NASA Technical Paper 1946

AVRADCOM Technical Report 80-C-21

December 1981

Computer Program for Aerodynamic and Blading Design of Multistage Axial-Flow Compressors

James E. Crouse and William T. Gorrell

AC-10004

(NASA-TP-1940) COMPOTED LEGEAM FOD ACLASS AERODYNAMIC AND BEADING BESIGS OF MULTIELAND ARIAL-FEON COMPLESION (GAUR) 105 P HC ADO/ME A01 (GAUR) 105 CECI 210 (17775

NASA Technical Paper 1946

AVRADCOM Technical Report 80-C-21

1981

Computer Program for Aerodynamic and Blading Design of Multistage Axial-Flow Compressors

James E. Crouse Lewis Research Center Cleveland, Ohio

William T. Gorrell Propulsion Laboratory AVRADCOM Research and Technology Laboratories Lewis Research Center Cleveland, Ohio

Scientilic and Technical Information Branch

PRECEDING PAGE BLANK NOT FILMED

D......

Contents

r i	ike
Summary	1
Introduction	1
Compressor Design Procedures	2
Input Initialization	2
General Information	2
Calculation Station Data Sets	3
Initialization	- 5
lieration	6
Aerodynamic Design	6
Blade Design	8
Terminal Calculations and Output	9
User Information	10
Appendix	
A-Symbols	15
B-Input Parameters for Compressor Design Program	16
C-Development of Equations of Motion into Form Used in Computer Pro	27
D-Conic Coordinates of Blade Centerline Path	32
References	38

.

Summary

A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. Blading is defined from stacked blade elements associated with the selected streamlines. The blade element inlet and outlet angles are established through empirical incidence and deviation angle adjustments to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each segment can be specified with a fourth-degree polynomial function of path distance. Blade element thickness also can be specified with fourth-degree polynomial functions of path distance from the maximum thickness point.

Steady axisymmetric flow js assumed; so the aerodynamic problem can be reduced to solving the two-dimensional flow field in the meridional plane. Because the equations of motion as developed herein are only applicable for calculation stations outside the blade rows, stations at the blade edges, but not inside the blade rows, are used. The streamline curvature method is used for the iterative aerodynamic solution. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. Thus the design velocity diagrams can be located at the blade edges.

The program input includes the annulus profile, the overall compressor mass flow, the pressure ratio, and the rotative speed. A number of parameters are input to specify and control the blade row aerodynamics and geometry. There are numerous options is controlling the way information is input and for specifying the amount of output. The output from the aerodynamic solution has an overall blade row and compressor performance summary followed by blade element parameters for the individual blade rows. If desired, blade coordinates in the streamwise direction for internal flow analysis codes and/or coordinates on plane sections through blades for fabrication drawings can be printed and punched.

Introduction

The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types, but the good potential performance is not easily attained. The problem and challenge to the designer is to model the actual flows well enough to adequately predict aerodynamic performance. Progress is continually being made with codes for computing the complex three-dimensional flows in turbomachinery. However, it is extremely difficult to design mechanically acceptable turbomachinery blading by using the direct approach (i.e., specifying inviscid blade surface velocities and computing the blade geometry). Consequently, the more detailed codes are generally used in the analysis mode; that is, the flow field is calculated for a fixed geometry. The current procedure is to establish blading geometry with simpler design codes and then to use the more detailed analysis codes in blade rows where troublesome flow conditions are likely to exist. In this way prototype designs can often be adjusted before hardware is built and tested.

The time and effort needed to get acceptable configurations can be reduced if the design code can be made to yield a good initial solution and if the design and analysis codes can be made more compatible with one another. This compatibility can be achieved (1) if the output from a design code can be directly used by flow and mechanical analysis codes and (2) if corrective adjustments indicated by the analysis codes can effectively be made in the design code. With these objectives in mind a composite aerodynamic and blade design code for axial-flow compressors has been developed. The code and its capabilities are the subjects of this report.

The aerodynamic solution assumes steady, axisymmetric flow and uses a streamline curvature method for calculation stations outside the blade rows. The program is structured so that the empirical correlations (such as those for loss, deviation angle, and incidence angle) can readily be changed when the need or desire exists. The method of describing blading is a compromise between the vast amount of input needed for completely general blade elements and the restrictions of simple shapes. A blade element is defined on a conic surface with thickness applied to a centerline that is composed of two segments tangentially joined at a transition point. The blade angle function of each segment can be defined with a fourth-degree polynomial. Thickness is prescribed by first specifying a maximum thickness value and location. The distribution of thickness in each direction from the maximum thickness location is then prescribed with a fourth-degree polynomial. Finally each polynomial coefficient is defined across blade elements with a third-degree polynomial function of annulus height.

Compressor Design Procedures

The discussion of the compressor design procedures is organized according to usage in the computer program; so for better orientation an operational overview of the program is given first (table 1). The computer program can be divided into three major phases of calculation: (1) the input and initialization phase, (2) the iteration phase, and (3) the terminal calculation phase. In the input and initialization phase the input data are read and interpreted, the calculation stations are located with estimated values for the blade edges, and streamlines are located on the basis of annulus area. Estimates of stagnation temperature and pressure and axial and tangential velocity components are also made for all calculation points in the flow field.

The iteration phase includes both the flow field and the blade design iterations. In the flow field iteration the equations of motion are satisfied in the meridional (r-z) plane for stations that are lines across the flow annulus. At the stations the equations of motion and overall flow continuity are satisfied with fixed values of streamline slope and curvature for a complete computational pass across the annulus. After the overall flow continuity condition at a calculation station is satisfied, the internal streamline intersections with the station lines are updated by solving for the locations that give specified fractions of overall station weight flow. At the completion of a pass through all the calculation stations in the annulus, the new streamline locations are curve fit for new streamline slope and curvature values.

To insure proper location of the blade edge stations, most of the blade design iteration is made concurrent with the flow field iteration. This operation includes the calculation of incidence and deviation angles, the layout and stacking of blade elements, and the realignment of the elements.

The terminal calculation phase performs the final calculations and generates the output. Mass-averaged parameters for the individual and cumulative compressor blade rows are computed and printed first. Then tabulated values of aerodynamic and blading parameters along the station lines are computed and printed. Finally blade section coordinates and other section mechanical properties can be computed and printed if desired.

The program is discussed in greater detail in the following subsections.

Input and Initialization

The basic computational plane is the meriodional (r-z) plane of a cylindrical coordinate system. A graphic view of an example compressor configuration is shown in figure 1. The hub and tip casing walls are fixed input. Calculation stations are located at the blade row leading and trailing edges and at other annular locations for the purpose of locating streamlines. The input data can be classified into two groups: general information and calculation station and blade row information. The input parameters and options, along with the input data format, are described in appendix B. (All mathematical symbols are defined in appendix A.) Additional advice on how to set up the input is given in the section User Information.

General Information

All the general information is read in first. Included are the following:

- (1) Compressor rotational speed
- (2) Inlet flow rate
- (3) Desired compressor pressure ratio
- (4) Gas molecular weight
- (5) Number of streamlines

Figure 1. Calculation stations in compressor flow path,

(6) Number of blade rows

(7) Number of annular stations

(8) Coefficients for c_p as a fifth-degree polynomial function of temperature

(9) Far upstream values of total temperature, total pressure, and inlet tangential velocity for each streamline

(10) Streamtube mass flow fractions between streamlines

(11) Sets of points to define tip and hub casing contours

(12) Sets of blade element profile loss parameters that are tabulated as functions of blade element loading parameter and fraction of passage height

As many as five loss sets can be input. The particular loss set used for a given blade row is designated in the blade row input. Usually at least two loss sets are input—one for rotors and another for stators.

Calculation Station Data Sets

The data sets that contain information about the calculation stations and blade rows are read in order from annulus inlet to outlet. The first card of the data set identifies the type of station, the tip and hub axial locations, the tip and hub boundary layer blockage factors and the station mass flow bleed. For annular stations the single card is the whole data set. For rotors and stators several cards are used to describe (1) the blade row inlet and outlet station information, (2) the blade row aerodynamic parameter input and controls, and (3) the parameters defining blade geometry. A blade and the associated edge calculation stations are located in the annulus by using a reference blade element stacking line. Stacking axis tip and hub axial locations and lean angle in the circumferential direction are input.

The locations of the calculation stations at the blade edges are at first approximated from some of the input blade geometry information. The station locations are moved during later iterations when the blade elements are defined and stacked. However, the input tip and hub boundary layer blockages and mass flow bleeds for the inlet and outlet stations are constant.

Aerodynamic parameter input and controls.—The blade aerodynamic design is controlled with several parameters that impose the necessary and sufficient conditions for a solution. The options as to how such conditions can be imposed are shown in table II. For rotors the most convenient option is to specify the stage energy addition as a cumulative fraction of the overall compressor energy addition. With this option the radial distribution of energy addition is not input directly but is imposed through a normalized rotor exit stagnation pressure profile that is expressed as a polynomial function of annulus height in the radial direction. The pressure level is computed internally to the program from the energy input level and the computed losses. With the other rotor options the exit temperature profile is input instead of the energy addition fraction being specified. For either a rotor or stator, stagnation pressure profiles can be input instead of the losses being computed internal to the program. These options can be useful to users who have existing aerodynamic designs but want to use this program for blade description and fabrication coordinates.

At a stator exit a tangential velocity profile is input as a polynomial function of radius. Unless specified, the stator outlet pressure profile is determined from stator losses and streamline mixing effects from the upstream station.

There are some input aerodynamic limits that the program will not allow the excerted. For a rotor the limiting parameter: e tip different flow angle in the hub. The stator aerodynamic limits are diffusion factor and inlet Mach number at the hub. If an aerodynamic limit is exceeded during iteration, the stage energy addition is lowered by the amount needed to get the aerodynamic limit within bounds. If any other stage is not up to one of the aerodynamic limits, the energy decrement is made up among such stages. If all the stages reach an aerodynamic limit, the input overali compressor pressure ratic is lowered.

The blade angles are related to fluid flow angles along streamlines by two key correction parameters—incidence angle at the inlet and deviation angle at the outlet (fig. 2). There are several options for specifying each. Two of the options for both the incidence and deviation angles are the twoand three-dimensional methods of reference 1. The other incidence angle option is user-entered tabular

Figure 2, - Blade element incidence and deviation angles,

data referenced to either the centerline or the suctionsurface blade angles at the inlet. Other deviation options are user-entered tabular data and a version of Carter's rule, which was modified to account for centerline shapes other than a circular arc. The modification is shown in figure 3.

Another input aerodynamic parameter is the minimum blade choke margin $(A/A^*) - 1$, where A is the local streamtube cascade channel area and A^* is the corresponding area needed for cheked flow. The A* value is the area needed to pass the streamtube flow at a relative Mach number of 1.0. The effects of losses in all blade rows and energy addition in rotors are included in the computation of A^* . Choke margin depends on the flow conditions and geometry defining the channel area. If insufficient choke margin exists in a prototype design, some compromise must be made in either the aerodynamic requirements or the geometry. Minor choke margin deficiencies can usually be accommodated with adjustments in geometry. Logical procedures for geometry adjustments are not obvious; however, if the minimum margin occurs at the channel entrance, increased incidence is an effective method of relief. If a minimum desired choke margin is input, the program will adjust incidence angle up to $+2^{\circ}$ to the leading-edge suction surface in order to attain the specified choke margin if the channel entrance is the problem. When the minimum margin occurs at other locations in the channel, the minimum value and its location are printed in the output and it is up to the user to decide if he wants to make compromises to improve the choke margin.

Blade geometry parameters.—A number of blade geometry parameters are input for the pupose of defining a blade. Blade chord is defined along flow streamlines, but for the purpose of this blade definition a radial projection of streamline chord is specified because it is more meaningful for defining a structurally sound configuration. The radially projected chord is defined from the number of blades, the tip solidity, and a normalized polynomial for the radial variation of chord. The blade is basically defined from a stacked series of gradually changing airfoil shapes or "blade elements" in the radial direction.

Each blade element, as shown in figure 4, is defined from a thickness distribution applied to a two-segment centerline. The variation of the local centerline angles x with path distance can be specified by option through the parameter IDEF(IROW). If IDEF(IROW) equals zero, the κ for each segment varies linearly with path distance (as a circular arc). When IDEF(IROW) does not equal zero, the κ for each segment is expressed as a fourth-degree polynomial function of path distance. The blade angle is continuous at the transition point, but the rate at which the angle changes with distance (curvature) can be discontinuous. The ratio of curvature for the first segment to that for the second segment is defined as the turning rate ratio. When the blade local centerline angle κ is specified by polynomial coefficients, the turning rate ratio is controlled by the relative magnitudes of the linear term coefficients of the polynomials for each segment. However, when the segments are treated

Figure 4. - Reference and direction nomenclature for prescribed blade element venterline and thickness polynomials.

simply as circular arcs, the turning rate ratio is a blade element input parameter.

When IDEF(IROW) equals zero, there are some options for specifying the turning rate ratio at the transition point. With the CIRCULAR option the value is set at 1.0, as for a circular arc blade element, for all blade elements in the blade row. With the TABULAR option a table of values for the elements is read. With the OPTIMUM option a value will be set by an empirical function of inlet relative Mach number. For this option the blade element will be a circular arc below a relative Mach number of 0.8. As relative Mach number increases, the ratio of first- to second-segment turning rate at the transition point is reduced. A limit of zero camber on the suction surface of the first segment is app. bached at an inlet relative Mach number of about 1.60.

The coefficients for the centerline polynomial (i.e., when IDEF(IROW) $\neq 0$) are input as a cubic function of blade span. There are two reasons for this method of specification. First, the user is more confident of specifying a relatively smooth blade surface; and second, the amount of input is reduced over that required by individual coefficients for as many as 11 blade elements.

Blade element surface definition begins with three anchor points from the centerline. These points are a maximum thickness point and the two end points. A maximum thickness value normalized by chord and its location as a fraction of chord are input. At the maximum thickness point the normal-to-centerline distance to each surface is one-half the maximum thickness, and the surface κ angles are equal to the centerline κ .

At the blade element ends the leading- and trailingedge end circle radii normalized to chord are input. If IDEF(IROW) does not equal zero, the end configurations are ellipses with semimajor axes tangent to the local centerline. For this case the input end circle radius is used as the minimum radius value of the ellipse. For each ellipse one other parameter is input to specify elongation. The parameter is e = (b/a) - 1, where b and a are the semimajor and semiminor axes, respectively. Note that as e approaches zero, the ellipse approaches a circle with the input radius.

A surface definition criterion is that the surface curve join the end circles or ellipses at a point of tangency. When IDEF(IROW) equals zero, the surface curves are defined with κ being a linear function of path distance for each segment. As explained in reference 2, necessary and sufficient conditions exist to completely define the surfaces when the computation is begun on the segment where the maximum thickness occurs.

When IDEF(IROW) does not equal zero, the blade

surfaces for each segment are defined by polynomial distributions of the normal-to-centerline distance. The functional relation for this distance is

$$t = \frac{t_m}{2} - a_V S_o + a_V S - S_o + \frac{aS}{2\sqrt{S_o}} - bS^2 - cS^3 - dS^4$$

where S is the centerline distance (normalized by chord) from the maximum thickness point. Values of S are positive in either direction from the maximum thickness point; and S_o is the maximum S, which is the distance to the point where the end ellipse intersects the centerline (fig. 4).

There are two other input parameters for blade rows. One is a material density for rotors. If a nonzero value is input for a rotor, the stacked blade will lean in both the meridional and the $r-\theta$ planes so that the centrifugal force on a blade with the input material density will balance the aerodynamic forces at the design point. The objective is to minimize the blade root stress. With atmospheric air as the working fluid, the lean is normally only a fraction of a degree.

The final input parameter, NXCUT, controls the number and location of planes through a blade row for which fabrication coordinates are desired. If the parameter is zero, the program will set the number of XCUT's on the basis of aspect ratio, which is the ratio of overall radial to axial blade lengths. For positive parameter input values the program will determine appropriate locations for that number of planes to represent the blade. Negative parameter values trigger an option to read cards for the XCUT plane values. The number of input values expected for a blade row is the absolute value of the negative parameter.

initialization

Once the input is read, a number of initialization calculations are made in subroutine START in preparation for the iterative phase of computation. The axial locations of the blade edges are approximated and the intersections of all station lines with the casing walls are determined. Checks are made to be certain that the spacing of calculation stations is appropriate. Annular stations will be shifted by the program if calculation stations cross one another or if adjacent spacing is less than 30 percent of the spacing of neighboring stations.

Streamlines are initially positioned by applying the input stream-tube weight flow fractions to the annulus area. From the input data the circumferential component of velocity and the stagnation temperature and pressure are

approximated for all streamlines at all calculation stations throughout the flow field. Finally an axial velocity is computed for each station by using meanline values in a continuity calculation at the

Iteration

The general objective of the program is to obtain both an aerodynamic solution and a blade design. Both are achieved with iterative procedures. The aerodynamic design has the greater sensitivity, and it requires more iterations. The program is set up to do the aerodynamic and blade design iterations concurrently. However, the blade design is done less frequently and lags the aerodynamic iteration. The first blade design iteration occurs on the fourth aerodynamic iteration, and the final blade design pass is made after the aerodynamic solution is

Aerodynamic Design

The aerodynamic design solution establishes complete velocity diagrams and fluid state properties on streamlines at the blade row inlet and exit. A bilevel iteration is used to arrive at the solution. In the outer loop the variables are stagnation temperature and pressure; the tangential component of velocity; and the streamline location, slope, and curvature. The inner loop is the station flow continuity calculation in which the axial component of velocity is the variable and the outer loop parameters are held fixed. An example flow field with typical placement of calculation stations is

Outer loop.-In the program the control routine for the outer loop is VDIAG. The basic procedure is station marching from inlet to outlet with streamline parameters fixed. Only after a pass through all the stations are the streamlines relocated from the current flow solution. Normally between 10 and 20 of the cycles are needed to converge to a solution.

The major part of the blade design is also controlled in the outer loop. When a blade design iteration is made, the blade edge station locations are moved to the new blade edge locations.

The tangential velocity and the stagnation temperature and pressure at a station are determined as changes from values of the preceding station on the particular streamline. For annular stations and ors the tangential velocity is determined from the co vation of angular momentum; that is, the product Cadius and tangential velocity remains the same along streamlines outside the blade rows. Stagnation temperature and pressure should also be

conserved along streamlines outside the blade rows except for mixing effects from turbulence and secondary flows. The stagnation pressure distribution is input behind the rotors; so pressure gradients are reasonably well controlled in the design process without using empirical mixing terms.

In the design process the rotor energy addition must cover nonproductive losses in addition to producing a desired pressure. With the usual input options, losses are computed internal to the program. Normally there is a significant radial gradient of loss; so there is also a radial gradient of work. The stagnation temperature increase along a streamline is in almost direct proportion to the blade element work; so temperature gradients are generated. Because these gradients through compressor stages are basically additive, theoretically the gradients can grow very large. The real flows in compressors reduce this effect somewhat with fluid mixing. To at least partially account for fluid mixing in an empirical manner, a mixing term for temperature is used in the program. The mass average temperature is held constant at a station, but specific streamline values outside the blade rows are modified from the previous station values by equation (1).

$$\left(\frac{dT}{dr}\right)_{I} = \left(\frac{dT}{dr}\right)_{I-1} \exp\left\{-0.002\left(\frac{dT}{dr}\right)_{I-1}(\Delta z)\right\} (1)$$

where Δz is the axial distance between the adjacent stations. Future adjustments in this functional relation are probable as data from multistage compressors become available.

Stagnation temperature and pressure values are the most difficult to set at blade row exits. This is mainly because of the complex real flow effects through a blade row that must be represented either through theoretical models of loss or by empirical correlations. Representation of losses is, of course, one of the major problems for an aerodynamic solution. In this program the losses are represented by two additive components: shock losses, and all

The shock losses are a modification of those given in reference 3. This reference, in essence, gives the shock loss associated with a normal shock with an approach Mach number equal to the average relative Mach number at the suction and pressure surfaces of the blade at the normal shock. The suction-surface Mach number at the shock is determined by Prandtl-Meyer turning from the inlet.

Unless the flow is in the low transonic range, a normal shock cannot be maintained in a blade channel. Either the shock is oblique or it develops a

foot at the blade surface because the boundary layer cannot sustain the sudden static pressure rise. In either case the shock losses are less than those predicted by a normal shock. To empirically account for these effects, the computed normal shock loss is reduced by dividing by the average iniet relative Mach number squared.

All the other blade row losses—profile, secondary, etc.—are represented by a correlation with fraction of passage height and aerodynamic blade loading. The values for such a correlation are input in tabular form. The aerodynamic blade loading parameter in the table is the diffusion factor of reference 1. In equation form it is

$$D = 1 - \frac{V_2}{V_1'} + \frac{\Delta(rV_{\theta})}{\sigma(r_1 + r_2)V_1'}$$
(2)

The loss parameter in the table is

$$\frac{\omega \cos \beta_2'}{2\sigma} \tag{3}$$

where ω is the loss coefficient.

$$\omega = \frac{P'_{21} - P'_2}{P'_1 - p_1} \tag{4}$$

The rotor exit tangential velocity is calculated directly from the Euler equation

$$H_2 - H_1 = \int_{T_1}^{T_2} c_p \, dt = U_2 V_{\theta_2} - U V_{\theta_1}$$
 (5)

Note that the enthalpy change is evaluated by using an integral for the calorically nonperfect gas; that is, c_p is a function of temperature. All state processes in the program use thermally perfect, but calorically nonperfect, gas relations; so integrations and in some cases iterations are used in several small function routines.

Inner loop.—The basis function of the inner loop is to determine the axial velocity profile at the calculation station. The axial velocity level is set by flow continuity, and the distribution is controlled by the radial equation of motion. The differential equation is developed in appendix C. The form used in the program is

$$V_m \frac{dV_m}{dl} = \left(\frac{T-t}{T}\right) \frac{dH}{dl} + Rt \frac{d\ln P}{dl} - V_\theta \frac{d(rV_\theta)}{r \, dl}$$

+
$$V_m \frac{\partial V_m}{\partial m} \sin(\alpha + \lambda) + \frac{V_m^2}{R_m} \cos(\alpha + \lambda)$$
 (6)

with

$$\frac{\partial V_m}{\partial m} = \frac{V_m}{M_m^2 - 1} \left[\frac{M_\theta^2 + 1}{r} \sin \alpha + \frac{d\alpha}{dl} \sec(\alpha + \lambda) - \frac{t \sin(\alpha + \lambda)}{R_m} \right]$$
(7)

A velocity gradient procedure is used to construct the axial velocity profile from the tip to the hub with the stagnation state values, the streamline characteristics, and the tangential component of velocity held fixed. Since this inner loop of the program is used many times, some effort was made to evaluate its accuracy and efficiency for typical streamline spacing. Reasonably good accuracy and stability were found to result from a rather simple procedure. Let

$$\frac{dV_m}{dl} \approx \frac{a}{V_m} + bV_m \tag{8}$$

where

$$a = \left(1 - \frac{t}{T}\right)\frac{dH}{di} + tR\frac{d\ln P}{dl} - V_{\theta}\frac{d(rV_{\theta})}{dl}$$
(9)

and

$$b = \frac{\cos(\alpha + \lambda)}{R_m} + \frac{\sin(\alpha + \lambda)}{M_m^2 - 1}$$
$$\times \left[\frac{M_{\theta}^2 + 1}{r}\sin\alpha + \frac{d\alpha}{dl}\sec(\alpha + \lambda) - \frac{\tan(\alpha + \lambda)}{R_m}\right] (10)$$

With a and b constants for the l interval along the station path, the solution for V_m is

$$V_{m,j+1}^{2} = \left(\frac{a}{b} + V_{m,j}^{2}\right) e^{2b(l-l_{o})} - \frac{a}{b}$$
(11)

A two-step procedure is used in the program. First $a, b, and V_m$ values on the streamline j are used to determine a temporary $V_{m,j+1}$. The a and b values are slightly dependent on V_m so $V_{m,j+1}$ is used to determine new a and b values. The second step uses the average of the old and new respective values of a and b to compute a final $V_{m,j+1}$ value. This $V_{m,j+1}$ "alue will then be used as the current $V_{m,j}$ value for ...e next l interval.

When V_m values are set on all streamlines, flow continuity is checked by using dr integration of a piecewise cubic curve fit of $\rho V_m r$ values at the streamlines. If the integrated weight flow is not within 0.01 percent of its specified value, the tip reference V_m is adjusted and the V_m profile is reconstructed. The method of adjusting the reference value of V_m is shown graphically in figure 5. There are two solutions to the continuity equation in compressible flow-the subsonic and supersonic solutions. When a parabolic fit of trial solutions is used to get a new trial value of V_m , the lower or subsonic solution is always sought. The V_m adjustment between iterations usually is small; so convergence normally is achieved in three or four passes.

Once convergence is achieved, the profile is back integrated to find the fraction of weight flow points represented by the streamlines. These points are saved until the outer loop pass through all the stations is completed for the purpose of relocating streamlines.

Blade Design

A blade is defined from stacked blade elements. The procedure for laying out blade elements and stacking them for blade definition is given in detail in

Figure 5. - Meridional velocity adjustment for How continuity iteration.

reference 2. Only a summary description is given herein. A blade element is laid out on a cone with a center axis coincident with the turbomachine axis of rotation. The angle and location of the cone are fixed by the intersection of the streamline with the leadingand trailing-edge station lines of the blade (fig. 6).

The leading- and trailing-edge blade angles are related to aerodynamic flow angles primarily through two key correlation parameters—incidence angle and deviation angle. The user has some options for the specification of these correlation parameters, as already discussed in the section on data input. Application of incidence and deviation angles to the flow angles at the blade edges gives blade angles in the local streamwise direction. Corrections to "cascade" deviation angle for a change in radius and axial velocity are made internally to the program. These corrections are presented in reference 4 to relate deviation angle to a cascade section with equivalent circulation rather than with the same camber angle.

Because the cone angle of the associated blade element is usually a little different from these local streamwise blade angles, corrections are made with current streamwise and radial direction derivatives. The blade element leading- and trailing-edge angles are calculated from aerodynamic flow angles in subroutine BLADE.

Blade element layout.—There are several options for controlling the blade element layout (see the IDEF (IROW) parameter description in appendix B). With all but one of these options a blade element is described by a prescribed thickness applied to a prescribed centerline (fig. 4). The centerline is treated as two segments that are joined at the reference transition point. The rate of change of the local blade angle with path distance, $\kappa = f(s)$ (fig. 4), is controlled by a fourth-degree polynomial for each segment. The coefficients for the polynomials are input, but they are scaled in the program to match blade element inlet and outlet angles. The fourth-degree polynomial

Figure 6. Conical coordinate system for blade element layout.

representation of segment blade angle represents greater specification freedom than does the linear specification of reference 2, where the ratio of inletto-outlet segment curvature at the transition point is input rather than any polynomial coefficients. A summary derivation of the equations for the centerline coordinates is given in appendix D.

Blade element thickness is defined along a path that is locally normal to the centerline. The pressure and suction surfaces are equidistant from the centerline. Thickness is specified in both the forward and rearward directions from the maximum thickness point by polynomials of the form

$$\frac{1}{2} = \frac{t_m}{2} - a\sqrt{S_o} + a\sqrt{S_o - S} + \frac{aS}{2\sqrt{S_o}} - bS^2 - cS^3 - dS^4$$
(12)

The input coefficients are scaled to meet the leadingand trailing-edge ellipses at the appropriate tangency points. The control routine for the blade element layout in the program is CONIC.

Blade element stacking.—The rotating parts of turbomachinery normally operate at high stress levels because of high centrifugal force. The high centrifugal acceleration also causes stress from bending moments to be very sensitive to blade element location. Thus it behooves the designer, first, to be reasonably accurate in the stacking computation and, second, to try to minimize stresses that can be easily reduced—namely, those from the steady-state bending. The blade bending moments from aerodynamic forces can be counterbalanced by centrifugal force moments with slight blade lean in both the (r-z) and $(r-\theta)$ planes.

The reference line for stacking purposes is a radial line through the hub stacking reference point (fig. 7). The sections used for stacking alignment are planes normal to this reference line in space. Such planes are used because their centers of area are essentially the centers of centrifugal force also. The stacking line is a line that can be leaned from the reference line at the hub reference point. For alignment purposes the planes pass through the stacking line intersection of blade elements (fig. 1). Blade sections are defined by interpolation across blade elements. When the section center of area does not match the stacking line, the corresponding blade element is translated and rotated on its cone for the stacking adjustment. Normally the adjustments decrease by about an order of magnitude for successive passes through the stacking procedure. For each pass the stacking axis lean angles in both the (r-z) and $(r-\theta)$ planes are

Figure 7. - Location of blade sections for blade element stacking adjustments.

recomputed and adjusted if the stacking axis lean option is activated through the input data.

