NASA Technical Paper 1946
 AVRADCOM Technical Report 80-C-21

December 4981

Computer Program for Aerodynamic and Blading Design of Multistage Axial-Flow Compressors

James E. Crouse and William T. Gorrell

1

NASA
Technical
Paper 1946
AVRADCOM
Technical Report 80-C-21

1981

Computer Program for Aerodynamic and Blading Design of Multistage Axial-Flow Compressors

James E. Crouse
I.mon Research Center
Clereland. Ohto
William I: Gorrell
Propulitom I.aboratory
ITRADCOM Reseurch and Techolegy I aboratormes
1 imes Rexarch Cemer
(ilereland. ohno

Mnsn

Scientific and Technical Information Branch

preceding page blank not filmed

Contents

Page
Summary 1
Introduction 1
Compressor Design Procedures 2
Input Initialization 2
General Information 2
Calculation Station Data Sets 3
Initialization 5
Iteration. 6
Aerodynamic Design 6
Blade Design 8
Terminal Calculations and Output 9
User Information 10
Appendix
A-Symbols 15
B-Input Parameters for Compressor Design Program 16
C-Development of Equations of Motion into Form Used in Computer Pro 27
D-Conic Coordinates of Blade Centerline Path 32
References 38

Summary

A code for computing the aerodynamic design of a multistage axial-ilow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. Blading is defined from stacked blade elements associated with the selected streamlines. The blade element inlet and outlet angles are established through empirizal incidence and deviation angle adjustments to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each segment can be specified with a fourih-degree polynomial function of path distance. Blade element thickness also can be specified with fourth-degree polynomial functions of path distance from the maximum thickness point.

Steady axisymmetric flow is assumed; so the aerodynamic problem can be reduced to solving the no-dimensional flow field in the meridional plane. Because the equations of motion as developed herein are only applicable for calculation stations outside the blade rows, stations at the blade edges, but not inside the blade rows, are used. The streamline curvature method is used for the iterative aerodynamic solution. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. Thus the design velocity diagrams can be located at the blade edges.

The program input includes the annulus profile, the overall compressor mass tlow, the pressure ratio, and the rotative speed. A number of parameters are input to specify and control the blade row acrodynamics and geometry. There are numerous options controlling the way information is input and for specifying the amount of output. The output from the aerodynamic solution has an overall blade row and compressor performance summary followed by blade element parameters for the individual blade rows. If desired, blade coordinates in the streamwise direction for internal flow analysis codes and or coordinates on plane sections through blades for tabrication drawings can be printed and puncied.

Introduction

The axial-flow compressor is used tor aircraft engimes hecamse it has distinct configuration and
performance advantages over other compressor types, but the good potential performance is not easily attained The problem ard challenge to the designer is to model the actual flows well enough to adequately predict aerodynamic performance. Progress is continually being made with codes for computing the complex three-dimensional flows in turbomachinery. However, it is extremely difficult to design mechaniçally acceptable turbomachinery blading by using the direct approach (i.e., specifying inviscid blade surface velocities and computing the blade geometry). Consequently, the more detailed codes are generally used in the analysis mode; that is, the flow field is calculated fur a fixed geometry. The current procedure is to establish blading geometry with simpler design codes and then to use the more detailed analysis codes in blade rows where troublesome flow conditions are likely to exist. In this way prototype designs can often be adjusted before hardware is built and tested.

The time and effort needed to get acceptable configurations can be reduced if the design code can be made to yield a good initial solution and if the design and analysis codes can be made more compatible with one another. This compatibility can be achieved (1) if the output from a design code can be directly used by flow and mechanical analysis codes and (2) if corrective adjustments indicated by the analysis codes can effectively be made in the design code. With hese objectives in mind a compesite aerodynamic and thade design code for axial-flow compressors has been developed. The code and its capabilities are the subjects of this report.

The aerodynamic solution assumes steady, axisymmetric flow and uses a streamline curvature method for calculation stations ouside the blade rows. The program is structured so that the empirical correlations (such as those for loss, deviation angle, and incidence angle) can readily be changed when the need or desire exists. The method of descrioing blading is a compromise between the vast ariount of inpur needed for completely general blade elements and the restrictions of simple hapes. A blade element is defined on a conic surface with thickness applied to a centerline that is composed of two segments tangentially joined at a transition point. The blade angle function of each segment can be defined with a fourth-degree polynomial. Thickness is prescribed by first specifying a maximum thickness value and location. The distribution of thickness in each direction from the maximum thickness location is then presoribed with a fourth degree poivnomial. Finally each polynomial coefficient is defined across
blade elements with a third-degree polynomial function of annalus height.

Compressor Design Procedures

The discussion of the compressor design procedures is organized according to usage in the computer program; so for better orientation an operational overview of the program is given tirst (table 1). The computer program can be divided into three major phases of calculation: (1) the input and initialization phase, (2) the iteration phase, and (3) the terminal calculation phase. In the input and initialization phase the inpur data are read and interpreted, the calculation stations are located with estimated values for the blade edges, and streamlines are located on the basis of annulus area. Estimates of stagnation temperature and pressure and axial and tangential velocity components are also made for all calculation points in the flow field.

The iteration phase includes both the flow field and the blade design iterations. In the flow field iteration the equations of motion are satisfied in the meridional ($r-z$) plane for stations that are lines across the flow annulus. At the stations the equations of motion and overall flow continuity are satisfied with fixed values of streamline slope and curvature for a complete computational pass across the annulus. After the overall flow continuity condition at a calculation station is satisfied, the internal streamline intersections with the station lines are updated by solving for the locations that give specified fractions of overall station weight flow. At the completion of a pass through all the calculation stations in the annulus, the new streamline locations are curve fit for new streamline slope and curvature values.

To insure proper location of the blade edge stations, most of the blade design iteration is made concurrent with the flow field iteration. This operation includes the calculation of incidence and
deviation angles, the layout and stacking of blade elements, and the realigument of the elements.

The terminal calculation phase performs the final calculations and generates the output. Mass-averaged parameters for the individual and cumulative compressor blade rows are computed and printed first. Then tabulated values of aerodynamic and blading parameters along the station lines are computed and printed. Finally blade section coordinates and other sectoon mechanical properties can be computed and printed if desired.

The program is discussed in greater detail in the following subsections.

Input and Initialization

The basic computational plane is the meriodional ($r-z$) plane of a cylindrical coordinate system. A graphic view of an example compressor configuration is shown in figure 1 . The hub and tip casing walls are fixed input. Calculation stations are located at the blade row leading and trailing edges and at other annular locations for the purpose of locating streamlines. The input data can be classified into two groups: general information and calculation station and blade row information. The input parameters and options, along with the input data format, are described in appendix B. (All mathematical symbols are defined in appendix A.) Additionai advice on how to set up the input is given in the section User Information.

General Information

All the general information is read in first. Included are the following:
(1) Compressor rotational speed
(2) Inlet thow rate
(3) Desired compresior pressure ratio
(4) Gas molecular weight
(5) Number of streamlines

[^0](6) Number of blade rows
(7) Number of annular stations
(8) Coefficients for c_{p} as ε fifth-degree polynomial function of temperature
(9) Far upstream values of total temperature, total pressure, and inlet tangential velocity for each streamline
(10) Stre:amtube mass flow fractions between streamlines
(11) Sets of points to define tip and hub casing contours
(12) Sets of blade element profile loss parameters that are tabulated as functions of blade element loading parameter and fraction of passage height

As many as five loss sets can be input. The particular loss set used for a given blade row is designated in the blade row input. Usually at least two loss sets are input -one for rotors and another for stators.

Calculation Station Data Sets

The data sets that contain information about the calculation stations and blade rows are read in order from annulus inlet to outiet. The first card of the data set identifies the type of station, the tip and hub axial locations, the tip and hub boundary layer blockage factors and the station mass flow bleed. For annular stations the single card is the whole data sit. For rotors and stators several cards are used to describe (1) the blade row inlet and outlet station information, (2) the blade row aerodynamic parameter input and controls, and (3) the parameters defining blade geometry. A blade and the associated edge calculation stations are located in the annulus by using a reference blade element stacking line. Stacking axis tip and hub axial locations and lean angle in the circumferential direction are input.

The locations of the calculation stations at the blade edges are at first approximated from some of the input blade geometry information. The station locations are moved during later iterations when the blade elements are defined and stacked. However, the input tip and hub boundary layer blockages and mass flow bleeds for the inlet and outlet stations are constant.

Aerodynamic parameter input and controls. - The blade aerodynamic design is controlled with several parameters that impose the necessary and sufficient conditions for a solution. The options as to how such conditions can be imposed are shown in table II. For rotors the most convenient option is to specify the stage energy addition as a cumulative fraction of the overall compressor energy addition. With this option the radial distribution of energy addition is not input directly but is imposed through a normalized rotor exit stagnation pressure profile that is expressed as a
polynomial function of annulus height in the radial direction. The pressure level is computed internally to the program from the energy input level and the computed losses. With the other rotor options the exit temperature profile is input instead of the energy addition fraction being specified. For either a rotor or stator, stagnation pressure profiles can be input instead of the losses being computed interral to the program. These options can be usefal to users who have existing aerodynamic designs but want to use this program for blade description and fabrication soordinates.

At a stator exit a tangential velocity profile is input as a polynomial function of radius. Unless specified, the stator outlet pressure profile is determined from stator losses and streamline mixing effects from the upstream station.

There are some input aerodynamic limits that the program will not allow the excer' f. For a rotor the limiting parameter: e tip diff....on factor and absolute flow angle it the hub. The stator aerodynamic limits are diffusion factor and inlet Mach number at the hub. If an aerodynamic limit is exceeded during iteration, the stage energy addition is lowered by the amount needed to get the aerodynamic limit within bounds. If any other stage is not up to one of the aerodynamic limits, the energy decrement is made up among such stages. If all the stages reach an aerodynar ic limit, the input overali compressor pressure ratic is lowered.

The blade angles are related to fluid flow angles along streamlines by two key correction parameters-incidence angle at the inlet and deviation angle at the outlet (fig. 2). There are several options for specifying za:h. Two of the options for both the incidence and deviation angles are the twoand three-dimensional methods of reference 1 . The other incidence angle option is user-entered tabular

Higure 2-Blade element incidence and deviation angles.
data referenced to either the centerline or the suctionsurface blade angles at the inlet. Other deviation options are user-entered tabular data and a version of Carter's rule, which was modified to account for centerline shapes other than a circular arc. The modification is shown in figure 3.

Another input aerodynamic parameter is the minimum blade choke margin $\left(A / A^{*}\right)-1$, where A is the local streamtube cascade channel area and A^{*} is the corresponding area needed for cheiked flow. The A^{*} value is the area needed to pass the streamtube flow at a relative Mach number of 1.0 . The effects of losses in all blade rows and energy addition in rotors are included in the computation of A^{*}. Choke margin depends on the flow conditions and geometry defining the channel area. If insufficient choke margin exists in a prototype design, some compromise must be madt in either the aerodynamic requirements or the geometry. Minor choke margin deficiencies can usually be accommodated with adjustments in geometry. Logical procedures for geometry adjustments are not obvious; however, if the minimum margin occurs at the channel entrance, increased incidence is an effective method of relief. If a minimum desired choke margin is input, the program will adjust incidence angle up to $+2^{\circ}$ to the leading-edge suction surface in order to attain the specified choke margin if the channel entrance is the problem. When the minimum margin occurs at other locations in the channel, the minimum value and its location are printed in the output and it is up to the user to decide if he wants to make compromises to improve the choke margin.

$$
\begin{aligned}
& \text { ath : xation at abe ele"pen: 7aximu: amber pomet. }
\end{aligned}
$$

Blade geometry parameters.-A number of blade geometry parameters are input for the pupose of defining a blade. Blade chord is defined along flow streamlines, but for the purpose of this blade definition a radial projection of streamline chord is specified because it is more meaningful for defining a structurally sound configuration. The radially projected chord is defined from the number of blades, the tip solidity, and a normalized polynomial for the radial variation of chord. The blade is basically defined from a stacked series of gradually changing airfoil shapes or "blade elements" in the radial direction.

Each blade element, as shown in figure 4, is defined from a thickness distribution applied to a two-segment centerline. The variation of the local centerline angles κ with path distance can be specified by option through the parameter IDEF(IROW). If IDEF(IROW) equals zero, the κ for each segment varies linearly with path distance (as a circular arc). When IDEF(IROW) does not equal zero, the κ for each segment is expressed as a fourth-degree polynomial function of path distance. The blade angle is continuous at the transition point, but the rate at which the angle changes with distance (curvature) can be discontinuous. The ratio of curvature for the first segment to that for the second segment is defined as the turning rate ratio. When the blade local centerline angle κ is specified by polynomial coefficients, the turning rate ratio is controlled by the relative magnitudes of the linear term coeificients of the polynomials for each segment. However, when the segments are treated

[^1]simply as circular arcs, the turning rate ratio is a blade element input parameter.
When IDEF(IROW) equals zero, there are some options for specifying the turning rate ratio at the transition point. With the CIRCULAR option the value is set at 1.0 , as for a circular arc blade element, for all blade elements in the blade row. With the TABULAR option a table of values for the elements is read. With the OPTIMUM option a value will be set by an empirical function of inlet relative Mach number. For this option the blade element will be a circular arc below a relative Mach number of 0.8 . As relative Mach number increases, the ratio of first- to second-segment turning rate at the transition pount is reduced. A limit of zero camber on the suction surface of the first segment is app. yached at an inlet relative Mach number of about 1.60 .

The coefficients for the centerline polynomial (i.e., when IDEF (IROW) $\neq 0$) are input as a cubic function of hlade span. There are two reasons for this method of specification. First, the user is more confident of specifying a relatively smooth blade surface; and second, the amount of input is reduced over that required by individual coefficients for as many as 11 blade elements.

Blade element surface definition begins with three anchor points from the centerline. These points are a maximum thickness point and the two end points. A maximum thickness value normalized by chord and its location as a fraction of chord are input. At the maximum thickness point the normal-to-centerline distance to each surface is one-half the maximum thickness, and the surface κ angles are equal to the centerline к.
At the blade element ends the leading- and trailingedge end circle radii normalized to chord are input. If IDEF(IROW) does not equal zero, the end configuations are ellipses with semimajor axes tangent to the local centerline. For this case the input end circle radius is used as the minimum radius value of the ellipse. For each ellipse cne other parameter is input io specify elongation. The parameter is $e=(b / a)-1$, were b and a are the semimajor and semiminor axes, respectively. Note that as e approaches zero, the ellipse approaches a circle with the input radius.

A surface definition criterion is that the surface curve join the end circles or allipses at a point of targency. When IDEF(IROW) equals zero, the surface curves are defined with κ being a linear function of path distance for each segment. As explained in reference 2, necessary and sufficient conditions exist to completely define the surfaces when the computation is begun on the segment where the maximum thickness occurs.

When IDEF(IROW) dives not equal zero, the blade
surfaces for each segment are defined by polynomial distributions of the normal-to-centerline distance. The functional relation for this distance is
$t=\frac{t_{m}}{2}-a \vee S_{o}+a \vee S-S_{o}+\frac{a S}{2 \sqrt{S_{o}}}-b S^{2}-c S^{3}-d S^{4}$
where S is the centerline distance (normalized by chord) from the maximum thickness point. Values of S are positive in either direction from the maximum thickness point; and S_{o} is the maximum S, which is the distance to the point where the end ellipse intersects the centerline (fig. 4).

There are two other input parameters for blade rows. One is a material density for rotors. If a nonzero value is input for a rotor, the stacked blade will lean in both the meridional and the $r-\theta$ planes so that the centrifugal force on a blade with the input material density will balance the aerodynamic forces at the design point. The objective is to minimize the blade root stress. With atmospheric air as the working fluid, the lean is normally only a fraction of a degree.

The final input parameter, NXCUT, controls the number and location of planes through a blade row for which fabrication coordinates are desired. If the parameter is zero, the program will set the number of XCUT's on the basis of aspect ratio, which is the ratio of overall radial to axial blade lengths. For positive parameter input values the program will determine appropriate locations for that number of planes to represent the blade. Negative parameter values trigger an option to read cards for the XCUT plane values. The number of input values expected for a blade row is the absolute value of the negative parameter.

initialization

Once the input is read, a number of initialization calculations are made in subroutine START in preparation for the iterative phase of computation. The axial locations of the blade edges are approximated and the intersections of all station lines with the casing walls are determined. Checks are made to be certain that the spacing of calculation stations is appropriate. Annular stations will be shifted by the program if calculation stations cross one another or if adjacent spacing is less than 30 percent of the spacing of neighboring stations.

Streamlines are initially positioned by applying the input stream-tube weight flow fractions to the annulus area. From the input data the circumferential component of velocity and the stagnation temperature and pressure are
approximated for all streamlines at all calculation velations throughout the flow fieid. Finally an axial velocity is computed for each station by using meanline values in a continuity calculation at the
station.

Iteration

The general objective of the program is to obtain both an aerodynamic solution and a blade design. Both are achieved with iterative procedures. The aerodynamic design has the greater sensitivity, and it requires more iterations. The program is set up to do the aerodynamic and blade design iterations concurrently. However, the blade design is done less frequently and lags the aerodynamic iteration. The first blade design iteration occurs on the fourth aerodynamic iteration, and the final blade design printed.

Aerodynamic Design

The aerodynamic design solution establishes complete velocity diagrams and fluid state properties on streamlines at the blade row inlet and exit. A bilevel iteration is used to arrive at the soluticn. In the outei loop the variables are stagnation temperature and pressure; the tangential component of velocity; and the streamline location, slope, and curvature. The inner loop is the station flow continuity calculation in which the axial component of velocity is the variable and the outer loop parameters are held fixed. An example flow field with typical placement of calculation stations is Oun in figure 1.
Outer loop. - In the program the control routine for the outer loop is VDIAG. The basic procedure is station marching from inlet to outlet with streamline parameters fixed. Only after a pass through all the stations are the strcamlines relocated from the current flow solution. Normally between 10 and 20 of the cycles are needed to converge to a solution.
The major part of the blade design is also controlled in the outer loop. When a blade design iteration is made, the blade edge station locations are moved to the new blade edge locations.
The tangential velocity and the stagnation temperature and pressure at a station are determined as changes from values of the preceding station on the partic ilar streamline. For annular stations and blade ro 'n's the tangential velocity is determined the product , vation of angular momentum; that is, the same along streand tangential velocity remains Stagnation temperature and pressure the blade rows.
conserved along streamlines outside the blade rows except for mixing effects from turbulence and secondary flows. The stagnation pressure distribution is input behind the rotors; so pressure gradients are reasonably well controlled in the design process without using empirical mixing terms.

