20 mils).

PRIMARY BLANKET WITH SOLAR CELLS, REFLECTING TO SECONDARY ABSORBER

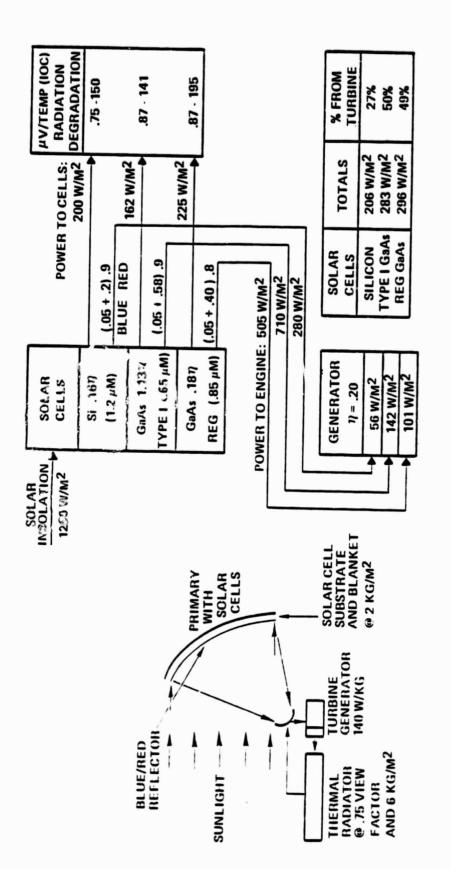
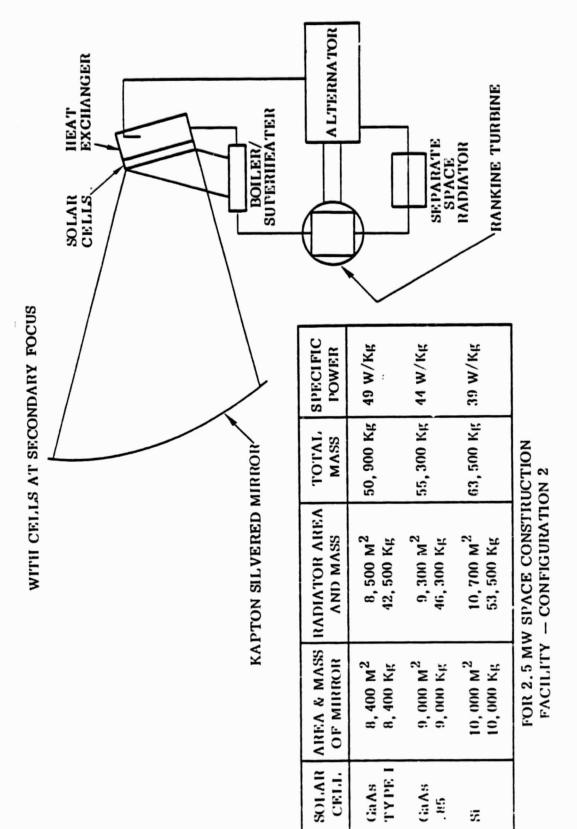


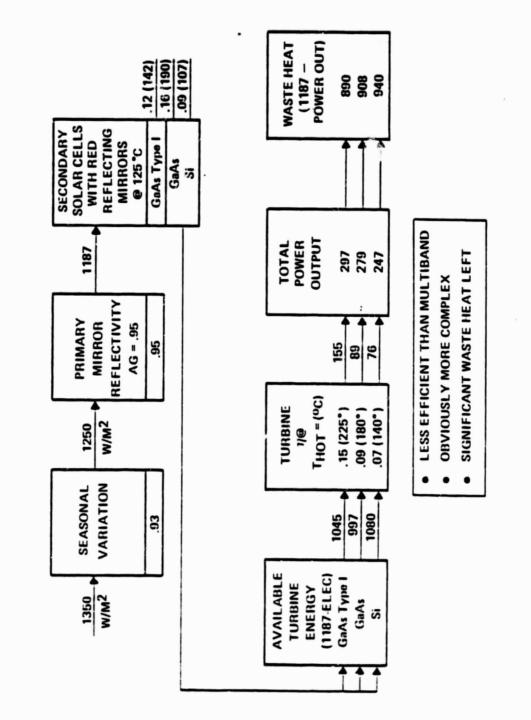
Figure 2-54. Hybrid Concentrator - Efficiency Chain.

Table 2-9. Mass Properties, Hybrid Concentrator.

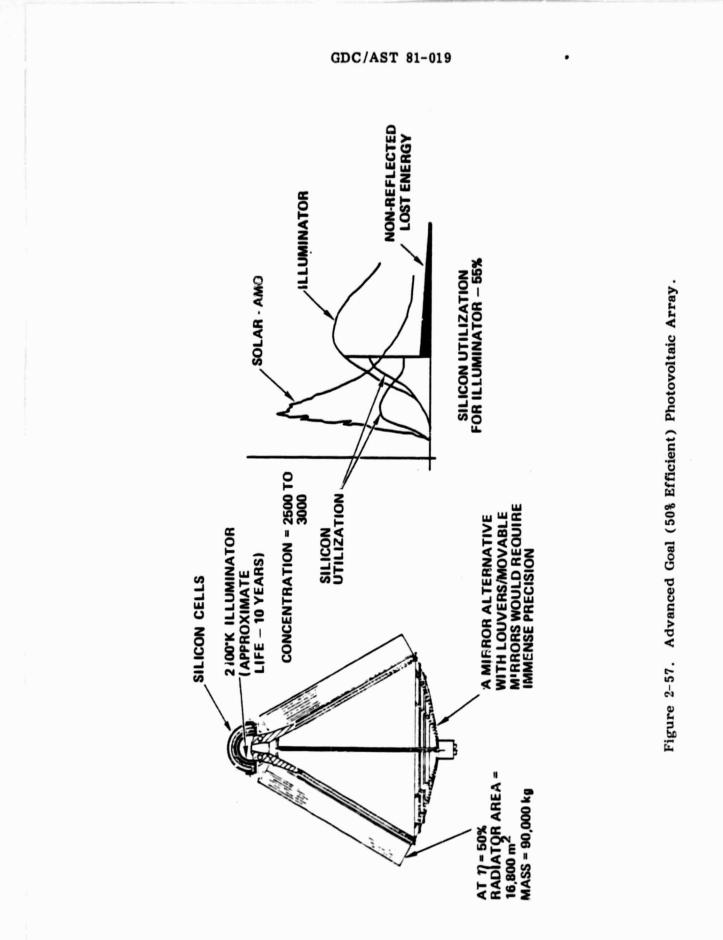
IIEAT ENGINE AT SECONDARY, CELL/RED SPECTRUM MIRRORS ON PRIMARY

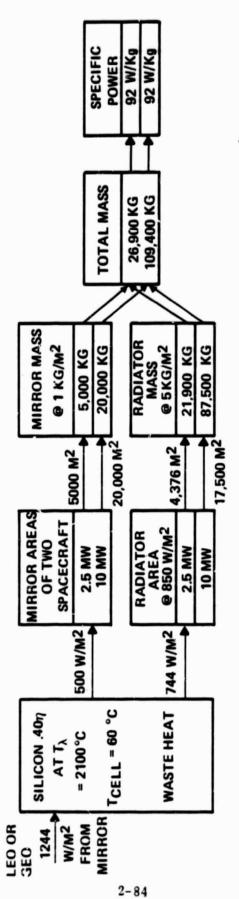

N 206 12,000 2,800 12,100 1 GaAs 283 8,800 5,900 8,800	SOLAR CELL TYPE	POWER PER UNIT AREA (W/M ²)	APERTURE AREA REQUIRED (M ²)	RADIATOR AREA (# 850 W/M ² * (M ²)	REMAINING APERTURE FOR CELLS ONLY	RADIATOR MASS(# 5 Kg/M ² ** (Kg)	APERTURE MASS († 2 Kg/M ² †	TURBINE MASS(i) 7 Kg/KW Kg	TOTAL MASS Kg	SPECIFIC POWER W/Kg
206 12,000 2,800 12,100 aAs 283 8,800 5,900 8,800	2.5 MW									
283 8,800 5,900 8,800	SILICON	206	12,000	2,800	12,100	14,000	24,200	4,350	42,500	59
_	TYPE I GaAs	283	8,800	5,900	8,800	29,400	17,600	8,800	55,800	45
GaAs 296 8,500 4,000 8,500 20,000	GaAs	296	8,500	4,000	8,500	20,000	17,000	5,900	42,900	59

LOW SPECIFIC POWERS COMPARED TO MULTIBAND SYSTEMS


A THERMODYNAMIC RADIAFOR VIEW FACTOR OF .75 ASSUMED

RADIATOR/MIRROR AND/OR BLANKET


FOR CELLS ONLY



GDC/AST81-019

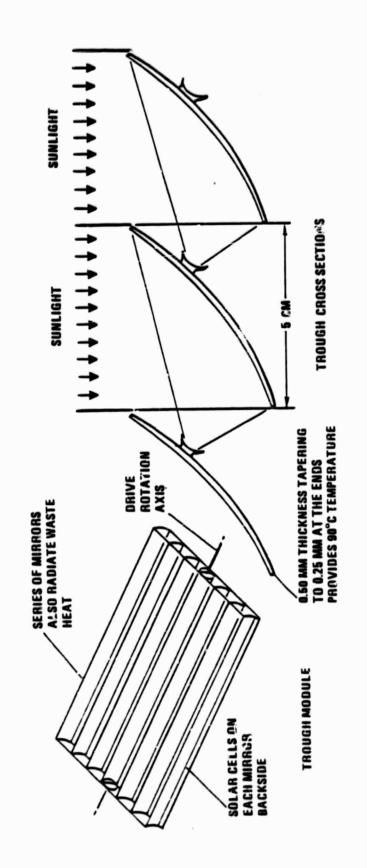
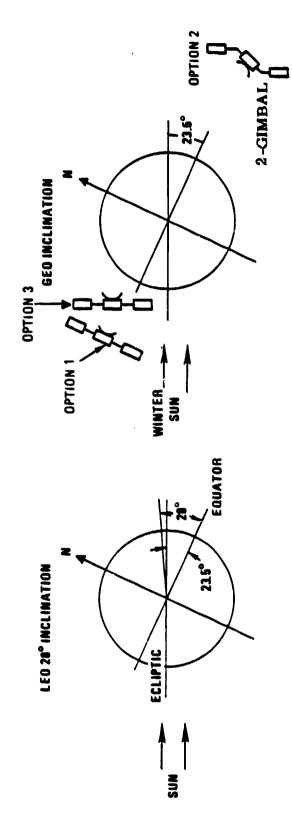


Figure 2-59. Small, Modular Trough Assembly.


- b. Geometrically, the system should show low aperture light loss. Since there are no Cassegrainian secondary reflectors, ine aperture blockage and absorption losses in Cassegrainian designs are avoided. From a constructability viewpoint, the mirror radiator louvers are modularizable, can be assembled in space using a supporting truss structure, and are self supporting less extra structure is required to hold them aligned.
- c. Inherent shielding from natural radiation. The 20-mil thick trough louver to which the solar cell substrate is attached, along with the substrate itself, should provide up to an average of between 0.75 and 1 mm (30 and 40 mils) shielding on the backside of each solar cell. The sides of the cells are shielded by the reflectors, which provide a minimum of 0.25 mm (10 mils) shielding. Coverslides could increase this front surface shielding.

The recommended mini-trough design has an additional benefit - one that involves how it is pointed to receive the solar insolations.

2.2.10.1 <u>Concentrator Pointing Strategies</u>. The geometrical design of a concentrating solar array must be compatible with the spacecraft orbital geometry and its overall relationship to the ecliptic plane and the direction of the sun. Since this geometry changes with the seasons, the approach to the overall design should be compatible with this seasonal change. Figure 2-60 shows the relationship of the sun to the earth during winter. For a spacecraft with a rotary solar array joint in GEO or LEO, three options are possible that could accommodate the geometrical variations, there are:

- a. Option 1 A single rotary joint can be utilized, with its axis (the spacecraft pitch axis) oriented normal to the plane of the orbit. Then, as the spacecraft rotates, the array counter-rotation in the opposite direction just compensates for this, and the array remains facing the sun. Depending on the season, it will be from the direction of the sun by an angle of from 0 degrees (during the spring and autumn equinoxes) to up to 23.5 for GEO in July and December). In July and December, the tilt angle of 23.5 degrees causes the effective insolation incident upon the array plane to be decreased by cos 23.5 (8%). This loss is compensated for by the fact that problems associated with the other two strategies are avoided. The control and coordinate strategy of many three axis stabilized satellites launched today specifically, FLTSATCOM, Intelsat V, RCA SATCOMS, Communication Technology Satellite, and European OTS, utilize this single rotary joint approach.
- b. Option 2 The array can be designed with two gimbals and two rotary joints so that as the seasons change, the second compensates for the change in tilt angle. This strategy has obvious mass penalties, momentum interaction penalties, and reliability disadvantages (extra rotary joint).
- c. Option 3 The spacecraft can be aligned so that its single rotary joint axis is aligned normal to the plane of the ecliptic.

2-86

- -

1

Figure 2-60. Orbital Geometry.

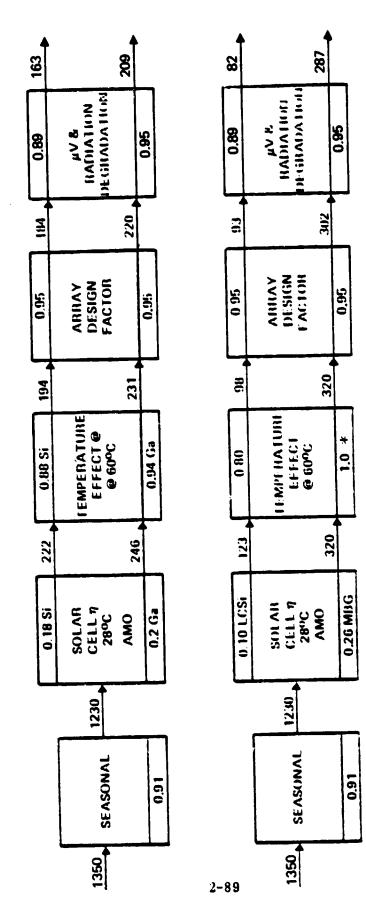
The penalties associated with this option are that one of the benefits of geosynchronous orbits is that the shifting antenna pointing over the orbit can be avoided. It is desirable to evoid extra antenna gimbals, and their momentum/ angle interactions/rotary joints, etc. Further, this option requires that the total angular momentum vector must be adjusted so that it is normal to the plane of the orbit; therefore, extra momentum storage is required.

For LEO orbits inclined at 28 degrees, the same alternative strategies can be considered. Namely, they are:

- a. Two gimbals
- b. One gimbal, sun pointing
- c. One gimbal, earth pointing (see Figure 2-60)

The two gimbal systems have the same penalties at LEO that they have at GEO - extra mass and momentum interactions, which are desirable.

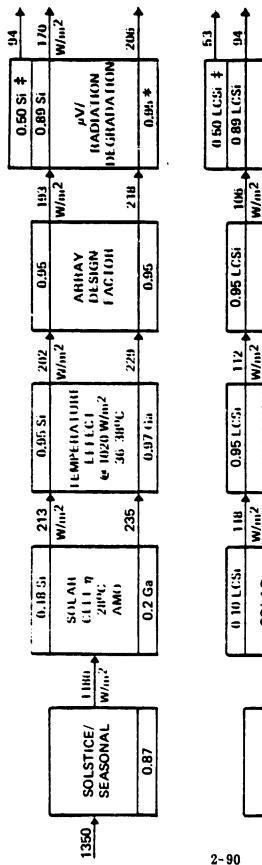
Of the single-gimbal systems, an earth-pointing spacecraft system has advantages, since gravity gradients remain constant, and, if the larger masses hang down from the array (toward the earth), the system is neutrally stabilized.

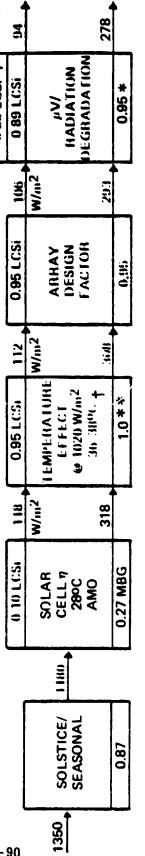

Since an infinite number of 28 degrees inclinations are possible, the 28 degrees inclination closest to the ecliptic should be considered first. This constrains the launch time but does not impact performance. It also suggests a 4.5 degree pointing angle (28-23.5 degrees) tolerance along the array axis is desirable.

Now, consider the mini-trough geometry. If the single rotary joint axis is aligned along the trough axis, as shown in Figure 2-59, and the axis of the rotary joint is aligned normal to the orbital plane, the rotary joint can keep the array properly pointed as the spacecraft orbits, even if the body of the spacecraft points toward the earth. The LEO ± 4.5 -degree pointing error and GEO ± 23 -degrees pointing error will cause the light to fall on different cells along the trough, with losses due to edge loss, defocusing, and non-normal (cosine) pointing. Since these should be less than 10%, the mini-trough accommodates these pointing errors with only one gimbal, without the extra mass of two gimbals and without constraining the spacecraft pointing. Both the GEO and LEO systems can work the same simple fashion utilized by today's single-gimbal axis spacecraft.

2.2.11 <u>EFFICIENCY CHAINS</u>. The efficiency chains shown in Figures 2-61 to 2-64 were developed to document the calculations for the preceding configurations.

They include seasonal variation caused by the cosine loss resulting from the orbital plane and by variation of insolation at aphelion, all efficiencies at the expected operating temperatures, and degradation and array design factors.


The chains indicate the expected result two-cell and multi-band configurations will out perform (have higher efficiencies) single-cell configurations. and calculations of truss, blanket heat radiator/mirror mass for the geometrics.

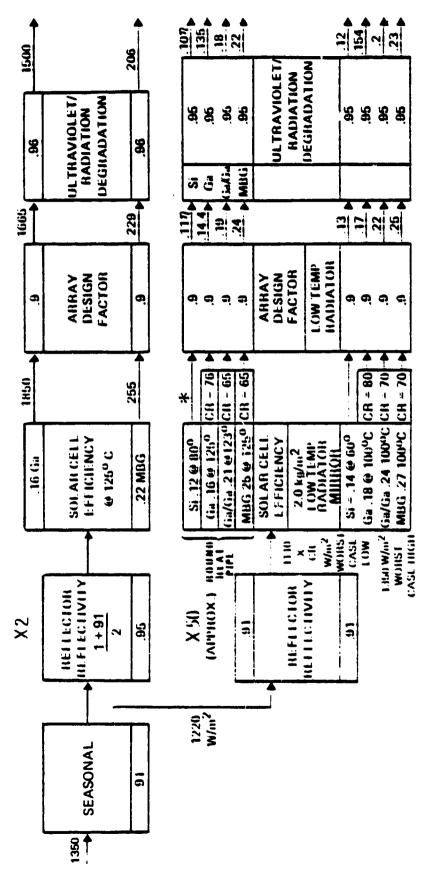


TOP – SILICON TOP MIDDLE – GaAIAs BOTTOM MIDDLE – "LOW COST" SILICON BOTTOM – MULTIBANDGAP

Figure 2-61. Efficiency Chains - LEO Planar Array.

- * WITH ON ARRAY ANNEALING
 - ** INCLUDED IN 0.277
- T BACK SURFACE REFLECTOR

INCLUDES INJECTION DEGRADATION


TOP TOP ~ SH ICON BOTTOM TOP -- GAAIAs LOP BOTTOM -- "LOW COST" SILICON W/O ANNEALING BOTTOM BOTTOM -- MULTIBANDGAP

.....

Figure 2-62. Efficiency Chains - GEO Planar Array.

4 1

GDC/AST 81-019

í

Figure 2-63. Efficiency Chain - LEO Concentrators.

CONCENTIALION RALIOS

-

FOR BACK SURFACE BEFLICTOR CLLLS

2-91

GDC/AST 81-019

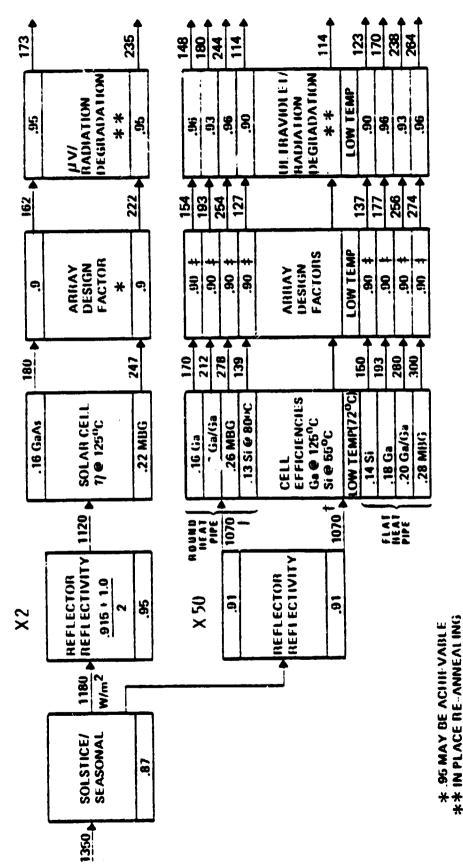


Figure 2-64. Efficiency Chain - GEO Concentrators.

DOES NOT INCLUDE CONCENTRATION RATIO-USED FOR APERTURE SIZING

‡ UNSUPPORTED ESTIMATES

.

:

GDC/AST 81-019

Ϋ́,

These charts indicate that the most attractive configurations for GEO radar are based on then Gallium Arsenide technology, followed by silicon planar arrays, followed by concentrators. Although concentrators were heavy for this Task II analysis, later modularity studies in Task III provided versions with almost the same mass as silicon for the GEO mission.

2.2.12 MASS PROPERTIES. Figures 2-65 to 2-68 show the results of geometrical analysis of the preceding configurations, and calculations of truss, blanket heat radiator/mirror mass for the geometrics.

2.2.13 <u>COSTS</u>. Figures 2-69 and 2-70 provide cost estimate data for the three power generation options. They show that the cost of concentrators is lowest. This is a significant driver when a new mission, such as the radar, is being developed. If cost can't be lowered then some of the benefits which the nations should be reaping from the space program will not be realized.

2.2.14 ENERGY STORAGE. Three types of energy storage components were considered as possible concepts for meeting the LEO SCF energy storage requirements — batteries, fuel cells, and flywheels (see Figure 2-71). Batteries with solid anode and cathode plate materials typically have limited cycle lives more suitable to higher orbits including GEO with fewer cycles, in LEO, they must be restocked at varying intervals. Fuel cells are less efficient, requiring more array area and larger radiators for waste heat rejection. Flywheels are efficient and very long life; however, their specific energy is limited because the energy stored cannot exceed the elastic limit of the material or catastrophic failure occurs. During Task II, the advantages of flywheels were significant enough to make them the initially recommended choice (Figure 2-72).

A review of this data, and consideration of the large penalties being paid for transportation to orbit, led to the decision to investigate other high energy density systems during tasks III & IV. They were:

- $Z_N B_{R_2}$ systems
- Li MS systems in particular Li FeS₂
- NaS.

2.2.15 <u>10-MEGAWATT RADAR POWER SYSTEM SYNTHESIS</u>. The 10-megawatt radar system requires power conditioning for the ion engines which inject it into its GEO orbit and power conditioning on the radar array to convert the higher voltage power from the photovoltaic system to the voltages required by the radar module. Table 2-10 lists the components considered for use in the system. Two alternate component configurations were initially considered for the system. They were:

a. An all DC system with power for the ion engine beam voltage and discharge currents provided by DC to DC regulators and radar power provided at the radar modules by a separate set of DC to DC converters.

268,000 Kg 195,000 Kg 320,000 Kg 420,000 Kg 148,400 Kg 47,000 Kg 61,200 Kg 35,000 Kg CONCEN-81,300 Kg 31,100 Kg TROUGH TRATOR LARGE POWER GEN CR = 2TOTALS GaGa MBG MBG MBG Ľ Ŝ ß 80 g ö Ñ 320,000 267,000 195,000 REQUIREMENT 14,800 420,000 19,000 17,400 4,100 3,700 7,300 (kg) RADAR ARGE FROUGH CONCENTRATOR ROLADAR 3.5 Kg/m² SPECIFICS 3.5 Kg/m² 3.5 Kg/m² 3.5 Kil/m² 1.15 Kg/m 1.15 Kg/m .82 Kg/m 2.2 Kg/m .82 Kg/m .82 Ky/m TRUSS CR = 2**WM (II** 34,000 131,000 57,500 16,000 2,000 27,000 1,000 25 KW 74,000 (kg) 88 **8** ARRAY AREA/25 **ONCENTINATOR** ARGE TROUGH ALLOWABLE RECHARGE SPECIFICS .55 Kg/m2 2.0 Kg/m² .55 Kg/m² .55 Kg/m² 1.6 Kg/m² BLANKE 1.3 Kg/m² 1.6 Kg/m² .7 Kg/m² .7 Kg/m² .55 Kg/m TIME 1 HE CR = 226 KWH 190,000 67,000 55,000 40,500 87,000 49,000 04,000 42,500 128,000 36,000 (m²) ONCENTRATOR ARGE TROUGH **EFFICIENCIES** APERTURE STORAGE Ga/Ga 180 FNERGY **MBG 235 MBG 244** CONCEPT 1 **OSSES** MBG 278 LCSi 53 Ga 148 Ga 173 Si 114 C.R = 2 Ga 206 ¢ Si 04 Ĭ **20 KWH** SIZED FROM THERMAL EMERGENCY 10 kW - 2 HIR POWER ANALYSIS

10 MW

Figure 2-65. 10-Mogawatt Radar Sizing — Planar Arrays and Large Concentrators.

2-94

GDC/AST 81-019

TOTAL MASS (kg)	8,900 9,700 39,700 15,100 CR = 2 CR = 2	13,300
	1,340 kg 3,140 kg 1,060 kg 6,600 kg	
TRUSS MASS L = 2/7772	.85 1.15 1.15 1.15 CR = 2 1.25	1.25
7 700 Lo	8,400 kg 36,600 kg 14,000 kg 5,400 kg	
BLANKET SPECIFIC MASS	.5 kym2 .7 ky/m2 1.2 ky/m2 1.6 ky/m2 CR = 2 CR = 2 M = AP X Spm/2 .7 ky/m2	1.6 kg/m ²
APERTURE		
PLANAIR AIHAY POWER HEQUIRED	si 163 W/m ² Ga 209 LCSi 82 MBG 287 CR = 2 t = 1250C Ga * 161 W/m ²	MBG * 221 W/m ²

* EQUIVALENT ONE SUN INSOLATION REQUIRED Figure 2-66. LEO Planar Array Sizing a Mass.

-

- - --

i.

TOTAL	79,000 kg	84 000,00 84 006,16	24.600 kg
TOTAL AND RADIATOR MASS Q 3.2 kg/m ²	7,3000 kg 44,000 kg	34,500 27,500 + 1,7 k ₅ /m ² 26,500	21,300 11,300 14,000
	1,400 kg 3,500 600 7,600	3.800 3.800 1.000 2.800	500 2.400 5.00 400
1RUSS MASS L ≥ 2√ Ā/2 15 m SPACING BLANKET MASS	2.2 kg/m 1.6 kg/m ² 2.2 kg/m ² 1.6 kg/m ² 2.2 kg/m ²	1 li k ₁₀ /m ² 2.2 kg/m 1.6 kg/m ²	2.2 kg/m 1.6 kg/m ² 2.2 kg/m ² 2.2 kg/m ² 2.2 kg/m ² 1.6 kg/m ²
		340 m ² 8,600 m ² 270 m ² 15,600 m ² 620 m ² 12 fcm	
APERTURE SIZING AND BLANKE I AREA	Si .12 ¹) 25 MW/(110X26) Ga .16 26 MW/(177X38) Gatia .21	2.5 MW/23/X32 MBG.26 2.5 MW/288X32 LOW TEMP Si.14 2.5 MV/155X25	Ga.18 2.5 MW/300X38 Ga/Ga.24 2.5/268X32 MBG.27 2.5/300X32
	1110 W/m ² -y		FLAT HEAT PIPE

Figure 2-67. 2.5 Megawatt Sizing Modular Concentrator (CR=50).

	fOTAt	292,050 kg		232,000 kg		203,000 h _y		142,000 Ly			143,000 h ₁		102,000 ky		81,000 hy		GB, DDD h.i	
HADIATOR MASS 4	3.2 kg/m ²		270,000 kg		218,000 kg		182,000 kg		131,000 hg	72°C 1.5 kg/m2		122,000 kg		89,000 kg		63,000 kg		57,000 kg
		e on the					12,500 kg		An 100'2	10 200 L-				1./00 kg		8'/00 Kg		
111155 1.< \77 16	BLANKET MASS	2.2 kg/m	1.6 kg/m ²	2.2 kg/m	.7 kg/m ²	2 2 kg/m	2.3 kg/m2	2.2 kg/m	1.6 kg/m ²	LOW TEMP 72"C	2.2 kg/m	1.6 kg/m ²	2.2 kg/m	.7 kg/m ²	2.2 kg/m	2.3 kg/m ²	2.2 hg/m	1.6 kg/m ²
	,	88,000 m ⁻	3,500 m ⁻	2 700			5,000 m ²	4 1,000 m ⁴	6 / m			3,200 m ⁴		2,400 m ²	42,000 m ²	4,200 m ⁴		1.500 m ^c
APERTURE	BLANKET AREA	Si 114 W/m ²	10 MW/(114+25)	Ga 148 W/m ²	10/148 × 24	Ga/Si 180 W/m ²	10/180 × 10	544 M/m2	: W244 x 26	LOW TEMP 72"C	Si 123 W/m ²	10/(123 x 25)	Ga 170 W/m ²	10/170 × 25	Ga/Si 238 W/m ²	10/238 × 10	MBG 264 W/m ²	10/264 x 25
	Ĭ				HEAT	PIPE								FLAT	PIPE			

Figure 2-68. 10 Megawatt Sizing Modular Concentrator (CR=50).

MBG = MULTIBANDGAP

					COST OF	
-	MASS OF IV)WER GENFRATION SYSTEMS (kg)	AREA (m ²)	COST (\$M)	CONDET ORDET (\$M)	MAINTENANCE (RAIMATION)	
PLANAR ARRAYS						
t in ALAs	31,100	49,000	346	* ¥	:	390
SILLON	81,300	104,000	515	125	\$30 M EVERY 5 YEARS	728
(INVILL'INV	61,200	36, 000	394	100	ł	404
IRMONL HUNDRY						•
UNAUT' IUR	22(1, 1010)	40, 500	140	320	1 .	460
50% n	60, 000 - 150, 000	25, 000	*			TBS
SPMI-PARADOLIC TROUGH						
MULTIBAND	2 142,000	41,000	140	240	:	380
CINAU 2	203, 000	55, 500	170	320	•	490
HOLVICINI J.V.I.I						
CINAND	000 [*] i ü	42,000	160	120	8 4 3	280
AUT, TUBAND	68, 000	38, 000	140	0 01		240

Figure 2-69. Comparison of Estimates for the Three Power Generation Options (10 MW Space Radar).

DALICOU CIOULING

GLC/AST 81-019

2-98

1

	MASS OF POWER GENERATION SYSTEMS (kg)	АRЬ:А (M ²)	(\$M)	COST TO ORBIT (\$M)	COST OF ROUTINE MAINTENANCE	TOTAL COST (\$M)
PLANAR ARRAYS						
• SILACON	8, 900	15, 300	85	61	ţ,	100
 GALLIUM AR ARSENIDE 	9, 700	11,950	85	15	1:	100
• I'C SILICON	39, 790	30, 600	140	60	ł	2(0)
• MBG	15, 100	8, 700	67	25		27 .
LARGE CONCENTRATORS		•				
I.ARGE TROUGH	55,000	10,000m ²	35	85	ζ,	071
11 = 50%	25, 000	5, 000m ²	30	UV V	:-	07.
MODULAR CONCENTRATORS						
BASELINE MIK	30, 000	8, 600m ²	31	48	1	67,
BASELINE 2 CELA.	42, 500	10, 800m ²	60	64	•	124
FLAT HEAT PIPE						
MBG	16,600	8, 300m ²	31	27	• •	845
2 CELI.	18, 700	$9,300m^2$	60	30	ł	36

2-99

Figure 2-70. Cost Comparison - LEO Power Generation.

GDC/LVP 81-019

TECHNOLOGY	CHARACTERISTICS	REMARKS	RISKS
NICKEL, CAFMIUM (ADVANCED)	20 W-hr/kg 100 kWh/m ³ 30,000 cycles @30% DOD	High confidence system with little room for improvement.	[LOW] Terrestrial impact of Cadmium.
NICKEL HYDROGEN	30 W-hr/kg 50 kWh/m ³ 30, 000 cycles @50% DOD	Superior to NiCd in some applications. Easy to control by pressure sensing.	<u>ILOW</u> High pressure gas. Any puncture/tear causes im nediate cell fatlure.
FUEL CELIS (W/ELECTROLYZER)	60 W-hr/kg 50 kWh/m ³ 60, 000 hour life	Separate charge/discharge subsystems may be an advantage as may be alterna- tive use of water, H ₂ gas, and O ₂ gas.	MEDHUM Low cost cells may not be able to retain high reliability, efficiency lifetime.
SILVE R-ZINC	50 W-hr/kg 200 kWh/m ³ 500 cycles @40% DOD	Good charge retention, weight vs. poor cycle life. Calendar life < 2 years.	TOW
LITHIUM ADVANCED (LOW TEMP)	150 W-hr/kg 300 kWh/m ³ 300 cycles @75% DOD	Early stages of development. Improvements may be forthcoming.	HIGH Explosion is a con- sideration in L ₁ batteries.
FL/YWHEELS	40 W-hr/kg @2:1 speed red. Potentially unlimited cycle life.	Long life and alternate functions: CMG, AC-DC conversion.	HIGH Motor/Gen runaway and rotor failure.
		a Technologies ware Considered	

Figure 2-71. Six Energy Storage Technologies were Considered.

;

GDC/AST 81-019

Ì,

I MW CONSTRUCTION FACILITY

·	MASS OF STORAGE BATTERRES (kg)	INFTAL COMPONENT COST (\$M)	THANSPORT COST TO OBBIT (\$M)	O&M TOTAL COST COST FOR (REPLACEMENT) 20-YR LIFE (\$M) (\$M)	TOTAL COST FOR 20-YR LIFE (\$M)
NUTEL CADMIUM	35, 000	3.6	42	140 (5 -YR 1,1 FE)	185
ин кег пуркожи	23, 000	1.4	21	(સ્તાળ શાંત-દ) 00	.00
NHEXDEQAU MAATUS	004,11	6.3	14	(3477) NA-1) 004	420
и ₂ ^о 3 е иет. Сегл.	19, 200	4 . K	2:1	42 (7-YR LIFE)	75
FLA WHEEL	15, 400		18.5	5 (FULL, L.I.FE)	25

Figure 2-72. Task II Comparison of Estimates for Alternative Storage Options.

Table 2-10. Power Management Major Components Considered

ŕ

HISK	MED MED	MED	MED	MOI	I.OW	1 CW
REMARKS	ELIMINATES NEED FOR CONVERSION EQUIPMENT ELIMINATES NEED FOR VOLTAGE REGULATION EQUIPMENT CONTROLS COLLECTOR ECLIFSE THANSIENTS	REDUNDANT SWITCHES PER INTERCONNECT GREAT TECHNOLOGY POTENTIAL FOR DECREASING SWITCHING LOSSES	MODULAR EXPANSION OF SYSTEM POWER CAPACITY ON SAME PIVOT AXIS	 ASSEMBLY FITS ON SAME PIVOT AXIS AS HOTATING TRANSFORMERS 	STATE, HIGH-POWER SWITCHING • HIGH-RELIABILITY REDUNIDANT SWITCHING DUS TUHN-ON PROTECTION • REDUNDANT BUSES ED TURN OFF CIRCUITRY	REDUNDANT BUSES INCREASES HELIABILITY TUDULAR BUS INCREASES HEAT DISTRIBUTION & PROVIDES STRUCTURAL STRENGTH AT NO COST IN WEIGHT
SULSHALLS	NTROL •	 SOLID-STATE, 50-100 AMP NOMINAL VOLTAGE DROP OF 1.2V SPURIOUS TURN-ON PROTECTION FOHCED TURN-OFF CIRCUITRY 	 IIIGII AC FREQUENCY (20 KHZ) SINGLE PIASE SINGLE PIASE EFFICIENT TRANSFER OF AC POWER ACRUSS PIVUTING AXIS VS SOLID STATE CONVENTER 	 "FRANSFERS CONTROL AND DATA SIGNALS 	 SOLID STATE, HIGH POWER SWITCHING SPURIOUS TUHN ON PROTECTION FORCED TURN OFF CIRCUITRY 	 MULTIPLE BUSES TO ALL PORTS TUBULAH BUS CONSTRUCTION HIGH VOL FAGE, HIGH FHEQUENCY AC
	CONDITIONING	POWER BUS SWITCHING	HOTAHY TRANSFORMEH	OPTICAL SLIP RINGS	POWER DISTRIBUTION NETWORK	POWEH DISTRIBUTION BUSES

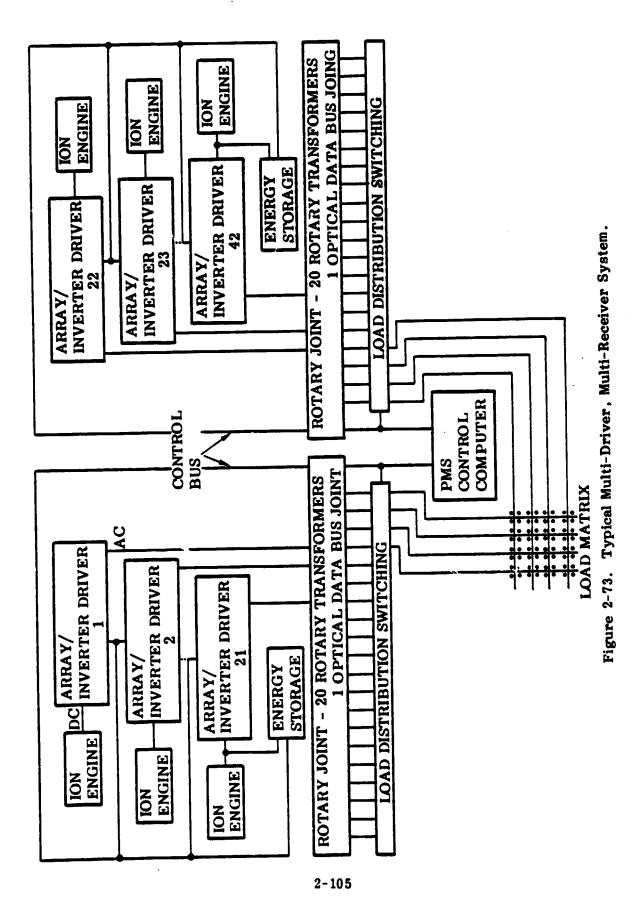
GDC/AST 81-019

Table 2-10. Power Management Major Components Considered (Continued)

.