Terminal Calculations and Output

The program output of an example two-stage compressor is shown in table III. In general the output is printed shortly after its computation so that large arrays of data are not stored. Data are printed from each of the major phases of computation—input, iteration, and terminal. The first information (table III (a)) is the input data, which are printed directly from input routines in very nearly the order in which the input was read.

The second major part of output (table III (b)), from the iterative phase of computation, is printed to help the user monitor the solution. Although these data have little value once the solution is converged, they are quite helpful in disclosing bad input and in finding sources of problems when solutions arc not achieved.

For computational stability a station aspect ratio, defined as $(r_I - r_h)/(z_{I+1} - z_I)$, is limited to 7 for streamline fits. When the limit is exceeded, particular stations (according to the priorities set forth in the section User Information) are eliminated from the curve fits used to locate streamlines. The first data shown from the iteration phase are a table of such calculation station information (table II (b)). On the left is a list of calculation station locations used to compute streamlines, along with the associated aspect ratios. On the right is the input list of station locations and aspect ratios. When blade rows are stacked, the blade edge stations are relocated, and thus the station aspect ratios change. After the first stacking on iteration 4, the station aspect ratios are rechecked and changes in the station list are made if necessary.

Arrays of axial velocities throughout the flow field for each iteration are the bulk of the output printed from the iterative phase of computation. These data are useful for observing solution stability since the solution convergence criterion is based on changes of axial velocity between successive iterations. Some compressor overall parameters are shown above the velocity arrays. Parameters included are the overall values of input pressure (PR), current computed pressure ratio (CPR), enthalpy increase (DHC), and ideal enthalpy increase (DHI).

When the aerodynamic solution is converged, the overall parameters for individual blade rows and the overall cumulative values in the compressor are computed and printed. Overall temperature and pressure values are calculated by mass averaging their equivalent enthalpy values. The cumulative forward axial thrust is the axial force exerted on the rotating shaft by aerodynamic forces from the hub inlet station of the first blade row to the local point. The thrust force shown for individual blade rows is the axial force on the shaft from the trailing edge of the upstream blade to the trailing edge of this blade row. Since the blade forces on stationary blade rows act on the casing, the thrust value on the rotating shaft is simply the static pressure force on the tapered shaft in the forward axial direction. Effects of cavities below the hub flow path are not included since undetermined information about seal locations and pressure differences would be needed. The gas bending moments are values for a single blade. The bending moments are referenced to the stacking axis intersection with the flow path wall from which the blades are attached.

Sets of calculation station data for streamlines across the channel follow the overall data. For all stations, velocity components, streamline slope and curvature, and both stagnation and static values of temperature and pressure are given. For stations at blade row edges, additional information is computed and printed. These parameters are (1) a complete description of velocity triangles, (2) definition of blade elemenis, (3) relations between aerodynamic and blade angles, (4) aerodynamic performance parameters, (5) streamline choke area margin, (6) local blade force intensity in pounds per radial inch on a blade, and (7) blade edge direction derivatives $r d\theta/dr$

Figure 8, - Coordinate system for blade section output data,

If the input options call for fabrication coordinates, they are printed after all the aerodynamic output. The coordinates are printed in tabular form with four sections on a page, as shown in table III(c). The length coordinate L is a distance along the chord line, with the most forward point being zero (fig. 8). The pressure- and suction-surface height values H_p and H_s , respectively, are referenced from the chord line. Surface height values are given for at least 20 round-value increments of L; also surface coordinates are given for three specific values of L—the blade trailing edge and the leading- and trailing-edge ellipse tangency points with the surfaces.

A blade section's properties are shown above its table of coordinates (table III(c)). The blade section radial location, the L and H stacking point values, and the section setting angle are given to locate and orient the blade section. The blade section center-ofarea coordinates, section area, minimum and maximum moments of inertia through the center area, orientation angle of the maximum moment of inertia with respect to the axial direction, section torsion constant, and twist stiffness are all useful information for design and stress analysis.

After all the fabrication coordinates for a given blade row are printed, the blade section coordinates are presented in another orientation that may be more useful for further flow analysis. With a stacking axis reference, coordinates for the same blade sections are given in the axial and tangential directions.

User Information

Since earlier sections of the report discuss the input, output, and main centers of program control, this discussion is directed at the user who is trying to get the program on his computer and to make it run efficiently. Some facts about the program as well as some advice about the input are given.

The code, which is written in FORTRAN, takes about 80,000 decimal words of computer storage. The call relation among the subroutines is shown graphically in figure 9. Note that the tickmarks on the routine boxes in the figure mean that there are other call lines to the routine. These lines are shown on the other part of the figure where the routine name is repeated. The program running time on either 2 Univac 1110 or an IBM 360-67 is about 2 minutes for a single-stage compressor and about 5 minutes for a five-stage compressor. Several of the key indices in COMMON/SCALAR/ are described in the following tabulation.

I

K

Index

Description

calculation station index after preliminary calculations are completed. The program is dimensioned for 50 calculation stations and 20 blade rows, of which only 10 can be rotors. Each blade row accounts for two calculation stations-one at the leading edge of the blade and the other at the trailing edge. Rotors, stators, and annular calculation stations can be put together in any combination with the following constraints: The number of stations cannot exceed 50. There must be at least four annular stations ahead of the first blade row and at least three annular stations behind the last blade row

IROTOR rotor index

IROW blade row index

J streamline index. Streamlines are numbered from one at the tip.

loss set index for subroutine INPUT

As indicated in the table at least four annular stations are expected upstream of the first blade row and at least three downstream of the last blade row. Additional annular stations can be located between blade rows but not within blade rows; that is, not between the inlet and outlet stations of a given blade row.

Streamline intersections of station lines are determined by integrating velocity profiles at station lines to the specified mass flow fractions. Streamline slope and curvature are determined from streamwise

curve fits of these intersections. The consequence of this procedure is that the number of iterations .nd the program convergence characteristics are dependent on the calculation station location although the final solution, in general, is not very dependent on the location of the calculation stations.

The user can reduce the number of iterations and hence the program running time with good placement of calculation stations. The first calculation station should be placed upstream of the first blade row a distance at least equal to two or three annulus heights. The best far-upstream inlet condition is straight axial flow with no wall curvature. Less iterations are usually needed for more widely spaced calculation stations; however, enough iterations should be used to properly locate the streamlines. Calculation station spacing can vary somewhat along the annulus but, as a general guideline, successive station increments should not be changed more than 35 percent.

When calculation stations are input close together, only some of them will be used for locating the streamlines if the station aspect ratio is above 7.0. This is done for program stability and convergence toward a solution. If the user does not specify which stations to eliminate from the streamline location procedure, the program has logic to do so when the station aspect ratio exceeds 7.0. The priority of stations kept for streamline location is as follows: (1) blade row exit stations are always used, (2) blade row inlet stations are kept if the blade row aspect ratio is less than 7.0, and (3) an annular station is kept if neither adjacent station is closer than the aspect ratio tolerance.

The user can also specify that particular annular stations not be used for streamline definition through the alphanumeric station designation. The program looks for ROTO for rotor, STAT for stator, or ANNU for regular annular. Any other combinations of letters, numbers, or symbols designates the station as the extra-annular type. All the computations that are done for regular annular stations also are done for the extra-annular stations. The only difference is that the new streamline locations at that station are not used for the curve fit for streamline parameters. When the new curve fit streamlines are established, their intersections with the station line are found and the streamline parameters at that point are used in the equation-of-motion calculations.

The arrays of points that describe the hub and tip casing contours should extend at least from the furthest upstream calculation station to the furthest downstream one. There should be enough data points to adequately define the desired casing contours with a spline curve fit.

The input boundary layer blockage factors have an option. A displacement thickness from the wall can

be specified instead of blockage as a fraction of annulus height. This is done by using a negative number the magnitude of which is the value of displacement thickness.

A total pressure profile can be input in place of losses. Although the way to activate this option has been discussed earlier, its full effects need to be understood. This option is activated for a particular blade row by using zero or a negative number in ILOSS (IROW). When the option is activated, an additional data card is required for that blade row (fig. 12(a)). The first parameter PTT(IROW), or P_1 in the equation, is the blade row tip (larger radius) total pressure in psia. The five other parameters are polynomial constants P_1 to P_5 ; therefore a total pressure at some other radial location is

$$P = P_{l}(1.0 + P_{1}R + P_{2}R^{2} + P_{3}R^{3} + P_{4}R^{4} + P_{5}R^{5})$$

where

$$R = \frac{r_t - r}{r_t - r_h}$$

or the fraction of passage height at the blade row exit. Because these coefficients are stored into the locations of loss sets 4 and 5, those loss sets are destroyed for the run even if read in.

When the pressure level is specified instead of losses for the last blade row of the compressor, there is an overspecification of data because the inlet pressure and compressor pressure ratio are input too. In computation the pressure ratio predominates; so the pressure levels will be adjusted as necessary. Also note that when the pressure level is input, the total temperature profile must also be input (table II).

(a) Subroutines used in input and iteration phases.

Figure 9. - Line representation of subroutine calls,

(b) Subroutines used for terminal calculations.

Figure 9. - Concluded.

At a rotor exit the total temperature level can be input in place of the cumulative energy addition fraction. If the input CRENGY (IROTOR) is greater than 2.0, the value is interpeted to be the rotor exit tip temperature in degrees Rankine. In the preexecution phase of computation the temperature is converted and used as an appropriate energy addition value. The polynomial coefficients for the radial distribution of total temperature are input in the former pressure polynomial coefficient locations, PARA(IROW)...PRE(IROW). During regular iteration the program will use the polynomial form for rotor exit total temperature distribution when $|PRA(IROW)| \ge 100.0$. The polynomial coefficient represented by PRA(IROW) is found by adding or subtracting the number of 100's needed to give a remainder in the range -100.0 to 100.0.

When the total temperature level is input, the total pressure level can be set in two ways. It can either be determined from losses or input directly by a polynomial, as discussed earlier in this section.

The description of parameter variations with polynomials assures smoothness, but the specification of polynomial coefficients is not always easy. In most cases the range of applicability for the polynomial independent variable is 0 to 1.0. This considerably eases the burden on the user since computation is normally not needed to choose and set the polynomial coefficients. When the higher degree terms are used to define distributions, the end conditions are r 'atively easy to meet. However, some simple computations are needed to check the distribution.

Another caution is that combinations of reasonable-looking numbers often give blade elements that one can judge to be poor by visual observation. The capability to make machine graphic plots of blade elements and the channel formed by adjacent blades is very useful. Such plots are made in subroutine EPLOT, which is activated by the input parameter OPM. Since graphics packages differ with computer systems, the program presented will not necessarily work directly on a user's computer. However, it is suggested that the user make the conversions necessary to plot the blade element surface arrays generated in EPLOT.

The determination of acceptable polynomial coefficients for the centerline and thickness of an entire blade row can be difficult when high-degree terms are used. This task was eased considerably at NASA Lewis with an interactive graphics capability. A series of computer programs were developed to design particular blade elements from actual centerline angle and thickness distributions. These data were then curve fit by least-squares methods to produce the input required by the program described in this report. Visual observation of blade elements generated by this input for several fractions of annulus height is very helpful in avoiding obviously unacceptable configurations.

The computer peripheral equipment also can be used by some other subroutines when options are activated with the parameter OPO. When the punch option is activated, the tables of fabrication coordinates shown on the listing are punched on cards in subroutine COORD. When the plot option of OPO is activated, subroutine BLUEPT plots tables of fabrication coordinates on a blueprint format. If a plot option is activated by either OPM or OPO, subroutine MERID is also called. It produces a meridional plane plot of the annulus flow path with the calculation stations and streamlines included.

This code is interfaced with three other NASA codes through punched card output. Input for the TSONIC code (ref. 5), which is a blade-to-blade channel flow analysis code, is obtained with the T option of OPM. Input for the MERIDL code (ref. 6), which is a more detailed hub-to-shroud flow analysis code within a blade row, is obtained with the M option of OPO. Input for an off-design performance prediction code that is being developed at NASA Lewis is obtained with the O option of OPM.

The computer program can be obtained from COSMIC, 112 Barrow Hall, University of Georgia, 30601. The COSMIC program number is LEW-13505.

Lewis Research Center

National Aeronautics and Space Administration Cleveland, Ohio, December 29, 1980

Appendix A

2

Symbols

4	annulus area: also streamtube channel area	U	local blade velocity, ft/sec
A_i	polynomial constants for as a function of S	u	generalized variable in a differential
а	sonic velocity, ft/sec; also a coefficient in	L'	velocity ft/sec
	polynomial coefficient	Ľ	generalized variable in a differential
b	also a polynomial coefficient	w	weight flow, lb/sec
С	constant	z	axial distance, in.
C _i	polynomial constants for conic radius as a function of S	α	angle of streamline with reference to axial direction, deg
с	blade chord, in.; also a polynomial coefficient	β	flow angle relative to meridional direction, deg
$c_{-}(t)$	specific heat function for constant	γ	blade chord angle, deg
- p ()	pressure, ft/sec ² °R	δ.	deviation angle, deg
D	blade element diffusion factor	ŧ	angular coordinate on blade element layout
$D_{i,i=1,\infty}$	simplified nomenclature, $D_i = -(C_i)/(i)R_i$		cone, rad
d	rolynomial coefficient	θ	circumferential direction, rad
f	filation force, ft/sec ²	κ	blade angle relative to local conic ray, deg
, Н	stagnation enthalpy, ft/sec^2	λ	local angle of calculation station line with
н.	pressure-surface height, in.		reference to radial direction, deg
н Н	suction-surface height, in.	ρ	static density, slug/ft ³
h	static enthalpy, ft/sec^2	σ	blade element olidity, chord/tangential
;	integer index: also incidence angle, deg		spacing
• ;	integer index	τ	time, sec
J L	ourveture in curvilinear coordinate system.	ω	loss coefficient
ĸ	ft^{-1} ; also an integer index	Subscrip	pts:
L	distance along chord line, in.	ca	center of area
1	distance along calculation station line, in.	I	calculation station index
M	Mach number	i	ideal value, as by an isentropic process
m	streamline direction in meridional plane,	i i	streamline index
	in.; also an integer index	J Ie	leading edge
n	streamline normal direction in meridional plane, in.	m	streamline direction in meridional plane; also maximum thickness
Р	stagnation pressure, lb/ft ²	n	streamline normal direction in meridional
D	static pressure, lb/ft ²		plane
R	conic coordinate radius, in.	0	initial value
Rijara	series coefficients for polynomial,	sn	stacking point
	$R_t/R = 1 + R_1 S + R_2 S^2 + R_3 S^3 + \dots$	1	transition point
R _m	radius of curvature in meridional plane, ft	te	trailing edge
R	gas constant, ft lb/slug °R	A	circumferential direction
r	radius from axis of rotation, in.	ĩ	blade row inlet
S	blade element path distance, in.	,	blade row outlet
s	entropy, ft/sec ² °R	•	
T	stagnation temperature, "R	Superso	cript:
t	static temperature, °R; also blade element	()'	relative to rotor
•	thickness, in.	()•	flow at sonic condition $(M' = 1.0)$

ORIGINAL PAGE IS OF POOR QUALITY

Appendix B

Input Parameters for Compressor Design Program

The input variables for the compressor design program and the associated options are described in this appendix. The format for the input data is given in figures 10 to 12. The calculation station and blade row data sets are input in the order in which they occur in the compressor flow. If any of the sets of option cards for blade rows are needed, they are considered part of the blade row set and they follow the particular basic blade row data set in the order shown in figure 12. The only exception is any XCUT cards that are read in the output routines. These cards are at the end of the input data, but of course the sets of XCUT values must be placed in the same order as the stations specifying them.

In the following list of parameters the independent variable S appears frequently. Since it is an important blade element definition variable, this preliminary explanation of its definition and usage is given. The variable S in equations for the blade element centerline is the distance in either direction from the transition point as a reference. The variable S in equations for the thickness distribution is the distance in either direction from the maximum thickness point as a reference. All four of these usages of S are shown in figure 4. In all cases, S values are positive away from their reference point. The S values for thickness definition are normalized by blade element chord. The S values for centerline definition are also normalized by blade element chord when IDEF(IROW) is less than zero; however, when IDEF(IROW) is greater than zero, S is normalized to 1.0; that is, the maximum segment S is 1.0.

			د. محمد جرد الداني ال	• •, •••,	ي. و المواجعة مع الم	بورامی تو می تولید در از از ا	المربعة ومعروب	in succession	e. e' e. e'	NO CT AN AN THINK	
+	+		TITLE	1),1	1,18						
	DIA	E NA NLOS	SNTIP NHUB	I	ROT	F_LOW(1)	PR		MC	DLE	
NSTRM	CI	20(1)	CPCO	(2)		СРС	0(3)				
		CO(4)	CPCO	(5)		СРС	0(6)				
		ELOFRA(2) FLOFRA(3)			1.0FRA(NTUBES)					
FLOF		, <u>re</u> , 1 2)	TO(1,3)			TO(1, NSTRM	<u>,</u>				
<u> </u>	1, 1)	10(1.2)	PO(1, 3)	_		POILNSTRM)	Veo as n	aans: ca1	ds as necessary	for
PO ()		PO(1.2)	γ	_		V TH (1, NSTRM)		each var	iable.	Start each new v	ariable
VT H	(1)	NTLD/2	\mathbf{x} TIP(3)	-		XTIP(NTIP	,	on a new	card.		
NT1	P (1)	ATTP(2		-		RTIP(NTIP	5				
RTI	P(1)) $RTTP(2)$	$\mathbf{X} = \mathbf{H} \mathbf{U} \mathbf{B} (3)$			хнив (книв	5				
ХНГ	B(1)	BRURG -) RHTB(3)			RHUB(NHUB					i
RΗÜ	P(1)	RHCBU-	057111 010541	.n in	1.0 S (5, 1, 1)	DFTAB(1, 1, 1)	FTAB(2, 1, 1)	D FTAB	(3, 1, 1)	D F TAB(4, 1, 1)	D F TAB (5, 1, 1)
DLOSI	11, 1)	D = O = S (2, 1, 1) D = D	0,3(3, 1, 17		1 () 3 (5, 2, 1)	DFTAB(1, 2, 1)	OFTAB (2, 2, 1)				DFTAE (5, 2, 1)
D1. OS (1,	2.1)	D1 OS (2, 2, 1)	and the second second	🗠							
			a da ser en este este este este este este este e	· • •							· ·
		n an	na sa serie e	· · 5	LOSIG NETRALII	DE TABOLNSTRMU)					IFTAB(5,NSTRM,1)
p1.080.38	(เมหา				1.05.5.1.21	D FTAB (1, 1, 2)	DF TAB(2, 1, 2)	DFTAB	(3, 1, 2)	D FTAB(4, 1, 2)	DFTAB (5, 1, 2)
D1.080, 1	20	DLOS(2, 1, 2) = DL	OS(3, 1, 2) = D1.OS(4, 1)	. <u>2)</u> Ir	1.05(5,2,2)	D FTAB (1, 2, 2)	D FTAB (2. 3, 2)				DFTAB (5, 2, 2)
DLOS(1, 2	25	DLOS (2, 2, 2)		E		+				-	
				• • •							
		.		· · r	LOC PETER	NATATION NOTION OF	/			and a series of the series of	ues l
DLOS(1.N	TRM2			E	100-(0,3-110-04	in miniportage	ļ	of DFTA	B(K, J)	. n. J = 1, 5 are	
[•			••••••	• • •	4 4 -			0.3.0.4	0.5,0	, 0, and 0, 7, the	50
•		• • • • • •	• • • • • • • • • • •	•			i	values at	re imp li	ed by leaving DF	TAB
		•	• •		•	┟┈┈───	· L	field of c	ard blai	nk	
		•			• • • • • •	• • • • • • • • • •		\			
	•	•	• •		• • • • • • • • •	• • • • • • • • • •					
· · ·	•	•	• •			• • • • •					
	•	•	• •		·	·					ALTERAD, MUTES 1 5
DL08/81	(89.1.1	DEOS (NLOSS), 20DI	05 (N1 (851,3) DLOS (NLC	(4, L, 80	DUOS(NLOSS,1,	5) DFTAB(NI(0F,1,1)	IFTABINIONE,1,3	h ITTABO	<u>urs, i</u>	9 DPUMBINI 51,1	1) L. 100 00 10 10
DUCKON	1	an 06/81 (1852-22)			DLOS(NLO882,	5)1FTAE(N1()8523)	TETABOLIUS,22	9			LETABLET SP.2.3
<u> </u>		الفطيفية ويتواجه ويتواجه									
						l					NUTATION AND AND
NUMATUR	NERIAL	n.			LWNDR NUE	COLDERABINICH, NUR	μ				LE LANDOL PROCE

Figure 10, - Input data format of general information.

The second s	NULL IN THE TO THE WORK
AA 2 TIP (INAB) Z HUB(INAB) BT: 1) BH(I); BLEED(I)	

(a) Annular stations.

-
X ^I CUT(IROW)
HOKF (1ROW)
PRE(IROW)

	ZTIP(INAB)	ZHUB(INAB)	BT(1-1)	BH(1-1)	BLEED(1-1)		
DLIM(IROw)	ALIM(IROW)	BT (I)	ВН(г)	BLFED(1)	$\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!$	XXXXXXXXXXX N X	CUT (IROW)
LOSE (ROW) XOPM	OP XX OPO	AA AB	вв	CC XXXXXX	DD XXXX	ЕЕ ЕВ СН	OKE (IROW)
BLADES (IROW)	SOLID(IROW)	TILT(IROW)	PRA(IROW)	PRB(IROW)	PRC (IROW)	PRD(IROW) PR	E(IROW)

(c) Stationary blade rows.

Figure 11, - Input data format of calculation stations and basic blade row information.

Parameter

 $\mathbf{A}\mathbf{A}$

AB

This parameter is used twice to indicate options in alphanumeric form. As the first term of a data set it indicates the type of calculation station or blade row (ANNULAR, ROTOR, or STATOR). Any station description other than ANNU, ROTO, or STAT will be treated as an extra-annular station, that is, the streamlines will not be forced to pass through the streamtube-fraction-of weight-flow point as determined by continuity at the station. The second use of AA later in the data set is the incidence angle option for blade design purposes. Interpretable options are 2-D, 3-D, SUCTION, and TABLE. A noninterpretable incidence angles are determined by procedures in reference 1 for the respective option. The suction option gives zero incidence to the suction surface of the blade at the leading edge. The TABLE option means the blade incidence angles for the blade element will be input in tabular form, INC(IROW, J), at the end of the data set.

Description

This parameter completes the incidence TABLE option discussed above. To A4 reference incidence to the suction surface at the leading edge, the eight spaces of the card for AA and AB must read

ΤA	BI.	E	SS	
	مسہ	-	مسر	
			~	

AA AB

(If AB is anything other than E SS, the incidence angles will be referenced to the leading-edge centerline.)

ACF(1,IROW), ACF(2,IROW), ACF(3,IROW), ACF(4,IROW)	polynomial coefficients for linear coefficient of blade element centerline angle equation for front segment, $\kappa = \kappa_1 + aS + bS^2 + cS^3 + dS^4$ with $a = ACF1 + ACF2 \cdot R + ACF3 \cdot R^2 + ACF4 \cdot R^3$, where $R = (r_1 - r)/(r_1 - r_h)$ - fraction of passage height at blade leading edge	F10.4
ACR(1,IROW), ACR(2,IROW),	same as above for rear segment with same R	F10.4

ACR(2,IROW), ACR(3,IROW), ACR(4,IROW)

17

Format

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 A second state of the transformed state of the second state	
	,
	A construction of the second se

(a) If ILOSS(IROW) ≤ 0 .

	TCLE(IBOW) TDLE(IBOW)	TATE (IRO W)	TBTE(IROW)	TCTE(IROW)	TDTE(IROW)
TALE(IROW) FBLE(IROW)	TV DEVENOUS TO MAXUE OW	CHORDAILBOW	CHORDB(IROW)	CHORDC (IROW)	IDEF(IROW)
TAMAX (ROW) T ICMAX (IROW)	TC MAX(IROW) IO MAX(IROW)				

(b) If OP is DESIGN, COORD, PUNCH, or ALL.

Lange h		N / 19 / 2 1 19 / 1 18 1	ACEA IROWACE (4, IROW) BCE	(1, 1ROW)	BCF(2, 1ROW)	BCF(3, IROW)	BCF (4, IROW)
ACF(1,1)	CON IL	AC FUL IROWI	$C \subset F \neq 3$ IROW C C F (4, IROW) D C F	(1, 1R 9W)	DCF(2, IROW)	DCF(3, 1 ROW)	D C F (4, 1 R O W)
CC F (1, 1	(UW)		ACRES IROWACRES IROW BCR	(1, 1ROW)	ECR(2, IROW)	BCR(3, IROW)	BCR(4, IROW)
A C R (1, 1	(OW)	AGR(2, IROW)	CCR (2, 1R OW) CCR (4, 1R OW) DCR	(1. ROW)	DCR(2, 1ROW)	DCR(3, IROW)	DCR(4, IROW)
C C R (1, I	R OW)	CCR(2, TROW)	E T F (3, 1R OW) F L E (4, 1R OW) E T E	(1, IROW)	ETE(2, IROW)	ETE(3, IROW)	ETE(4, IROW)
ELE()	ROWI	ELE(2, IROW)	AT F (3 I B O W) A T F (4 I B O W) B T F	(1, 1 R O.W)	BTF(2,1ROW)	BTF(3, IROW)	BTF(4, IROW)
ATF 1, I	ROWI	AFF(2, IROW)	CTF(3, 1ROW) $CTF(4, 2ROW)$ DTF	(1.1 R O.W)	DTF(2,1ROW)	DTF(3, IROW)	DTF(4, IROW)
CTF(1,1	R OW)	$C \rightarrow F (2, TROW)$	ATR(3 IROW) ATR(4, 1ROW) BTR	(1, 1 R OW)	BTR(2, ROW)	BTR(3, IROW)	BTR(4, IROW)
к с к (1, 2	R U WJ	ATR (C, TROW)	TR (S L R OW) C TR (4 L R OW) D TR	(1. I R O W)	DTR(2, IROW)	DTR (3, I'R OW)	DTR(4, IROW)
TR (1, 1	ROW)	C T R (2, 1 R O W)	L 1 R (p, 1 R O W / C 1 R (1, 1 R O W / D 1			9	

(c) If IDEF(IROW) > 0.

				the second se
	NO. L D. O.M. OLL N.C. (L. N.O.	3) I N C (I B O(W. 4)	IN C(1 ROW,NSTRM	if AA = TABLE
1 NC(1ROW, 1) 1	NC(IROW, 2) INC(IROW	3) DEV (IROW, 4)	D E V(IROW, NSTRM	if BB = TABLE
$\mathbf{D} \in \mathbf{V}(1 \mathbf{R} \mathbf{D} \mathbf{W}, 1) \mathbf{D}$	EN (TROW,2) DEV(TROW	3) B H I (IR O'W 4)	P H I(HOW,NSTRM)	if CC = TABLE
PHI(IROW, 1) P	HI (IROW,2) PHI (IROW	3) TRANS(IROW, 4.)	TRANS(IROW,NSTRM	if DD = TABLE
TRANS(IRIOW, 1) TH	RANS(TROW,21 TRANS the Ow		ZMAX (THOW NSTRM)	if EE TABLE
Z MAX(I ROW1) Z	MAX (IROW, 2) ZMAX; (IROW	(3) Z MAX(IR,OW,41		

(d) If indicated parameters are TABLE.

V T H (1 - 11) V T H (1 - 1 - 2) V T H (1 - 1 - 3) V T H (1 - 1 - 4)	VTH (1-1, 5) PQ(1	-1,1)PO(1-1,2)	PO(1-1,3)	PO(I-1,4)	PO(1-1,5)
VTH(1,1)VTH(1,2)VTH(1,3)VTH(1,4)	VTH(1,5) PQ(I,1) PO(I,2)	PO(1, 3)	PO(1,4)	PO(1,5)

(e) If OP is VEL. DIA.

								T
N CT H	(1)	$\mathbf{X} \subset \mathbf{U} \subset \mathbf{T} (2)$	X CUT(3)	X CUT (4)	$\mathbf{X} \subset \mathbf{U} \mathbf{\Gamma}(5)$	XCUI(6)	XCUT-(7)	X CCT (8)
	· · · · ·	Y CL T (1 0)		XCUTONO	8 - S - F - C - C - F - F	$\chi(\chi) = \chi(\chi) \chi$	1 2 2 1 2 2 2 2 2 2 2	1. X 1 X 1 X X X X 1
	<u> </u>	<u>x.((1(10)</u>			VCLT (5)	X (1) T (6)	$\mathbf{X} \subset \mathbf{UT}(7)$	XCUT(8)
X C U 7	(1)	<u>X CV T (2)</u>	X CUT(3)	X(()(4)		<u></u>	· ·	•
•		•	•	•	e service en el			
•		•	•		•			
· · · · • • • • • • • • • • • • • • • •		•	•	•	•	•		
+ · · · · · · · ·				•	•	•	٠	•
•		• • • • • • • • •		a a a a construction de la construction de la construcción de la construcción de la construcción de la construc			* • • • • • • • • •	

(f) If NXCUT(IROW) < 0.