In the design process the rotor energy addition must cover nonproductive losses in addition to producing a desired pressure. With the usual input options, losses are computed internal to the program. Normally there is a significant radial gradient of loss; so there is also a radial gradient of work. The stagnation temperature increase along a streamline is work. Work; so temperature gradients are generated are basically gradients through compressor stages grow very large. reduce this effect somewheal flows in compressors least partially account with fluid mixing. To at empirical manner, a mixing fluid mixing in an used in the program mixing term for temperature is is held constant at a sta mass average temperature values outside the blade rows but specific streamline previous station values by equation modified from the

$$
\begin{equation*}
\left(\frac{d T}{d r}\right)_{I}=\left(\frac{d T}{d r}\right)_{I-1} \exp \left\{-0.002\left(\frac{d T}{d r}\right)_{I-1}(\Delta z)\right\} \tag{1}
\end{equation*}
$$

where Δz is the axial distance between the adjacent stations. Future adjustments in this functional relation are probable as data from multistage compressors become available.

Stagnation temperature and pressure values are the most difficult to set at blade row exits. This is mainly because of the complex real flow effects through a blade row that must be represented either through theoretical models of loss or by empirical correlations. Representation of losses is, of course, one of the major problems for an aerodynamic solution. In this program the losses are represented by two additive components: shock losses, and all other losses.
The shock losses are a modification of those given in reference 3. This reference, in essence, gives the shock loss associated with a normal shock with an approach Mach number enuai io the average relative Mach number: at the suction and pressure surfaces of the blade at the normal shock. The suction-surface Mach number at the shock is determined by PrandtlMeyer turning from the inlet.

Unless the flow is in the $\mathrm{l} \%$ transonic range, a normal shock cannot be maintained in a blade channel. Either the shock is oblique or it develops a
foot at the blade surface because the boundary layer cannot sustain the sudden static pressure rise. In either case the shock losses are less than those predicted by a normal shock. To empirically account for these effects, the computed normal shock loss is reduced by dividing by the average iniet relative Mach number squared.

All the other blade row losses-profile, secondary, etc.-are represented by a correlation with fraction of passage height and aerodynamic blade loading. The values for such a correlation are input in tabular form. The aerodynamic blade loading parameter in the table is the diffusion factor of reference 1 . In equation form it is
$D=1-\frac{V_{2}^{\prime}}{V_{1}^{\prime}}+\frac{\Delta\left(r V_{\theta}\right)}{\sigma\left(r_{1}+r_{2}\right) V_{1}^{\prime}}$
The loss parameter in the table is

$$
\begin{equation*}
\frac{\omega \cos \beta_{2}^{\prime}}{2 \sigma} \tag{3}
\end{equation*}
$$

where ω is the loss coefficien: .

$$
\begin{equation*}
\omega=\frac{P_{2}^{\prime}-P_{2}^{\prime}}{P_{1}^{\prime}-P_{1}} \tag{4}
\end{equation*}
$$

The rotor exit tangential velocity is calculated directly from the Euler equation

$$
\begin{equation*}
H_{2}-H_{1}=\int_{T_{1}}^{T_{2}} c_{p} d t=U_{2} \mathrm{~V}_{\theta_{2}}-\dot{U} V_{\theta_{1}} \tag{5}
\end{equation*}
$$

Note that the enthalpy change is evaluated by using an integral for the calorically nonperfect gas; that is, c_{p} is a function of temperature. All state processes in the program use thermally perfect, but calorically nonperfect, gas relations; so integrations and in some cases iterations are used in several small function routines.

Inner loop. - The basis function of the inner loop is to determine the axial velocity profile at the calculation station. The axial velocity level is set by flow sentinuity, and the distribution is controlled by the radial equation of motion. The differential equation is developed in appendix C. The form used in the program is

$$
\begin{aligned}
& V_{m} \frac{d V_{m}}{d l}=\left(\frac{T-t}{T}\right) \frac{d H}{d l} \\
& \quad+R t \frac{d \ln P}{a l}-V_{\theta} \frac{d\left(r V_{\theta}\right)}{r d l}
\end{aligned}
$$

$$
\begin{equation*}
+V_{m} \frac{\partial V_{m}}{\partial m} \sin (\alpha+\lambda)+\frac{V_{m}^{2}}{R_{m}} \cos (\alpha+\lambda) \tag{6}
\end{equation*}
$$

with

$$
\begin{align*}
& \frac{\partial V_{m}}{\partial m}=\frac{V_{m}}{M_{m}^{2}-1} \\
& \quad\left[\frac{M_{\theta}^{2}+1}{r} \sin \alpha+\frac{d \alpha}{d l} \sec (\alpha+\lambda)-\frac{\tan (\alpha+\lambda)}{R_{m}}\right] \tag{7}
\end{align*}
$$

A velocity gradient procedure is used to construct the axial velocity profile from the tip to the hub with the stagnation state values, the streamline characteristics, and the tangential component of velocity held fixed. Since this inner loop of the program is used many times, some effort was made to evaluate its accuracy and efficiency for typical streamine spacing. Reasonably good accuracy and stability were found to result from a rather simple procedure. Let
$\frac{d V_{m}}{d l}=\frac{a}{V_{m}}+b V_{m}$
where
$a=\left(1-\frac{t}{T}\right) \frac{d H}{d i}+i R \frac{d \ln P}{d l}-V_{\theta} \frac{d\left(r V_{\theta}\right)}{d l}$
and

$$
\begin{align*}
b= & \frac{\cos (\alpha+\lambda)}{R_{m}}+\frac{\sin (\alpha+\lambda)}{M_{m}^{2}-1} \\
& \quad\left[\frac{M_{\theta}^{2}+1}{r} \sin \alpha+\frac{d \alpha}{d l} \sec (\alpha+\lambda)-\frac{\tan (\alpha+\lambda)}{R_{m}}\right] \tag{10}
\end{align*}
$$

With a and b constants for the l interval along the station path, the solution for V_{m} is

$$
\begin{equation*}
V_{m, j+1}^{2}=\left(\frac{a}{b}+V_{m, j}^{2}\right) \mathrm{e}^{2 b\left(-t_{0}\right)}-\frac{a}{b} \tag{11}
\end{equation*}
$$

A two-step procedure is used in the program. First a, b, and V_{m} values on the streamline j are used to aetermine a temporary $V_{m j+1}$. The a and b values are slightly dependent on V_{m} so $V_{m, j+1}$ is used to determine new a and b values. The second step uses the average of the old and new respective values of a and b to compute a final $V_{m, j+1}$ value. This $V_{m, j+1}$ 'alue will then be used as the current $V_{m, j}$ value for e next l interval.
When V_{m} values are set on all streamlines, flow continuity is checked by using dr integration of a piecewise cubic curve fit of $\rho V_{m} r$ values at the streamlines. If the integrated weight ilow is not within 0.01 percent of its snecitied value, the tip reference V_{m} is adjusied and the V_{m} profile is reconstructed. The method of adjusting the reference value of V_{m} is shown graphically in figure 5 . There are two solutions to the continuity equation in compressible flow-the subsonic and supersonic solutions. When a parabolic tit of trial solutions is used to get a new trial value of V_{m}, the lower or subsonic solution is always sought. The V_{m} adjustment between iterations usually is small; so convergence normally is achieved in three or four passes.

Once convergence is achieved, the profile is back integrated to find the fraction of weight flow points represented by the streamlines. These points are saved until the outer loop pass through all the stations is completed for the purpose of relocating streamlines.

Blade Design

A blade is defined from stacked blade elements. The procedure for laying out blade elements and stacking them for blade definition is given in detail in

reference 2. Only a summary description is given herein. A blade element is laid out on a cone with a center axis coincident with the turbomachine axis of rotation. The angle and location of the cone are fixed by the intersection of the streamline with the leadingand trailing-edge station lines of the blade (fig. 6).

The leading- and trailing-edge blade angles are related to aerodynamic flow angles primarily through two key correlation parameters-incidence angle and devidition angle. The user has some options for the specification of thes correlation parameters, as already discussed in the section on data input. Application of incidence and deviation angles to the flow angles at the blade edges gives blade angles in the local streamwise direction. Corrections to "cascade" deviation angle for a change in radius and axial velocity are made internally to the progrem. These corrections are presented in reference 4 to relate deviation angle to a cascade section with equivalent circulation rather than with the same camber angle.

Because the cone angle of the associated blade element is usually a little different from these local streamwise blade angles, corrections are made with current streamwise and radial direction derivatives. The blade elemeni ceading- and trailing-edge angles are calculated frem aerodynamic flow angles in subroutine BLADE.

Blade element layout. - There are several options for controlling the blade element layout (see the IDEF (IROW) parameter description in appendix B). With all but one of these options a blade element is described by a prescribed thickness applied to a prescribed centerline (fig. 4). The centerline is treated as two segments that are joined at the reference transition point. The rate of change of the local blade arigle with path distance, $\kappa=f(s)$ (fig. 4), is controlled by a fourth-degree polynomial for each segment. The coefficients for the polynomials are input, but they are scaled in the program to match blade element inlet and outlet angles. The fourth-degree polynomial

representation of segment biade angle represents greater specification freedom than does the linear specification of reference 2 , where the ratio of inlet-to-outlet segment curvature at the transition point is input rather than any polynomial coefficients. A summary derivation of the equations for the centerline coordinates is given in appendix D .
Blade element thickness is defined along a path that is locally normal to the centerline. The pressure and suction surfaces are equidistant from the centerline. Thickness is specified in both the forward and rearward directions from the maximum thickness point by polynomials of the form

$$
\begin{align*}
& \frac{i}{2}=\frac{t_{m}}{2}-a \sqrt{S_{o}}+a \sqrt{S_{o}-S}+\frac{a S}{2 \sqrt{S_{o}}} \\
&-b S^{2}-c S^{3}-d S^{4} \tag{12}
\end{align*}
$$

The input coefficient: are scaled to meet the lfadingand trailing-edge ellipses at the appropriate tangency points. The control routine for the blade element layout in the program is CONIC.

Blade element stacking.-The rotating parts of turbomachinery normilly operate at high stress levels because of high centrifugal ferce. The high centrifugal acceleration also causes stress from bending moments to be very sensitive to blade element location. Thus it behooves the designer, first, to be reasonably accurate in the stacking computation and, second, to try to minimize stresses that can be easily reduced-namely, those from the steady-state bending. The blade bending moments from aerodynamic forces can be counterbalanced by centrifugal force moments with slight blade lean in both the $(r-z)$ and $(r-\theta)$ planes.

The reference line for stacking purposes is a radial line through the hub stacking reference point (fig. 7). The sections used for stacking alignment are planes normal to this reference line in space. Such planes are used because their centers of area are essentially the centers of centrifugal force also. The stacking line is a line that can be leaned from the reference line at the hub reference point. For alignment purposes the planes pass through the stacking line intersection of blade elements (fig.). Blade sections are defined by interpolation across blade elements. When the section center of area does not match the stacking line, the corresponding blade element is translated and rotated on its cone for the stacking adjustment. Normally the adjustments decrease by about an order of magnitude for successive passes through the stacking procedure. For each pass the stacking axis lean angles in both the $(r-z)$ and ($r-\theta$) planes are

Figure 7. - Location of blade sections for ilade element stacking adjustments.
recomputed and adjusted if the stacking axis lean option is activated through the input data.

Terminal Calculations and Output

The program output of an example two-stage compressor is shown in table III. In general the output is printed shortly after its computation so that large arrays of data are not stored. Data are printed from eash of the major phases of computation-input, iteration, and terminal. The first information (table III (a)) is the input data, which are printed directly from input routines in very nearly the order in which the inpur was read.

The second major part of output (table III (b)), from the iterative phase of comp utation, is printed to help the user monitor the solution. Although these data have little value once the solution is converged, they are quite helpful in disclosing bad input and in finding sources of problems when solutions are not achieved.

For computational stability a station aspect ratio, defined as $\left(r_{t}-r_{h}\right) /\left(z_{I+1}-z_{l}\right)$, is limited to 7 for sireamline fits. When the limit is exceeded, particular stations (according to the priorities set forth in the section U'ser Information) are eliminated from the curve fits used to locate streamlines. The first data shown from the iteration phase are a table of such calculation station information (table II (b)). On the
left is a list of calculation station locations used to compute streamlines, along with the asociated aspect ratios. On the right is the input list of station locations and aspect ratios. When blade rovs are s:acked, the blade edge stations are relocated, and thus the station aspect ratios change. After the first stacking on iteration 4 , the station aspect rati: $;$ s are rechecked and changes in the station list are made if necessary.

Arrays of axial velocities throughout the flow field for each iteration are the bulk of the output printed from the iterative phase of computation. These data are useful for observing solution stability since the solution convergence criterion is based on changes of axial velocity between successive iterations. Some compressor overall parameters are shown above the velocity arrays. Parameters included are the overall values of input pressure (PR), current computed pressure ratio (CPR), enthalpy increase (DHC), and ideal enthalpy increase (DHI).
When the aerodynamic solution is converged, the overall parameters for individual blade rows and the overall cumulative values in the compressor are somputed and printed. Overall temperature and pressure values are calculated by mass averaging their equivalent enthalpy values. The cumulative forward axial thrust is the axial force exerted on the rotating shaft by aerodynamic forces from the hub inlet station of the first blade row to the local point. The thrust force shown for individual blade rows is the axial force on the shaft from the trailing edge of the upstream blade to the trailing edge of this blade row. Fince the blade forces on stationary blade rows act on the casing, the thrust value on the rotating shaft is simply the static pressure force on the tapered shaft in the forward axial direction. Effects of cavities below the hub flow path are not included since undetermined information about seal locations and pressure differences would be needed. The gas bending moments are values for a single blade. The bending moments are referenced to the stacking axis intersection with the flow path wall from which the blades are attached.

Sets of calcu'ation station data for streamlines across the channel follow the overall data. For all stations, velocity components, streamline slope and curvature, and both stagnation and static values of temperature and pressure are given. For stations at blade row edges, additional information is computed and printed. These parameters are (1) a compleie description of velocity triangles, (2) definition of blade ciemenis, (3) relations between aerodynamic and blade angles. (4) aerodynamic performance parameters, (5) streamline choke area margin, (6) local blade force intensity in pounds per radial inch on a blade, and (7) blade edge direction derivatives $r d \theta / d r$

Figure 8. - Coordinate system for blade section output data.

If the input options call for fabrication coordinates, they are printed after all the aerodynamic output. The coordinates are printed in tabular form with four sections on a page, as shown in table III(c). The length coordinate L is a distance along the chord line, with the most forward point being zero (fig. 8). The pressure- and suction-suriace height values H_{p} and H_{s}, respectively, are referenced from the chord line. Surface height values are given for at least 20 round-value increments of L ; also surface cocrdinates are given for three specific values of L-the blade trailing edge and the leading- and trailing-edgき ellipse tangency points with the surfaces.
A blade section's properties are shown above its table of coordinates (table III(c.)). The blade section radial location, the L and H stacking point values, and the section setting angle are given to locate and orient the blade section. The blade section center-ofarea coordinates, section area, minimum and maximum moments of inertia through the center area, orientation angle of the maximum moment of inertia with respect to the axial direction, section torsion constant, and twist stiffness are all useful information for design and stress analysis.

After all the fabrication coordinates for a given blade row are printed, the blade section coordinates are presented in another orientation that may be more useful for further flow analysis. With a stacking axis reference, coordinates for the same blade sections are given in the axial and tangential directions.

User Information

Since earlier sections of the report discuss the input, output, and main centers of program control, this discussion is directed at the user who is trying to get the program on his computer and to make it run efficiently. Some facts about the program as we!! as
some advice about the input are given.
The code, which is written in FORTR $\quad \mathrm{N}$, takes about 80,000 decimal words of computer storage. The call relation among the subroutines is shown graphically in figure 9. Note that the tickmarks on the routine boxes in the figure mean that there are other call lines to the routine. These lines are shown on the other part of the figure where the routine name is repeated. The program running time on either : Univac 1110 or an IBM 360-67 is about 2 minutes for a single-stage compressor and about 5 minutes for a five-stage compressor. Several of the key indices in COMMION/SCALAR/ are described in the following tabulation.

Index	Description
I	calculation station index after
	preliminary calculations are
	completed. The program is
	dimensioned for 30 calculation stations
	and 20 blade rows, of which only 10
	can be rotors. Each blade row accounts
	for two calculation stations-one at
	the leading edge of the blade and the
	other at the trailing edge. Rotors,
	stators, and annular calculation
	stations can be put together in any
	combination with the following
	constraints: The number of stations
	cannot exceed 50 . There must be at
	least four armular stations ahead of the
	first blade row and at least three
	annular stations tehind the last blade
IROTOR	rotor index
! ROW	blade row index
J	
	streamline index. Streamlines are

K loss set index for subroutine INPUT
As indicated in the table at least four annular stations are expected upstream of the first blade row and at least three downstream of the last blade row. Additional annular stations can be located between blade rows but not within blade rows; that is, not between the inlet and outlet stations of a given blade row.

Streamline intersections of station lines are determined by integrating velocity profiles at station lines to the specified mass flow frat!ions. Streamline slope and curvature are determined from streamwise
curve fits of these intersections. The consequence of this procedure is that the number of iterations .nd the program convergence characteristics are dependent on the calculation station location although the final solution, in general, is not very dependent on the location of the calculation stations.

The user can reduce the number of iterations and hence the program running time with good placement of calculation stations. The first calculation station should be placed upstream of the first blade row a distance at least equal to two or three annulus heights. The best far-upstream inlet condition is straight axial flow with no wall curvature. Less iterations are usually needed for more widely spaced calculation stations; however, enough iterations should be used to properly locate the streamlines. Calculation station spacing can vary somewnat along the annulus but, as a general guideline, successive station increments should not be changed more than 35 percent.

When calculation stations are input close together, only some of them will be used for locating the streamlines if the station aspect ratio is above 7.0. This is done for program stability and convergence toward a solution. If the user does not specify which stations to eliminate from the streamline location procedure, the program has logic to do so when the station aspect ratio exceeds 7.0 . The priority of stations kept for streamline location is as follows: (1) blade row exit stations are always used, (2) blade row inlet stations are kept if the blade row aspect ratio is less than 7.0, and (3) an annular station is kept if neither adjacent station is closer than the aspect ratio tolerance.

The user can also specify that particular annular stations not be used for stream'ine definition through the alphanumeric station designation. The program looks for ROTO ior rotor, STAT for stator, or ANNU for regular annular. Any other combinations of letters, numbers, or symbols designates the station as the extra-annular type. All the computations that are done for regular annular stations also are done for the extra-annular stations. The only difference is that the new streamline locaticns at that station are not used for the curve fit for streanline parameters. When the new curve fit streamhres are established, their intersections with the station line are found and the streamline parameters at that point are used in the equation-of-motion calculations.

The arrays of points that describe the hub and tip casing contours should extend at least from the furthest upsiream calculation station to the furthest downstream one. There should be enough data points to adequately define the desired casing contours with a spline curve fit.

The input boundary layer blockage factors have an option. A displacement thickness from the wall can
be specified instead of blockage as a fraction of annulus height. This is done by using a negative number the magnitude of which is the value of displacement thickness.