MISK	MOT	TOW.	MED	MEI)	MED
nemarks	 REDUNDANT SWITCHING SYSTEM 	 HIGH FREQUENCY SIMPLIFIES FH TERING HIGH RELIABILITY REDUNDANT SYSTEM 	 NO ADDITIONAL AC REGULATION REQUIRED HIGH RELIABILITY REDUNDANT SYSTEM 	CAN PROVIDE AC FOR TERRESIRIAI. TYPE USER EQUIPMENT	 SYSTEM EXPANSION PROGRAMMABLE PROGRAMMABLE TO SUPPORT OTHER PRO- CESSING FUNCTIONS DURING FAILURES IN ATTITUDES OR ENVIRONMENTAL CONTROL SYSTEMS
CHARACTERISTICS	SOLID STATE VOLTAGE SENSE & SWITCHING	MULTIPLE HIGH FREQUENCY	RESONANT SOLID STATE CON- VERTERS	 PROVIDES LOW FREQUENCY AC OUTPUTS FOR PAYLOADS SINGLE PYASE OR THREE PHASE OUTPUTS 	 AUTOMATIC CONTINGENCY ACTION AUTOMATIC FRIORITY FLANNING EMERGENCY COMMAND PRIORITY OVER-RIDE REDUNDANT VOTING PROCESSORS LOAD DISTRIBUTION PLANNING
	•	•	•	-	=
COMPONENT	BATIFRY CHARGEN	AC DC CONVERTER	H) AC CONVERTER	AC DC CYCLOINVERTER	ADAPTIVE CONTROLLER

GDC/AST 81-019


b. A split inverter AC system with one set of DC/AC drivers that delivered AC to receivers at the radar low voltage system and with on array regulators for the ion engines.

In a split AC system, described in Reference 22, the entire power system is designed as a single, distributed resonant converter. A multimodule unidirectional, four-quadrant coverter driving a resonant circuit, including the source and load transformers and power transmission buses, converts DC into high frequency AC (like the usual front half of any resonant DC-DC converter). Unidirectional, four-quadrant converter modules are transformer-coupled to the transmission system at the load end to provide the loads with either DC or any frequency and format AC, depending on their individual requirements. (This end is equalent to the load-end half of a DC-DC converter.) A typical multiple-iriver, multiplereceiver system is shown in Figure 2-73.

Notice that the rotary transformer not only provides frictionless power transfer across the array rotary joint but also serves as the load inductance of the AC resonant converter. Rotary transformer efficiencies of 0.98 were projected, although data was sparse. For example, air gap losses for alternators are only briefly mentioned in standard textbooks. Apparently they were ignored quantitatively because they were not significant compared to other losses.

Review of these configurations revealed several alternate topologies which would be considered as a part of modularization activities during the next study phase. They were:

- a. Consideration of the topology of Figure 2-74 for the AC system. In this topology, a single set of AC drivers drives both the ion engine regulators and the radar power supply modules for the 10-megawatt radar. Advantages appeared to be lower mass for the ion engine power conditioning portion of the circuitry.
- b. Consideration of wing topology modularity levels compatible with on-array electrical annealing of solar cells and with lowest possible mass and cost.
- c. Consideration of alternate array and transmission voltage levels. Higher array voltages (900V) will minimize transmission losses and may permit increased ion engine specific impulse, thus reducing propellant mass; but they are also less safe, susceptible to arcing, and, for the DC system, they increase LEO plasma losses. Of these issues, lethality is certainly one to be considered carefully; it is also difficult to evaluate. For this study, it was decided to consider both higher and lower distribution/array voltages, and estimate the increased mass cost of lower voltage approaches, along with the higher voltage alternate topologies. This task was accomplished in Task III.

1

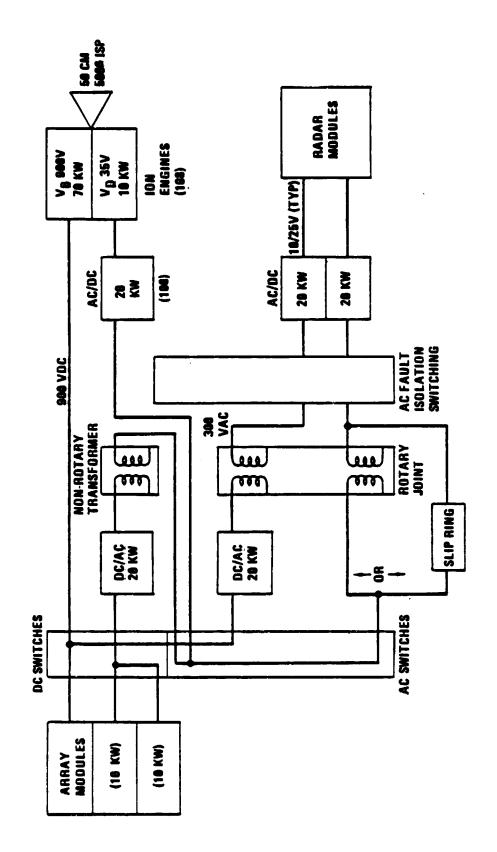


Figure 2-74. Hybrid Power Management and Control Block Diagram - GEO Radar System.

ł

: . . .

2.3 TECHNOLOGY GOALS — SENSITIVITY TRADES AND ANALYSES

Figure 2-75 shows how technology goals and benefits were developed.

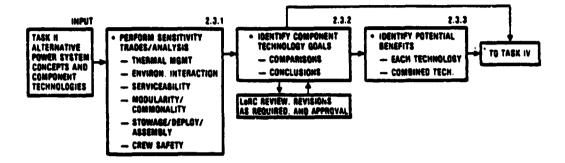


Figure 2-75. Technology Goals.

Trades and sensitivity studies conducted to optimize the various concepts considered in the evaluation included: Thermal management; environmental interactions; constructability, storage, and assembly on orbit; safety; and modularity.

2.3.1 <u>THERMAL MANAGEMENT</u>. The power generation, energy storage, and power management and control systems are all affected by the approach taken to their thermal management.

2.3.1.1 Thermal Management for the Power Generation System. The power generation options considered included planer arrays and concentrators as previously discussed. For the planer array cases, the study projected that no significant changes would be made in lowering the temperature of planer arrays beyond that experienced by today's planer arrays and initially projected during Task II. In particular, it was projected that the average emmisivity might run around 0.7 (0.9 for the back surface and 0.4 for the front surface). As a result, the LEO array temperature is expected to be approximately 60° C while the array is operating in the sunlight, and the GEO temperature should average around 30° C during insolation periods.

2.3.1.2 <u>Thermal Management System Sizing for Large Concentrators</u>. Solar cell thermal management systems identified in Subsection 2.2 were analyzed to determine pumped coolant radiator size, heat pipe spacing, and heat pipe radiator skin thickness. The following sections shown the extremely large pumped coolant radiator sizes required, and describe the thermal and weight effects of varying pipe spacing and skin thicknesses of the heat pipe system.

2.3.1.2.1 <u>Pumped Coolant Radiator Sizing</u>. A method for sizing pumped coolant space radiators was developed at Convair in an earlier study (Reference 23). The equations giving heat rejection per unit radiator area as a function of inlet, outlet, and environmental sink temperature is given below:

$$Q/A = \frac{2\sigma \eta_{f} \varepsilon T_{s}^{3} (T_{i} - T_{o})}{\tan^{-1} \left(\frac{T_{o}}{T_{s}}\right) - \tan^{-1} \left(\frac{T_{i}}{T_{s}}\right) + \frac{1}{2} \ln \left[\frac{(T_{i} - T_{s})(T_{o} + T_{s})}{(T_{i} + T_{s})(T_{o} - T_{s})}\right]}$$
(Eq. 10)

where

- Q/A = heat rejection flux, watts/m² (Btu/hr-ft²)
- σ = Stefan-Boltzman constant, watts/m² °K⁴ (Btu/hr-ft²-°R⁴)
- η_f = radiator fin efficiency = actual heat rejection/heat rejection if the entire radiator fin temperature were that of the coolant at the fin base = .90
- ε = radiator surface emittance = .85
- $T_s = sink temperature, °K (°R)$
- T_i = inlet temperature, °K (°R)
- $T_0 = outlet temperature, °K (°R)$

Calculations to determine (a) the coolant temperature rise as it passes across the solar cells, and (b) radiator sink temperature for low-earth and geosynchronous orbits (LEO and GEO), are required before proceeding with the radiator sizing equation.

a. <u>Coolant Temperature Rise</u> - Coolant temperature increase is given by the absorbed heat rate divided by the product of coolant mass flow rate (per unit area of solar cells) times specific heat:

$$\Delta \mathbf{T} = \frac{\mathbf{Q}/\mathbf{A}}{\mathbf{\dot{w}}\mathbf{C}\mathbf{p}} \tag{Eq. 11}$$

For a given velocity, the mass flow rate per unit area of solar cell will vary with passage depth. Calculated fluid temperature rise is shown in Figure 2-76. Coolant temperature rise is seen to be very small compared to the temperature difference across the boundary layer. A temperature rise of 5.6° C (10°F) will be used in the radiator sizing calculations.

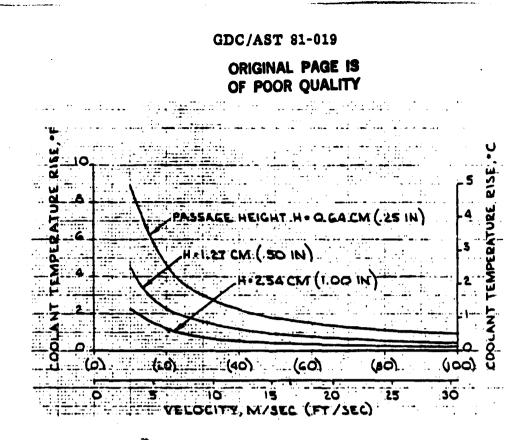


Figure 2-76. Variation of Coolant Temperature Rise with Passage Height and Velocity.

- b. <u>Sink Temperature</u> Radiator environmental sink temperature is the temperature the radiator would come to with no heat load on the fluid. Skin temperatures -59°C (-74°F) for LEO and -110°C (-167°F) for GEO were calculated, using the configuration of Figure 2-26 and the orbital average space heating, view factor, and surface property assumptions of Table 2-11.
- c. <u>Radiator Sizing</u> Equation 10 was used to calculate four heat rejection flux cases (two cell temperatures and two coolant velocities) at LEC and the same four cases at GEO. The two solar cell temperatures analyzed are 200°C (392°F) and 125°C (257°F). The two coolant velocities are 3 and 15m/sec (10 and 50 ft/sec) with corresponding coolant boundary layer Δ temperatures of 193°C (348°F) and 53°C (93°F). These assumptions result in coolant temperatures (radiator inlet temperatures) of 7°C (44°F) and 147°C (296°F) for 200°C solar cells and -68°C (91°F) and 72°C (161°F) for 125°C solar cells. Calculated heat rejectionfluxes are summarized in Table 2-12. The highest (best) heat rejection flux occurs at GEO (lower sink temperature) for the case of the highest coolant temperature (200°C cell and velocity = 15m/sec).

ble 2-11.	Assumptions for Calculating Radiator Sink Temperatures
Solar hea	it flux = 1350 w/m ² (429 Btu/hr-ft ²)
Earth the	ermal heat flux = 237 w/m^2 (75 Btu/hr-ft ²)
Radiator	direct solar heating (LEO and GEO) = zero
Primary :	reflector earth heating during GEO = zero
Primary :	reflector (both sides) view to earth during LEO, F = .40
Radiator	(one side) view to primary reflector, $F = .35$
Radiator	(both sides) view to earth during LEO, $F = .40$
Primary :	reflector front surface:
Solar	absorbtance, $\alpha_{\rm g}$ = .19
Emitt	ance, ± = .75
Primary :	reflecter back surface:
Emitte	$nce, \epsilon = .85$

Table 2-12. Summary of Radiator Heat Rejection Fluxes, W/m^2 (Btu/hr-ft²).

	LI	30	GE	0
	Cell Temp = 200°C	Cell Temp = 125°C	Cell Temp = 200°C	Cell Temp = 125°C
Velocity = 3 m/sec	164 (52.1)	N/A*	226 (71.6)	42 (13.3)
Velocity = 15 m/sec	1224 (388)	503 (159.5)	1278 (405)	565 (179.2)
* Radiator in	let and outle	t temps are be	low sink temp.	,

To determine required radiator area, a 10-megawatt power output system was assumed. Cell efficiency dependence on temperature was assumed to follow the equation shown below:

$$\eta = .17 - .002 \times .17 (T - 28^{\circ}C)$$
 (Eq. 12)

where: T = cell temperature, °C

Calculated required heat rejection rates are 7.91×10^7 watts $(2.70 \times 10^8 \text{ Btu/hr})$ for 200°C cells and 6.27×10^7 watts $(2.14 \times 10^8 \text{ Btu/hr})$ for 125°C cells. Required radiator areas are shown in Table 2-13. Note that both sides of the radiator would be used to achieve the areas shown. The areas are all so great that none of the cases investigated appears practical.

ORIGINAL PAGE IS OF POOR QUALITY

	Cell Temp	Cell Temp	Cell Temp	Cell Temp
	= 200°C	= 126°C	= 200°C	= 125°C
Velocity = 3 m/sec	4.81 × 10 ⁵ (5. <u>1</u> 8 × 10 ⁶)	N/A	3.51 × 10 ⁵ (3.78 × 10 ⁶)	1.51 ×10 ⁶ (1.62 × 10 ⁷)
Velocity = 15 m/sec	6.47 × 10 ⁴	1.24 × 10 ⁵	6.19 × 10 ⁴	6.19 × 10 ⁵
	(6.95 × 10 ⁵)	(1.24 × 10 ⁶)	(6.66 × 10 ⁵)	(66.6 × 10 ⁶)

Table 2-13. Summary of Required Radiator Areas, m^2 (ft²).

2.3.1.2.2 <u>Heat Pipe Spacing and Fin Thickness Sizing</u>. Heat pipe spacing and radiator fin thickness sizing are analyzed in this section for the spacecraft configuration shown in Figure 2-45 and heat pipe arrangement shown in Figure 2-46. The spacecraft thermal model employed to determine the heat load on the radiator is shown in Figure 2-77.

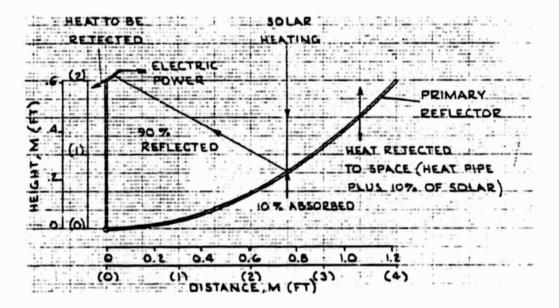


Figure 2-77. Spacecraft Thermal Model for Heat Pipe System.

The primary reflector will radiate to space all the heat conducted down the heat pipes from the adjacent concentrator plus the absorbed part of direct solar irradiation (assumed to be 10%).

A major objective of this analysis is to define a heat rejection/primary reflector system which is weight/cost effective with planar arrays. The weight per unit aperture area of the concept shown in Figure 2-46 is presented in Figure 2-78 as a function of aluminum sheet primary reflector thickness and heat pipe spacing.

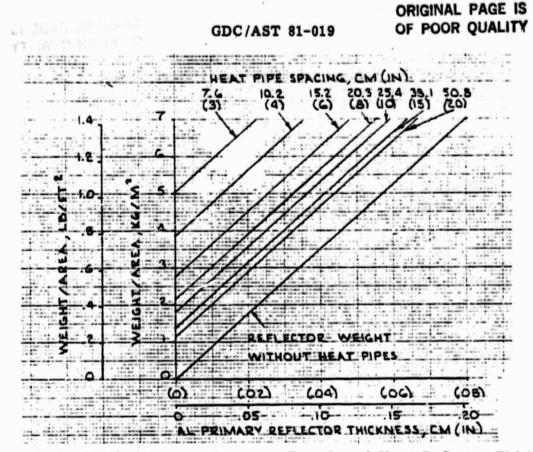


Figure 2-78. Weight/Aperture Area as a Function of Sheet Reflector Thickness and Heat Pipe Spacing.

The heat pipe cross-section is simular to that of existing heat pipes tested at Convair (Reference 12) and, as noted earlier, may not be the lightest weight design. A system weighing in the range of 2 to 3 Kg/m^2 is sought.

The thermal effect of spreading out the heat pipes is twofold. First, the heat load per pipe increases. With the arrangement shown in Figure 2-46, the evaporator area for heat transfer to the heat pipe increases with greater spacing, so the heat flux with respect to the boiling limitation is not affected. However, the greater heat load per pipe does affect performance with respect to the wicking limitation, and this should be analyzed in any future studies. The second thermal effect of spreading out the heat pipes is an increase in heat pipe temperature caused by the reduction in fin efficiency of the primary reflector. The distributed temperature in the fin (primary reflector) will attain a high enough level to radiate away all of the heat carried by the heat pipe. The less the fin efficiency, the greater is the temperature "sag" in the fin material.

Heat pipe spacing of 10 to 25 cm (4 to 10 inches) were thermally analyzed. Temperature distribution in primary reflectors of .025 and .05 cm (.01 and .02 incnes) thickness were determined using the Convair Radiation/Convection Fin computer program P5359 (Reference 24). Example temperature distributions are illustrated in Figure 2-79. Greater specing causes the heat pipe (fin root) temperature to increase. It was determined in Subsection 2.2 that a heat pipe temperature of approximately 100°C (212°F) was the maximum allowable without surpassing the

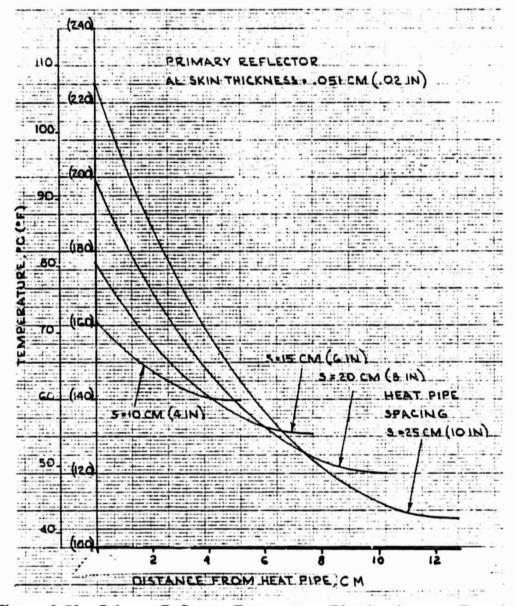


Figure 2-79. Primary Reflector Temperature Distribution as a Function of Heat Pipe Spacing.

boiling limitation at the evaporator. Figure 2-80 summarizes heat pipe (fin root) temperatures for the cases analyzed. The two points indicated by footnotes in the figure are both under the maximum allowable temperature. Primary reflector/ heat pipe weights at these design points are 3.6 and 4.0 kg/m².

2.3.1.3 <u>Small Modular Concentrators</u>. The thermal management of the small modular concentrators described in Subsection 2.2 was conducted using some of the same assumptions that had been made for planer arrays, namely, that the back surface of the concentrators would be painted black and have high emmisivity -- 0.90 to 0.95. The front surface could use a reflective aluminum or silver finish overcoated with multilayer quarter-wavelength silicon of SiOx type material.

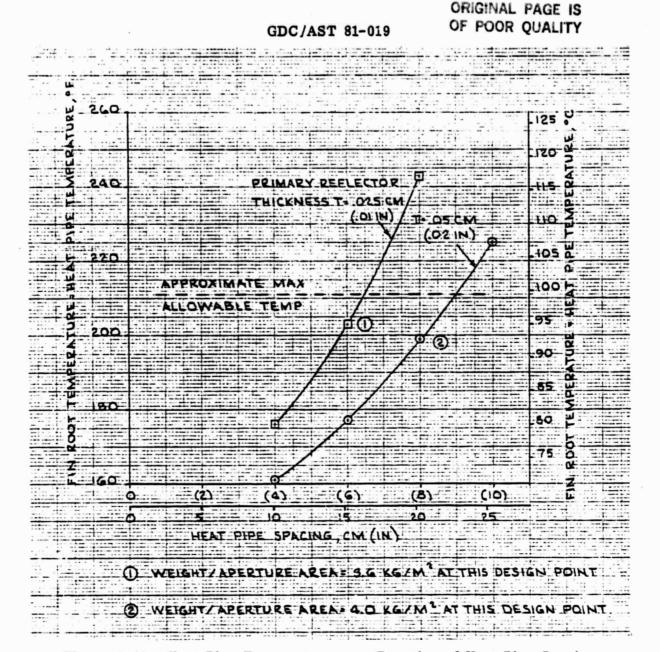


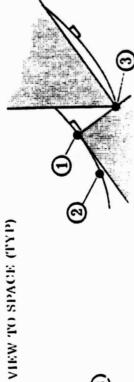
Figure 2-80. Heat Pipe Temperature as a Function of Heat Pipe Spacing and Reflector Thickness.

These overcoats could tune the front surface so that it provided a highly reflective surface in the visible range usable by the solar cell, and a highly emmissive (E = .65 infrared surface). These type surfaces would be preferred to a more cost-effective teflon overcoating, because they can be made conductive by adding indium oxide surface layers in addition to the silicon dioxide layers. View factors to space are somewhat less for the small modular concentrators than for planer arrays because of geometrical shielding by the reflector sides.

The two competing small concentrator configurations each partially block their own cooling black body radiation to deep space. The scope of this study did not permit a detailed analysis of this blockage. The two configurations can be compared cursorily with the following results. Both the small semiparabolic trough and the eggcrate geometries block about 35% of the radiated energy. Figure 2-81 shows an estimate (made using a protractor) of three representative points and their approximate blockage. The blockage for the eggcrate could be reduced by eliminating the light cone, but then the design would become more pointing angle sensitive. Light prisms added to the trough design, on the other hand, do not appear to cause significant blockage.

Thermal gradients of between 10 and 20 degrees centigrade from the cell proper to the radiator extreme edge were calculated. The Stephen Boltsman equation was used to calculate the temperature; which ran from 90 to 100 degrees centigrade.

2.3.1.4 Energy Storage Components. The thermal management of the energy storage components was also assumed to be done passively for components mounted on the array. In previous studies accomplished for NASA, the modularity of these components had been driven up to achieve higher reliability. In this specific case, modularity levels for the energy storage component have been established to be approximately 10 to 25 kilowatt hours. At this level, passive thin-fin cooling is possible for the component, as long as view factors are not restricted unduly. It was projected that this could be accomplished. The density of the radiators involved would be approximately 3 kilograms per square meter. The thermal management of the power generation and control system was also assumed to be done passively since these components would be modularized at the 25 kw level, and (since they are highly efficient) very small amounts of power are radiated into space and wasted.


2.3.2 ENVIRONMENTAL INTERACTIONS. The GEO Radar Illuminator and the LEO Space Construction Facility must be designed to survive the natural environments that they will encounter on station. Since the radar will be assembled at LEO and transitioned by GEO, it must also survive the injection environment. Environment factors include:

- a. Natural Radiation
- b. Micro Meteoroid Particles
- c. Space Plasma and its losses/arcing susceptability
- d. Injection, stationkeeping, and docking G loads and vibration loads.

The environments can affect power generation, energy storage, systems, and Power Management Systems.

2.3.2.1 <u>Power Generation — Environmental Effects</u>. The degradation of solar cells as a result of exposure to natural electron and proton radiation has been described in the literature and is well understood, although more completely for silicon than for Gallium Arsenide. This study projects that silicon planar array degradation will not be significantly decreased by efforts now underway to identify and remove the causes of the imperfections which made silicon susceptible. The judgement was based on current literature (Reference 20) and, of course, is

DC/AST			_
	50% 30% 40%	50% 25% 37%	10% 60% 35%
	BACK SIDE FRONT SIDE AVG	BACK SIDE FRONT SIDE AVG	BACK SIDE FRONT SIDE AVG
	D NEAR CELL BLOCKAGE	BLOCKAGE	BLOCKAGE
	$\begin{array}{c} 0 \\ 70\% \\ 35\% \end{array}$	20% 50% 35%	
	BACK SIDE FRONT SIDE AVC	BACK SIDE FRONT SIDE	BACK SIDE FRONT SIDE AVG
	O NEAR CELL BLOCKAGE	MID RADIATOR BLOCKAGE	FAR-OUT BLOCKAGE
	Θ	6	6

	©
D	O
	\square

Figure 2-81. Radiator Heat Rejection View Factor Blockages for Two Representative Small Concentrators.

susceptible to a technology breakthrough. It is in keeping with the philosophy and ground rules of the study, which were: do not postulate the existence of any components or processes which had not been demonstrated, in principle, in the laboratory. In this regard, the more pessimistic view of silicon contrasts to the more optimistic view maintained for Gallium Aluminum Arsenide single-band cell annealing—which has some supporting data (References 25 and 26).

Given the above projection for silicon, the environmental radiation effects on silicon blankets were then calculated based on Reference 8 projections, and they were included in the efficiency projections made for silicon.

For the LEO Space Construction Facility, the effects of trapped particle radiation are small, since the 225 mile orbit is low. However, for the 20-year lifetime, there is a significant probability of a 1972 type solar flare occurring once per decade. This dosage could be as high as 4×10^{10} protons or 1.2×10^{14} 1 MEV equivalency—this dosage then causing a 9% drop in output (Reference 27). Combined with a 2% drop in adhesive darkness; the overall loss could be 11% every 10 years (Figure 2-82).

For the GEO Radar Illuminator, the same flare activity and the higher trapped electron fluence combine to require additional silicon array modules added every five years. Also, as discussed under operating options, the LEO to GEO injection causes severe degradation if slower electric propulsion is used.

2.3.2.1.1 <u>Radiation Effects on Gallium Arsenide</u>. In contrast to Silicon Planar Arrays, this study projects that Gallium Arsenide cells will be designed with the capability of being re-annealed to effect significant recoveries from radiation degradation, including that resulting from solar flares, should they occur.

The currently proposed schemes for accomplishing this involve scanning the array with laser pulses (complex and possibly hazardous) or operating a concentrated array at a temperature high enough to result in continuous annealing (accompanied by a continuous reduction of conversion efficiency).

This study assumes the array has on-array regulation and array modularization with accompanying switching. In these cases, it is possible to direct a large current through the photovoltaic cells by applying a voltage in excess of the opencircuit voltage. This technique could be used to periodically heat segments of the array to an annealing temperature by drawing current from other array segments and dissipating it in the cells internal resistances. Accordingly - Gallium Arsenide Planar arrays were assumed to be electrically re-annealable - with recovery from 90% of radiation degradation.

2.3.2.1.2 <u>Radiation Effects on Concentrators</u>. The development of concentrators offers some significant potential benefits as far as radiation damage is concerned. These occur because the solar cells area is small compared to the mirror area, and therefore, thicker glass coverslides can be utilized to the front surface of they all. In the cases of the mini parabolic trough and mini cassegrainian

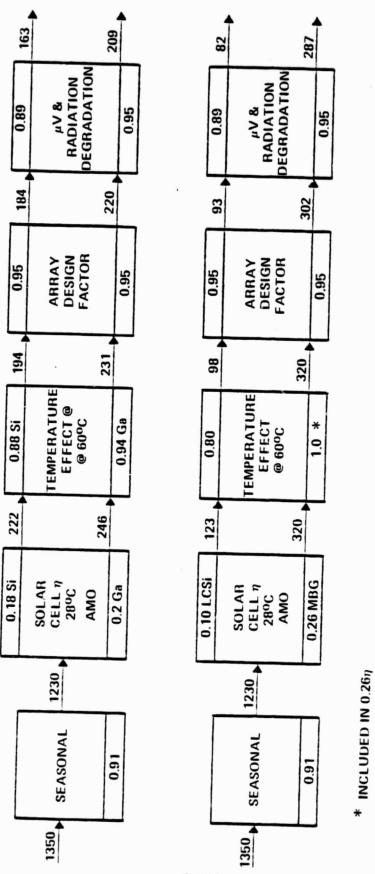


Figure 2-82. Efficiency Chains LEO Planar Array.

BOTTOM MIDDLE - "LOW COST" SILICON

TOP MIDDLE – GaAIAs

TOP - SILICON

BOTTOM – MULTIBANDGAP

geometries, the cells are also protected by some thickness of mirror as well. The back surface of the cell is also protected by a thicker substrate/radiator surface. The net effect should be two orders of magnitude reduction in flux with a 5% power reduction over the 20-year lifetime, when the decreased dosage is combined with electrical annealing.

When these effects are combined with the potential for on-array annealing of the Gallium Arsenide cells, utilized — concentrators show significant benefits.

2.3.2.1.3 <u>Micro-Meteoroid Environmental Interaction</u>. The effects of micrometeoroids on Solar Array performance appear to be small, certainly smaller than radiation effects. This conclusion is based on the observed small amount of degradation which occurs in LEO. Other workers share this view, (Reference 28). On the other hand, the size and life of the solar arrays for multimegawatt systems will increase by three to four orders of magnitude over 1970 systems, and there is a significant likelihood of collisions with particles large engough to penetrate the thin cover slides of Planar Arrays and perhaps fracture the cell. A cursory analysis, based on collison dynamics equations described in Appendix A of this report and on the meteoroid statistics in NASA SP-8013, suggests that up to 8×10^7 collisions capable of coverslide penetration could occur over the 20 year life. Further evaluation is required in this area, should concentrators not be developed.

2.3.2.1.4 <u>Micro-Meteoroid Effects on Concentrator Mirrors</u>. Since the publication of ASA SP-8013, and experiment was conducted by NASA on the SERT II spacecraft in Polar Orbit (Reference 29). The temperature of highly polished aluminum was observed over a 5 year period, and found to vary insignificantly. Previous laborabory bombardment with particles in the 10^{-11} gm mass range had indicated variation in thermal α/ϵ under bombardment, the lack of temperature change over the 5 year orbit is interpreted to mean that micro-meteoroid damage is not appreciable. As a result, concentrator mirror performance should be projected to show only minor mirror degradation over the 20 year life. A degradation value of 10 percent was used for the efficiency calculations.

It should also be observed that because the cell area is only 1 to 3 per cell of the aperture (mirror) area, the incidence of cell damage from larger meteoroids should be one to three orders of magnitude less if the meteoroid environmental specifical is later increased back to the levels of NASA SP-8013.

2.3.2.1.5 <u>Plasma Interactions</u>. A body of literature exists which indicates that the space plasma interacts with the power generation and management system in several ways. They are:

a. The plasma at GEO may indicate charge buildup on dieletric surfaces, and these may later discharge causing power system failures, and noise which adversely affects satellite performance. (Reference 30.)

- b. The arrays may collect electrons and ions from the plasma, a shunting loss as far as the array is concerned. (Reference 30.)
- c. The plasma might support arcs from high voltage solar cell conductors to ground.

2.3.2.1.6 <u>Dielectric Chargeup and Discharge</u>. Data now exists which confirms charge buildup phenomena on dielectric surfaces. Based on this data, it is projected that the best static discharge prevention approach for dielectric surfaces will be to conductively coat the surfaces to keep them close to ground potential, or at least close to the potential of their adjoining cell conductors, so that there is a relatively low impedance to ground. Any surface not inherently conductive would be coated or painted to make it conductive. As discussed previously, this is the reason for utilizing indium oxide overcoat on the reflector front surface and radiator surfaces evaluated by this study. Conductive coatings and paints or anodized aluminum surfaces should be employed.

2.3.2.1.7 <u>Plasma Losses</u>. As array voltages become higher, it is expected that losses caused by plasma short circuiting of the array will increase, because plasma electrons will be captured. Cursory studies for particular geometries were conducted for past power system studies (Reference 30). They indicated some loss for the two particular geometries considered. The losses are a function of array voltage lower voltages (100-200 Vdc) minimize plasma losses and higher voltages (900-1000) make them large and significant (5-10%), but not insurmountable.

The accurate prediction of these losses requires the use of software now under development by NASA, and even then is very dependent on the geometry of the spacecraft and the detailed array voltage distribution strategy. Eventually, this entire problem should be attacked and solved for spacecraft over several power ranges such as 10-100 KW 100-1 mW, and 1-10 MW, and with several potential likely mission configurations. The investigation should also consider alternate insulation voltage partitioning strategies, and their possible negation by micrometeoroids, with subsequent increased arcing probability.

a. <u>Planar Arrays - Plasma Concepts Summarized</u>. For the planar array, the front surface of the cells is at the potential defined by the cells. If the back surface is slightly conductive (an indium oxide overcoat or black paint with a sheet resistance of $1 \ k\Omega/\Box$) and if the paint is in contact with the cell conductors intermittently, the paint will represent a high impedance shunt across the cells. It should keept the array blanket from becoming charged and, at the same time, limit arcing and limit the shunt losses to 1% or less of the system output. Because the blanket is non-conducting, the initiation of arcing to the structure from the cell conductors requires a large voltage gradient, since the back surface is some distance from the truss supports. Therefore, it is projected that planar array can support the high voltage concept of this study, albeit with some plasma and conductive surface shunting losses.

b. <u>Mini-Concentrators — Plasma Concepts Summarized</u>. The min-concentrator can also be designed using many of these same concepts. The reflectors/ louvers can be insulated from the truss structure just as the planar array blanket is, so that they are close to the potential of the cells. If this approach works to prevent chargeup/discharge phenomena for planar arrays, it should work for the mini-concentrator as well.

Arcing from the solar cell conductors to the reflectors could conceiveably short out sections of the array, except that by holding the voltages of the troughs to close to the solar cell values, the arcing should be no more likely than it is for todays honeycomb-backed arrays operating at the same voltages. Therefore, it is projected that mini-concentrators should be able to use high distribution voltages (using series-connected louvers) also with some plasma loss.

2.3.2.1.8 Launch Environmental Effects. The launch environment will affect the power generation approach, (either planar arrays or concentrators) the energy storage system components, and the power management component.

The frame modules used to package and align the miniature troughs of the concentrator system are shown in Figure 2-12. The 1.5-meter-long troughs should have quite a low natural frequency: excitation of the significant bending modes will probably come mostly from acoustic energy and should be handled easily by the structure. A greater potential source of interaction would be linear acceleration from the shuttle engines. If it were normal to the plane of the trough, it could be a problem. However, by packaging the array so that the troughs run longitudinally along the length (X-axis) of the shuttle cargo bay, the effect and interaction of this load is minimized. This packaging approach is viable, as long as it is included in cargo container baseline designs as they emerge.

Planar array blankets can be rolled or folded so that they become a compact mass during launch phase. This compaction should permit them to also tolerate the launch environment without penalties imposed on their design.

As discussed in the section on storability, the launch environment should also be well tolerated by Energy storage, power management, and beam builder components and robotic machines.

2.3.2.2 Energy Storage and Power Management Components. The potential energy storage candidates, batteries, flywheels, fuel cells, and power electronics components are not known to be sensitive to the natural particular radiation environment, or to plasma interactions, assuming the operating and power distribution voltages are selected so that losses are not excessive. Of course, their solid state control devices, if not shielded, may suffer some degradation, but good packaging should make these effects negligible.

Micro-meteoroids are another concern. The Fuel Cells, Electrolysis Storage System, with its reactant tanks and gasses under pressure, could leak from one puncture if not protected. In fact, this study penalized the original suppliers projected mass estimates, so that extra shielding mass was included.

Flywheels and batteries were not penalized. Instead, it was assumed that their casing and mechanical parts would not be as adversely affected, since cross actions are smaller and they are modular. All energy storage options were assumed to be capable of being designed to withstand the launch environment of the shuttle; in particular, sodium sulphur batteries can be launched frozen.

The solid state component of the power management and control system should also be protected by careful packaging design, which will place them inside of thickness of their own and adjacent structural components, so that degradation caused by radiation and micro-meteoroids is minimized.

2.3.3 <u>STORAGE, DEVELOPMENT AND ASSEMBLY</u>. The three types of miniature concentrator were all evaluated for their constructibility attributes, benefits, and efficiencies. The minitrough configuration has a line of solar cells which is easy to assemble using automatic machinery. The cells can be easily assembled, wiring to them can be easily accomplished, and an entire trough can be fabricated in one easy step. On the other hand, the other two square configurations may require hand wiring to interconnect the solar cells. Even if automated, the complexity of automation appears to be greater, since the sides of the "eggcrates" block the easy installation of wiring on the front side. Back-side wiring would require accesses to the cell through holes in the radiator, or separate mirror/radiator structures, a potential weight penalty.

Fabrication of the Planar Array blankets, with Silicon or Gallium Arsenide cells is under development for arrays such as the SEPS system and poses no particular technology problem.

Likewise, storage of small modular concentrators and planar arrays, with their reqasonably high densities, should pose no known problems. On orbit, fabrication of the arrays would make use of beams fabricated using the beam builder, while the attached space crane (a part of the space construction facility) would maneuver the beams into position, and either the crane or a robotic machine would place the array modules in their desired final position. The truss itself has dimension which can accommodate manned maneuvering, if the danger to the astronaut from meteoroids can be reduced to an acceptable level.

Installation of Power Management and Energy Storage components could also be done robotically (by a robot maneuvering along and inside the beams) or manually.

2.3.4 <u>SAFETY</u>. If the arrays and power system are to be designed to be modularly interconnected to provide 900-1000 volts, then the entire spacecraft under test will require safety caging or more elaborate safeguards to assure lethality risk is minimized. This issue will require careful consideration prior to the final

design decision of array voltage. In each case the benefit of the mass saved and corresponding transportation cost savings must be weighed against this risk.

2.3.5 MODULARITY AND BENEFITS ANALYSIS.

ł.

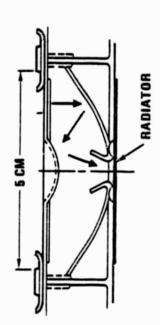

2.3.5.1 <u>Power Generation - Mini-Concentrators Modularity</u>. Modularity studies for three concentrator geometries were conducted in this portion of the study. The three types of concentrators were the minitrough, the mini-Cassegrainian dish, and a minitruncated pyramid (see Figure 2-83). The minicassegrain configuration and minipyramid concentrator both utilized a 5 cm² aperture. The geometrical performance of the three concentrators considered is presented in the tabular data, which shows that both the minitrough and minipyramid have a fairly significant advantage in the amount of light received over the minicassegrain system. The advantage comes about because the Cassegrainian secondary reflector reflects aperture light (which, in the other configuration, would pass through to the solar cells) while also absorbing aperture insolation.

Table 2-14 shows the beginning of life performance for the three different miniconcentrators with three different cell types. The table also shows the effect of performance of having the mini-concentrators misaligned from the insolation vector when only one gimbal is utilized. Here the advantages of the minitrough become more evident to the reader. For all but one of the LEO and GEO configurations and all of the three cell types, the minitrough provides greater output power.* Table 2-15 summarizes the performance of the small concentrators after their masses and the masses of their supporting hardware are estimated for the various cell configurations. The one gimbal minitrough appears to be the least massive system.

Finally, cost estimates were made for all the configurations studied. Tables 2-16 and 2-17 shows this data. The cost effectiveness of the minitrough configurations then becomes evident, it projects the lowest cost.

2.3.5.2 Energy Storage - Flywheels and Batteries. When the sensitivity trades and benefits analysis of the energy storage alternatives were completed, two technologies appeared to offer significant benefits, Flywheels and sodium sulfur batteries (see Figure 2-84). The other two high energy systems, $2nBr_2$ and LiMS, were not as attractive because of their lower specific energy. $2nBr_2$ also requires pumps and fluid loops, and appears to be less efficient and less capable than the NaS alternative recommended. The LiMS approach does not have active loops but also has probable penalties due to low efficiency. Both of these systems have a solid plate electrode, which is perhaps more vulnerable to life cycling degradation than the liquid NaS system.