Figure 12. - Input data format of additional blade row information if needed by the options.

Parameter

Description

Format

ALIM(IROW) For a data set designated ROTOR, ALIM(IROW) is the minimum allowable relative flow angle (deg) leaving the rotor hub. For a data set designated STATOR, ALIM(IROW) is the maximum Mach number entering the stator at the hub. The program will reduce the stage energy addition to satisfy these conditions if a limit criterion has been reached during computation. If no aerodynamic limits have been reached in some other stages of a multistage compressor, the program will try to pick up the energy loss of the limiting stage in the stages free of aerodynamic limits. If all stages have reached some aerodynamic limit, the overall compressor pressure ratio is degraded to get all stages within the specified aerodynamic limits. The most efficient way to run the program is to specify the stage energy addition levels so than aerodynamic limits are not reached or at least not reached in a drastic fashion.

Parameter	Description	Format
ATF(1,1ROW), ATF(2,1ROW), ATF(3,1ROW), ATF(4,1ROW)	polynomial coefficients for first coefficient <i>a</i> of blade element thickness equation forward of maximum thickness point $\frac{t}{2c} = \frac{t_m}{2c} - a\left(vS_o - S - vS_o + \frac{S}{2vS_o}\right) - bS^2 - cS^3 - dS^4$ with $a = ATF1 + ATF2 \cdot R + ATF3 \cdot R^2 + ATF4 \cdot R^3$, where <i>R</i> is fraction of passage height at blade leading edge and S_o is distance from maximum thickness point to centerline intersection of edge ellipse (fig. 4)	F10.4
ATR(1,IROW), ATR(2,IROW), ATR(3,IROW), ATR(4,IROW)	same as above for real word thickness with same R	F10.4
BB	deviation angle option for blade design purposes. Interpretable options are 2-D, 3-D, TABLE, CARTER, and MODIFY. Noninterpretable input is set to the 2-D option. For the 2-D and 3-D options, deviation angles are determined by procedures of reference 1 for the corresponding option. The CARTER and MODIFY options are now the same in the program. They indicate the use of a Carter's rule with a modification when the front and rear segments of a blade element have different camber rates. The TABLE option means that the blade deviation angles for the blade elements will be input in tabular form, DEV(IROW,J), at the end of the data set.	A4
BCF(1,1ROW), BCF(2,1ROW), BCF(3,1ROW), BCF(4,1ROW)	polynomial coefficients for quadratic coefficient of blade element centerline angle equation for front segment, $\kappa = \kappa_1 + aS + bS^2 + cS^3 + dS^4$ with $b = BCF1 + BCF2 \cdot R + BCF3 \cdot R^2 + BCF4 \cdot R^3$, where $R = (r_1 - r)/(r_1 - r_h)$ —fraction of passage height at blade leading edge	F10.4
BCR(1,IROW), BCR(2,IROW), BCR(3,IROW), BCR(4,IROW)	same as above for rear segment with same R	F10.4
BH(l)	hub blockage factor for each calculation station; fraction of the station annular area to be allowed for hub annular surface boundary layer blockage. The hub streamline will be displaced away from the physical wall a distance that gives the specified annular fraction. Negative input values are used as the magnitude of boundary layer displacement in inches.	F10.4
BMATL(IROTOR)	rotor material density (lb/in^3). If a positive nonzero number is input, the blade will be stacked so as to balance out gas bending moments with the centrifugal force moment for the material density. Because the hub stacking point stays fixed, the tip location is moved if necessary.	F10.4
BLADES(IROW)	number of blades in each rotor or stator blade row	F10.4
BLEED(I)	fraction of weight flow bled off at particular calculation station	F10.4
BT(I)	same as BH(1) except applicable at tip	F10.4

Parameter	Description	Format
BTF(1,fROW)	polynomial coefficients for quadratic coefficient of blade element thickness equation forward of maximum thickness point	F10.4
	$\frac{t}{2c} = \frac{t_m}{2c} + a\left(v\bar{S}_o - \bar{S} - v\bar{S}_o + \frac{S}{2\sqrt{\bar{S}_o}}\right) - b\bar{S}^2 - c\bar{S}^3 - d\bar{S}^4$ with $b = BTF1 + BTF2 \cdot R + BTF3 \cdot R^2 + BTF4 \cdot R^3$, where R is fraction of passage height at blade leading edge.	
BTR(1,IROW), BTR(2,IROW), BTR(3,IROW). BTR(4,IROW)	same as above for rearward thickness with same R	F10.4
СС	blade element geometry option for blade design purposes. Interpretable options are CIRCULAR, OPTIMUM, and TABLE. The CIRCULAR option gives circular arc blade elements. Noninterpretable input will be set to the CIRCULAR option. The OPTIMUM option means that the ratio of blade element segment turning rates will be set by an empirical function of inlet relative Mach number. Below an M'_1 of 0.8 the blade element will be a circular arc. As M'_1 is increased, the ratio of front segment turning rate to rear segment turning rate is reduced. A limit of zero camber on the suction surface of the front segment is approached at an M'_1 of about 1.60. The TABLE option means the ratio of blade segment turning rates will be input in tabular form, PHI(IROW,J), at the end of the data set.	A4
CCF(1,IROW), CCF(2,IROW), CCF(3,IROW), CCF(4,IROW)	polynomial coefficients for cubic coefficient of blade element centerline angle equation for front segment, $\kappa = \kappa_1 + aS + bS^2 + cS^3 + dS^4$ with $c = CCF1 + CCF2 \cdot R + CCF3 \cdot R^2 + CCF4 \cdot R^3$, where $R = (r_1 - r)/(r_1 - r_h)$ —fraction of passage height at blade leading edge	F10.4
CCR(1,IROW), CCR(2,IROW), CCR(3,IROW), CCR(4,IROW)	same as above for rear segment with same R	F10.4
CHORDA(IROW), CHORDB(IROW),	constants to define ratio of blade element chord to tip chord on projected plane	F10.4
CHORDC(IROW)	$\frac{c}{c_{tip}} = 1 + R \cdot CHORDA(IROW) + R^2 \cdot CHORDB(IROW)$	
	+ R ³ • CHORDC(IROW)	
	where $R = (r_t - r)/(r_t - r_h)$ —fraction of annulus height at blade stacking line	
CHOKE(IROW)	desired minimum value of $(A/A^{\bullet}) - 1.0$, where A/A^{\bullet} is the ratio of local streamtube area in the channel to the area required when $M' = 1.0$ within a blade passage. If zero is input, no adjustment will be attempted within the program. For input values greater than zero, incidence angle will be increased as necessary up to a maximum of $+2.0^{\circ}$ on the leading edge of the suction surface in an attempt to give the specified choke margin at the covered channel entrance if the minimum occurs at the channel inlet.	
CPCO(I)	constants for specific heat polynomial function of temperature	E20.8
for $I = 1.6$	$c_p = \text{CPCO}(1) + \text{CPCO}(2) \bullet T + \text{CPCO}(3) \bullet T^2 + \text{CPCO}(4) \bullet T^3$	
	+ CPCO(5)• <i>T</i> ⁴ + CPCO(6)• <i>T</i> ⁵	

Parameter	Description	Format
CRENGY (IRGTOR)	desired cumulative energy addition fraction through particular rotor to total energy addition of compressor. (hus the fractions are progressively larger positive numbers through successive rotors. The last rotor must have CRENGY = 1.0 to meet the input pressure ratio. If a value greater than 2.0 is input, the value is interpreted as a rotor exit total temperature level in degrees Rankine instead of the cumulative energy addition fraction. In the preexecution phase of computation the input temperature is converted and used as an appropriate energy addition value.	F10.4
CTF(1,IROW), CTF(2,IROW), CTF(3,IROW), CTF(4,IROW)	polynomial coefficients for cubic coefficient of blade element thickness equation forward of maximum thickness point $\frac{t}{2c} = \frac{t_m}{2c} + a\left(\sqrt{S_o - S} - \sqrt{S_o} + \frac{S}{2\sqrt{S_o}}\right) - bS^2 - cS^3 - dS^4$ with $c = \text{CTF1} + \text{CTF2} \cdot R + \text{CTF3} \cdot R^2 + \text{CTF4} \cdot R^3$, where R is fraction of passage height at blade leading edge	F 10.4
CTR(1,IROW), CTR(2,IROW), CTR(3,IROW), CTR(4,IROW)	same as above for rearward thickness with same R	F10.4
DCF(1,1ROW), DCF(2,1ROW), DCF(3,1ROW), DCF(4,1ROW)	polynomial coefficients for fourth degree coefficient of blade element centerline angle equation for front segment, $\kappa = \kappa_t + aS + bS^2 + cS^3 + dS^4$ with $d = DCF1 + DCF2 \cdot R + DCF3 \cdot R^2 + DCF4 \cdot R^3$, where $R = (r_t - r)/(r_t - r_h)$ —fraction of passage height at blade leading edge	F10.4
DCR(1,IROW), DCR(2,IROW), DCR(3,IROW), DCR(4,IROW)	same as above for rear segment with same R	F10.4
DD	option control of location of transition point between segments of a blade element. The interpretable options are CIRCULAR, SHOCK, and TABLE. The SHOCK option locates the transition point on the suction surface at the normal shock impingement point from the leading edge of the adjacent blade. The TABLE option means the location of the transition point will be input in tabular form, TRANS (IROW, J), at the end of the data set. The CIRCULAR option and noninterpretable data put the transition point at midchord.	A4
DEV(IROW,J)	deviation angle (deg) that can be specified by option. If the tabular option is used, a value is expected for each streamline statting from the tip.	5 F10.4
DFTAB(K,J,İ)	blade element diffusion factor (D factor) for which profile losses are tabulated. Five values are input for each streamline; that is, K always has values from 1 to 5, J is the streamline index, and I is the loss set index. The maximum number of sets is 5. Because D-factor values normally fall between 0.3 and 0.7, values of 0.3, 0.4, 0.5, 0.6, and 0.7 for DFTAB on a streamline can be implied by leaving the DFTAB values blank. As a consequence of this option the DFTAB canno be exactly 0.0 when $K = 1$ if you do not want the implied values of DFTAB.	. F8.4 of f g
DLIM(IROW)	aerodynamic D-factor limit. In a data set designated ROTOR this limit applies a the tip streamline. For a STATOR data set the limit applies at the hub. Th program operates with this limit criterion in the same way as it did with ALIM(IROW).	nt F10.4 e h

Parameter	Description	Format
DLOS(K,J,1)	profile loss parameter $\omega \cos \beta_2^2/2\sigma$ corresponding to DFTAB(K,J,1) reference arrays	F8.4
DTF(1,IROW), DTF(2,!ROW), DTF(3,IROW), DTF(4,IROW)	polynomial coefficient for fourth coefficient of blade element thickness equation forward of maximum thickness point $\frac{t}{2c} = \frac{t_m}{2c} + a\left(vS_o - S - v\overline{S_o} + \frac{S}{2v\overline{S_o}}\right) - bS^2 - cS^3 - dS^4$ with $d = DTF1 + DTF2 \cdot R + DTF3 \cdot R^2 + DTF4 \cdot R^3$, where R is fraction of passage height at blade leading edge	F10.4
DTR(1,IROW), DTR(2,IROW), DTR(3,IROW), DTR(4,IROW)	same as above for rear segment with same R	F10.4
EB	EB completes TABLE option of maximum thickness location. If the eight spaces controlling the option appear as	A4
	TABLE LE	
	EE EB	
	the input values of ZMAX(IROW,J) will be used as the fraction of chord distance from the leading edge. If EB is not as shown, the values of ZMAX(IROW,J) will be used as the fraction of chord distance behind the transition point.	
EE	option control of location of maximum thickness point of a blade element. The interpretable options are TRAN and TABLE. The TRAN option and noninterpretable options will set the maximum thickness point at the transition point. The TABLE option means the maximum thickness point location will be input in tabular form, ZMAX(IROW,J), at the end of the data set.	A4
ELE(1,IROW), ELE(2,IROW), ELE(3,IROW), ELE(4,IROW)	coefficients for leading-edge ellipse ratio of semimajor to semiminor axes minus 1 $e = \frac{b}{a} - 1 = \text{ELE1} + \text{ELE2} \cdot R + \text{ELE3} \cdot R^2 + \text{ELE4} \cdot R^3$ where R is fraction of passage height at blade leading edge	F10.4
ETE(1,IROW), ETE(2,IROW), ETE(3,IROW), ETE(4,IROW)	coefficients for trailing-edge ellipse ratio of semimajor to semiminor axes minus 1 $e = \frac{b}{a} - 1 = \text{ETEI} + \text{ETE2} \cdot R + \text{ETE3} \cdot R^2 + \text{ETE4} \cdot R^3$ where R is fraction of passage height at blade trailing edge	
FLOFRA(I)	cumulative weight-flow split between streamlines starting from tip. NTUBES, which is NSTRM-1, values are read. Thus the first value is greater than zero and succeeding values must increase to 1.0 in order for the last value to account for the accumulation of flow for all streamtubes.	F10.4
FLOW(l)	mass flow (lb/sec) entering the first calculation station	F10.4

÷,

.

Parameter	Description	Format
IDEF(IROW)	blade definition index. When the index is zero, the blade segment centerline and surfaces are defined by $d\kappa/dS = constant$. When the index is not zero, the segment centerline and thickness are defined with fourth-degree functions of path distance from the transition and maximum thickness points, respectively. The specification of the coefficients for these functions is extra input, for which the format is shown in figure 12(c). If IDEF(IROW) is positive, the coefficients for the definition polynomials are interpreted to be functions of segment length normalized to 1.0; but if IDEF(IROW) is negative, the coefficients are interpreted to be functions of segment length normalized to the centerline polynomials can be either the transition point or the segment ends. The possible combinations are shown in the IDEF(IROW) summary in table IV.	
LOSS(IROW)	designation of which profile loss set (I variable in $DLOS(K,J,I)$) to use with particular blade row. If the input value of $ILOSS(IROW)$ is less than or equal to zero, a total pressure level is input in place of losses. The pressure is input with the parameters shown in the first option of figure 12. These parameters are stored into the locations of loss sets 4 and 5; so those loss sets are not available for use with any blade row.	15
INC(IROW,J)	incidence angle (deg) that can be input by option. If the tabular option is used, a value is expected for each streamline starting from the tip.	F10.4
MOLE	molecular weight of gas (28.97 for dry air)	15
NA	number of annular stations at which radial velocity profiles are constructed during computation	15
NBROWS	number of blade rows (maximum of 20)	15
NHUB	number of points input to describe hub geometric boundary (maximum of 40)	
NLOSS	number of loss sets input (maximum of 5)	15
NTIP	number of points input to describe tip geometric boundary (maximum of 40).	
NXCUT	number of sections across blade for which fabrication coordinates are desired. If zero, the program will set the number of XCUT's on the basis of aspect ratio. For all positive values the program will set appropriate locations to represent the blade. Negative values of NXCUT(IROW) trigger an option to read cards for the XCUT values. The number of values expected for a blade row is the absolute value of NXCUT(IROW).	110
NSTRM	number of streamlines (maximum of 11)	15
OP	option controlling amount of output information desired. Interpretable options are APPROX, VEL. DIA., DESIGN, and COORD. If the first four characters input in OP match none of the above, the program will try to proceed with the VEL. DIA. option. The program completes only velocity diagram information when run with the APPROX and VEL. DIA. options. With the APPKOX option the locations of blade edges are estimated from the stacking line, but with the VEL. DIA. option the blade edge locations are input. The blade edge data are read from extra cards at the end of the data set for a particular blade type. The axiai coordinates are temporarily read into VTH(I,J), and the radial coordinates are temporarily read into PO(I,J). When run with the DESIGN and	A4

Description

COORD options, the program designs and stacks that particular blade row. With the DESIGN option only velocity diagram information is printed, but the blade leading- and trailing-edge locations are for the stacked blade. The COORD option includes the printout of blade section properties and coordinates for fabrication.

OPM

Parameter

additional output options in effect if OP is DESIGN or COORD

.

A4

A4

Format

	Card column			Additional output
7	8	9	10	
	O T M M M	O T		Off-design punch TSONIC punch Blade element channel microfilm M and O options M and T options

OPO

Additional output options in effect when OP is COORD

Additional output	Card column			
	20	19	18	17
Fabrication coordinate on microfiln			м	
Fabrication coordinate punch			p	
MERIDL punch			C	
M and P options		Р	M	İ
M and C options		C	M	

PHI(IROW,J) ratio of inlet segment turning to outlet segment turning (ratio of F10.4 $[(d\kappa/dS)_1]/(d\kappa/dS)_2]$) for a blade element. If input values are expected by use of the tabular option, the data cards go with the optional cards at the end of the data set for each blade row. A value is expected for each streamline beginning from the tip.

PRA(IROW),
PRB(IROW),
PRC(IROW),
PRD(IROW),
PRD(IROW),
PRD(IROW),
PRD(IROW),
PRE(IROW)coefficients for polynomial equation to define profile behind blade row. Behind
a rotor the pressure ratio profile is specified as
 $\frac{P}{P_t} = 1.0 + PRA \cdot R + PRB \cdot R^2 + PRC \cdot R^3 + PRD \cdot R^4 + PRE \cdot R^5$
PRE(IROW)

where P_t is the stagnation pressure at the rotor exit tip and $R = (r_t - r)/(r_t - r_h)$ —a fraction of passage height. When $|PRA(IROW)| \ge 100.0$, another option is activated. The input profile is for a temperature profile T/T_t instead of a pressure profile P/P_t . The data value of PRA(IROW) is extracted from the input value by adding or subtracting 100's until the remainder is in the range of -100.0 to 100.0. At a stationary biade row the polynomial is for the blade row exit tangential velocity profile in ft/sec. $V_{\theta} = PRA/R^2 + PRB/R + PRC + PRD \cdot R + PRE \cdot R^2$ where $R = r/r_t$

PO(I,J) general stagnation pressure array in lb/ft^2 within program. The I index is the F10.4 station index and J is the streamline index. Only (PO(1,J), J=1, NSTRM) values are input; that is, the streamline value for the first calculation station. The input values are read in units of psia.

When blade edge coordinates are input, some of the other PO(I, J) locations are F8.4 used for temporary storage of the input values of radius.

PR desired overall compressor pressure ratio

F10.4

Parameter	Description	Format			
PTT(IROW), PTC(1,IROW), PTC(2,IROW),	coefficients that describe blade row exit profile when it is input as an option. PTT is the blade row exit pressure in psia at the tip (highest radius). The other five values are polynomial coefficients for				
PTC(3,IROW), PTC(4,IROW),	$P = PTT^{*}(1.0 + PTC1 * R + PTC2 * R^{2} + PTC3 * R^{3} + PTC4 * R^{4} + PTC5 * R^{5}$				
PTC(5,IROW)	where $R = (r_t - r)/(r_t - r_h)$ —fraction of passage height at blade row exit				
RHUB(I)	radius coordinates of a set of points that define geometric hub boundary (maximum of 40)	F10.4			
ROT	compressor rotational speed, rpm	F10.4			
RTIP(I)	radius coordinates of set of points that define geometric tip boundary (maximum of 40)	F10.4			
SOLID(IROW)	tip solidity of a blade row (ratio of chord to circumferential spacing)	F10.4			
TALE(IROW), TBLE(IROW), TCLE(IROW), TDLE(IROW)	polynomial coefficients of ratio of blade element leading-edge radius to chord, where $t_{le}/c = TALE + TBLE \cdot R + TCLE \cdot R^2 + TDLE \cdot R^3$ where $R(r_t - r)/(r_t - r_h)$ —fraction of passage height at blade leading edge	F10.4			
TAMAX(IROW), TBMAX(IROW), TCMAX(IROW), TDMAX(IROW)	polynomial coefficients of ratio of blade element maximum thickness to chord, where $t_{max}/c = TAMAX + TBMAX * R + TCMAX * R^2 + TDMAX * R^3$	F10.4			
TATE(IROW), TBTE(IROW), TC1E(IROW), TDTE(IROW)	polynomial coefficients of ratio of blade element trailing-edge radius to chord, where $t_{le}/c = TATE + TBTE \cdot R + TCTE \cdot R^2 + TCTE \cdot R^3$ where $R(r_l - r)/(r_l - r_h)$ —fraction of passage height at blade trailing edge	F10.4			
TILT(IROW)	angle of stacking axis tilt (deg) in circumferential direction ($r-\theta$ plane). The angle is positive in the direction of rotor rotation. If $ TILT(IROW) > 100.0$, a curved stacking line is specified according to $r - r_{ref} = C(\sin \gamma - \sin \gamma_{ref})$, and the code of the TILT(IROW) is—				
	(X)XXXXXXX (X)XXXXXXXXXXXXXXXXXXXXXXXXX				
	- tilt angle at tip in degrees. Circled digit controls sign of tip tilt angle. Even digit gives tip tilt angle same sign as hub tilt angle. Odd digit gives tip tilt angle opposite sign of hub tilt angle.				
	For example: 12332.65 gives a hub angle of 23° and a tip angle $c^{\circ} - 32.65^{\circ}$.				
TITLE(I)	description of compressor for printout and later identification	18A4			
TO(I,J)	general stagnation temperature array in program. Only $(TO(1,J), J=1, NSTRM)$ values are input; that is the streamline value for the first calculation station. The input values are in units of $^{\circ}R$.	F10.4			

.,

Parameter	Description	Format
TRANS(IROW,J)	location of transition point on blade element centerline as fraction of blade element chord. If input values are expected by use of the tabular option, the data cards go with the optional cards at the end of the data set for each blade row. A value is expected for each streamline beginning from the tip.	F10.4
V TH(1,J)	general tangential component of velocity array in program. Only (VTH(1,J), J = 1, NSTRM) values are input; that is, the streamline value for the first calculation station. The input values have units of ft sec.	F10.4
	When blade edge coordinates are input, some of the other VTH(I,J) locations are used for temporary storage of the axial coordinates of the points.	F8.4
XCUT(IC)	radial location of blade section planes. Whether or not data cards are read for values of XCUT(IC) for a blade row is controlled by the value of NXCUT (IC). Any XCUT(IC) cards are read in an output routine. Therefore they must follow all cards read in subroutine INPUT; that is, they follow the ANNULAR card for the last calculation station. There is no index identifying the data with a particular blade row, so the data sets for the blade rows are expected in the order that one would see the blade rows in moving through the compressor from the inlet. Start the set of points for each blade row on a new card. It is preferable, but not necessary, to list the XCUT(IC) for a blade row in order starting from the tip.	F10.4
XHUB(1)	axial coordinates of set of points that define geometric hob boundary. The axial extent of the coordinates must at least reach the first and last calculation stations. The hub coordinates must have the same reference origin as other input axial coordinates, that is, casing, olade edge, and stacking line coordinates. The number of points input should be $4 \le n \le 49$.	F10.4
NTIP(I)	axial coordinates of set of points that define geometric tip boundary (See NHUB(1) for additional comments.)	F10.4
ZHUB(1)	blade data set hub-axial coordinate. When the data set is a blade rather than an ANNULAR station, ZHUB(I) is the axial location of the blade stacking line at the hub.	F10.4
ZMAN(IROW,J)	location of maximum thickness point as fraction of blade element chord. If input values are expected by use of the tabular options, the data cards go with the optional cards at the end of the data set for each blade row. A value is expected for each streamline beginning from the tip with a leading-edge or transition-point reference according to option (see FB). With a transition point reference the values input are $(m - t) \cdot c$	F10.4
	X X X X X X X X X X X X X X X X X X X	

ZTIP blade data set tip-axial coordinate. (See ZHUB(I) for similar additional F10.4 comments.)

Appendix C

Development of Equations of Motion into Form Used in Computer Program

In the computer program the equations of motion are applied at calculation stations that are presumed to be outside the blade rows; so the equations of motion are more conveniently developed in an absolute, rather than a relative, coordinate system. The general equation of motion (eq. 3(21) of ref. 7) is

$$\frac{\partial V}{\partial \tau} + \nabla H = V \times (\nabla \times V) + t \nabla s + f$$
(C1)

When steady flow is assumed and the local friction force is ignored, equation (C1) reduces to

$$\nabla H = V \times (\nabla \times V) + t \, \nabla s \tag{C2}$$

In orthogonal curvilinear coordinates the velocity vector can be expressed as

$$V = \partial V_{\theta} + m V_m + n V_n \tag{C3}$$

where m is in the streamline direction in the meridional plane and n is in the normal direction in the meridional plane. Of course V_n is zero everywhere for this application. The curl term in general can be expressed as

$$\nabla \propto V = \partial \left(\frac{\partial V_n}{\partial m} + V_n k_n - \frac{\partial V_m}{\partial n} + V_m k_m \right) + \frac{\dot{m}}{r} \left[\frac{\partial (rV_\theta)}{\partial n} - \frac{\partial V_n}{\partial \theta} \right] + \frac{\dot{n}}{r} \left[\frac{\partial V_m}{\partial \theta} - \frac{\partial (rV_\theta)}{\partial m} \right] \quad (C4)$$

where k_m and k_n are the curvature of the streamline and the normal, respectively. All terms containing V_n are zero for this application. The assumption of symmetric flow in the circumferential direction makes $\partial V_m / \partial \theta$ equal to zero. Also, because angular momentum does not change on streamlines outside the blade rows

$$\frac{\partial(rV_{\theta})}{\partial m} = 0 \tag{C5}$$

Thus equation (C4) reduces to

$$\nabla \times V = \partial \left(-\frac{\partial V_m}{\partial n} + V_m k_m \right) + \frac{\partial h}{r} \frac{\partial (r V_\theta)}{\partial n}$$
(C6)

In terms of equations (C3) and (C6) the term $V \times (\nabla \times V)$ can be expressed as

$$V \times (\nabla \times V) = \begin{vmatrix} \theta & \dot{m} & \dot{n} \\ V_{\theta} & V_{m} & 0 \\ -\frac{\partial V_{m}}{\partial n} + V_{m} k_{m} & \frac{\partial (rV_{\theta})}{r \partial n} & 0 \end{vmatrix}$$

$$= \hat{\theta}[0] + \hat{m}[0] + \hat{n} \left[\frac{v_{\theta}}{r} \frac{\partial (v_{\theta})}{\partial n} + V_{m} \frac{\partial V_{m}}{\partial n} - V_{m}^{2} k_{m} \right]$$
(C7)

.

Now break equation (C2) into the three component equations. In the θ direction

$$\frac{\partial H}{\partial \theta} = t \frac{\partial s}{\partial \theta} = 0 \tag{C8}$$

The zero in equation (C8) recognizes circumferential symmetry of s. In the meridional plane streamline direction

$$\frac{\partial H}{\partial m} = t \frac{\partial s}{\partial m} = 0 \tag{C9}$$

The zero in equation (C9) comes from the assumption that entropy does not change along streamlines that are outside the blade rows. In the meridional plane normal direction

$$\frac{\partial H}{\partial n} = \frac{V_{\theta}}{r} \frac{\partial (rV_{\theta})}{\partial n} + V_m \frac{\partial V_{r1}}{\partial n} - V_m^2 k_m + r \frac{\partial s}{\partial n} \quad (C10)$$

Equations (C8) to (C10) apply to the three curvilinear component directions. However, in the program velocity and state values are available along station lines; so it is of computational convenience to apply a component equation along a station line. To accomplish this objective, the derivatives in the meridional plane are converted from the orthogonal streamline and normal directions to the generally nonorthogonal streamline and station line directions. The angle nomenclature for the conversion is shown in figure 13.

The enthalpy gradient in the staticn line direction can be expressed as

$$\frac{dH}{dl} \nabla H \cdot \vec{l}$$

$$\approx \frac{\partial H}{r \partial \theta} \frac{d\theta}{dl} + \frac{\partial H}{\partial m} \frac{dm}{dl} + \frac{\partial H}{\partial n} \frac{dn}{dl}$$

$$\equiv [0] \cdot [0] + [0] \cdot \sin(\alpha + \lambda) + \frac{\partial H}{\partial n} \cdot \cos(\alpha + \lambda)$$

$$\frac{dH}{dl} = \frac{\partial H}{\partial n} \cos(\alpha + \lambda) \qquad (C11)$$

In general a station line derivative can be expressed as

$$\frac{d}{dl} = \frac{\partial}{\partial n} \frac{dn}{dl} + \frac{\partial}{\partial m} \frac{dm}{dl}$$
$$= \frac{\partial}{\partial n} \cos(\alpha + \lambda) + \frac{\partial}{\partial m} \sin(\alpha + \lambda)$$
(C12)

When equation (C12) is applied to the other normal derivatives of equation (C10), the following relation develops:

$$\frac{d(rV_{\theta})}{dl} = \frac{\partial(rV_{\theta})}{\partial n} \cos(\alpha + \lambda) + \frac{\partial(rV_{\theta})}{\partial m} \sin(\alpha + \lambda)$$
$$- \frac{\partial(rV_{\theta})}{\partial n} \cos(\alpha + \lambda) + [0]\sin(\alpha + \lambda)$$

Figure 13. Angle nomenclature for direction derivatives.