A total pressure profile can be input in place of losses. Although the way to activate this option has been discussed earlier, its full effects need to be understood. This option is activated for a particular blade row by using zero or a negative number in ILOSS (IROW). When the option is activated, an additional data card is required for that blade row (fig. 12(a)). The first parameter PTT(IROW), or P_{t} in the equation, is the blade row tip (larger radius) total pressure in psia. The five other parameters are polynomial constants P_{1} to P_{5}; therefore a total pressure at some other radial location is
$P=P_{1}\left(1.0+P_{1} R+P_{2} R^{2}+P_{3} R^{3}+P_{4} R^{4}+P_{5} R^{5}\right)$
where

$$
R=\frac{r_{t}-r}{r_{t}-r_{h}}
$$

or the fraction of passage height at the blade row exit. Because these coefficients are stored into the locations of loss sets 4 and 5 , those loss sets are destroyed for the run even if read in.

When the pressure level is specitied instead of losses for the last blade row of the compressor, there is an overspecification of data because the inlet pressure and compressor pressure ratio are input too. In computation the pressure ratio predominates; so tise pressure levels will be adjusted as necessary. Also note that when the pressure level is input, the total temperature profile must also be input (table II).

(a) Sintroutines usec in mput and iteration phases.

Fiqure 9 . - Line representation of subroutine calls.

(b) Subroutines used for terminal calculations.

Figure 9. - Concluded.

At a rotor exit the total temperature level can be input in place of the cumulative energy addition fraction. If the input CRENGY (IROTOR) is greater than 2.0 , the value is interpeted to be the rotor exit tip temperature in degrees Rankine. In the preexecution phase of computation the temperature is converted and used as an appropriate energy addition value. The polynomial coefficients for the radial distribution of total temperature are input in the former pressure polynomial coefficient locations, PARA(IROW)...PRE(IROW). During regular iteration the program will use the polynomial form
for rotor exit total temperature distribution when PRA(IROW) $\mid \geq 100.0$. The pelynomial coefficient represented by PRA(IROW) is found by adding or subtracting the number of 100 's needed to give a remainder in the range -100.0 to 100.0 .

When the total temperature level is input, the total pressure level can be set in two ways. It can either be determined from losses or innut directly by a polynomial, as discussed earlier in this section.

The description of parameter variations with polynomials assures smoothness, but the specification of polynomial coefficients is not always
easy. In most cases the range of applicability for the polynomial independent variable is 0 to 1.0. This considerably eases the burden on the user since computation is normally not needed to choose and set the polynomial coefficients. When the higher degree terms are used to define distributions, the end conditions are r atively easy to meet. However, some simple computations are needed to check the distribution.

Another caution is that combinations of reasonable-looking numbers often give blade elements that one can judge to be poor by visual observation. The capability to make machine graphic plots of blade elements and the channel formed by adjacent blades is very useful. Such plots are made in subroutine EPLOT, which is activated by the input parameter OPM. Since graphics packages differ with computer systems, the program presented will not necessarily work directly on a user's computer. However, it is suggested that the user make the conversions necessary to plot the blade element surface arrays generated in EPLOT.

The determination of acceptable polynomial coefficients for the centerline and thickness of an entire blade row can be difficult when high-degree terms are used. This task was eased considerably at NASA Lewis with an interactive graphics capability. A series of computer programs were developed to design particular blade elements from actual centerline angle and thickness distributions. These data were then curve fit by least-squares methods to produce the input required by the program described in this report. Visual observaton of blade elements
generated by this input for several fractions of annulus height is very helpful in avoiding obviously unacceptable configuations.

The computer peripheral equipment also can be used by some other subroutines when options are activated with the parameter OPO. When the punch option is activated, the tables of fabrication coordinates shown on the listing are punched on carcis in subroutine COORD. When the plot option of OPO is activated, subroutine BLUEPT plots tables of fabrication coordinates on a blueprint format. If a plot option is activated by either OPM or OPO, subroutine MERID is also called. It produces a meridional plane plot of the annulus flow path with the calculation stations and streamlines included.

This code is interfaced with three other NASA codes through punched card output. Input for the TSONIC code (ref. 5), which is a blade-to-blade channel flow analysis code, is obtained with the T option of OPM. Input for the MERIDL code (ref. 6), which is a more detailed hub-to-shroud flow analysis code within a blade row, is obtained with the M option of OPO. Input for an off-design performance prediction code that is being developed at NASA Lewis is obtained with the O option of OPM.

The computer program can be obtained from COSMIC, 112 Barrow Hall, University of Georgia, 30601. The COSMIC program number is LEW-13505.

Lewis Research Center
National Aeronautics and Space Administration Cleveland, Ohio, December 29, 1980

Appendix A

Symbols

A	annulus area; also streamtube shannel area	U	local blade velocity, ft/sec	
A_{i}	polynomial constants for as a function of S	u	generalized variable in a differential equation	
a	sonic velocity, $\mathrm{ft} / \mathrm{sec}$; also a coefficient in velocity gradient equation; also a polynomial coefficient	V	velocity, ft/sec generalized variable in a differential	
b	coefficient in velocity gradient equation; also a polynomial coefficient		equation weight flow, lb/sec	
C	constant	z	axial distance, in.	
C_{i}	polynomial constants for conic radius as a function of S	α	angle of strearnline with reference to axial direction, deg	
c	blade chord, in.; also a polynomial coefficient	β	flow angle relative to meridional direction, deg	
$c_{p}(t)$	specific heat function for constant pressure, $\mathrm{ft} / \mathrm{sec}^{2}{ }^{\circ} \mathrm{R}$	$\begin{aligned} & \gamma \\ & \delta \end{aligned}$	blade chord angle, deg deviation angle, deg	
D	blade elemeat diffusion factor	ϵ	angular coordinate on blade element layout cone, rad	
$D_{i, i=1, \infty}$	simplified nomenclature, $D_{i}=-\left(C_{i}\right) /(i) R_{t}$ rolynomial coefficient			
d		θ	circumferential direction, rad	
f	\& . . ition force, $\mathrm{ft} / \mathrm{sec}^{2}$	κ	blade angle relative to locai conic ray, deg	
H	stagnation enthalpy, $\mathrm{ft} / \mathrm{sec}^{2}$	λ	local angle of calculation station line with	
H_{p}	pressure-surface neight, in.		reference to radial direction, deg static density, slug/ ft^{3}	
H_{s}	suction-surface height, in.	ρ 0	static density, slug/f ${ }^{\text {² }}$ blade element olidity, ctord/tangential	
h	static enthalpy, $\mathrm{ft} / \mathrm{sec}^{2}$	0	blade element olidry, chord/tangential spacing	
1	integer index: also incidence angle, deg	τ	time, sec	
J	inieger index	ω	loss coefficient	
k	curvature in curvilinear coordinate system, ft^{-1}; also an integer index	Subscripts:		
L	distance along chord line, in.	ca	center of area	
1	distance along calculation station line, in.	I	calculation station index	
M	Mach number	t	ideal value, as by an isentropic process	
m	streamline direction in meridional plane. in.; also an integer index	j	streamine index leading edge	
n	streamline normal direction in meridional plane, in.	m	streamline direction in meridional plane; also maximum thickness	
P	stagnation pressure, $\mathrm{lb} / \mathrm{ft}^{2}$	n	streamline normal direction in meridional	
p	static pressure, $\mathrm{lb} / \mathrm{ft}^{2}$		plane	
R	conic coordinate radius, in.	o	initial value	
$R_{i, i}$$\boldsymbol{R}_{\text {m }}$	series coefficients for poly	$s p$	stacking point	
	$R_{t} / R=1+R_{1} S+R_{2} S^{2}+R_{3} S^{3}+\ldots$		transition point	
	radius of curvature in meridional plane, ft	te	trailing edge	
(R)	gas constant, ft lb/slug ${ }^{\circ} \mathrm{R}$	θ	circumferential direction	
r	radius from axis of rotation, in.	1	blade row inlel	
S	blade element path distance, in.	2	blade row outlet	
s	entropy, $\mathrm{ft} / \mathrm{sec}^{2}{ }^{\circ} \mathrm{R}$	Superscript:		
T	stagnation temperature. ${ }^{\circ} \mathrm{R}$			
	static temperature, ${ }^{\circ} \mathrm{R}$; also blade elemen:	()	relative to rotor	
	thickness, in.	() ${ }^{\text {c }}$	flow at sonic condition ($\left.\mathbf{M}^{\prime}=1.0\right)$	

ORIGINAL PAGE IS OF POOR QUALITY

Appendix B

Input Parameiers for Compressor Design Program

The input variables for the compressor design program ard the associated options are described in this appendix. The format for the input data is given in figures 10 to 12 . The calculation station and blade row data sets are input in the order in which they occur in the compressor flow. If any of the sets of option cards for blade rows are needed, they are considered part of the blade row set and they follow the particular basic blade row data set in the order shown in figure 12. The only exception is any XCUT cards that are read in the output routines. These cards are at the end of the input data, but of course the sets of XCUT values must be placed in the same order as the stations specifying them.
In the following list of parameters the independent variable S appears frequently. Since it is an important blade element definition variable, this preliminary explanation of its definition and usage is given. The variable S in equations for the blade element centerline is the distance in either direction from the transition point as a reference. The variable S in equations for the thickness distribution is the distance in either direction from the maximum thickness point as a reference. All four of these usages of S are shown in figure 4 . In all cases, S values are positive away from their reference point. The S values for thickness definition are normalized by blade element chord. The S values for centerline definition are also normalized by blade element chord when IDEF(IROW) is less than zero; however, when $\operatorname{IDEF}(\operatorname{IROW})$ is greater than zero, S is normalized to 1.0 ; that is, the maximum segment S is 1.0 .

[^2]
(a) Annular stations.

A)	A			($\mathrm{H}(\mathrm{CH},(1 \times \mathrm{A})$	HT,	B1\% 1-1)	H1.YR:13, : -1		
DE. I M		R(0w)		nrill	B $\mathrm{H}, 1$)	B1. F		BMATE (RUOMUR)	NxCtril130m
L(HESOH)		Orm		4 A A 3 [x^{x}	183		$1)^{1}$ 1,]	FH ER	
HLA DE		(3 KW)	SuL.1 D(IROW)	r\|I, 1 IROW		PRB(1日OW)	FRC+1ROW:	PRU! : RUW	BRE1RO

(D) Rotors.

(c) Stationary blade rows.

Figure 11. - Input data format of calculation stations and basic blade row information.

ACF(1,IROW), ACF(2,IROW). ACF (3,IROW), ACF(4.IROW)

Description

This parameter is used twice to indicate options in alphanumeric form. As the first term of a data set it indicates the type of calculation station or blade row (ANNULAR, ROTOR, or STATOR). Any station description other than ANNU, ROTO, or STAT will be treated as an extra-annular station, that is, the streamlines will not be forced to pass through the streamtube-fraction-of weight-flow point as determined by continuity at the station. The second use of AA later in the data set is the incidence angle option for blade design purposes. Interpretable options are 2-D, 3-D, SIJCTION, and TABLE. A noninterpretable incidence option word is set to the 2-D option. The 2-D and 3-D options mean incidence angles are determined by procedures in reference 1 for the respective option. The suction option gives zero incidence io the suction surface of the blade at the leading edge. The TABLE option means the blade incidence argles for the blade element will be input in tabular form, INC(IROW,J), at the end of the data set.

This parameter completes the incidence TABIE option discussed above. To reference incidence to the suction surface at the leading edge, the eight spaces of the card for $A A$ and $A B$ must read

$$
\underbrace{T A B I}_{A A} \underbrace{E S}_{A B}
$$

(If AB is anything or her than ESS , :he incidence angles will be referenced to the leading-edge centerline.)
polynomial coefficients for linear coefficient of blade element centerline angle equation for front segment, $\kappa=\kappa_{y}+a S+b S^{2}+c S^{3}+d S^{4}$ with $a=\mathrm{ACF} 1+\mathrm{ACF} 2 \cdot R+\mathrm{ACF} 3 \cdot R^{2}+\mathrm{ACF} 4 * R^{3}$, where $R=\left(r_{t}-r\right) /\left(r_{t}-r_{h}\right)-$ fraction of passage height at blade leading edge
same as above for rear segment with same R

（a）If ILOSS（IROW）≤ 0 ．

（D）If OF is DESIGN，COORD，PUNCH，or ALL．

ACFer	1 ran	ACFは18いW｜	ACFt3，180W		BCFA，1ROW，	BCF（ $2,1 \mathrm{ROW})$	BCPa，IROW）	BGF 4 ，IROW
CCFil． 1	1800	CCF\％，1 30W	CC「F！3，1R0W	CCFM，IROW）	DCEF（1，1R OW）	DCF（2，1ROW	DCffa， 1 ROW）	DCf（4，1ROU）
ACOC， 1 ，	ROW	Acra，1ROW	ACR（3，1ROW）		BCR（1，iROM）	PCR（2，1ROW）	BCR（3，IROW）	BGR（4，1ROW）
CCR（1，	R OU，	2，1ROU	$\operatorname{CCR}(3,1 \mathrm{ROW})$	CCR（t，IROW）	DCCR（1，／ROW）	DCrig，1ROW）	DCR（3，IROW）	DGAR（4，iR On ${ }^{\text {a }}$
ceris．	IR OWi	ELE：（2，1rou）	ELf（3，1ROW）	FLE ${ }^{(4,1 R O H)}$	ETE（1，1ROW）	ETE（2，IROW）	ETE（3，iROW）	E T E（4，IROW）
Atr	R 1 Row）	ATf（2，1ROW	ATF（3，1ROW）	Atfia，iroui	B tif（1，1ROW）	BTF（2，（row）	Btaf（3，1ROW）	
CtFit	1ROW	Ct＇fe，1Row）	Ctfe（3，irow）		DTf（1，1 Row）	DTf（ 2,1 ROW）	Dtfa，IROW）	
Trati	1R O（ ${ }^{\text {a }}$	ATR（2，IROW）	ATR（3，irow）	ATR（4，1ROW）	Btra（1，1row）	BTR（2，ROW）	BTR（3，IROW）	BTR（4，IROW）
Trich	IROW）	，1Ro（W）	CTR（B，IR OW）	CTR（t，IROW）	DTR（1，iroul	DTR（2，iROW）	DTR（3，IROW）	DTR（4，IROW）

（c）If $\operatorname{IDEF}(I R O W)>0$.

1 NCO	ROM， 11	INCuromiz	INC，1ROW．31	1 Nc （iroun， 4	－	In cilimow，netren	if $\mathrm{AA}=$ TABLE
DEVE1	ROW， 11	DFt，IROut，	Devitrow，3）	DEv（1rolw，4）	\longrightarrow	D E VIGHOW，NSTRM	if $\mathrm{BE}=$ TABLE
PHIIIR	ow，11	Phictrow，2］	Phi（imow，3）	PHI（IROW．4）		P HI（HiON，NSTRM）	if $\mathrm{CC}=$ TABLE
transmir	Ow， 11	TRANS I ROM， 21	trans arow，${ }^{\text {a }}$	Trans（irom， 4 ）	－	Transicow，nstrm	if $\mathrm{DD}=$ TABLE
2 Maxil	ROW，11	zmax （1ROnt2）	ZMax（1ROW，3）	7．MA Xintow，＋1	－	ZMAX（IROW Nstrm	if EE Table

（d）If indicated parameters are TABLE．

（e）If $O P$ is VEL．DIA．

（f）If NXCUT（IROW）<0 ．
Figure 12．－input data format of additional blade row information if needed by the options．

For a data set designated ROTOR，ALIM（IROW）is the minimum allowable relative flow angle（deg）leaving the rotor hub．For a data set designated STATOR，ALIM（IROW）is the maximum Mach number entering the stator at the hub．The program will reduce the stage energy addition to satisfy these conditions if a limit criterion has been reached during computation．If no aerodynamic limits have been reached in some other stages of a multistage compressor，the program will try to pick up the energy loss of the limiting stage in the stages free of aerodynamic limits．If all stages have reached some aerodynamic limit，the overall compressor pressure ratio is degraded to get all stages within the specified aerodynamic limits．The most efficient way to run the program is to specify the stage energy addition levels so than aerodynamic limits are not reached or at ！east not reached in a drastic fashion．

Parameter

Description
Format

ATF(I,IROW), ATF(2.lROW), ATF(3.IROW). ATF(4.IROW)

ATR(1.IROW), ATR(2,IRDW), ATR(3,IROW), ATR(4,IROW)

BB
polynomial coefficients for first coefficient a of blade element thickness equation forward of maximum thickness point
$\frac{t}{2 c}=\frac{t_{m}}{2 c}-a\left(, S_{o}-S-v S_{o}+\frac{S}{2 v S_{o}}\right)-b S^{2}-c S^{3}-d S^{4}$
with $a=\mathrm{ATF} 1+\mathrm{ATF} 2 \cdot R+\mathrm{ATF} 3 \cdot R^{2}+\mathrm{ATF} 4 * R^{3}$, where R is fraction of passage height at blade leading edge and S_{0} is distance from maximum thickness point to centerline intersection of edge ellipse (fig. 4)
same as above for rea, whickless with same R
deviation angle option for blade design purposes. Interpretable options are 2-D, 3-D, TABLE, CARTER, and MODIFY. Noninterpretable input is set to the 2-D option. For the 2-D and 3-D entions, deviation angles are determined by procedures of reference 1 for the corresponding option. The CARTER and MODIFY options are now the same in the program. They indicate the use of a Carter's rule with a modinication when the front and rear segments of a blade element have different camber rates. The TABLE option means that the blade deviation angles for the blade elements will be input in tabular form, $\operatorname{DEV}(I R O W, J)$, at the end of the data set.

BCF(1,IROW). BCF (2,IROW), BCF(3.IROW), BCF(4,IROW)

BCR(1,IROW). BCR(2,IROW), BCR(3,IROW), BCR(4.IROW)
hub blockage factor for each calculation station; fraction of the station annular area to be aliowed for hub annular surface boundary layer blockage. The hub streamline will be displaced away from the physical wall a distance that gives the specified annular fraction. Negative inpur values are used as the magnitude of boundary layer displacement in inches.

BMATL(IROTOR) rotor material density ($\mathrm{lb} /$ in 3). If a positive nonzero number is input, the blade will be stacked so as to balance out gas bending monients with the centritugal force moment for the material density. Because the hub stacking point stays fixet, the tip location is moved if necessary.