-		IEW
	- gem	SIDE VIEW
nus + +	Ŋ	
	X	

- 5 CM -

SOLAR Cell(S)

ITEM	MINI	MINI-TROUGH	MINI-CA	MINI-CASSEGRAIN	MINI	MINI-PYRAMID
APHELION INSOLATION		1310 W/M ²		1310 W/M ²		1310 W/M ²
SECONDARY BLOCKAGE	NONE		(-10%)	1179	NONE	1310
MODULE FRAME LOSS	(-2%)	1283	(- 2%)	1155	NONE	1310
PRIMARY ABSORPTION	(%8-)	1181	(%8 -)	1063	NONE	1310
SECONDARY ABSORPTION	NONE		(*8 -)	988	NONE	1310
LIGHT CONE LOSS	(**)	1134	(- 4%)	948	(10%)	1179
ENERGY AVAILABLE AT CELL						
ARRAY WING CONCEPT						
2 GIMBAL – NORMAL Z	NONE	1134	NONE	948	NONE	1179
1 GIMBAL						
LEO 5° L	(-1%)	1122	•	•	(-10%)	1061
GE0 23° L	(11%)	1010	•	•	(-50%)	590
END OF LIFE						
NORMAL	-15%	963	-25%	111	· 8%	1084
LEO	-15%	953	0	•	- 8%	976
GEO	-15%	857	•	•	×8 ·	543

Figure 2-83. Geometrical Performance - 3 Mini-Concentrators.

ITEM	MINI-TROUGH	MINI-CASSEGRAINIAN	MINI-PYRAMID
GAAS SINGLE CELLS (16% 7 AT 80°C)			
TWO GIMBAL NORMAL Z	181 W/M ²	152 W/M ²	203 W/M ³
ONE GIMBAL			
LEO 5°∠	180	0	182
GEO 23° ∠	161	0	102
TWO CELL (SANDWICH OR SPLIT SPECTRUM) $\eta_1 G_A A_S = 15, 6; \eta_2 G_A A_S = 8$			
TWO GIMBAL NORMAL	260	218*	292*
ONE GIMBAL			
LEO 5°	258	0	262
GEO 23°∠	232	0	146
MULTIBAND GAP – η = 28%; CR = 5			
TWO GIMBAL NORMAL	318	265	356
ONE GIMBAL			
LEO 5° ∠	314	0	320
GEO 23° /	282	0	178

Table 2-14. BOL Performance - Three Mini-Concentrators.

SANDWICH ONLY

Table 2-15. Final Trades Support the Minitrough	Table	2-15.	Final	Trades	Support	the	Minitrough
---	-------	-------	-------	--------	---------	-----	------------

ITEM	MINI-TROUGH	MINI-CASSEGRAIN	MINI-PYRAMID
CELL AREA AS A PERCENTAGE OF APERTURE AREA	CR = 50 2%	CR = 50 · 125 1 · 2%	CR = 5 20%
CELL COST - \$/WATT ONE CELL (1985) TWO CELLS (1985) MULTIBAND GAP (1990s)	50 \$/W 100 \$/W 10 \$/W	50 \$/W 100 \$/W 10 \$/W	\$500/W \$1000/W \$100/W
SECOND GIMBAL MASS WITH ATTITUDE CONTROL AND EXTRA STRUCTURE			
10 MW RADAR 2.5 MW SCF	10,000 Kg 2,500 Kg	10,000 Kg 2,500 Kg	10,000 Kg 12,500 Kg

The thermal analysis of radiator sizing for the alternatives, conducted during this phase of the program, was based on the estimated waste heat radiation required, and on the use of heat pipes/radiators/non-fluid/non-pump components which are located directly adjacent to the energy storage modules radiator. Mass estimates were based on 3.2 Kg/M^2 , and on the Stefan Boltzan equation for the rejections temperatures specified in Table 2-18.

Table 2-16. Cost Comparison LEO Power Generation.

ALL AND A

2.5 MW SPACE CONSTLUCTION FACILITY

	MASS OF POWER GENERATION SYSTEMS (kg)	AREA (M ²)	CELL AREA (M ²)	COST (\$M)	COST TO ORBIT (\$M)	COST OF ROUTINE MAINTENANCE	TOTAL COST (\$M)
PLANAR ARRAYS							×
o SILICON	8,900	15,300	15,300	139	12	\$15M IN	168
	9,700	11,950	11,950	215	13	10 YEARS	230
o LC SILICON	39.790	30,600	30,600	194	52	\$15M IN	267
	15,100	10,300	10,300	295	20	10 YEARS	320
LARGE TROUGH							
MULTIBAND GAP **	55,000	10,000	200	135	85	ŝ	230
RANKINE HYBRID	50,900	8,400	170	100	99	\$10M 5 YFARS	196
LARGE SPHERICAL THERMO PHOTOVOLTAIC*	26,900	5,000	500	50	35	\$25M 5 YEARS	160
SMALL MODULAR CONCENTRA- TORS	- v						
TRUNDATED PYRAMID					5		-
TWO CELL	40,700	10,200	2,000	99	70	1	911
MULTIBAND GAP**	34,000	8,600	1,700	44	44	I	88
TWO CELL	48,400	13,200	132	42	63	١	105
MULTIBAND GAP**	40,300	11,100	Ξ	32	53	1	85
MINI TROUGH							-
TWO CELL	22,100	11,500	230-600	40	29	1	69
MULTIBAND GAP**	18,200	9,300	230	40	24		64
*SAFE FY PROBLEMS LIQUID COOLING HIGH RISK.						**HIGH RISK TECHNICAL BREAKTHROUCH REQUIRED.	ECHNICA

LIFE CYCLE TOTAL (\$M)	473 453	665	584 LATIONS	684		390	322	340	290	222	203	TOWN
COST OF I ROUTINE C MAINTENANCE T (RADIATION) (s	SMALL	SMALL 584 LEO SCF CALCULATIONS	\$342 5-10 YRS		SMALL	SMALL		SMALL	SMALL	SMALL	**HIGH RISK BROHDRS BROHDRS
COST TO LOW EARTH ORBIT MI (\$M) (J	-	80	286 BECAUSE OF	142 \$3		210	172	250	210	132	103	
COST (\$M)	423 348	585	298 NATED	200		180	.150	90	80	06	100	
SOLAR CELL AREA (m ²) (49,000 104,000	36,200	- ELIMINATED	1,000		8,200	6,800	530	440	1,020/	2,400 830	
AREA (m ²)	49,000 49,000 104,000 104,000	36,000	40,500 GENERATED	20,000		40,800	34,000	53,000	44,500	51,000	41,500	
MASS OF POWER GENERATION SYSTEMS (kg)	31,100 81,300	61,200	220,000 DATA NOT GEN	109,000	W	160,000	136,000	192,000	160,000	101.000	79,500	
	PLANAR ARRAYS Gaálas Sillicon	MULTIBAND GAP**	LARGE TROUGH MULTIBAND GAP** RANKINE HYBRID ¹	LARGE SPHERICAL THERMO- PHOTOVOLTAIC	SMALL MODULAR CONCENTRA- TORS	TRUNCATED PYRAMID TWO CELL	MULTIBAND GAP**	MINI CASSEGRAIN TWO CELL	MULTIBAND GAP**	MINI TROUGH TWO CELL	MULTIBAND GAP**	

Table 2-17. 10 MW GEO Radar Mass and Cost Estimates.

		Ene	ergy Storage O	ption		Ste	orage Radiator In	npact
Option	lni, al Mass (kg)	Initial Component Cost (\$M)	Initial Transporta- tion Cost (\$M)	20 Year Replace- ment Cost (\$M)	Projected Life (Yr/DoD)	Mass (kg)	Radiator Component/ Transportation Cost (\$M)	Rej. Temp (^o C)
Nickel Cadmium	35,000	6.3	45.5	155.4	5/35%	800	0.65 1.05 } 1.7	-5
Present Sodium Sulfur	7,000	10.5	9.1	372.4	1	30	.1 .14	340
Long Life (5 Yr.) Sodium Sulfur	7,000	10.5	9.1	58.5	5/35%	30	.1 .04 .14	340
Nickel Hydrogen	23,000	13.9	30.0	87.8	7/35%	525	0.5 0.65 } 1.15	10
Silver Hydrogen	14,000	19.5	18.2	722.0	1/40%	650	0.55 0.85 } 1.4	10
H ₂ O ₂ Fuel Cell	11,500	71.5	15.0	103.8°	7*/75%	1525	0.9 2.9	90
Flywheels	17,500	18.6	23.0	5.0	20/75%	200	0.3 0.45 } 0.75	60

Table 2-18. Costs and Benefits of Alternative Energy Storage Options. (2.5 MW SPACE CONSTRUCTION FACILITY) 700 KW HR STORAGE (25% RESERVE CAPACITY)

		Inc	rement Impa	al Array Act	Total System		Tota	l System	NOTE:
Option	Expected Efficiency	Size (kW)	Cost (\$M)	Mass @ 100 W/kg	Initial Cost (\$M)	Initia! Mass (kg)	L.C. Cost	L.C. Mass	Life cycle costs and mass are for 20 year life.
Nickel Cadmium	0.8	820	41.2	8,200	95	44,000	250	150,000	
Present Sodium Sulfur	0.8	820	41.2	8,200	60	15,000	430	148,000	
Long Life (5 Yr.) Sodium Sulfur	0.8	820	41.2	8,200	60	15,000	120	36,000	
Nickel Hydrogen	0.83	790	39.5	7,200	80	31,000	170	77,000	
Silver Hydrogen	0.8	820	41.2	8,200	80	23,000	800	289,000	
H ₂ O ₂ Fuel Cell	0.5	1320	66.0	13,200	160	26,000	260	40,000	
Flywheels	0.85	780	39.0	7,800	85	25,500	90	25,500	

* Assumes 60% replacement of component (cost and weight) per 7 years.

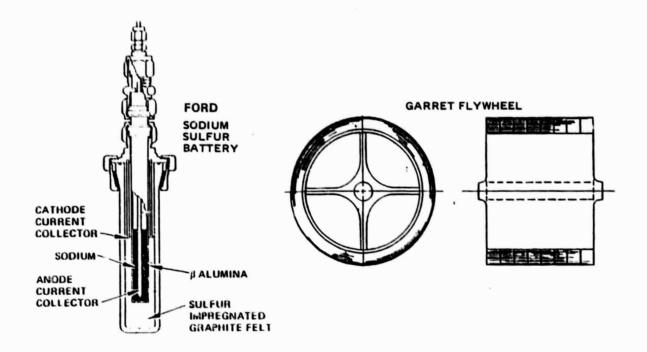


Figure 2-84. Energy Storage - Flywheels and Sodium Sulfur Batteries Could Support 30,000 - 120,000 LEO Cycles over 20-Year Life

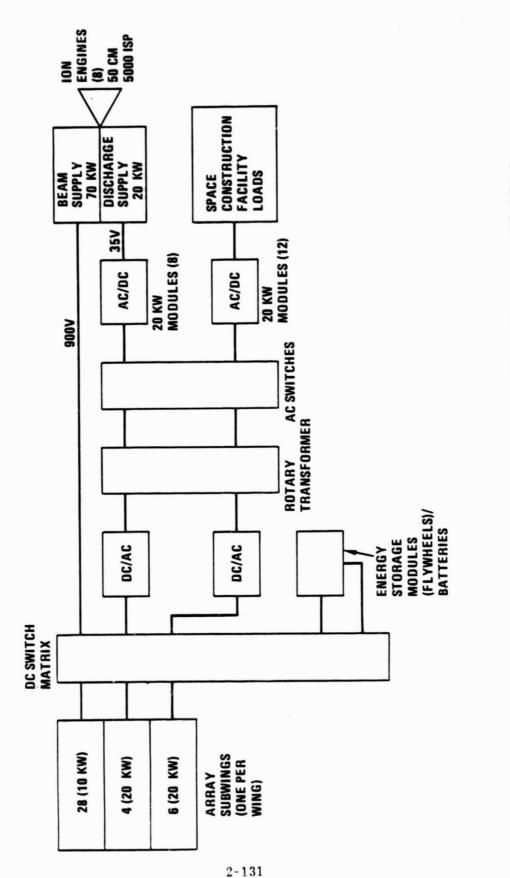
During earlier studies of electronics modularity (Reference 31), the recommended level of modularity for advance power system components was between 8-20 modules. This recommendation is based on the conclusions that:

- a. Low levels of modularity (from 2 or 3 up to 6 or 7) cost and weigh more, since the total system capability is significantly over-designed. For example, for a prime/backup 2-module configuration, the backup weighs and costs as much as the prime.
- b. Very high levels of modularity (100 plus 1 spare) are complex and require complex control, which itself may defeat the intended redundancy, and are therefore, more excessive and expensive than lower levels.

At the recommended modularity level of around 10, the cost and mass of spare modules is only 10% or so of the total cost, and the system should be manageable. Based on this approach, the modularity of the Flywheels was established by partitioning the storage requirement into approximately 10 modules on the two array wirings, so that acceptable cost and reliability would result. At this modularity level, each module would have an energy storage of 75 KWHR. For multiple rim flywheels made from Kevlar^R 49 (Reference 32 and Figure 2-84), the diameter of each flywheel was calculated to be slightly under 2 meters. This sizing is then compatible with shuttle payload bay geometry.

Sodium Sulfur modularity sizing was based on preliminary sizing done by Hughes under study to the Air Force (Reference 33). Again, a 25 KWHR modularity is feasible, three in parallel would provide a 75 KWHR module.

2.3.5.3 <u>Power Management System Modularity</u>. The Power Management and Control System Preliminary Concepts developed during Task II of this contract were inherently modular initially conceived. During this portion of the task several modularity alternatives were examined to estimate their potential benefits. They were:

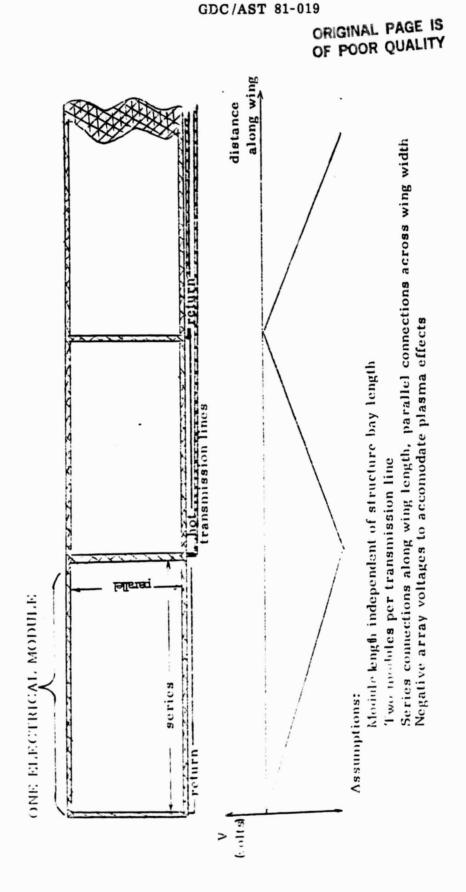

- a. A hybrid approach with DC ion engine beam power supplied directly from the photovoltaic array modules, and with DC/AC/DC converters for discharge power and user power. The Space Radar Illuminator Block Diagram was shown in Subsection 2.2, Figure 2-73. The Space Construction Facility Block Diagram is shown in Figure 2-85.
- b. An all AC system, with AC-AC-DC converter modules for the ion engine beam supply, using 10 or 20 KW modules compatible with the 50 CM 5000 ISP ion engines.
- c. A variation of this all AC system, with larger 250 KW modules. This level of modularity could save some mass and cost, since complexity might be decreased or fewer spares required.

The results of this analysis activity were that the first approach with the 900 Vdc beam power supplied on array appears to be more attractive than the others, from a mass and cost standpoint.

It should be emphasized that the safety issue associated with 500 Vdc power distribution and array voltages must be resolved satisfactorily, and that the ion engines themselves must be able to accept delta regulation of the beam voltage (switched banks of solar cells) with a step size of approx. 10-20 volts.

As described in Subsection 2.2, the Task II system synthesis considered AC and DC power distribution and power components approaches. The AC distribution voltage was set at 1,000 Vac, the DC one at 750 volts based on a previous power management study activity (Reference 34). During Task III, the AC and DC approaches developed in Task II were amended to minimize system mass while at the same time providing a safe, maintainable system. Alternate voltages were considered.

A review of future ion engine concepts (Reference 35), indicates that the ion engine Screen Beam Supply consumes approximately 75% of the power delivered to the engine. During Task III, configurations for both the AC and DC system were considered which provide beam power directly from the solar array. Specifically, calculations of the argon ion engine beam voltage V_B , using the equations developed in Reference 9, showed that for a 50 cm, argon 5,000 I_{sp} engine, V_B was 900 Vdc. In Reference 36, it was shown that this power is used as the engine screen supply,


and must be isolated and, for the 30 cm Mercury engine, regulated to ± 3 %. For this study, it was assumed that:

- a. Beam current varies linearly with V_B : therefore, variations in array voltage and current drive capability vary engine I_{SP} and do not adversely affect ion engine performance, or, at the worst, require additional ion engine control strategies. This implies that the 3% requirement can be met by switching inarray voltage modules of about 2.5% of the desired beam voltage. A group of four modules would provide 10% control.
- b. The solar cells on the photoboltaic array will be isolated and therefore can easily be connected to ion engine cathode and neutralizer cathodes without adverse effects on ion engine performance.
- c. Plasma interaction with the ion engine screen supply beam voltage will be acceptable, i.e., + DC from the array should directly provide the net accelerating voltage of +900 Vdc for the ion engines without significant arcing or losses. The solar cell array should probably have the potential characteristics shown in Figure 2-86. With these characteristics, the gradients on the array do not have step functions but are as continuous as possible, minimizing arcing potential.

In Reference 22, Appendix 2, a postulated plasma potential for an insolated array was developed. It was noted that arcing probability was a function of geometry, array voltage, and dynamic plasma interactions. Analysis of the geometries of the arrays and plasmas dynamics for the multiple power systems and array configurations considered was outside of study scope. However, it should be noted that a 900 V array gradient has a higher arcing risk because of increased potential gradients betweenthe concentrator mirrors and solar cells and this may require acceptance of a lower voltage system with its mass penalties.

Based on these assumptions, the remaining studies of optimum transmission voltage, modularity levels, and safety were then carried out.

2.3.5.3.1 Safe and Minimum Loss Distribution Voltage. Three possible distribution voltage ranges were considered. A 900 Vdc level satisfies the need for a level compatible with the 5000 sec. I_{sp} argon ion engine screen supply. It also reduced resistance transmission live losses. It raises safety questions; special conduits may be required. Very low voltages (30 volts) would permit simple DC regulators for such requirements as the ion engine discharge supply but have excessively high resistance losses. For example, the mass penalty of the optimal transmission line at 30 Vdc wes calculated for the 10 megawatt radar to be 30,000 Kg for the discharge supply alone. This is too large to be viable. A medium voltage range between 250-350 volts appears to represent a middle ground.

Therefore, the range of voltage levels considered for array power collection and power distribution purposes were 300 and 900 Vdc and 300 and 900 Vac. The 300 volt DC and AC levels are presumed to be nonlethal when shrouded with "Romex" type protective sheath, have a low are probability, and minimize plasma losses. However, they increase transmission line mass.

The 900 volt level is presumed lethal and requires a conduit. This conclusion is one of the most judgemental in the study. If astronauts wear insulating and indestructable gloves and if it could be concluded that no safety hazard exists because of the high voltage, since lethality is shown to be more a function of current than voltage, then lethal current flow would not be possible through these gloves and the benefits of higher vclizge would be increased. However, after due consideration, it was decided that it is necessary that DC and AC systems in the 1 kV range of interest compatible with the 5000 sec. argon engine I_{sp} require conduit shielding; therefore, the mass of that conduiting around the transmission lines was added to the trade between the high and low voltage approaches.

In developing the mass properties of the two systems, both 1 kv systems (ac and dc) were penalized by adding the mass of conduit to the total system weight. The dc configuration used 2-inch-diameter conduit, 0.1-inch thick. The ac system, because of the hollow 2-inch-diameter center conductor, used 4-inch-diameter conduit.

Mass of the conduit for the dc systems is approximately the same as the mass which the return would have if the sytem did not employ a conduit. Specifically, each of the 108-Radar ion engines required 8 kg of center conductor and 8 kg of conduit, a total of about 1728 kg. For an ac system, the conduit mass with twice the diameter was four times as large, a penalty of about 2800 kg.

In this study, the mechanical configurations and geometry of the 2.5 mw space construction facility and 10 mw radar were developed as part of Task II. The geometry of the SCF was assumed to be identical to the geometry of the Space Platform studied in Reference 14, except for increased array sizing and its resultant path length increase. The geometry of the radar was developed to provide symmetrical spacecraft mass distribution and symmetrical rotations of array wings as the spacecraft rotates around the earth. Transmission cable lengths of 100 and 100 meters compatible with these geometries were then used to calculate losses.

2.3.5.3.2 <u>PMS Modularity Levels for the Two Spacecraft</u>. The 10 megawatt radar and the one megawatt average power (2.5 mw array) space construction facility both would utilize modularized power management systems. The modularity provides redundancy in the event of a failure and allows the power management system to better match the ion engine power requirements. For example, the 50 cm diameter argon ion engine thrusters require a 20.2 kW discharge supply for an I_{sp} of 5000. A module size of 20 kW can interface with the one engine and meet this need. In presenting the final power management masses, the module size was therefore used. Calculations of the penalties of this sizing, compared to "optimal" sizing, indicate insignificant differences for the SCF facility. The 10 mw radar also was only slightly affected by this choice, at least for modules in this power range.

For these calculations, the characteristics of these modules, the DC regulators, the DC/DC, DC/AC, AC/DC converters were predicted from specific weight vs. power curves based on data developed for NASA on Contract NAS3-21757 (Reference 14). For the AC system calculations, rotary transformers mass is included in the primary drive module mass. The cost analysis was also based on the equation relating cost and mass developed in that study.

 $COST = 0.005 (MASS/2.2)^{0.921}$

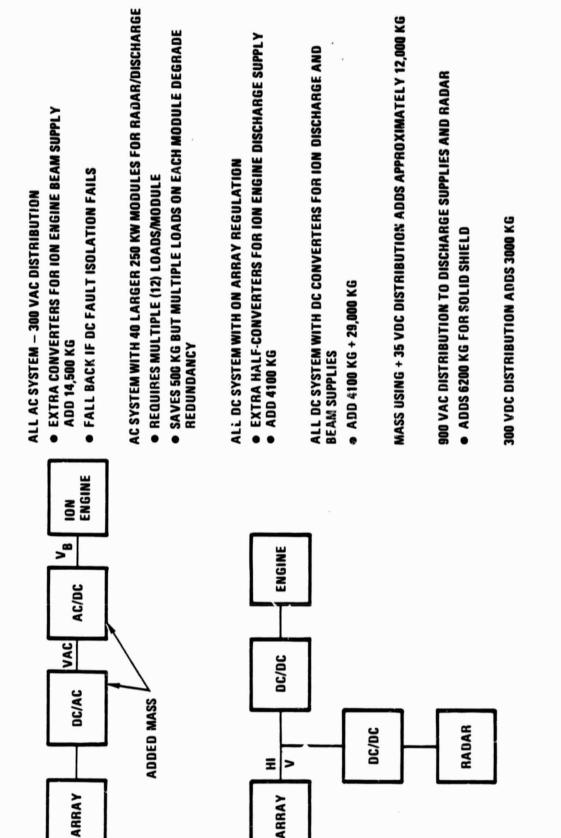
where cost is in millions of dollars and M = mass in kg.

A learning curve equation was used to estimate total cost.

TOTAL COST = MODULE COST (0.6×0.85 NUMMOD + $0.4 \times$ NUMMOD)

where NUMMOD = the number of modules

The modularity of the system was allowed to vary in two ways. First, the two sclar panel wings were assumed to be modularizable at a level of from one to 10, and then each subwing is assumed to modularize at a level of from one to 10.


As previously discussed, alternative voltage levels were also considered, Fortran programs were then used to calculate the system masses and costs for the various alternate configurations.

2.3.5.3.3 <u>Conclusions - PMS Modularity</u>. The net effect of all these considerations was to make this AC system and the DC system have almost identical masses for the new configurations. See Table 2-19. It also shows the additional weight of several alternative topologies. (See Figure 2-87.) If an all AC system is used on the LEO SCF, the added regulator mass for, Beam regulators is about 2600 Kg, so is the mass of beam DC regulators for the DC system. The Radar column also shows similar deltas for Radar Alternative. The other two options are an all DC system with DC-DC converter for Ion Discharge supply does add some mass to the Radar, because of the duplicated DC to AC regulator section. Because the masses are approximately the same, the eventual selection process is likely to concern itself with other considerations. These include those discussed previously-namely, the ability to design DC overload protection circuitry which will not either fail to provide protection or require excessive mass, and the ability to be able to ever close the high power, high voltage DC components gap.

For the AC version of the SCF PMS, AC drivers provide AC to the facility and ion engine AC/DC supplies. For the DC version: DC-to-DC converters provide this function. DC distribution was at 900 Vdc, AC at 300 volts AC. DC required safety conduiting; AC did not.

ILITY GEO 10 MW SPACE RADAR	43,200 Kg 27 + 2 SPARES 9 2	20 KW	10 KW	2040	2410	47,650 Kg	MASS IMPACT ON SYSTEM MASS	+ ∆14,500 Kg	+ Δ 4,100 Kg	+ ∆ 29,000 Kg	ZE AND NOT APPLICABLE – A 500 Kg
LEO SPACE CONSTRUCTION FACILITY	1770 Kg 10 + 1 SPARE 1 2	20 KW	10 KW	60 Kg	30	1860 Kg	IMPACT ON SYSTEM MASS	+ Δ 2600	SMALL DELTA	+ Δ 2600	NOT APPLICABLE RAY MASS FOR INVERTEF
TOPOLOGY	HYBRID AC-DC SPLIT INVERTER MASS* NO. OF MODULES/SUBWINGS NO. OF SUBWINGS/WING NO. OF WINGS	P.M. MODULE SIZE(S)	ARRAY MODULE SIZE	MASS OF TRANSMISSION LINES	ARRAY MASS FOR LINE LOSSES	TOTAL MASS	OTHER ALTERNATIVES	1. ALL AC (900 VAC) WITH ION BEAM CONVERTERS	2. ALL DC (900 VDC) WITH DISCHARGE CONVERTERS ONLY	3. ALL DC WITH BEAM CONVERTERS	4. WITH 250 KW MODULE SIZE AND MULTIPLE LOADS * SPLIT INVERTER MASS INCLUDES AR

Table 2-19. Comparison of Alternative Power Management Options

2-137

GEO Mission - Radar Power Management and Control Approaches. Figure 2-87.

2.4 TECHNOLOGY RECOMMENDATIONS

This part of the study was performed as shown in Figure 2-88.

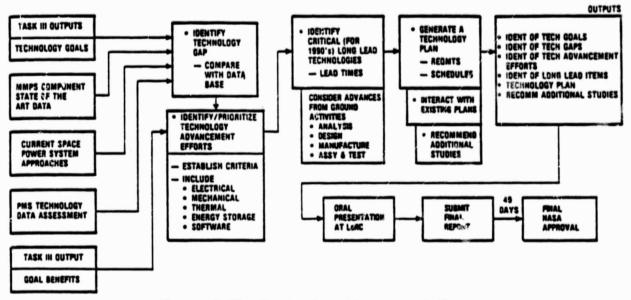


Figure 2-88. Technology Recommendations

2.4.1 <u>POWER GENERATION TECHNOLOGY GAP IDENTIFICATION</u>. The technology gaps in Photovoltaic power generation whose closure will provide significant technology benefits are listed in Table 2-20, beginning on Page 2-140. Specific recommendations are being made to close a gap in robotic beam builder development. The remaining needed technology activities associated with multiband gap cells and low light loss modular concentrator development are expected to be closed for lower power systems in the 1980s. Of course, should this expected development not occur as planned, backup plans for 2 cell modular low loss concentrators should be implemented.

2.4.1.1 <u>Power Management and Control</u>. As discussed in Section 2.3.3, NASA's on-going AC power management technology program, coupled with the technology goals recommended in Reference 14, cover the required multimegawatt technology gaps uncovered by this study. Two areas still require additional attention. Present concepts for a 25 KW axially-wound rotary joint are not viewed as maintainable. Therefore, a technology gap exists in this area for manual/maintainable spacecraft such as the radar and SCF missions. This assumes that the gaps which Ref. 14 recommended closing are indeed closed in accordance with the recommendations of that study.

The second gap involves switching components capable of switching the high power AC and DC power modules.

2.4.1.2 <u>Energy Storage</u>. For LEO applications like the Space Construction Facility, the high specific energy of Sodium Sulfur and the long life of flywheels make both technologies attractive. The Air Force is studying the development of Sodium Sulfur systems, but corrosion of the present steel containers limits life. There exists a technology gap which should be addressed - the testing of cells utilizing protective chromium, molybdenum, or rutile titanium dioxide coatings.

For LEO applications like the Space Construction Facility, the mass, cost, reliability, and life advantages of flywheel energ, storage elements were developed in Task III, laboratory data on motor generators, and analysis of magnetic bearings all appear to offer potential advantages and benefits of enough significance to warrant development for space applications. The last activity in this area (Ref. 21) appears to have been completed in 1974, with no ongoing effort now taking place. This study recommends that this gap be close a for multimegawatt systems. It further recommends study at lower system power levels, since the results will probably downscale to systems below one MW.

2.4.2 <u>TECHNOLOGY REQUIREMENTS DEFINITION</u>. The technologies requirements crucial to enabling multimegawatt space power systems have been identified and documented in a format which provides the information required to prepare a technology plan to enable Multimegawatt Space Power Systems in the 1990s. Appendix B of the final report provides the data for NASA planning purposes.

2.4.3 <u>CRITICAL LONG LEAD TECHNOLOGY IDENTIFICATION</u>. The long lead items identified in this study were for power generation:

- a. The low loss concentrator which should begin development now for use in lower power systems.
- b. Multi-bandgap cell technology for concentrators, now underway with planned availability for environmental, life, and automated assembly development in the next five years.
- c. The robotic beam builder which requires some seven years to first flight and another three to achieve operational status in space.
- d. Backup two-cell concentrators.

Appendix B summarizes the expected plans/lead times which should occur if development is to proceed to meet 1990s availability.

For power management, the plan for the rotary transformer development, along with the list of required technologies being developed for lower power levels is given in Appendix B.

The plan for primary Sodium Sulfur battery and flywheel and energy storage approaches is given in Appendix B. This development should also be considered for lower earth orbit missions in the 50-900 KW class.

Identification.
Gap
Technology
ble 2-20.
Ta

MULTIBANDGAP CELL PLANAR ARRAYS

.

đ		pe 1	pe	÷
Will this study plan a Gap closure and justification for this plan?	Justification	These cells should be used in concentra- tors where their mass is much less significant.	Beam Builder will be useful for both planar arrays and concentrators.	Benefits of concen- trator greater.
will the closu for the for the for the for the formation of the formation	Plan?	No	Yes	No
Will Gap readily close without special Multimegawatt planning?	Benefit of Closure	Small - these cells are too massive for planar array usage - and 50 µm thickness will have low yields - with prohibitive costs.	Low mass trusses (1 kg/m)	Enables Large Planar Array Construction
Will Gap readi special Multim		Yes - if the basic techni- cal	No	No
Technical Approach to Gap	Closure	Continued analysis, fabrication, and test of Multi-bandgap cell approaches.	Beam Builder development	Blanket Installer development
	Description of Gap	Multi-bandgap cells for Planar Arrays 300 µm thick, weldable	 Robotic Truss Beam Builder 	 Robotic Blanket Module positioning and tensioning machine.

2 - 140

Table 2-20. Technology Gap Identification (cont)

MODULAR CONCENTRATOR DESIGN

		GDC	C/AST 81-019	
Will this study plan a Gap closure and justi- fication for this plan	? Justification	Lower power technology plan- ning should develop these concepts in the 1980s but recom- mended to ensure this occurs.		Lower power technology plan- ning should develop these concepts in the 1980s but recom- mended to ensure this occurs.
Will Gap ficat	Plan?	Yes	Yes	_
Will Gap readily close without special Multimegawatt planning	Benefit of Closure	For Multimegawatt Systems, solar cell areas and their associated costs are minimized by modular concen- trators.	Low Mass Trusses	For Multimegawatt Systems, solar cell areas and their associated costs are minimized by modular concen- trators.
Will Gap re special Mul		Yes	No	Yes
Technical Approach to Gap Closure		Conduct a computerized optimization with all requirements specified.	Beam Builder development	Automatic Layup/Fabri- cation and coating of mechanical modules.
Description of Gap		 Optimized geometry for low light loss and low tempera- ture combined with high specific power. 	• Robotic Truss Beam Builder	 Ground Manufac- turing Process Development - Concentrator Modules

GDC/AST 81-019

Table 2-20. Technology Gap Identification (cont)

GALLIUM ARSENIDE PLANAR ARRAYS

			DC/AST 81-019	
Will this study plan a Gap closure and justi- fication for this plan	Justification	Earlier activity should close this gap.	Since the Beam Builder may not be required for the lower power satellites, it must be planned here for these large systems	Benefits of Benefits of concentrator greater. Tug blankets would be deployed under astronaut control.
Will t Gap cl ficati	Plan?	No	Yes	No
Will Gap readily close without special Multimegawatt planning	Benefit of Closure	20-year life achievable Some low mass missions enabled (Fast Electric	Enables Multi- megawatt power	Enables Large Planar Array Construction
Will Gap rea special Mult		Yos - if the techni- cal problem can be solved	N	N
Technical Approach to Gap Closure		Material depo- sition and welding process development	Beam Builder development	Blanket Instal- ler development
Description of Gap		 Weldable 50 μm Gallium Arsenide Cell Development 	 Robotic Truss Beam Builder 	 Robotic Blanket Module Position- ing and Tension- ing Machine

(cont)
Identification
Gap
Technology
2-20.
Table

SPACE QUALITY AND "LOW COST" QUALITY SILICON PLANAR ARRAYS

				GDC	C/AST	81-019		
	Will this study plan a Gap closure and justi- fication for this plan	Justification	Cost benefits of con- centrators, even with defect removal, are greater.	=	Beam builder will not be required for lower	truss satellites. Useful for concen- trators.	Cost benefits of concentrator greater.	
	Will t Gap c] ficati	Plan?	No	No	Yes		No	-
	Will Gap readily close without special Multimegawatt planning	Benefit of Closure		20-year life achiev- able.	Low mass trusses		Enables Large Planar Array Construction	
	Will Gap re special Mul		Yes - if the technical problem can be solved.	Yes - "	No		N	
Loci-H- m	Technical Approach to Gap Closure		Defect removal to permit an array annealing.	Material deposition and welding process	development. Beam builder development.		Blanket installer development.	
	Deserintion of Gan	dan to not idi togan	• Annealable silicon cell development.	 Weldable 50 μm sili- con cell development. 	 Robotic Truss Beam Builder 		 Robotic Blanket Module positioning and tensioning machine. 	
1		_						

2-143

cont
Identification (
Gap
Technology
2-20.
Table

MODULAR THERMOPHOTOVOLTAIC CONCENTRATORS

.

Will this study plan a Gap closure and justi- fication for this plan	Justification	The life limita- tion is too great a constraint.
Will t Gap cl ficati	Plan?	N N
Will Gap readily close without special Multimegawatt planning	Benefit of Closure	The existing performance pre- diction for thermophotovoltaic systems is very optimistic. How- ever, even if the real systems could hold losses to an optimistic 70%, limited receiver life would be a problem.
will spec		0 N S
Technical Approach to Gap Closure		Conduct and document studies which evaluate total overall system losses with an analytical model of system geometry and thermal proper- ties.
Description of Gap		Thermophotovoltaic Concentrators are in their initial conceptual design phase. Many unanswered questions remain.

GDC/AST 81-019

			CID (57A51 61-015		
	Will this study plan a Gap closure and justi- fication for this plan	Justification	These cells should be used in concentrators where their mass is much less of a factor.	Useful for con- centrators. Beam Builder will not be required for lower power, deplovable truss	satellites. Benefits of con- centrator greater.	
	Will t Gap cl ficatio	Plan?	No	Yes	No	
CIENNA NANALY JELL VLANAR ARRAITION	Will Gap readily close without special Multimegawatt planning	Benefit of Closure	Yes -if Small - these the basic cells are too technical massive for plauar problem array usage - and with the 50 μm thickness tunnel currewtll have low can be yields - with	Low mass trusses	Enables Large Planar Array Con- struction	
DANDUAP CELL	Will Gap re special Mul			NO	NO	
TTOW	Technical Approach to Gap Closure		Continued anal- ysis, fabrica- tion, and test of Multibandgap cell approaches,	Beam Builder development	Blanket Instal- ler development	
	Description of Gap		Multibandgap cells for Planar Arrays 300 μm thick, weldable	 Robotic Truss Beam Builder 	 Robotic Blanket Module position- ing and tension- ing machine. 	

Table 2-20. Technology Gap Identification (cont) MULTIBANDGAP CELL PLANAR ARRAYS

2-145

(cont)
Identification
Gap
Technology
2-20.
Table

1

LARGE APERTURE PARABOLIC CONCENTRATORS

		•	
Will this study plan a Gap closure and justi- fication for this plan	Justification	The liabilities of Large Concen- trators outweigh their benefits. They are: They are: 1. Costly. 2. Massive. 3. Not terres- tially testable 4. Concentration jimited. They might: Obscure the cell/ mirror surfaces as they leak dust if they used advanced radiators concepts such as the vapor drop radiator.	
Will t Gap cl ficati	Plan?	N	
Will Gap readily close without special Multimegawatt planning	Benefit of Closure	Although the sys- tem might be as efficient as small modular photo- voltaic concentra- tors, they are much more complex and massive. They are also not as testable terres- tially. Their rotating unit angular momentum also would require unaccepted control	
Will Gap re special Mul		N	
Technical Approach to Gap Closure		Further studies to establish life limits of Turbines, true meteroid reliability values for con- tained liquid and gas por- tions of the system.	
Description of Gap		Accomplish further conceptual studies of Large Parabolic Concentrator for High Concentration Systems, with Pure Photovoltaics or Hybrid Photovoltaic/ Rankine Combined Rotating Unit Power Generation Systems.	

				·
	Will this study plan a	Gap closure and justi- fication for this plan	Justification	Although activity is under way, it needs more emphasis to assure its eventual success.
	Will th	Gap clc ficatic	Plan?	Yes
BATTERY		Will Gap readily close without special Multimegawatt planning	Benefit of Closure	High cycle life, high specific energy, energy storage systems.
SODIUM SULFUR BATTERY		Will Gap rea special Mult		Yes
N.	Technical	Approach to Gap Closure		Use of rutile titanium dioxide, mclybdenum, or chromium platings.
		Description of Gap		Sodium Sulfur Batteries have the potential for 100 or more Wt-hrs/Kg, if the crucial container corrosion problems can be solved.