Therefore

$$\frac{\partial(rV_{\theta})}{\partial n} = \frac{d(rV_{\theta})}{dl} = \frac{1}{\cos(\alpha + \lambda)}$$
(C13)

$$\frac{dV_m}{dl} = \frac{\partial V_m}{\partial n} \cos(\alpha + \lambda) + \frac{\partial V_m}{\partial m} \sin(\alpha + \lambda)$$

Therefore

$$\frac{\partial V_m}{\partial n} = \frac{dV_m}{dl} \frac{1}{\cos(\alpha + \lambda)} = \frac{\partial V_m}{\partial m} \tan(\alpha + \lambda)$$
 (C14)

$$\frac{ds}{dl} = \frac{\partial s}{\partial n} \cos(\alpha + \lambda) + \frac{\partial s}{\partial m} \sin(\alpha + \lambda)$$
$$= \frac{\partial s}{\partial n} \cos(\alpha + \lambda) + [0]\sin(\alpha + \lambda)$$

Therefore

$$\frac{\partial s}{\partial n} = \frac{ds}{dl} \frac{1}{\cos(\alpha + \lambda)}$$
(C15)

The application of equations (C12) through (C15) to (C10) gives

$$\frac{dH}{dl} = \frac{V_{\theta}}{r} \frac{d(rV_{\theta})}{dl} + V_{m} \frac{dV_{m}}{dl} - V_{m} \frac{\partial V_{m}}{\partial m} \sin(\alpha + \lambda)$$
$$V_{m}^{2} k_{m} \cos(\alpha + \lambda) + r \frac{ds}{dl} \qquad (C16)$$

The streamline curvature k_m is

$$k_m = \frac{\partial \alpha}{\partial m} = \frac{1}{R_m} \tag{C17}$$

where R_m is the meridional plane streamline radius of curvature. Substituting equation (C17) into (C16) yields the following form for the meridional velocity gradient:

$$V_m \frac{dV_m}{dl} = \frac{dH}{dl} - V_\theta \frac{d(rV_\theta)}{r \, dl} + V_m \frac{\partial V_m}{\partial m} \sin(\alpha + \lambda) + \frac{V_m^2}{R_m^2} \cos(\alpha + \lambda) - r \frac{ds}{dl}$$
(C18)

The state $pr_{s,p}$ perties appearing in equation (C18) are H, t, and s. However, two state properties are sufficient to establish the others at a point. For a

thermally perfect gas $(p = \rho(Rt))$ it is rather easy to compute other state properties from two selected properties; $z\phi$ it is desirable from a computer storage standpoint to store only two properties throughout the flow field. The two properties selected were stagnation temperature and pressure. These two properties, along with the velocity components, are sufficient information for the calculation of the other state properties. If these two properties can be used directly in the equations of motion, the need to compute some state properties may not exist. To express s in terms of T and P, start with the property relations

$$\frac{dp}{\rho} = dh - t \, ds \tag{C19}$$

For the introduction of stagnation properties note that the thermodynamic process of moving between the static and stagnation states is isentropic by definition. Thus equation (C19) for this process becomes

$$\frac{dp}{\rho} = dh$$

For a calorically nonperfect gas this becomes

$$\frac{dp}{p} = c_p(t)dt$$

$$\frac{dp}{p} = \left(\frac{p}{\Re t}\right)c_p(t)dt$$

$$\frac{dp}{p} = \frac{1}{\Re}\frac{c_p(t)}{t}dt$$

$$\int_p^P \frac{dp}{p} = \frac{1}{\Re}\int_t^T \frac{c_p(t)}{t}dt$$

$$\ln p \Big|_p^P = \frac{1}{\Re}\int_t^T \frac{c_p(t)}{t}dt$$

$$\frac{P}{p} = \exp\left[\frac{1}{R}\int_t^T \frac{c_p(t)}{t}dt\right]$$
(C20)

Equation (C19) used as a derivative with path distance can be written as

$$\frac{ds}{dl} = \frac{1}{t} \frac{dh}{dl} - \frac{1}{\rho t} \frac{dp}{dl}$$
(C21)

Substituting equation (C20) gives

$$\frac{ds}{dl} = \frac{1}{t} \frac{dh}{dl} - \frac{1}{\rho t}$$

$$\frac{d\left\{P \exp\left|-\frac{1}{\ell R}\int_{t}^{T} c_{p}(t)/t \, dt\right|\right\}}{dl}$$

$$\frac{ds}{dl} = \frac{1}{t} \frac{dh}{dl} - \frac{1}{\rho t} \frac{dP}{dl} \exp\left[-\frac{1}{\ell R}\int_{t}^{T} \frac{c_{p}(t)}{t} \, dt\right]$$

$$-\frac{P}{\rho t} \exp\left[-\frac{1}{\ell R}\int_{t}^{T} \frac{c_{p}(t)}{t} \, dt\right]$$

$$\left(-\frac{1}{\ell R}\frac{d}{dl}\right)\left[\int_{t}^{T} \frac{c_{p}(t)}{t} \, dt\right]$$

$$= \frac{1}{t} \frac{dh}{dl} - \frac{1}{\rho t} \frac{dP}{dl}\left(\frac{P}{P}\right) + \frac{P}{\ell R\rho t}\left(\frac{P}{P}\right)\frac{d}{dl}\left[\int_{t}^{T} \frac{c_{p}(t)}{t} \, dt\right]$$

$$= \frac{1}{t} \frac{dh}{dl} - \frac{\Re}{P} \frac{dP}{dl} + \frac{d}{dl}\left[\int_{t}^{T} \frac{c_{p}(t)}{t} \, dt\right] \quad (C22)$$

The application of Liebnitz's rule to the last term gives

$$\frac{d}{dl} \left[\int_{t}^{T} \frac{c_{p}(t)}{t} dt \right] = \int_{t}^{T} \frac{\partial}{\partial l} \frac{c_{p}(t)}{t} dt + \frac{c_{p}(T)}{T} \frac{dT}{dl} - \frac{c_{p}(t)}{t} \frac{dt}{dl}$$

The variable $(c_p(t)/t)$ is not a direct function of path distance; it is a function of temperature alone. Therefore the partial derivative with respect to distance must be zero. Thus the derivative of the integral can be expressed in terms of gradients at the limits so that

$$\frac{d}{dl} \left[\int_{t}^{T} \frac{c_{p}(t)}{t} dt \right] = \frac{c_{p}(T)}{T} \frac{dT}{dl} - \frac{c_{p}(t)}{t} \frac{dt}{dl}$$
$$= \frac{1}{T} \frac{dH}{dl} - \frac{1}{t} \frac{dh}{dl} \qquad (C23)$$

Substituting (C23) into (C22) gives

$$\frac{ds}{dl} = \frac{1}{t}\frac{dh}{dl} - \frac{\Re}{P}\frac{dP}{dl} + \frac{1}{T}\frac{dH}{dl} - \frac{1}{t}\frac{dh}{dl}$$

$$\frac{ds}{dl} = \frac{1}{T}\frac{dH}{dl} - \frac{\Re}{P}\frac{dP}{dl} = \frac{1}{T}\frac{dH}{dl} - \frac{1}{\rho_0 T}\frac{dP}{dl} \qquad (C24)$$

Equation (C24) is essentially equation (C21) expressed in stagnation state variables. Equation (C24) would turn out to be the same for a calorically perfect gas. Substituting equation (C24) into (C18) gives

$$V_m \frac{dV_m}{dl} = \frac{dH}{dl} - V_\theta \frac{d(rV_\theta)}{r \, dl} + V_m \frac{\partial V_m}{\partial m} \sin(\alpha + \lambda) + \frac{V_m^2}{R_m} \cos(\alpha + \lambda) - \frac{t}{T} \frac{dH}{dl} + \frac{\Re t}{P} \frac{dP}{dl}$$

A rearrangement with all the state property terms together gives

$$V_m \frac{dV_m}{dl} = \left(\frac{T-t}{T}\right) \frac{dH}{dl} + \Re t \frac{d\ln P}{dl} - V_\theta \frac{d(r V_\theta)}{r dl} + V_m \frac{\partial V_m}{\partial m} \sin(\alpha + \lambda) + \frac{V_m^2}{R_m^2} \cos(\alpha + \lambda)$$
(C25)

All the terms on the right side of equation (C25) can be computed quite accurately except $\partial V_m / \partial m$, which is the gradient of V_m along a streamline in the meridional plane. The distance over which $\partial V_m / \partial m$ changes sign are of the order of the calculation station spacing so that representative values of $\partial V_m / \partial m$ cannot be obtained from a V_m curve fit along meridional streamlines. A better value of this derivative probably can be obtained by means of local continuity. From equation 9(12) of reference 7 differential continuity can be expressed as

$$\frac{1}{\rho}\frac{d\rho}{Dt} + \nabla \cdot V = 0 \tag{C26}$$

However,

 $\frac{1}{\rho}\frac{D\rho}{Dt} = \frac{1}{a^2}\frac{Dh}{Dt}$

so equation (C26) can be written as

$$\frac{1}{a^2}\frac{Dh}{Dt} + \nabla \cdot V = 0 \tag{C27}$$

Equation (C27) expanded from its vector form is

$$\frac{1}{a^2} \left(\frac{\partial h}{\partial t} + \frac{V_{\theta}}{r} \frac{\partial h}{\partial \theta} + V_m \frac{\partial h}{\partial m} + V_n \frac{\partial h}{\partial n} \right) + \frac{1}{r} \frac{\partial (r V_m)}{\partial m} + \frac{1}{r} \frac{\partial V_{\theta}}{\partial \theta} + \frac{1}{r} \frac{\partial (r V_n)}{\partial n} + V_m k_m + V_n k_n = 0$$

Outside the blade rows the flow is assumed to be axisymmetric and steady. Also, because there is no velocity component normal to the streamline, the equation reduces to

$$\frac{V_m}{a^2}\frac{\partial h}{\partial m} + \frac{1}{r}\frac{\partial (r V_m)}{\partial m} + V_m k_m = 0$$
(C28)

Stagnation enthalpy is defined as

$$H = h + \frac{V_m^2}{2} + \frac{V_{\theta}^2}{2}$$
(C29)

$$\frac{\partial H}{\partial m} = \frac{\partial h}{\partial m} + V_m \frac{\partial V_m}{\partial m} + V_\theta \frac{\partial V_\theta}{\partial m}$$

But because $\partial H/\partial m = 0$ outside the blade rows.

$$\frac{\partial h}{\partial m} = -V_m \frac{\partial V_m}{\partial m} - V_\theta \frac{\partial V_\theta}{\partial m}$$
(C30)

Outside the blade rows angular momentum is conserved along streamlines; so

$$0 = \frac{\partial (r \ V_{\theta})}{\partial m} = \frac{\partial r}{\partial m} \ V_{\theta} + r \ \frac{\partial V_{\theta}}{\partial m}$$

Rearrangement gives

$$\frac{\partial V_{\theta}}{\partial m} = -\frac{V_{\theta}}{r}\frac{\partial r}{\partial m} = -\frac{V_{\theta}}{r}\sin\alpha \qquad (C31)$$

Substituting equation (C31) into (C30) gives

$$\frac{\partial h}{\partial m} = -V_m \frac{\partial V_m}{\partial m} + \frac{V_\theta^2}{r} \sin \alpha$$
(C32)

Substituting equation (C32) into (C28) gives

$$\frac{V_m}{a^2} \left(-V_m \frac{\partial V_m}{\partial m} + \frac{V_{\theta}^2}{r} \sin \alpha \right) + \frac{V_m}{r} \frac{\partial r}{\partial m} + \frac{\partial V_m}{\partial m} + V_m k_m = 0$$

$$\left(1 - \frac{V_m^2}{a^2} \right) \frac{\partial V_m}{\partial m} + \left(\frac{V_{\theta}^2}{a^2} + 1 \right) \frac{V_m}{r} \sin \alpha + V_m k_n = 0$$

$$\frac{\partial V_m}{\partial m} = \frac{1}{M_{r_i}^2 - 1} \left[\left(M_{\theta}^2 + 1 \right) \frac{V_m}{r} \sin \alpha + V_m k_n \right]$$
(C33)

The curvature of the streamline normal k_n , which is $\partial \alpha / \partial n$, needs to be expressed in terms that can be evaluated.

$$\frac{d\alpha}{dl} = \frac{\partial\alpha}{\partial n} \cos(\alpha + \lambda) + \frac{\partial\alpha}{\partial m} \sin(\alpha + \lambda)$$
$$\frac{\partial\alpha}{\partial n} = \frac{d\alpha}{dl} \frac{1}{\cos(\alpha + \lambda)} - \frac{\partial\alpha}{\partial m} \frac{\sin(\alpha + \lambda)}{\cos(\alpha + \lambda)}$$
$$k_n = \frac{\partial\alpha}{\partial n} = \frac{d\alpha}{dl} \sec(\alpha + \lambda) - \frac{\tan(\alpha + \lambda)}{R_m}$$
(C34)

Substituting equation (C34) into (C33) gives

$$\frac{\partial V_m}{\partial m} = \frac{V_m}{M_m^2 - 1} \left[\frac{M_\theta^2 + 1}{r} \sin \alpha \right]$$

$$+ \frac{d\alpha}{dl}\sec(\alpha + \lambda) - \frac{\tan(\alpha + \lambda)}{R_m} \right]$$
(C35)

Calculation of $\partial V_m / \partial m$ by using equation (C35) should give a somewhat more accurate result than a curve fit or a finite difference computation across increments that span whole blade elements. However, a potential divide-by-zero complication has been introduced with the term $M_m^2 - 1$. In equation (C35) the term in braces in essence represents the dA/A term of one-dimensional flow theory. At a Mach number of 1.0, dA/A is zero, which is the throat of a nozzle. For compressor blade rows the throat occurs within the blade passages. Internal flows adjust around locally choked regions so that the throughflow Mach number outside the blade only approaches 1. Computation of the detailed nature of the flow is not available from only stations outside the blade row; so a minimum value is imposed on the denominator through an empirical additive term to help stabilize the iterative procedure. The additive center term is

$$f = 0.1 \frac{(M_m^2 - 1)}{|M_m^2 - 1|} \exp\left[-10(M_m^2 - 1)\right]$$

Its characteristics and effect on the denominator are shown in table V.

Appendix D

Conic Coordinates of Blade Centerline Path

Local blade angle is defined with respect to the local conic ray (fig. 14). Let the blade angle vary with path distance along the cone according to the polynomial

$$\kappa = \kappa_1 + aS + bS^2 + cS^3 + dS^4$$
 (D1)

where κ_t is the blade angle at the transition point between segments in this application. The path distance S is with respect to the transition point reference but always positive in the direction from inlet to outlet.

The conic radial component of the centerline can be found by integrating the differential equation for that component

$$dR = \cos[\kappa]dS = \cos(\kappa_t + aS + bS^2 + cS^3 + dS^4)dS$$
(D2)

The problem is that a trigonometric function of a polynomial is not readily integratable in closed form. However, the function can be expanded in series form and integrated term by term. Of course the series is infinite but it is convergent within the range of our application. In the following presentation enough development is given to show the form of the series. Upon application in the program a tolerance is used so that no more terms than necessary are calculated.

Figure 14. - Blade element centerline nomenclature.

$$\cos \kappa = 1 - \frac{\kappa^2}{2!} + \frac{\kappa^4}{4!} - \frac{\kappa^6}{6!} + \frac{\kappa^8}{8!} \dots$$
 (D3)

When equation (D1) is substituted, the terms of like powers of S can be summed to give in symbolic form

$$\cos \kappa = \begin{vmatrix} 1 \\ 1 \end{vmatrix} + \begin{vmatrix} 2S \\ 3S^2 \end{vmatrix} + \begin{vmatrix} 4S^3 \\ 4S^3 + \ldots$$
 (D4)

$$R - R_{f} = \int_{0}^{S} \cos \kappa \, ds = | \cdot |_{1}S + | \cdot |_{2} \frac{S^{2}}{2} + | \cdot |_{3} \frac{S^{3}}{3} + | \cdot |_{4} \frac{S^{4}}{4} \dots$$

When terms of similar coefficients are combined, the following form evolves:

$$\int \cos \kappa \, dS = \frac{1}{a} \left[\cos \kappa_t \sin(aS) + \sin \kappa_t \cos(aS) \right] - \frac{1}{a} \sin \kappa_t$$

+ $b \sin \kappa_t \left(-\frac{S^3}{3} + \frac{a^2}{2} \frac{S^5}{5} - \frac{a^4}{4!} \frac{S^7}{7} + \frac{a^6}{6!} \frac{S^9}{9} + \dots \right)$
+ $b \cos \kappa_t \left(-a \frac{S^4}{4} + \frac{a^3}{3!} \frac{S^6}{6} - \frac{a^5}{5!} \frac{S^8}{8} \dots \right)$
+ $\frac{b^2}{2} \cos \kappa_t \left(-\frac{S^5}{5} + \frac{a^2}{2} \frac{S^7}{7} - \frac{a^4}{4!} \frac{S^9}{9} \dots \right)$
+ $\frac{b^2}{2} \sin \kappa_t \left(a \frac{S^6}{6} - \frac{a^3}{3!} \frac{S^8}{8} \dots \right)$

٦

$$\begin{aligned} &+ \frac{b^3}{3!} \sin \kappa_l \left(\frac{S^7}{7} - \frac{a^2}{2} \frac{S^9}{9} \dots \right) \\ &+ \frac{b^3}{3!} \cos \kappa_l \left(a \frac{S^8}{8} \dots \right) \\ &+ \frac{b^4}{4!} \cos \kappa_l \left(\frac{S^9}{9} \dots \right) \\ &+ b \cos \kappa_l \left\{ -c \frac{S^6}{6} + \frac{a^2 c}{2} \frac{S^8}{8} + \left(\frac{a c^2}{2} - \frac{a^4 c}{4!} \right) \frac{S^{10}}{10} \right. \\ &+ \left[\frac{a^6 c}{6!} - \frac{a^3 c^2}{3!(2)} + \frac{c^3}{3!} \right] \frac{S^{12}}{12} + \left[-\frac{a^8 c}{8!} + \frac{a^5 c^2}{5!(2)} - \frac{a^2 c^3}{2(3!)} \right] \frac{S^{14}}{14} \right] \\ &+ b \sin \kappa_l \left\{ a c \frac{S^7}{7} + \left(\frac{c^2}{2} - \frac{a^3 c}{3!} \right) \frac{S^9}{9} + \left[-\frac{a^2 c^2}{2(2)} + \frac{a^5 c}{5!} \right] \frac{S^{11}}{11} + \dots \right. \\ &+ \frac{b^2}{2} \sin \kappa_l \left(c \frac{S^8}{8} - \frac{a^2 c}{2} \frac{S^{10}}{10} + \dots \right) \\ &+ \frac{b^3}{3!} \cos \kappa_l \left[a c \frac{S^9}{9} + \left(-\frac{a^3 c}{3!} + \frac{c^2}{2} \right) \frac{S^{11}}{11} + \dots \right] \\ &+ \frac{b^3}{3!} \cos \kappa_l \left(-a c \frac{S^{11}}{10} + \dots \right) \\ &+ b \cos \kappa_l \left[-d \frac{S^7}{7} + \frac{a^2 d}{2} \frac{S^9}{9} - \frac{a d}{4!} \frac{S^{11}}{11} + \frac{a d^2}{2} \frac{S^{12}}{2} + \frac{a^6 d}{6!} \frac{S^{13}}{13} \right. \\ &- \frac{a^3 d^2}{3!(2)} \frac{S^{14}}{14} + \left(-\frac{a^8 d}{8} + \frac{d^3}{3!} \right) \frac{S^{15}}{15} \right] \\ &+ b \sin \kappa_l \left[a d \frac{S^8}{8} - \frac{a^3 d}{3!} \frac{S^{10}}{10} + \frac{d^2}{2} \frac{S^{11}}{11} + \frac{a^5 d}{5!} \frac{S^{12}}{12} - \frac{a^2 d^2}{2(2)} \frac{S^{13}}{13} \right. \\ &- \frac{a^7}{7!} \frac{S^{14}}{14} + \frac{a^4 d^2}{4!(2)} \frac{S^{15}}{15} + \left(\frac{a^9 d}{9!} - \frac{a d^3}{3!} \right) \frac{S^{16}}{16} \right] \end{aligned}$$

}
$$+\frac{b^{2}}{2}\sin\kappa_{t}\left(d\frac{S^{9}}{9}-\frac{a^{2}d}{2}\frac{S^{11}}{11}+\frac{a^{4}d}{4!}\frac{S^{13}}{13}-\frac{ad^{2}}{2}\frac{S^{14}}{14}-\frac{a^{6}d}{6!}\frac{S^{15}}{15}+\ldots\right)$$

$$+\frac{b^{2}}{2}\cos\kappa_{t}\left(ad\frac{S^{10}}{10}-\frac{a^{3}d}{3!}\frac{S^{12}}{12}+\frac{d^{2}}{2}\frac{S^{13}}{13}+\frac{a^{5}d}{5!}\frac{S^{14}}{14}-\frac{a^{2}}{2}\frac{d^{2}}{2}\frac{S^{15}}{15}+\ldots\right)$$

$$+\frac{b^{3}}{3!}\cos\kappa_{t}\left(d\frac{S^{11}}{11}-\frac{a^{2}d}{2}\frac{S^{13}}{13}+\frac{a^{4}d}{4!}\frac{S^{15}}{15}-\frac{ad^{2}}{2}\frac{S^{16}}{16}+\ldots\right)$$

$$+\frac{b^{3}}{2!}\sin\kappa_{t}\left(-ad\frac{S^{12}}{12}+\frac{a^{3}d}{3!}\frac{S^{14}}{14}-\frac{d^{2}}{2}\frac{S^{15}}{15}+\ldots\right)$$

$$+\frac{b^{4}}{4!}\sin\kappa_{t}\left(-ad\frac{S^{13}}{13}+\frac{a^{2}}{2}d\frac{S^{15}}{15}+\ldots\right)$$

$$+\frac{b^{4}}{4!}\cos\kappa_{t}\left(-ad\frac{S^{14}}{13}+\frac{a^{2}}{2}d\frac{S^{15}}{5!}+\ldots\right)$$

$$+c\sin\kappa_{t}\left(-\frac{S^{4}}{4}+\frac{a^{2}}{2}\frac{S^{6}}{6}-\frac{a^{4}}{4!}\frac{S^{8}}{8}+\ldots\right)$$

$$+\frac{c^{2}}{2}\cos\kappa_{t}\left(-\frac{S^{7}}{7}+\frac{a^{2}}{2}\frac{S^{9}}{9}+\ldots\right)$$

$$+\frac{c^{2}}{2}\sin\kappa_{t}\left(a\frac{S^{8}}{8}+\ldots\right)$$

$$+c\sin\kappa_{t}\left(a\frac{S^{8}}{8}+\frac{a^{2}d}{2}\frac{S^{10}}{10}+\frac{a^{4}d}{4!}\frac{S^{12}}{12}+\frac{ad^{2}}{2}\frac{S^{13}}{13}+\ldots\right)$$

$$+c\sin\kappa_{t}\left(ad\frac{S^{9}}{9}-\frac{a^{3}d}{3!}\frac{S^{11}}{11}+\frac{d^{2}}{2}\frac{S^{12}}{12}+\frac{a^{5}d}{5!}\frac{S^{13}}{13}+\ldots\right)$$

$$+\frac{c^{2}}{2}\sin\kappa_{t}\left(ad\frac{S^{11}}{11}-\frac{a^{2}}{2}d\frac{S^{13}}{13}+\ldots\right)$$

.

$$+ \frac{c^{2}}{2} \cos \kappa_{l} \left(ad \frac{S^{12}}{12} + \ldots \right)$$

$$+ d \sin \kappa_{l} \left(-\frac{S^{5}}{5} + \frac{a^{2}}{2} \frac{S^{7}}{7} - \frac{a^{4}}{4!} \frac{S^{9}}{9} + \ldots \right)$$

$$+ d \cos \kappa_{l} \left(-a \frac{S^{6}}{6} + \frac{a^{3}}{3!} \frac{S^{8}}{8} + \ldots \right)$$

$$+ \frac{d^{2}}{2} \cos \kappa_{l} \left(-\frac{S^{9}}{9} + \ldots \right)$$

$$+ \frac{d^{2}}{2} \cos \kappa_{l} \left(-\frac{S^{9}}{9} + \ldots \right)$$

$$+ abcd \cos \kappa_{l} \left\{ \frac{S^{11}}{11} - \frac{a^{2}}{3!} \frac{S^{13}}{13} - \frac{ab}{2(2)} \frac{S^{14}}{14} + \left[\frac{a^{4}}{5!} - \frac{b^{2}ac}{3!(4)} \right] \frac{S^{15}}{15}$$

$$+ \left[\frac{a^{3}b}{4!(2)} - \frac{bc}{4} \right] \frac{S^{16}}{16} + \left[-\frac{a^{6}}{7!} + \frac{a^{3}c}{4!(2)} + \frac{a^{2}b^{2}}{(3!)^{2}} - \frac{c^{2}}{3!} \right] \frac{S^{17}}{17} \right\}$$

$$+ abcd \sin \kappa_{l} \left\{ -\frac{a}{2} \frac{S^{12}}{12} - \frac{b}{2} \frac{S^{13}}{13} + \left(\frac{a^{3}}{4!} - \frac{c}{2} \right) \frac{S^{14}}{14} + \frac{a^{2}b}{3!(2)} \frac{S^{15}}{15}$$

$$+ \left[-\frac{a^{5}}{6!} + \frac{ab^{2}}{2(3!)} + \frac{a^{2}c}{3!(2)} \right] \frac{S^{16}}{16} + \left[-\frac{a^{4}b}{5!(2)} + \frac{abc}{8} + \frac{b^{3}}{4!} \right] \frac{S^{17}}{17} \right\}$$

$$+ abc \frac{d^{2}}{2} \sin \kappa_{l} \left(-\frac{S^{15}}{15} + \frac{a^{2}}{3!} \frac{S^{17}}{17} + \ldots \right)$$

With these groupings shown, patterns of terms and coefficients can be observed. The whole equation was coded into three rather brief subroutines—one for terms with two coefficients, COEF1 (two of the four coefficients a, b, c, and d); another for terms with three coefficients, COEF2; and one for terms with all lour coefficients, COEF3. Finally the coefficients of the terms with the same powers of S are summed: so the [] terms are known in

$$R = R_{t} + []_{1}S + []_{2}\frac{S^{2}}{2} + []_{3}\frac{S^{3}}{3}$$

+ []₄ $\frac{S_4}{4}$ + ... + []_n $\frac{S^n}{n}$

Because in the following developments these coefficients appear frequently within parentheses, for simplicity the []'s are replaced with c's; that is,

$$R = R_1 + c_1 S + c_2 \frac{S^2}{2} + c_3 \frac{S^3}{3} + c_4 \frac{S^4}{4} + \dots + c_n \frac{S^n}{n}$$
(D6)

The conic angular coordinate can be expressed as

$$\epsilon - \epsilon_t = \int_0^S \frac{\sin \kappa}{R} dS \tag{D7}$$

where both sin κ and R can be expressed as infinite, but convergent for our purposes, polynomials of S. Since a polynomial in the denominator is an undesirable form to integrate, the polynomial for Rwas converted to a polynomial in the numerator of the form shown in equation (D8).

$$\epsilon - \epsilon_t = \int_0^S \frac{\sin \kappa}{R} dS$$
$$= \frac{1}{R_t} \int_0^S \frac{R_t}{R} \sin \kappa \, dS$$

where

$$\frac{R_{t}}{R} = 1 + R_{1}S + R_{2}S^{2} + R_{3}S^{3} + \dots$$

The conversion from equation (D6) to (D8) begins as

$$\frac{R_t}{R} = \frac{R_t}{R_t + c_1 S + c_2 (S^2/2) + c_3 (S^3/3) + \dots}$$
$$= \frac{1}{1 + (c_1/R_t)S + (c_2/R_t)S^2 + (c_3/R_t)S^3 + \dots}$$

$$=\frac{1}{1-D_1S-D_2S^2-D_3S^3-\dots}$$

where

(D8)
$$D_1 = -\frac{C_1}{R_t}, D_2 = -\frac{C_2}{2R_t}, D_3 = -\frac{C_3}{3R_t}, \text{ etc}$$

$$R_{1} R_{2} R_{3} R_{4}$$

$$1 + D_{1}S + (D_{2} + D_{1}^{2})S^{2} + (D_{3} + 2D_{1}D_{2} + D_{1}^{3})S^{3} + (D_{4} + 2D_{1}D_{3} + D_{2}^{2} + 3D_{1}D_{2} + D_{1}^{4})S^{4}$$

$$1 - D_{1}S - D_{2}S^{2} - D_{3}S^{3} - \dots \sqrt{\frac{1}{1 - D_{1}S - D_{2}S^{2}} - D_{3}S^{3}} - D_{4}S^{4}}$$

$$\frac{D_{1}S - D_{2}S^{2} - D_{1}S^{3} - D_{4}S^{4}}{D_{1}S - D_{1}^{2}S^{2} - D_{1}D_{2}S^{3}} - D_{1}D_{3}S^{4}}$$

$$\frac{(D_{2} + D_{1}^{2})S^{2} + (D_{3} + D_{1}D_{2})S^{3} + (D_{4} + D_{1}D_{3})S^{4}}{(D_{2} + D_{1}^{2})S^{2} - D_{1}(D_{2} + D_{1}^{2})S^{3} - D_{2}(D_{2} + D_{1}^{2})S^{4}}{(D_{3} + 2D_{1}D_{2} + D_{1}^{3})S^{3} - D_{1}(D_{3} + 2D_{1}D_{2} + D_{1}^{3})S^{4}}$$

$$\frac{(D_{4} + 2D_{1}D_{3} + D_{2}^{2} + 3D_{1}^{2}D_{2} + D_{1}^{4})S^{4}}{(D_{3} + 2D_{1}D_{2} + D_{1}^{3})S^{3} - D_{1}(D_{3} + 2D_{3} + 2D_{1}D_{2} + D_{1}^{3})S^{4}}{(D_{4} + 2D_{1}D_{3} + D_{2}^{2} + 3D_{1}^{2}D_{2} + D_{1}^{4})S^{4}}$$

Table VI summarizes the preceding division.