BLADES(IROW)
BLEED(I)
BT(I)
polynomial coefficients fur quadratic coefficient of blade element centerline angle equation for front segment, $\kappa=\kappa_{t}+a S+b S^{2}+c S^{3}+d S^{4}$ with $b=\mathrm{BCFI}+\mathrm{BCF} 2 \cdot R+\mathrm{BCF} 3 \cdot R^{2}+\mathrm{BCF} 4 \cdot R^{3}$, where $R=\left(r_{t}-r\right) /\left(r_{t}-r_{h}\right)$-fraction of passage height at blade leading edge
same as above for rear segment with same R
number of blades in each rotor or stator blade row
fraction of weight flow bled off at particular calculation station

F10.4

A4

F10.4

F10.4

F10.4

F10.4

F10.4
F10.4
F10.4

BTF(1,IROW)

BTR(1.IROW).
BTR(2,IROW), BTR(3,IROW). BTR(4,IROW)

CC

CCF(I,IROW),
CCF $(2,1$ ROW $)$, CCF(3.IROW).
CCF(4.IROW)
CCR(1,IROW), CCR(2,IROW), CCR(3.IROW), CCR(*.IROW)
polynomial coeffictents for quadratic coefficient of blade element thickness equation forward of maximum thickness point

$$
\frac{t}{2 c}=\frac{t_{m}}{2 c}+a\left(v S_{0}-S-v S_{o}+\frac{S}{2 v S_{0}}\right)-b S^{2}-c S^{3}-d S^{4}
$$

with $b=\mathrm{BTF} 1+\mathrm{BTF} 2 * R+\mathrm{BTF} 3 * R^{2}+\mathrm{BTF} 4 * R^{3}$, where R is fraction of passage height at blade leading edge.
same as above for rearward thickness with same R
blade element geometry option for blade design purposes. Interpretable options are CIRCULAR, OPTIMUM, and TABLE. The CIRCULAR option gives circular arc blade elements. Noninterprctable input will be set to the CIRCULAR option. The OPTIMUM option means that the ratio of blade element segment turning rates will be set by an empirical function of inlet relative Mach number. Below an M_{i}^{\prime} of 0.8 the blade element will be a circular arc. As M_{1}^{\prime} is increased, the ratio of front segrient turning rate to rear segment turning rate is reduced. A limit of zero camber on the suction surface of the front segment is approached at an Mi of about 1.60. The TABLE option means the ratio of blade segment turning rates will be input in tabular form. PHI(IROW,J), at the end of the data set.
polynomial coerificients for cubic cocfficient of blade element centerline angle equation for front segment, $\kappa=\kappa_{1}+a S+b S^{2}+c S^{3}+d S^{4}$ with $c=C C F 1+C C F 2 \cdot R+C C F 3 \cdot R^{2}+C C F 4 \cdot R^{3}$, where $R=\left(r_{t}-r\right) /\left(r_{t}-r_{h}\right)$-fraction of passage height at blade leading edge
same as above for rear segment with same R

CHORDA(IROW), constants to define ratio of blade element chord to tip chord on projected CHORDB(IROW), plane

$$
\frac{c}{c_{r i p}}=1+R \cdot \text { CHORDA(IROW) }+R^{2} \cdot \text { CHORDB(IROW) }
$$

$$
+R^{3 \cdot} \cdot \mathrm{CHORDC}(I R O W)
$$

where $R=\left(r_{t}-r\right) /\left(r_{t}-r_{h}\right)$-fraction of annulus height at blade stacking line
CHOKE(IROW) desired minimum value of $\left(A / A^{*}\right)-1.0$, where $A^{\prime} A^{*}$ is the ratio of local sireamtube area in the channel to the area required when $M^{\prime}=1.0$ within a blade passage. If zero is input, no adiustment will be attempted within the program. For input values greater than zero, incidence angle will be increased as necessary up to a maximum of $+2.0^{\circ}$ on the leading edge of the suction surface in an attempt to give the specified choke margin at the covered channel entrance if the minimum eccurs as the channel inlet.

CPCO(I)
for $I=1,6$
constants for specific heat polynomial function of temperature

$$
i_{n}=\mathrm{CPCO}(1)+\mathrm{CPCO}(2) \cdot T+\mathrm{CPCO}(3) \cdot T^{2}+\mathrm{CPCO}(4) \cdot T^{3}
$$

F10.4 F10.4

$$
+\operatorname{CPCO}(5) \cdot T^{4}+\operatorname{CPCO}(6)^{*} T^{5}
$$

CRENGY (IRGTOR)

CTF(1,IROW), CTF(2,1ROW), CTF(3,1ROW), CTF(4,IROW)

CTR(1,IROW), CTR(2,IROW), CTR(3,IROW), CTR(4,IROW)

DCF(1,IROW), DCF (2,IROW), DCF(3,IROW), DCF(4,IROW)

DCR(I,IROW), DCR(2,IROW), DCR(3,IROW), DCR(4,IROW)

DD

DEV(IROW,J)
$\operatorname{DFTAB}(\mathrm{K}, \mathrm{J}, \mathrm{l})$

DLIM(IROW)
desired cumulative energy addition fraction through particular rotor to total energy addition of compressor. Thus the fractions are progressively larger positive numbers through successive rotors. The last rotor must have CRENGY $=1.0$ to meet the inpui pressure ratio. If a value greater than 2.0 is input, the value is interpreted as a rotor exit total remperature level in degrees Rankine instead of the cumulative energy addition fraction. In the preexecution phase of computation the input temperature is converted and used as an appropriate energy addition value.
polynomial coefficients for cubic coefficient of blade element thickness equation forward of maximum thickness point

$$
\frac{t}{2 c}=\frac{t_{m}}{2 c}+a\left(\sqrt{S_{o}-S}-\sqrt{S_{o}}+\frac{S}{2 \sqrt{S_{o}}}\right)-b S^{2}-c S^{3}-d S^{4}
$$

with $c=\mathrm{CTF} 1+\mathrm{CTF} 2 * R+\mathrm{CTF} 3 * R^{2}+\mathrm{CTF} 4 * R^{3}$, where R is fraction of passage height at blade leading edge
same as above for rearward thickness with same R
polynomial coefficients for fourth degree coefficient of blade element centeriine angle equation for front segment, $\kappa=\kappa_{t}+a S+b S^{2}+c S^{3}+d S^{4}$
with $d=\mathrm{DCF} 1+\mathrm{DCF} 2 * R+\mathrm{DCF} 3 * R^{2}+\mathrm{DCF} 4 * R^{3}$, where
$R=\left(r_{t}-r\right) /\left(r_{t}-r_{h}\right)$-fraction of passage height at blade leading edge
same as above for rear segment with same R
option control of location of transition point between segments of a blade element. The interpretable options in CIRCULAR, SHOCK, and TABLE. The SHOCK option locates the transition point on the suction surface at the normal shock impingement point from the leading edge of the adjacent blade. The TABLE option means the location of the transition point will be input in tabular form, TRANS (IROW,J), at the end of the data set. The CIRCULAR option and noninterpretable data put the transition point at midchord.
deviation angle (deg) that can be specified by option. If the tabular option is used, a value is expected for each streamline stating from the tip.
blade element diffusion factor (D factor) for which profile losses are tabulated. Five values are input for each streamline; that is, K always has values from 1 to 5 , J is the streamline index, and I is the loss set index. The maximum number of sets is 5 . Because D-factor values normally fall between 0.3 and 0.7 , values of $0.3,0.4,0.5,0.6$, and 0.7 for DFTAB on a streamline can be implied by leaving the DFTAB values blank. As a consequence of this option the DFTAB cannot be exactly 0.0 when $K=1$ if you do not want the implied vaiues of DFTAB.
aerodynamic D-factor limit In a data set designated ROTOR this iimit applies at the tip streamline. For a STATOR data set the limit applies at the hub. The program operates with this limit criterion in the same way as it did with ALIM(IROW).

$\operatorname{DLOS}(\mathrm{K}, \mathrm{J}, \mathrm{l})$	profile loss parameter $\mathfrak{c} \cos \beta 2 / 2 \sigma$ corresponding to $\operatorname{DFTAB}(\mathrm{K}, \mathrm{J}, \mathrm{i})$ referen arrays
DTF(1,IROW), DTF (2,IROW), DTF(3,IROW), DTF(1,IROW)	polynomial coefficient for fourth coetficient of blade element thickness equation
	forward of maximum thickness point
	$\frac{t}{2 c}=\frac{t_{m}}{2 c}+a\left(v S_{0}-S-v S_{0}+\frac{S}{2 \sqrt{S_{0}}}\right)-b S^{2}-c S^{3}-d S^{4}$
	with $d=\mathrm{DTFI}+\mathrm{DTF} 2 * R+\mathrm{DTF} 3 \cdot R^{2}+\mathrm{DTF} 4 * R^{3}$, wheie R is fraction of passage height at blade leading edge

DTR(1.IROW). DTR(2,IROW), DTR(3,IROW). DTR(4,IROW)

ELE(I.IROW), ELE(2,IROW), ELE(3,IROW). ELE(4.IROW)

ETE(I,IROW), ETE(2,IROW), ETE $(3$, IROW $)$, ETE(4.IROW)

FlofRA(I)

FLOW(I)

FS completes TABLE option of maximum thickness location. If the eight spaces controlling the option appear as

TABLE LE
EE EB
the input values of ZMAX(IROW,J) will be used as the fraction of chord distance from the leading edge. If EB is not as shown, the values of ZMAX(IROW,J) wili be used as the fraction of chord distance behind the ransition point.
option control of location of maximum thickness point of a blade element. The interpretable options are TRAN and TABLE. The TRAN option and noninterpretable options will set the maximum thickness point at the transition point. The TABLE option means the maximum thickness point location will be input in tabular form, ZMAX(IROW'J), at the end of the data set.
coefficients for leading-edge ellipse ratio of semimajor to semiminor axes minus 1
$e=\frac{b}{a}-1=\mathrm{ELE} 1+\mathrm{ELE} 2 \cdot R+\mathrm{ELE} 3 \cdot R^{2}+\mathrm{ELE} 4 \cdot R^{3}$

where R is fraction of passage height at blade leading edge
coefficients for trailing-edge ellipse ratio of semimajor to semiminor axes minus 1
$e=\frac{b}{a}-1=\mathrm{ETE} 1+\mathrm{ETE} 2 \cdot R+\mathrm{ETE} 3 \cdot R^{2}+\mathrm{ETE} 4 \cdot R^{3}$
where R is fraction of passage height at blade trailing edge
cumulative weight-flow split between streamlines starting from tip. NTUBES, which is NSTRM-1, values are read. Thus the first value is greater than zero and succeeding values must increase to 1.0 in order for the last value to account for the accumulation of flow for all streamtubes.
mass flow (lb sec) entering the firs: calculation station

F10.4

F10.4
blade definition index. When the index is zero, the blade segment centerline and surfaces are defined by $d \kappa / d S=$ constant. When the index is not zero, the segment centerline and thickness are defined with fourth-degree functions of path distance from the transition and maximum thickness points, respectively. The specification of the coefficients for these functions is extra input, for which the format is shown in figure 12(c). If IDEF (IROW) is positive, the cocfficients for i he definition polynomials are interpreted to be functions of segment length normalized to 1.0 ; but if IDEF (IROW) is negative, the coefficients are interpreted to be functions of segment length normalized by chord. The reference point for the centerline polynomials can be either the transition point or the segment ends. The possible combinations are shown in the IDEF (IROW) summary in table IV.
designation of which profile loss set (I variable in $\operatorname{DLOS}(\mathrm{K}, \mathrm{J}, \mathrm{I})$) to use with particular blade row. If the input value of ILOSS(IROW) is less than or equal to zero, a total reressure level is input in place of losses. The pressure is input with the parameters shown in the first option of figure 12. These parameters are stored into the locations of loss sets 4 and 5; so those loss sets are not available for use with any blade row.
incidence angle (deg) that can be input by option. If the tabular option is used, a value is expected for each streamline starting from the tip.
molecular weight of gas (28.97 for dry air)
number of annular stations at which radial velocity rrofiles are constructed during computation
number of blade rows (maximum of 20)
number of points input to describe hub genmetric boundary (maximum of 40)
number of loss sets input (maximum of 5)
number of points input to describe tip geometric boundary (maximum of 40).
number of sections across blade for which fabrication coordinates are desired. If zero, the program will set the number of XCUT's on the basis of aspect ratio. For all positive values the program will set appropriate locations to represent the blade. Negative values of NXCUT(IROW) trigger an option to read cards for the XCUT values. The number of values expected for a blade row is the absolute value of NXCUT(IROW).
number of streamlines (maximum of 11)
option controlling amount of output information desired. Interpretable options are APPROX. VEL. DIA., DESIGN, and COORD. If the first four characters input in OP match none of the above, the program will try to proceed with the VEL. DIA. option. The program cumpletes only velocity diagram information when run with the APPROX and VEL. DIA. optinns. With the APPKOX option the locations of blade edges are estimated from the stacking line, but with the VEL. DIA. option the blade edge locations are innut. The blade edge dat a are read from extra cards at the end of the data set for a particular blade type. The axiai coordinates are temporarily read into VTH(I, J), and the radial coordinates are temporarily read into $\operatorname{PO}(I, J)$. When run with the DESIGN and

OPM

OPO

PHI(IROW, J)

PRA(IROW), PRB(IROW), PRC(IROW), PRD(IROW), PRE(IROW)
$\mathrm{PO}(\mathrm{I}, \mathrm{J})$

PR

COORD opiions, the program designs and stacks that particular blade row. With the DESIGN option only velocity diagram information is printed, but the blade leading- and trailing edge locations are for the stacked blade. The COORD option includes the printout of blade section properties and coordinates for fabrication.
additional output options in effect if OP is DESIGN or COORD

Card zolumn				Additional output
7	8	9	10	
	O T M M M	O		Off-design punch TSONIC punch Blade element channel microfilm M and O options M and T options

Additional output options in effect when OP is COORD

Card column				Additional output
17	18	19	20	
	M P C M M	P		Fabrication coordinate on microfilm Fabrication coordinate punch MERIDL punch M and P options M and C options

ratio of inlet segment turning to outlet segment turning (ratio of $\left.\left(d_{\kappa} / d S\right)_{1} /(d \kappa / d S)_{2}\right)$ for a blade element. If input values are expected by use of the tahular option, the data cards go with the optional cards at the end of the data set for each blade row. A value is expected for each streamline beginning from the tip.
coefficients for polynomial equation to define profile behind blade row. Behind a rotor the pressure ratio profile is specified as

$$
\frac{P}{P_{t}}=1.0+\mathrm{PRA} \cdot R+\mathrm{PRB} \cdot R^{2}+\mathrm{PRC} \cdot R^{3}+\mathrm{PRD} \cdot R^{4}+\mathrm{PRE} * R^{5}
$$

where P_{t} is the stagnation pressure at the rotor exit tip and $R=$ $\left(r_{t}-r\right) i\left(r_{t}-r_{h}\right)$-a fraction of passage height. When \mid PRA (IROW) $\mid \geq 100.0$, another option is activated. The input profile is for a temperature profile T / T_{t} insiead of a pressure profile P / P_{t}. The data value of PRA(IROW) is extracted from the input value by adding or subtracting 100's until the remainder is in the range of -100.0 to 100.0 . At a stationary biade row the polynomial is for the blade row exit tangential velocity profile in $\mathrm{ft} / \mathrm{sec}$.
$V_{\theta}=\mathrm{PRA} / R^{2}+\mathrm{PRB} / R+\mathrm{PRC}+\mathrm{PRD} * R+\mathrm{PRE} * R^{2}$ where $R=r / r_{t}$

PTT(IROW), PTC(1,IROW), PTC(2,IROW), PTC(3,IROW), PTC(4,IROW), PTC(5,IROW)

RHUB(I)

ROT
RTIP(I)

SOLID(IROW)
TALE(IROW), TBLE(IROW), TCLE(IROW), TDLE(ROW)

TAMAX(IROW), TBMAX(IROW), TCMAX(IROW), TDMAX(IROW)

TATE(IROW), TBTE(IROW), TCTE(IRC'ग!), TDTE(KKOW)
coefficients that describe blade row exit profile when it is input as an option. PTT is the blade row exit pressure in psia at the tip (highest radius). The other five values are polynomial coefficients for

$$
P=\mathrm{PTT} *\left(1.0+\mathrm{PTC} 1 * R+\mathrm{PTC} 2 * R^{2}+\mathrm{PTC} 3 * R^{3}+\mathrm{PTC} 4 * R^{4}+\mathrm{PTC} 5 * R^{5}\right.
$$

where $R=\left(r_{t}-r\right) /\left(r_{t}-r_{h}\right)$-fraction of passage height at blade row ex :
radius coordinates of a set of points that define geometric hub boundary (maximum of 40)
compressor rotational speed, rpm
radius coordinates of set of points that define geometric tip boundary (maximum of 40)
tip solidity of a blade row (ratio of chord to circumferential spacing)
polynomial coefficients of ra io of blade element leading-edge radius to chord, where $t_{l e} / c=$ TALE + TBLE $* R+$ TCLE $* R^{2}+$ TDLE $* R^{3}$
where $R\left(r_{t}-r\right) /\left(r_{t}-r_{h}\right)$-fraction of passage height at blade leading edge
polynomial coefficients of ratio of blade element maximum thickness to chord, where $t_{\text {max }} / c=$ TAMAX + TBMAX $* R+$ TCMAX $* R^{2}+\mathrm{TDMAX} * R^{3}$
polynomial coefficients of ratio of blade element trailing-edge radius to chord, where $t_{t e} / c=$ TATE + TBTE $* R+$ TCTE $* R^{2}+$ TCTE $* R^{3}$
where $R\left(r_{t}-r\right) /\left(r_{t}-r_{h}\right)$-fraction of passage height at blade trailing edge

TILT(IROW) angle of stacking axis tilt (deg) in circumferential direction ($r-\theta$ plane). The angle is positive in the direction of rotor rotation. If \mid TILT(IROW) $\mid>100.0$, a curved stacking line is specified according to $r-r_{r e f}=C\left(\sin \gamma-\sin \gamma_{r e f}\right)$, and the code of the TILT(IROW) is-

tilt angle at tip in degrees. Circled digit controls sign of tip tilt angle. Even digit gives tip tilt angle same sign as hub tilt angle. Odd digit gives tip tilt angle opposite sign of hub tilt angle.

For example: 12332.65 gives a hub angle of 23° and a tip angle $c^{\circ}-32.65^{\circ}$.
TITLE(I)
description of compressor for printout and later identification
TO(I,J)
general stagnation temperature array in program. Only (TO($1, \mathrm{~J}$), $\mathrm{J}=1$, NSTRM) values are input; that is the streamline value for the first calculation station. The input values are in units of ${ }^{\circ} \mathrm{R}$.

IRANS(ROW. 1) location of tansition pome on blade clement centerlane as fraction of blade element chord. If imput balues are expected by use of the tabular option, the data cards go with the optional cards at the end of the data set tor cath blade row. A value is evpected for eath steambe begiming fom the tip.
seneral tangentiai compenent of velocity aray in program. Onty (Vith(1,J). 1 1. NSTRM) values are impat that is, the streamline value for the first calculation station. The ismut values have unts of ft sec.