Table 2-20. Technology Gap Identification (cont)

SODIUM SULFUR BATTERY

2-147

•				
	Will this study plan a Gap closure and justi- fication for this plan	Justification	Benefits signi- ficant. Closure should be accom- plished.	
	Will t Gap cl ficati	Plan?	Yes	
	Will Gap readily close without special Multimegawatt planning	Benefit of Closure	Combined func- tions with no apparent penalty. Low life-cycle from long life.	
	Will Gap rea special Mult		No - No - systems tend to have shorter lives, making the benefits less signi- ficant.	
	Technical Approach to Gap Closure		Use of two counter-rotating, Dual Rim Kevlar 49 or 29 wheels, with a 1 Hz frequency response. The approach shouid also provide added safety/immunity to catastrophic failure.	
	Description of Gap		Inertial Energy Storage System with a specific energy of 40 Wt-Hr/Kg which combines the functions of Energy Storage, Solar Array Wing Attitude Control, and Wing Binding Mode Damping	

Table 2-20. Technology Gap Identification (cont)

HIGH SPECIFIC ENERGY FLYWHEEL

2-148

(cont)
Identification
Gap
Technology
2-20.
Table 2

HYBRID POWER DISTRIBUTION

Justification Gap will close for 250 KW systems anyway.	Benefits of 300 kg offset by higher costs.	High voltage lethality a criti- cal safety issue for astronaut maintained and tested systems.
Plan? No	NO	Yes, · but
Benefit of Closure Safe 5000 ISP ARGON ION Engine 900V beam voltage enabled. Solid-state fault detection and iso- lation system enabled for low fault risk.	Three-phase to . two-phase failure tolerance mass and cost savings. Cost lower than DC system.	Lowest mass system for unmanned/non- maintained vehi- cles. Mass savings: 10 MW Radar 9,000 Kg 2.5 MV SCF 1,600 Kg Cost higher for first article.
Yes	No	N
Development of 25 KW split AC power system.	Development of 250 KW system modules.	High voltage fault protection and switching circuitry dev- elopment on array regula- tion for ion engine beam.
Three Phase 250 VAC Power Distribution and Switching Sys. with 25 KW module sizes and "ROMEX" overshield.	Three Phase 250 VAC power distribution and switching sys. with 250 KW modules	900 VDC power dis- tribution system with switched DC ion drive and either DC/DC converters or DC/AC/DC for radar power/SCF power. engine beam.
	C Development of Yes Benefit of Closure Plan? Justification 25 KW split AC Safe 5000 ISP ARGON No Gap will close power system. Voltage enabled. Solid-state fault detection and iso- lation system enabled for low fault risk. Justification	Development of 25 KW split ACBenefit of Closure Benefit of ION Engine 900V beamJustification25 KW split ACYesSafe 5000 ISP ARCON ION Engine 900V beamNoGap will close 250 KW systems25 KW split ACSolid-state fault detection and iso- lation systemNoGap will close anyway.250 KW systemSolid-state fault detection and iso- lation systemNoGap will close anyway.C Development of modules.NoThree-phase to two-phase failureNoBenefits of ango kg offset l ango kg offset l bigher costs.C Development of modules.NoThree-phase to cost savings.NoBenefits of ango kg offset l bigher costs.

GDC/AST 81-019

			-	
	Will this study plan a Gap closure and justi- fication for this plan	Justification	The high voltage safety issue is not severe for unmanned GEO systems.	The mass of the system is slightly less than 300 VDC systems - and the safety issue is not severe for unmanned GEO systems.
	Will tl Gap clo ficatio	Plan?	Yes	Yes
NOTINGTN	Will Gap readily close without special Multimegawatt planning	Benefit of Closure	Savings of >1000 Kg over alternate AC or DC approaches.	Dual transistor switches can be eliminated - Fault tolerance at 900 VDC planned, using solid-state components.
NOT LOWER DISTRIBUTION	Will Gap re special Mul		No	N N
	Technical Approach to Gap Closure		Develop a safe conduit system which serves /also as the Ground Return.	Develop switches for high voltage control at 900 VDC 72 KW (100 Amps) switches must not run away thermally at overload.
	Description of Gap		900 VDC system Develop a sawith 1 mm Al conduit system conduit overshield which serves and fault tolerance/also as the redundancy.	

Table 2-20. Technology Gap Identification (cont)

DC POWER DISTRIBUTION

2-150

SECTION 3

CONCLUSIONS

This study looked at missions for the 1990s which might require multimegawatt power levels. Two missions were selected for study: a GEO air traffic control radar illuminator and a LEO space construct facility. The GEO radar appears to be beneficial because of its ability to provide a terminal region redundancy at low cost. One system with a moderate amount of additional capacity can back up the entire CONUS and, with two satellites, the entire U.S. is redundantly covered using the minimum number of orbit slots. The LEO Space Construction facility provides a base for assembly and test of the two radar satellites, as well as the potential for assembling an electrical orbital transfer vehicle. For both missions, argon ion engines were found to have significant benefits for stationkeeping (LEO) and orbital injection (LEO to GEO).

The study also developed beneficial approaches for concentrating photovoltaic systems and potentially low mass power management and distribution systems. The concentrating photovoltaic system, using small, semiparabolic troughs with low light loss, supports the GEO and LEO missions with only one gimbal per array wing. It is tolerant of array pointing errors up to 25 degrees about the yaw axis. Pitch error tolerance is 1 degree, an error easily achieved by today's GEO spacecraft. The power management topology accommodates the ion engines by time-sharing those portions of the power conversion equipment which can be shared, thus minimizing mass. Energy Storage Technology development recommendations are corrosion-resistant, sodium sulfur batteries and flywheel backup systems.

Although GaAlAs planar arrays are projected to cost more than the modular concentrator, their low mass makes them attractive for missions such as the electrical orbital transfer vehicle (TUG). Data which validates the ability of GaAlAs arrays to recover from the full spectrum of particle radiation using both continuous and electrical re-annealing is required to validate the expected performance, which today is based on testing at a limited number of energy levels.

Technologies which do not appear to be as beneficial for multimegawatt systems are:

a. Large Parabolic Concentrators, including hybrids with Rankine turbines

b. Planar Silicon Arrays

Arrays are the mainstay of today's technology and will be more expensive than concentrators because of their increased cell area and lower efficiency. They are inferior when compared to concentrators for the self-injected GEO radar spacecraft, because of their susceptibility to radiation. Large parabolic concentrators, including hybrids with Rankine turbines, are ineffective because of the massive radiators required to dispose of the waste heat generated by the cell inefficiencies. These radiator systems are more massive than small modular concentrators, because the radiators require heat-carrying fluids, tubes, and heat pipes to distribute the heat out to the fins in the redundant manner required for micrometeoroid survivability.

Energy storage technologies which were predicted to be less beneficial include:

- a. Hydrogen/oxygen fuel cells
- b. Current solid plate batteries (NICAD, NiH)
- c. Other high energy density systems (ZnBr₂, LiMS).

Hydrogen/oxygen fuel cells, with electrolysis units for storage have about the highest theoretical specific energy (joules/kg), but, in practice, the system is massive and inefficient. The surrounding hardware (with provisions for electrolysis with phase changes) and survivability of the fluids and gas systems when exposed to micrometeoroids, decreases achievable specific energies to 66 watt hours/kg. Inefficiencies are less than 50% (including the electrolysis); these make the solar arrays larger than other approaches.

The current systems (NICAD, NiH) all have shorter cycle life and would require significant on-orbit battery restocking for the LEO mission with its 100,000 cycle-life need.

Of the other two high-energy density systems, $ZnBr_2$ requires pumps and fluid loops, and appears to be less efficient and less capable than the NaS alternative recommended. The LiMS approach does not have active loops but also has probable lower efficiency penalties. Both of these systems have a solid plate electrode, which is perhaps more vulnerable to life cycling degradation than the liquid NaS system.

The power management and distribution system results developed during the study indicate that hybrid AC/DC power management systems, with high voltage arrays driving the ion beam supplies directly and with split AC power converters, are an effective approach. Mass savings of from 10,000 to 30,000 kg would result, compared to more conventional all-AC or -DC approaches. The approach requires that arcing losses from the front face of the solar cells into the plasma be made acceptable by floating the concentrator metal structure at the plasma potential of that portion of the array. The configurations will require study to establish allowable voltages and voltage gradients, and may be mission/orbit dependent. In any event, the cyclo-inverter technology for DC-AC-DC conversion will be developed for the low-voltage discharge supplies, so that in the event array voltages are limited to 100-300 VDC, the high-voltage beam supply can still be accommodated.

GDC/AST 81-019

Three other Power Management technology requirements emerged from the study:

- a. There is a need for a maintainable, low friction, high efficiency, and space survivable approach for AC and DC rotary joint power transfer.
- b. There is a need for the development of fault-isolating, fault-tolerant, efficient switching for AC and DC power distribution systems. The AC problem is more amenable to solution, because AC current is automatically zero at the crossover point each half cycle and therefore the probability of a thermal runaway in a half cycle at 20 KHz is small, if efficient thyristors are used as the control device. DC distribution will require fast actuating electro-mechanical devices sized to accommodate maximum short-circuit currents during their activation interval.
- c. The DC system may also require the development of high-power DC transistors, if AC development is not accomplished.

GDC/AST 81-019

SECTION 4

REFERENCES

- 1. <u>SPS Recommended Preliminary Baseline Concept</u>, NASA, Lyndon B. Johnsons Space Center, Jan 25, 1978.
- 2. <u>Space Industrialization, Opportunities, Markets, and Programs</u>, Contract Report NAS8-32197, Science Application, Inc., April 15, 1978.
- 3. Jack W. Geis, <u>Concentrating Photovoltaics A Viable Candidate for the Next Generation of Air Force Satellite Power Systems</u>, 15th Intersociety Energy Conversion Engineering Conference, Seattle, Washington, August 18-22, 1980, pp. 383-387.
- 4. D.C. Byers and V.K. Rawlin, <u>Electron Bombardment Propulsion System</u> <u>Characteristics for Large Space Systems</u>, presented at the 12th International Electronics Propulsion Conference, Key Biscayne, Fla, 15-17 Nov. 1976, N77-11106.
- 5. Large Payload Earth-Orbit Transportation with Electric Propulsion. Technical Memorandum 33-793, Jet Propulsion Laboratory.
- 6. W.P. Glunt, <u>Station Keeping Velocities Required for a Large Space</u> <u>Platform in Geosynchronous Orbit</u>, General Dynamics, Convair Division Memorandum No. 697-9-78-024, 3 April 1978.
- 7. U.S. Standard Atmosphere, 1976, National Aeronautics and Space Administration, U.S. Government Printing Office, October 1976.
- 8. <u>A Reference Atmosphere for Patrick AFB, Florida, Annual (1963</u> <u>Revision)</u>, NASA/MSFC Tech. Memo, TMX-53139, 23 September 1964.
- 9. A. Karemaa, Error Sources and Trajectory Dispersion Simulation Data, General Dynamics Convair Division Report No. GDCA-BKM71-024B, September 1976.
- 10. J. Jensen, et. al., Design Guide to Orbital Flight, McGraw-Hill Book Co., Inc., New York 1962.
- 11. TRAJEX Users Guide, General Dynamics, Convair Division Report No. GDC-DBA67-003, Revision 17, July 1979.
- 12. R.L. Pleasant, <u>Analysic and Optimization of Radimtor Systems for Large</u> <u>Heat-Generating Spacecraft</u>, Convair Report CASD-ERR-78-031, December 1978.

- 13. W.D. Ebeling, D. Rex, U. Bierfischer, Properties of Solar Generators with Reflectors and Radiators, N80-33901, June 1980.
- 14. S.W. Chi, Introduction to Heat Pipe Theory: An Instruction Manual, School of Engineering and Applied Science, The George Washington University, Washington, D.C., October 1971.
- David C. Byers, <u>Characteristics of Primary Electric Propulsion Systems</u>, NASA Technical Memorandum 79255, Presented at the 14th International Conference on Electric Propulsion, Princeton, New Jersey, October 13 -November 2, 1979, p. 7.
- 16. Reference 15, pp. 1-15.
- David C. Byers, Fred F. Terdan, and Ira T. Myers, <u>Primary Electric</u> <u>Propulsion for Future Space Missions</u>, Prepared for the Conference on Advanced Technology for Future Space Systems, Langley, VA., May 8-11, 1979.
- William J. Ketchum, Low Thrust Vehicle Concept Study, Contract <u>NAS8-33527</u>, GDC-ASP-80-010, General Dynamics Convair Division, 26 September 1980, pp 4-17.
- John D. Regetz, Jr., and C.M. Terwilliger, <u>Cost Effective Technology</u> <u>Advancement Directions for Electric Propulsion Transportation Systems</u> <u>in Earth Orbital Missions</u>, 1979, N80-11950; presented at the 14th Interim Conference on Electric Propulsion, Princeton, N.J., October 30 -November 1, 1979.
- 20. H.Y. Tada and J.R. Carter, Jr., <u>Solar Cell Radiation Handbook</u>, JPL Publication 77-56, Jet Propulsion Laboratory, Pasadena, CA, November 1, 1977.
- W.L. Crabtree, W.E. Horne, A.C. Day, R.B. Greegor, and L.P. Milliman, Solar Thermophotovoltaic Space Power System, Proceedings of the 15th Intersociety Energy Conversion Engineering Conference, Seattle, Washington, August 18-27, 1980, Vol. 1, p. 381.
- 22. James W. Mildice, <u>Study of Power Management Technology for Orbital</u> <u>Multi 100 KWe Applications</u>, NASA CR159834, GDC-ASP-80-015, General Dynamics Convair Division, 15 July 1980, p. 3-42.
- 23. R.L. Pleasant, Upper Stage Avionics Thermal Control, Convair Report CASD-ERR-76-039, December 1976.

- 24. R.F. O'Neill, et al, <u>A Numerical Procedure for Solution of Radiation</u> and Convection Fin Heat Transfer Problems, Computer Program P5399, Convair Report No. GDCA-BTD71-001, August 1971.
- 25. R. Loo, G.A. Kamath, and R.C. Knechtlin, <u>Radiation Damage in GaAs</u> <u>Solar Cells</u>, Presented at the 14th IEEE Photovoltaic Specialists Conference, San Diego, CA, January 7-10, 1980.
- 26. S. Li Sheng, D.W. Schoenfeld, T.T. Chiu, and R.Y. Loo, Effects of <u>Thermal Annealing on the Deep-Level Defects and 1-V Characteristics</u> of 200 KeV Proton Irradiated AlGaAs - GaAs Solar Cells, Proceedings of the 15th Intersociety Energy Conversion Engineering Conference, Seattle, Washington, August 18-22, 1980, Vol. I, p. 356.
- 27. Reference 20, pages 5-23, 6-2, and 3-131.
- 28. <u>Solar Cell Array Design Handbook</u>, JPL SP43-38, Vol. 1, Jet Propulsion Laboratory, October 1976, p. 2.3-4.
- 29. Michael J. Mirtick, NASA LeRC, Verbal Communication.
- 30. Reference 22, pp. A-1 A-25.
- 31. Reference 22, p. 3-66.
- 32. J.A. Rinde, T.T. Chaao, and R.G. Stone, <u>Composite Fiber Flywheel</u> for Energy Storage, Lawrence Livermore Laboratory Contract Report, Contract No. W-7405-Eng-48, pp. 25.
- High Energy Density (HED) Rechargeable Battery for Satellite Applications, CDRL Item 10, 5 November 1980, Contract No. F33615-79-C-2044, Huges Aircraft Corp., pp. 99-100.
- 34. Reference 22, pp. A3-1 through A3-83.
- 35. Integrated Power and Attitude Control Study (IPACS), NASA CR-2383, April 1974.
- 36. <u>30-Centimeter Ion Thruster Design Manual</u>, NASA Technical Memorandum 79191, June 1979.

APPENDIX A

.

MULTIMEGAWATT POWER SYSTEM (MMPS) APPLICATION AND PERFORMANCE SHEETS

	MMPS COMPONENT APPLICATION AND PERFORMANCE
۱.	COMPONENT Idealized Silicon Solar Ceil, Planar Array
2.	BASIC PARAMETERS Efficiency of 16% (May consider Metal, Insulator, Semiconductor (MIS) type construction), 50 µm thickness, 200°C self annealing - or somewhat higher if 200 defect not removable.
3.	STATEMENT OF NEED
	A planar array cell with long life, high efficiency, low cost
4.	ALTERNATIVE TECHNOLOGY CONCEPTS
	Gallium Arsenide Cells, concentrators annealed polycrystaline cells, Dendritic Web cells.
	SUBSYSTEM REQUIREMENT Annealable in space at high temperatures, therefore, Welds capable of high current, for on-array annealing.
6.	COMPONENT IMPLEMENTATION
	Basic Spectrolab or Comsat Cell, with lower cost due to process improvements, plus Boron Oxygen defect removed for 200°C self annealing.
7.	ALTERNATIVE IMPLEMENTATIONS
	Comsat, Spectrolab, ASEC, Solarex implementation of existing cells
. 8.	COMPONENT PERFORMANCE REQUIREMENTS
	Cell dimensions, $5x5cm$. Planar array blanket assumed to be packaged folded for shuttle launch. 100,000 temperature cycles $-65^{\circ}C$ to $+60^{\circ}$

ì

	MMPS COMPONENT APPLICATION AND PERFORMANCE
1.	COMPONENT Idealized GaAlAs Planar Array Solar Cell
2.	BASIC PARAMETERS
	Efficiency of 20% (28 ^o C, AMO, CR = 1) 50 \times meter, low cost substrate, back surface reflector. Tmax at least 125 ^o C for 20 years
3.	STATEMENT OF NEED
	A planar array with very low cost, high efficiency cells may be more effective than concentrators because of the thermal control concentrators require.
4.	ALTERNATIVE TECHNOLOGY CONCEPTS
	Planar Silicon Cells, Cells for Concentrators
5.	SUBSYSTEM REQUIREMENT
	Radiation Insensitivity, (Self annealing), Weldable contacts, up to 100,000 thermal cycle COMPONENT IMPLEMENTATION (-65°-to +60°C)
5.	Basically, take the current MIT Lincoln Lab Cell and add production features for low cost, plus development test, back surface reflection, and deposition on a low mass, graphite substrate.
7.	ALTERNATIVE IMPLEMENTATIONS
	Other low cost substrates (not yet demonstrated).
8.	COMPONENT PERFORMANCE REQUIREMENTS
	The cell should be an advanced, low cost low mass version of the MIT/Hughes/ Varian work.
	Cell width of 50 meters. Planar blanket packaging in multiple folds for launch environmental protection. Capable of accepting electro statically bonded cover slides and back welded circuit attachment. Possibly capable of circuit self annealing Specific weight of 1 gm/cm ² assumed.
Į	
L	

A-3

	COMPONENT Single Band Gap Gallium Aluminum Arsenide Solar Cells - CR = 1 or 2. Germanium Substrate
2.	BASIC PARAMETERS Efficiencies demonstrated in the Lab of up to 16%
3.	STATEMENT OF NEED
	Planar Solar Arrays - Low cost Germanium substrate - high efficiency plus 30 year life - self annealing
4.	ALTERNATIVE TECHNOLOGY CONCEPTS
	Silicon, GaAlAs with Gallium Arsenide Substrate
5.	SUBSYSTEM REQUIREMENT Radiation Insensitive, T_{HOT} RANGE = 80°C to 125°C up to 100,000 cycles. $T_{COLD} = -65^{\circ}C$
6.	COMPONENT IMPLEMENTATION
	Demonstrated by Lincoln Labs in Research Stage
Ļ	ALTERNATIVE IMPLEMENTATIONS
	Other low cost substrates (not demonstrated to date)
8.	COMPONENT PERFORMANCE REQUIREMENTS
	A translation into production of the present Lincoln Lab cell design.
	Capable of withstanding the Shuttle launch environment in a folded blanket condiguration.
1	

 approach cannot be made to work. ALTERNATIVE TECHNOLOGY CONCEPTS Silicon Cells, concentrator cells. Low cost substrate Gallium Arsenide cell. SUBSYSTEM REQUIREMENT Radiation insensitivity, self annealing, weldable contact electrostatic coverslide bonding, 100,000 cycles -65° to 60°C COMPONENT IMPLEMENTATION Utilization of the Hughes, Rockwell, or Varian approaches. ALTERNATIVE IMPLEMENTATIONS Varian, Hughes, and Rockwell processes. (Organo Metallic, and Liquid Phase Eptaxial (LPE)). COMPONENT PERFORMANCE REQUIREMENTS 		
 Efficiency of 17-20% in lab. 50 µm thick T_{max} at least 125°C for 20 years 3. STATEMENT OF NEED A planar array cell with very high efficiencies, needed only if the low cost substapproach cannot be made to work. 4. ALTERNATIVE TECHNOLOGY CONCEPTS Silicon Cells, concentrator cells. Low cost substrate Gallium Arsenide cell. 5. SUBSYSTEM REQUIREMENT Radiation insensitivity, self annealing, weldable contact electrostatic coversilde bonding, 100,000 cycles -65° to 60°C 6. COMPONENT IMPLEMENTATION Utilization of the Hughes, Rockwell, or Varian approaches. 7. ALTERNATIVE IMPLEMENTATIONS Varian, Hughes, and Rockwell processes. (Organo Metallic, and Liquid Phase Eptaxial (LPE)). 8. COMPONENT PERFORMANCE REQUIREMENTS Advanced, low cost version. Weldable contacta. V_{mp} Temperature coefficient of .22 MV/C°. I_{mp}/I_{sc} not strongly dependent on temperature. Coversilde 	۱.	origie Dana dap danam miselinae bolar oend oner,
 STATEMENT OF NEED A planar array cell with very high efficiencies, needed only if the low cost substaapproach cannot be made to work. ALTERNATIVE TECHNOLOGY CONCEPTS Silicon Cells, concentrator cells. Low cost substrate Gallium Arsenide cell. SUBSYSTEM REQUIREMENT Radiation insensitivity, self annealing, weldable contact electrostatic coversilde bonding, 100,000 cycles -65° to 60°C COMPONENT IMPLEMENTATION Utilization of the Hughes, Rockwell, or Varian approaches. ALTERNATIVE IMPLEMENTATIONS Varian, Hughes, and Rockwell processes. (Organo Metallic, and Liquid Phase Eptaxial (LPE)). COMPONENT PERFORMANCE REQUIREMENTS Advanced, low cost version. Weldable contacts. V mp Temperature coefficient of .22 MV/C°. Lmp/lsc not strongly dependent on temperature. Coversilde 	2.	BASIC PARAMETERS
 A planar array cell with very high efficiencies, needed only if the low cost substate approach cannot be made to work. ALTERNATIVE TECHNOLOGY CONCEPTS Silicon Cells, concentrator cells. Low cost substrate Gallium Arsenide cell. SUBSYSTEM REQUIREMENT Radiation insensitivity, self annealing, weldable contact electrostatic coverslide bonding, 100,000 cycles -65° to 60°C COMPONENT IMPLEMENTATION Utilization of the Hughes, Rockwell, or Varian approaches. ALTERNATIVE IMPLEMENTATIONS Varian, Hughes, and Rockwell processes. (Organo Metallic, and Liquid Phase Eptaxial (LPE)). COMPONENT PERFORMANCE REQUIREMENTS Advanced, low cost version. Weldable contacts. V_{mp} Temperature coefficient of .22 MV/C⁰. I_{mp}/I_{sc} not strongly dependent on temperature. Coverslide 		Efficiency of 17-20% in lab. 50 μ m thick T _{max} at least 125 ⁰ C for 20 years
 approach cannot be made to work. ALTERNATIVE TECHNOLOGY CONCEPTS Silicon Cells, concentrator cells. Low cost substrate Gallium Arsenide cell. SUBSYSTEM REQUIREMENT Radiation insensitivity, self annealing, weldable contact electrostatic coverslide bonding, 100,000 cycles -65° to 60°C COMPONENT IMPLEMENTATION Utilization of the Hughes, Rockwell, or Varian approaches. ALTERNATIVE IMPLEMENTATIONS Varian, Hughes, and Rockwell processes. (Organo Metallic, and Liquid Phase Eptaxial (LPE)). COMPONENT PERFORMANCE REQUIREMENTS Advanced, low cost version. Weldable contacts. V_{mp} Temperature coefficient of .22 MV/C^o. L_{mp}/I_{sc} not strongly dependent on temperature. Coverslide 	3.	STATEMENT OF NEED
 Silicon Cells, concentrator cells. Low cost substrate Gallium Arsenide cell. SUBSYSTEM REQUIREMENT Radiation insensitivity, self annealing, weldable contact electrostatic coversilde bonding, 100,000 cycles -65° to 60°C COMPONENT IMPLEMENTATION Utilization of the Hughes, Rockwell, or Varian approaches. ALTERNATIVE IMPLEMENTATIONS Varian, Hughes, and Rockwell processes. (Organo Metallic, and Liquid Phase Eptaxial (LPE)). COMPONENT PERFORMANCE REQUIREMENTS Advanced, low cost version. Weldable contacts. V_{mp} Temperature coefficient of .22 MV/C°. I_{mp}/I_{sc} not strongly dependent on temperature. Coversilde 		A planar array cell with very high efficiencies, needed only if the low cost substra approach cannot be made to work.
 SUBSYSTEM REQUIREMENT Radiation insensitivity, self annealing, weldable contact electrostatic coversilde bonding, 100,000 cycles -65° to 60°C COMPONENT IMPLEMENTATION Utilization of the Hughes, Rockwell, or Varian approaches. ALTERNATIVE IMPLEMENTATIONS Varian, Hughes, and Rockwell processes. (Organo Metallic, and Liquid Phase Eptaxial (LPE)). COMPONENT PERFORMANCE REQUIREMENTS Advanced, low cost version. Weldable contacts. V_{mp} Temperature coefficient of .22 MV/C°. L_{mp}/I_{sc} not strongly dependent on temperature. Coversilde 	4.	ALTERNATIVE TECHNOLOGY CONCEPTS
 Radiation insensitivity, sen annearing, weidable contacts electrostatic coversilde bonding, 100,000 cycles -65° to 60°C COMPONENT IMPLEMENTATION Utilization of the Hughes, Rockwell, or Varian approaches. ALTERNATIVE IMPLEMENTATIONS Varian, Hughes, and Rockwell processes. (Organo Metallic, and Liquid Phase Eptaxial (LPE)). COMPONENT PERFORMANCE REQUIREMENTS Advanced, low cost version. Weldable contacts. V_{mp} Temperature coefficient of .22 MV/C°. I_{mp}/I_{sc} not strongly dependent on temperature. Coversilde 		Silicon Cells, concentrator cells. Low cost substrate Gallium Arsenide cell.
 Utilization of the Hughes, Rockwell, or Varian approaches. 7. ALTERNATIVE IMPLEMENTATIONS Varian, Hughes, and Rockwell processes. (Organo Metallic, and Liquid Phase Eptaxial (LPE)). 8. COMPONENT PERFORMANCE REQUIREMENTS Advanced, low cost version. Weldable contacts. V_{mp} Temperature coefficient of .22 MV/C⁰. I_{mp}/I_{sc} not strongly dependent on temperature. Coverslide 	5.	nautation insensitivity, self annealing, weitable contacts,
 7. ALTERNATIVE IMPLEMENTATIONS Varian, Hughes, and Rockwell processes. (Organo Metallic, and Liquid Phase Eptaxial (LPE)). 8. COMPONENT PERFORMANCE REQUIREMENTS Advanced, low cost version. Weldable contacts. V mp Temperature coefficient of .22 MV/C⁰. Imp/Isc not strongly dependent on temperature. Coverslide 	6.	
 Varian, Hughes, and Rockwell processes. (Organo Metallic, and Liquid Phase Eptaxial (LPE)). 8. COMPONENT PERFORMANCE REQUIREMENTS Advanced, low cost version. Weldable contacts. V_{mp} Temperature coefficient of .22 MV/C⁰. I_{mp}/I_{sc} not strongly dependent on temperature. Coverslide 		Utilization of the Hughes, Rockwell, or Varian approaches.
 Phase Eptaxial (LPE)). 8. COMPONENT PERFORMANCE REQUIREMENTS Advanced, low cost version. Weldable contacts. V mp Temperature coefficient of .22 MV/C⁰. Imp/Isc not strongly dependent on temperature. Coverslide 	7.	ALTERNATIVE IMPLEMENTATIONS
Advanced, low cost version. Weldable contacts. V_{mp} Temperature coefficient of .22 MV/C ⁰ . I_{mp}/I_{sc} not strongly dependent on temperature. Coverslide		
of .22 MV/C ⁻ . I_{mp}/I_{sc} not strongly dependent on temperature. Coverslide	8.	COMPONENT PERFORMANCE REQUIREMENTS
		Advanced, low cost version. Weldable contacts. V_{mp} Temperature coefficient of .22 MV/C ⁰ . I_{mp}/I_{sc} not strongly dependent on temperature. Coverslide attachment via electrostatic bonding.
Capable of withstanding the Shuttle launch environment in a folded balnket package approach.		
	1	

 COMPONENT Edge Defined, Film Grown (EFG) or Dentritic Web formed Silicon Solar Cells BASIC PARAMETERS # 16% by lasar re-annealing and regrowing of junction region at AMI. AMO		
 2. BASIC PARAMETERS \$\earrow = 18\% by lasar re-annealing and regrowing of junction region at AM1. AMO \$\earrow = 16\% @ 28°C, 14\% @ 60°C 3. STATEMENT OF NEED Low cost silicon cells for space usage. Reliable, long lived, capable of 100,000 temperature cycles (-65° to +65°C) 4. ALTERNATIVE TECHNOLOGY CONCEPTS Single crystal or polycrystaline silicon. 5. SUBSYSTEM REQUIREMENT Radiation insensitivity, weldable contacts 5. COMPONENT IMPLEMENTATION Use terrestrial production silicon and lasar annealing/diffusion to make the equivalent of a 7. ALTERNATIVE IMPLEMENTATIONS Several suppliers and universities are developing approaches for very fast ribbon forming systems. 8. COMPONENT PERFORMANCE REQUIREMENTS \$\u03b1 = 14\%, capable of surviving the Shuttle launch environment mounted to 	•	
 η = 18% by lasar re-annealing and regrowing of junction region at AMI. AMO η = 16% @ 28°C, 14% @ 60°C 3. STATEMENT OF NEED Low cost silicon cells for space usage. Reliable, long lived, capable of 100,000 temperature cycles (-65° to +65°C) 4. ALTERNATIVE TECHNOLOGY CONCEPTS Single crystal or polycrystaline silicon. 5. SUBSYSTEM REQUIREMENT Radiation insensitivity, weldable contacts 6. COMPONENT IMPLEMENTATION Use terrestrial production silicon and lasar annealing/diffusion to make the equivalent of a 7. ALTERNATIVE IMPLEMENTATIONS Several suppliers and universities are developing approaches for very fast ribbon forming systems. 8. COMPONENT PERFORMANCE REQUIREMENTS η = 14%, capable of surviving the Shuttle launch environment mounted to 	, <u> </u>	
 AMO η = 16% @ 28°C, 14% @ 60°C 3. STATEMENT OF NEED Low cost silicon cells for space usage. Reliable, long lived, capable of 100,000 temperature cycles (-65° to +65°C) 4. ALTERNATIVE TECHNOLOGY CONCEPTS Single crystal or polycrystaline silicon. 5. SUBSYSTEM REQUIREMENT Radiation insensitivity, weldable contacts 5. COMPONENT IMPLEMENTATION Use terrestrial production silicon and lasar annealing/diffusion to make the equivalent of a 7. ALTERNATIVE IMPLEMENTATIONS Several suppliers and universities are developing approaches for very fast ribbon forming systems. 8. COMPONENT PERFORMANCE REQUIREMENTS # = 14%, capable of surviving the Shuttle launch environment mounted to 	bab.	
 3. STATEMENT OF NEED Low cost silicon cells for space usage. Reliable, long lived, capable of 100,000 temperature cycles (-65° to +65°C) 4. ALTERNATIVE TECHNOLOGY CONCEPTS Single crystal or polycrystaline silicon. 5. SUBSYSTEM REQUIREMENT Radiation insensitivity, weldable contacts 5. COMPONENT IMPLEMENTATION Use terrestrial production silicon and lasar annealing/diffusion to make the equivalent of a 7. ALTERNATIVE IMPLEMENTATIONS Several suppliers and universities are developing approaches for very fast ribbon forming systems. 8. COMPONENT PERFORMANCE REQUIREMENTS a. COMPONENT PERFORMANCE REQUIREMENTS a. 14%, capable of surviving the Shuttle launch environment mounted to 		n_{l} = 18% by lasar re-annealing and regrowing of junction region at AM1.
 Low cost silicon cells for space usage. Reliable, long lived, capable of 100,000 temperature cycles (-65° to +65°C) ALTERNATIVE TECHNOLOGY CONCEPTS Single crystal or polycrystaline silicon. SUBSYSTEM REQUIREMENT Radiation insensitivity, weldable contacts COMPONENT IMPLEMENTATION Use terrestrial production silicon and lasar annealing/diffusion to make the equivalent of a ALTERNATIVE IMPLEMENTATIONS Several suppliers and universities are developing approaches for very fast ribbon forming systems. COMPONENT PERFORMANCE REQUIREMENTS a. COMPONENT PERFORMANCE REQUIREMENTS a. COMPONENT PERFORMANCE REQUIREMENTS 		AMO $n_{1}^{2} = 16\% @ 28^{\circ}C, 14\% @ 60^{\circ}C$
 100,000 temperature cycles (-65° to +65°C) ALTERNATIVE TECHNOLOGY CONCEPTS Single crystal or polycrystaline silicon. SUBSYSTEM REQUIREMENT Radiation insensitivity, weldable contacts COMPONENT IMPLEMENTATION Use terrestrial production silicon and lasar annealing/diffusion to make the equivalent of a ALTERNATIVE IMPLEMENTATIONS Several suppliers and universities are developing approaches for very fast ribbon forming systems. 8. COMPONENT PERFORMANCE REQUIREMENTS \$\sigma\$ = 14\%, capable of surviving the Shuttle launch environment mounted to	3.	STATEMENT OF NEED
 Single crystal or polycrystaline silicon. SUBSYSTEM REQUIREMENT Radiation insensitivity, weldable contacts COMPONENT IMPLEMENTATION Use terrestrial production silicon and lasar annealing/diffusion to make the equivalent of a ALTERNATIVE IMPLEMENTATIONS Several suppliers and universities are developing approaches for very fast ribbon forming systems. COMPONENT PERFORMANCE REQUIREMENTS a: COMPONENT PERFORMANCE REQUIREMENTS a: 14%, capable of surviving the Shuttle launch environment mounted to 		
 SUBSYSTEM REQUIREMENT Radiation insensitivity, weldable contacts COMPONENT IMPLEMENTATION Use terrestrial production silicon and lasar annealing/diffusion to make the equivalent of a ALTERNATIVE IMPLEMENTATIONS Several suppliers and universities are developing approaches for very fast ribbon forming systems. COMPONENT PERFORMANCE REQUIREMENTS \$\sigma\$ = 14\%, capable of surviving the Shuttle launch environment mounted to	١.	ALTERNATIVE TECHNOLOGY CONCEPTS
 Radiation insensitivity, weldable contacts COMPONENT IMPLEMENTATION Use terrestrial production silicon and lasar annealing/diffusion to make the equivalent of a ALTERNATIVE IMPLEMENTATIONS Several suppliers and universities are developing approaches for very fast ribbon forming systems. COMPONENT PERFORMANCE REQUIREMENTS \$\alpha\$ = 14\%, capable of surviving the Shuttle launch environment mounted to		Single crystal or polycrystaline silicon.
 S. COMPONENT IMPLEMENTATION Use terrestrial production silicon and lasar annealing/diffusion to make the equivalent of a ALTERNATIVE IMPLEMENTATIONS Several suppliers and universities are developing approaches for very fast ribbon forming systems. 8. COMPONENT PERFORMANCE REQUIREMENTS \$\alphi\$ = 14\%, capable of surviving the Shuttle launch environment mounted to	5.	SUBSYSTEM REQUIREMENT
 Use terrestrial production silicon and lasar annealing/diffusion to make the equivalent of a 7. ALTERNATIVE IMPLEMENTATIONS Several suppliers and universities are developing approaches for very fast ribbon forming systems. 8. COMPONENT PERFORMANCE REQUIREMENTS \$\alphi\$ = 14\%, capable of surviving the Shuttle launch environment mounted to		Radiation insensitivity, weldable contacts
 equivalent of a ALTERNATIVE IMPLEMENTATIONS Several suppliers and universities are developing approaches for very fast ribbon forming systems. COMPONENT PERFORMANCE REQUIREMENTS a = 14%, capable of surviving the Shuttle launch environment mounted to	5.	COMPONENT IMPLEMENTATION
Several suppliers and universities are developing approaches for very fast ribbon forming systems. 8. COMPONENT PERFORMANCE REQUIREMENTS $\sigma_1^2 = 14\%$, capable of surviving the Shuttle launch environment mounted to		-
ribbon forming systems. 8. COMPONENT PERFORMANCE REQUIREMENTS $\sigma_1^2 = 14\%$, capable of surviving the Shuttle launch environment mounted to	7.	ALTERNATIVE IMPLEMENTATIONS
$\sigma_1^2 = 14\%$, capable of surviving the Shuttle launch environment mounted to		
	8.	COMPONENT PERFORMANCE REQUIREMENTS

COMPONENT Amorphous Silicon Solar Cells BASIC PARAMETERS Only lower efficiency demonstrated, but potentially much lower cost. STATEMENT OF NEED Lower cost solar power enhances the competitive position of space missions such as the Space Radar and Construction Station. ALTERNATIVE TECHNOLOGY CONCEPTS Planar arrays with more efficient mono-crystaline silicon or GaAlAs, or concentrating systems
Only lower efficiency demonstrated, but potentially much lower cost. TATEMENT OF NEED Lower cost solar power enhances the competitive position of space missions such as the Space Radar and Construction Station. ALTERNATIVE TECHNOLOGY CONCEPTS Planar arrays with more efficient mono-crystaline silicon or GaAlAs, or
TATEMENT OF NEED Lower cost solar power enhances the competitive position of space missions such as the Space Radar and Construction Station. ALTERNATIVE TECHNOLOGY CONCEPTS Planar arrays with more efficient mono-crystaline silicon or GaAlAs, or
Lower cost solar power enhances the competitive position of space missions such as the Space Radar and Construction Station. ALTERNATIVE TECHNOLOGY CONCEPTS Planar arrays with more efficient mono-crystaline silicon or GaAlAs, or
such as the Space Radar and Construction Station. ALTERNATIVE TECHNOLOGY CONCEPTS Planar arrays with more efficient mono-crystaline silicon or GaAlAs, or
Planar arrays with more efficient mono-crystaline silicon or GaAlAs, or
SUBSYSTEM REQUIREMENT Radiation insensitivity or self annealing, 100,000 temperature cycles (-65 to +60 ⁶
Horizontally Multilayered High Voltage Cells ⁽¹⁾
Efficiencies to 6% are predicted, assuming one of the 3 implementations matures
ALTERNATIVE IMPLEMENTATIONS
Ultrathin active layer "FAN" type cell $\binom{2}{2}$ or Tandem amorphous cells $\binom{3}{3}$
1, 2, 3 (References) "14th IEEE Photovoltaic Specialists Conference"
COMPONENT PERFORMANCE REQUIREMENTS
It is assumed that the shuttle launch packaging of the solar blanket which uses the cells will be accomplished by multiply folding the blanket, so that launch vibration and "g" loading are minimized, as far as the cells themselves are concerned. The cells themselves must be capable of accepting coverslides. $V_{oc} > .4$, Isc. Because low cost is inherent, width is assumed to be 200-500 μ meters, driving blanket specific weight up to 2 Kg/M ² .
•

-	
1.	COMPONENT Amorphous Silicon Solar Cells (High Efficiency)
2.	BASIC PARAMETERS
	Only lower efficiency demonstrated, but potentially much lower cost. Efficiency increased by lasar annealing/diffusion.
3.	STATEMENT OF NEED
	Lower cost solar power enhances the competitive position of space missions such as the Space Radar and Construction Station.
4.	ALTERNATIVE TECHNOLOGY CONCEPTS
	Planar arrays with more efficient mono-crystaline silicon or GaAlAs, or concentrating systems
5.	SUBSYSTEM REQUIREMENT
	Radiation insensitivity or self annealing, 100,000 temperature cycles (-65° to $+6$
6.	COMPONENT IMPLEMENTATION
	Doped amorphous layer deposited and regrown epitaxially.
	Efficiencies to 16% are predicted. (Reference) "14th IEEE Photovoltaic Specialists Conference"
;	ALTERNATIVE IMPLEMENTATIONS
8.	COMPONENT PERFORMANCE REQUIREMENTS
	It is assumed that the Shuttle launch packaging of the solar blanket which uses the cells will be accomplished by multiply folding the blanket, so that launch vibration and "g" loading are minimized, as far as the cells themselves are concerned. The cells themselves must be capable of accepting coverslides.
	V _{oc} .4, I _{sc} . Because low cost in inherent, width is assumed to be 200-500 meters, driving blanket specific weight up to 2 Kg/M ² .
1	

Γ	
	. COMPONENT Multibandgap One Sun Solar Cells
2	Efficiencies of 23-25% @ 60 ⁰ C
-	. STATEMENT OF NEED A planar array cell with long life, higher efficiency, self annealing at GEO levels.
4	ALTERNATIVE TECHNOLOGY CONCEPTS
	Single bandgap cells, concentrators
	subsystem requirement Annealable in space, possibly by applying higher temperatures (200-300°C) capable of withstanding 100,000 -65°C to +65°C cycles.
6	Both Varian and Spectrolab have approaches for construction of this type of cell.
	ALTERNATIVE IMPLEMENTATIONS
	Under study at Varian, Hughes Research, Arizona State University.
	. COMPONENT PERFORMANCE REQUIREMENTS
	Capable of being packaged to withstand the shuttle launch on a foldable blanket. 5 X 5 cm square cells.
	9. UNAVAILABLE DATA
	There is no laboratory data on three bandgap systems as yet, however, theoretical studies indicate that this extension of todays technology should be anticipated but with the provision of high risk.