The coefficients for equation (D8) are generated in subroutine RCOEF. The coding for the procedure is somewhat complex, but in general not much computation is required to satisfy a tolerance criterion of 1.0E-08.

The conversion of $\sin x$, where

 $\kappa = \kappa_1 + aS + bS^2 + cS^3 + dS^4$

to the polynomial form

$$\sin \kappa = A_1 + A_2 S + A_3 S^2 + A_4 S^3 + A_5 S^4 \dots \quad (D9)$$

is accomplished in the same way as it was for the cosine series (eqs. (D1) to (D5)). In fact, the cosine series can be converted to the sine series with the following substitutions:

Cosine series	Sine series
$-\sin \kappa_t$	$\cos \kappa_t$
$-\cos \kappa_{t}$	$-\sin \kappa_t$
$\sin \kappa_t$	$-\cos \kappa_t$
COS K	$\sin \kappa_t$

Consequently the same routines that are used to compute the cosine series case easily be modified to compute the sine series coefficients also.

When the polynomial series coefficients in equations (D8) and (D9) are known, the integration for ϵ is straightforward.

$$-\epsilon_{t} = \frac{1}{R_{t}} \int_{0}^{S} \frac{R_{t}}{R} \sin \kappa$$

$$= \frac{1}{R_{t}} \int_{0}^{S} (1 + R_{1}S + R_{2}S^{2} + R_{3}S^{3} + ...)$$

$$\times (A + A_{2}S + A_{3}S^{2} + A_{4}S^{3} + ...)$$

$$= \frac{1}{R_{t}} \int_{0}^{S} A_{1} + (A_{2} + R_{1}A_{1})S$$

$$+ (A_{3} + R_{1}A_{2} + R_{2}A_{1})S^{2}$$

$$+ (A_{4} + R_{1}A_{3} + R_{2}A_{2} + R_{3}A_{1})S^{3} + ...$$

$$= \frac{1}{R_{t}} \left\{ A_{1}S + \frac{A_{2} + R_{1}A_{1}}{2}S^{2} + \frac{A_{3} + R_{1}A_{2} + R_{2}A_{1}}{3}S^{3} \right\}$$

€

The general routine for establishing the polynomial coefficients for the conic coordinates is EPSL2. The end result is constant polynomial coefficients for the conic coordinates (R and ϵ) as a function of S. These coefficients are saved so that the conic coordinate at any S of interest can be computed easily with subroutine CONE.

 $+\frac{A_4+R_1A_3+R_2A_2+R_3A_1}{4}S^4+\ldots\right\}$

References

- Johnsen, Irving A.; and Bullock, Robert O. eds.: Aerodynamic Design of Axial-Flow Compressors. NASA SP-36, 1965.
- Crouse, James E.: Computer Program for Definition of Transonic Axial-Flow Compressor Blade Rows. NASA TN D-7345, 1974.
- Schwenk, Francis C.; Lewis, George W.; and Hartmann, Melvin J.: A Preliminary Analysis of the Magnitude of Shock Losses in Transonic Compressors. NACA RM F57A30, 1957.
- Seyler, D.R.; and Smith, L. H., Jr.: Single State Experimental Evaluation of High Mach Number Compressor Rotor Blading. Part 1-Design of Rotor Blading.

(GE-R66FPD321-PT-1, General Electric Co.; NASA Contract NAS3-7617.) NASA CR-54581, 1967.

- Katsanis, Theodore: FORTRAN Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TN D-5427, 1969.
- 6. Katsaris, Theodore; and McNally, William D.: Revised FORTRAN Program for Calculating Velocities and Streamlines on Hub-Shroud Midchannel Stream Surface on an Axial-, Radial-, or Mixed-Flow Turbomachine or Annular Duct. I-User's Manual. NASA TN D-8430, 1977.
- Vavra, Michael H.: Aero-Thermodynamics and Flow in Turbomachines. John Wiley & Sons, Inc., 1960.

	Program control	
Input and initialization	Iteration	Terminal calculations
Read and interpret data Locate calculation stations At each station for each streamline, estimate stagnation temperature and pressure and axial and tan- gential velocities	Outer loop: At calculation stations Set coefficients of equation of motion If blade design option, set incidence and deviation angles, compute new blade edge location, and reset calculation station location Inner loop: At each calculation station Solve for meridional veloc- ity distribution to satisfy equations of motion and continuity Reset streamline location	Overall blade row performance on streamlines at calculation station: General State properties (temper- ature and pressure) Velocity diagrams Streamline information Blade rows Element definition param- eters Licidence and deviation angles Aerodynamic performance parameters Streamline choke margin Blade section parameters: Surface coordinates Area, moments, etc.

TABLE I. - OVERVIEW OF COMPUTER PROGRAM

 $\frac{P}{P_{tip}} = 1 + R \cdot PTC(1, IROW) + R^2 \cdot PTC(2, IROW) + R^3 \cdot PTC(3, IROW)$ + R² * PRE (ROW) + R² + PRE (IROW) + $R^4 \star PTC(4, IROW) + R^5 \star PTC(6, IROW)$ Losses from tables of DLOS(K, J, I) as function of DFTAB(K, J, I) PRAGROW, PRBGROW, PRCGROW, + R+PRDGROW) PRAGROW] + PRBGROW] + PRCGROW) + R+PRDGROW) Stagnation pressure at tip (psia) - PTT(ROW) where $R = (r_t - r)/(r_t - r_h)$ Tangential velocity composent at stator exit Tangential velocity component at stator exit where R = r/r_{tip} where R = r/r_{tip} Stators Exit stagnation pressure profile ¥ **~** ಿ≃ °2∠ 1. 0 $^{\prime\prime}$ • R⁴ • PRD(ROW) • R⁵ • PRE(ROW) $\frac{P}{P_{OP}} = 1 + R \cdot PTC(\mathbf{n}, 1ROW) + R^2 \cdot PTC(\mathbf{2}, 1ROW) + R^3 \cdot PTC(\mathbf{3}, 1ROW)$ $\cdot | \mathbf{R}^{\mathsf{T}} \cdot \mathbf{PTC}(\mathsf{H}, \mathsf{IROW}) + | \mathbf{R}^{\mathsf{S}} \cdot \mathsf{PTC}(\mathsf{G}, \mathsf{IROW}) |$ Cumulati e traction of overall energy addition - CPRDGN (iROTOR) $+ R^4 \cdot PRD(ROW) + R^3 \cdot PRE(ROW)$ · R⁴ · PRD///ROW) · R' · PRE (ROW) Losses from tables of DLOS(K, J, I) as a citon of DFTAB(K, J, I) Losses from tables of $\mathrm{DLOS}(K, \mathrm{J}, \mathrm{I})$ as function of $\mathrm{DFTAB}(K, \mathrm{J}, \mathrm{I})$ $\frac{T}{T_{tip}} = 1 + R \cdot PRAGROW + R^2 \cdot PRBGROW + R^3 \cdot PRCGROW + T_{tip}$ $\frac{T}{T_{\rm Up}} = 1 + R \cdot PRA(RCW) + R^2 \cdot PRB(RCW) + R^3 \cdot PRC(RCW)$ $\frac{P}{P_{up}} = 1 + R + PRAGROW + R^{2} + PRBGROW + R^{3} + ORCOROW$ Stagnation temperature at tip $(^{2}R) \sim CPRDGN(ROTOR)$ Stagnation pressure at the (psia) - PTT(IROW) Stagnation pressure at tip (psia) - PTTAROW) Nondimensional pressure profile at rotor exit where $\mathbf{R} = (\mathbf{r}_1 - \mathbf{r}) \cdot (\mathbf{r}_1 - \mathbf{r}_{\mathbf{h}})$ where $\mathbf{R} = (\mathbf{r}_1 - \mathbf{r}) \int (\mathbf{r}_1 - \mathbf{r}_h)$ where $\mathbf{R} = (\mathbf{r}_{t} - \mathbf{r})^{-1} (\mathbf{r}_{t} - \mathbf{r}_{L})$ where $R = (r_1 + r) - (r_2 + r_3)$ Polors Fxit stagnation pressure profile Rotor exit temperature profile Rotor exit temperature profile

TABLE II - OPTIONS FOR SPECIEVING NECESSARY AND SUFFICIENT BLADE ROW CONDITIONS FOR AERODYNAMIC SOLUTION

TABLE III. - EXAMPLE PROBLEM

(a) Input data set

IMPUT DATA FOR COMPRESSOR DESIGN PROGRAM

2-STAGE FAN REDESIGN AR=1.52

THE DESIRED COMPRESSOR PRESSURE RATIO 15 2.400 . CALCULATIONS WILL BE PERFORMED ON 11 STREAMLINES THE COMPRESSOR ROTATIONAL SPEED IS 16042.8 RPM

THE INLET FLOW RATE IS 73.300 (LB/SEC). THE MOLECULAR WEIGHT IS 28.37

THE COMPRESSOR HAS 4 BLADE ROWS.

CALCULATIONS WILL BE MADE AT THE BLADE EDGES AND AT 17 ANNULAR STATIONS.

THE SPECIFIC HEAT POLYNOMIAL IS IN THE FOLLOWING FORM

CP = 0.23747E 00 + 0.21962E-06#T + -0.8779IE-07#1##2 + 0.1399IE-09#T##3 + -0.78056E-13#T##4 + 0.15043E-16#T##5

INPUT DISTRIBUTIONS BY STREAMLINE OR STREAMTUBE

STREAMTUBE FLOW FRACTION STREAMTUBE ND. INLET WHIRL VELOCITY (FI/SEC) INLET TOTAL Pressure (PSIL) INLET TOTAL Temperature (deg. R.) STREAMLINE ND.

Ð,

INPUT DATA POINTS FOR TIP AND HUB CONTOURS.

и	
C I I I I I I I I I I I I I I I I I I I	AAA . 33
Н Н Н Н Н Н Н Н Н Н Н Н Н Н	
CI CO CO CO CO CO CO CO CO CO CO	

WARNING ONLY, AT INPUT POINT, 12, THE TIP CONTOUR DATA IS NOT VERY SMOOTH.

.

THE INPUT PROFILE LOSS TABLES - OMEGA(BAR)*COS(BETA)/(2.0*SIGMA)

** PROFILE LOSS TABLE NO. I **

LOSS PARAM.	0.0338	0.0263	0.0210	0.0165	0.0165	0.0165	0.0165	0.0165	0.0200	0.0243	0.0295		LOSS PARAM.	0.0505	0.0423	0.0360	0.0310	0.0296	0.0299	0.0306	0.0317	0.0347	0.0425	0.0486
D-FACTOR	U.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000		D-FACTOR	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000	0.7000
LOSS PARAM.	0.0260	0.0202	0.0163	0.0130	0.0130	0.0130	0.0130	0.0130	0.0153	0.0182	0.0221		LOSS PARAM.	0.0430	0.0362	0.0313	0.0280	0.0261	0.0264	0.0269	0.0278	0.0303	0.0362	0.0411
D-FACTOR	0.6030	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000		D-FACTOR	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6000	0.6030	0.6000
LOSS PARAM.	0.0203	0.0160	0.0132	0.0103	0.0103	0.0103	0.0103	0.0103	0.0122	0.0140	0.0168	LE NO. 2 **	LOSS PARAM.	0.0373	0.0320	0.0282	0.0253	0.0234	0.0236	0.0241	0.0248	0.0270	0.0320	0.0358
D-FACTOR	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	IF IDSS TABI	D-FACTOR	0.5000	0.5000	0.5000	0.5000	6.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
LOSS PARAM.	0.0166	0.0130	0.0113	0.0029	0.0089	0.0089	0.0089	0.0089	0.0103	0110	0.0127	** PROFI	LOSS PARAM.	0.0336	0.0290	0.0263	0.0239	9.0220	0.0222	0.0226	0.0231	0.0243	0.0290	0.0317
D-FACTOR	0.4000	0.4000	0.4033	0.4000	0 4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4200		D-FACTOR	6 4000	0 4 0 0 0	0.4000	0.4000	9.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
LOSS PARAM.	0.0139	0.112	0.0100	0.0050	0 0 0 0 0	0.0020	0 0085	0.0280	0000	0 0292	0.0104		LOSS PARAM.	6018 0	0.2772	0.0250	0.0230	0.0211	0.0212	0.0214	0.0218	0.0233	0.0272	0.0294
D-FACTOR	0.3000	0 1000	0.3630	0.5020	0 1000	0.3000	0 0 0 0	0.3030	0 30 0	0.3000	0.3000		D-FACTOR	0 3000	0 000	0 3030	0 3000	0 3 0 0 0	0.3000	0.3030	0.3000	0.3030	0.3000	0.3000
PCT. PASS.	0.03	10.00	20.03	10 00		50.05		00 02			100.00		PCT. PASS.	00 0			10.01	00 05		60.00	00 02	20.02	30.00	100.00

MASS BLEED FRACTION 0.0000 HUB BLOCKAGE FACTOR 0.0000 ** INPUT SET NO. 2 IS AN ANNULAR STATION ** 0.0000 HUB AXIAL LOCATION (Inches) -11.0000 TIP AXIAL LOCATION (INCHES) -11.0000

MASS BLEED FRACTION

HUB BLOCKAGE FACTOR

** INPUT SET ND. I IS AN ANNULAR STATION ** *** PRINTOUT OF INPUT STATION DATA ***

TIP BLOCKAGE LACTOR

0.0010 -9.0000 TIP AXIAL LOCATION (INCHE?) -9.0000

0.0000

0.0010

TIP BLOCKAGE FACTOR

HUB AXIAL LUCATION (INCHES)

۰.

TIP AXIAL LOCATION Tangan	K# IMPUT SET MO. 3 IS AM AMMULAR STATIO Hub axial Location IIP Blockage Factor Hu (inches)	IN ## JB blockage factor	MASS BLEED FFACTION
- 7.000	-7.0000	0.0020	0.0000
TIP AXIAL LOCATION (Inches) -5.2000	## INPUT SET HD. 4 IS AN ANNULAR STATIC Hub axir: Location tip blockage factor Hu Cinches) -5.2000 0.0030	DN ## JB BLOCKAGE FACTOR 0.0030	MASS BIEED FRACTIGN 0.0000
TIP AXTAL LOCATION (Inches) -3.7000	★ INPUT SET NO. 5 IS AN ANNULAR STATIC HUB AXIAL LOCATION (INCHES) -3.7000	ON ## UB BLOCKAGE FACTOR 0.0050	MASS BLEED FRACTICN 0.0000
TIP AXIAL LOCATION (INCHES) -2.3000	<pre>### PRINTOUT OF INPUT STATION DATA ## PRINTOUT OF INPUT STATI ## INPUT SET NO. 6 IS AN ANHULAR STATI HUB AXIAL LOCATION TIP BLOCKAGE FACTOR HUB -2.6000 0.0065</pre>	### ON ## UB BLOCKAGE FACTOR 0.0065	MASS BLEED FRACTICH
TIP AXIAL LOCATION Cinchest -1.0000	## INPUT SET NO. 7 IS AN ANNULAR STATE Hub Axial Location IIP Blockage Factor P Tinches) -1.5000 0.0080	ION ## Hub blockage factor 0.0080	MASS BLEED FRACTION 0.0003

*** PRINTOUT OF INPUT STATION DATA ***

** INPUT SET NO. & IS ROTOR NO. 1 **

FOR THIS BLADE ROW THE INPUT OPTION IS DESIGN *

	INLET MASS BLEED	0.000	OUTLET MASS BLEED	00000	CUM ENERGY ADD FRACT	0.5000
	INLET HUB BLOCKAGE	0.0100	QUTLET HUB BLOCKAGE	0.0130	NUMBER CF BLADES	22
	INLET TIP BLOCKAGE	0,0100	OUTLET TIP BLOCKAGE	0.0130	TIP SOLIDITY	1.3000
A FUK THIS BLAUE R	HUB C.G. AXIAL LOCATION	([NCHES) 0.9410	BLADE TILT ANGLE	(DEGREES) 0,0000	HUB FLOW ANGLE LIMIT	(DEGREES) -20.0000
	TTP C G AXIAL LOCATION	(INCHES)	I DAS SET USED		TIP D FACTOR LIMIT	0.4600

POLYHOMIAL COEFS. FOR RADIAL PROFILES OF A BLADE AERO. PARAMETER AND BASIC BLADE ELEMENT GEOMETRY PARAMETERS *

COEF.	ROTOR OUTLET PRESSURE	L.E. RADIUS/CHORD	T.E. RADIUS/CHORD	MAX. THICKNESS/CHORD	CHORD/TIP CHURD
CONSTANT CONSTANT LINEAR LUNEAR CUBRATIC QUARTIC QUARTIC QUINTIC	00000 00000 00000 00000 00000	0.0018 0.0009 0.0090 0.0060	0 0018 0 0000 0 0000 0 0000 0 0000	0.0290 0.0000 0.1630 0.1170 -	000 000 000 000 00 00 00

FUNCTION-OF-PASSAGE-HEIGHT-FROM-TIP POLYNOMIAL COEFFICIENTS FOR GREATER SPECIFICATION OF BLADE ELEMENT GEOMETRY *

ELLIPSE MAJOR/MING AXX5 RATIO MINUS 1 AXX5 RATIO MINUS 1 AXX5 RATIO MINUS 1 AXX6 RATIO 0 1 00000 0 00000 1 00000 0 00000	0.00000 0.00000 IDEF(IROW)	1
Y. COEF. FOR 2ND SEG. CENTERLINE ANGLE NACTION OF PATH DIST. FROM TRANS. P1.) A.************************************	00000 0.00000 0.00000 0.00000 2014 Coef for 2ND Segment Thickness Unction of Path Dist. From Maximum 14.848	ROOT QUADRATIC CUBIC QUARTIC 00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
POLY COEF FOR 151 SEG. CETERLINE AVGLE POL POLY COEF FOR 151 SEG. CETERLINE AVGLE (FU FUNCTION OF FATH DIST. FROM TRANS, PT.) FRUNEAR QUARATIC CUBLC QUARTIC LIN LINEAR QUARATIC CUBLC QUARTIC LIN 0.50000 -1.00000 0.0000 0.00000 0.00000 0.00000000	0.00000 0.00000 0.00000 0.00000 0.0 0.00000 0.00000 0.00000 0.00000 0.0 F POLY COEF FOR 1ST SECMENT HICKNESS F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RADIAL FUNCTIGN CUEF. CONSTANT LINEAR	QUADRATIC CUBIC Radial Fumction	COEF. CONSTANT LINEAR QUADRATIC CUBIC

. ₹

.

	BLADE MATERIAL DENSITY LB/(IN)**3	0.0000			MAX. THICKNESS Location/chord	0000000 4.0.0000 4.0.0000 6.000000 000000000 0000000000	MASS BLEED FRACTION
	NESS CHOKE MARGIN	REF.) NONE	* -	S IN THE TABLE.)	TRANSITION/CHORD Location	2000 000 000 000 000 000 000 000 000 00	BLOCKAGE FACTOR
EFINITION OPTIONS *	ION MAX. THICK	E TABLE (L.E.	SIGN VARIABLES INPU	WILL APPEAR AS ZERO	ILET/OUTLET TURNING Rate ratio	0.150 0.1600 0.6600 0.6600 0.5900 0.5600 0.9600 0.9600 0.9600 1.00000 1.00000 1.00000 1.00000 1.00000000	GE FACTOR HUB I
PUT BLADE ELEMENT C	RATE TRANSI 10 POIN	LE TABL	OF BLADE SECTION DE	D BY OTHER OPTIONS	DEVIATION ANGLE IN (Degrees)	8.0000 6.8000 6.8000 6.5000 6.6300 7.5500 12.5200000000000000000000000000000000000	ON TIP BLOCKA
NI *	VIATION TURNING Angle rat	TABLE TAB	* TABLE	(VARIABLES CONTROLLE	SUCTION SURFACE Incidence Angle (degrees)	H 	HUB AXIAL LOCATI (INCHES)
	INCIDENCE DE Anglé	TABLE (S.S.REF.)			STREAMLINE NUMBER	- くちゃちゅう ひち	TIP AXIAL LOCATION (Inches)

0.0000

0.0150

0.0150

3.3000

3.0000

*** PRINTOUT OF INPUT STATION DATA ***

K∦ INPUT SET MO. 10 IS A GUIDE VA∿Ë DR STATOR **

A DOOD 31 WOLLDO THOME SHE HOU STATE AND A

	* FOR THIS BLADE	ROW THE INPUT OPTION IS	COORD. #	
TIP C.G. AXIAL LOCATION	HUB C.G. AXIAL LOCATION	INLET TIP BLOCKAGE	INLET HUB BLOCKAGE	INLET MASS BLEED
(INCHES) 5.2000	5.2000	0.0170	0.0170	0.000
LOSS SET USED	BLADE TILT ANGLE	OUTLET TIP BLOCKAGE	QUTLET HUB BLOCKAGE	OUTLET MASS BLEED
2	0.0000 0.0000	0.0200	0.0200	0.0000
HUB D FACTOR LIMIT	INLET HUB MACH LIMIT 1.0000	TIP SOLIDITY 1.2800	NUMBER OF BLADES 34	

POLYNOMIAL COEFS. FOR RADIAL PROFILES OF A BLADE AERO. PARAMETER AND BASIC BLADE ELEMENT GEOMETRY PARAMETERS

COEF.	STATOR DUTLET V(0)	L.E. RADIUS/CHORD	T.E. RADIUS/CHORD	MAX. THICKNESS/CHORD	CHORD/IIP CHORD
INV.59. INVERSE CGNSTANT LINEAR QUAGRATIC CUBIC		0.00830 0.00830 0.00080 0.0000	00000 00000 10.0 0 0 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000 0000 0

FINCTION-DE-PASSAGE-HEIGHI-FROM-TIP POLYNOMIAL COEFFICIENIS FOR GREATER SPECIFICATION OF BLADE ELEMENT GEOMETRY

	511010110									
RADIAL FUNCTION	POLY. COE	F. FOR IST	SEG. CENTER	LINE ANGLE ANS. PI.)	POLY. COE (FUNCTION	F. FOR 2ND S OF PATH DIS	EG. CENTER	LINE ANGLE Ans. Pt.)	ELLIPSE MAJ AXIS RATIO	OR/MINOR MINUS 1.0
CUEF.	LINEAR	QUADRATIC	CUBIC	QUARTIC	LINEAR	QUADRATIC	CUBIC	QUARTIC	LEAD. EDGE T	RAIL EDGE
CONSTANT 1 THEAR	1.00000	0.00000	000000000000000000000000000000000000000	0.00000	-1.00000	000000.0	0.00000	00000.0	0.0000000000000000000000000000000000000	0.00000
QUADRATIC	0.00000	0.0000	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000.0
CUBIC	00000 0	0.0000	0.00000	0,00000	0.00000	0.0000	0.00030	0.0000	00000.0	0.00000
IVID'A	POLY. C	DEF. FOR 151	T SEGMENT T	HICKNESS	POLY. C	DEF. FOR. 2ND	SEGMENT T	HICKHESS	119901	
FUNCTION					********					
	50.8001	QUADRATIC	CUBIC	QUARTIC	59.R00T	QUADRATIC	CUBIC	QUARTIC	4	
CONSTANT	0.00000	1.00000	0.00000	0.00000	0.00000	1.00000	0.0000	0 0 0 0 0		
LINEAR	0,0000,0	0.00000	0.0000	0,00000	0.00000	0.00000	0.0000.0	0.0000		
QUADRATIC	0.0000	0.0000	0.00000	0.00000	0.0000	0.0000	0.0000	0.00000		
CUBIC	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000		

MAX. THICKNESS LOCATION/CHORD 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
EF.) HONE F.) NONE MARGIN IN THE TABLE.) TRANSITION/CHORD 0.00000 0.00000 0.00000 0.00000 0.0000 0.00000 0.00000 0.000000
Definition DPTIONS * Ittoh Max. Thicknit SHOCK TABLE (L.E.R.BLCCR) Shock VARIABLES INPUT Design variables Input Shill Appear as Zeros Intervouler Shill Appear as Zeros Intervouler Intervouler 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
INPUT BLADE ELEMENT ING RATE TRANS RATIO RATIO RATIO ABLE 5.5. TABLE 5.5. TABLE 5.5. DEVIATION ANGLE DEVIATION ANGLE DEVIATION ANGLE 16.2000 12.3000 16.2000 10.3000 8.8000 8.8000 8.8000 14.2000 14.2000 14.2000
DEVIATION TURN ANGLE * TAL TABLE * TAL (VARTABLES CONTR) (VARTABLES CONTR) (VARTABLES CONTR) (DECE SURCE 5.0000 -3.00000 -3.00000 -3.00000 -3.00000 -3.00000 -3.00000 -3.00000 -3.00000 -3.00000 -3.00000 -3.00000 -3.000000 -3.00000 -3.00000 -3.0000000000
INCIDENCE ANGLE ANGLE (3.5.REF.) Streamline Number 3 3 4 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

*** PRINTOUT OF INPUT STATION DATA ***

** INPUT SET ND. 11 IS AN ANNULAR STATION ** Xial Location IIP Blockage Factor Hub Blockage Factor Mass bleed Fraction (inches) 0.0000 0.0200

TIP AXIAL LOCATION HUB AXIAL LOCATION TIP BLOCKAGE FACIUM (Inches) 7.3400 7.3400

*** PPINIOUT OF INPUT STATION DATA

K# [HPUT SET NO. 12 IS ROTOR NO. 2 4#

S.2000 5.2000 5.2000 0.0200 Luss Set Used blade tilt angle outlet tip blockage decerts 1 0.0200 Tip destor limit mub flow angle limit	0,0200 0,0001
LUSS SET USED BLADE TILT ANGLE OUTLET TIP BLOCKAGE (rdecrees) 1 0.0000 TIP D FACTOR LIMIT - MUB FLOM ANGLE LIMIT - TIP SCITDITY	
I 3.0000 3.000 3.000 5.000 3.0000 3.0000 3.0000 3.000 3.000 3.000 3.000 3.000 3.0000 3.0000 3.00	E QUILET HUB BLOCKAGE DUTLET MASS
TIP D FACTOR LIMIT HUB FICH ANGLE LIMIT TIP SOLIDITY	0.0200 0.0000
	NUMBER OF BLADES CUM ENERGY AD
0 4699	38 1 0 0 7

CDEF.	ROTOR OUTLET PRESSURE	L.E. RADIUSZCHORD	T.E. PLDTUS/CHORD	MAX. THICKNESS/CHORD	CHGRD/TIP CHORD
00NSTANT FINERR SUBERRATIC CCERCRATIC SUCRIC SUCRIC SUCRIC		8888 8880 8990 8990 8990 8990 8900 8900	0000 9000 0000 0000	0 0340 0 0000 0 1 350 - 0 - 0 - 0 -	000 000 000 000 000