When blade edge coordinates are mpui, wome of the other V THil.J) hocations are used for temporary storage of the axial coordinates of the points.
radial location of blade section phanes. Whether or not data cards are read for values of KCUT(IC) for a blade row is controlled by the value of NXCUT (IC). Any XCUT(IC; cards are read in an output routine. Therefore they must follow all cards read in subroutine INPUT: that is, they follow the ANNUI.AR card for the last calculation station. There is no index identifying the data with a particular blade row, so the data sets for the blade rows are expected in the order that one would see the blade rows in moving through the compressor from the inlet. Start the set of points for each blade row on a new card. It is preterable, but not necessary, to list the XCUTilC: ar a blade row in order starting from the tip.
axial coordinates of set of points that define geometric hut boundary. The axial extent of the coordinates most al least reach the first and hast calculation stations. The hat coordmates must have the same refereme ofigin as other imput axial coordinates, that is, casing, blade edge, and stacking line coordinates. The number of points input should be $4 \leq n \leq \$ 4$)
axial coordinates of set of points that detine geometric tip boundary (See XHOH(1) fior additional comments.)
blade data set hub-axial coordinate. When the data set is a blade rather than an ANNUIAR station, $\mathbf{Z H}$ IIB(I) is the axial location of the blade stacking line at the hut.
/MAX(IROW.I) Weation of maximum thickness point as fraction of blade ekement chord. If imput values are expected by use of the labular options, the data cands go with the optional cards at the end of the data set for each blade row. A value is expected for each streamine beginmeng from the tip with a leading-edge or transitionpoint reterence according to ontion (see FB). With a transition peint reference the values input are (m - t) a

blade data set tipavial coordinate. (Sec $\quad \mathrm{ZHL}(\mathrm{B}(\mathrm{I})$ for similar additonal f10.4 comments.)

Appendix C

Development of Equations of Motion into Form
 Used in Compater Program

In the computer progtam the cequations of motion are applied at calculation stations that are presumed to he outside the blade rows: so the equations of motion are more conveniently developed in an absolute. rather than a relative. coordinate system. The gencral equation of motion (eq. 3(21) of ref. 7) is

$$
\begin{equation*}
\frac{a b}{a r}+\nabla H=b \times(\nabla \times b)+i \nabla s+i \tag{Cl}
\end{equation*}
$$

When steady thow is assumed and the local friction force is ignored, equation (C1) redaces to
$\nabla H=V \times(\nabla \times \downarrow)+r \nabla s$
In orthogonal curvilincar coosdinates the velocity vecter can be expressed as
$v=A V_{\mu}+m V_{m}+\dot{H} V_{n}$
where m is in the streamline direction in the meridional plane and n is in the normal direction in the meridional plane. Of course V_{n} is zero everywhere for this application. The curl termi in sencral can be expressed as

$$
\begin{aligned}
& \nabla \times V^{\prime}=\theta\left(\begin{array}{l}
\left.a b_{n}+b_{n} k_{n}-\frac{\partial b_{m}}{a m_{n}}+1_{m} k_{m}\right)
\end{array}\right)
\end{aligned}
$$

where k_{m} and k_{n} are the curvature of the streamline and the normal, respectively. All terms containing ϑ_{n} are zero for this application. The assumption of symmetric how in the circumferential direction makes $\mathrm{AV}_{\mathrm{m}} / \mathrm{dt}$ equal to zero. Also, because angular momentum does not change on streamlines outside the blade rows

$$
\begin{equation*}
\frac{\partial\left(r V_{\theta}\right)}{\partial m}=0 \tag{Cs}
\end{equation*}
$$

Thus equation (C4) reduces to

$$
\nabla \times V=\theta\left(\begin{array}{c}
\partial V_{m} \tag{106}\\
\partial n
\end{array}+V_{m} k_{m}\right)+\begin{gathered}
m \partial\left(r V_{H}\right) \\
r \quad \partial n
\end{gathered}
$$

In terms of cquations ((C) and (Co) the term $1 \times(\nabla, ~)$ can be expressed as

$$
\begin{align*}
& =A|0|+m|0|+n\left[\begin{array}{cc}
v_{\theta} & \partial\left(r V_{\theta}\right) \\
\underset{r}{r} & \left.\frac{\partial n}{}\right) \\
\hline
\end{array}\right. \\
& \left.+V_{m} \frac{\partial V_{m}}{\partial n}-V_{m}^{2} k_{m}\right] \tag{C7}
\end{align*}
$$

Now break equation (C2) into the three component equations. In the A ditection

The zero in equation (C8) recognizes circumferential symmetry of s. In the meridional plane streamline direction

$$
\begin{equation*}
\frac{\partial z!}{\partial m}=1 \frac{\partial s}{\partial m}=0 \tag{C}
\end{equation*}
$$

The sero in equation (C) comes from the assumption that entropy does not change along streamlines that are outside the blade rows. I: the meridional plane normal direction

$$
\begin{equation*}
\frac{\partial H}{\partial n}=\dot{v}_{\theta} \partial\left(r i_{\theta}\right)+i_{m} \quad \partial I_{i n}-v_{m}^{2} k_{m}+i \frac{\partial s}{\partial n} \tag{C10}
\end{equation*}
$$

Equations (C8) to (C10) apply to the three curvilinear component directions. However, in the program velocity and state valuts are available along station lines; so it is of computational convenience to apply a component equation along a station iane. To accomplish this objeclive, the derivatives in the meridional plane are converted from the orthogonal
strembine and normal ditetions to the genetally monombogonal steamlane mas station line ditcerions The ange nomenelature for the comersion is shown in tigure 13

The embatpe grademt in the station line diection san be cupressed as

$$
\begin{aligned}
& { }_{\| H}{ }^{\prime} \| \nabla H \cdot l
\end{aligned}
$$

$$
\begin{align*}
& =\left\{0 \cdot(0)+0 \cdot \sin (1 x+\lambda)+\frac{\partial H}{\partial n} \cdot \cos (\alpha+\lambda)\right. \\
& \left.d H=\frac{\partial H}{\partial H} \cos (1)+\lambda\right) \tag{C11}
\end{align*}
$$

In general a station line derivative can be expressed as

$$
\begin{align*}
d & =\partial d n+\partial d m \\
d l & \partial n d l+\partial m d l \tag{C12}\\
& =\partial \quad \operatorname{an}(1)(1 r+\lambda)+\frac{\partial m}{\partial m} \sin ((r+\lambda)
\end{align*}
$$

When equation (C12) is applied w the other normal derinatives of cymation ('to). the following relation devilops:

$$
\begin{aligned}
& \frac{a n}{a\left(r l^{4}\right)} \cos (\alpha+\lambda)+0 \sin (\alpha+\lambda)
\end{aligned}
$$

Anal ther then

Therefiore

Therefore
$d s=\frac{d s}{d n} \cos (a r+\lambda)+\frac{d s}{d m} \sin (\alpha+\lambda)$
$=\frac{d s}{\partial n} \cos (\alpha x+\lambda)+|0| \sin (\alpha x+\lambda)$

Therefore

$d s=\frac{d s}{d m} \quad 1$
(Cls)

The application of equations (C12) through (C1s) to (ClO)gives

$$
\begin{align*}
& \ddots_{m}^{2} A_{m} \cos (a r+\lambda)+t_{d}^{d s} \tag{410}
\end{align*}
$$

The streamhane curvature k_{m} is
$k_{m}=\frac{d r}{d m}=\frac{1}{K_{m}}$
where \boldsymbol{R}_{m} is the meridional plane streamione radius of curvature. Suhstituting cquation (C17) into (C18) vields the following form for the meridional velowity sradient:

$$
\begin{align*}
& +\begin{array}{l}
R_{m}^{\prime} \\
R_{m} \\
\cos (1 x+\lambda)
\end{array} d_{d}^{d s}
\end{align*}
$$

The state Pr.arties appraring in equation (C18) are H, t, and s. However, iwo stale properties are sufficient to establish the others at a point. For a
thermally perfect gas ($p=\rho(\mathrm{Rr})$ it is rather easy to compute other state properties from two selected properties: \because it is desirable from a computer storage standpoint to store only two properties throughout the flow field. The two properties selected were stagnation temperature and pressure. These two properties, along with the velocity components, are sufficient information for the calculation of the other state properties. If these two properties can be used directly in the equations of motion, the need to compute some state properties may not exist. To express s in terms of T and P. start with the property relations

$$
\begin{equation*}
\frac{d p}{\rho}=d h-t d s \tag{C19}
\end{equation*}
$$

For the introduction of stagnation properties note that the thermodynamic process of moving between the static and stagnation states is isentropic by definition. Thus equation (C19) for this process becomes

$$
\frac{d p}{\rho}=d h
$$

For a calorically nonperfect gas this becomes

$$
\begin{align*}
& \frac{d p}{\rho}=c_{p}(t) d t \\
& d p=\left(\frac{p}{R}\right) c_{p}(t) d t \\
& \frac{d p}{p}=\frac{1}{R} \frac{c_{p}(t)}{t} d t \\
& \int_{p}^{P} \frac{d p}{p}=\frac{1}{R} \int_{t}^{T} \frac{c_{p}(t)}{t} d t \\
& \left.\ln p\right|_{p} ^{P}=\frac{1}{R} \int_{t}^{T} \frac{c_{p}(t)}{t} d t \\
& \frac{P}{p}=\exp \left[\frac{1}{R} \int_{t}^{T} \frac{c_{p}(t)}{t} d t\right] \tag{C20}
\end{align*}
$$

Equation (C19) used as a derivative with path distance can be written as

$$
\begin{equation*}
\frac{d s}{d l}=\frac{1}{t} \frac{d h}{d l}-\frac{1}{\rho r} \frac{d p}{d l} \tag{C21}
\end{equation*}
$$

Substituting equation (C20) gives

$$
\frac{d s}{d l}=\frac{1}{t} \frac{d h}{d l}-\frac{1}{\rho t}
$$

$$
\frac{d\left\{P \exp \left|-1 / R \int_{t}^{T} c_{p}(t) / t d t\right|\right\}}{d I}
$$

$$
\frac{d s}{d l}=\frac{1}{t} \frac{d h}{d l}-\frac{1}{\rho t} \frac{d P}{d l} \exp \left[-\frac{1}{\mathbb{R}} \int_{t}^{T}{c_{p}(t)}_{t}^{d t}\right]
$$

$$
-\frac{P}{\rho t} \exp \left[-\frac{1}{1 H} \int_{t}^{T} \frac{c_{p}(t)}{t} \mathrm{dt}\right]
$$

$$
\left(-\frac{1}{(R} \frac{d}{d l}\right)\left[\int_{t}^{T} \frac{c_{p}(t)}{t} \mathrm{dt}\right]
$$

$$
\begin{align*}
& =\frac{1}{t} \frac{d h}{d l}-\frac{1}{\rho t} \frac{d P}{d l}\left(\frac{p}{P}\right)+\frac{P}{R \rho t}\left(\frac{p}{P}\right) \frac{d}{d l}\left[\int_{t}^{T} \frac{c_{p}(t)}{t} d t\right] \\
& =\frac{1}{t} \frac{d h}{d l}-\frac{R}{P} \frac{d P}{d l}+\frac{d}{d l}\left[\int_{J_{t}}^{T} \frac{c_{p}(t)}{t} d t\right] \quad \text { (C22) } \tag{C22}
\end{align*}
$$

The application of Liebnitz's rule to the last term gives

$$
\begin{aligned}
& \frac{d}{d l}\left[\int_{t}^{T} \frac{c_{p}(t)}{t} d t\right]=\int_{t}^{T} \frac{\partial}{\partial l} \frac{c_{p}(t)}{t} d t \\
&+\frac{c_{p}(T)}{T} \frac{d T}{d l}-\frac{c_{p}(t)}{t} \frac{d t}{d l}
\end{aligned}
$$

The variable $\left(c_{p}(t) / t\right)$ is not a direct function of path distance; it is a function of temperature alone. Therefore the partial derivative with respect to distance must be zero. Thus the derivative of the integral can be expressed in terms of gradients at the limits so that

$$
\begin{align*}
\frac{d}{d l}\left[\int_{t}^{T} \frac{c_{p}(t)}{t} d t\right] & =\frac{c_{p}(n)}{T} \frac{d T}{d l}-\frac{c_{p}(t)}{t} \frac{d t}{d l} \\
& =\frac{1}{T} \frac{d H}{d l}-\frac{1}{t} \frac{d h}{d l} \tag{C23}
\end{align*}
$$

Substituting (C23) into (C22) gives

$$
\begin{align*}
& \frac{d s}{d l}=\frac{1}{l} \frac{d h}{d l}-\frac{R}{P} \frac{d P}{d l}+\frac{1}{T} \frac{d H}{d l}-\frac{1}{t} \frac{d h}{d l} \\
& \frac{d s}{d l}=\frac{1}{T} \frac{d H}{d l}-\frac{R}{P} \frac{d P}{d l}=\frac{1 d H}{T} \frac{d}{d l}-\frac{1}{\rho_{0} T} \frac{d P}{d l} \tag{C24}
\end{align*}
$$

Equation (C24) is essentially equation (C21) expressed in stagnation state variables. Equation (C24) would turn out to be the same for a calorically perfect gas. Substituting equation (C24) into (C18) gives

$$
\begin{aligned}
V_{m} \frac{d V_{m}}{d l}=\frac{d H}{d l} & -V_{\theta} \frac{d\left(r V_{\theta}\right)}{r d l}+V_{m} \frac{\partial V_{m}}{\partial m} \sin (\alpha+\lambda) \\
& +\frac{V_{m}^{2}}{R_{m}} \cos (\alpha+\lambda)-\frac{t}{T} \frac{d H}{d l}+\frac{(R t}{P} \frac{d P}{d l}
\end{aligned}
$$

A rearrangement with all the state property terms together gives

$$
\begin{align*}
V_{m} \frac{d V_{m}}{d l} & =\left(\frac{T-t}{T}\right) \frac{d H}{d l}+\kappa t \frac{d \ln P}{d l}-V_{\theta} \frac{d\left(r V_{\theta}\right)}{r d l} \\
& +V_{m} \frac{\partial V_{m}}{\partial m} \sin (\alpha+\lambda)+\frac{V^{2}}{R_{m}^{2}} \cos (\alpha+\lambda) \tag{C25}
\end{align*}
$$

All the terms on the right side of equation (C25) can be computed quite accurately except $\partial V_{m} / \partial m$, which is the gradient of V_{m} along a streamline in the meridional plane. The distance over which $\partial V_{m} / \partial m$ changes sign are of the order of the calculation station spacing so that representative values of $\partial V_{m} / \partial m$ cannot be obtained from a V_{m} curve fit along meridional streamlines. A better value of this derivative probably can be obtained by means of local continuity. From equation $9(12)$ of reference 7 differential continuity can be expressed as

$$
\begin{equation*}
\frac{1}{\rho} \frac{d \rho}{D r}+\nabla \cdot l=0 \tag{C26}
\end{equation*}
$$

However,
$\frac{I D \rho}{\rho} \overline{D t}=\frac{1}{a^{2} D h}$
so equation (C26) can be written as

$$
\begin{equation*}
\frac{1}{a^{2}} \frac{D h}{D t}+\nabla \cdot V=0 \tag{C27}
\end{equation*}
$$

Equation (C27) expanded from its vector form is

$$
\begin{array}{r}
\frac{1}{a^{2}}\left(\frac{\partial h}{\partial t}+\frac{V_{\theta}}{r} \frac{\partial h}{\partial \theta}+V_{m} \frac{\partial h}{\partial m}+V_{n} \frac{\partial h}{\partial n}\right) \\
+\frac{1}{r} \frac{\partial\left(r V_{m}\right)}{\partial m}+\frac{1}{r} \frac{\partial V_{\theta}}{\partial \theta}+\frac{1}{r} \frac{\partial\left(r V_{n}\right)}{\partial n} \\
+V_{m} k_{m}+V_{n} k_{n}=0
\end{array}
$$

Outside the blade rows the flow is assumed to be axisymmetric and steady. Also, because there is no velocity component normal to the streamline, the equation reduces to

$$
\begin{equation*}
\frac{V_{m}}{a^{2}} \frac{\partial h}{\partial m}+\frac{1}{r} \frac{\partial\left(r V_{m}\right)}{\partial m}+V_{m} k_{m}=0 \tag{C28}
\end{equation*}
$$

Stagnation enthalpy is defined as
$H=h+\frac{V^{2}}{2}+\frac{V^{2}}{2}$

$$
\begin{equation*}
\frac{d H}{\partial m}=\frac{\partial h}{\partial m}+V_{m} \frac{\partial V_{m}}{\partial m}+V_{H} \frac{\partial V_{\theta}}{\partial m} \tag{C29}
\end{equation*}
$$

But because $\partial H / \partial m=0$ outside the blade rows,

$$
\begin{equation*}
\frac{\partial h}{\partial m}=-V_{m} \frac{\partial V_{m}}{\partial m}-V_{\theta} \frac{\partial V_{\theta}}{\partial m} \tag{C30}
\end{equation*}
$$

Outside the blade rows angular momentum is conserved along streamlines; sc
$0=\frac{\partial\left(r V_{\theta}\right)}{\partial m}=\frac{\partial r}{\partial m} V_{\theta}+r \frac{\partial V_{\theta}}{\partial m}$

Rearrangemen: gives

$\frac{\partial V_{\theta}}{\partial m}=-\frac{V_{\theta}}{r} \frac{\partial r}{\partial m}=-\frac{V_{\theta}}{r} \sin \alpha$

Substituting equation (C31) into (C30) gives

$$
\begin{equation*}
\frac{\partial h}{\partial m}=-V_{m} \frac{\partial V_{m}}{\partial m}+\frac{V_{\theta}^{2}}{r} \sin \alpha \tag{C32}
\end{equation*}
$$

Substituting equation (C32) into (C28) gives

$$
\begin{gather*}
\frac{V_{m}}{a^{2}}\left(-V_{m} \frac{\partial V_{m}}{\partial m}+\frac{V_{\theta}^{2}}{r} \sin \alpha\right)+\frac{V_{m}}{r} \frac{\partial r}{\partial m} \\
+\frac{\partial V_{m}}{\partial m}+V_{m} k_{m}=0 \\
\left(1-\frac{V_{m}^{2}}{a^{2}}\right) \frac{\partial V_{m}}{\partial m}+\left(\frac{V_{\theta}^{2}}{a^{2}}+1\right) \frac{V_{m}}{r} \sin \alpha+V_{m} k_{n}=0 \\
\frac{\partial V_{m}}{\partial m}=\frac{1}{M_{r_{i}}^{2}-1}\left[\left(M_{\theta}^{2}+1\right) \frac{V_{m}}{r} \sin \alpha+V_{m} k_{n}\right](\mathrm{C} 33 \tag{C33}
\end{gather*}
$$

The curvature of the streamline normal k_{η}, which is $\partial \alpha / \partial n$, needs to be expressed in terms that can be evaluated.
$\frac{d \alpha}{d l}=\frac{\partial \alpha}{\partial n} \cos (\alpha+\lambda)+\frac{\partial \alpha}{\partial m} \sin (\alpha+\lambda)$
$\frac{\partial \alpha}{\partial n}=\frac{d \alpha}{d l} \frac{1}{\cos (\alpha+\lambda)}-\frac{\partial \alpha}{\partial m} \frac{\sin (\alpha+\lambda)}{\cos (\alpha+\lambda)}$
$k_{n}=\frac{\partial \alpha}{\partial n}=\frac{d \alpha}{d l} \sec (\alpha+\lambda)-\frac{\tan (\alpha+\lambda)}{R_{m}}$

Substituting equation (C34) into (C33) gives
$\frac{\partial V_{m}}{\partial m}=\frac{V_{m}}{\boldsymbol{M}_{m}^{2}-1}\left[\frac{\boldsymbol{M}_{\theta}^{2}+1}{r} \sin \alpha\right.$

$$
\begin{equation*}
\left.+\frac{d \alpha}{d l} \sec (\alpha+\lambda)-\frac{\tan (\alpha+\lambda)}{R_{m}}\right] \tag{C35}
\end{equation*}
$$

Calculation of $\partial V_{m} / \partial m$ by using equation (C35) should give a somewhat more accurate result than a curve fit or a finite difference computation across increments that span whole blade elemerts. However, a potential divide-by-zero complication has been introduced with the term $M_{m}^{2}-1$. In equation (C35) the term in braces in essence represents the $d A / A$ term of one-dimensional flow theory. At a Mach number of $1.0, d A / A$ is zero, which is the throat of a nozzle. For compressor blade rows the throat occurs within the blade passages. Internal flows adjust around locally choked regions so that the throughflow Mach number outside the blade only approaches 1. Computation of the detailed nature of the flow is not available from only stations outside the blade row; so a minimum value is imposed on the denominator through an empirical additive term to help siabilize the iterative procedure. The additive center term is
$\left.f=0.1 \frac{\left|M_{m}^{2}-1\right|}{\left|M_{m}^{2}-1\right|} \exp \right\rvert\,-10\left(M_{m}^{2}-1| |\right.$

Its characteristics and effect on the denominator are shown in table V .