	MMPS COMPONENT APPLICATION AND PERFORMANCE
I.	COMPONENT E tched Groove Silicon Concentrator Solar Cell
2.	BASIC PARAMETERS
	Efficiencies of as high as 18% have been demonstrated in the laboratory at 1000 suns.
3.	STATEMENT OF NEED
	A high efficiency, concentrating solar cell should be considered for its benefits. They are: cost reduction low mass
4.	ALTERNATIVE TECHNOLOGY CONCEPTS
	GaAlAs concentrating cells, planar cell arrays
5.	SURSYSTEM REQUIREMENT Radiation insensitive or self annealable, heat exchanger mounting. (100,000 temperature cycles, $-65^{\circ}C$ to $+160^{\circ}C$)
6.	COMPONENT IMPLEMENTATION
	Described in the 14th photovoltaic IEEE specialists conference by Microwave Associates.
7.	ALTERNATIVE IMPLEMENTATIONS
	OCLI concentrator cells, fabricated to NASA standards
8.	COMPONENT PERFORMANCE REQUIREMENTS
	1. The etched grooves shall not cause a loss of reliability (Ref. NTS-II experiment).
	The cells will be mounted to a heat exchanger, and in the mounted configuration must be capable of withstanding the shuttle launch environment. Based on our analysis, heat fluxes will be up to 35 watts per 2.0 by 2.0 cm cell.

•	_	
		MMPS COMPONENT APPLICATION AND PERFORMANCE
. [1.	COMPONENT
	,	Concentrating GaAlAs Solar Cel!, Back Surface Reflector BASIC PARAMETERS
	4.	
A-11		17 to 20% at 50 suns
	3.	STATEMENT OF NEED
		A cell of this type appears to be able to make concentrators cost 10-30% of the cost of Planar Arrays.
	4.	ALTERHATIVE TECHNOLOGY CONCEPTS
		Low cost solar cells in planar arrays, other concentrating approaches.
	5.	SUBSYSTEM REQUIREMENT Rediation insensitivity, capable of withstanding 100,000 temperature cycles $(-65^{\circ}C \text{ to } +160^{\circ}C)$
	6.	
		Similar to Varian GaAlAs terrestrial cells
	7.	ALTERNATIVE IMPLEMENTATIONS
		Liquid Phase Eptaxial (LPE) or Organometalic Processes
	8.	COMPONENT PERFORMANCE REQUIREMENTS
		The cells will be mounted to a heat exchanger and in the mounted configuration must be capable of withstanding the shuttle launch environment. Based on our analysis, heat fluxes will be up to 25 watts per 2.0 cm by 2.0 cm cell.
	1	
		A-11

	MMPS COMPONENT APPLICATION AND PERFORMANCE
١.	COMPONENT Multibandgap concentrating solar cells.
2.	BASIC PARAMETERS Efficiencies of 25-28%, temperature coefficients at V_{mp} of band gap $\approx 2 \text{ mv/C}^0$
3.	STATEMENT OF NEED Highly efficient, low cost power
4.	ALTERNATIVE TECHNOLOGY CONCEPTS Planc silicon or GaAlAs concentrating cells, planar single band cells
5.	SUBSYSTEM REQUIREMENT Radiation insensitive, capable of withstanding up to 100,000 temperature cycles,
6.	COMPONENT IMPLEMENTATION -65°C to +160 Being developed by Varian under contract to NASA LeRC.
7.	ALTERNATIVE IMPLEMENTATIONS Varian Dichroic mirror approach with single band concentrating cells.
8.	COMPONENT PERFORMANCE REQUIREMENTS The cells will be mounted to a heat exchanger and in the mounted configuration must be capable of withstanding the shuttle launch environment. Based on our analysis, heat fluxes will be up to 25 watts per 2.0 cm by 2.0 cm cell.

MMPS COMPONENT APPLICATION AND PERFORMANCE

1. COMPONENT Silicon/Gallium 50% efficient Solar Concentrator Cells

2. BASIC PARAMETERS 1. Sperical concentrator illuminates a target to a "red hot" 2100°K. At this temperature, the Gallium Silicon colls are theoretically 55° efficient, with 50% perhaps achievable.

3. STATEMENT OF NEED A 50% efficient photovoltaic system is needed to minimize system cost, mass, volume.

4. ALTERNATIVE TECHNOLOGY CONCEPTS The only other known possible 50% efficient system would involve excessive radiator mass.

5. SUBSYSTEM REQUIREMENT

6. COMPENENT IMPLEMENTATION The silicon/GA cells which the illuminator shines upon must be capable of high flux densities. They must have back surface reflectors.

7. ALTERNATIVE IMPLEMENTATIONS

8. COMPONENT PERFORMANCE REQUIREMENTS

The silicon cells should handle the heat flux of about 50% of the energy. Since a concentration ratio of about 2500 is required for 2100 K^O illuminator temperature, fluxes of approximately 200 w/cm² will be incident on the cell. 100 w²/cm must then be handled by the thermal control system, with what would probably be a jet incident on a heat exchange close to the back of the cell.

	MMPS COMPONENT APPLICATION AND PERFORMANCE
1.	COMPONENT Rankine cycle heat engine
2.	BASIC PARAMETERS
	Terrestrial technology and KIPS technology have developed turbines whose efficiency is 70 to 72% of Carnot maximum.
3.	STATEMENT OF NEED Rankine engines could be employed to utilize low quantity waste heat from photovoltaic systems, depending radiator specific weight, they may have benefits.
4.	ALTERNATIVE TECHNOLOGY CONCEPTS Pure photovoltaic systems. Fluid systems with rankine pumps.
5.	SUBSYSTEM REQUIREMENT Radiation and micrometeoroid environment, 0 g liquification, LEO thermal cycle for space construction
6.	COMPONENT IMPLEMENTATION KIPS turbine(s) could be upscaled and used with jet condensers. Scaled point designs for up to 10 KW have been developed.
7.	ALTERNATIVE IMPLEMENTATIONS No other space alternative is known for use in conjunction with photovoltaics, although a commercial Barber-Nichols turbine could perhaps be space qualified.
8.	COMPONENT PERFORMANCE REQUIREMENTS

AND AND A AND A AND

......

	MMPS COMPONENT APPLICATION AND PERFORMANCE
1.	COMPONENT Brayton cycle heat engine/alternator
2.	BASIC PARAMETERS Input temperature assumed to take only one value – T_{HOT} 1400 [°] with reflections from Dichroic mirror secondary. $T_{HOT} = 150^{\circ}C$ with cells at secondary not judged feasible.
3.	STATEMENT OF NEED I^{T} 'ng reflective mirrors, perhaps 30% of the solar insolation might be utilized in heat engine system.
4.	ALTERNATIVE TECHNOLOGY CONCEPTS
	Rankine or Stirling Engines, or Photovoltaic "only" systems.
	SUBSYSTEM REQUIREMENT Low sensitivity to micrometeoroids. Fluids should not be a possible contaminant.
6.	COMPONENT IMPLEMENTATION The DIPS and LeRC Brayton turbine developments serve as lower power prototypes which could be upscaled.
7.	
	The unit should have overall efficiencies of about 25% for a temperature range of from $+60$ to $+1100$ °C. The attainable specific power from typical combined rotating units, appears to be about 50 W/Kg, and this will be specified.

1.	
••	Nickel - Cadmium Electrochemical Storage Battery
2.	BASIC PARAMETERS Energy Density - 10-25 W-hr/kg Life 5-10 yrs. 30,000 cycles (LEO), 300-900 cycles (GEO) Throughput Efficiency - 75-90% $V_{oc} = 1.3 V$ Optimum Temperature - 0-10°C
3.	STATEMENT OF NEED Load management buffer, secondary and backup power during array outages, power source for on-array thermal management/annealing.
4.	ALTERNATIVE TECHNOLOGY CONCEPTS Metal-Hydrogen electrochemical Flywheels electromechanical Fuel Cells, regenerative
5.	SUBSYSTEM REQUIREMENT Occlusion in LEO (38%), radiation and micrometeoroid environment
_	COMPONENT IMPLEMENTATION
9.	Charge/Discharge unit draws power from secondary bus Batteries on array side of rotary joint to minimize pointing requirements Deep discharge reconditioning for extended life, resistance heater for op below -50
7.	ALTERNATIVE IMPLEMENTATIONS Depth of discharge: varies inversely with useful life. Implies trade-off of transpo tation against component costs over time. Minimum 10 year weight attained at abo 25% discharge depth Regulation: shunt scries, on-array regulation, or LC ³ high efficiency charge cont
╞	COMPONENT PERFORMANCE REQUIREMENTS
	Load profile: handles intermittent peak power loads (up to 2C without loss of life) for space construction facility Output: Equals array EOL power, for about 0.5 hrs Voltage: Dedicated storage bus allows selection Reliability: Switches for bypass of inoperative cells Control: Microprocessor algorithm based on sensed voltages, temperatures Temperature Range: -40°C to 50°C Working Voltage: 1-1.25 V Acceleration: 5 g's max Vibration: Shuttle launch environment Longer lifetimes not achievable - although benefits from longer life could be significant.

۱.	COMPONENT Nickel - Hydrogen Electrochemical Storage Battery
2.	BASIC PARAMETERS Energy Density - 30-35 W/hr/kg (Hi-H) Life 5-10 yrs. 30,000 cycles (LEO), 900 cycles (GEO) Throughput Efficiency 75-90% V _{oc} = 1.36V
3.	STATEMENT OF NEED Backup for NaS and flywheel. Load management buffer, secondary/backup power during array outages, power source for the second management/annealing
4.	ALTERNATIVE TECHNOLOGY CONCEPTS Nickel Cadmium electrochemical Flywheel electromechanical Fuel cell, regenerative
5.	SUBSYSTEM REQUIREMENT Occlusion in LEO (38%), radiation and especially micrometeoroid protection
6.	COMPONENT IMPLEMENTATION Charge/discharge unit draws power from dedicated bus Batteries on array side of rotary joint to minimize pointing requirements Provisions for protection against punctures or for bypassing cells required
7	ALTERNATIVE IMPLEMENTATIONS Nickel, Hydrogen vs. more materially expensive but lighter Silver-Hydrogen Regulation: shunt, series, on-array or LC ³ high efficiency charge control Depth of discharge varies inversely with useful life. Minimum 10-yr. weight is achieved at about 50% discharge depth.
8	 COMPONENT PERFORMANCE REQUIREMENTS Load profile: Handle intermittent peak power (up to 1.5 C w/o loss of life) Output : equals array EOL power for 0.5 hrs Voltage: dedicated storage bus allows selection Reliability: provisions for bypassing failed cells Control: Microprocessor algorithm based on sensed voltage, temperature and pressure Temperature Range: 0° to 30°C Working Voltage: 1.0 - 1.6 V Shuttle Environment Longer lifetime not achievable - althougt benefits from longer life could be significant.

	MMPS COMPONENT APPLICATION AND PERFORMANCE
۰.	COMPONENT Silver - Zinc Electrochemical Storage
2.	BASIC PARAMETERS Energy Density, 30-50 Whr/kg and perhaps greater Life - 1-2 yrs; 200-500 cycles GEO only Throughput Efficiency 70-90% V _{oc} = 1.5
3	STATEMENT OF NEED Emergency power source, power source for array outage and thermal management/annealing
4.	ALTERNATIVE TECHNOLOGY CONCEPTS Nickel - Cadmium electrochemical Regenerative fuel cell Flywheel electromechanical
5.	SUBSYSTEM REQUIREMENT
	Emergency backup power for radar mission (GEO), radiation and micrometeoroid
ŝ.	COMPONENT IMPLEMENTATION Environmen
	Inorganic/organic separator allows extended life compared to earlier cells 607 maximum DOD for rechargeable operation Charge/discharge unit draws power from dedicated bus
,	
Ļ	COMPONENT PERFORMANCE REQUIREMENTS
	One year lifetime with excellent charge retention. Lifetime increase is unlikely Acceleration: 5 g's Operating temperature: -40°C to 75°C Working voltage: 1 to 1.55 V Charge retention: 1 year at 25°C Shuttle launch environment

•	COMPONENT Silver - Hydrogen Electrochemical Storage
2.	BASIC PARAMETERS
	Energy Density - 50-70 W. hr/kg
	Life 1-10 yrs 8,000 cycles (LEO), 900 cycles (GEO)
	Throughput Efficiency $70-90\%$ V _{oc} = 1.7V
з. [—]	STATEMENT OF NEED
	Load management buffer, secondary/backup power during array outages, power
	source for on-array thermal mgmt. /annealing
4.	ALTERNATIVE TECHNOLOGY CONCEPTS
	Nickel Cadmium electrochemical
	Flywheel electromechanical
	Fuel Cell, regenerative
5.	SUBSYSTEM REQUIREMENT
	Occlusion in(LEO) 397, radiation and micrometeoroid protection
5.	COMPONENT IMPLEMENTATION
-	Charge/discharge unit draws power from dedicated bus
	Batteries on array side of rotary joint to minimize pointing requirements
	Provisions for protection against micrometeoroids or bypassing failed cells
7.	ALTERNATIVE IMPLEMENTATIONS
:	Silver - Hydrogen vs. heavier but less expensive Nickel Hydrogen
i	Regulation: shunt, series, on-array, LC ³ high efficiency regulation
	Depth of discharge inversely proportional to battery life; optimum around 75%
	depth of discharge
13.	COMPONENT PERFORMANCE REQUIREMENTS
	Similar to Nickel - Hydrogen
}	
1	
1	
1	
1	
i i	

 \mathbb{R}^{n}

F

Energy Density 150-250 H hr/kg Life - 300-900 cycles 5-10 yrs. (GEO) Throughput Efficiency 70-90% V _{OC} = 2.1 V		MMPS COMPONENT APPLICATION AND PERFORMANCE
 2. SASIC PARAMETERS Energy Density 150-250 H hr/kg Life - 300-900 cycles 5-10 yrs. (GEO) Throughput Efficiency 70-90% V_{OC} = 2.1 V 3. STATEMENT OF NEED Load management buffer, emergency and occlusion power for GEO orbit. 4. ALTERNATIVE TECHNOLOGY CONCEPTS Nickel-Cadmium electrochemical Metal - Hydrogen electrochemical Flywheel Electromechanic 5. SUBSYSTEM REQUIREMENT GEO Occlusion (1%), micromecharican environments. 6. COMPONENT IMPLEMENTATION Batteries on array to minimize poin' ing requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage vs. SOC slope for this couple. 7. ALTERNATIVE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) 3. COMPONENT PERCORMANCE REQUIREMENTS Operating temperature: Wothing voltage = 1.5 - 2.0 Shuttle launch environment 	:.	COMPONENT
 Energy Density 150-250 H hr/kg Life - 300-900 cycles 5-10 yrs. (GEO) Throughput Efficiency 70-90% V_{OC} = 2.1 V STATEMENT OF NEED Load management buffer, emergency and occlusion power for GEO orbit. ALTERNATIVE TECHNOLOGY CONCEPTS Nickel-Cadmium electrochemical Metal - Hydrogen electrochemical Flywheel Electromechanic SUBSYSTEM REQUIREMENT GEO Occlusion (1%), micrometeoroid and radiation environments. COMPONENT IMPLEMENTATION Batteries on array to minimize point 'm₃ requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage vs. SOC slope for this couple. ALTERNATIVE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) COMPONENT PERCORMANCE REQUIREMENTS Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment 		
 Life - 300-900 cycles 5-10 yrs. (GEO) Throughput Efficiency 70-90% V_{OC} = 2.1 V STATEMENT OF NEED Load management buffer, emergency and occlusion power for GEO orbit. ALTERNATIVE TECHNOLOGY CONCEPTS Nickel-Cadmium electrochemical Metal - Hydrogen electrochemical Flywheel Electromechanic SUBSYSTEM REQUIREMENT GEO Occlusion (1%), microproteoroid and radiation environments. COMPONENT IMPLEMENTATION Batteries on array to minimize point ing requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage vs. SOC slope for this couple. ALTERNATIVE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) COMPONENT PERSORMANCE REQUIREMENTS Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment 	2.	
 Throughput Efficiency 70-90% V_{OC} = 2.1 V STATEMENT OF NEED Load management buffer, emergency and occlusion power for GEO orbit. ALTERNATIVE TECHNOLOGY CONCEPTS Nickel-Cadmium electrochemical Metal - Hydrogen electrochemical Flywheel Electromechanic SUBSYSTEM REQUIREMENT GEO Occlusion (1%), micrometeoroid and radiation environments. COMPONENT IMPLEMENTATION Batteries on array to minimize point ing requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage v8. SOC slope for this couple. ALTERNATIVE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) COMPONENT PERCOMMANCE REQUIREMENTS Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment 		
 3. STATEMENT OF NEED Load management buffer, emergency and occlusion power for GEO orbit. 4. ALTERNATIVE TECHNOLOGY CONCEPTS Nickel-Cadmium electrochemical Metal - Hydrogen electrochemical Flywheel Electromechanic 5. SUBSYSTEM REQUIREMENT GEO Occlusion (1%), microproteoroid and radiation environments. 6. COMPONENT IMPLEMENTATION Batteries on array to minimize point ing requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage v8. SOC slope for this couple. 7. ALTERNATIVE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) 1. COMPONENT PERFORMANCE REQUIREMENTS Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment 		• • • •
 Load management buffer, emergency and occlusion power for GEO orbit. ALTERNATIVE TECHNOLOGY CONCEPTS Nickel-Cadmium electrochemical Metal - Hydrogen electrochemical Flywheel Electromechanic SUBSYSTEM REQUIREMENT GEO Occlusion (1%), micrometeoroid and radiation environments. COMPONENT IMPLEMENTATION Batteries on array to minimize point ing requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage v8. SOC slope for this couple. ALTERNATIVE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) COMPONENT PERCORMANCE REQUIREMENTS Operating temperature: Working voltage = 1, 5 - 2.0 Shuttle launch environment 		Inroughput Efficiency 70-90% VOC = 2.1 V
 ALTERNATIVE TECHNOLOGY CONCEPTS Nickel-Cadmium electrochemical Metal - Hydrogen electrochemical Flywheel Electromechanic SUBSYSTEM REQUIREMENT GEO Occlusion (1%), micrometroroid and radiation environments. COMPONENT IMPLEMENTATION Batteries on array to minimize point ing requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage vs. SOC slope for this couple. ALTERNATIVE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) COMJONENT PERCORMANCE REQUIREMENTS Operating temperature: Wothing voltage = 1.5 - 2.0 Shuttle launch environment 	3.	
 Nickel-Cadmium electrochemical Metal - Hydrogen electrochemical Flywheel Electromechanic SUBSYSTEM REQUIREMENT GEO Occlusion (1%), micrometeoroid and radiation environments. COMPONENT IMPLEMENTATION Batteries on array to minimize point ing requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage vs. SOC slope for this couple. ALTERNATIVE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) COMPONENT PERFORMANCE REQUIREMENTS Operating temperature: Wothing voltage = 1.5 - 2.0 Shuttle launch environment 		Load management buffer, emergency and occlusion power for GEO orbit.
 Metal - Hydrogen electrochemical Flywheel Electromechanic SUBSYSTEM REQUIREMENT GEO Occlusion (1%), micrometeoroid and radiation environments. COMPONENT IMPLEMENTATION Batteries on array to minimize point into requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage v8. SOC slope for this couple. ALTERNATIVE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) COMPONENT PERFORMANCE REQUIREMENTS Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment 	4.	ALTERNATIVE TECHNOLOGY CONCEPTS
 Flywheel Electromechanic SUBSYSTEM REQUIREMENT GEO Occlusion (1%), micrometeoroid and radiation environments. COMPONENT IMPLEMENTATION Batteries on array to minimize pointing requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage v8. SOC slope for this couple. ALTERNATIVE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) COMPONENT PERFORMANCE REQUIREMENTS Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment 		Nickel-Cadmium electrochemical
 SUBSYSTEM REQUIREMENT GEO Occlusion (1%), micrometeoroid and radiation environments. COMPONENT IMPLEMENTATION Batteries on array to minimize point into requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage v8. SOC slope for this couple. ALTERNAT: VE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) COMPONENT PERFORMANCE REQUIREMENTS Operating temperature: Workling voltage = 1.5 - 2.0 Shuttle launch environment 		Metal – Hydrogen electrochemical
 GEO Occlusion (1%), micrometeoroid and radiation environments. 6. COMPONENT IMPLEMENTATION Batteries on array to minimize point into requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage v8. SOC slope for this couple. 7. ALTERNATIVE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) 3. COMPONENT PERFORMANCE REQUIREMENTS Operating temperature: Workling voltage = 1.5 - 2.0 Shuttle launch environment 		
 Batteries on array to minimize point in requirements. Charge/Discharge unit draws power from dedicated bus to account for large voltage vs. SOC slope for this couple. 7. ALTERNAT: VE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) 3. COMPONENT PERFORMANCE REQUIREMENTS Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment 	§ .	
 Charge/Discharge unit draws power from dedicated bus to account for large voltage vs. SOC slope for this couple. 7. ALTERNAT: VE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) 3. COMPONENT PERCORMANCE REQUIREMENTS Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment	6.	COMPONENT IMPLEMENTATION
 Charge/Discharge unit draws power from dedicated bus to account for large voltage vs. SOC slope for this couple. 7. ALTERNAT: VE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) 3. COMPONENT PERCORMANCE REQUIREMENTS Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment		Batteries on array to minimize point the requirements.
 voltage v8. SOC slope for this couple. ALTERNATIVE IMPLEMENTATIONS High temperature lithium/iron sulfide battery (350-450°C) COMPONENT PERFORMANCE REQUIREMENTS Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment		
High temperature lithium/iron sulfide battery (350-450°C) 3. COMPONENT PERFORMANCE REQUIREMENTS Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment		
3. COMPONENT PERCORMANCE REQUIREMENTS Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment	7.	ALTERNATIVE IMPLEMENTATIONS
Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment		High temperature lithium/iron sulfide battery (350-450°C)
Operating temperature: Working voltage = 1.5 - 2.0 Shuttle launch environment		
Working voltage = 1.5 - 2.0 Shuttle launch environment	 a.	COMPONENT PERCORMANCE REQUIREMENTS
Shuttle launch environment	Ì	Operating temperature:
		Wothing voltage = $1.5 - 2.0$
Deep discharge capability	Į	Shuttle launch environment
		Deep discharge capability
	İ	

1

	MMPS COMPONENT APPLICATION AND PERFORMANCE
•	COMPONENT Rotary Joint (Transformer)
2.	BASIC PARAMETERS 5 MW AC continuously rotatable joint arranged as 20 separate 250 KW circuits - repairable on orbit - use pot core design with outside coils. See below.
5.	STATEMENT OF NEED Transfer of energy across rotary joint.
٩.	ALTERNATIVE TECHNOLOGY CONCEPTS Slip rings.
5.	SUBSYSTEM REQUIREMENT Array must point at sun; antenna must point at earth.
7.	Rotary transformer connects between resonant converter primaries and load converter secondaries. ALTERNATIVE IMPLEMENTATIONS
	Rotary capacitor, slip rings.
8.	Rotary capacitor, slip rings.
8.	COMPONENT PERFORMANCE REQUIREMENTS Power: 5 mw total per side 20 transformers rated at 250 KW each per transformer side Frequency: 20 KHz Inductance: Controlled parameter
8.	COMPONENT PERFORMANCE REQUIREMENTS Power: 5 mw total per side 20 transformers rated at 250 KW each per transformer side Frequency: 20 KHz Inductance: Controlled parameter Full Load Torque: TBD Efficiency: 98% Specific Mass: 1, Kg/KW Voltage: 1,000 Vrms
8.	COMPONENT PERFORMANCE REQUIREMENTS Power: 5 mw total per side 20 transformers rated at 250 KW each per transformer side Frequency: 20 KHz Inductance: Controlled parameter Full Load Torque: TBD Efficiency: 98% Specific Mass: 1, Kg/KW

. .

.....

į

k

_	MMPS COMPONENT APPLICATION AND PERFORMANCE		
1.	COMPONENT Payload Connector	s - Magnetic	
2.	BASIC PARAMETERS		
	Voltage (primary) 1 KVRMS, Power: Up to 250 KW @ 250		
3.	STATEMENT OF NEED		
	Connectors are required to the distribution matrix. C upgrading as technology imp	connect individual membrane load onnectors facilitate maintenance roves.	
4.	ALTERNATIVE TECHNOLOGY CONCEPTS		
	Hardwiring, welding, or reg	ular contact connectors.	
S .	SUBSYSTEM REQUIREMENT		
6.	COMPONENT IMPLEMENTATION		
	Magnetic connectors offer i	ncreased resistance to plasma lo	
7.	increased safety and elimin transformer in load equipme: ALTERNATIVE IMPLEMENTATIONS	ate the need for a separate powe nt.	
	increased safety and elimin transformer in load equipme	ate the need for a separate powe nt. detailed design study.	
	increased safety and elimin transformer in load equipme ALTERNATIVE IMPLEMENTATIONS Should be the subject of a	ate the need for a separate powe nt. detailed design study. s 1 KVRMS Single or multiple windings per	
	increased safety and elimin transformer in load equipme: ALTERNATIVE IMPLEMENTATIONS Should be the subject of a COMPONENT PERFORMANCE REQUIREMENT Primary Voltage: Secondary Voltage:	ate the need for a separate powe nt. detailed design study. s 1 KVRMS Single or multiple windings per requirements	
	increased safety and elimin transformer in load equipme: ALTERNATIVE IMPLEMENTATIONS Should be the subject of a COMPONENT PERFORMANCE REQUIREMENT Primary Voltage: Secondary Voltage: Frequency: Power:	ate the need for a separate powe nt. detailed design study.	
	increased safety and elimin transformer in load equipme: ALTERNATIVE IMPLEMENTATIONS Should be the subject of a COMPONENT PERFORMANCE REQUIREMENT Primary Voltage: Secondary Voltage: Frequency: Power: Connect/Disconnect Cycles:	ate the need for a separate powe nt. detailed design study.	
	increased safety and elimin transformer in load equipme: ALTERNATIVE IMPLEMENTATIONS Should be the subject of a COMPONENT PERFORMANCE REQUIREMENT Primary Voltage: Secondary Voltage: Frequency: Power: Connect/Disconnect Cycles: Efficiency: Circuits:	ate the need for a separate powe nt. detailed design study.	
	increased safety and elimin transformer in load equipme: ALTERNATIVE IMPLEMENTATIONS Should be the subject of a COMPONENT PERFORMANCE REQUIREMENT Primary Voltage: Secondary Voltage: Frequency: Power: Connect/Disconnect Cycles: Efficiency:	ate the need for a separate powe nt. detailed design study.	

MMPS COMPONENT APPLICATION AND PERFORMANCE

1. COMPONENT Resonant Converter Driver Unit

2. BASIC PARAMETERS Power level 25 KW for Space Construction Facility and Radar with a high modularization level. 250 KW for lowest cost and mass radar system.

3. STATEMENT OF NEED

Power distribution converter.

4. ALTERNATIVE TECHNOLOGY CONCEPTS

DC distribution.

5. SUBSYSTEM REQUIREMENT High efficiency distribution system required.

300 VDC

6. COMPONENT IMPLEMENTATION

Solar arrays drive converter primaries which passes across rotary joint and to load distribution.

7. ALTERNATIVE IMPLEMENTATIONS

. DC distribution would eliminate need.

8. COMPONENT PERFORMANCE REQUIREMENTS

Input Voltage: Input Power: Output Voltage: Resonance: Control: Efficiency: Physical:

25 to 250 KW
300 VRMS
Resonant at about 20 KHz with rotary joint
internal capacitor and inductor.
Databus
98%
1.65 Kg/KW for one half of the converter
+ second order terms in accordance with
Figure __.

•			
1.	COMPONENT LOAD	i Distribution Switchgear	
2	BASIC PARAMETERS		
	Power Level: Configuration:	10 MW AC total, 25 KW for radar distributi Electronic crossbar	
۶.	STATEMENT OF NEED		
	Interfaxw para Adaptive load	allel lines from rotary joint to load matrix. management. Redundance management.	
4.	ALTERNATIVE TECHN	OLOGY CONCEPTS	
	Hardwired syst	tem.	
\$.			
	Adaptive load	distribution required.	
	Outputs from the rotary joint need to be distributed throughou the load matrix. Failures of power management equipment on the load side of the joint must be accommodated.		
	the load matri	ix. Failures of power management equipment on of the joint must be accommodated.	
7.	the load matri the load side	ix. Failures of power management equipment on of the joint must be accommodated.	
	the load matri the load side ALTERNATIVE IMPLE Thyristor swit	Ix. Failures of power management equipment on of the joint must be accommodated. MENTATIONS	
	the load matri the load side ALTERNATIVE IMPLE Thyristor swit	<pre>Ix. Failures of power management equipment on of the joint must be accommodated. MENTATIONS tches which switch at zero voltage point. MANCE REQUIREMENTS From 25 to 250 KW (may actually be 30 KW so t for compatibility with icn modularity).</pre>	
	the load matri the load side ALTERNATIVE IMPLE Thyristor swit COMPONENT PERFOR Power Level: Frequency:	<pre>Ix. Failures of power management equipment on of the joint must be accommodated. MENTATIONS tches which switch at zero voltage point. MANCE REQUIREMENTS From 25 to 250 KW (may actually be 30 KW so t for compatibility with icn modularity). 20 KHz</pre>	
	the load matri the load side ALTERNATIVE IMPLE Thyristor swit COMPONENT PERFOR Power Level: Frequency: Inputs:	<pre>Ix. Failures of power management equipment on of the joint must be accommodated. MENTATIONS tches which switch at zero voltage point. MANCE REQUIREMENTS From 25 to 250 KW (may actually be 30 KW so t for compatibility with icn modularity). 20 KHz 21 (20 + 1 spare) @ 250 KW</pre>	
	the load matri the load side ALTERNATIVE IMPLE Thyristor swit COMPONENT PERFOR Power Level: Frequency:	<pre>Ix. Failures of power management equipment on of the joint must be accommodated. MENTATIONS tches which switch at zero voltage point. MANCE REQUIREMENTS From 25 to 250 KW (may actually be 30 KW so t for compatibility with icn modularity). 20 KHz</pre>	
	the load matri the load side ALTERNATIVE IMPLE Thyristor swit COMPONENT PERFOR Power Level: Frequency: Inputs: Outputs: Control: Efficiency:	<pre>Ix. Failures of power management equipment on of the joint must be accommodated. MENTATIONS tches which switch at zero voltage point. MANCE REQUIREMENTS From 25 to 250 KW (may actually be 30 KW so t for compatibility with icn modularity). 20 KHz 21 (20 + 1 spare) @ 250 KW Determined by load matrix for the radar. Databus 99%.</pre>	
	the load matri the load side ALTERNATIVE IMPLE Thyristor swit COMPONENT PERFOR Power Level: Frequency: Inputs: Outputs: Control: Efficiency: Voltage:	<pre>Ix. Failures of power management equipment on of the joint must be accommodated. MENTATIONS tches which switch at zero voltage point. MANCE REQUIREMENTS From 25 to 250 KW (may actually be 30 KW so t for compatibility with icn modularity). 20 KHz 21 (20 + 1 spare) @ 250 KW Determined by load matrix for the radar. Databus 99%. 1,000 vrms</pre>	
	the load matri the load side ALTERNATIVE IMPLE Thyristor swit COMPONENT PERFOR Power Level: Frequency: Inputs: Outputs: Control: Efficiency:	<pre>Ix. Failures of power management equipment on of the joint must be accommodated. MENTATIONS tches which switch at zero voltage point. MANCE REQUIREMENTS From 25 to 250 KW (may actually be 30 KW so t for compatibility with icn modularity). 20 KHz 21 (20 + 1 spare) @ 250 KW Determined by load matrix for the radar. Databus 99%.</pre>	
	the load matri the load side ALTERNATIVE IMPLE Thyristor swit COMPONENT PERFOR Power Level: Frequency: Inputs: Outputs: Control: Efficiency: Voltage:	<pre>Ix. Failures of power management equipment on of the joint must be accommodated. MENTATIONS tches which switch at zero voltage point. MANCE REQUIREMENTS From 25 to 250 KW (may actually be 30 KW so t for compatibility with icn modularity). 20 KHz 21 (20 + 1 spare) @ 250 KW Determined by load matrix for the radar. Databus 99%. 1,000 vrms</pre>	
	the load matri the load side ALTERNATIVE IMPLE Thyristor swit COMPONENT PERFOR Power Level: Frequency: Inputs: Outputs: Control: Efficiency: Voltage:	<pre>Ix. Failures of power management equipment on of the joint must be accommodated. MENTATIONS tches which switch at zero voltage point. MANCE REQUIREMENTS From 25 to 250 KW (may actually be 30 KW so t for compatibility with icn modularity). 20 KHz 21 (20 + 1 spare) @ 250 KW Determined by load matrix for the radar. Databus 99%. 1,000 vrms</pre>	
	the load matri the load side ALTERNATIVE IMPLE Thyristor swit COMPONENT PERFOR Power Level: Frequency: Inputs: Outputs: Control: Efficiency: Voltage:	<pre>Ix. Failures of power management equipment on of the joint must be accommodated. MENTATIONS tches which switch at zero voltage point. MANCE REQUIREMENTS From 25 to 250 KW (may actually be 30 KW so t for compatibility with icn modularity). 20 KHz 21 (20 + 1 spare) @ 250 KW Determined by load matrix for the radar. Databus 99%. 1,000 vrms</pre>	
	the load matri the load side ALTERNATIVE IMPLE Thyristor swit COMPONENT PERFOR Power Level: Frequency: Inputs: Outputs: Control: Efficiency: Voltage:	<pre>Ix. Failures of power management equipment on of the joint must be accommodated. MENTATIONS tches which switch at zero voltage point. MANCE REQUIREMENTS From 25 to 250 KW (may actually be 30 KW so t for compatibility with icn modularity). 20 KHz 21 (20 + 1 spare) @ 250 KW Determined by load matrix for the radar. Databus 99%. 1,000 vrms</pre>	

_	MMPS COMPONENT APPLICATION AND PERFORM	
3.	. COMPONENT Power Management Control Computer Sys	tem
2	L BASIC PARAMETERS	
	Distributed Master/Slave Computer System	
3.	3. STATEMENT OF NEED	·
	Overall PMS control.	
4.	4. ALTERNATIVE TECHNOLOGY CONCEPTS	
S.	S. SUBSYSTEM REQUIREMENT	
6.	Yes 6. COMPONENT IMPLEMENTATION	
	All PMS components connect to the control compu	iter.
8.	8. COMPONENT PERFORMANCE REQUIREMENTS	
	This control computer will be a distributed com- with a master computer and many slave computers detection software and hardware. The throughpu- slave computer will need to be about 2 MBPS with computer operating at about 80 MBPS.	with fault it of a typical
	Word length:8 bitsCommunication Medium:Optical or wire databuPower Source:Master - 1 KVDCSlaves - 20 KHz AC	us, or FM RF

.