INPUT BLADE ELEMENT DEFINITION OPTIONS

BLADE MATERIAL DEMSITY Leveinjams	0.16000			MAX. THICKNESS Locatigh/chord	5000 5000	0.5005			0.5905							0.5000
CHOKE MARGIN	NONE		TABLE.)	ом/сного 110N	000	000	000	000	000	000	000	000	000			000
KNESS	, REF.)	UT #	OS IN THE	TRANSITI LOCA	0.0	0.0	0.0	0.0	0.0	0.0			G	ē		<u>.</u>
ON MAX, THIC Poin	CK TABLE (L.E	IGN VARIABLES INP	ILL APPEAR AS ZER	ETZOUTLET TURNING RATE RATIO	0.6100	0.6630	0.7670	0.8560	0.3510	1.9090	1.0600	1.0000	1 0000	1 0000		1. 6000
TRANSITI Point	5.5. SHOI	ECTION DES:	M SNDIIdo	ANGLE INLE												
RNING RATE Patio	TABLE	ABLE OF BLADE S	ROLLED BY OTHER	DEVIATION FDEGFEE	2.6000	2.7953	2 9300	3.200	1.5300	4.5209	6 7 5 0 0	5.5500	6.7300	8.5500	12 6000	
DEVLATION TU Angle	TABLE	11 *	LVARJABLES CONTR	INCIDENCE ANGLE CDECREES)	0.0000	3.0000	0.6069	0.00.0	0,0000	0.000	0.000	0.0203	0.0000	0.000	0.0003	
INCIDENCE Angle	SUCTION			STREAMLINE NUMBER		\$	n .	.	<u>م</u> ،	01		10	C	10	11	•

í

3

_

*** PRINTOUT OF INPUT STATION DATA ***

	MASS BLEED FRACTION	0,0000	
TATION **	HUB BLOCKAGE FACTOR		
SET ND. 13 IS AN ANNULAR S	TIP BLOCKAGE FACTOR		0.0200
S LUGNI **	HUB AXIAL LOCATION	(INCHES)	11.0100
	IIP AXIAL LOCATION	(INCHES)	010.11

*** PRINTOUT OF INPUT STATION DATA ***

** INPUT SET NO. 14 IS A GUIDE VAME OR STATOR **

ä
~
-
9
0
\mathcal{O}
ŝ
н
-
<u></u>
0
F
-
0
-
1
~
-
-
ŧυ
Ŧ
-
-
-
3
0
ñ
_
14
5
-
-
m
-
6
ж
+
~
-
9
<u> </u>
*

BLEED

	NUMBER OF BLADES 42	IIP SOLIDITY 1.260u	INLET HUB MACH LIMIT 1.0000	HUB D FACTOR LIMIT D.7000
0.0000	0.0200	0.0200	0 000	2
OUTLET MASS BLEED	OUTLET HUB BLOCKAGE	OUTLET TIP BLOCKAGE	BLADE TILT ANGLE	LOSS SET USED
0.000	0.0200	0.0200	12.7000	12.7000
INLET MASS BLEED	INLET HUB BLOCKAGE	INLET TIP BLOCKAGE	HUB C.G. AXIAL LOCATION	TIP C.G. AXIAL LOCATION

* POLYHOMIAL COEFS. FOR RADIAL PROFILES OF A BLADE AERO. PARAMETER AND BASIC BLADE ELEMENT GEOMETRY PARAMETERS *

CDEF.	STATOR OUTLET V(0)	L.E. RADIUS/CHORD	T.E. RADII	JS/CHORD MA)	C. THICKNESS/CHORD	CHORD/IIP CHORD
INV.59. Inverse Constant	00°0 00°0	0.0140	0.0	40	0.0800	
LINEAR	00.0	-0.0080	-0.01	180	-0.0200	0.000
QUADRATIC CUBIC	30.0	0.0000 0.0000	0.0	000	0.0000	0.0000
		* INPUT ELADE	ELEMENT DEFINIT	X SNDILAO NOIL		
INCIDEN	CE DEVIATION ANGLE	TURNING RATE RATIO	TRANSITION Point	MAX. THICKNI Point	ESS CHOKE MARGIN	
TABLE (S.S.	.REF.) TABLE	TABLE	S.S. SHOCK	TABLE (L.E.RI	EF.) NONE	

STREAMLINE VJMBER	SUCTION SURFACE Incidence Angle (degrees)	DEVIATION ANGLE (Degrees)	INLET/DUTLET TURNING Rate Ratio	TRANSITION/CHORD Location	MAX. THICKNESS Location/chord
1	-3.0000	15.6000	1,0000	0.0000	U.5000
~	-3.0000	12.8000	1.0000	0.000	0.5000
	-3,0000	10.9300	1.0000	0.0000	0.5000
3	-3,0000	9,9000	1.0000	0 0 0 0 0	0.5000
· cr	-3.0000	9.4000	1.0000	0.000	9.5000
9	-3.0000	9.2000	1.0000	0.000	0.5000
ī	-3.0000	9,1000	1.0000	0.000	0.5000
	-3.0000	9 3000	1.0000	0.000	0.5000
	-3.0000	9.6033	1.0000	0.000	0.5000
10	-3.0000	11.1000	1.0000	0.0000	0.5000
11	-3.0000	16.0000	1.0000	0.000	0.5000

(VARIABLES COMTROLLED BY OTHER OPTIONS WILL APPEAR AS ZEROS IN THE TABLE.)

* TABLE OF BLADE SECTION DESIGN VARIABLES INPUT *

*** PRINTOUT OF INPUT STATION DATA ***

MASS BLEED FRACTION	MASS BLEED FRACTION	MASS BLEED FRACTION	MASS BL'ED FRACTION	MASS BLEED FRACTION
0.0000	0.0000	0.0000	0.0000	0.0000
TATION **	.TATION **	5TATION **	STATION **	STATION **
Hub Blockage Factor	Hus Blockage Factor	Hub Blockage Factor	Hub Blockage Factor	Hub Blockage Factor
0.0200	0.0200	0.0200	0.0200	0.0200
ET NO. 15 IS AN ANNULAR S	5ET UO. 16 IS AN ANNULAR S	SET NO. 17 IS AN ANNULAR '	SET ND. 18 IS AN ANNULAR	SET ND. 19 IS AN ANHULAR
TIP Blockage Factor	Tip Blockage Factor	Tip Blockage Factor	Tip Blockage Factor	Tip Blockage Factor
0.0200	0.0200	D.0200	0.0200	0.0200
** INPUT 5 HUB AXIAL LOCATION (INCHES) 14.4400	** INPUT * Hub Axial Location (inches) 16.0000	** INPUT HUB AXIAL LOCATION (INCHES) 17.6000	** INPUT HUB AXIAL LOCATION (INCVIS) 18.6090	** INPUT ** INPUT ************************************
TIP AXIAL LOCATION	TJF AXIAL LOCATION	TIP AXIAL LOCATION	TIP AXIAL LOCATION	11P AXIAL LOCATION
(INCHES)	(Inches)	(Inches)	(Inches)	(INCHES)
14.4403	15.7000	17.0000	17.7500	18.5000

51

*** PRINTOUT OF INPUT STATION DATA ***

	MASS BLEED FRACTION	0.0000		MASS BLEED FRACTION
TATION **	HUB BLOCKAGE FACTOR	0.0200	TATION **	HUB BLOCKAGE FACTOR
ET ND. 20 IS AN ANNULAR S	TIP BLOCKAGE FACTOR	0.0200	ET ND. 21 IS AN ANNULAR SI	TIP BLOCKAGE FACTOR
S IUPUI **	HUB AXIAL LOCATION (INCHES)	20.6000	** INPUT SI	HUB AXIAL LOCATION (INCHES)
	TIP AXIAL LOCATION (Inches)	19.2500		TIP AXIAL LOCATION (INCHES)

MASS BLEED FRACTION 0.0000

0.0200

0.0200

21.5000

TIP AXIAL LOCATION (Inches) 20.0000

. ...

52

Ģ

Ę.

(b) Printout during iterative computations

A R	0000 0	1 2200	1 2 4 7 1		C+00.0	4.3318	5 0212	5 1736		1000.0	1.8868	5.7521	3.8447	2 2286		2024.0	5.4793	2.3827	3.3566	1 2929	0 1517	1101.2	0400.0	2.2665	2.1006	3.3244	1214	9 8561	27756			
(('I)Z	-11 0000		-7.0000			-3.7000	-2.4158	-1.1942			2.3057	3.1253	4.3108	6.2672			8.5046	9.9987	11.0100	12.0144	11 5718			0400.01	17.2699	18.1351	19.0028	19 8760	20.7002			
I		•			•	ŝ	÷	ŕ	• •	••	~	9	11	12			÷.	15	16	17	¥.	2	- 6	12	21	22	23	26	25	•		
ÅR	0.000	3.2200	3.2471	1 6345		5 T C C . 5	5.0212	5.1736	6 8 7 1 1		1.0000	5.7521	3.8447	2.2286	1 9852	1 6703		2.3821	3.3566	3.2929	2.1517	1 5090	2000		2.1006	3.3244	3.1234	2.8541	2.7756			
Z(IFT,JM)	-11.0000	-9.0000	-7.0000	-5.2000			-2.4158	-1.1942	-0 3063			3.1253	4.3108	6.2672	7 3400	8 5046		7.4461	11.0100	12.0144	13.5238	14.4400	15 \$ 140		11.2599	18.1351	19.0028	19.8740	20.7002		FACT2 = 9 0360	· > > · · · · · · · · · · · · · · · · ·
IFT	1	N	n	3	u	.	•	~	-		•		11	12	5	4		2;	9	17	13	19	00			22	23	24	25			
1	1	2	5	¢	ď	۰.	۰	٢	~	.0		51	11	12	13	16		<u> </u>	91	11	18	61	20		12	22	23	24	25		FACT1 = 3.2592	

				:	5	N .	ar u Ni H						33						5	0	22	117		9		5) (-)) (-)	1 m ²	۱ ۲۲	122
					135	44 - 4 4 4	-4 ;- 4) [4 () [4				1 2 3				, (*			500	1.1	515		100	205		575		200			
			0	- - - - -	72.29	0.00	1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			10		57.72		6.11	19.16	2 2 2		57.62	2	19.42	6.74	59.17	26.59	7 16	10.4	-	7	1 L) 1 L) 1 D)		54.5
			-		5	n i	ñü	i ir	i u'		۰ ir	· ت י		i in	i vir			ŝ	5	5		5	5		5				5	
			5		51.5		2000		555 21	571.29	612 7	555.86	556.23	572.16	594.10	560.32	575.61	600.76	528.35	523.42	553.91	573.26	539.16	541.87	533 02	515.69	500.57	482.60	465 30	451.86
	00		•0	•	573.69	210.12	10 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	567.39	568.28	591.11	622.95	552.49	552.52	568.38	593.83	569.31	587.93	618.95	533.52	533.92	561.28	578.08	545.01	549.27	547.47	539.05	526.25	508.59	483.93	467.99
ðx d	2.40(۲		74.02		50.17 67 16	69.95	77.45	02.99	27.12	49.09	48.80	66.37	93.58	73.84	93.12	30.18	35.21	35.59	61.39	79.16	48.29	53.78	58.51	59.33	49.40	32.06	05.31	81.75
CPR	0000.0		MBER					50.5	0.0	.71 6	.46	10	90	. 68 5	.07 5	.05 5	- 84 S	. 69 6	.32 5	. 64 5	. 93 5	.73 5	-51 5	. 91 5	76 5	.23 5	64 5	.65 5	00.5	56
	006		INE NU	•			55.0	115	5.5.5	608	626	546	57	556	594	576	593	635	536	535	561	573	550	556	567	578	571	554	526	4 94
DHC	40.		STREAML 5				59.56	72.52	88.39	16.60	22.22	43.38	42.73	68.07	94.27	76.02	30.62	38.86	36.60	36.89	62.51	79.52	51.46	58.48	75.12	95.71	92.97	76.33	45.99	06.34
нст	5.3702				5 F	25	1 U 1 7 U 1	- 9	83	66 6	28 6	23 23	52 52	77 5	58	87 5	86 5	94 P	93 1	2 	58	u u	56 5	5 23	21 5	۰. د	08 5	77 5	50 5	52 5
G	000 3		J			5.0	56.95	573.	590.	606.	614.	538.	537.	568.	592.	574	584	637.	534	535	561	577	251	553	581	612	614	537	565.	517.0
PSUM	0		ž		10 01	71.10	71.41	75.54	34.35	62.59	06.04	33.86	32.81	01.17	91.24	73.36	77.57	34.74	32.20	32.48	61.00	74.20	51.60	59.05	86.51	28.30	35.50	19.46	86.27	28.90
ІНД	0.000							505	56 5	71 6	55 6	5 5 2	5 S S	20	57 57	11 5	53	5	000	0 0	4) 41		22	5 65	52 22	66 6	81 5	99 6	55 55	51 5
	64		2			559.	0.91	564.	589.	583.	583	525.	523	570.	585.	572.	569.	630.	253		560.	570	. 100	558.	591.	645	657.	641.	607.	540.1
GAMM	1.460		-		11.94	02.64	02.11	03.04	31.45	22.22	03.35	07.85	02.87	20 50	50.05	5.44	58.02	2.21	50.98	24.00	01.60	20.02	10.70	57.60	14.56	9 . 4 O	13.52	4.35	14.33	3.60
٩	23968	ANY SA			ייי	ที่	5	ų.	,	5	-	<u>ب</u>	ดี	n	ก้		0		<u>.</u>	, u	~	2		-	2	5	29	6	9	55
J	ö	F VZ AF	LON	-	• ~		3		9		•0					2		J			•						2	•		n
ITER	-	Ň	STA										•							-1 /		-4,		-	NJ I	i Miri		N	N	2

					•																										
					3		3				1 I.S.	, e		-	17						2	(h 1)	1.1 1)	4.) (*)	5	25	1	1.0 5*		1	1 1
				5	613	101	1.9.1	557	'' 1 6 1 1 6 1	10				5		- - 1 - 1		1		4) 11		5	5			61 61	5.2.5	6 F. F.	1225	425	1924
										4		-	63	5			1				22.	. 7 .	. 2,	4	. 17	22		5	2	u) 	
				ĉ	5	52	5	-	1 11	i u t Faith	1 11		11	5	1.5		4 1 1 1	5		525	125	5	570			527			1	1	5
				=0	573.25	570.84	567 21	565.85	1.1.1	571.46	595.25	624.53	547.27	547.97	568.44	530.43	566 17	1.	617.71	529.32	529.47	556.47	573,45	527.31	541.57	541.67	536.45	525.35	15.605	485.19	467.45
ar a	2.4959			7	12.9.	570.94	13.33	57.62	59.78	22.625	53.32	29.77	143.81	43.61	65.43	50.51	70.53	1.0.0	28 57	67 32	30.59	57.91	73.93	41.19	46.23	52.53	56.84	49.65	32.95	12.35	81.18
	633		a					41			- 40							111	ę	n.	ŝ	a)	un.	"	5	wì	4)	#1	5		3
440	2.2		98%098	- -	74.63	12 27	12 37	53 53	**	22.00	35.35	23 52	52	41.54	64.43	02.10	22 69	52.35	12.53	25 12	5	57.33	74.11	12.24	23 C.	69	51 52		11. 1	22.33	52.53
	91		u K		5	61	ū		*)		6	-	ŝ	Ŵ	ŝ			i.	ίų.	"	43	÷۴	มา	ù's	ũ	ພ້າ	"	5	",	")	9
0 1 1	8 55		195141	۳. ۱	16 45	7 4 . 2 3	63 63	32 63	11 . 11	22 12	15.75	55 53	69 63	29.74	55.35	52725	12.32	35 35	35.38		31.66	36.12	10.44	16.95	57	12.23	52.23	55.65	1	56.55	24.43
	25		•••			17	•• 1	۳,	")	",	*	÷	5	14	5	~1			Ŷ		u 1	H)	u)	ů٦	",	,	u y	ù1		ů,	<u>"</u> 1
	25.27				32 3 2	\$1.78	::	5. 5	21 12	62.63	52 . 3	5 55		56 52	135	1			35.50	 		1.42	3	 	5	5		 	39 59 59		63 5
	15				u)	u i				41	÷.		• 1	63	27		н)	ш. 1	•••			u 1	u'i				<u>.</u>			",	
¥., 1	5.256				e : : :	22			3.5.5		.		5.5	 9 	52.2	1	9.53	5.52			1 5.5		27.6	הי ייי	5 V.	5	;;	 	 	29 20 20	54.5
	4) 4)				5			5	41 41			2	~`` ~``	*)	<u>"</u>		u'i		4	5	41	41 11 1	- 1 -	ч, г н 1))	n.	•	4. 4.		м 	
	с. 2					•••	رن ارد	1. #1	•)	 		м 1 л	.,	•••	52		رب م	4 - 54			.,,			 r.	a7 6.1	~	с. Л		н х 	.• •	
				~ ·	5.55	533	5	5	1.1		613		3.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	÷.,	1) 1 1		33	623	5				4) 				6.5.9	*, *,		
4	\$ 3 2 3 5				57	сњ. 	•.3 • •	;;	22	:.2	55		÷.,	•∕~ '	4 4 `	9 17	- `	" .										- 1		- ;	5
3	. •	•				1.1 1.1 1.1	- ` • ` • `		.* . • 	523	3 		() () ()		542	.n 	225) - 11 11		ар Алт Алт					2	4.1 4.1	1.19		5		
a. V	11152 (* ****																									,				
2 4 4 9 -	~	21 **				•~	- 1	.•	۳,		2	•)		••		-:	27							a) ;		i a i		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1. N 1 N - 1	(*) (V)	

● 「このこのはないのです。
 ● 「このこのはないのです。
 ● 「この」
Continued.
•
Ш.
ELE
$\Gamma \neq$

55

•

TABLE III. - Continued.

a,

CPR

DHC

CHCI

			11	2.27 567.43	3.73 552.18	5.80 531.42	9.29 544.03	1.93 204.60	8.67 544.42	6.39 571.90	6.3/ 2/1 76 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 61 583 583 56	4.03 472.78	0.13 462.77	5.00 475.87	1, 07 447. 70 1 7 1 7 1 7 1 7 1	8.81 478.60	5.49 496.76	5.78 479.40	0./0 460.0C		7 06 219 41	8.36 388.42	0 47 375.18	
			9 10	573.37 57	566.23 56	561.83 55	558.62 54	564.90 54 581 68 55	612.42 58	551.42 55	550.73 55	2/2 40.2/2 2/3 9/ 103	557.97 53	571.20 54	601.58 56		556.81 53	571.75 55	531.50 51	534.98 51			25 7 21 21 27 27 27 27 27 27 27 27 27 27 27 27 27	10 177	
	00		40	573.76	578.55	565.13	565.03	572.41	625.19	546.07	545.97	20.500	566.73	583.94	619.74	530.28	26. A 20	576.44	538.41	542.47	242.96	19.155	720.07 511 50		
a.	2.40		,	574.17	578.79	567.34	569.83	579.78	630.78	542.50	542.39	565.46	571 32	590.08	630.51	530.85	558 - 5 5	574.70	542.58	547.28	553.38	958.58	12.100		
CPR	2.4032		2	574.40	570.93 548 80	563.69	573.28	584.32	630.63	540.73	540.62	565.02	571.47 577.66	591.84	636.20	531.71	531.69 558 12	574.77	545.33	550.67	562.81	576.86	5/2.31	220.76	
DHC	40.746	2 T D C 4 M 1 1 4 C	5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	574.75	571.23 520 30	569.67	575.95	587.22	6 U 3 . 6 3	539.27	539.18	564.84	531.65 40 112	589.60	637.36	532.01	531.99 550 57	576.08	346.54	552.50	569.63	593.70	282.82	20.110	
DHCI	35.3702			574.42	570.88	569.60	577.24	528.28		526.11	536.03	563.66	596.16	54.6.75	635.46	530.69	530.68	5,000	546.90	553.39	575.09	609.71	611.27	596.84	
PSUM	5075.211		1	16.16	72.61		50.05	90.65	86 - 96 S	577.55	533.40	564.02	69.90		131.30	528.69	528.70	19.100	546.95	553.81	579.68	525.42	630.66	5 16 4	
IHO	35.431		2	565.93	562.38	560.37	570.50	580.94	577.00	10.200	525.95	561.32	582.67		505.71 B	527.14	527.19	10.010	567.15	554.11	583.81	641.34 6	650.80	636.47	
GAMMA	1.40064		1	509.38	505.39	503.22		527.40	514.43		504.93	542.71	555.78	5/3./3	220.70	528.54	528.63	553.95	218.17	555.09	536.27	660.50	673.90 (656.41	
CP C	0.24126	12 ARRAY #1			•••	-			•		•		•	•						•		. ,	•		•
ITER	5	*	STATIC		~~	n,		• •	~ 1	10 G	* (J*		11	21	11	1	15	91				212	22	23	•••

٠.

	•••
~	~
2.3989	第 山所的 氏 6
69.778	576E440.1HE 5
6451 35 3782	•ي س
F51,M 5666 - 186	~`
241 35.256	~
64 111 4	_
CP 8.24126	12 ARBAY AN
2 1 E R 6	•

VOITATZ

•	E & (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C. 1997) - (C	
	こう ちょう きんしょう ちょう こう こうちょう きょう ちょう ちょう うちょう ひょう みこう う う う う う う う う う う う う う う う う う	
:	さうし うちこうか とうう うちう ゆうか かうう きんしょう うちょう かんしょう しょう しょう しょう しょう しょう しょう しょう うかう うたうしょう こうちょう しょう うちょう かん かん	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	*********************************	
•	๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚ ๛๛๚๚๚๚๚๚๚	●うううゆうゆうゆうゆう ゆうゆう こうううう こうこう こうしょう こうしょう こうしょう こうしょう しょうしょう しょう ううしょう しょう うう こうしょう こうしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう
		2
•		● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
		•
~		
	•	
ar L		
Ę.		
<b>#</b> 0	A TO MALE AT LE AT LE AT LE AT LE AT AT AT AT AT AT AT AT AT AT AT AT AT	
E.		
7		
1	N N C M I W I C C N N D M I W M M M M M M M M M M M M M M M M M	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	あきょうきのうよう シックちちの ちちょうだん ちょうしょうしょう ちょうしょう しゅうしょう しゅうしょう しゅうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう
•	•	A BONGHOMMAN ABUNG AND ABON NOT ABO
	●ひこうしこしのてしてあるこうのあったとうちまやないが、	A MARTIN OF CALL AND A CALL AND A AND A MARTIN AND AND AND AND AND AND AND AND AND AN
ۍ	ちちちちち (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
		~ • •
~		bit we write draw (or sold of the or sold of the
	NUNDADAMAN INDUCTORS SAMADAMA	
c	ີ - ສາມສາມພາຍພະຍະນະມະຍະແຜ່ນອີມພາຍພະຍະອະດອດ - ອີສອອດປະບະສາມປະສາມພະຍະນະມະຍະນະ	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
ť		
t		
	• • • • • • • • • • • • • • • • • • • •	

57

CACT2 = 8.2177

FACT1 = 3.8544

PHC CPR PR PR 2.4000 CPR PR 2.4000 CPR PR 2.4000 CPR 2.4000 CPR PR 2.400	DHC CPR PR 60.767 2.4001 2.4001 EAMLINE 2.4001 2.4001 EAMLINE 4 2.4001 .72 2.74.37 574.13 .72 574.13 574.13 .72 574.13 574.13 .72 574.13 574.13 .72 574.13 557.12 .72 574.13 557.12 .72 554.13 557.12 .72 558.72 558.73 .72 558.73 557.55 .73 557.55 557.55 .74 557.12 555.76 .75 557.13 557.13 .75 557.13 557.13 .75 557.14 557.13 .75 557.14 557.13 .75 557.14 557.13 .75 557.14 557.13 .75 557.14 557.13 .75 557.14 557.13 <td< th=""></td<>
CPR CPR <thcpr< th=""> <thcpr< th=""> <thcpr< th=""></thcpr<></thcpr<></thcpr<>	C. 767 CPR PR 5.4000 CPR 5.4000 C
	<pre>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>

11

58

n nerred

Continued.
1
III.
TABLE

			11		567.50	564.58	11.300	543.69	511.13	479.29	531.90	591.07	590.96	602.49	599.58	470.09	459,05	470.36	CT . 296	17. Tot	101.00 100.00 100.00	PC 774	484.23	456.31	418.86	409.56	388.72	375.63	384.76
			01		572.31	569.66	20.00	549.56	544.67	558.40	580.01	571.71	571.54	586.92	596.84	534.03	538.81	565.09	20.010	20.010	740.00 540 54	515 88	518.43	503.82	480.04	467.93	449.79	433.00	432.40
			ø	•	573.37	570.36	200.00	559.12	563.24	583.04	609.20	557.82	557.68	578.43	594.73	558.04	570.34	604.30	56.826	2.070	007.00	10.014	535.21	528.99	514.72	503.91	486.64	467.36	459.56
			-	,	573.74	570.58	37. JOC	565.70	573.91	595.83	625.81	545.53	545.43	571.53	592.07	567.09	583.60	623.84	50.824	10.020	500.01 576 15		541.30	544.07	538,91	529.99	513.51	491.85	477.10
ЪĞ	2.4000		2	• • • •	574.14	570.91	200.10	570.51	580.26	602.28	634.48	536.78	536.71	567.24	590.45	572.14	590.39	635.39	526.74	11.020	70.00 75 575	50.055	54.8.71	555.50	559.48	552.82	537.02	512.99	4 J.14
CPR	2.3700		NUMBER	· · · · · · · · · · · · · · · · · · ·	574.37	571.11	00.000	573.83	583.81	604.15	636.80	531.20	531.14	565.50	590.17	574.68	592.70	641.49	526.28	26.020	591.02		552.59	564.70	578.11	573.99	558.77	532.43	503.20
DHC	41.438		STREAMLINE		574.72	571.46	570 26	576.32	585.83	602.81	634.00	527.03	526.99	564.93	590.02	574.78	590.84	642.84	63.629	c/.c/c	550.Y0			571.63	595.01	593.68	578.94	550.49	513.43
DHCI	35.3702				74.38	71.13	20.40	23.11	86.20	98.23	26.11	21.90	21.88	63.46	38.16	73.81	86.17	40.96	23.79	22.02	24.40	74 07	00	10.77	11.15	12.90	98.44	68.25	22.69
PSUM	5005.234		1		76.12 5	72.90 5	70 14	80.06	88.13 5	93.38 5	15.78 6	17.75 5	17.72 5	63.14 5	86.07 5	72.73 5	79.46 5	36.72 6	21.37	44.12	2 92./C		2 C C C C C C C C C C C C C C C C C C C	81.42	27.21 6	32.39 6	17.92 5	86.56 5	31.67 5
IHD	34.798			• • • • •	65.89 5	52.65 5		20.39	78.26 5	75.19 5	92.28 6	08.46 5	08.46 5	59.80 5	79.21 5	72.32 5	71.10 5	30.74 6	2 22 2	14.41 14.41	2 10.00 31.00	10 01	57.06	5 10 5	43.63 6	52.75 6	37.73 6	06.09 5	¢0.75 >
GAMMA	1.40064				19.34 5	15.70 5	10.01	10.15	25.15 5	19.46 5	16.36 5	7.15 5	17.22 5	40.25 5	52.19 5	75.91 5	58.50 5	22.24 6	17.70 5	1. 8U	C / 5 / 2 / 2		20.00 20.00	1 05	6.2.99	5.99 6	57.51 6	50.03 6	50.48 5
СР	0.24121	ARRAY **		• • • • • •	. 50					. 5	. 51	. 4	4	è.	ي ۲							ישר ישר			99			9	. 5.
ITER	ę	ZV **	51ATION		1	2,	n .	• u*	. .	1	÷	6	6	10	11	12	13	51	15	- -	<u>9</u>	- 8	10		12	22	23	24	25

		525	0.01	510	60.5	1765	0.000	80-1 N	325	10 25 26 26 26 26
	17	567.	80.5 60.5 60.5 7	585	0060	10-04 0-04 0-04 0-04 0-04 0-04 0-04 0-04	90-00 10000 10000	4007	444 10 10 10 10 10 10 10 10 10 10 10 10 10	ት 11 ዓ ዓ ዓ ብ ዓ ዓ ዓ ብ ዓ ዓ ዓ ብ ዓ ዓ
	10	572.35 569.61 563 53	5553.61	559.43 559.33 580.49	571.19 571.11 584 49	500.00 00.00 00.00 00.00 00.00	565.77 516.15 516.12	546.88 562.85 516.26	518.61 504.16 480.51	4668.52 450,49 433,88 433,58 49
	5	573.38 570.34 546	550.36	505.55 505.55 609.43	557.41	594.57 558.33	528.87 528.87	560.38 575.87 533.37	535.62 529.56 515.43	504.71 487.57 468.54 461.03
	- - - - - - - - - - - - - - - - - - -	573.75 570.58	565.25	574.29 596.06 625.77	545.33	592.03	528-57 528-57 528-57	561.35 576.53 541.13	543.84 544.74 539.65	530.83 514.48 493.09 478.69
PR 2.400	6	574.14	567.08	580.51 602.28 634.32	536.76	590.46 590.46	636.19 636.19 527.14	561.25 576.02 545.82	569.36	553.68 537.98 514.18 492.73
CPR 2.4024	E NUMBER 6	574.36	568.92 573.85	583.93 603.93 636.61	531.28	590.20 575.02	593.26 642.14 526.75	561.59	553.31 565.48 578.80	574.82 559.67 533.52 504.72
DHC 41.385	STREAMLIN6 5	571.48	570.32 576.26	585.82 602.39 614.70	527.16	565.17 590.11 575.15	591.38 643.35 526.23	561.52 574.85 152	555.57 572.44	594.48 579.77 551.47 514.85
DHCI 35.3702	ব	574.37 571.16	569.07 570.56 577.30	5526.09 597.64	522.10 522.05	563.72 588.21 574.18	586.65 641.32 524.42	560.00 572.32 572.32	577.80 511.78	613.65 599.20 569.10 523.95
PSUM 5073.508	m	576.19 572.93	570.88 572.49 579.89	527.95 552.68	518.01 518.01	563.41 536.14 573.10	529.83 636.89 522.13	552.12 557.81 568.74	5554 5527 46 582 10 582 10	532.72 532.72
СН I 35.416	~	565.88 562.69	560.57 562.07 570.18	574.41	509.02 509.02	560.11 579.35 572.71	571.28 630.70 520.31	550.32 556.07 564.54	555 555 565 566 566 566 566	6653.56 6638.26 541.55
GAMMA 1.40064	* ~	509 32 505.74	503.45 504.46 513.93	505 505 505 505 505	514.50 478.54 478.61	540.70 552.45 576.32	558.56 622.13 519.03	519.07 553.09 559.33	558.91 587.37	657.87 657.87 657.87 550.98
CP 0.24126	VZ ARRAY * DN :	•			•••					· · · · ·
L T E R 7	STATI	1	**) J K	100	6000	012	12 7 S		80 5 G -	00000 0000