Appendix D

Conic Coordinates of Blade Centerline Path

Local blade angle is defined with respect to the local conic ray (fig. 14). Let the blade angle vary with paih distance along the cone according to the polynomial
$\kappa=\kappa_{t}+a S+b S^{2}+c S^{3}+d S^{4}$
where κ_{t} is the blade angle at the transition point between segments in this application. The path distance S is with respect to the transition point reference but always positive in the direction from inlet to outlet.

The conic radial component of the centerline can be found by integrating the differential equation for that component

$$
\begin{equation*}
d R=\cos |\kappa| d S=\cos \left(\kappa_{t}+a S+b S^{2}+c S^{3}+d S^{4}\right) d S \tag{D2}
\end{equation*}
$$

The problem is that a trigonometric function of a polynomial is not readily integratable in closed form. However, the function can be expanded in series form and integrated term by term. Of course the series is infinite but it is convergent within the range of our application. In the following presentation enough development is given to show the form of the series. Upon application in the program a tolerance is used so that no more terms than necessary are calculated.

Figure 14. - Blade element centerline nomenclature.
$\cos \kappa=1-\frac{\kappa^{2}}{2!}+\frac{\kappa^{4}}{4!}-\frac{\kappa^{6}}{6!}+\frac{\kappa^{8}}{8!} \cdots$
When equation (D1) is substituted, the terms of like powers of S can be summed to give in symbolic form

$$
\begin{equation*}
\cos \kappa=\left.\right|_{1}+\left.\right|_{2} S+\|_{3} S^{2}+\left.\right|_{4} S^{3}+\ldots \tag{D4}
\end{equation*}
$$

$$
\begin{aligned}
R-R_{t}= & \int_{0}^{S} \cos \kappa d s=1, \frac{S^{2}}{2} \\
& +3 \frac{S^{3}}{3}+\frac{S^{4}}{4} \ldots
\end{aligned}
$$

When terms of similar coefficients are combined, the following form evolves:

$$
\begin{aligned}
\int \cos \kappa d S=\frac{1}{a}\left[\cos \kappa_{t} \sin (a S)+\right. & \left.\sin \kappa_{t} \cos (a S)\right]-\frac{1}{a} \sin \kappa_{t} \\
& +b \sin \kappa_{t}\left(-\frac{S^{3}}{3}+\frac{a^{2}}{2} \frac{S^{5}}{5}-\frac{a^{4}}{4!} \frac{S^{7}}{7}+\frac{a^{6}}{6!} \frac{S^{9}}{9}+\ldots\right) \\
& +b \cos \kappa_{t}\left(-a \frac{S^{4}}{4}+\frac{a^{3}}{3!} \frac{S^{6}}{6}-\frac{a^{5}}{5!} \frac{S^{8}}{8} \ldots\right) \\
& +\frac{b^{2}}{2} \cos \kappa_{r}\left(-\frac{S^{5}}{5}+\frac{a^{2}}{2} \frac{S^{7}}{7}-\frac{a^{4}}{4!} \frac{S^{9}}{9} \ldots\right) \\
& +\frac{b^{2}}{2} \sin \kappa_{t}\left(a \frac{S^{6}}{6}-\frac{a^{3}}{3!} \frac{S^{8}}{8} \ldots\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{b^{3}}{3!} \sin \kappa_{1}\left(\begin{array}{c}
S^{7} \\
7
\end{array}-\frac{a^{2}}{2} \frac{S^{9}}{9} \ldots\right) \\
& +\frac{b^{3}}{3!} \cos \kappa_{1}\left(a^{S^{8}} \frac{.}{8}\right) \\
& +\frac{b^{4}}{4!} \cos \kappa_{l}\left(\frac{S^{9}}{9} \ldots\right) \\
& +b \cos \kappa_{t}\left\{-c \frac{S^{0}}{6}+\frac{a^{2} c}{2} \frac{S^{8}}{8}+\left(\frac{a c^{2}}{2}-\frac{a^{4} c}{4!}\right) \frac{S^{10}}{10}\right. \\
& \left.+\left[\frac{a^{6} c}{6!}-\frac{a^{3} c^{2}}{3!(2)}+\frac{c^{3}}{3!}\right] \frac{S^{12}}{12}+\left[-\frac{a^{8} c}{8!}+\frac{a^{5} c^{2}}{5!(2)}-\frac{a^{2} c^{3}}{2(3!)}\right] \frac{s^{14}}{14}\right\} \\
& +b \sin \kappa_{1}\left\{a c \frac{S^{7}}{7}+\left(\frac{c^{2}}{2}-\frac{a^{3} c}{3!}\right) \frac{S^{9}}{9}+\left[-\frac{a^{2} c^{2}}{2(2)}+\frac{a^{5} c}{5!}\right] \frac{S^{11}}{11}+\ldots\right\} \\
& +\frac{b^{2}}{2} \sin \kappa_{l}\left(c \frac{S^{8}}{8}-\frac{a^{2} c}{2} \frac{S^{10}}{10}+\ldots\right) \\
& +\frac{b^{2}}{2} \cos \kappa_{t}\left[a c \frac{S^{9}}{9}+\left(-\frac{a^{3} c}{3!}+\frac{c^{2}}{2}\right) \frac{S^{11}}{11}+\ldots\right] \\
& +\frac{b^{3}}{3!} \cos \kappa_{t}\left(c \frac{s^{10}}{10}+\ldots\right) \\
& +\frac{b^{3}}{3!} \sin \kappa_{t}\left(-a c \frac{S^{11}}{11}+\ldots\right) \\
& +b \cos \kappa_{t}\left[-d \frac{S^{7}}{7}+\frac{a^{2} d}{2} \frac{S^{9}}{9}-\frac{c d}{4!} \frac{S^{11}}{11}+\frac{a d^{2}}{2} \frac{S^{12}}{2}+\frac{a^{6} d}{6!} \frac{S^{13}}{13}\right. \\
& \left.-\frac{a^{3} d^{2}}{3!(2)} \frac{S^{14}}{14}+\left(-\frac{a^{8} d}{8}+\frac{d^{3}}{3!}\right) \frac{S^{15}}{15}\right] \\
& +b \sin \kappa_{1}\left[a d \frac{S^{8}}{8}-\frac{a^{3} d}{3!} \frac{S^{10}}{10}+\frac{d^{2}}{2} \frac{S^{11}}{11}+\frac{a^{5} d}{5!} \frac{S^{12}}{12}-\frac{a^{2} d^{2}}{2(2)} \frac{S^{13}}{13}\right. \\
& \left.-\frac{a^{7}}{7!} \frac{S^{14}}{14}+\frac{a^{4} d^{2}}{4!(2)} \frac{S^{15}}{15}+\left(\frac{a^{9} d}{9!}-\frac{a d^{3}}{3!}\right) \frac{S^{16}}{16}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{b^{2}}{2} \sin \kappa_{t}\left(d \frac{S^{9}}{9}-\frac{a^{2} d}{2} \frac{S^{11}}{11}+\frac{a^{4} d}{4!} \frac{S^{13}}{13}-\frac{a d^{2}}{2} \frac{S^{14}}{14}-\frac{a^{6} d}{6!} \frac{S^{15}}{15}+\ldots\right) \\
& +\frac{b^{2}}{2} \cos \kappa_{i}\left(a d \frac{S^{10}}{10}-\frac{a^{3} d}{3!} \frac{S^{12}}{12}+\frac{d^{2}}{2} \frac{S^{13}}{13}+\frac{a^{5} d}{5!} \frac{S^{14}}{14}-\frac{a^{2}}{2} \frac{d^{2}}{(2)} \frac{S^{15}}{15}+\ldots\right) \\
& +\frac{b^{3}}{3!} \cos \kappa_{t}\left(d \frac{S^{11}}{11}-\frac{a^{2} d}{2} \frac{S^{13}}{13}+\frac{a^{4} d}{4!} \frac{S^{15}}{15}-\frac{a d^{2}}{2} \frac{S^{16}}{16}+\ldots\right) \\
& +\frac{b^{3}}{3!} \sin \kappa_{t}\left(-a d \frac{S^{12}}{12}+\frac{a^{3} d}{3!} \frac{S^{14}}{14}-\frac{d^{2}}{2} \frac{S^{15}}{15}+\ldots\right) \\
& +\frac{b^{4}}{4!} \sin \kappa_{t}\left(-d \frac{S^{13}}{13}+\frac{a^{2}}{2} d \frac{S^{15}}{15}+\ldots\right) \\
& +\frac{b^{4}}{4!} \cos \kappa_{t}\left(-a d \frac{S^{14}}{14}+\ldots\right) \\
& +\frac{b^{5}}{5!} \cos \kappa_{1}\left(-d \frac{S^{15}}{15}+\ldots\right) \\
& +c \sin \kappa_{t}\left(-\frac{S^{4}}{4}+\frac{a^{2}}{2} \frac{S^{6}}{6}-\frac{a^{4}}{4!} \frac{S^{8}}{8}+\ldots\right) \\
& +c \cos \kappa_{t}\left(-a \frac{S^{5}}{5}+\frac{a^{3}}{3!} \frac{S^{7}}{7}-\frac{a^{5}}{5!} \frac{S^{9}}{9}+\ldots\right) \\
& +\frac{c^{2}}{2} \cos \kappa_{t}\left(-\frac{s^{7}}{7}+\frac{a^{2}}{2} \frac{S^{9}}{9}+\ldots\right) \\
& +\frac{c^{2}}{2} \sin \kappa_{t}\left(a \frac{S^{8}}{8}+\ldots\right) \\
& +c \cos \kappa_{t}\left(-d \frac{S^{8}}{8}+\frac{a^{2} d}{2} \frac{S^{10}}{10}+\frac{a^{4} d}{4!} \frac{S^{12}}{12}+\frac{a d^{2}}{2} \frac{S^{13}}{13}+\ldots\right) \\
& +c \sin \kappa_{1}\left(a d \frac{S^{9}}{9}-\frac{a^{3} d}{3!} \frac{S^{11}}{11}+\frac{d^{2}}{2} \frac{S^{12}}{12}+\frac{a^{5} d}{5!} \frac{S^{13}}{13}+\ldots\right) \\
& +\frac{c^{2}}{2} \sin \kappa_{r}\left(d \frac{s^{11}}{11}-\frac{a^{2}}{2} d \frac{s^{13}}{13}+\ldots\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{c^{2}}{2} \cos \kappa_{t}\left(a d \frac{S^{12}}{12}+\ldots\right) \\
& +d \sin \kappa_{t}\left(-\frac{S^{5}}{5}+\frac{a^{2}}{2} \frac{S^{7}}{7}-\frac{a^{4}}{4!} \frac{S^{9}}{9}+\ldots\right) \\
& +d \cos \kappa_{t}\left(-a \frac{S^{6}}{6}+\frac{a^{3}}{3!} \frac{S^{8}}{8}+\ldots\right) \\
& +\frac{d^{2}}{2} \cos \kappa_{t}\left(-\frac{S^{9}}{9}+\ldots\right) \\
& +a b c d \cos \kappa_{t}\left\{\frac{S^{11}}{11}-\frac{a^{2}}{3!} \frac{S^{13}}{13}-\frac{a b}{2(2)} \frac{S^{14}}{14}+\left[\frac{a^{4}}{5!}-\frac{b^{2} a c}{3!(4)}\right] \frac{S^{15}}{15}\right. \\
& \left.+\left[\frac{a^{3} b}{4!(2)}-\frac{b c}{4}\right] \frac{S^{16}}{16}+\left[-\frac{a^{6}}{7!}+\frac{a^{3} c}{4!(2)}+\frac{a^{2} b^{2}}{(3!)^{2}}-\frac{c^{2}}{3!}\right] \frac{S^{17}}{17}\right\} \\
& +a b c d \sin {\kappa_{t}}_{t}\left\{-\frac{a}{2} \frac{S^{12}}{12}-\frac{b}{2} \frac{S^{13}}{13}+\left(\frac{a^{3}}{4!}-\frac{c}{2}\right) \frac{S^{14}}{14}+\frac{a^{2} b}{3!(2)} \frac{S^{15}}{15}\right. \\
& +a b c \frac{d^{2}}{2} \cos \kappa_{t}\left(\ldots \frac{a}{2} \frac{S^{16}}{16}+\ldots\right) \\
& +a b c \frac{d^{2}}{2} \sin {\kappa_{t}}^{15}\left(-\frac{S^{15}}{15}+\frac{a^{2}}{3!} \frac{S^{17}}{17}+\ldots\right) \\
& +\left[-\frac{a^{5}}{5!}+\frac{a b^{2}}{2(3!)}+\frac{a^{2} c}{3!(2)} \frac{7 S^{16}}{16}+\left[-\frac{a^{4} b}{5!(2)}+\frac{a b c}{8}+\frac{b^{3}}{4!}\right] \frac{S^{17}}{17}\right\}
\end{aligned}
$$

With these groupings shown, patterns of terms and coefficients can be observed. The whole equation was coded into three rather brief subroutines-one for terms with two coefficients, COEF1 (two of the four coefficients a, b, c, and d); another for terms with three coefficients, COEF2; and one for terms with all \therefore inf coefficients, COEF3. Finally the coefficients of the terms with the same powers of S are summed: so the [] terms are known in
$R=R_{t}+[]_{1} S+[]_{2} \frac{S^{2}}{2}+[]_{3} \frac{S^{3}}{3}$

$$
+[]_{4} \frac{S_{4}}{4}+\ldots+\left[\ln \frac{S^{n}}{n}\right.
$$

Because in the following developments these coefficients appear frequently within parentheses, for simplicity the []'s are replaced with c's; that is,

$$
\begin{equation*}
R=R_{t}+c_{1} S+c_{2} \frac{S^{2}}{2}+c_{3} \frac{S^{3}}{3}+c_{4} \frac{S^{4}}{4}+\ldots c_{n} \frac{S^{n}}{n} \tag{D6}
\end{equation*}
$$

The conic angular coordinate can be expressed as $\epsilon-\epsilon_{t}=\int_{0}^{S} \frac{\sin \kappa}{R} d S$
where both $\sin \kappa$ and R can be expressed as infinite, but convergent for our purposes, polynomials of S. Since a polynomial in the denominator is an undesirable form to integrate, the polynomial for R was converted to a polynomial in the numerator of the form shown in equation (D8).

$$
\begin{aligned}
\epsilon-\epsilon_{t} & =\int_{0}^{S} \frac{\sin \kappa}{R} d S \\
& =\frac{1}{R_{i}} \int_{0}^{S} \frac{R_{t}}{R} \sin \kappa d S
\end{aligned}
$$

The conversion from equation (D6) to (D8) begins as

$$
\begin{aligned}
\frac{R_{t}}{R} & =\frac{R_{t}}{R_{t}+c_{1} S+c_{2}\left(S^{2} / 2\right)+c_{3}\left(S^{3} / 3\right)+\ldots} \\
& =\frac{1}{1+\left(c_{1} / R_{t}\right) S+\left(c_{2} / R_{t}\right) S^{2}+\left(c_{3} / R_{t}\right) S^{3}+\ldots} \\
& =\frac{1}{1-D_{l} S-D_{2} S^{2}-D_{3} S^{3}-\ldots}
\end{aligned}
$$

where
where

$$
\begin{equation*}
\frac{R_{t}}{R}=1+R_{1} S+R_{2} S^{2}+R_{3} S^{3}+\ldots \tag{D8}
\end{equation*}
$$

Table Vl summarizes the preceding division.
The coefficients for equation (D8) are generated in subroutine RCOEF. The coding for the procedure is somewhat complex, but in general not much computation is required to satisfy a tolerance criterion of $1.0 \mathrm{E}-08$.

The conversion of $\sin \kappa$, where
$\kappa=\kappa_{t}+a S+b S^{2}+c S^{3}+d S^{4}$
to the polynomial form

$$
\begin{equation*}
\sin \kappa=A_{1}+A_{2} S+A_{3} S^{2}+A_{4} S^{3}+A_{5} S^{4} \ldots \tag{D9}
\end{equation*}
$$

is accomplished in the same way as it was for the cosine series (eqs. (D1) to (D5)). In fact, the cosine series can be converted to the sine series with the following substitutions:

Cosine series

$$
\begin{array}{lc}
-\sin \kappa_{t} & \cos \kappa_{t} \\
-\cos \kappa_{t} & -\sin \kappa_{t} \\
\sin \kappa_{t} & -\cos \kappa_{t} \\
\cos \kappa_{t} & \sin \kappa_{t}
\end{array}
$$

Sine series

Consequently the same routines that are used to compute the cosine series casin essily be modified to compute the sine series coefficients also.
When the polynomial series coefficients in equations (D8) and (D9) are known, the integration for ϵ is straightforward.

$$
\begin{aligned}
\epsilon-\epsilon_{t}= & \frac{1}{R_{t}} \int_{0}^{S} \frac{R_{t}}{R} \sin \kappa \\
= & \frac{1}{R_{t}} \int_{0}^{S}\left(1+R_{1} S+R_{2} S^{2}+R_{3} S^{3}+\ldots\right) \\
& \quad \times\left(A+A_{2} S+A_{3} S^{2}+A_{4} S^{3}+\ldots\right) \\
= & \frac{1}{R_{1}} \int_{0}^{S} A_{1}+\left(A_{2}+R_{1} A_{1}\right) S \\
& +\left(A_{4}+R_{1} A_{3}+R_{2} A_{2}+R_{3} A_{1}\right) S^{3}+\ldots \\
= & \frac{1}{R_{i}}\left\{A_{1} S+\frac{\left.A_{2}+R_{1} A_{i} A_{1}\right) S^{2}}{2} S^{2}\right. \\
& +\frac{A_{3}+R_{1} A_{2}+R_{2} A_{1}}{3} S^{3} \\
& \left.+\frac{A_{4}+R_{1} A_{3}+R_{2} A_{2}+R_{3} A_{1}}{4} S^{4}+\ldots\right\}
\end{aligned}
$$

The general routine for establishing the polynomial coefficients for the conic coordinates is EPSL2. The end result is constant polynomial coefficients ior the conic coordinates (R and ϵ) as a function of S. These coefficients are saved so that the conic coordinate at any S of interest can be computed easily with subroutine CONE.