MMPS COMPONENT APPLICATION AND PERFORMANCE			
1.	COMPONENT ION Engine	Power Supply (AC input)(50 cm dia. assumed)	
,	BASIC PARAMETERS		
		, must operate as resonant converter secondar and discharge engine inputs.	
3.			
		ed for space construction facility station- to GEO for space radar.	
١.	ALTERNATIVE TECHNOLOGY		
	Beam supply array a discharge supply.	witched, DC/DC converters at the engines for	
S.	SURSYSTEM REQUIREMENT		
_	COMPONENT IMFLEMENTATIO	le possible cooling.	
For the split AC system, the ion supplies must operate as the back half of the split inverter system. For 50 cm engine diameter, sizing is approximately 42 KW.			
	back half of the sp	plit inverter system. For 50 cm engine	
7.	back half of the sp	plit inverter system. For 50 cm engine approximately 42 KW.	
7.	back half of the sy diameter, sizing is ALTERNATIVE IMPLEMENTAT	plit inverter system. For 50 cm engine approximately 42 KW. HONS on engines with smaller power modularization	
	back half of the sy diameter, sizing is ALTERNATIVE IMPLEMENTAT Smaller diameter ic	plit inverter system. For 50 cm engine approximately 42 KW. HONS on engines with smaller power modularization).	
	back half of the sy diameter, sizing is ALTERNATIVE IMPLEMENTAT Smaller diameter ic level (35 cm/25 KW)	plit inverter system. For 50 cm engine approximately 42 KW. NONS on engines with smaller power modularization). REQUIREMENTS 300 RMS, 20 KHz AC	
	back half of the sy diameter, sizing is ALTERNATIVE IMPLEMENTAT Smaller diameter id level (35 cm/25 KW) COMPONENT PERFORMANCE I Input: Total Output:	plit inverter system. For 50 cm engine approximately 42 KW. NONS on engines with smaller power modularization). REQUIREMENTS 300 RMS, 20 KHz AC Resonant Converter 29 KW/thruster X 108 thrusters (radar)	
	back half of the sy diameter, sizing is ALTERNATIVE IMPLEMENTAT Smaller diameter ic level (35 cm/25 KW) COMPONENT PERFORMANCES Input: Total Output: Efficiency:	plit inverter system. For 50 cm engine approximately 42 KW. NONS on engines with smaller power modularization). REQUIREMENTS 300 RMS, 20 KHz AC Resonant Converter 29 KW/thruster X 108 thrusters (radar) 97% overall	
	back half of the sy diameter, sizing is ALTERNATIVE IMPLEMENTAT Smaller diameter id level (35 cm/25 KW) COMPONENT PERFORMANCE I Input: Total Output:	plit inverter system. For 50 cm engine approximately 42 KW. HONS on engines with smaller power modularization). REQUIREMENTS 300 RMS, 20 KHz AC Resonant Converter 29 KW/thruster X 108 thrusters (radar) 97% overall 1.65 Kg/KW per module (Figure _) 900 VDC	
	back half of the sy diameter, sizing is ALTERNATIVE IMPLEMENTAT Smaller diameter ic level (35 cm/25 KW) COMPONENT PERFORMANCES Input: Total Output: Efficiency: Physical:	plit inverter system. For 50 cm engine approximately 42 KW. NONS on engines with smaller power modularization). REQUIREMENTS 300 RMS, 20 KHz AC Resonant Converter 29 KW/thruster X 108 thrusters (radar) 97% overall 1.65 Kg/KW per module (Figure _)	

MMPS CO	MPONENT APPLICATION AND PERFORMANCE
1. COMPONENT IOn Engi	ne Power Supplies (DC input)
2. BASIC PARAMETERS	
directly from swite	off of the solar arrays. Beam output is thed array—no isolation required. Discharge ovided by a DC/DC converter.*
1. STATEMENT OF NEED	
	ed for LEO stationkeeping (space construction to GEO (10 MW Radar).
4. ALTERNATIVE TECHNOLOGY	CONCEPTS
A split AC system w voltage beam system converter for power	with a DC/AC driver module driving a high- n. A DC system with a high voltage DC/DC r beam.
	Determined by Reliability and Cost/mass minimization.
6. COMPONENT IMPLEMENTATIO	N
	erant switching for the beam output. T the 30 volt discharge supply.
7. ALTERNATIVE IMPLEMENTAT	IONS
A split AC resonant supplies.	converter with both beam and discharge
8. COMPONENT PERFORMANCE	REQUIREMENTS
Input:	900 VDC
Total Output: Efficiency:	10 megawatts (radar), 750 KW (SCF) 95% (DC/DC) 99% (switches)*
Physical:	3.3 Kg/KW - DC/DC converter at modularity
Beam Output:	level of ion engine 900 V at 80 amps per thruster (8 for SCF)
Cooling: Discharge Output:	1 KW per supply-passive (108 for radar) 660 amps at 30 volts.
	OC converter over switches for the 30 VDC ment all about 31,000 Kg and \$30M because of mass.
	A-27 C- 3
	— J
	-

Ĭ

1 . :

ł

5

Ì

		IT APPLICATION AND PERFORMANCE
•	COMPONENT SCF Energy Sto	orage Switching Controller-Electrical
	BASIC PARAMETERS	
		lout) 300 VDC
		att output to SCF facility
	Discharge Time: 1 hour	nominal
),	STATEMENT OF NEED	
	A computer-controlled cha manage battery or fuel ce	trge/discharge system is required to all electrical energy storage system.
4,	ALTERNATIVE TECHNOLOGY CONCEPT	5
	Flywheel energy storage.	
5.	SUBSYSTEM REQUIREMENT	
	Overall energy storage of	one megawatt.
Ē.	COMPONENT IMPLEMENTATION	
	Single failure tolerant s	witching to ensure reliability.
	No crosstrapping of busse	S.
7.	ALTERNATIVE IMPLEMENTATIONS	·
7.	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade	of DC vs. AC PMS components, which
	If this switching approad regulators at 2.3 Kg/KW of	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage.
	If this switching approace regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H COMPONENT PERFORMANCE REQUIRES	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. MENTS
	If this switching approact regulators at 2.3 Kg/KW of will not affect the trade are downstream from the F	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. MENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC
	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H . COMPONENT PERFORMANCE REQUIRED Input/Outout Voltage:	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. WENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC Modularity level of 20/array pane?
	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H COMPONENT PERFORMANCE REQUIRED Input/Outout Voltage: Input Current:	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. MENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC Modularity level of 20/array panel requires 80 amps/output module
	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H COMPONENT PERFORMANCE REQUIRED Input/Outout Voltage: Input Current: Output Current:	Sould be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. MENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC Modularity level of 20/array panel requires 80 amps/output module switch with 40 switches.
	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H COMPONENT PERFORMANCE REQUIRED Input/Outout Voltage: Input Current:	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. MENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC Modularity level of 20/array panel requires 80 amps/output module
	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H COMPONENT PERFORMANCE REQUIRED Input/Outout Voltage: Input Current: Output Current: Physical:	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. WENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC Modularity level of 20/array panel requires 80 amps/output module switch with 40 switches. 0.1 Kg/KW
	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H COMPONENT PERFORMANCE REQUIRED Input/Outout Voltage: Input Current: Output Current: Physical:	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. WENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC Modularity level of 20/array panel requires 80 amps/output module switch with 40 switches. 0.1 Kg/KW
	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H COMPONENT PERFORMANCE REQUIRED Input/Outout Voltage: Input Current: Output Current: Physical:	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. WENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC Modularity level of 20/array panel requires 80 amps/output module switch with 40 switches. 0.1 Kg/KW
	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H COMPONENT PERFORMANCE REQUIRED Input/Outout Voltage: Input Current: Output Current: Physical:	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. WENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC Modularity level of 20/array panel requires 80 amps/output module switch with 40 switches. 0.1 Kg/KW
	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H COMPONENT PERFORMANCE REQUIRED Input/Outout Voltage: Input Current: Output Current: Physical:	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. WENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC Modularity level of 20/array panel requires 80 amps/output module switch with 40 switches. 0.1 Kg/KW
	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H COMPONENT PERFORMANCE REQUIRED Input/Outout Voltage: Input Current: Output Current: Physical:	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. WENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC Modularity level of 20/array panel requires 80 amps/output module switch with 40 switches. 0.1 Kg/KW
	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H COMPONENT PERFORMANCE REQUIRED Input/Outout Voltage: Input Current: Output Current: Physical:	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. WENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC Modularity level of 20/array panel requires 80 amps/output module switch with 40 switches. 0.1 Kg/KW
	If this switching approad regulators at 2.3 Kg/KW of will not affect the trade are downstream from the H COMPONENT PERFORMANCE REQUIRED Input/Outout Voltage: Input Current: Output Current: Physical:	could be substituted. This substitution of DC vs. AC PMS components, which Energy Storage. WENTS 300 VDC input, 300 VDC output 55 amps @ 300 VDC Modularity level of 20/array panel requires 80 amps/output module switch with 40 switches. 0.1 Kg/KW

*

	MMPS COMPONENT APP	LICATION AND PERFORMANCE
•	COMPONENT Connectors - Mech	anical
	EASIC PARAMETERS Voltage: 1 KVRMS 20 KHz Current: Up to 80 amps AC System	
	STATEMENT OF NEED Connectors are required to o distribution matrix and serv	connect individual loads to the vice any failed modules.
.	ALTERNATIVE TECHNOLOGY CONCEPTS Hardwiring or welding.	
.	SUBSYSTEM REQUIREMENT Ion engines and radar blanket modules sh	s, space construction facility modul could be repairable/serviceable.
7.	ALTERNATIVE IMPLEMENTATIONS AC transformer coupling for	the AC system design.
6.		
	Voltage: Frequency: Current: Connect/Disconnect Cycles: Efficiency: Contacts: Insulation Resistance:	1 KVRMS/1000 VDC 20 KHz Up to 80 amps 100 99.5% 6 (4 hot, 2 shields) 100 megohms

- State of the

Ì

and the second second

APPENDIX B

DEFINITION OF TECHNOLOGY REQUIREMENTS

AND

TECHNOLOGY PLANS

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT (TITLE): High bandgap cell. Type I Page 2 of 4

7. TECHNOLOGY OPTIONS:

AlGaAs is the best high bandgap material to use, because it is almost perfectly lattice-matched to GaAs.

Liquid-phase epitaxy (LPE) has been used to grow some of the best A1GaAs on record, but OM/VPE is better for high throughput solar cell processing.

E TECHNICAL PROBLEMS:

Incorporation of oxygen into AlGaAs, especially with Om/VPE. This is why high bandgap cells have not turned out very well thus far.

- POTENT AL ALTERNATIVES:

Split the spectrum two ways instead of three, use lower bandgap A1GaAs.

1, 41/1 ED PROGRAMS OF UNPERTURBED TECHNOLOGY AD, 41/CEMENT

High bandgap AlGaAs cells are much closer to being realized than, say, the monolithic multijunction cell. These cells could be acceptable by OM/VPE in the early 1980s.

-lites for next of ng wavelength lights refection ______ for it is this does exist and can be obtained from _______ ing Late lites inc. Santa Rosa, CA. among others.

LARGE SPACE POWER SYSTEM COMPONENTS CHARACTERISTIC DATA SHEET

PART A - PHYSICAL

COMPONENT NAME High bandgep cell Page 3 of 4

FUNCTION Efficient conversion of upper part of AMØ spectrum.

PHYSICAL DESCRIPTION

p+GaAs

- Ag grid

1.95 eV p AlGaAs

1.95 eV n

2.95 eV AlGaAs window

GaAs substrate

PARAMETRIC ANALYSIS RESULTS

At 50 sum, 125°C, 1.5 µm diff. length

4.5 µm grid line width; metal 290 µm grid spacing

p-junction depth = 0.7 μ m

PHYSICAL DEVELOPMENT PROJECTIONS

STATE OF PROJECTION ACHIEVABLE CHARACTERISTIC THE ART FOR 1990 CAPABILITY Size (cm x cm) 1.5 x 3.0 cm 1.5 x 3.0 cm large as boule 300-400 Jum Thickness (µm) 400 Jum 250 µm 0.75 - 1.01.0 0.6g for 1.5 x Mass (g) Substrate Thermal 3 cm Conductivity 0.3 $(W/cm-^{O}K)$ 0.3 0.3 (GaAs) Space Radiation Dam-0.5 µm diff. 1.5 µm diff. age EOL/BOL perhaps 3 µm diffusion @10¹⁶ 1 MeV lengths lengths lengths electron dose

METALLIZATION MATERIAL/CONFIGURATION/CHARACTERISTICS

Ag metal grid on cell. Vacuum solder to package.

MATTIC CONSIDERATIONS

B-3

ORIGINAL PAGE IS

GALGE SPACE POWER SYSTEM COMPONENTS CHARACTERISTIC DATA SHEET

PART B - PERFORMANCE

COMPONENT NAME H	gh banagap cell		Page 4 of 4
NCTIONAL CHARACTI 50 suns for upper pa		ic conversion at	125°C,
	and the state of the		
		Second as hereiters	
. ERFORMANCE DEVELO	PMENT PROJECTIONS	125°C, 50 suns	s, 0.847 cm cell
	STATE OF	PROJECTION	ACHIEVABLE
CHARACTERISTIC	THE ART	FOR 19 90	CAPAPILITY
		1.26 V	
Voc	No data available	1.5 V	about 10%
urrent Caustality -I	on this level	0.41 amp	higher current
the Low - Pmax	of spec um	0.49 watt	and power, wit
	splitting	12.8% *	associated gai
			in efficiency
TEF Hours			
Curret - Ino		0.388	
17/00			Assessment in soldier
-(02		0.023% °C	
	and a second second second second	L	State of Streets Inc.

÷ ...tai solar power.

B-4

DEFINITION	OF	TECHNOLOGY	REQUIREMENT
------------	----	------------	-------------

2. TECHNOLOGY CATEGORY: Photovoltaic converters

3. OBJECTIVE ADVANCEMENT REQUIRED: >30% efficiency

- CURRENT STATE OF ART: <u>GaAs solar cells can presently be</u> fabricated with acceptable efficiencies for this task.

5. DESCRIPTION OF TECHNOLOGY:

Þ. 1

Ì

ì

Cell for mid-range of spectrum.

Organomettalic vapor-phase epitaxy (OM/VPE) should be used to grow a GaAs junction on an N+ GaAs substrate. Then an AlGaAs window (bandgap >2 eV or so) should be grown on top.

6. RATIONALE AND ANALYSIS:

GaAs is ideally suited for this range of the spectrum. AlgaAs with Al concentration >50% is sufficient for window.

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Mid-spectrum cell. TypeI</u> Page 2 of 4

7. TECHNOLOGY OPTIONS:

A GaAs cell is best suited for this range of the spectrum. Technology is fairly well developed because GaAs is presently used as a full-spectrum cell, so no other material is likely to replace GaAs.

Liquid phase epitaxy (LPE) can be used to fabricate GaAs solar cells but OM/VPE is best for reproducible, high throughput cell growth.

E TECHNICAL PROBLEMS:

Presently, some oxygen can find its way into the AlGaAs window with Om/VPE, but this may not be a severe limitation.

Ohmic contacts could be better on p+ GaAs (which always caps the AlGaAs window), used in p on n cells, which are easier to fab.

POTENTIAL ALTERNATIVES:

This is the assist III-V cell to fabricate and is likely to be used in any spectrum-splitting scheme, unless a move difficult technology were employed (e.g., Si and AlGaAs for 2-cell spectrum splitting).

PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT.

GaAs solar cell is now close to realizing its full potential. This component will be ready before either the high bandgap (Type I) AlGaAs cell, or the low bandgap (Type III) cell.

** PELATED TECHNOLOGY REQUIREMENTS

Cover slides for heat (long wavelength light) rejection. The technology for this does exist (See #11 under Type I cells).

LARGE SPACE POWER SYSTEM COMPONENTS CHARACTERISTIC DATA SHEET PART A - PHYSICAL

COMPONENT NAME Mid-spectrum cell, Type II Page 3 of 4					
FUNCTION Efficient conversion of middle part of AMØ spectrum					
	,				
PHYSICAL DESCRIPTION PARAMETRIC ANALYSIS RESULTS			SIS RESULTS		
- Ag metal grid			⊢ 50 suns, 125 ⁰ (iff, length	C, 1.5 μm	
p+ GaAs			5 µm gridline		
≥2 eV AlGaAs window p-GaAs		290 μ m grid spacing p-junction depth=0.7 μ m			
n-GaAs					
GaAs substrate		·			
PHYSICAL DEVELOPME	NT PROJECTI	ONS	4		
CHARACTERISTIC	STATE OF THE ART		PROJECTION FOR 1990	ACHIEVABLE CAPABILITY	
size (cm x cm) thickness (μm)	1.5 x 3.0 c 400 μm	m	1.5 x 3.0 cm 300-400 µm	large as boule 250 μm	
mass (g)	1.0		0.75-1.0	0.6g for 1.5x 3 cm	
substrate thermal conductivity(W/cm K) Space Radiation Dam-	0.3		0.3	0.3 (GaAs)	
age (EOL/BOL)@10 ¹⁶	l μm diff		1.5 µm diff	perhaps 3 µm	
electron dose	lengths		lengths	diffusion lengths	
METALLIZATION MATER	RIAL/CONFIGU	RAT	ION/CHARACTER IST	TICS	
Ag metal grid on cell. Vacuum solder to package.					
MATERIAL CONSIDERAT	TIONS				

B-7

LARGE SPACE POWER SYSTEM COMPONENTS CHARACTERISTIC DATA SHEET

•

PAPT B - PERFORMANCE

COMPONENT NAME Mid-spectrum cell, Type II Page 4 of 4

50 SUBSECTIONAL CHARACTERISTICS Fhotovoltaic conversion at 125°C, 50 suns for middle part of AMØ spectrum.

PERFORMANCE DEVELOPMENT PROJECTIONS 125°C, 50 suns, 0.847 cm cell

CHARACTERISTIC	STATE OF THE ART	PROJECTION FOR 19 90	ACHIEVABLE CAPABILITY
Hear Voltage - Voc Larrent Capanitiss - Isc Hear Load - Proax Elization - N Teliabilis	no data on a spectrum - split all but present result are not far from the 1990 projections at right	.774v .927v .408 amp .s .296 watt 7.8%*	about 10% higher current and power with associated gain in efficiency
Current-Ing ATT/OC		.383 amp . <u>0145%</u> ° _C	

* as % of total solar power

DEFINITION OF TECHNOLOGY REQUIREMENT		DEFINITION	0.7	TECHNOLOGY	REQUIREMENT	
--------------------------------------	--	------------	-----	------------	-------------	--

IR Response Solar Cell (900 nm - 1200 nm)

2. TECHNOLOGY CATEGORY: Photovoltaic Converter

3. OBJECTIVE/ADVANCEMENT REQUIRED: >30% efficiency

- CURRENT STATE OF ART: <u>Some GaAsSb cells have been made, but technology</u> is primitive. Si alternative is, of course, well developed.

5. DESCRIPTION OF TECHNOLOGY:

Low bandgap, low-voltage cell.

Organometallic vapor-phase epitaxy (OM/VPE) should be used to grow a 1.11 eV GaAs $_{.73}$ Sb $_{.27}$ junction lattice-graded to a GaAs substrate. An appropriate AlGaAs window (bandgap >1.5 eV or so) should be grown on top.

E RATIONALE AND ANALYSIS:

Low bandgap cell should convert low-energy photons, i.e., reduce "red loss."

3-9

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT (TITLE): Low bandgap cell, Type III Page 2 of 4

7. TECHNOLOGY OPTIONS:

This study will center on the OM/VPE-grown GaAsSb cell lattice-graded to GaAs, having 1.11 eV bandgap at 30°C. Silicon is an obvious alternative to GaAsSb and would present fewer process problems, but since Varian is better equipped to study III-V cells, this study will center on GaAsSb.

E. TECHNICAL PROBLEMS:

Detects arising from lattice-constant graded layers. Also, GaAsSb growth by OM/VPE or any technique is not well developed.

E POTENTIAL ALTERNATIVES:

Silicon cell, as described in #7.

12 PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT

Work on lattice-constant grading and on GalsSb epitaxy is in progress.

** PELATED TECHNOLOGY REQUIREMENTS

Nothing that other solar cells do not require.

B-10

LARGE SPACE POWER SYSTEM COMPONENTS CHARACTERISTIC DATA SHEET PART A - PHYSICAL

		_			
COMPONENT NAME Low bandgap cell, Type III Page 3 of 4					
FUNCTION Efficient conversion of long-wavelength part of AMØ spectrum.					
PHYSICAL DESCRIPTION PARAMETRIC ANALYSIS RESULTS					
p+ GaAs			at 50 suns, 125 ⁰ C, 1.5 سر diff. length		
>1.5 eV AlGaAs with	Indow		um grid line سر 4.5 290 grid spacin سر 290	width } metal	
p-GaAsSb			•		
n-GaAsSb	_		p-junction depth :	m سر 0.7 =	
and grading lay		·			
GaAs substrat	te				
PHYSICAL DEVELOPME	NT PROJECTIC	ONS			
CHARACTERISTIC	STATE OF		PROJECTION	ACHIEVABLE	
CHARACTERIDITC	THE ART		FOR 1990	CAPABILITY	
Size (cm x cm)	1.5 x 3.0 cm		1.5 x 3.0 cm	large as boule	
Thickness (µm)	400 Jun		mu 300–400	mu 250	
Mass (g)	1.0		0.75-1.0	0.6 g for 1.5x3 cm	
Substrate thermal con- ductivity (W/cm- ^o K)	0.3		0.3	0.3 (GaAs)	
Space Radiation Damage (EOL/BOL)					
[@] 10 ¹⁶ 1 MeV electron de	<1.0 µm diff. lengt	hs	diff سبر 1.5 lengchs	Perhaps 3 µm diff. lengths	
METALLIZATION MATER	IAL/CONFIGUE	RATI		FICS	
Ag metal grid on cell. Vacuum solder to package.					
MATERIAL CONSIDERAT	TIONS	-			

TABLE SPACE POWER SYSTEM COMPONENTS CHARACTERISTIC DATA SHEET PART B - PERFORMANCE

COMPONENT NAME Low	bandgap cell, Type	1II	Page 4 of 4
50 suns for long way			25°C,
PERFORMANCE DEVELOP	MENT PROJECTION	S 125 ⁰ C, 50 suns	, 0.847 cm cell
CHARACTERISTIC	STATE OF THE ART	PROJECTION FOR 1985	ACHIEVABLE CAPAEILITY
Source Level - Vmp Beas Source - Voc Lurrent Carantin - Isc Boas Loar - Pmax Eturierer - M Reliabilit MTBF (Hours) - mine Current - Isg ANOC	GaAsSb cells (1.15 eV bandgap at 30 ^o C) have been grown with lattice-constant grading to GaAs, but efficiency is poor due to dislocations.	0.45 V 0.57 V 0.31 amp 0.13 watt 3.42% * 0.287 amp <u>0.011%</u> °C	about 10% higher current and power, with associated gain in efficiency.

* as % of <u>total</u> solar power.

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT (TITLE):

Page 1 cf_4

Full-Spectrum Response Multibandgap Monolithic

2. TECHNOLOGY CATEGORY: Photovoltaic Converters

- 3. OBJECTIVE ADVANCEMENT REQUIRED: <u>high-efficiency conversion at</u> air mass Ø and space operating condition
- 4 CURRENT STATE OF ART: <u>Single-junction GaAs cells with AlGaAs</u> windows are being produced.
- 5. DESCRIPTION OF TECHNOLOGY:

Organomettalic vapor-phase epitaxial (Om/VPE) growth of 3-cell monolithic stock as shown at right. Substrate is $\approx 400 \ \mu m$ thick and the active layers and lattice-constant grading add another 35-40 microns.

,	Ag grid
	p+ GaAs
window>	2.76 eV A1A5Sb, P
л (2.01 eV AlGaAsSb, P
51 2	2.01 eV, n
Anna Sam S	n+
tunnel jcn {	P ⁴
J2 5	1.54 eV, AlGaAsSb, P
32	1.54 eV, n
Annual Law	n+
tunnel jcn	p+
1	1.19 eV GaAsSb, P
33 5	1.19, n and
1	lattice grading
	n+ GaAs substrate

6. RATIONALE AND ANALYSIS:

OM/VPE has been used for uniform, reproducible growth of III-V materials. He holds the best promise for future high-throughput systems. GaAs substrates are being produced in growing numbers for a variety of applications.

B - 13

DEFINITION OF TECHNOLOGY REQUIREMENT

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Multibandgap cell</u> Page 2 of 4

7. TECHNOLOGY OPTIONS:

If lattice constant grading proves to give unacceptably high defect density, bulk sensory crystals may be developed which could serve as substrates with arbitrary lattice constant. They would be much more expensive than GaAs.

E. TECHNICAL PROBLEMS:

Lattice constant grading now gives too high a defect density. Also, any kind of III-V alloy with Al presently grown has an oxygen problem. Al is necessary for a wide bandgap range.

9 POTENTIAL ALTERNATIVES:

Two-junction cells, lattice matched to binary III-V substrates (e.g., AlGaAs on GaAs) can be fabricated but will be less efficient than the proposed AlGaAsSb cell.

12 PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT

Present work aimed toward improving lattice-constant grading, growing AlGaAs, GaAsSb, etc., growing good tunnel junctions, fabricating good GaAs and AlGaAs solar cells. These "pieces" are not yet good enough for MJ cell to be attempted.

** PELATED TECHNOLOGY REQUIREMENTS

Successful fabrication of each vital "piece" of the multijunction cell, see (10).

LARGE SPACE POWER SYSTEM COMPONENTS CHARACTERISTIC DATA SHEET

.

.

PART A - PHYSICAL

FUNCTION high-effic	ciency con	vers	ton we					
		FUNCTION high-efficiency conversion, AMØ						
PHYSICAL DESCRIPTION		PARAMETRIC ANALYSIS RESULTS						
AlGoAsSb cell on GaAs, see drawing in (5), P. 1		 4.5 μm grid line width metal- 290 μm grid spacing lization for 50 suns, 125°C, 1.5 μm diff. length 						
		p-layer thickness=0.7 μm n-layer thickness=1.0 μm (except bottom)						
PHYSICAL DEVELOPMENT PROJECTIONS								
CHARACTERISTIC	STATE OF THE ART		PROJECTION FOR 1990	ACHIEVABLE CAPABILITY				
thickness (μm) Mass (g)	1.5 x3. 0 cm 400 μm 1.0g		1.5 x 3.0 cm 300-400 μm 0.75-1.0g	large as boule 250 μm 0.6g for 1.5 x3 cm				
Substrate thermal conductivity(W/cm ^O K) Space Radiation	0.3		0. 3	0.3 (GaAs)				
	0.5 µm diff			perhaps 3 µm diff. <u>lengths</u>				
METALLIZATION MATERIAL/CONFIGURATION/CHARACTERISTICS								
MATERIAL CONSIDERATIONSIDERATURE (e.g., Ag-Su esture)	be jeopard			cell temper-				

LARGE SPACE POWER SYSTEM COMPONENTS CHARACTERISTIC DUE A SHEET

PART B - PERFORMANCE

OMPONENT NAME	Multibandgap cell	P	age 4 of 4
UNCTIONAL CHARACTE conversion at 125°C		iciency photovo	oltaic
PERFORMANCE DEVELO	PMENT PROJECTION	3	
CHARACTERISTIC	STATE OF THE ART	PROJECTION FOR 19 90	ACHIEVABLU CAPAEILITY
inde Level - Vmp as honder - Voc irrent Cabanility - Isc ins Load - Pmax indiant TEF Hours 	low bandgap GaAsSb cells, lattice-graded to GaAs, have been grown but efficiency is poor due to dislocation.	.92 watt	2.9v 3.3 v .409 amp 1.02 watt 26.5% .394 amp .04

DEFINITION OF TECHNOLOGY REQUIREMENT	
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Modular</u> Small Aperture Page 1 o <u>Concentrator</u> . 2. TECHNOLOGY CATEGORY:	of
 OBJECTIVE/ADVANCEMENT REQUIRED: For 25% efficient multiband cells, a design having 1 Kg/m² specific mass, capable of holding the cell temperature below 125^oC. 	gap
4. CURRENT STATE OF ART: Study activity to develop concepts an conduct trade studies.	d
5. DESCRIPTION OF TECHNOLOGY:	
Activity is under way to develop multibandgap cells with required efficiency at about 125°C. Low light loss modul concentrator designs with single reflections should be ex ined to develop geometries with a high degree of isolatio uniformity over the cell surface and pointing error insen tivity. The 100 cm ² aperture is sized to permit passive low cell temperature, a reasonable cell size for handling and manufacture. It also allows for two cell geometries should the multibandgap cell fail to become available.	ar am- n si-
6. RATIONALE AND ANALYSIS:	
The required small concentrators represent the least cost approach for meeting the 1990's power needs. Cost will b utmost significance in enabling the large power missions, since they must compete with alternate terrestially-based solutions. Further, the modular concentrators should be safer, may have lower plasma losses, should be less sensi to radiation, and should be more compatible with DOD thre survivability needs.	e of tive

DEFINITION OF TECHNOLOGY REQUIREMENT
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Modular Small Aperture</u> Page 2 of Concentrator.
7. TECHNOLOGY OPTIONS:
Develop the concentrator module using one of several geometries such as:
1. Modular Nested Trough 2. Modular Off-Axis Parabola 3. Modular Small Cassegrainian
8. TECHNICAL PROBLEMS:
a. Optical design for lowest light loss, most even insolation across the cell face, and
b. Thermal mirror radiator design for lowest mass at 125 ^O C cell temperature.
9. POTENTIAL ALTERNATIVES:
a. A thermophotovoltaic module
b. Planar arrays.
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT
NASA and DOD plans for development in this area appear to have settled initially on modular cassegrainian solutions. Light losses which may be avoidable result. Further study is required to limit losses.
11. RELATED TECHNOLOGY REQUIREMENTS:
a. Multibandgap cell development.
b. Truss beambuilder development.

ORIGINAL PAGE IS OF POOR QUALITY

DEFINITION OF	TE	CHN	101	.00	YF	EC	UIR	EM	EN'	T		•				N	0.		
1. TECHNOLOGY REQUIRE Concentrator.	ME	NT	TIT)	'LE)	: <u>M</u>	odı	11a	r s	Sma	.11	A	ber	tu	re		Pa	ge	3 of	3
12. TECHNOLOGY REQUIRE	ME	NT	SS	CHI	DU	LE:		CAL	EN	DAI	RY	EAF	3	1					
SCHEDULE ITEM	1-9	1 30	\$1	82	93	34	_	_	-	_	_	_	_	92	93	94	95	1	
TECHNOLOGY CONCEPT PROOFING	1														ł				
øA Further Concept Studie	s				_														
øB Design Studies (2)	ļ		Ì		!							İ							
LDEF Test Article Dev.				ĺ															
LDEF Flight Evaluation									-										
FLIGHT PROGRAM Flight Article Design and Fabrication Space Construction Development in Space Space Assy - Operational Hardware																			
13. USAGE SCHEDULE							-				-	-				a.			
TECHNOLOGY NEED DATE				1						I				Ι		1	-	τοτ	AL
NUMBER OF LAUNCHES	Τ	T		Τ	1	Ι	1	Ι			1	Τ			1	1	I	I	
14. REFERENCES				-	-				_	-	-				<u>.</u>	-	-		
 Concentrating next generation Jack W. Geis, Conversion Content 15. LEVEL OF STATE OF TO 	Pr fe	of oce ren	Ai ed ice	r] ing	For	ce of	Sa th 1,	te pa	11i 15t ge	* e h 36	Р In З.	owe ter	so so	Sys cie	ste ety	ms Ei	, ner		
I. Basic phenomena cose	-							r	elev	ant	en	vire	nm	ent	in I	abo	rat	ory	
reported																		nent	
 (2) Theory formulated to de phenomena Some portions of (3) (Theory tested by physic or mathematical model) 			rim	ent			4	8. M	ess	er c	pat	atio		rive	d fi	cm	ar	nuc	
 Pertinent functions or o cemonstrated, e.g., ma 	har	act	eris	tic			1		ion								26		

1. TECHNOLOGY REQUIREMENT (TITLE): Low Mass Gallium Page 1 of <u>3</u> Arsenide Planar Array Blanket and Cells

2. TECHNOLOGY CATEGORY: Power Generation

3. OBJECTIVE/ADVANCEMENT REQUIRED: <u>A Low-Mass Gallium Arsenide Blanket</u> for use in East Electric Transfer (Space Tug) missions.

4. CURRENT STATE OF ART: 8-12 mill cells for blankets.

5. DESCRIPTION OF TECHNOLOGY:

50 micrometer thick gallium arsenide cells on a Kapton blanket.

6. RATIONALE AND ANALYSIS:

This appears to be the lowest mass approach for this mission, and, when combined with on-array annealing, is a viable technology for missions which spend extended times in the radiation belts.

DEFINITION OF	TECHNOLOGY	REQUIREMENT
---------------	------------	-------------

1. TECHNOLOGY REQUIREMENT (TITLE): Low Mass Gallium Arsenide Page 2 of 3 Planar Array Blanket and Cells

7. TECHNOLOGY OPTIONS:

- 1. 50 micrometer thick cells with 50 micrometer thick coverslides.
- 50-100 micrometer coverslides with very thin 10 micrometer deposited Gallium Arsenide cells.

6. TECHNICAL PROBLEMS:

Fabricating and handling the cells prior to blanket installation.

9. POTENTIAL ALTERNATIVES:

Heavier modular concentrators.

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

Gallium Arsenide technology may not continue for other missions because of its high cost.

11. RELATED TECHNOLOGY REQUIREMENTS:

None.

DEFINITION OF	TEC	HN		CG	YR	EQU	JIR	EM	ENT	T		_				No	.		
1. TECHNOLOGY REQUIRE Arsenide Planar Array B							Ma	SS.	Gal	111	um		_	_		Pa	ge 3	3 of	3
12. TECHNOLOGY REQUIRE	ME	NTS	S	CHE	DU			AL	EN	DAR		EAR	1						
SCHEDULE ITEM	1	2	3	4	5	61	7	8	9	10	11	12	13	14	15	16	17	18	19
TECHNOLOGY Cell Development															$\left \right $				
Blanket/Interconnect																			
Concept Studies																			ļ
Prototype Blanket																			
Flight Blanket																			
Injection and Flight. on a Small Spacecreft								-	-	-				юc					
Space Tug Development											H	+·	Ľ	Y				i i	
	1																	1	
																i		1	!
13. USAGE SCHEDULE		<u>.</u>			<u>.</u>	<u>.</u>			-	<u>.</u>		-			1	<u>.</u>	-	1.	
TECHNOLOGY NEED DATE										1							.	τοτ	AL
NUMBER OF LAUNCHES								1							1	1			
14. REFERENCES																			
×																			
15. LEVEL OF STATE OF TH	IE /	ART	2				:					t or							1
 Basic phenomena observer reported 	ved	an	đ					8. M	lod	el t	est	viro ed i	n ai	rera	aft e	envi	ron	me	
 Theory formulated to de phenomena 	scr	ibe						8. 1	Vew	ca	pat	ed i ility	de	rive	d fr	'n			
3. Theory tested by chysic or mathematical model	al e	xpe	rim	ent				1	ess	er c	pe	upg	nal	m	del				
4. Pertinent functions or o	har	acte	eris	tic					ion								Per		
demonstrated, e.g., mat component	eria	NI,					1		life		e ex	ten	SIO	n of	an	000	erat	ion	ai

1652 ·=

	TECHNOLOGY REQUIREMENT (TITLE): Space Fabricated Truss Page 1 of 3
	for Solar Array Support
	TECHNOLOGY CATEGORY: Power Generation
2.	OBJECTIVE/ADVANCEMENT REQUIRED:Fabrication of Truss Beams in Space for Support of Solar Array Modules Made by a Robotic Beambuilder
4.	CURRENT STATE OF ART: Deployable beams in development at General Dynami Fabricated beams developed at MSFC/Grumman.
5.	DESCRIPTION OF TECHNOLOGY:
	Trusses made by a robotic truss beambuilder which fabricates, from rolls of graphite epoxy material, truss members with a low mass per unit length (< 1 Kg/m).
6.	RATIONALE AND ANALYSIS:
	Beambuilders utilizing aluminum and graphite epoxy have been studied extensively by Grumman and General Dynamics. The beams themselves shoul weigh about half as much as comparable deployable beams with heavy fitti and hinges. Total mass savings are about 15 to 20% of the total array mass.

•

	DEFINITION OF TECHNOLOGY REQUIREMENT
	ECHNOLOGY REQUIREMENT (TITLE): Space Fabricated Truss Page 2 of for Solar Array Support
7. T	ECHNOLOGY OPTIONS:
A	Alternate materials exist with varying degrees of strength.
в. Т	ECHNICAL PROBLEMS:
•	An aluminum beam fabricator has been demonstrated.
). P	POTENTIAL ALTERNATIVES:
1	. Deployable trusses (about 100% heavier).
2	 Aluminum Space Fabricated Trusses (about 50% heavier for the same strength).
0.	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT
P	Plans for this technology exist but are on hold at this time.
	RELATED TECHNOLOGY REQUIREMENTS:
	HELATED TECHNOLOGT HEQUINEMENTS:

	TEC							-				-				N			
for Solar Array Suppor	ME	NT	TIT	LE)	-	Spa	ace	Fạ	bri	cat	ed	Tru	ISS	_		Pa	ge	3 of	
2. TECHNOLOGY REQUIRE	ME	NTS	S	CHE	שם	L			VF	EAR									
SCHEDULE ITEM	1	2	3	4	5	6	7	8	_		_	12	13	14	15	16	17	18	1
TECHNOLOGY Key Beambuilder Sub- system Development									riπ	ent									
Beambuilder System Mission Equipment Development											lig								
Space Fabricated Demo Module																	.		
Space Demonstration of Demo										-									
13. USAGE SCHEDULE	-														i		<u> </u>	_	
TECHNOLOGY NEED DATE				1						Ì		1						TOT	1
NUMBER OF LAUNCHES	Τ	Τ	Τ	1	Τ	Ι	1	Τ	Ι	Ι		1	Τ	1	Τ		1	T	
Final Report - Space Definition Study (SCA General Dynamics/Conv	AFEE	DS)	- (ivi:	Con	tra		NAS	9-1	1531	0	-								
	HE.	ART	:												boa in				۱
15. LEVEL OF STATE OF T		t an	d														iror		-
I. Basic phenomena cose reported	rved											bs							
 Basic phenomena obsereported Theory formulated to dephenomena 	esci	ribe						7. 8.	Mod	tei v ca		ed bilit	in s y de	pac	ed f		con	nen	t
 Basic phenomena cose reported Theory formulated to de 	esci al e	ribe xce	rim					7. 8. 9.	Nev	tel v ca ser iabi	ica ope lity	ilit rati	in s y de ona	pac erive	:8 0	nvir rom l		men	t

Contraction of the

and the second s

	DEFINITION OF TECHNOLOGY REQUIREMENT
1.	TECHNOLOGY REQUIREMENT (TITLE): Flywheel Inertia Page 1 of Storage Module
2.	TECHNOLOGY CATEGORY: Energy Storage
3.	OBJECTIVE/ADVANCEMENT REQUIRED: <u>A 20-year LEO cycle life energy</u> storage system.
4.	CURRENT STATE OF ART: Flywheels for automobiles will have specific energies of 20-40 wt-hr/kg.
5.	DESCRIPTION OF TECHNOLOGY:
	Kevlar $49^{\textcircled{B}}$ composite flywheel rotor, with magnetic bearings and brushless_DC motor generator.
6.	RATIONALE AND ANALYSIS:
	The 80,000 eclipse cycles the Space Construction Facility will see over its 20-year life make a storage medium which has extended cycle life beneficial life cycle mass would be lowest for this approach, for a relatively low risk system.

1.	TECHNOLOGY REQUIREMENT (TITLE): Flywheel Inertia Page 2 of Storage Modules
7.	TECHNOLOGY OPTIONS:
	The rotor design can be axially wound, or perhaps a brush type. The axial winding would be safer—probably a significant discriminator.
8.	TECHNICAL PROBLEMS:
	The entire system requires a predesign study to validate the concept. In_addition, the angular momentum interaction will require opposing modules to avoid unfavorable spacecraft interaction.
9.	POTENTIAL ALTERNATIVES:
	Sodium sulfur liquid mode batteries.
10	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
	DOE automobile technology will develop the rotor designs, but NASA funding is required for the magnetic bearing activity and for the thermal aspects of the motor/generator design.
11	RELATED TECHNOLOGY REQUIREMENTS:
	This activity is related to control of the structure bending modes and angular orientation.

B-27

1. TECHNOLOGY AEQUIREMENT (TITLE): Flywheel Inertia Page 3 of Storage Module 2. TECHNOLOGY REQUIREMENTS SCHEDULE: YEAR SCHEDULE ITEM 1 2 3 4 5 6 7 8 9 10111 12 13 14 15 16 17 18 TECHNOLOGY YEAR Concept Definition YEAR Phototype Development YEAR Prototype Accelerated YEAR Life Testing YEAR Flight Article Year of the storage module Development Year of the storage module IOC In-Space Module Year of the storage module IValuation Year of the storage module IOU In-Space Module Year of the storage module IOU In-Space Module Year of the storage module IValuation Year of the storage module III USAGE SCHEDULE: Year of the storage module TECHNOLOGY NEED DATE Year of the storage module IVABER OF LAUNCHES Year of the storage module III AREFERENCES Flywheel components for satellite applications, A.R. Millner, Lincoln Laboratory. Technical Note 1978-4, Massachusetts Institute of Technology	DEFINITION OF	TEC	CHN	OL	OG	YR	EQU	JIRI	E:M	ENT	-						No) .		
YEAR SCHEDULE ITEM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 TECHNOLOGY Concept Definition Studies Image: Schedule in the studies Phototype Development Image: Schedule in the studies Prototype Accelerated Image: Schedule in the studies Flight Article Image: Schedule in the studies Development Image: Schedule in the studies IOC In-Space Module Image: Schedule in the studies Evaluation Image: Schedule in the studies I3. USAGE SCHEDULE: Image: Schedule in the studies TECHNOLOGY NEED DATE Image: Schedule in the studies I4. REFERENCES Image: Schedule in the studies Flywheel components for satellite applications, A.R. Millner, Lincoln		ME	NTI	TIT		F	lyw	hee	1.	Ine	rti	a	_	_	_		Pa	ge 3	of	3
SCHEDULEITEM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17 18 TECHNOLOGY Concept Definition Studies Phototype Development Phototype Accelerated Image: Studies Image: Studies <td< th=""><th>2 TECHNOLOGY RECUIRE</th><th>ME</th><th>NTS</th><th>S</th><th>HE</th><th>DU</th><th>L</th><th></th><th></th><th>VE</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	2 TECHNOLOGY RECUIRE	ME	NTS	S	HE	DU	L			VE										
TECHNOLOGY Concept Definition Studies Phototype Development Prototype Accelerated Life Testing Flight Article Development IOC In-Space Module Evaluation Operational Deployment Availability 13. USAGE SCHEDULE: TECHNOLOGY NEED DATE 14. REFERENCES Flywheel components for satellite applications, A.R. Millner, Lincoln	SCHEDULE ITEM	11	2	3	4	51	6	71	8	_	-	-	12	13	14	15	16	17	18	1
Concept Definition Studies Phototype Development Prototype Accelerated Life Testing Flight Article Development IOC In-Space Module Evaluation Operational Deployment Availability 13. USAGE SCHEDULE: TECHNOLOGY NEED DATE 14. REFERENCES Flywheel components for satellite applications, A.R. Millner, Lincoln		Ī			1			1			10			10					10	
Prototype Accelerated Life Testing Flight Article Development IOC In-Space Module Evaluation Operational Deployment Availability 13. USAGE SCHEDULE: TECHNOLOGY NEED DATE ITECHNOLOGY NEED DATE	Concept Definition	-																		
Life Testing Flight Article Development IOC In-Space Module Evaluation Operational Deployment Availability 13. USAGE SCHEDULE: TECHNOLOGY NEED DATE 14. REFERENCES Flywheel components for satellite applications, A.R. Millner, Lincoln	Phototype Development																			
Development IOC In-Space Module Evaluation Operational Deployment Availability 13. USAGE SCHEDULE: TECHNOLOGY NEED DATE NUMBER OF LAUNCHES 14. REFERENCES Flywheel components for satellite applications, A.R. Millner, Lincoln																				
IOC In-Space Module Image: Space Module Evaluation Operational Deployment Availability Image: Space Module 13. USAGE SCHEDULE: Image: Space Module TECHNOLOGY NEED DATE Image: Tool NUMBER OF LAUNCHES Image: Module 14. REFERENCES Flywheel components for satellite applications, A.R. Millner, Lincoln										-										
Availability	IOC In-Space Module										7									
TECHNOLOGY NEED DATE TO NUMBER OF LAUNCHES TO 14. REFERENCES Flywheel components for satellite applications, A.R. Millner, Lincoln													<	ł						
NUMBER OF LAUNCHES 14. REFERENCES Flywheel components for satellite applications, A.R. Millner, Lincoln	13. USAGE SCHEDULE			-											-		-			
14. REFERENCES Flywheel components for satellite applications, A.R. Millner, Lincoln	TECHNOLOGY NEED DATE	1		T	!				Γ	Τ			Γ	Ι	1				το	A
Flywheel components for satellite applications, A.R. Millner, Lincoln	NUMBER OF LAUNCHES	Ī	T	T	Γ	T	T	1	Γ	Ì	1	Ì	T	Τ	T	T	T		T	
•	Flywheel components																		ogy	
15. LEVEL OF STATE OF THE ART: 5. Component or breadboard-tested in relevant environment in laboratory	15. LEVEL OF STATE OF T	HE	ART	•				:												1
i. Sasic phenomena observed and reported 6. Model tested in aircraft environme		rvec	t an	đ																nt
2. Theory formulated to describe 7. Model tested in space environment	2. Theory formulated to de	esci	ribe											,						
phenomena 8. New capability derived from a much Theory tested by advisical experiment lesser operational model	\wedge	-	~~~									7						an	luc	h
or mathematical model 9. Reliability upgrading of an opera-	or mathematical model	I							9.	Reli	abil	ity	upg					per	a-	
(4.) Pertinent functions or characteristic uonal model demonstrated, e.g., material, 10. Lifetime extension of an operation component model		cnar		ens	UC								-							

1

1. TECHNOLOGY REQUIREMENT (TITLE): Sodium Sulfur Batteries Page 1 of 3

2. TECHNOLOGY CATEGORY: Energy Storage

 OBJECTIVE/ADVANCEMENT REQUIRED: <u>High Specific Energy</u> (100-150 Wt-hr/kg) batteries - with very

high cycle life - 10,000-30,000 cycles.

 CURRENT STATE OF ART: NiCad and NiH batteries at 10-30 wt-hr/kg and 5,000 cycles.

5. DESCRIPTION OF TECHNOLOGY:

Liquid sodium sulfur batteries operating at 300-400°C have the potential to be able to sustain many cycles and have high specific energies. However, the development of corrosion-proof container platings using rutile titanium, molybdenum, or chromium, followed by extensive life-cycle testing is required.

6. RATIONALE AND ANALYSIS:

Batteries operating with liquid electrolytes have the potential for extended cycle life, and this study has shown there would be significant mass and cost benefits from this development (about a 50% life-cycle cost and mass savings).

ORIGINAL PAGE IS OF POOR QUALITY

..

DEFINITION OF TECHNOLOGY REQUIREMENT
1. TECHNOLOGY REQUIREMENT (TITLE): Sodium Sulfur Page 2 of 3 Batteries
7. TECHNOLOGY OPTIONS:
Alternative platings and alternative seals.
-
8. TECHNICAL PROBLEMS:
 Thermal control to stabilize the batteries at their operating temperature, after a frozen launch.
2. Proof-of-cycle life.
9. POTENTIAL ALTERNATIVES:
Flywheel inertia energy storage.
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
The Air Force high energy density battery storage program should develop this technology.
11. RELATED TECHNOLOGY REQUIREMENTS:
Development of mostly passive thermal control systems.

DEFINITION OF	TEC	HN		CG	YR	EQU	JIR	EM	ENT	٢						N) .		
1. TECHNOLOGY REQUIRE	ME	NT (TIT	L)	:	odi	um	Su	lfu	r_B	att	eri	es	_		Pa	ge 3	d of	3
2 TECHNOLOGY REQUIRE	ME	NTS	sso	HE	DU	LS:			100.00			-	-	_		_		_	
									YE	AR									
SCHEDULEITEM	11	21	3	4	5	6	7	81	9	10	11	12	13	14	15	16	117	18	1
TECHNOLOGY																1			
Battery Cell Development	\square	-														•			
Accelerated Life Cycle Testing				-															
Phase II Cell Design																			
Accelerated Life Cycle Testing				}			-			I	OC.						•		
Flight Article Development								\vdash	\vdash	\ \	7	ŀ							
Proof Flight/Module Tests	ļ										┝	\vdash	$\frac{1}{1}$						
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE				1														τoτ	A
NUMBER OF LAUNCHES			Τ	Ι	Τ					1	Ι	Γ	Γ	1	Ι	Ι	1	1	Ì
14. REFERENCES High Energy Density (H Contract F33615-79-C-2	ED) 044	Re , H	icha lugh	irge ies	ab Air	le t rcra	at ft	ter Co	y f mpa	or ny.	sat (ell Juar	ite ter	a ai 1y	Me	ica eti	tio ng.	ns.	
15. LEVEL OF STATE OF TH	_						1										este		1
 Basic phenomena observerse reported 	wed	an	đ					6. N	Mod	el t	est	ed i	n ai	rera	aft e	envi	ron	mer	
2. Theory formulated to de phenomena	scr	ibe						8. 1	New	ca	pat	ility	de	rive	d fr	mor	а п		
	-1	-	im	tne					655	er	pper	atic	nai	mo	Cel				
 Theory tested by physic or mathematical model Pertinent functions or of 									Peri tion				rad	ing	of a	in c	per	a .	

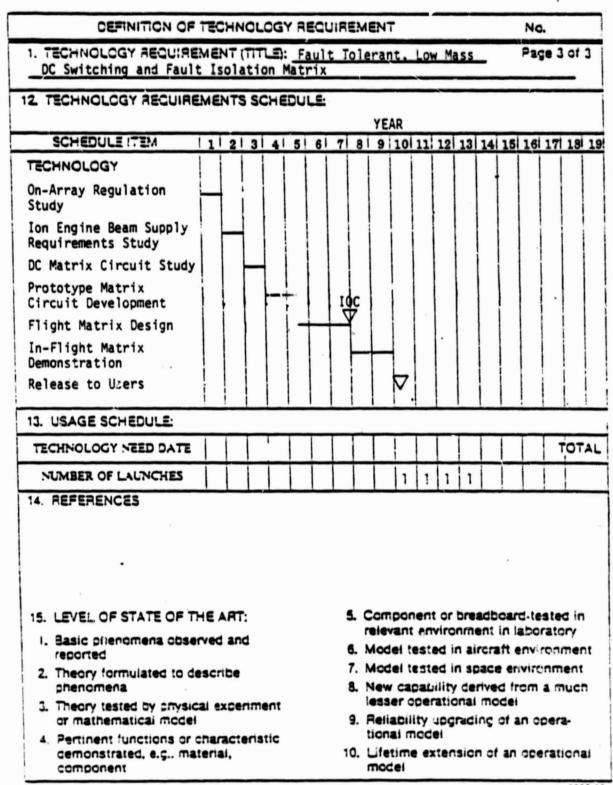
B-31

- 1. TECHNOLOGY REQUIREMENT (TITLE): Astronaut Controlled Page 1 of 3 Transporter and Installer for Space Assembled Photovoltaic Array Modules
- 2. TECHNOLOGY CATEGORY: Power Generation
- 3. OBJECTIVE/ADVANCEMENT REQUIRED: Photovoltaic Array modules must be installed onto the truss support frame to facilitate their final use in generating power.
- CURRENT STATE OF ART: Solar Array panels are all installed and interconnected terrestrially.
- 5. DESCRIPTION OF TECHNOLOGY:

After the truss frame work has been fabricated and interconnected by the — Space Construction Facility (SCF) crew, a machine is required to transport the array modules from the cargo containers attached to the SCF, out onto the truss frame. There, they must be attached at both ends to the truss members and electrically connected.

6. RATIONALE AND ANALYSIS:

The routine task of transporting Photovoltaic Array modules and then attaching them to the truss framework requires a machine to assist with the transportation and installation. The degree of robotics could be minimal, human direction of the process is a distinct possibility.


۰.	TECHNOLOGY REQUIREMENT (TITLE): Astronaut Controlled Page 2 of
	Transporter and Installer for Space Installed Photovoltaic Array Modules
7.	TECHNOLOGY OPTIONS:
	Human vs. robotic control requires study. Time and motion analysis is needed. Modules might come attached in widths equal to the width between truss beams, or, the machine might attach modules at their final location. One machine may span the trusses, or two may be used.
8.	TECHNICAL PROBLEMS:
	This requirement requires a full-scale study to begin its implementation.
9.	POTENTIAL ALTERNATIVES:
	The entire assembly process could be done entirely by astronauts—but probably more expensively.
10	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
	None.
11	RELATED TECHNOLOGY REQUIREMENTS:
	Space-fabricated truss for solar array support.

DEFINITION OF TECHNOLOGY RE	EQUIREMENT No.
1. TECHNOLOGY REQUIREMENT (TITLE):	Astronaut-Controlled Page 3 of 3 Installed Photovoltaic Array Modules
12 TECHNOLOGY RECUIREMENTS SCHEDU	£
	YEAR
SCHEDULE ITEM 1 2 3 4 5	6 7 8 9 10 11 12 13 14 15 16 17 18 19
TECHNOLOGY	
Design Concept Studies	
Phototype Machine Development	
Truss Framework Fabrication Using Truss	
Hard Mockup(Terrestrial) Developmental Testing and Refinement of Operational Transporter	Beam Builder Available
Flight Article Dev.	Installation Complete
Proof of Concept Flight Demonstration	
13. USAGE SCHEDULE:	
TECHNOLOGY NEED DATE	TOTAL
NUMBER OF LAUNCHES	
14. REFERENCES	
Space Construction Automated Fabrica (SCAFEDS) Part IV. Contract NAS 9-1	tion Experiment Definition Study 5310. General Dynamics/Convair Division
15. LEVEL OF STATE OF THE ART:	5. Component or breadboard-tested in
I. Sasic phenomena observed and reported	relevant environment in laboratory 6. Model tested in aircraft environment
2. Theory formulated to describe phenomena	 Model tested in space environment New capability derived from a much
3. Theory tested by physical experiment	lesser operational model
or mathematical model	 Reliability upgrading of an opera- tional model
 Pertinent functions or characteristic demonstrated, e.g., material, component 	10. Lifetime extension of an operational model

8652·22

	DEFINITION OF TECHNOLOGY REQUIREMENT
	TECHNOLOGY REQUIREMENT (TITLE): Fault Tolerant, Low Mass Page 1 of 3 DC Switching and Fault Isolation Matrix
2.	TECHNOLOGY CATEGORY: Power Management and Control
3. (OBJECTIVE/ADVANCEMENT REQUIRED: <u>A fault tolerance, low mass</u> switching matrix - single or dual fault tolerant - with on-array
	regulation capability. CURRENT STATE OF ART: DC low power switching using electromechanical components.
5. 1	DESCRIPTION OF TECHNOLOGY:
	Single and dual failure-tolerant designs for efficient, DC power on-array regulation are required for Ion Engine Beam Supply voltage control. Ideally, the limited short-circuit current capability of the array - along with a limited complement of electromechanical switches - can be used to meet the requirements.
6.1	RATIONALE AND ANALYSIS:
	Single and dual failure-tolerant designs for electromechanical DC switches for fault isolation and on-array ion engine beams supply regulation would be heavy. AC masses are also high. Approaches which are low mass - and utilize the short-circuit capability of the array - may enable this technology. Benefits were shown to be significant mass savings if a hybrid approach using both regulated DC and AC for the systems can be developed.

	DEFINITION OF TECHNOL	OGY REQUIREMENT		
	CLOGY REQUIREMENT (TITLE ching and Fault Isolation		Low Mass	Page 2 of 3
7. TECHNO	DLOGY OPTIONS:			
1. Tra	nsistor or electromechani	cal switches.		
2. Sin	gle or dual failure toler	ant.		
1. The	CAL PROBLEMS: specific ion engine beam uld be developed.	voltage range of r	egulation req	uirements
app tow	ircuit-analysis-study sho roach, redundancy approac ard a more massive, all A tem, with AC or DC switch	h, and reliability C or all DC power m	goals to be t	argeted
9. POTENT	TAL ALTERNATIVES:			
10. PLANN	ED PROGRAMS OR UNPERT	URBED TECHNOLOGY	ADVANCEMEN	NT:
An on-a	rray regulation study is	actively under way.	к. С	
11. RELAT	ED TECHNOLOGY REQUIRE	MENTS:		
Ion eng	ine beam supply voltage,	current, and regula	tion goals.	

1052-18

DEFINITION OF TECHNOLOGY REQUIREMENT
1. TECHNOLOGY REQUIREMENT (TITLE): Fault Tolerant AC Page 1 of _3 Switching and Fault Isolation Matrix
2. TECHNOLOGY CATEGORY: Power Management and Control
3. OBJECTIVE/ADVANCEMENT REQUIRED: 25 KW Sized Modules must be switched to achieve fault tolerance.
 CURRENT STATE OF ART: DC low power switch on today's satellites using electromechanical switches.
5. DESCRIPTION OF TECHNOLOGY:
AC user loads require a switch matrix interconnecting them to the AC - buses, so that user faults or array/DC to AC converter faults can be switched out, with the remainder of the system continuing to operate correctly. Because high frequency AC changes direction quickly and each half cycle, thyristors can be used as these switches without the risk of thermal runaway in the event of a fault.
6. RATIONALE AND ANALYSIS:
By modularizing the AC power management and control system to connect Solar Array Modules directly to the DC to AC split cycle converter modules, DC fault isolation switching can be avoided. This means that heavy fault isolating electromechanical single-failure tolerant switches can be eliminated from the system, enabling a low-mass switch- ing system.

 TECHNOLOGY REQUIREMENT (TITLE): <u>Fault Tolerant AC</u> Page 2 of 3 <u>Switching and Fault Isolation Matrix</u> TECHNOLOGY OPTIONS: Thyristor switches or electromechanical switches. Single or dual failure tolerant. TECHNICAL PROBLEMS: The required degree of redundancy should be established by a reliability analysis for 100 KNc to 10 MMe systems. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KMe_level.switching. RELATED TECHNOLOGY.REQUIREMENTS: RELATED TECHNOLOGY.REQUIREMENTS: Singlit cyclo converters for AC power management and distribution. 	DEFINITION OF TECHNOLOGY REQUIREMENT
 TECHNOLOGY OPTIONS: Thyristor switches or electromechanical switches. Single or dual failure tolerant. Single or dual failure tolerant. TECHNICAL PROBLEMS: The required degree of redundancy should be established by a reliability analysis for 100 KWc to 10 MWe systems. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe. level.switching. RELATED TECHNOLOGY REQUIREMENTS: 	1. TECHNOLOGY REQUIREMENT (TITLE): Fault_Tolerant_AC Page 2 of 3
 Thyristor switches or electromechanical switches. Single or dual failure tolerant. Single or dual failure tolerant. TECHNICAL PROBLEMS: The required degree of redundancy should be established by a reliability analysis for 100 KWc to 10 MWe systems. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. PUANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe. level. switching. RELATED TECHNOLOGY REQUIREMENTS: 	Switching and Fault Isolation Matrix
 Single or dual failure tolerant. TECHNICAL PROBLEMS: The required degree of redundancy should be established by a reliability analysis for 100 KWc to 10 MWe systems. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe level switching. RELATED TECHNOLOGY, REQUIREMENTS: 	7. TECHNOLOGY OPTIONS:
 TECHNICAL PROBLEMS: The required degree of redundancy should be established by a reliability analysis for 100 KWc to 10 MWe systems. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe level switching. RELATED TECHNOLOGY REQUIREMENTS: 	1. Thyristor switches or electromechanical switches.
The required degree of redundancy should be established by a reliability analysis for 100 KWc to 10 MWe systems. 9. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe_level_switching.	2. Single or dual failure tolerant.
The required degree of redundancy should be established by a reliability analysis for 100 KWc to 10 MWe systems. 9. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe_level_switching.	
The required degree of redundancy should be established by a reliability analysis for 100 KWc to 10 MWe systems. 9. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe_level_switching.	
The required degree of redundancy should be established by a reliability analysis for 100 KWc to 10 MWe systems. 9. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe_level_switching.	
The required degree of redundancy should be established by a reliability analysis for 100 KWc to 10 MWe systems. 9. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe_level_switching.	
The required degree of redundancy should be established by a reliability analysis for 100 KWc to 10 MWe systems. 9. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe_level_switching.	
 analysis for 100 KWc to 10 MWe systems. 9. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe level switching. 11. RELATED TECHNOLOGY REQUIREMENTS: 	8. TECHNICAL PROBLEMS:
 9. POTENTIAL ALTERNATIVES: Electromechanical switches used in a DC distribution system. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe level_switching. 11. RELATED TECHNOLOGY REQUIREMENTS: 	
Electromechanical switches used in a DC distribution system. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe_level_switching. 11. RELATED TECHNOLOGY.REQUIREMENTS:	
Electromechanical switches used in a DC distribution system. 10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe_level_switching. 11. RELATED TECHNOLOGY.REQUIREMENTS:	
 PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT: Single and dual failure DC fault correcting and isolating switches for 5 KWe_level_switching. 11. RELATED TECHNOLOGY, REQUIREMENTS: 	9. POTENTIAL ALTERNATIVES:
Single and dual failure DC fault correcting and isolating switches for 5 KWe_level_switching	Electromechanical switches used in a DC distribution system.
Single and dual failure DC fault correcting and isolating switches for 5 KWe_level_switching	
Single and dual failure DC fault correcting and isolating switches for 5 KWe_level_switching	
5 KWe_level_switching.	10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
11. RELATED TECHNOLOGY, REQUIREMENTS:	Single and dual failure DC fault correcting and isolating switches for 5 KWe level switching.
25 KWe split cyclo converters for AC power management and distribution.	
	25 KWe split cyclo converters for AC power management and distribution.

CEFINITION OF	TEC	HN	OL	0G'	YR		JIR	EM	EN	T						No	.		
1. TECHNOLOGY REQUIRE Switching and Fault I							lt	To	ler	ant	AC			_		Pa	ge 3	of	3
12. TECHNOLOGY REQUIRE	ME	NTS	s	CHE	DUI	<u>E</u> .			YE	EAR									
SCHEDULEITEM	11	21	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
TECHNOLOGY																			
Reliability Requirement Study																			
Prototype Switch Development			-		I	oc													
Flight Article Development			-		4														
Flight Demonstration				}															
Ready for Users																			
-																			
																	İ		
13. USAGE SCHEDULE	•	<u> </u>	1				1	1	1	<u>!</u>	· <u>1</u>		<u> </u>	1	1	-	I].	<u> </u>
TECHNOLOGY NEED DATE	1			1					Ι	-		Γ				Γ		ίοτ	AL
NUMBER OF LAUNCHES	Ì		Ť	Τ		T	1	T	Ì	1	1	Γ	1	İ	1	T	1	T	
14. REFERENCES							-										-	-	
15. LEVEL OF STATE OF TH	HEA	ART	:				;										ste	-	
I. Basic phenomena obser	rved	and	đ														ron		nt
reported 2. Theory formulated to de	scri	be					j	7. N	Acc	lei t	est	ed i	n sç	act	e en	vira	onm	ent	
phenomena 3. Theory tested by physic	ai e:	xpe	rime	ent				1	e55	er	per	atic	nai	m	del		ап		
or mathematical model 4. Pertinent functions or o	han	acte	eris	tic							ned		raci	ng	ora	In C	per	d-	
demonstrated, e.g., mail component							1		life		e ex	ten	sio		an	000	erat	iona	li

3652·#2

B-40

.

DEFINITION	OF TECHNOLOGY	REQUIREMENT
------------	---------------	-------------

1. TECHNOLOGY REQUIREMENT (TITLE): AC 25 KWe Power Cyclo Page 1 of 3 Converters for AC Power Distribution

2. TECHNOLOGY CATEGORY: Power Management and Control

- 3. OBJECTIVE/ADVANCEMENT REQUIRED: ______ Operational 85 KW DC/AC and AC/DC split cycloconverter modules.
- CURRENT STATE OF ART: <u>]/2 KWe DC/DC Cyclo Converters are operational</u> in the laboratory.

5. DESCRIPTION OF TECHNOLOGY:

25 KW DC/DC Cyclo Converter development is currently under way. This _____technology_activity_should_be_completed_and_then_extended_to_include split cyclo converter design, ultimately leading to array located DC/AC converters using rotary joint transformers for reliable, frictionless power transfer.

6. RATIONALE AND ANALYSIS:

Development of this conceptual approach will enable AC power distribution and split cyclo converters. These save system mass whenever one DC-AC converter can drive two AC-DC user supplies when compared to two DC/DC converters. Also, frictionless rotary power transfer across the spacecraft orientation drive and power transfer assembly rotary joint is enabled by these modules when rotary transformers are used.

1. TECHNOLOGY REQUIREMENT (TITLE): <u>AC 25 KWe Power Cyclo</u> Page 2 of 3 Converters for AC Power Distribution

7. TECHNOLOGY OPTIONS:

A. A transistorized Power Converter.

B. A power converter utilizing SCRs.

Also, utilization of the rotary transformer.

8. TECHNICAL PROBLEMS:

Minimizing series inductive reactance so that the resonant cyclo converter will function correctly.

9. POTENTIAL ALTERNATIVES:

DC to DC Boost Buck Regulators, CUK DC/DC Converters.

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

25 KWe Power Converter prototype development.

11. RELATED TECHNOLOGY REQUIREMENTS:

Rotary Transformer, Orientation Drive, and Power Transfer Assembly (ROTODAPT).

DEFINITION OF	TEC	HN		OG	YR	EQI	JIR	EM	EN	7						N	0.		
1. TECHNOLOGY REQUIRE Converters for AC Power							5 K	We	Po	wer	Cy	<u>c1o</u>		_		P3	ge 3	a f	3
12. TECHNOLOGY REQUIRE STATIONKEEPING AND MU	TI	MEG	AWA	Π	MIS	SIC	NU	ISES	5:	YE	AR								
SCHEDULE ITEM	1	2	3	4	5	6	7	81	9	10	11	12	13	14	15	16	117	18	19
TECHNOLOGY																			
25 KW DC/DC Module Development	_																		
Split DC/AC - AC/DC Module Development			-																
Testing of Rotary Transformer Coil Sections in 25 KW DC/AC/DC Converter																			
Flight Article Development					-		I	c											
Proof Flight Testing	Ì					-		\vdash	$\left \right $	+									
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE				1													•	το	AL
NUMBER OF LAUNCHES	Ι	T	T	T	Τ	Ι		1	1	11				1		Τ	1	1	
14. REFERENCES							·						-			-	-		
Study of Power Manag Report CR 159834, Co Convair Division.	eme ntr	nt act	Tec NA	hno S 3	10g -21	iy f 757	or ,	0r1	bit N.	al Mil	Mul dic	ti e,	100 Gen) Kh Iera	le A	App))yna	lica amic	itio s/	ons
15. LEVEL OF STATE OF T							1										ste		ı
 Basic phenomena cose reported 	vec	an	a					6. N	Noc	el t	est	ed i	n ai	iren	aft e	envi	ron	me	nt
2. Theory formulated to de	SCI	ibe															ап		
	th	neon	ry .	•				1	ess	er	per	atic	onal		del				
Some portions of the tested by physical e or mathematical mode											ity nod	_	rad	iņg	of a	an c	per	a -	
demonstrated, e.c., ma component							1		Life		e ex	ten	sic	n oi	f an	00	erat	ion	a 1

3652-72

1. TECHNOLOGY REQUIREMENT (TITLE): <u>Rotary Transformer</u> Page 1 of <u>3</u> Orientation Drive, and Power Transfer Assembly (ROTODAPT)

2. TECHNOLOGY CATEGORY: Power Management and Control

- 3. OBJECTIVE/ADVANCEMENT REQUIRED: Operational Modular ROTODAPTS with 25 KWe coil power transfer capability.
- CURRENT STATE OF ART: Low power DC slip ring ODAPTS used on Geosynchronous Spacecraft.

5. DESCRIPTION OF TECHNOLOGY:

A ROTODAPT is required to transfer power transfer between the solar arrays ---which_must_be_oriented_so their aperture plane faces the sunlight, and the spacecraft bodies, which are required to point toward the earth. The ROTODAPT would consist of a rotary transformer, to enable low friction power transfer, dual redundant coaxial bearings, and a servo drive system.

6. RATIONALE AND ANALYSIS:

The use of a rotary transformer for power transfer across the rotary joint enables low friction transfer with low arcing risk. Spacecraft distribution and array distribution voltage can be as high as possible; the slip rings will not limit this voltage. Outside coil design enables easy maintenance and passive thermal control.

DEFINITION OF TECHNOLOGY REQUIREMENT
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Rotary Transformer</u> . Page 2 of 3 Orientation Drive, and Power Transfer Assembly (ROTODAPT)
7. TECHNOLOGY OPTIONS:
 A "pot coil" design with both coils on the outside for easy maintenance and passive, low mass heat rejection.
2. A coaxial coil design.
8. TECHNICAL PROBLEMS:
 Assuring that transformer inefficiencies and forces caused by the
rotary transformer air gap are minimized.
Interfacing with the orientation drive mechanical hardware compati- bility, including its redundant bearing tolerances.
9. POTENTIAL ALTERNATIVES:
1. DC ODAPT with slip rings.
2. AC ODAPT with slip rings and no rotary transformer.
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
100 KWe technology activity with low voltage DC slip rings.
11. RELATED TECHNOLOGY REQUIREMENTS:
25 KWe cyclo converter development with the ODAPT rotary transformer
used as the cyclo converter inductive element.

DEFINITION OF	TEC	HN		OG	YR	EQI	UIR	EM	EN	T						No	.		
1. TECHNOLOGY REQUIRE Orientation Drive, and	ME	NT (TIT	L.S.	: sfe	Rot r (ary	TI OD/	APT	sfor) As	sse	r, mbl	у (Rot	ary		ge 3 int		3
12. TECHNOLOGY RECUIRE	ME	NTS	S	CHE	ÐU	L <u>S</u> .			Y	EAR							х.		
SCHEDULE	11	21	3	4	5	6	7	8	9	10	11	12	13	14	15	16	117	18	19
TECHNOLOGY									1										
Rotary Transformer Pre- design Analysis Study															1				
Prototype Design and Fabrication of Rotary Joint Coil Sections Transformer Coil Section																			
Proof Tests in 25 KW Cyclo Converter			-																
Orientation Drive and Power Transfer Assy. Prototype Design			-	+													.		
Prototype Fab & Test				-			1	bc	FL	IGH		ŀ							
Proof Flight Article					-	\vdash	1	V											
Proof Flight Testing	İ					4.	ŀ	-	+	+	-								
13. USAGE SCHEDULE								·				-	·				·		
TECHNOLOGY NEED DATE				1													•	τoτ	AL
NUMBER OF LAUNCHES	Ι	Ι	Τ	Τ	Τ	T	Γ	1	Τ	T	Τ	Ι	1			1			
14. REFERENCES																			
Study of Power Manage Report CR 159834, Con Convair D <u>i</u> vision.	emen	nt ' act	Tec NA	hno S 3	10g -21	y f 757	or ,	Or J.	bit W.	al Mil	Mul dic	ti e,	100 Gen	KW era	le A)yna	lica Amic	tic s/	ons.
15. LEVEL OF STATE OF TH 1. Basic phenomena observed								1	ele	van	t er	vire	m	ent	in l	abo	rato	bry	
2 Theory formulated to de phenomena	scr	ibe						7.	Mod	tei 1	est	ed i	n s	act	e er	vire	a n	ent	
Limited theory teste experiment or mathem									ess	er d	ope	ratio	onal	m	del		per		
 Pertinent functions or or demonstrated, e.g., mail component 	har	act					1		tion	ai r	noc	el		-			erat		a i

56-52-58

 TECHNOLOGY REQUIREMENT (TITLE): <u>Slip Ring Orientation Drive Page 1 of 3</u> and Power Transfer Assembly (Slip Ring ODAPT) (Rotary Joint)

2. TECHNOLOGY CATEGORY: Power Management and Control

3. OBJECTIVE/ADVANCEMENT REQUIRED: If ROTODAPTS are not developed, DC slip rings capable of arcless, megawatt transfer must be developed.

4. CURRENT STATE OF ART: Low power DC slip ring ODAPTS.

5. DESCRIPTION OF TECHNOLOGY:

This is an extension of today's slip ring design - except pressurization _____is required to enable high voltages, and meteoroid protection of the pressurization system is also required (modular pressure vessels).

6. RATIONALE AND ANALYSIS:

If, for some unexpected reason, AC power management and distribution are not developed, or, when ion engine beam supplies can be supplied directly from DC on-array regulated sources - avoided power converters completely - then this technology is required.

 TECHNOLOGY REQUIREMENT (TITLE): <u>Slip Ring Orientation Drive</u> Page 2 of 3 and Power Transfer Assembly (ODAPT)

7. TECHNOLOGY OPTIONS:

A. Wet Ring

B. Dry Ring

C. Axial or Radial Rings

8. TECHNICAL PROBLEMS:

Axial brush ring may not be topologically compatible with dual redundant bearings - requiring extra redundancy.

9. POTENTIAL ALTERNATIVES:

Rotary transformer, orientation drive, and power transfer assemble (ROTODAPT).

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

Air Force high voltage slip ring development up to 25 KWe.

11. RELATED TECHNOLOGY REQUIREMENTS:

1. Ion engine beam voltage supply delta regulation.

2. On-array DC power regulation.

CEFINITION OF	TEC	HN	OL	OG	YR	EQ	JIR	EM	EN'	٢						No	.		
1. TECHNOLOGY REQUIRE Drive and Power Trans												tion	1	-	•	P2(ge 3	of	3
12. TECHNOLOGY RECUIRE	ME	NTS	sso	CHE	DU	LE			YE	AR									
SCHEDULE ITEM	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
TECHNOLOGY																			
Modularity Design Study of High Power ODAPT																	, ,		
Prototype Development of ODAPT Ring Modules Design, Fabrication and Test																			
Flight Article ODAPT Development						IQ	F	lig	ht										
Proof Flight Demonstra- tion						.													
13. USAGE SCHEDULE		-															·		
TECHNOLOGY NEED DATE				1			₹											ŗοτ	AL
NUMBER OF LAUNCHES	1	Ι	Γ	1	1	Γ	1	Ι	1	11	1	Τ	11	Ι	Τ	1		1	
14. REFERENCES High Voltage, High Po 15 April 1980.	ower	- So	ola	r P	owe	r S	yst	em:	s St	tud	у,	LMS	C-D	715	836	•			
 15. LEVEL OF STATE OF TH I. Basic phenomena observe reported 2. Theory formulated to de phenomena 	ved	an	-				1	6. N 7. I			t en test	t or wird ad i ad i			in la aft e	abo	ron	men	nt
Theory tested by physic or mathematical model A. Pertinent functions or c	har	act						9. 1	Reli	abi ai n	ity	-	rad	ing	of a	n o			
demonstrated, e.g., mat component	eria	и,					1		Life		e e:	xter	1510		an	000	erat	1001	21

34

1

1652-28

1. TECHNOLOGY REQUIREMENT (TITLE): Power System Control Page 1 of <u>3</u> Computers (Failure Tolerant)

2. TECHNOLOGY CATEGORY: Power Management and Control

- CURRENT STATE OF ART: Power is generally controlled from ground stations.

5. DESCRIPTION OF TECHNOLOGY:

Distributed, single, or dual failure tolerant processors which send commands to switch matrix drivers which control the switching of the user loads.

6. RATIONALE AND ANALYSIS:

The power system itself will be single or dual failure tolerant; therefore, the processor(s) controlling it should have the same level of redundancy.

	DEFINITION OF TECHNOLOGY REQUIREMENT	
	HNOLOGY REQUIREMENT (TITLE): <u>Power ystem Control</u> uters (Failure Tolerant)	Page 2 of 3
7. TEC	HNOLOGY OPTIONS:	
1.	Distributed processors connected as a federated syste single or dual failure tolerant processors.	em to provide
2.	Single package processors with single failure tolera	nt designs.
8. TECH	HNICAL PROBLEMS:	
Arch	itectural and software studies are required to define	e failure
	ction and correction strategies.	
9. POT	ENTIAL ALTERNATIVES:	
None		
None	• .	
10. PLA	NNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVA	NCEMENT:
Sign	ificant activity is already under way in this area a	t MSFC for DC
syst	em concepts. It should be expanded to include Hybrid	d System Design.
11. REL	ATED TECHNOLOGY REQUIREMENTS:	
Hybr	id AC/DC Power System Development.	7
	· .	

	DEFINITION OF TECHNOLOGY REQUIREMENT													No.					
1. TECHNOLOGY REQUIREMENT (TITLE): <u>Power System Control</u> Computers (Failure Tolerant)												Page 3 of 3							
2 TECHNOLOGY RECUIRE	ME	NT	s so	CHE	DU	LS			EN		2 7	EAF							
SCHEDULE ITEM	1	2	3	4	5	6	-	-	-	-		-		14	15	16	17	18	;
TECHNOLOGY																			
Simulation Studies of Power	-														1				
Management Failure Detection and Isolation Strategies - Processor Requirements Definition	1																		
Prototype Processor Development																			
Software Development						-	Ι,	h											
Flight Critical Fabri- cation					\vdash	\vdash		DC											
13. USAGE SCHEDULE						<u>.</u>							<u>.</u>	-		<u>.</u>		<u>!</u>	•
TECHNOLOGY NEED DATE																	•	τoτ	1
NUMBER OF LAUNCHES	Τ	Τ	Γ	Γ	Τ	Τ	Γ	Γ	Γ	Ι	Γ	Τ	Γ	Ι	Γ	Γ	1	Γ	
 REFERENCES Study of Power Ma Applications, Reg General Dynamics, 	por	ť C	R 1	598	34,	Co	ntr										ldia	e,	
15. LEVEL OF STATE OF TH	IE /	ART	:									t or viro							1
 Basic phenomena obser reported 	vec	an	đ					5. N	lod	el t	est	ed i	n ai	rcra	aft e	invi	ron	me	
2. Theory formulated to de	scr	ibe										ed i ility			d fr	cm		lent	
phenomena																			•
	ai e	xpe	rime	ent				ا 9. ۶	ess Relia	er o	ity	upg	nal				per	a-	'

00

GDC/AST 81-019

APPENDIX C

TECHNOLOGY PLANS

III-V MULTIJUNCTION SOLAR CELLS AND III-V SOLAR CELLS FOR SPECTRUM SPLITTING AT AIR MASS 0

by

Timothy J. Maloney and Bruce R. Cairns

Prepared for General Dynamics, Convair Division

1. TASK I - MONOLITHIC EPITAXIAL MULTIJUNCTION SOLAR CELL

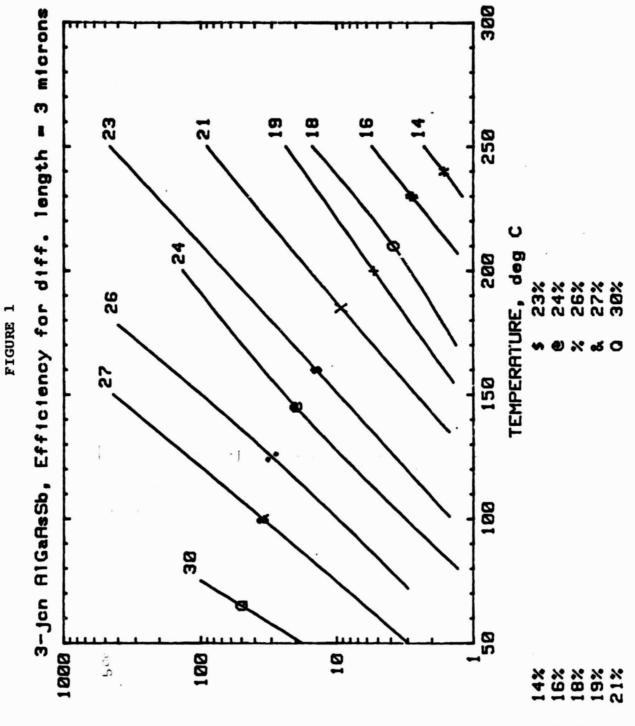
1.1 AlGaAsSb Multijunction Cell

A monolithic epitaxial III-V multijunction solar cell should have all junctions lattice matched to one another in order to avoid excessive lattice defects. If possible, the epitaxial stack should also be lattice matched to a binary III-V substrate, but this can severely restrict the junction bandgap range. The best junction series occur in the quaternary system AlGaAsSb (which allows higher bandgap windows than, say, AlGaInAs) for lattice constants in between those of GaAs and InP. A lattice-constant grading layer could allow such a stack to be grown on a GaAs or InP substrate, and a substantial amount of work on graded lattice constants has been and is being done. There is a slight chance that the development of bulk ternary materials will allow substrate material of arbitrary lattice constant to be used.¹ The best multijunction bandgap series in AlGaAsSb at typical operating temperatures in space was found to be (30°C bandgaps) 1.19-1.54-2.01 eV, which is accomplished by growing junctions of GaAs 85b 2, Al 22 Ga 78 As 82 Sb 18, Al.58^{Ga}.42^{As}.83^{Sb}.17, and finally a 2.76-eV window layer of ALAS 85 Sb 15. This has a lattice constant of 5.73 Å, closer to GaAs (5.64 Å) than to InP (5.87 Å). High-bandgap tunnel junctions are grown in between the cell junctions. The tunnel junctions are taken to be perfect in these calculations, but one could subtract, say, 0.1V per tunnel junction from the maximum power voltage to get an idea of their effect.