References

1. Johnsen, Irving A.; and Bullock, Robert O. eds.: Aerodynamic Design of Axial-Flow Compressors. NASA SP-36, 1965
2. Crouse, James E.: Computer Program for Definition of Transonic Axial-Flow Compressor Blade Rows. NASA TN D-7345, 1974.
3. Schwenk, Francis C.; Lewis, George W.; and Hartmann, Melvin J.: A Preliminary Analysis of the Magnitude of Shock Losses in Transonic Compressors. NACA RM F57A30, 1957.
4. Seyler, D.R.; and Smith, L. H., Jr.: Single State Experimental Evaluation of High Mach Number Compressor Rotor Blading. Part I-Design of Rotor Blading.
(GE-R66FPD321-PT-1, General Electric Co.; NASA Contract NAS3-7617.) NASA CR-54581, 1967.
5. Katsanis, Theodore: FORTRAN Program ior Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TN D-5427, 1969.
6. Katsaris, Theodore; and McNally, William D.: Revised FORTRAN Program for Calculating Velocities and Streamlines on Hub-Shroud Midchannel Stream Surface on an Axial-, Radial-, or Mixed-Flow Turbomachine or Annular Duct. I-User's Manual. NASA TN D-8430, 1977.
7. Vavra, Michael H.: Aero-Thermodynarnics and Flow in Turbomachines. John Wiley \& Sons, Inc., 1960.

TABLE I. - OVERVIEW OF COMPUTER PROGRAM

Program control		
Input atid initialization	Iteration	Terminal calculations
Read and interpret data Locate calculation stations At each station for eazh streamline, estimate stagnation temperature and pressure and axial and rangential velocities	Outer loop: At calculation stations Set coefficients of equation of moticr If blade design uption, set meidence and deviation angles, compute new blade edge location, and reset calculation station location Inner loop: At each calculation station Solve for meridional velocity distribution to satisfy equations of motior and continuity Reset streamline location	Overall blade row performance on streamlines at calculation station: General State properties (temperature and pressure) Velocity diarrams Streamline information Blade row's Element definition parameters Licidence and deviation angles Aerodynamic performance parameters Streamline choke margin Blade section parameters: Suriace coordinates Area, moments, etc.

IABLF III. - EXAMPLe problem
** ihput dita for comfressor design program *** tre inlet flow rate is 73.300 (lbesec). the molecular weight is 28.37 he compressor has 4 blade rows.
Calcuiations will be made at tee blade edges and at 17 annular stations.
THE SPECIFIC hett polynomikl 15 in the following form
$C P=0.23747 E 00+0.21962 E-04 * T+-0.87791 E-07 \times 1 * 2+0.13991 E-09 \times T * 3+-0.78056 E-13 * 1444+0.15043 E-16 \times 1 * * 5$
INPUT DISTRIBUTIONS BY STREAMLINE CR STREAMTUBE

SIREAMTUBE
\rightarrow NMOnemmoro

 ooóodocoo

mimimimiminiminimér
infut data points for tip and hub contours. cund

Warning oniy, at input point, l2, the tip contour data is not very smooth.

prit pass	d-factior	loss param.	d-factor	loss param.	D-FACtor	loss param.	d-factior	loss param.	d-factor	AM
	0.3000	.0:39	0.6000	0168	0.5000	0.0203	0.6090	0260	¢. 7000	0.0338 0.0263
10.00	0. 3000	0.0112	0.4000	0.0130 0.8115	0.5000 0.5000	0.0160 0.0132	0.60000 0.6000	0.0202	0.7000 0.7000	. 02263
30.03		0.0380	0.4005	0.0089	0.5000		0.6000	0.0130	0.7000	0165
$\bigcirc 0.30$	0. 3000		0.4000	0.0087	0.5000	. 0103	0.6000	0.0130	0.7000	0165
50.00	0.3009	0380	0.4030	0089	0.5000	0103	0.6000			0165
5.00	3000	0080	4093	- 589	B.5008	- 0.0103	0.6000 0.600	-. 01150	0.7000	0165
83.30	0.3090	0690	0.4000	0.0123	0.5090	0122	0.6000	0153	0.7000	0200
30.20	0. 3030	- 0	0.4000	0. 01127	\bigcirc	0.0168	0.6000 0.6000	-0.0221	0.7000	0.0243
** profile loss table no. 2 **										
PCI. PASS	D-FACtior	SS	d-Factior	loss Par	D-FACTOR	OSS PA	D-FACTOR	loss param	d-Factor	coss
						0.0373		0.0430	0.7000	
10.02	0.3309	0.3272	0.4000	0.0290	0.5000	0.0320	0.6000	0.0362	0.7000	0.0423
$\bigcirc 0$	0.3090	0.0250	0.4000	0.0263	-. 5000	0282	0.6000	0313	0.7000	- 0.0338
3.80 4.00	O. 3009	0.0230	O. 4,1000	9.0220	- 0.50000		0.6000	${ }_{0} 2681$	0.7000	0.0296
500	0.3000	0.0212	0.4000	. 0222	-. 5000		6000	02	0.70	0299
¢0.c0	0.3050	0214	4000	0.0226	0.5000	. 0241	0.6000	026	0.70	0306
is. 00	0.3300	0218	0.4300	0231	0.5090	0248	0.6000	0278	0.7000	0317
83.90	0.3030	0233	0.4000			0.0270	0.6000	0303	0.7000	0.0347
30.00	0.3000	0.0272	0.4000	0.0290 0.0317	0.5099	0.0320 0.0358	0.6600 0.6000	- 0.03622	0.7000	0.0485

*** printout of input station data ***											
tip axial liocation	hub	axial location (InCHES)	fip	blockage	iactor	hub	blockage	factor	mass	bleed	fraction
-11.0000		-11.0000		0.0000			0.0000				000
		** inpui	NO.	2 IS AN	annular	station	**				
iIP AxiAl location	HUB	$\begin{aligned} & \text { AXIAL LDCATION } \\ & \text { (1HCHES) } \end{aligned}$	TIP	blockage	factor	hus	blocxage	Factor	mass	BLEED	fraction
-9.0000		-9.0000		0.0010			0.0010				

[^3]\circ
0
0
0
0

MASS BLEED FRACIICA
0.0000
MASS BLEED FARCIION

mass bleed feaction
0.0000
mass bleed fantilion 8
8
0
\vdots
TABLE III. - Continued.
*M PRIMTOUT OF INPUT STATION DATA MKM
** input set no. : is rotor no. i **
(
INLET TIP BLOCKAGE INLE

COEF.	ROT08	OUTLET	PRESSURE	L.E. RADIUS/CHORD	T.E.	RADIUS/CHORD	Max.	THICKHESS/CHORD	CHORDITIP CHORD
constant				0.0018		0.0018		0.0290 0.0000	0.0000
IIAERR		0.0000		0.0000		0.0000		0.1680	0.0000
Quadratic		0.0000		0.0090 -0.0060		-0.0060		-0.1170	0.0000
cubic		0.0000		-0.0060		-0.0060			
quartic		0.0000							
quintic		0.0000							

- Function-of-passage-height-from-tip polynomial coefficients for greater specification of blade element geometry a

TABLE III. - Continued.

Mass bleed fraction
** INPUT SET NO. 9 IS AN ANNULAR STATIOA *K
w* Printout of input station data ***

$$
\begin{gathered}
\text { IIP AXIAL LOCAIION } \\
\text { (INCHES) }
\end{gathered}
$$

hub axial location tip blockage factor hub blockage factor

$$
3.3000
$$

$$
0.0150
$$

3.0000

* input blade element definition options *
 table table table (l.e.ref.)
* table of blade section design variables input * * table of blade section design variables inpur * CON
ANACE
ANGLE SURFACE
CE ANGL
REES)

00000000000 table
(variables controlled by other options will appear as zeros in the table.) SUCTION SURFE DEVIATION ANGLE INLETAOUTLET TURNING TRANSITION/CHORD
INCIDENCE ANGLE
(DATE RATIO
(DEGREES

0.

OKNNMNONNMO
$\stackrel{0}{\circ}$

STREAMLINE NUMBER
 -nmoneraaga

INCIDENCE
ANGLE
TABLE (S.S.REF.)
TABI.E III. - Continued.
*** PRINTOUT OF INFUT STATION DATA EKE

$$
\text { " input set ho. } 10 \text { is a guide vaie or stator ** }
$$

OPTIONS *

*** PRINTOUT OF INPUT STATION DATA *MK
 $7.3400 \quad 0.0200$

INCIDENCE
ANGLE
TABLE (S.S.REF.)

IIP AXIAL LOCATION
(INCHES)
7.3400

MASS BLEED FRACTION
0.0000
MASS BLEED FRACTION
0.0000

IIP AXIAL LOCATION
(INCHESS
19.2500

 ommmuninerinminminimminiviminin
Z(I, J)

TABLE III. - Continued.

 픛․

 -

\square \vdots

\pm

-

-

๔

R	${ }^{\text {cP }}$	Garen	041	PSUM	bHe	Dinc	
	0.24126	. 40064	35.416	5073.508	35.3702	1.385	. 4024
** vz	array						
Station		1	2	3	4	${ }_{5}^{\text {Sireamline }}$	n_{6} UMBER
							574
$\frac{1}{2}$		505.74	552.89	572.93 5729	571.15	571.48	571.13 568.70
$\frac{3}{4}$		503.45 504.46 58	580.57 58507	570.28 572.48 8.9	569.07 570.56	569.27 570.32	568.70 568.92
5		513.93	579.28	579.83	571.30 586	576.26	573.85
6		524.95 508.54	578.07 574.41	5 58.95	586.09 587	585.82 602.98 8	683.93 603.93
8		514.30	59.07	61518	625.79	53319	636.61
9		478.54 478.61	509.02 509.01	518.04 518.01	522.10 522.05	527.16 527.12	531.28
10		540.70 540	569.11	${ }_{563} 56.4$	563.72 588 58	555.17	555.69 590.20
12		552.45 576.32	579.35	586.14 573.10	588.21 574 8.18	590.11 575	590.20 575.02
${ }_{3}$		558. 56	572.28	57983	586.65	591.38	595.26
15		622.13 519.03	630.70 523.31	636.83 522.13	644.32 524.42	644.35 526.23	642.15 526.75
15		519.07	520.32	$522 \cdot 12$	524.40	526.21 5662 56	526.74
$1{ }_{17}^{16}$		553.09 559.33	556.07 564.54	557.81 568.74	569.00 572.32	561.52 574.85	561.54
18		551.33 558	550.48	550.42	550.46	550.15 555.57	548.85 553 58
${ }^{19}$		588.31 587	555.96	557.48 582.10	556.78 577.80	559.57	555.48
21		663.58	644.25	582.82 633 83	611.88 513	555.67 594.48	578.80 574.82 8.
228 23		676.54	653.36 638.20	633.07 618.55	513.65 599.20	594.48	559.67
24 25		${ }^{6950.64}$	606.76	587.30 532.72	569.10 523.95	551.47 514.85	533.52 504.72
25		550.98	541.55	532.72			

TABLE III．－Continued．
（c）Program output
＊＊the corrected weightflow per unit of casing annular area at the inlet face of the first blade row is 38．91 lbs／secfft sa a＊

－으NㅇNNNOROR

STREAM．
CURV．

－panu！̣aoว－＇III オTG甘L

STATIC
TEMP．
（DEG．R．）

 NiNRNNNMNNN

으NㅇNNOROOR $\cdots \infty+\infty+\infty+\infty+\infty+\infty$
 TOTAL
PRESS

 으으으으응ㅇ응 00000000000

Nonninsiniomin iopoopoopo7T
streakines at statzon．
․․888888888
00000000000
ㅇ

歓

STREAMLINE

ニーNmonordagニア

Merofaxa すo po

total

nu in in in io mix

ざざざざざざざさ

－0000000000

iopopio묵구
遏

 17r900000：

 ざざざざざざざさ

 10000000000
：8888888888 － 0.0 .00000000
\qquad

00000000000°

～～～Nininiousionio
－88888：88：8．
00000000000

－

－pənu！zuog－＇HI 3T8VL

STATIC
TEMP．
 STATIC
PRESS．
（PSIA）

家

-

STREAM．
CURV．

iicoicoodoco

テーMiponivog
at station．
$\mathrm{MABS}^{\text {ABS }}$ ．
8888888888：
0.000000000

STATIC TEMP．
 $\dot{\sim}$
 ๗ininionicion

－gogamonニニロ

 STREAM．
CURV．
$(1$, IN．）
 00000000000

 Min

就等
3
andand

 00000000000

がびロa゚ 0000000000

敀

m๙̃ำำスnis $00=00000$

ますがonay 0

 misininininn 00000000000

mivirinionion

 2ximooufoin

にas．

rasomosinioning
 ～Nivincjestana

minimimimimiminim

䓂号

よonjousion i

ansion

TABLE III．－Continued

都

No		－－－imlet streamilne－－－			IN．ElADE Hincle （DEG）	TPAN PT BL．Anste DEG：	BLD．SET ancle （CEEG）	$\begin{gathered} +4+4+4 \\ 15 \mathrm{SES} \\ 5 . \mathrm{SAM} \\ \text { (DEG) } \end{gathered}$	ayout cone MASH NO． at ShOCK location	SH．LOC AS FRACT of s．s．	COV．CHAN AS FRACT OF S．S．	$\begin{aligned} & \text { MIN. CHX } \\ & \text { MREA } \\ & \text { MARGIN } \end{aligned}$	Pi．loc in －jy Cmsh	
	IINE	INC	S．S．INC	IN．BLADE										
	PCTI．	ANGIE	ANGLE	Amite										
	Pass													
			－3．00	36.75	36.70	19.07	10.30	21.77	1.0607	0.3343	0.5159	0.2408	9000	-0.71
2	3.86	3.17	－3．00	33.50	33.52	17．38	10.63	17.97	0.9921	0． 3092		3．1963	¢ 3 \％	ご175
3	15.49	3.14	-3.05	13．43	Y3 53	29.23	12． 53	17.03	0．9858	－． 2967	0.6159	0.1774	0 0．j5	－630？
4	24.41	3.09	－3．00	33.92	33.75	21.02	12.15	16． 26	－ 8.994	0.2912	0.6275	9．1678	5 Lsas	9．6971
5	32.63	3.94	－3． 03	34.65	\％4． 65	21.94	12.81 13 59	16.25	2． 2147	0.2874	0.6393	0.159 \％	3 603	¢ 11：
3	41.48		－3．30	35.27	35.71	23．38	13.59	16.33	1.0398	0.2826	0.6493			\％
	50.69	2.93		37．：4	37.36	24．37	14.48	16.42	1.0745	0.2760	0.6583	5.1375	3 \％${ }^{\text {\％}}$	： 275
8	59.58	2.86	－ 3.00	35.95	39．32	25.23 27	15.85	16.44	1.1175	0.2675	0.6697	0.1245	9.90%	： 4
8	71.53	2.78	－3．00	40.31	43.81	27.73	16.79	15.78	1.1881	0.2570	0.6775	$0.114!$	9． $6: 9$	
13	83.59		－ 3.00	47.81	47.08	32.29	16.64	17.39	1． 30.4	0.2408	0.6801	1927	dis	

TABLE III. - Continued.

TOTAL
TEMP.
GDEC.
619.71

-

 Mrnivi
:88888888588 ocociociododod

$\begin{aligned} & \text { AxIAL } \\ & \text { CHILSEC } \end{aligned}$	
\%20.65	
	84. 48
	645 688
468.79	39.23 615.47

streamicine

5 かowsomoryo

soonoooncon
 ninvicinioi 00000000000
 -00.000000.0

 -ronicooguna
 niminnivsion
 ตinuxinission

2888888888:
00000000009

Ninivimistorinin

＇panumuo－＇III JTGVL

とて	OonmuNM oamm
世－	¢Nommmanuno
E．	
号	mmutnnoncon
山O	$\rightarrow-\rightarrow \rightarrow-\mathrm{mancon}$

	MMIINE PCT． SPAN	PRESS． RATIO	$\begin{aligned} & \text { TEMP. } \\ & \text { RATID } \end{aligned}$	AERO． CHORD （IN．）	MEAN SPACING （IN．）	$\begin{aligned} & \text { LOCAI } \\ & \text { RADIUS } \\ & \text { (IN.) } \end{aligned}$	BLADE F FOR，AXIAL （LBS／IH）	$\begin{aligned} & \text { JRCES } \\ & \text { TANG. } \\ & \text { (LBS/IN) } \end{aligned}$	$\begin{gathered} -\bar{O} \text { OUTLET } \\ \text { T.E.RAD. } \\ \text { ZCHORD } \end{gathered}$	$\begin{aligned} & \text { STREAI } \\ & \text { DEV. } \\ & \text { ANGLE } \\ & \text { (DEG) } \end{aligned}$	AMLINE－－－ OUT．BLADE ANGLE （DEG）	＋＋LayOUT QUT．BLADE ANGLE （DEG）	$\begin{aligned} & \text { COHE }++\downarrow \\ & \text { MAX. CAMB } \\ & \text { PI.LOC. } \\ & \text { CHOPD } \end{aligned}$	$\begin{aligned} & \text { TE.FRSH } \\ & \text { CKN.CRNI } \\ & \text { RニDOIDR } \end{aligned}$
1	1.63	1．5258	1.1505	2.0262	1.5504	9.377	13.7589	－8．3978	0.0061	2.60	56.49	56.42	0.5367	0.0310
2	9.57	1.5237	1.1460	2.0281	1.4995	9.069	13.2124	－8．2095	0.0069	2.70	55.34	55.27	0.5339	0.0724
3	17.68	1.5230	1.1432	2.0273	1.4475	8.754	12.5914	－8．1036	0.0076	2.93	53.57	53.52	0.5238	0.0945
4	26.02	1.5224	1.1403	2.0267	1.3941	8.431	11.9694	－7．9553	0.0083	3.20	51.54	51.49	0.5118	0.1041
5	34.60	1.5222	1．1385	2.0263	1.3389	8.098	11.2899	－7．8518	0.0091	3.53	49.00	48.98	0.5021	0.1167
6	43.52	1.5230	1.1380	2.0262	1.2815	7.750	10.5453	－7．7874	0.0099	4.02	45.78	45.77	0.4998	0.1315
7	52.85	1.5263	1.1381	2.0266	1.2211	7.385	9.7717	－7．7158	0.0108	4.70	41.67	41.67	0.4995	0.1490
8	62.66	1． 5314	1.1385	2.0277	1.1570	6.997	8.7441	－7．6187	0.0116	5.55	36.41	36.43	0.4989	0.1693
9	73.05	1.5395	1.1394	2.0303	1.0881	6.581	8.0526	－7．4390	0.0126	6.70	29.55	29.61	0.4981	0.2035
10	84.27	1.5594	1.1439	2.0365	1.0121	6.121	6.9670	－7．1181	0.0136	8.55	19.37	19.59	0.4968	0.2938
11	97.36	1.6165	1.1577	2.0527	0.9204	5.566	5.3354	－7．6779	0.0148	12.40	－0．99	－0．19	0.4946	0.4105