A multijunction cell-modeling program was developed using the single-cell program of L. James² as a building block. The basic cell program has 29 independent variables,

nine of which are set for each junction in the multijunction program. Thus the multijunction model has 29 + 9 (n-1) independent variables, where n is the number of junctions. Among these are the carrier diffusion lengths in the p and n layers of each junction, which one would like to be as long as possible. At present such diffusion lengths are about 0.5 micron or less, but one would expect better values by 1990. The effect of radiation in space is unknown, but the diffusion lengths are likely to be somewhat degraded, although it is known that III-V materials are less susceptible to radiation damage than silicon. Moreover, Heinbockel, et al³ have argued that the high operating temperature of GaAs solar cells in space could allow the radiation damage to be annealed out. Our study was done using two different diffusion lengths for all layers -- 3 microns and 1.5 microns. Junction thicknesses were optimized for each diffusion length (about 0.7-1 micron for 1.5-micron diffusion length and 1-1.3 micron for 3-micron diffusion length). The bottommost layer can be almost arbitrarily thick, and 30 microns has been used in this work.

Calculations were done for Air Mass 0 (AMO) at 1, 2, 3, 10, 100, 500 and 1000 suns and at temperatures between 50 and 250°C. Results are presented in tables and figures as follows: Table I, efficiency, 3-micron diffusion length; Figure 1, graph of efficiencies; Table II, maximum power voltage and current, 3 microns; Table III, efficiency, 1.5 micron; Figure 2, graph of efficiencies and Table IV, maximum power voltage and current, 1.5 micron. A one-third-inch cell is specifically considered in all cases, but intrinsic quantities such as efficiency do not change much with cell size or shape.



Other remarks about the AlGaAsSb multijunction solar cell appear in the attached General Dynamics forms.

TABLE I

AlGaAsSb 3-junction Cell Efficiency, 3-micron Diffusion Length.

	•									
	H	50	75	100	125	150	175	200	225	250
	° C									
IJ										
suns										
1		25.6	24.2	22.6	20.9	19.3	17.5	16.0	14.3	12.6
2		26.5	25.2	23.6	22.0	20.4	18.8	17.4	15.7	1.11
3		27.0	25.7	24.2	22.6	21.1	19.5	18.1	16.5	14.8
10		28.5	27.3	26.0	24.6	23.1	21.7	20.2	18.9	17.4
100		30.6	29.8	28.6	27.4	26.2	24.9	23.9	22.7	21.3
500		31.0	30.3	29.3	28.3	27.3	26.2	25.3	24.3	23.1
1000		30.5	29.9	28.9	28.0	27.0	26.0	25.2	24.1	23.1

•

COZOMZHREHHOZ

+ × 0

ľ

TABLE II

AlGaAsSb 3-junction Cell for 1/3-inch Cell

Max. power V(volts), Max. Power I (amps), for Diffusion Length = 3 µm

	T.	50	75	100	125	150	175	200	225	250
	°c									
υ										
suns										
		2.84V	2.64	2.46	2.25	2.11	1.96	1.73	1.62	1.38
1		×	•	.0070	.0071	.0070	.0068	.0070	.0067	.0070
		2.94	2.77	2.58	2.38	2.23	2.05	1.87	1.76	1.56
2		7610.	.0139	.0139	.0141	.0139	.0140	.0140	.0140	.0140
		2.99	2.77	2.62	2.47	2.31	2.09	1.92	1.78	1.56
e		.0206	.0212	.0211	.0210	.0210	.0210	.0220	.0210	.0220
		3.14	3.00	2.81	2.63	2.48	2.34	2.24	2.00	1.87
10		.0690	.0690	.0700	.0710	.0710	.0710	.0690	.0720	.0710
		3.38	3.24	3.09	2.96	2.81	2.67	2.57	2.40	2.33
100		.689	669.	.706	.704	111.	.712	.708	.719	.696
		3.52	3.39	3.27	3.13	3.00	2.87	2.79	2.66	2.46
500		3.35	3.40	3.41	3.45	3.46	3.48	3.46	3.48	3.57
		3.46	3.35	3.25	3.09	2.97	2.85	2.72	2.67	2.55
1000		6.73	6.79	6.78	6.89	6.92	96.9	7.05	6.88	16.9

TABLE III

AlGaAsSb 3-Junction Cell

Efficiency (%), Diffusion Length = 1.5 µm

•	ļ.		;	11.3	12.7	13.4	15.6	18.9	20.7	20.4
250				"	12	13	15	18	50	20
225				12.9	14.0	14.9	17.0	20.4	21.7	21.5
200				14.4	15.6	16.3	18.4	21.5	22.7	22.4
175	!			15.8	17.0	17.71	19.5	22.4	23.5	23.1
150				17.4	18.3	1.91	20.8	23.7	24.4	23.9
125				18.9	19.8	20.4	22.2	24.8	25.5	25.0
100				20.2	21.4	21.9	23.5	25.9	26.4	25.9
75				21.8	22.9	23.4	24.8	26.9	27.2	26.8
50				23.2	24.0	24.5	25.9	27.7	28.0	27.5
f	ູ					1				
		U	suns	1	2	e	10	100	500	1000

ORIGINAL PAGE IS OF POOR QUALITY

TABLE IV

AlGaAsSb 3-Junction Cell

Max. power V (volts), Max. Power I (amps) for 1/3-inch cell, Diffusion Length = 1.5 µm

						·····		-		
	F	50	75	100	125	150	175	200	225	250
	°c	2	2							
υ										
suns										
		2.83	2.67	2.52	2.28	2.08	1.91	1.70	1.54	1.42
I		.0062	.0062	.0061	.0063	.0064	.0063	.0065	.0064	.0061
		2.96	2.75	2.59	2.44	2.26	2.02	1.92	1.648	1.53
2		.0123	.0126	.0126	.0123	.0123	.0128	.0124	0130	.0126
		3.00	2.80	2.61	2.49	2.30	2.12	1.94	1.75	1.64
m		.0187	.019	610 .	.019	610.	.019	610 .	.019	610.
		3.11	2.98	2.82	2.68	2.46	2.33	2.15	2.00	1.84
10		.064	.064	.063	.063	.065	.064	. 065	.065	.065
		3.38	3.24	3.11	2.96	2.80	2.65	2.54	2.37	2.17
100		.626	.633	.634	.638	.644	.644	.644	.655	.664
		3.47	3.30	3.25	3.13	3.04	2.88	2.74	2.66	2.52
500		3.07	3.14	3.10	3.10	3.06	3.10	3.16	3.11	3.12
		3.43	3.28	3.20	3.02	2.86	2.77	2.70	2.57	2.54
1000		60.9	6.22	6.16	6.29	6.36	6.34	6.33	6.35	6.11

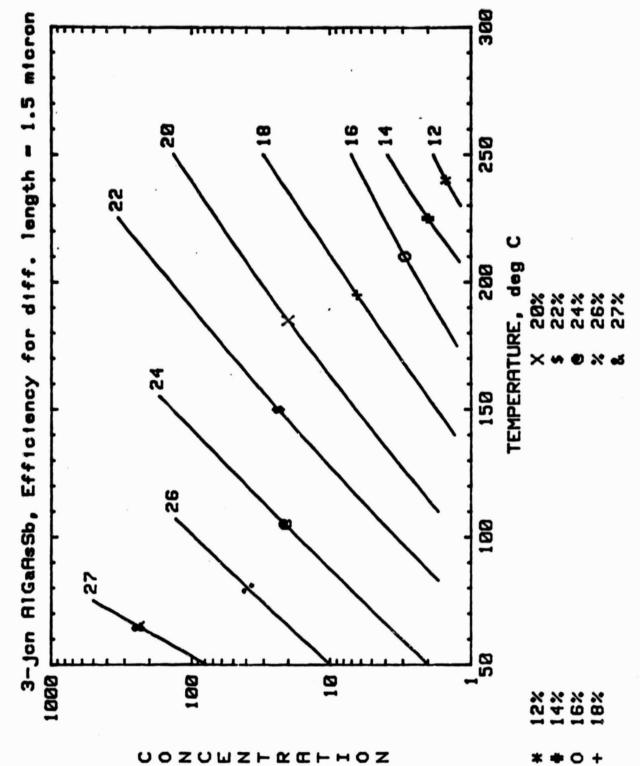
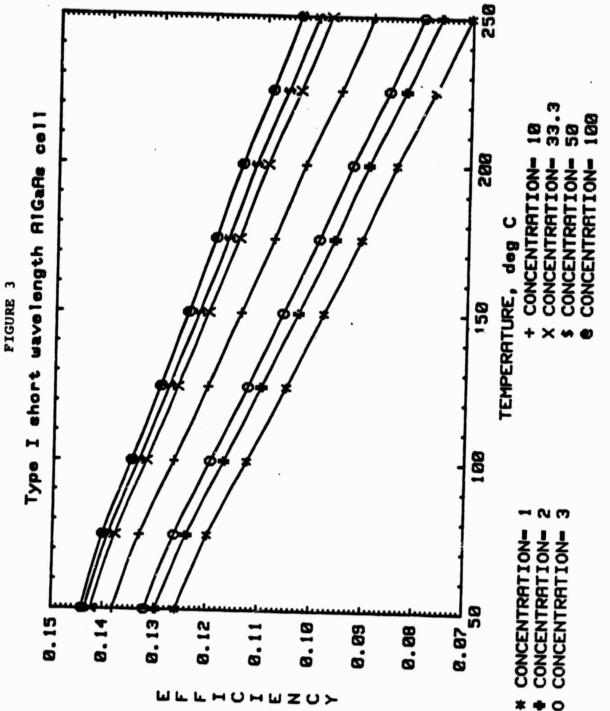


FIGURE 2

.

2.0 TASK II - III-V CELLS FOR SPECTRUM SPLITTING


2.1 Type I Short Wavelength AlGaAs Cell

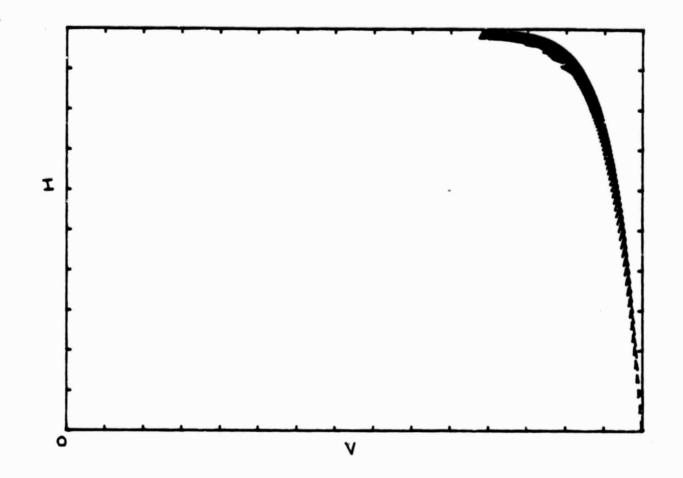

An Al.4Ga.6As solar cell (30°C bandgap of 1.91 eV) with an Al.93Ga.07As window of 2.95 eV is proposed as the Type I cell. Efficiency as a function of temperature and concentration is plotted in Fig. 3 for the 350-650 nm part of the AMO spectrum. Efficiency is calculated as a fraction of <u>total</u> solar power in these graphs, so that efficiencies of the three cells can be added to compute system efficiency. A 1.5-micron diffusion length has been used for all these cells. Since 125°C, 50 suns has been suggested as a likely operating point for solar cells, the complete I-V curve for that operating point is shown in Fig. 4. Table V gives cell performance data at 125°C, 50 suns, for Types I, II, and III spectrum split cells. Remarks about using cover slides for heat rejection are in Section 3.1.4.

Figure 5 shows the efficiency versus temperature and concentration for monochromatic light. Here a 1-sun concentration was taken to be the power in the AMO band from 1.91 eV to the usual window cutoff of 3 eV. It was found for Type I cells that optimal efficiency was achieved for monochromatic light at 0.13 eV above the bandgap.

2.2 Type II Medium Wavelength GaAs Cell

The 650-900 nm AMO spectrum is well suited to a GaAs solar cell, and it is therefore suggested for Type II. Figure 6 shows efficiency versus temperature and concentration for this cell. The I-V curve for 50 suns, 125°C, is shown in Fig. 7.

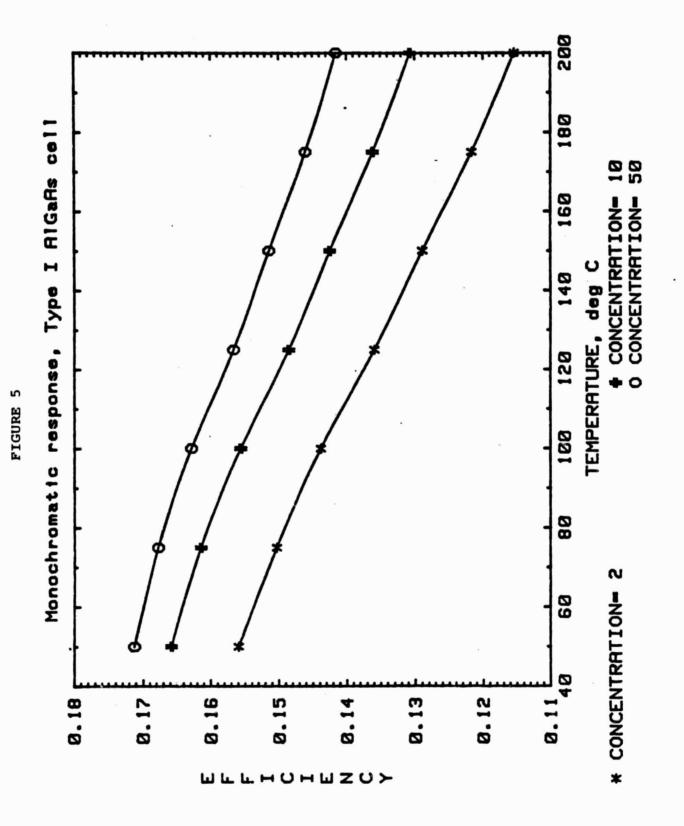
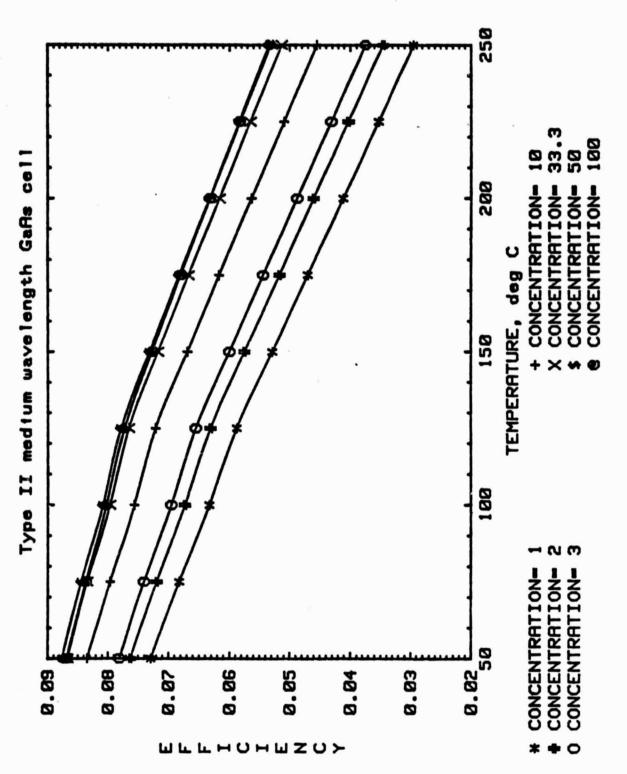

0

FIGURE 4 1-V curve for Type I cell, 50 suns and 125°C. (See Table V for current and voltage scales, and Fig. 10 for a discussion of I-V curve details.) TABLE V


Spectrum-Split Cell Data for 125°C, 50 sung

Bff.	.128	.078	034	
<u>ff</u>	867.	.782	.735	
Imax	.387	.383	.287	•
Vmax	1.26	ATT.	.452	
I _{sc} , amp	.409	.408	.311	
V _{oc} , volt	1.50	.927	.567	
	Type I, AlGaAs	Type II, GaAs	Type I, GaAsSb	

*_{One-third-inch cell used}.

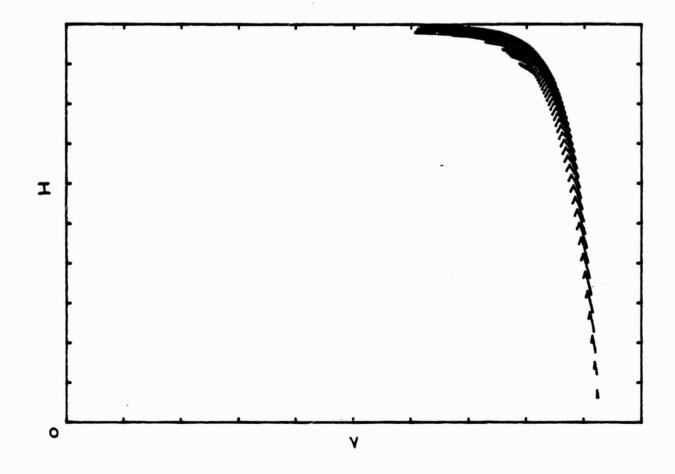
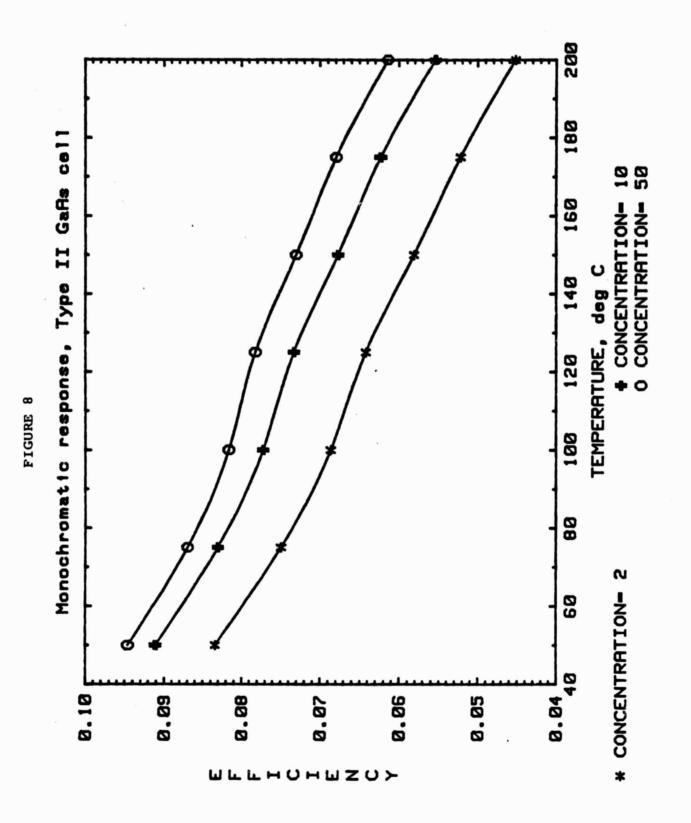
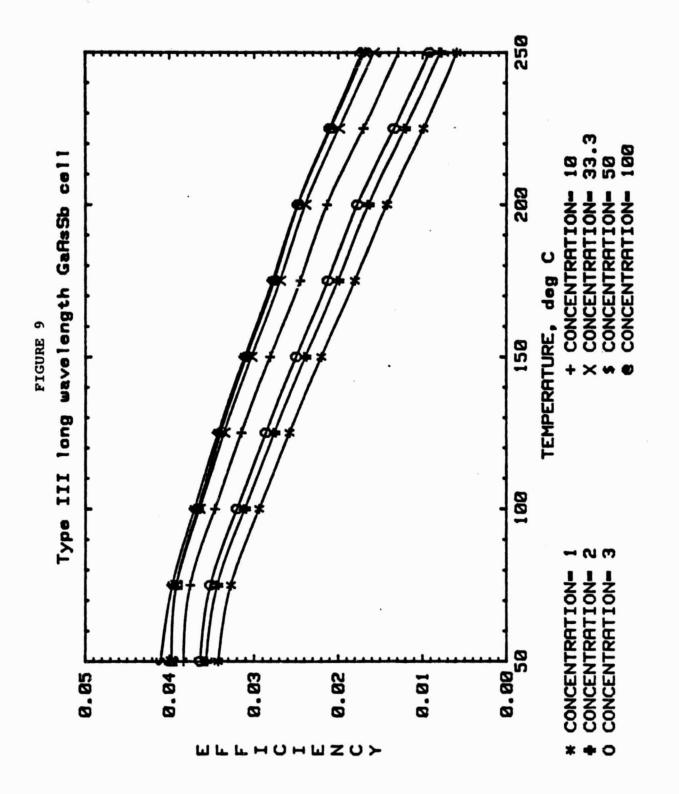
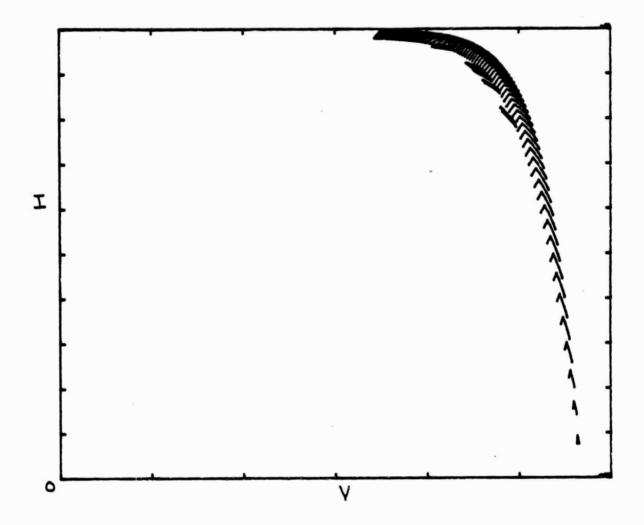


FIGURE 7 I-V curve for Type II cell, 50 suns and 125°C. (See Table V for current and voltage scales and Fig. 10 for a discussion of I-V curve details.)




Efficiency versus temperature and concentration for monochromatic light (1 sun being the power in the AMO band from 1.38 eV to 1.91 eV) is shown in Fig. 8. In Type II cells, the optimal efficiency was achieved for monochromatic light at 0.10 eV above the bandgap.


2.3 Type III Long Wavelength GaAsSb Cell

The 900-1200 nm AMO band is probably best suited for a silicon solar cell, but since Varian is best equipped to evaluate III-V solar cells, this analysis was done for a GaAs_{.73}Sb_{.27} cell having 1.11-eV bandgap at 30°C. Figure 9 shows the efficiency versus temperature and concentration. The I-V curve for 50 suns, 125°C, is in Fig. 10.

Efficiency versus temperature and concentration for monochromatic light (1 sun being the AMO power from 1.03 to 1.38 eV) is shown in Fig. 11. Optimal efficiency was achieved with the monochromatic light 0.07 eV above the bandgap for Type III cells.

FIGURE 10 I-V curve for Type III cell, 50 suns and 125°C. (See Table V for current and voltage scales.)

The outside envelope of the set of curves represents the I-V curve of the junction itself, with no series resistance. The curve through the points of the inverted V's includes sheet resistance losses. The curve through the inside edge of the V's includes the voltage drop through the ohmic contact resistance, blockage of light by the metallization, and loss of current in the junction under the metallization. The curve drawn inside the set of 10 bunched curved lines is the terminal I-V curve. It includes losses due to the resistance of the grid contact metallization. The maximum power point is at the point where the lines are most closely bunched together.

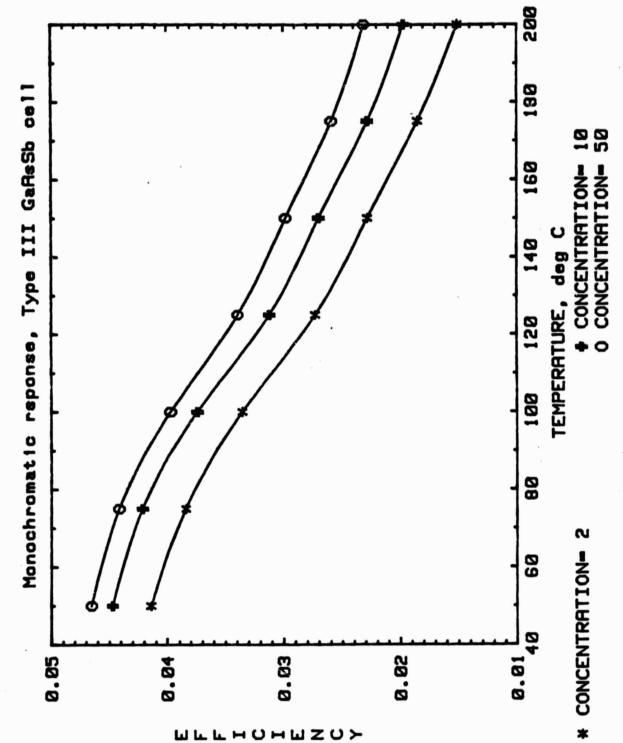


FIGURE 11

3.0 TASK III - SOLAR CELL MANUFACTURING AND COST PROJECTIONS

3.1 Multijunction Solar Cell Manufacturing Processes

Multijunction solar cell manufacturing can be divided into four major component process areas as shown in Table VI. Each of these areas influences the performance and cost of the cells. High volume, commercial equipment is available for many processes; however, several processes, such as epitaxial growth and packaging, require in-housedesigned equipment to meet specific cell design and system requirements. The cells are processed in wafer form until step 12 where they are cut into individual cells. This process would be used if cells were processed today; however, various improvements will undoubtedly be introduced by 1990. The following discussion will describe several of the most important processes.

3.1.1 GaAs Substrate Preparation

In this cost study, we will consider the epitaxial multijunction stack to be lattice matched or lattice-constant graded to a GaAs substrate. Single crystal GaAs substrates of the size required are available from either liquid encapsulation Czochralski (LEC) or horizontal Bridgmen growth. Varian grows high quality LEC ingots 2.5 inches in diameter weighing 1.5 kgm. It is very likely that ingots at least 3 incres in diameter weighing 4-5 kgm will be available by 1990. Rectangular ingots are being grown by horizontal Bridgmen which can supply wafers that are 1.25 inches x 1.75 inches, and this size will also be significantly increased by 1990. Polycrystalline GaAs, which

TABLE VI

SOLAR CELL MANUFACTURING PROCESS FLOW

I. GAAS SUBSTRATE PREPARATION

- 1. Polycrystalline GaAs Growth
- 2. Single Crystal GaAs Growth
- 3. Slice into GaAs Substrates and Polish

II. ACTIVE LAYER EPITAXIAL GROWTH

4. Organometallic Vapor Phase Growth

III. CELL FABRICATION

- 5. SiO₂ Deposition
- 6. Front Contact Photolithography
- 7. Front Contact Metal Evaporation
- 8. Front Contact Metal Lift
- 9. Back Contact Evaporation
- 10. Front and Back Contact Alloy
- 11. Plate Front Contact
- 12. Cut Wafer into Individual Cells
- 13. Etch to Remove SiO₂ and GaAs Contact Layer
- 14. Deposit Antireflection Coating
- 15. Test at One Sun

IV. CELL PACKAGING

- 16. Solder Solar Cell to Baseplate
- 17. Solder Interconnect Metal to Solar Cell Front Contact and Baseplate
- 18. Test at Concentration
- 19. Attach Cover Glass with Transparent Adhesive
- 20. Test at Concentration

contains the n-type dopant (Sn, Te, etc.), is used as the starting material for both of these growth techniques.

Single crystal GaAs ingots are sliced on a multiblade saw into wafers .020 inch thick. The wafers are then lapped and chemically-mechanically polished to remove saw damage and provide flat, smooth, damage-free surfaces required for high yield epitaxial growth. Final wafer thickness is .016 inches. This will also be very nearly the thickness of the multijunction solar cell. Because they are large-area devices, GaAs cells are susceptible to breakage during processing. It would probably not be cost effective to produce thinner cells because of reduced yield. However, the possibility of reducing the thickness to .010-.012 inches would be investigated during early stages of production to determine the exact yield and net cost effect.

3.1.2 Solar Cell Active Layer Epitaxial Growth

In the organometallic vapor phase epitaxy process, the wafers are placed on a susceptor which is heated, and H₂ gas containing various organometallic compounds, hydrides such as AsH₃, and dopant gases are passed over the wafers. Chemical reactions result in deposition of the active layers on the wafer surface. It is a continuous process in which the compositions of the various layers are determined by the chemical inputs to the gas transport system. The organometallic process can employ larger reactors than are presently used, can handle a variety of wafer sizes, and give smooth wafer surfaces which are important for photolithography during cell fabrication. The main challenge with organometallic growth is to control material

properties to meet the desired cell efficiencies.

3.1.3 Solar Cell Fabrication ,

Following active layer growth, the wafers are metallized, cut into individual cells, covered with the antireflection coating, and tested at one sun for acceptable performance. Most of these processes use costeffective, high-volume, semiconductor industry equipment. The processes must be carefully controlled in order to obtain high yields. A low specific contact resistance is essential for high cell efficiency, and this property is monitored during fabrication.

The AR coating will most likely be either Si_3N_4 or TiO_2 . Si_3N_4 is currently used and is deposited by a plasma deposition process. TiO_2 has been developed experimentally as an AR coating and will probably be available by 1990 for production if required.

3.1.4 Solar Cell Packaging

The cell packaging procedure consists of attaching the cell to a cell support structure (baseplate) and interconnect metallization and installing a cover glass. The GaAs cell is soldered to a baseplate which provides solder connections to the front and back cell contacts. The cell baseplate can then be mounted to the array by either a solder or mechanical connection. This baseplate could be made part of the array structure so that it would not add extra weight. The baseplate could be metallized alumina approximately .020 inch thick and rectangular in shape so it could easily insert into a pattern of open matching spaces

containing the overall system interconnect metallization. The cell would be soldered to the baseplate using vacuum solder, and a metal leadframe interconnect could be soldered from the front contact of the cell to the baseplate in the same manner.

A cover glass for radiation protection would be attached to the schered GaAs cell using a spaceapproved transparent adhesive such as Dow Corning 93-500. III-V solar cells appear to be more resistant to radiation damage than silicon cells and could probably use a .004 inch thick MgF, or blue-red-coated ceria-doped microsheet cover for light weight. This gives excellent transmission and perhaps 0.5-1.5% power enhancement when bonded to the GaAs cell AR coating of TiO2. An alternate cover to be tried would be .006-.012 inch thick fused silica with antireflection and UV rejection coatings. The expected transmission is the same; however, this is a thicker cover which adds weight. A blue-red coating which would reflect most of the IR above 1.0 µm would be very useful for heat rejection in this high concentration system. Reduced heat transfer through the cell would simplify attachment of the cell to the array.

The cell-baseplate assembly would be tested at concentration to select those units for glass covers and tested again after cover attachment. This should result in a high yield of good cells attached to the array.

3.2 Projected Solar Cell Costs

III-V solar cell costs are presently very high because the cell technology is still undergoing considerable

development and high volume facilities do not exist at this time. Future costs will depend largely on the extent of engineering efforts given to III-V and the volume of cells required. Extensive engineering programs can develop highvolume processes in all areas -- materials, fabrication and packaging. In addition, progress on volume production by 1990 of GaAs integrated circuits and optoelectronic devices will have significant impact on some of the costs, such as substrates and quite possibly epitaxial growth. Government and private funding for terrestrial GaAs cells could have a large impact as well.

The major areas requiring development to lower solar cell costs for large power arrays are epitaxial material and packaging components and technology. Considerable commercial equipment already exists for fabrication, yet largely remains to be developed for materials and packaging. High-volume fabrication equipment will also continually be developed for the general semiconductor market. The major focus in fabrication should be aimed at high-yield processes using existing equipment. As these processes are more clearly defined, any high-volume fabrication equipment not available can be developed.

Low-cost solar cell wafers, including substrate and epitaxial layers, are absolutely essential for low-cost cells. This is important as it relates to the basic cost of materials as well as fabrication costs, which are greatly reduced by processing large wafers containing numerous cells per wafer. Bulk GaAs ingots of 3" diameter and 5-10 kgm will be required for low-cost substrates. Organometallic epitaxial growth will need multiwafer run

capability, with fast turnaround time. The amount of material required for sizable cell power production will be very large. For example, the production of 4 MW/year would require ~1 million in² of epitaxial wafers. It is obvious that high-volume processes are required to handle these quantities of wafers at reasonable labor and capital equipment costs.

Packaging costs can be a significant percentage of the total costs. Not only can package components be expensive, but they can critically affect yield, initial performance, and reliability of solar cells, all of which can have sizable cost implications if not carefully considered. Packaging materials and fabrication techniques for these materials determine the package component costs.

The potential for obtaining low-cost solar cells can be demonstrated by comparison to a very similar industry -namely, optoelectronics for LED devices. The optoelectronics industry has clearly shown that GaAs and related compounds (GaAsP, CaP) can be greatly cost-reduced through volume processing of the materials. In addition, the optoelectronics industry has shown that materials (substrates and epitaxial growth) and packaging are the dominant cost factors. The optoelectronics GaAsP processes are quite similar to solar cells in kind and only differ in specific details. Both require GaAs substrates, epitaxial growth, fabrication of metallized devices, testing of unpackaged devices, packaging and final test. The yield and cost considerations for solar cells will be very similar to optoelectronics devices. We have compared our basic cost estimate, where possible, to available costs from the LED industry and found them con-

sistent. If the market develops as expected, the costs will be achievable. These costs also assume a continuous market for GaAs cells and an 80% learning curve as volume increases.

Cost projections are based on a method used for calculating terrestrial cell costs and adding 30% for special costs related to space cells. These special costs cover additional documentation and quality control tests required for space cells. The packaged cell costs also incorporate cover glass quotes and associated assembly costs from two potential vendors. Aside from these two considerations, cost estimates are similar to those done for terrestrial cells.

For this contract, the following specific assumptions are used:

- 1. Concentration ratios of 50 and 100
- 2. Operating temperature of 150°C
- 3. Theoretical efficiency of 22.5%, although there will probably be a 1% difference in efficiency from 50-100 suns. This was not considered.
- 4. Average actual power output at 90% of theoretical
- 5. AMO solar power of 1.353 kW/M²
- Cell size. This was not specified, but individual cells might be on the order of 1.5 cm x 3 cm.
- 15% of cell covered by busbar metal for contact to package components.
- Loss of 10% of the epitaxial material due to wafer edges not usable as part of a cell.
- Overall cumulative yield of 60.5% of assembled good cells out of potential cells obtainable from wafers entering the epitaxial process.
- Cell costs at selling prices to array manufacturer from an outside supplier.

11. 1980 \$ values.

From these assumptions and terrestrial cell cost projections, cost curves were generated as a function of cumulative cell production for packaged cells at 50x and 100x concentration ratios. The packaged cell cost includes all soldering operations and cover glass attachment required for a unit which could be mounted to an array. These projections follow an 80% learning curve. These curves are shown in Fig. 12 for cumulative power levels from 1 to 1000 MW. The upper curves for both concentration ratios assume technology and material costs similar to today's optoelectronic industry. The lower curves assume a 50% reduction in these costs. For example, present wafer sizes are small (2-3 in²) compared to those obtained from potential 3" diameter ingots (7 in^2) . Similar improvements in epitaxial, fabrication, and packaging throughput could bring about lower costs.

Several conclusions may be made from these curves and discussion:

- 1. Costs in \$/Wp (Wp = peak watt) at high-power volumes can be greatly reduced from present space solar cell costs.
- Higher concentration ratios strongly lower cost due to the high cost of GaAs material and packaging materials such as cover glasses.
- 3. Volume has a strong impact both from the standpoint of the learning curve as well as technology breakthroughs which occur for sizable markets.

 To meet these costs, all areas of solar cell development will need strong support, but materials and packaging in particular.

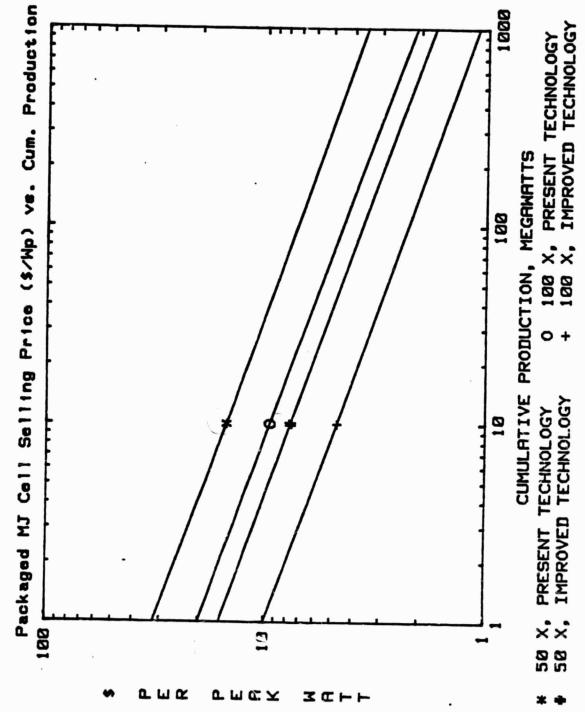


FIGURE 12

REFERENCES

- K. Bachmann, et. al., "Melt and Solution Growth of Bulk Single Crystals of Quaternary III-V Alloys," Prog. Crystal Growth Charact. <u>2</u>, 171-206 (1979).
- L. James et. al., "High Performance GaAs Photovoltaic Cells for Concentrator Applications", Final Report, Sandia Contract No. 05-4413 (1977).
- J. H. Heinbockel, et. al., "Simultaneous Radiation Damage and Annealing of GaAs Solar Cells", Proc. 14th IEEE Photovoltaic Specialists' Conf., San Diego (1980).

REFERENCES

- 1. Pleasant, R. L., "Analysis and Optimization of Radiator Systems for Large Heat-Generating Spacecraft," Convair Report CASD-ERR-78-031, December 1978.
- Chi, S. W., "Introduction to Heat Pipe Theory: An Instruction Manual," School of Engineering and Applied Science, The George Washington University, Washington, D.C., October 1971.
- 3. Pleasant, R. L., "Upper Stage Avionics Thermal Control," Convair Report CASD-ERR-76-039, December 1976.
- 4. O'Neill, R. F., et al, "A Numerical Procedure for Solution of Radiation and Convection Fin Heat Transfer Problems, Computer Program P5399," Convair Report No. GDCA-P^ 271-001, August 1971.