 Nin
 ningunininininim

高

minnmeming vivit
 -00000000000
 Mninonno inio

SEGMENT LAYOUT
IN／OUT CONE ANG．
TURN．RATE（DEG）

3

©0000000000

 50000800000

scoiojos．00
 －0000000000
 $00000^{\circ} 0^{\circ} 00^{\circ}$
 MmmmmmonNNか
 00000000 mm
かmomonamnoon

Fのmgormogan

88ㅇㅇㅇㅇㅇㅁㅇㅇㅇㅇㅇㅇㅇ immimimmimm
NルNかMMOMNNO vinNiñiñiña

STREAMLINE	
NO．PCT．	
	PASS．
1	1.63
2	9.89
3	17.86
4	26.24
5	34.86
6	43.79
7	53.12
8	62.93
9	73.31
10	84.52
11	97.43

*

芯

 OMTLET. RAD.
/CHORD

 1000MNNöm

 $\rightarrow \underset{1}{n} \boldsymbol{\sim}$
 ninociovorocize

 -0000000000

 -000000000

	Yua
3	
$\underset{\underline{z}}{\vec{y}}$	三敩
吾	
，	
\pm	
士	$\stackrel{5}{5}$
\approx	
$\dot{\text { zi }}$	3 ${ }^{\text {w }}$
E	
Σ	发
$\underset{~}{2}$	发
	－
芘	
¢	
宸	
à	
号	－氙
5	

STATIC
TEMP．
 ธิะ

giminminimim
 －0000000000

	－

定	

TABLE III．－Continued．
＊＊VALUES OF PARAMETERS ON STREAMLINES AT STATION， 21 ，WHICH IS AN ANNULUS x ：

		$\substack{\text { TANG. } \\ \text { CFINSEC } \\ \text { CFISE }}$		$\mathrm{mabs}^{\text {mat }}$ NO．		（DGG）					
663.21 643 68	664.83 646.19	00.00	664.83 646.19	0．5232	0． 00	4.90	： 0.123	35．272	709．79	29．278	
退 61.26		－0．08	行30．37	0.5001	0.00	5：70	－0，092		¢695		
（ 575.45		0：00	${ }_{5}^{585}$	－ 0.47612	0：00	7．065	0．098		\％88．42	30．278	658.64 658.99 68.95
	S65： 51	0：00		－ 0.49396	0：00	－8．68	0．08\％	－ 35.305			659.85 666.09
418.18	481 464 48	－0．00	48，	－ 0.48438	0：00	$\stackrel{9.15}{9}$	－ 0.088		5887．	（3．203	602.68 667.82
． 18	424.7			0.332	0.00	10.07	0.11	34.217	694.	81．596	680.01

000000000000

28888：8：8：88
000000000000

家动岂
88888888888
00000000000

TABLE III．－Continued．

＊＊
＊＊
hhich is an annulus
23．

STATIC
TEMP．
TE

ふia Nowsuningor

空安安

$0000000^{\circ} 0000^{\circ}$
我出気
 NNスNNNNNNNN

808889488980 00000000000°
∞

응ㅇㅇㅇㅇㅇㅇ응8응
00000000000

STATIC
TEMP．
（DEG．R．）

 minininnininimin

RONすがNo

8888888：888
00000000000
 ix － 00000000000
 aid

00000000000

'panupuos - 'III 378vL

$*$ axial location of stacking ine in compressor

 no. ${ }_{\text {hp }}^{3}$ coordinates

 SECT 2 COORDINATES
3.0

오
T

岃

coordinates

 faczeosion
no.

-nms
u* blade section properties of stator no. 1 following rotor no. 1 **

玄

'panupuoo - 'HI JTGV.L

'panu!quo - 'III 3TGVi

IN.

$$
* *
$$

TABLE III. - Continued.

 7

TABLE III. - Continued

TABLEF III. - Continued.

TABLE III. - Contnued.

TABLE III. - Continued

$$
\text { * BLADE SECTION PROPERTIES OF STATOR NO. } 1 \text { fOLLOWING ROIOR NO. } 2 \text { ** }
$$

SECTION

TVが

SECTION
SETING
ANGIE
AEEG
9.481
11372
12.510
13.393 42.0
coordinates
 옺

 no.

SECTION NO. ${\underset{H}{2}}_{2}$ COORDINATES

 no.

 $5 E$

STACKING POINT	
COORDINATES	
(H
(IN.)	(IN.)
0.8764	0.1693
0.8765	0.1508
0.8764	0.1448
0.8764	0.1456

$\dot{3}$ 人*000000000000000000000000000000000000*0

 SECTION
AREA
(IN.) $\times 22$
0.16163
0.15417
0.14727
0.14222
 웆

שangnn
 5 SCI
i nonco

 i

5 coordinates

IN.

\qquad ∞
** blade section properties of stator no. 1 folioning rotor no. 2 **
** blade section properties of stator no. I folioning rot cmpressor $=12.200$ in. て,
in.
 12.700
IMAX
SETING
ANGLE
AEGL
18.147
9.568 axial location of stacking line in compressor MOMENTS OF INERIA
THROUGH C.G. $\underset{\text { SECTIOA }}{\text { SREA }}$ (1N. $1 \times *$?
0.1459
0.19535 BLADE SECTION
G. COORDINATES $\begin{array}{ll}\text { (1N } \\ 0.8765 & 0.2290 \\ 0.8765 & 0.1678\end{array}$ 0.8765

g coordinates

 2
芯
$0-1$
TAELE III. - Comtinued.

fract. SURF.	$\begin{aligned} & \text { SECT10 } \\ & \text { SUCTION } \\ & \text { (IN. } \end{aligned}$		$\begin{gathered} \text { XCUT OF }{ }_{\text {PRESUR }}^{\text {b }} \\ \text { (IN.) } \end{gathered}$		$\begin{gathered} \text { SECTIO } \\ \text { SUCIIO } \\ \text { (IN.) } \end{gathered}$				$\begin{gathered} \text { SECTIO } \\ \text { SUCIION } \\ \text { (IN.) } \end{gathered}$	$\begin{gathered} \text { SUROR } \\ \text { SURACE } \\ \text { (IN.) } \end{gathered}$		
0.80	-0.7941	-0.3861	-0.7767	-0.4044	-0.7730	-0.4490	-0.7561	-0.4624				
0.05	-0.7316 -0.6380	-0.3193	-0.7064 -0.6049	-0.3519 -0.2825	-0.7183 -0.635	O. -0.3735 -0.2731	-0.6925	-0.4001	-0.7143	-0.3678 -0.3895	-0.4497 -0.6883	-8.4779 -1.147
-. 30	-0.5230	-0.1403	-0.4846	-0.2097	-0.5260	-0.1682	-0.3987	-0.3176 -0.2306	-0.6326	$=0.2855$ -0.1762	-0.5959 -0.4853	-8.328:
0.40	-0.2035	-0.0402	-0.3283	-0.1288	-0.3768	- $\begin{array}{r}-0.0534 \\ 0.0405 \\ 0\end{array}$	-0.3335	-0.1344 -0.053	-0.3794	-0.0565	-0. 3354	-0.1359
0.50 0.65	-0.0305	0.1022	0.0006	-0.0037	-0.0374	0.1113	-0.1731	-0. 05159 0.0109	-8.0158	-0.0412	-0.1755	-0.051
0.70	-. 3138	-. 1652	0. 1744	0.0397	0.1442	0.1573	0.1686	0.8578	0.1455	0.1616	-.1677	0.065
0.80	0.5158	0.1650	9. 5297	0.0859	0.5241	0.1705	-. 54655	0.0863	0.3588	- 0.1810	0. 3770	0.0719
- 0.88		0.1495 0.124 0.165	0.6617	0.0888	0.6741	0.1454	0.6798	0.0892	0.6781	0.1433	- 0.6838	0. 0.2 \% ${ }^{\text {a }}$
1.00	0.8779	0.1007	0.8730	0.0764	- 0.8914	9.1093	${ }_{0} 0.79635$	0.0731	0.8068 0.8959	¢ 0.10652	0.8000 0.8870	3. 3689
1.E. Cl	CLE CENT		-0.7845 0.874	-0.3945 0.0888			$\begin{array}{r} -0.7644 \\ 0.8874 \end{array}$	$\begin{array}{r} -8.4550 \\ 0.0657 \end{array}$			$\begin{array}{r} -0.7576 \\ 0.8916 \end{array}$	$\begin{array}{r} -0.432 \\ 0.0568 \end{array}$
$\begin{aligned} & \text { FRACT } \\ & \text { SURF. } \end{aligned}$	$\begin{gathered} \text { SECTID } \\ \text { SUCIIOM } \\ \text { (1N.) } \end{gathered}$	$\begin{gathered} \text { 10 FOR } \\ \text { SURFACE } \\ \text { (IN.) } \end{gathered}$										
0.00	-0.8326	-0.2644	-0.8042	-0.3042								
0.12	-0.6589	-0.2084	-0. 7285 -0.6203	-0.2631								
0.20	-0.53\%1	-0.0569	-0.4937	-0.1560								
0.40	--.3697	-0.0210	-0.3314	-0.0984								
0.50	-0.0202	0.1205	0.0030	-0.0178								
0.70	-. 16425	0. 141407	0.1737	0.0048								
0.80	0.5234	0.1213	0.5176	0.0144								
0.88	0.6658	0.0913	0.6550	-0.0048								
1.00	0.8732	0.0230	0.7596	-								
t.E. ${ }_{\text {c }}^{\text {Cl }}$	CLE Cent		-0.8163 0.8640	-0.2829 0.0003								

い1）	Comertine		Thickness		Centerhme		Inckness	
	s	S_{3}	$s_{m, 1}$	$\mathrm{sm}_{\mathrm{m}, 2}$	s_{1}	S：	$\mathrm{s}_{\mathrm{m}, 1}$	$\mathrm{s}_{\mathrm{m}, 2}$
	Origin				Hanke（all positive 9			
4	L．eading entige	Tralling edye	Maximum thickneas：	Maximum thekness	10 to S_{1}	0 to $\mathrm{S}_{2} \mathrm{c}$	0 to $\mathrm{mm}_{\mathrm{m}} \mathrm{c}$	0 to $\mathrm{Sm}_{\mathrm{m}} \mathrm{c}$
－3	Trandition point	Trating edve						
－2	L．tading edue	Trabaition polnt						
－1 or＜－1	Tranulition point	Tranaition pornt						
1 or 3	Transition poilt	Tranatrien point	Masimum thickness：	Maximum thickness	0 tas 1.0	0 to 1.0	0 to 1.0	0 to I， 0
\because	I ending ＊）	Tranaition woint						
i	Transifion ［401！	Irallum vige						
1	1aithus ＂der	Tralins ＂dが						

TABLE V, - CHARACTERISTICS OF EMPIRICAL
ADD TIVE TERM AND ITS EFFECTS
CN DENOMINATOR

Mach number in meridional plane, M_{m}	$\mathrm{m}_{\mathrm{m}}^{2}$	$\mathrm{m}_{\mathrm{m}}^{2}-1$	Additive factor	I ni- - or
0.50	0.25	0.75	0.0001	0.7501
. 70	. 49	. 51	. 0006	. 5106
. 80	. 64	. 6	. 0027	. 3627
. 90	. 21	. 19	. 1150	. 20.5
. 95	. 9025	. 0975	. 0377	. $1: 152$
. 97	. 9409	. 05.91	. 0.55	. 1145
. 99	.9001	. 0190	. 03.20	. 1019
1.00	1.00	0000	. 1000	. 1000

	1	\leq		;	;	6	7	-	9
	$\mathrm{F}_{1} \mathrm{~K}_{2}$	$1 i^{2}$	$!\therefore$:	$1 \mathrm{n}^{\prime}$	$1 \mathrm{H}_{t}^{6}$	$1{ }^{5}$	if:	; H_{6}
$\stackrel{\text { r }}{ }$	H_{1}								
:	U_{2}	H_{1}^{2}							
\because	D_{3}	${ }^{2} \mathrm{D}_{1} \mathrm{D}_{2}$	L_{1}						
n;	B_{4}	${ }_{21} H_{1} \mathrm{~L}_{3}+\mathrm{U}_{2}^{2}$	$\therefore \mathrm{H}_{1}^{2} \mathrm{D}_{4}$	${ }^{1}$,					
\because	O_{3}	$2 \mathrm{H}_{1} \mathrm{D}_{4}+2 \mathrm{~J}_{2} \mathrm{D}_{3}$	$3 \mathrm{~L}_{1} \mathrm{~V}_{2}^{\prime} \cdot \mathrm{H}_{1}^{\prime} \mathrm{L}_{2}$	$\mathrm{H}_{1} \mathrm{l}_{2}$	$\mathrm{D}_{1}{ }^{\mathbf{3}}$				
${ }^{6}$	${ }^{1} 6$	$\begin{gathered} \mathrm{U}_{3}^{2}-2 \mathrm{H}_{1} \mathrm{D}_{5} \\ +2 \mathrm{~L}_{2} \mathrm{I}_{5} \end{gathered}$		$\begin{gathered} i \mathrm{H}_{1}^{1} \mathrm{D}_{3} \\ -\mathrm{F}_{1} 1_{1}^{\prime} \mathrm{I}_{2}^{2} \end{gathered}$	$5 \mathrm{D}_{1}^{4} \mathrm{D}_{2}$	D_{1}^{6}			
\therefore	1%	$\begin{gathered} \left\langle\mathrm{U}_{1} \mathrm{H}_{1}-2 \mathrm{D}_{2} \mathrm{~L} ;\right. \\ =2 \mathrm{H}_{3} \mathrm{~V}_{4} \end{gathered}$	$\begin{aligned} & \mathrm{H}_{1}^{2} \mathrm{~L}_{1} \cdot \mathrm{H} 5_{2}^{2}, \\ & -\mathrm{H}_{1} \mathrm{H}_{2}^{2} \cdot 41_{1} \mathrm{H}_{2} \mathrm{H}_{4} \end{aligned}$	$\begin{gathered} H_{1} \mathrm{D}_{1}-H_{i} U_{2}^{\prime \prime} \\ -12 H_{1}^{2} U_{2} \mathrm{D}_{3} \end{gathered}$	$\begin{aligned} & 5 \mathrm{D}_{1}^{4} \mathrm{D}_{3} \\ & +\quad 10 \mathrm{D}_{1}^{3} \mathrm{D}_{2}^{2} \end{aligned}$	${ }^{6 D_{1}^{5} \mathrm{D}_{2}}$	D_{1}^{7}		
i^{3}.	${ }^{1}$.	$\begin{aligned} & \mathrm{I}_{1}^{2} \cdot 2 \mathrm{~L}_{1} \mathrm{~L}_{7} \\ & -2 \mathrm{D}_{2} \mathrm{D}_{6}+2 \mathrm{H}_{7} \mathrm{I}_{2} \end{aligned}$		$\begin{gathered} \mathrm{I}_{2}^{4} \cdot 12 \mathrm{D}_{1}^{2} \mathrm{I}_{2} \mathrm{D}_{4} \\ -4 \mathrm{H}_{2}^{2} \mathrm{D}_{5} \cdot 6 \mathrm{D}_{1}^{2} \mathrm{D}_{3}^{2} \\ -12 \mathrm{D}_{1}^{2} \mathrm{D}_{2}^{2} \mathrm{D}_{3} \end{gathered}$	$\begin{aligned} & 5 \mathrm{D}_{1}^{4} \mathrm{D}_{4} \\ & \quad+20 \mathrm{D}_{1}^{3} \mathrm{D}_{2} \mathrm{D}_{3} \\ & \quad+10 \mathrm{D}_{1}^{2} \mathrm{D}_{2}^{3} \end{aligned}$	$\begin{aligned} & \mathrm{BD}_{1}^{5} \mathrm{D}_{3} \\ & +15 \mathrm{D}_{1}^{4} \mathrm{D}_{2}^{2} \end{aligned}$	$7 \mathrm{D}_{1}^{6} \mathrm{D}_{2}$	D_{1}^{8}	
	H_{3}	$\begin{aligned} & 2 \mathrm{H}_{1} \mathrm{H}_{3} \cdot 2 \mathrm{D}_{2} \mathrm{U}_{7} \\ & -2 \mathrm{H}_{3} \mathrm{H}_{5} \cdot\left\langle\mathrm{U}_{4} \mathrm{H}_{3}\right. \end{aligned}$		$\begin{aligned} & \mathrm{HH}_{1} \mathrm{~L}_{6}+4 \mathrm{D}_{2}^{2} \mathrm{D}_{3} \\ & \cdot 121 \mathrm{I}_{1}\left(\mathrm{D}_{2} \mathrm{D}_{3}+\mathrm{D}_{3} \mathrm{D}_{4}\right) \\ & -12 \mathrm{D}_{1} \mathrm{D}_{2}^{2} \mathrm{D}_{4} \\ & -12 \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3}^{2} \end{aligned}$	$\begin{aligned} & 3 D_{1} D_{2}^{4}+5 D_{1}^{4} D_{5} \\ & +10 D_{1}^{3} D_{3}^{3} \\ & +20 D_{1}^{3} D_{2} D_{4} \\ & +30 D_{1}^{2} D_{2}^{2} D_{3} \end{aligned}$	$\begin{aligned} & \mathbf{6 D}_{1}^{5} \mathrm{D}_{4} \\ & +30 \mathrm{D}_{1}^{4} \mathrm{D}_{2} \mathrm{D}_{3} \\ & +20 \mathrm{D}_{1}^{2} \mathrm{D}_{2}^{3} \end{aligned}$	$\begin{aligned} & 7 \mathrm{D}_{1}^{6} \mathrm{D}_{3} \\ & +21 \mathrm{D}_{1}^{5} \mathrm{D}_{2}^{2} \end{aligned}$	${ }_{51} \mathrm{D}_{1}^{7} \mathrm{D}_{2}$	D_{1}^{9}

\&

[^0]: piqure l. Eakulatan stations in immpressor tow path

[^1]: Fiqure 4 - Reterence and direction nomenciatute for prescribed bade elenent senterline and thickness polymomals.

[^2]: Figure 10. - Input data tor mat of qeneral information

[^3]: mass bieko fraction