A a com

60

، دید مه

ITER CP GAMMA DHI PSUM DHCI DHC CPR PR 8 0.24126 1.40064 35.357 5066.996 35.3702 41.400 2.3993 2.4000

a È <u>.</u> 4 ろうちろの彼ら口のからうのらららえるうらららあるの のりろくようゆうようこう くりうく ようやう うちくく くの くうう ちらの おり キリちの • •0 - Construction of the second secon ~ NUMBER 6 . 2022 202 2022 2 STREAMLINE 0.09942 0.0 3 Market Control Cont **ろうららてきめてみようのうこんちょのうごりのみちみらめ**のののうからんちのののうちのなちんろくのひのうめのうちのうちのうちのくろうのののようのことのうちろろろろろ **_** : * ARRAY . . ZN STATION *

DHI PSUM DHCI DHC CPR PR 35.373 5068.809 35.3702 41.397 2.4001 2.4000 CP GAMMA 0.24126 1.40064 I TER 9

1

** VZ ARRI	47 KK										
STATION .	1	~	ы	4	STREAMLIN 5	E NUMBER 6	7	80	6	10	11
	• • • • • • • • • •	• • • • • • • • •					11 713	671 76	573 61	572.41	567.62
	509.28	565.84	576.08	574.34	574.68	CC.9/C	510 62	570.56	570.29	569.52	564.51
N	505.79	562.73	572.97	02.1/6	10.1/C	56.8 70	568.02	566.95	565.63	563.21	501.64
	503.74	560.80	571.06	70 75	570.49	569.05	567.15	564.31	560.31	553.44	528.62
	19.905	02.200	210.10	577.12	576.17	573.87	570.71	566.00	559.40	544.10	
•	01.010	36.705	587 26	5.85.54	585.49	583.85	580.72	18.975	55.50C	14.040	110.31
•• •	21.926		591.71	596.87	601.85	603.70	602.34	596.39	11.986	200.37	511 46
•			614.51	625.50	633.61	636.40	634.11	625.73	C4.409	01.002	1.4.5.5.5
	210.012	509.27	518.02	521.93	526.95	531.07	536.54		00.000	570.13	589.36
• 0	479.31	509.24	517.98	521.89	526.91	531.05	10.020		45.75	585.64	601.62
-	541.04	560.29	563.48	563.72	565.07	565.92	10.000		81 96 S	595.75	593.64
	552.84	579.57	586.26	588.23	590.07	11.040	573 26	567.15	558.21	534.39	469.29
12	576.36	572.68	572.97	20.976	07.9/0	10.103		584.26	571.11	539.60	458.68
	557.76	570.64	579.48	556.45	10.140		615.A0	624.58	605.27	565.60	468.79
•	620.89	629.49	635.95		0 + 7 · 0 /	526.35	526.70	527.94	528.66	516.38	460.72
. 5	519.79	520.58	277 · 02	11.120	10.201	526.40	526.75	527.99	528.73	516.48	460.90
15	519.90	520.65	41.22C	2017 2017	561 36	561.34	560.91	560.99	560.13	546.71	
16	555.17	20.000	07 073	572 17	574.60	575.39	575.58	576.04	575.49	262.565	00.0000
	559.56	202.01	11 000	550.41	550.14	548.85	545.83	541.14	533.37	51.01C	
	21.12		557.56	556.85	555.62	553.31	549.29	563.71	500.44	010	1011
-			581 96	577 75	572.40	565.43	556.15	244.01	24.420		
	00.000	10 197	427 40	611.35	595.29	578.53	560.07	539.66		20.00h	56 007
. 12	002.27	10.019	6 32 . 70	613.37	594.31	574.76	553.72	530.95		10.001	1.
22	657.10	637.55	618.08	598.87	579.60	559.65	538.12	0/.910 10 107	401.46	434.71	375.65
26	630 40	606.54	587.10	569.05	551.65	500 V.	20.110	480.10	462.43	434.69	385.14
25	550.72	541.62	533.12	50.925	0/.010	10.000					

neq
itin
5 C
1
H.
LE
AB
H

			6	573.41	570.27	565 56
			e0	573.75	570.55	SAA QI
a, A	2.400		7	574.12	570.92	SAA DI
CPR	2.4001		NUMBER 6	74.33	71.16	68 73
DHC	41.393		STREAMLINE	574.67 5	571.53 5	560 61 6
DHCI	35.3792		- - -	574.33	571.22	540 7B 1
PSUM	5468.824		5	576.06	573.00	571 16
1HU	35.373		2	565.83	562.76	54 0 01
GAMMA	1.40064	*	1	509.27	505.82	C 1 1 2
СР	0.24126	Z ARRAY *				
1168	10	77 **	STATIO	-	• ~	-

9 10 11	573.41 572.42 567.65	570.27 569.48 564.46	565.54 563.11 561.53	560.27 553.36 528.51	559.49 549.85 544.00	564.67 546.14 512.60	584.40 560.75 483.42	610.05 581.84 531.45	556.65 569.93 589.19	556.64 569.91 589.16	577.12 585.36 601.44	594.16 595.62 598.51	558.18 534.48 469.49	571.16 539.70 458.86	605.55 565.79 468.77	528.64 516.53 461.09	528.68 516.58 461.18	560.10 546.67 488.11	575.46 562.69 508.69	533.40 516.10 476.63	535.41 518.40 483.09	529.39 503.96 455.20	515.63 480.73 418.18	505.05 468.96 409.37	488.14 451.09 388.68	469.81 435.03 375.86	462.96 435.16 385.42
••	573.75	570.55	566.91	564.30	566.10	574.86	596.52	625.71	544.91	544.89	570.67	591.85	567.09	584.29	624.81	527.89	527.92	560.97	576.03	541.16	543.70	544.59	539.69	531.04	514.89	494.23	480.62
7	574.12	570.92	568.01	567.16	570.78	580.64	602.38	634.06	536.46	536.45	566.83	590.38	572.18	591.02	635.94	526.66	526.69	560.91	575.59	545.86	549.31	556.15	560.05	553.75	538.18	515.07	494.53
NE NUMBER 6	574.33	571.16	568.73	569.07	573.89	583.65	603.64	636.37	531.01	531.00	565.49	590.19	574.78	593.26	641.66	526.32	526.36	561.37	575.43	548.88	553.35	565.45	578.45	574.74	559.65	534.08	506.28
STREAMLII 5	574.67	571.53	569.41	570.52	576.14	585.17	601.72	633.62	526.88	526.86	565.20	590.15	574.93	591.28	642.70	525.88	525.92	561.41	574.66	550.18	555.67	572.43	595.17	594.25	579.54	551.68	516.11
J	574.33	571.22	569.28	570.80	577.05	585.14	596.61	625.50	521.86	521.84	563.88	588.32	573.97	586.41	640.50	524.21	524.24	559.97	572.24	550.45	556.91	577.77	611.20	613.28	598.76	569.01	524.87
	576.06	573.00	571.16	572.74	579.53	586.80	591.38	614.37	517.98	517.97	563.66	586.36	572.92	579.35	635.85	522.15	522.20	557.83	568.78	550.35	557.62	581.93	627.26	632.58	617.91	587.01	533.26
~	565 83	562.76	560.91	562.32	569.74	576.86	572.91	588.98	509.37	509.36	560.47	579.69	572.66	570.39	629.31	520.78	520.83	556.12	565.12	550.33	558.07	585.11	64. 83	652.81	637.31	606.45	541.64
-	50 9 J	505.82	503.87	504.72	513.42	523.60	506.84	509.93	479.80	479.83	541.25	552.99	576.38	557.43	620.66	520.18	520.24	553.26	559.71	551.10	558.98	586.62	663.21	675.96	656.81	630.31	550.60
NOTIAT	-	• ~		 				•0			10		12			12	15	16	17	18	61	20	21	22	23	24	25

(c) Program output

*** COMPUTED COMPRESSOR DESIGN PARAMETERS FOR A ROTATIONAL SPEED OF, 16042.8, RPM ***

** THE CORRECTED WEIGHTFLOW PER UNIT OF CASING ANNULAR AREA AT THE INLET FACE OF THE FIRST BLADE ROW IS 38.91 LBS/SEC/FT S9 **

** MASS AVERAGED RDTOR AND STAGE AERODYNAMIC PARAMETERS **

POWER (HP)	2146.25 2147.35	FRACT ENERGY	0.4999 1.0000
TORQUE (FT-LBS)	702.64 703.00	POWER (HP)	2146.25 \$293.59
G MOMENTS Tang. (FT-LBS)	-12.695 6.070 -4.795 3.558	TORQUE FT-L8S)	702.64
GAS BENDIN For. AX. (FT-LBS)	17.800 2.322 6.790 1.411	LMETERS ** For. Ax. Thrust (LBS) (1050.19 840.14 1840.41 1587.65
FOR. AX. Thrust (LBS)	1050.19 -210.05 1140.55 -252.75	DAMIC PAR	6.9141 0.8669 0.8900 0.8710
ASPECT RATIO	1.55 2.05 1.97	E AERODY Adia. Eff.	0.9079 0.8579 0.8755 0.8755
POLY. EFF.	0.9141 0.8669 0.9166 0.8756	DR AND STAG Ideal Head Coef.	0.2626 0.2626 0.5254 0.5254
ADIA. EFF.	0.9080 0.8579 0.9114 0.8682	AGED ROTO Head Coef.	0.2384 0.2253 0.4599 0.4488
TEMP. Ratio	1.1663 1.1663 1.1421 1.1421 1.1421	MASS AVER Temp. Ratio	1.1663 1.1663 1.3320 1.3320
PRESS. Ratio	1.5348 1.5348 1.5348 1.5340	SUMS OF Press. Ratio	1.6358 1.5948 2.4464 2.4000
ID. HEAD Coef.	0.2626 0.2626 0.2929 0.2929	CUMULATIVE Total Total (Deg. R.)	518.70 604.94 690.94 690.99
HEAD COEF.	0.2384 0.2253 0.2670 0.2543	TOTAL Press. (PSIA)	14.666 23.990 25.369 35.879 35.198
FLOW COEF.	0.4322 0.4188 0.4635 0.4270	WEIGHT FLOW LBS/SEC)	73.30 73.30 73.30 73.30
STAGE BLADE NO. TYPE	1 R010R 1 STATOR 2 R010R 2 STATOR	STAGE BLADE NO. TYPE (1	I INLET R010R STATOR 2 R010R 2 STATUR

** VALUES OF PARAMETERS ON STREAMLINES AT STATION, I, WHICH IS AN ANNULUS **

STATIC TEMP. (DEG.R.	\$97.22 \$97.22 \$981.17 \$991.20 \$991.20 \$991.20 \$91.2	
STATIC PRESS. (PSIA)	12.155 12.155 12.155 12.155 15	
TOTAL TEMP. (Deg.r.)	518.70 518.70 518.70 518.70 518.70 518.70 518.70 518.70 518.70 518.70	
TOTAL Press. (Psia)	2000 2000 2000 2000 2000 2000 2000 200	
STREAM. CURV. (1./IN.)		
STREAM. SLOPE (DEG)		
NBS.FLOW Angle (Deg)		
ABS. MACH NQ.	0.5285 5285 0.55585 0.555855 0.55585 0.55585 0.55585 0.55585 0.555855 0.555855 0.555855 0.555855 0.555855 0.555855 0.555855 0.5558555 0.5558555 0.5558555555 0.55585555555555	
ABS. VEL. (FT/SEC)	55555555555555555555555555555555555555	
TANG. VEL. (FT/SEC)		
MERD. VEL. (FT/SEC)	55555555555555555555555555555555555555	
AXIAL VEL. (FI/SEC)	5575 575 575 575 575 575 575 575 575 57	
AXIAL COORD.		-11.000
STREAMLINE ND. RADIUS (IN.)	11 10 10 10 10 10 10 10 10 10	HUB 3.714

na antena la serra de

** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 2, WHICH IS AN ANNULUS **

STATIC		(DEG.R.)		10.144	492.30	491.33	491.50	401 47		1C 165	491.53	201 E6		491.59	491.66		472.12		
STATIC	14000.	(PSIA)		141.21	12.222	12.163	12.178	17 175		12.1/8	12.186		201.31	12.185	12.191		961.21		
TOTAL	TENT.	(DEG.R.)		01.516	518.70	518.70	518.70	E10 70	01.010	518.70	518.70		010.70	518.70	518.70		01.816		
TOTAL	PRESS.	(PSIA)		C21.41	14.670	14.700	14.700	14.100	D 7 . + T	14.703	14.700		19.700	14.700	14 700		14.660		
STREAM.	CURV.	(1./IN.)		000.0	0.000	0.000	0.001		100.0	0.001	0.00		100.0	0.001	000		0.003		
STREAM.	SLOPE	(DEG)		-0.12	-0.18	-0.23	- 0 - 30		-0.3	-0.46	-0 57		-0./0	-0.89	8 		-1.54		
ABS.FLOW	ANGLE	(DEG)		0.00	0.00	0.00	0.00		0.00	0.00	00 0		0.00	0.00	000		0.00		
ABS.	MACH NO.			0.4625	0.5172	0.5272	0 5254		0.36.0	0.5254	0 5252		0.5243	0.5246	0 5 7 1 0		0.5191		
A85.	VEL.	(FT/SEC)		505.82	562.76	573 01	571.23		9C.1/C	571.18	570 05		570.59	570.33	640 40	20.00	54.67		
TANG.	VEL.	(FT/SEC)		0.00	00 0	00 0			0.00	0.00			0.00	0 0 0		00.0	0.00		
MERD.	VEL.	(FT/SEC)		505.82	562 76	573 01	571.21		571.54	571 18	E 7 0 0 E		570.59	520 33		10.400	564.67		
AXIAL	VEL.	(FT/SEC)		505.82	562.76	575 00	CC 1 C 3	33.1.7	571 53	571 16		24.010	570.55	570 27		04.400	564.46		
AXIAL	COORD.	(IN.)	-9.000	-9.000	000 6-				-9.000	000 0-			-9.000	000 01		000.4-	-9.000	-9.000	
STREAMLINE	NO. RADIUS	(. N .)	TIP 10.099	1 10 095	0 0 0 0				5 8.136	4 7 677		1 0.4/2	8 6.310			21/.4 01	11 3.655	HUB 3.643	

** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 3, WHICH IS AN ANNULUS **

STATIC TEMP. (DEG.R.)	492,55 492,55 492,55 491,55 491,55 491,55 491,55 491,55 491,55 491,91,81 491,910,910,910,910,910,910,910,910,910,9	
STATIC PRESS. (PSIA)	22222222222222222222222222222222222222	
TUTAL TEMP. (DEG.R.)	518:70 518:70 518:70 518:70 518:70 518:70 8:18:70 518:70 518:70 518:70	
TOTAL Press. (PSIA)	44444444444444444444444444444444444444	
STREAM. CURV. (1./IN.)		
STREAM. SLOPE (DEG)	000 100 100 100 100 100 100 100 100 100	
ABS.FLOW Angle (Deg)		
ABS. Mach ND.	00000000000000000000000000000000000000	
ABS. VEL (FT/SEC)	503.05 5551.91 5555555555 55555555555 5555555555	
TANG. Vel. (FT/SEC)	00000000000000000000000000000000000000	
MERD. VEL. (FT/SEC)	00000000000000000000000000000000000000	
AXIAL VEL. (FT/SEC)	55555555555555555555555555555555555555	
AXIAL COORD. CIN.)	COODOC CO	
SIREAMLINE Ng. Radius Cin)	HU HU HU HU HU HU HU HU HU HU HU HU HU H	

** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 4, WHICH IS AN ANNULUS **

VL STATIC STATIC	 PRESS. TEMP. 	R.) (PSIA) (DEG.R.	17 107 306 CL 45		70 12.226 492.5	70 12.165 491.34	70 12.181 491.54	70 12.184 491.57		1.1 12.190 491.1	70 12.211 491.8	70 12.235 492.1t	70 12.267 492.5		1.00 P C C C C C L D L	70 12.486 495.4	
AL TUTA	ESS. TEMP	IA) (DEG.		122 216	670 518.	700 518.	700 5,8.	700 518		.81c UV.	700 518.	700 518.	700 518		.81C 00/	660 518.	
TREAM. TOT	CURV. PRE	./IN.) (PS		0.005 14.	0.001 14.	0.000 14.	0.002 14.	0 001 14		0.005 19.	0.007 14.	0.008 14.	10 10 0		0.015 14.	0.054 14.	
STREAM. S	SLOPE	(DEG) (1	:	- 12.0-	-0.12 -	-0.04	0.05		11.20	0.21	0.27	0.29			0.12	-0.01	
ABS.FLOW	ANGLE	(DEG)		0.00	00.00	0.00	00 0			0.00	0.00	0.00			0.00	0.00	
AB5.	MACH NO.			0.4615	0.5168	0.5269	0 5250		0, 20, 0	0.5234	0.5215	0 5187	0.11.0	0110.0	0.5082	0.4842	
ABS.	VEL.	(FT/SEC)	1	504.72	562.32	572.74	570 80		20.0/0	569.08	567.17	5.64 31		02.000	553.36	528.51	
TANG	VFL	(FT/SEC)		0.00	0.00	0 0 0			n n n	0.00	0.00	00 0		00.0	0.00	0.00	
MFRD	VFI	(FT/SEC)		504.72	562.32	572 74	570 B0		20.070	569.08	567.17	11 773		02.040	553.35	528.51	
AXTAL	VFI VFI	(FT/SEC)		504.72	562.32	\$72.76			20.0/0	569.07	567.16	546 10		12.090	553.36	528.51	
AYTAL		CIN.)	-5.200	-5.200	-5 200	102.2-			002.6-	-5 200	000			-5.200	-5.200	-5.200	-5.200
CTDCAMITNE		COLUMN . UN	TTP 10.191	1 10.055		1010			5 8.126	5 7 5 4 5			0.00	9 5.53A	10 6 658	11 3.546	HUB 3.507

** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 5, WHICH IS AN ANNULUS **

STATIC	TEMP.	(DEG.R.)		495.73	491.64	490.70	490.94	491.03	491.24	491.53	491.97	492.59	493.48	494.01	
STATIC	PRESS.	(PSIA)		12.142	12.165	12.109	12.130	12.137	12.155	12.181	12.219	12.272	12.349	12.363	
TOTAL	TEMP.	(DEG.R.)		518.70	518.70	518.70	518.70	518.70	518.70	518.70	518.70	518.70	518.70	518.70	
TOTAL	PRESS.	(PSIA)		14.125	14.670	14.700	14.700	14.700	14.700	14.700	14.700	14.700	14.700	14.660	
STREAM.	CURV.	(1./14.)		-0.003	0.001	0.002	0.004	0.005	0.007	0.010	0.014	0.018	0.020	-0.013	
STREAM.	SLAPE	(DÉG)		-0.47	-0.17	0.05	0.27	0.51	0.76	1.05	1.35	1.64	1.79	1.74	
ABS.FI DW	ANGLE	(DEG)		00.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	
ABS.	MACH NO.			0.4698	0.5240	0.5335	0.5311	0.5302	0.5281	0.5251	0.5206	0.5143	0.5050	9669.0	
ABS.	VEL.	(FT/SEC)		513.44	569.74	579.53	577.05	576.17	573.94	570.88	566.26	559.72	550.12	544.25	
TANG.	VEL.	(FT/5EC)		0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.03	0.00	0.00	
MERD.	VEL.	(FT/SLC)		513.44	569.74	579.53	577.05	576.17	573.94	570.88	566.26	559.72	550.12	544.25	
AXIAL	VEL.	(FT/SEC)		513.42	569.74	579.53	577.05	576.14	573.89	510.78	566.10	559.49	549.85	544.00	
AXIAL	COURD.	(IN.)	-3.700	- 5.700	- 3. 700	-3.700	-3.700	-3.700	-3.700	-3./00	-3.700	- 3.700	-3.700	-3.700	- 3.700
TREAMLINE	n. kapius	(' H I)	IP 10.101	1 10 079	2 9.609	3 9.144	4 8.655	5 8.134	6 7.577	1 6.976	5 6.309	3 5.560	0 4.683	1 3.581	UB 3.518
S	æ		۲										-	-	Ξ

** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 6, WHICH IS AN ANNULUS **

	TEMP.	(DEG.R.)		495.85	490.96	490.00	490.16	490.15	490.30	490.58	491.11	492.05	493.72	496.73	
	PRESS.	(PSIA)		12.067	12.106	12.048	12.062	12.062	12.074	12.098	12.144	12.225	12.371	12.602	
10101	TEMP.	(DEG.R.)		518.70	518.70	518.70	518.70	518.70	518.70	518.70	518.70	518.70	518.70	518.70	
10141	PRESS.	(PSIA)		14.125	14.670	14.700	14.700	14.700	14.700	14.700	14.700	14.730	14.700	14.660	
	CURV.	(1./IN.)		0.013	0.001	-0.000	-0.000	0.002	0.005	0.010	0.017	0.027	0.044	0.062	
	SLOPE	(DEG)		-0.04	-0.06	0.02	0.21	0.52	0.95	1.51	2.19	3.01	3.90	3.28	
	ANGLE	(DEG)		0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	
4 0 0	MACH ND.			0.4795	0.5309	3.5406	0.5390	0.5390	0.5376	0.5348	0.5294	0.5198	0.5024	0.4698	
204	VEL.	(FT/SEC)		523.60	576.86	586.80	585.14	585.20	583.73	530.84	575.28	565.45	547.41	513.44	
2445	VEL .	(FT/SEC)		00.00	00.00	0.09	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	
20	VEL.	(FT/SEC)		523.60	576.85	586.20	585.14	585.20	583.73	580.84	575.28	565.45	547.41	513.44	
	VEL.	(F1/SEC)		523.60	576.86	586.80	585.14	585.17	583.65	580.64	574.86	564.67	546.14	512.60	
	COURD.	CIN.D	-2.300	-2.301	-2.323	-2.344	-2.366	-2.389	-2.415	-2.442	-2.412	-2.505	-2.545	-2.596	-2.600
6 T D E 1 MI 1 11 E	NO. PADIUS	('N')	11P 10 099	1 :0.070	2 9.606	5 9.144	4 8.660	5 8.145	5 7.595	7 7.000	3 6.346	9 5.607	10 4 735	11 3.622	1111B 3.540

** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 7, WHICH IS AN ANNULUS **

STATIC	TEMP.	(DEG.R.)		497.28	491.33	689.54	489.03	488.52	488.32	488.43	488.96	490.06	492.14	498.54	
STATIC	PRESS.	(PSIA)		12.189	12.138	12.009	11.965	11.922	11.905	11.914	11.959	12.053	12.233	12.763	
TOTAL	TEMP.	(DEG.R.)		518.70	518.70	518.70	518.70	518.70	518.70	518.70	518.70	518.70	518.70	518.70	
TOTAL	PRESS.	(PSIA)		14.125	14.670	14.700	15.700	14.700	14.700	14.700	14.700	14.700	14.700	14.660	
STREAM.	CURV.	(1./IN.)		-0.040	-0.036	-0.028	-0.021	-0.013	-0.005	0.004	0.014	0.027	0.046	0.164	
STREAM.	SLOPE	(DEG)		-1.04	-1.20	-1.04	-0.70	-0.13	0.65	1.65	2.90	4.47	6.61	10.57	
ABS.FLOW	ANGLE	(DEG)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ABS.	MACH NO.			0.4636	0.5272	0.5452	0.5502	0.5552	0.5571	0.5561	0.5503	0.5400	0.5189	0.4492	
ABS.	VEL.	(FT/SEC)		506.92	573.04	591.48	596.65	601.72	603.68	602.63	597.29	586.18	564.50	471.76	
TANG.	VEL.	(FT/SEC)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
MERD.	VEL.	(FT/SEC)		506.92	573.04	591.48	596.65	601.72	603.68	602.63	597.29	566.18	554.50	491.76	
AXIAL	VEL.	(FT/SEC)		506.84	572.31	591.38	596.61	601.72	603.64	602.38	596.52	584.40	560.75	483.42	
AXIAL	CODRD.	(IH.)	-1.000	-1.003	-1.039	-1.075	-1 112	-1.151	-1.133	-1.238	-1.287	-1.342	-1.407	-1.492	-1.500
STREAMLINE	ND. PADIUS	(IN.)	TTP 10.100	1 10.055	2 9.595	3 9.134	4 8.654	5 8,148	5 7.611	7 7.032	8 6.398	9 5.634	10 4.844	11 3.745	HUP 3.646

ø

** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 8, WHICH IS THE INLET OF ROTOR NUMBER, 1 **

ATIC EttP : 6.R.J	<i>ᲐᲦᲡᲑᲐᲙᲐᲡᲐᲡᲑᲐ</i> ᲐᲝᲛᲚᲐᲑᲫᲑᲝᲓᲐ ᲐᲜᲑᲫᲫᲐᲜᲐ ᲐᲜᲑᲫᲐ	LAYOUT ONE ANG. (Deg)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L.E.EDGE GIR.CENT R*D0/DR	
STATIC ST PRESS, T (PSIA) (DE	49880000 111,909 498800 111,909 111,900 111,900 111,900 111,900 111,900 111,900 11,	SEGMENT IH/OUT C TURN.RATE	0.4300 6.4300 0.4300 0.8500 0.8500 0.9600 0.9600 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.000	+++++++++ MIN.CHK. PT.LOC.IN COV.CHAN.	1528 1528 1528 1528 1528 1547 1528 1547 1588 1547 1588 1588 1588 1588 1588 1588 1588 158
TOTAL TEMP. (DEG.R.)	55188.70 55188.70 55188.70 55188.70 55188.70 55188.70 55188.70 55188.70 55188.70 570 570 570 570 570 570 570 570 570 5	TRAN.PT. LOCATION /CHORD	00000000000000000000000000000000000000	+++++++++ . MIN.CHK. AREA MARGIN	00000000000000000000000000000000000000
TOTAL Press. (Psia)	11111111111111111111111111111111111111	MAX.TH. PT.LOC. /CHORD	00000000000000000000000000000000000000	+++++++++ COV.CHAN AS FRACT OF S.S.	0.352 352 352 352 352 352 352 352 352 352
STREAM. CURV. CLIN.)	1	MAX.TH. /CHORD	00000000000000000000000000000000000000	E ++++++ SH.LOC. AS FRACT DF S.S.	00000000000000000000000000000000000000
OW STREAM	00000000000000000000000000000000000000	L.E.RAD. /CHORD	0.0019 0.0025 0.0025 0.0025 0.00332 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0025 0.005 0005 000500000000	AYOUT CON MACH NO. AT SHOCK LOCATION	70000000000000000000000000000000000000
ND. ABS.FL	0407888879900 0407969490 0407969490 04078478990 04000 000000	FLOW COEF.	00000000000000000000000000000000000000	+++++++ L 15T SEG. 5.5.CAM. (DEG)	787.787.887.887.787.787.787.787.797.797.
S. ABS EC. MACH	-1880891078957 940107898996 999999999999	MHEEL 5PEED FT/SEC) 404.64	238 41 334 85 334 12 206 96 138 55 138 55 906 16 905 20 805 20 805 26 543 59	++++++++ BLD.SET ANGLE (DEG)	4996599944990 9005999999 9005909999 90099999 900999999 90099999999
G. ABS	71000000000000000000000000000000000000	MACH W	11111 20202200000 202020000 202020000 202020000 20202000 202000 202000 202000 2000 20000	E TRAN. PT. BL. ANGLI CDEG)	88000000000000000000000000000000000000
D. TAP VEL	00000000000000000000000000000000000000	SEC)		+++++++ IN.BLADE ANGLE (DEG)	80999999999999999999999999999999999999
L MER VEL	93 514. 93 514. 93 5550 515. 93 551 615. 93 555 615. 93 555 615. 93 6266 635. 93 627. 93 62	VEL. VE	441 1485 946 1455 9465 1455 1455 1455 1455 1455 1455 1455 145	MLINE IN.BLADE Angle (deg)	АААййййддда Гилегийддда 7404000,000 8404000,000 84080081000
L AXIA D. VEL	91128455266655889 5885566655889 5812566653555 5811286555555555555555555555555555555555	LOW REL E TANG.) (FT/S	111 111 111 111 111 111 111 111	LET STREA S.S.INC. Angle (deg)	1 000000000000000000000000000000000000
S CODR		E REL.F Angl (Deg	840-90-00-00-00-00-00-00-00-00-00-00-00-00	E INC. Angle (Deg)	04846440910 00044449900 0004490000 00040000000
STREAMLINI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STREAMLIN 40. R/RTIH 11P 1.0000	1 1 1 1 1 1 1 1 1 1 1 1 1 1	STREAMLINI 40. PCT PASS	
			-	·	

** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 9, WHICH IS THE OUTLET OF ROTOR NUMBER, 1 **

•

775	MP.	.64	.08	50	20.	00	-04	. 66	16.0	CI EMENT	SOLIDITY	1.3029	1.4280	1.5852	1.6035	1.9667 2.1781	2.4908 3.0458		T. F. EDGE	CIR.CENT R*D0/DR		0.2979	0.1189	0.2116	0.2934	0.3798		
6 T C T C T C T C T C	ESS. 7E 5IA) (DEG	.368 584	282 574	.016 567	.833 560 .833 560	. 260 557	.822 552 .318 546	388 538	9.044 52: 2:14	20010	COEF.	0.0457	0.0402	0.0282	0.0190	0.0117	0.0001		CONE +++	PT.LOC.		0.5357	0.5529	0.5578	0.5504	0.5292	9694.0	
	MP. PR G.R.) (P	19 19	1.01	5.92 19	14.16 18	13.54 18	11.80 17		00.45 15		N LOSS COEF.	0.1395	0.1140	0.0837	0.0686 0.0686	0.0634	0.0664		TUDYAL ++	DUI.BLAUE Angle (Deg)		53.56 52.78	52.61	47.28	35.89	17.17	-16.70	
	ITAL TO ESS. TE SIA) (DE	.,	5.990 61	5.990 60	5.990 60	3.990 60 7 990 60	066.5	3.990 60	3.990 61		DIFFUSIO	0.4264	0.4221	0.45365	0.4766	0.5174	0.5917		MLINE	OUT.BLADE Angle	1000	53.73 52.87	52.56	67.32	35.91	16.96	-19.10	
	REAM. TO URV. PR		0.051 23	0.042 2	0.021 2	0.011	0.010	0.024 2	0.069 2		D ADIAB. EFF.	0 8766	0.8476	0.8932	0.9204	0.9375	0.9478 0.9512 0.9587		LET STREA	ANGLE	(Dec)	8.00				2	12 .52	
	REAM. ST SLOPE C (DEG) (1.		-9.23	-4.77		0.0		2.5	10.24		IDEAL HEA COEF.		0.2811	0.2656	0.2577	0.2553	0.2503 0.2494		100	T.E.RAD		0,0015	0.0620	0.0026	0.00.0		3 0.0041	
	ANGLE	1010	43.07	39.71	40.16 40.82	41.97	43.26	46.13	48.23 50.88		HEAD COEF.		0.2581	0.2372	0.2372	0.2372	0.2372	2007 V D		DRCES	(LBS/IN)	-10.978]	-10.3496	-10.161	-9.698-	-9.470	-8.726	
	ABS, AI MACH NJ.		0.5616	0.5772	0.5859	0.6152	0.6368	0.7036	0.7583 0.8443		FL DW COEF.	_	0.3416 0.3626	0.3638	0.3751	0.3819	0 3963	+ 4 7 4 7 0 4		L BLADE F FOR.AXIAL	(IBS/IN)	19.7805	17.8948	15.5482 14.3341	12.9653	9.8564	5.7161 2.8865	
	ABS. VEL.	(FI/SEC)	665.49	666.51 675.62	683.82	696.42 714 25	736.94	767.22 806.61	862.82		H WHEEL SPEED		1358.65 1302.17	1246.26	1127.94	95.766	849.27 764.69	667.19		LOC/ PADTUS	(IN.)	9.847	9.418	8.555	7.610	6.529	5.198	
	TANG. VEL	(FT/SEC)	454.48	425.95	440.97	455.20	505.05	559.17	643.54 736.27		REL.MACI NUMBEK	~	0.8663 0.8663	0.8256	1997 O	0.6293	0.5407	0.5362		MEAN	(IN.)	2 8122	2.6898 2.6898	2.4432	2.1733	2.0626	1.2350	
	MERD. VEL.	(FI/SEC)	486.13	512.63	522.64	527.07	536.66	545.82	574.74		REL. Vel.	(FT/SEC	1026.57	966.32	854.62	728.33	6669-01 619-79 537-37	602.67		AERO.	CHORD	0777 5	3.6704	3.6662	3.6641	3.6646	3.6977	
	AXIAL VEL.	(FI7SEC)	679 83	509.36	51/.9/ 521 84	526.86	531.00	544.89	556.64 569.91	01.486	REL. TANG.VEL	(F1/SEC)	904.17	876.22	672.74	586.86 492.41	386.86 267.76	80.69-		TEMF.	RATIO		1.1981	1.1726	1.1647	1.1617 1.1602	1.1579	n/cT · T
> *	AXIAL		1 773	1.851	1.887	2.013	2.109	2.336	2.482	2.700	REL FLGM	(DEG)	61.73	59.67 57.46	55.04	47.86	25.33	-6.58		PRESS.	RAT10		1.6353	1.6320	1.6320	1.6320	1.6320	1.6364
	AML INE AML INE		9.756	9.301	8.902	8.488	7.604	7.125 6.615	5.462	4.766 4.664	EAMLINE	111111	1.0000	0.9534	0.8700	0.7794	0.6780	0.5539 0.4885	10/6/60	PEAMLINE			1.01	16.78	33.33	51.68	84.33	98.00
	5185		alı	 ۲.	· ~	्र प	` ~	r. 0	601	11	51R	Į	411	~~~	5 4 6	n -o r	~ ¢ 0 <i>3</i> ∙		IN H	10			- ~	160.4		0 ~ «		Ξ

- الجر فرض

معكوكا وحل مطاربونها والأردار المراجب م

613

.

** VALUES DF PARAMETERS ON STREAMLINES AT STATION, 10, WHICH IS AM ANNULUS **

STATIC Tëmp. (deg.r.)	ႧႧႧႧჿႦႦႦႦႦႦႦ ჄႻჇჇჇႦႦႦႦႦႦ ჄႻჇჇႦႦႦ ჄႻჇჂႵႦႦႦႦ ႷႻჇႦႵႦჂႵჇჂႦႦ ႷႻჇႦႦჂႵჇჂႵჇჇ ႷႻჿႮჇႵჿ
STATIC PRESS. (PSIA)	18.763 18.742 18.742 18.655 18.254 18.254 17.995 17.995 17.995 17.154 15.134 15.134
TOTAL TEMP. (DEG.R.)	66666623 66666623 6666623 6666623 6666623 666 6623 662 662
TOTAL Press. (Psia)	22222222222222222222222222222222222222
STREAM. CURV. CLRV.	00000000000000000000000000000000000000
STREAM. SLOPE (DEG)	
ABS.FLOW Angle (deg)	4 N N N N N N N N N N N N N N N N N N N
ABS. Mach Nd.	0.6031 0.6045 0.6107 0.6107 0.6166 0.6566 0.6566 0.6566 0.6366 0.71300 0.71300000000000000000000000000000000000
ABS. VEL. (FT/SEC)	711.45 707.11 712.21 726.33 766.33 766.33 766.33 766.33 766.33 766.33 758.09 758.09 758.09
TANG. Vel. (FT/SEC)	44444444444 944444444 9444444444 9444444
MERD. VEL. (FT/SEC)	22222222222222222222222222222222222222
AXIAL VEL: (FT/SEC)	6080 60800 6080 6080 6080 6080 6080 6080 6080 6080 6080 6080
AXIAL CODRD. (IN.)	
STREAMLINE HO. RADIUS (IN.)	117 9.64 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
UES DE PARAMETERS ON STREAMLINES AT STATION. 11, MHICH IS THE INLET DE STATOR NUMBER. 1, OF STAGE NUMBER, 1 ≠≠

					W1+- 0.	
					0 2 G G U C G U C	ころうう しきつう してり アミア こう こう こう こう こう こう しょう しょう しょう しょう しょう しょう しょう しょう しょう しょ
	0.7					
	in a ta tag in ∑ i ag sai c	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			ມບ + z	1
	47 L3	A) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a			+	800000000000
	0	ちるく こうかく ひこう くる ち			1000	88888888888888
	14014 14014 14010	ちこうう ちょうう くらうちょう			Tau	00000000000 000
	542					
	2	10-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-			E H K +	40400000000000000000000000000000000000
					+ X < 4 + X < 4	00000000000
		@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@			+ E + .	
	-	000000000000			+ H H H H H H H H H H H H H H H H H H H	9999999999999999999 999999999999999999
	45H	00000000000000000000000000000000000000			+ 2 m	NN999999999999
	040	*************			+040	00000 0000000000
	<u> </u>		à		÷	MN~~N440000
	N N N	600000000000	5 NG	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+	\$\$N\$NNNNNNNN \$\$N\$NNNNNNNNNNNNNNNNNNNNN
	5.5	0000000000	Y NO	1	**** 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
			ຼິິຍ		¥ .××	
		00-000-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	A La			\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$
	518	111	Ŭ\X WXX	00000000000		
ŀ	33	000-00-0000	,		, ⊼£kia⊒ Marina	
	1010	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100		+ 9 2 0 + 9 2 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	80 4	אראוא איז איז איז איז איז איז איז איז איז אי	N N N	ที่ติดดังผู้สุดการ์สุดที่	+	198866666711
	<u>S</u>	80000000000000000000000000000000000000	201	60000000000	+	
	Sa U	\$\$\$\$\$\$\$\$\$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	÷ia	000000000000000000000000000000000000000	+ L U U U U U U U U U U U U U U U U U U	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	4 4 E	803048988888	100	00000000000	+ 0 U U	00-00-00-00-00-00-00-00-00-00-00-00-00-
	. S	\$000000000000 \$00000000000000000000000	×	00000000000	+ =	
•	284 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
,	ы. С		H Q	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A A A A	
	5 . S	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AK.	00000000000000000000000000000000000000	* 1	
2	1111	N	E N	9003000 80 99	÷ ä	0 N M M M M M M M M M M M
1	ц.	444440000	Ġa	*********		90000000000000000000000000000000000000
		80×5558585858	4 0 H	80000000000 1111100000000 001100000000	***	
n		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	шо С	000000000000	່ອ	*****
5		ດັດເດັດຕິດດາດອ	3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60000000000000000000000000000000000000
		~~~~	550	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		N N N N N N N N N N N Y Y Y
	LE ST	N6-980000		~	REAC.	
	a E	ດທິດທິດທິດທິດທິດ	QK.		5 51 2 5 1 0 6 6 1	
			- <b>-</b>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E. S	
5	4 GO X		1000	**************************************	<u>و</u> ۳.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3	285	**********		00000000000	I NOW	
Ň			(4) A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		8697-80056555
	21 22 20 20 20	ちちまぬらりらう? ごなうるのまた うちょういん うちょう きょう うちゅうりょう かうしょう かうかい うち かうちょう かん ひょうろう ちょう おう ちょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう ちょ	3411	00000000000000000000000000000000000000	NI ISS	
	4 G 2 4 C 1 C =	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E A			
	1 K E	4 	<b>.</b>		10- 10-	<b>しててきるのうちののの</b>
	0 <b>x</b>	► ~~T	v #			

'n

70

inger präcingen dat se

. . . . . .

ana a

1 **	14110 16mp. 66. 0. J	00000000000000000000000000000000000000	MEAN Spacing Cin. J			
E NUMBER,	STATIC S PRESS. (PSIA) (C	000000000000 00000000000 00000000000	AERD. CH0PD (1N.)			
1, DF STAG	TGTAL TEMP. (DEG.R.)	66666666666666666666666666666666666666	ELEMENT Solidity	111111111100 2200000 2200000 2000000 2000000 2000000		
NUMBER,	TOTAL Press. (PSIA)	99999999999999999999999999999999999999	SHOCK LOSS COEF.		T.E.EDGE CIP.CENT R=D0/DR	11111111 00000000000 000000000 00000000
OF STATOR	STREAM. CUPV. (1./IN.)	00000000000000000000000000000000000000	LOSS COEF	00000000000000000000000000000000000000	ME +++ tax.camb. PT.LOC. /chord	00000000000 N.4444444444 0000000000 0000000000 00000000
THE OUTLET	LON STREAM LE SLOVE G) (DEG)	00000000000000000000000000000000000000	DIFFUSION Factor	00000000000 4444444 44000000000 4400044444 44000444444	LAYOUT CC UT.BLADE P Angle (Deg)	
HICH IS	HO. ABS.F		STAGE AD.EFF.	0.7982 0.8155 0.81555 0.85565 0.85565 0.8859 0.8859 0.8859 0.8657 0.8657 0.8657 0.8657	ME ++ . BLADE ++ NGLE DEG)	
04, 12, H	EC) MACH	4 - 6 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	STAGE 20.RATIO		STREAMLT DEV. OUT Amgle A (DEG) (	90000000000000000000000000000000000000
AT STATE	6. ABS - VEL - VEL	00000000000000000000000000000000000000	LTATOR I.RATIO	2000 2000 2000 2000 2000 2000 2000 200	OUTLET E RAD. /CHCRD	0000000000 00000000000 000000000000000
REAMLINES	D. TAN Vel éci (fits	4	L HEAD S	10000000000000000000000000000000000000	CHING.	811080 2998 2998 2998 2998 2998 2998 2998 2
TO NO SAE	с. ЖЕR 	666655666 6665566 6665766 716657765 716657766 716657766 716657766 716657766 716657766 716657766 716657766 716657766 71665776 71665776 71665776 71665776 71665776 71665776 71665776 71665776 71665776 71665776 71665776 71665776 71665776 71665776 71665776 71665776 71675776 71675776 71675776 71675776 71675776 71675776 71675776 71675776 716757776 716757776 716757776 716757776 716757776 716757776 716757777777777777777777777777777777777	LD IDEA EF. C	00000000000000000000000000000000000000	DE FORCE XIAL TI 14) (LB)	がったのは、1000000000000000000000000000000000000
PARAMETE	- 4X161 - 4EL (F1751	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HO HO		LOCAL BLA US FOR,A .) (LBS/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
VALUES OF	1414 1001 14.00 14.00		FLOR		I DE C	
:	19644.146 0 8401US 014.0		TPFAMLINE 10 R/RTIP		STREAMLING	
	₩) <i>2</i>	· · · · · · · · · · · · · · · · · · ·	•••	-	-	

71

## ** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 13, WHICH IS AN ANNULUS **

_	
STATIC TEMP. (DEG.R.)	80000000000000000000000000000000000000
STATIC Press. (Psia)	20,255 20,055 19,8837 19,8837 19,8337 19,8337 19,833 19,833 19,833 19,833 19,833 19,833 10,253 10,255 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,055 10,00
TOTAL Temp. (Deg.r.)	619.94 619.94 608.28 606.02 605.62 6001.94 6001.93 73 6001.93 73 6001.93
TOTAL Press. (Psia)	22222222222222222222222222222222222222
STREAM CURV (1./IN.)	
STREAM. Slope (deg)	
ABS.FLOW Angle (deg)	
ABS. MACH NO.	00000000000000000000000000000000000000
ABS. Vel. (FT/SEC)	55755555555555555555555555555555555555
TANG. VEL. (FT/SEC)	
MERD. VEL. (FT/SEC)	5577,55 5777,55 57757,55 57757,53 57757,53 57757,53 57757,53 5775 5775
AXIAL VEL. (FT/SEC)	557 577 577 577 577 577 577 577
AXIAL Coord. (IN.) 7.340	00000000000000000000000000000000000000
STREAMLINE HO. RADIUS (IN.) TIP 9.603	1 9.534 9.534 9.130 6.538 8.1134 7.335 7.335 6.484 1.14 5.259 1.1 5.259 1.1 5.259

and the state of the state of the state

			2		62.0 62.0	NG~NGTN~~0NNN 
			50 10 10 10 10 10	NHOUGH OF BOUND	10 A A A A A A A A A A A A A A A A A A A	00000000000000000000000000000000000000
	110 A		5.00	میں سے وہ رہے ہے ہے ہے ان ان رہے وہ ہے۔ میں سے وہ رہے ہے ہے ہے ان ان رہے وہ ہے	10	866666666666 
	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ш н н м ж м эс	ਲ਼ਲ਼ਲ਼ <i>ਫ਼੶੶</i> ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ ਲ਼ਲ਼ਲ਼ਫ਼੶੶ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼	* 2 · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	A 1 1 C E 5 5 - 5 1 A 2	\$10000000000000 \$1000000000000 \$100000000	ちょう		• ¥ 7 0	699096696969 9900941000000
<b>5</b>	₩ 0 0 0 ₩ 0 0 0	ው ው ው ው ው ው ው ው ው ው ው ው ው ው ው ው ሥላ ማቀሳ ከፋ ወፋ የላ ማሳ ካፋ - ፋ ማፋ ካፋ	- <b>z</b>		¥ X	9
à		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	+ 2 4 4 + 2 4 4	400000000000 40000000000
191411	101	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \\\\\\\\\\\\\\\\\\\\\\	A D D D	000000000000		
80			H O O		5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ਸ਼ <u>ੑ</u> ਸ਼ੑਸ਼ਸ਼ਸ਼ਸ਼ ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼ਖ਼ਖ਼ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼ਸ਼
F RO	PRES		PT L		ere.	00000000000000000000000000000000000000
E1 0	<b>F</b>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•		100%	
INL	AREA DURKA	\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$ \$\$\$\$\$\$	X. TH	8889900000000 485444556777 4874478997777 8489478997	+ X - F	
) HE	5 J		M V	000000000000000000000000000000000000000	¥	
1 15	26 AM 2076 2050	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1000	40.0004m400 001000440 00100440
U H	2 2 2 2 2	<b>i</b> i i i i	. П. Я. С Н О		T D C P	
. 4	1510 1610 0660		ب		T L L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	ABS		CON CON	4444444444 477288874444 477447874444 4774474444444444	++ 5 	84977897783111 2019909777831111
ATES	Ŷ	00000000000000000000000000000000000000	<b>E</b> 0	<b>p</b> acacopooon	+	
15 1	MACH	00000000000			0.56 4516 0.56	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ES A		<b>NDHO&amp;&amp;&amp;</b> NOHO <b>&amp;</b> & NOHO <b>&amp;</b> & NOHO <b>&amp;</b> & NOHO <b>&amp;</b> & NOHO NOHO NO NOHO NO NO NO NO NO NO NO NO NO NO	H H H H H H H H H H H H H H H H H H H		+	សសំណណសំណង ៥ ៥ ^ស ល
HIH	A85 465 7575	20000000000 2000000000 200000000000000	30.53		Le le le le le le le le le le le le le le	
TREA	. 3	6000 <u>660</u> 8668	н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
S.	CARS ARC ACC ACC ACC ACC ACC ACC ACC ACC ACC	00000000000000000000000000000000000000	- MUM MUM		+	Nonononusia
Sa Sa			- 3		4 + + + + + + + + + + + + + + + + + + +	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
HETE	80. SECJ				+	
PARA	E L L L L L L L L L L L L L L L L L L L	\$\$\$\$\$\$\$\$\$\$\$\$\$\$ Munitatungo/v & uvungungevon	<b>1</b>		1000 E 1	11070-10000 11070-10009 11070-10009
ĴΕ			VEL.	18777885777		
.UES	VEL		REL ANG.	10000000000000000000000000000000000000	TREA INC. ()	
I VAI			्र स्ट	ल ल ल ल ल ल ल	ET S S.S. ANG CDE	<b>00000000000</b>
1	A DE L		555 655 655	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H . H G	*00158014172
			17 X Q M 4 V 8		NUN NUN	~~~~
	No.				52.	214666666664476
	AMLI Radi Ni	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	RANUI		PAG	40000000000000000000000000000000000000
	STRE ND.	8. 	51RE X0.		STRE MD.	1104614514501

•

73

٠.

# 4# VALUES OF PARAMETERS ON STREAMLINES AT STATION, 15, WHICH IS THE OUTLET OF R970R NUMBER, 2 **

ATIC EMP. G.R. J	2.48	89950 9050 9050	5.46	ELEMENT SOLIDITY	1.35269 1.46026 1.46026 1.5136 1.5136	1,6597 1,7526 1,8659 2,0123 2,2303	. T.E.FDGE 014.00NT R*00/DR	0.0310 0.0724 0.0724 0.0724 0.11672 0.11672 0.11672 0.11672 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.12693 0.126933 0.126930 0.126930 0.126930 0.126930 0.126930 0.126930 0.1
TATIC 51 RESS. 1 PSIA) (UE	9999 10445 10445 10445 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10466 10066 10066 10066 10066 10066 10066 100000000	888 1 8645 1055 1055 1055 1055 1055 1055 1055 10	7.214	SHOCK LOSS COEF.	0.0270 0.0241 0.0216 0.0195 0.0177 0.0177	0.0153 0.0153 0.0084 0.0013	CONE +++ Max.camb Pt.loc. /chopd	00000000000000000000000000000000000000
OTAL S EMF. PI	91.04	666.42 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.44 65.45	84.85 87.19 2 95.32 2	IN LOSS COEF.	0.1108 0.0936 0.0833 0.0713 0.0646 0.0646	0.0634 0.0632 0.0626 0.0728 0.1109	++ LAYOUT Out.blade Angle (deg)	855654449041 959544599041 95954979490 97049794909 9709807791999
PRESS.	35.879 35.879 35.879	35.879 35.879 35.879 35.879	35.879 35.879 35.879	DIFFUSI FACTOR	6200 6400 6400 6400 6400 6400 6400 6400	0.5121	MLINE Out.blade Angle (deg)	89999944449944 99999499449994 9999902094999 9477082749999 947708274976 9477082499749
STREAM. CURV. 1./IN.)	0.085 0.051 0.029	0.019 0.008 -0.003 -0.014	-0.029 -0.048 -0.103	AD ADIAB. EFF.	0.90583 0.90583 0.90583 0.9170 0.9170	0.9262 0.9311 0.9376 0.9375	LET STREA Dev. Angle (deg)	00000000000000000000000000000000000000
STREAM. SLOPE (DEG) (		-0.64 1.856 3.21 .21	4.81 6.75 9.32	IDEAL HE Coef.	0.2897	0.28551	0UT T.E.RAE /CHORD	
ABS.FLOW Angle (deg)	39.55 39.21 39.47 39.71	40.29 41.31 42.57 43.97	45.63 56.94 65.94	HEAD COEF.	0.2638 0.2638 0.2638 0.2638 0.2616	0.2627	FURCES L TANG. (LBS/IN)	844 844 844 844 846 846 846 846
MACH NO.	0.5327 0.5346 0.5346 0.5394	0.5527 0.5629 0.5629 0.5758	0.6136 0.6414 0.6784	FLOW COEF.			AL BLADE   For.axiai (LBS/IN)	500617494549 500617895454 500617895458 500617895458 500617895455 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 5006178955 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 500617855 50061755 50061755 50061755 50061755 50061755 50061755 50061755 500655 500655 500655 500655 50065 500655 500655 500655 500655 500655 500655 500655 500655 500655 500655 500655 500655 500655 500655 500655 500655 500655 500655 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 500
ABS. VEL. (FT/SEC)	677.74 673.90 677.35 681.80	689.52 700.81 715.57 734.74	758.71 791.90 850.06	CH WHEEL R SPEED (FT/SEC	5 1304.37 5 1262.85 9 1177.02 1085.61	20102 9356 9356 9356 9356 9356 9356 9356 9356	LOCU Radius (In.)	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ ₽0.020000000000000000000
TANG. VEL.	431.58 426.02 430.57 435.01	5 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	542.36 597.09 710.06	REL.MAC NUMBER	0.7559	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MEAN Spacing (In.)	1.555 1.555 1.555 1.555 1.555 1.551 1.055 1.015 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005
MERD. VEL.	522.57 522.16 522.89 524.50	526.395 526.395 528.956	530.55 520.19 467.35	REL. L. VEL. ) (FT/SE(	101 986 - 2 967 - 3 965 - 1 865 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 8	5887 - 90 5887 - 90 5888 - 7	AERO. Chord (In.)	2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0265 2.0275 2.0265 2.0275 2.0265 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.0275 2.
AXIAL VEL. (FT/SEC	520.24 520.83 522.20	525.92	528.68 516.58 461.18	N REL. TANG.VEI (FT/SEC	872.79 836.87 789.96 789.96 666.29 672.95	275.78	TEMP. Ratio	1.15605 1.15605 1.15605 1.15855 1.13855 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.1385 1.13855 1.13855 1.138555 1.138555555555
COORD.	9 3 2 0 0 2 3 2 0 0 2 3 5 0 0 2 3 5 0 0 2 3 5 0 0 2 3 5 0 0 2 3 5 0 0 2 3 5 0 0 2 3 5 0 0 2 3 5 0 0 2 3 5 0 0 2 3 5 0 0 2 3 5 0 0 2 3 5 0 0 2 3 5 0 0 2 4 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 0 2 5 0 0 0 2 5 0 0 0 0 2 5 0 0 0 0 2 5 0 0 0 0 0 0 0 0 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9999 9999 9999 9999 9999	10.002 10.066 10.144 10.160	REL.FLO Angle (Deg)	6000000 600000 600000 60000 60000 60000 60000 60000 60000 60000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 8000000	416 92 236 92 236 92 237 92 237 92 237 92	PRESS. Ratio	55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 55594 555954 555954 555954 555954 555954 555954 55595555 5559555 555955555555
REAMLINE RADIUS (IN.)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 200 200 200 200 200 200 200 200 200	8 5.653 6.653 5.746 6.47	REAMLINE R/RTIP	P 1.0000 0.9935 0.9535 0.9297 0.8965 0.8965 0.86265 0.86265	0.7595	18 0.6022 Reamline Pct Span	00000000000000000000000000000000000000
12				S I Ng			5 10x	

-----

74

•!

** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 16, WHICH IS AN ANNULUS **

STATIC TEMP. (DEG.R.)	671.59 659.20	654.17 649.32	645.48 643.06	640.67 638.03	634.95 633.61	635.16
STATIC Press. (Psia)	29.127 29.043	28.935 28.816	28.658 28.461	28.212 27.892	26.965	26.102
TOTAL TEMP. (Deg.r.)	712.55 700.00	695.41 691.07	688.07 686.84	686.00 685.41	684.90 687.24	695.31
TOTAL Press. (Psia)	35.879 35.879	35.879	35.879	35.879	35.879	35.879
STREAM. CURV. CLIN.)	0.029 0.027	0.021	0.009	-0.004	-0.021	-0.040
STREAM. SLOPE (DEG)	-1.12	-0.50	0.40	1.61 2.35	3.20	5.72
ABS.FLOW Angle (deg)	38.15 37.61	37.78	38.47 39.44	40.66 42.05	43.74	54.85
ABS. Mach Nd.	0.5545 0.5583	0.5634	0.5762	0.5966	0.6290	0.6901
ABS. VEL. (FT/SEC)	703.68	705.77 710.06	717.02726.94	739.70	776.42	852.07
TANG. Vel. (FT/SEC)	434.68 428.46	436.59	446.01 461.77	481.96 506.49	536.78	696.70
MERD. VEL. (FT/SEC)	553.37 556.18	557.85	561.42	561.13	548.17	690.55
AXIAL VEL. (F1/SEC)	553.26 556.12	557.83	561.41	560.91	560.10	488.11
AXIAL CUORD (IN.)	11.010 11.010 11.010	11.010	11.010	11.010	11.010	11.010
STREAMLINE NO. RADIUS (IN.)	TIP 9.308 1 9.250 2 8.969	3 8.683 4 8.388	5 8.085	7 7.439 8 7.091	9 6.722	11 5.856 HUB 5.763

** VALUES OF FARAMETERS ON STREAMLINES AT STATION, 17, WHICH IS THE INLET OF STATOR NUMBER, 1, OF STAGE NUMBER, 2 **

		. EDGE . CENT. DO/DR	80000000000000000000000000000000000000
51AII 1EMP DEG.R DEG.R DEG.R DEG.R 5553.33 5553.12 5553.23 5553.23 5553.23 5553.23 5553.23 5553.23 5553.23 5553.23 5553.23 5553.23 5553.23 5553.23 5553.23 5553.23 5553.23 5553.23 55553.23 555553.23 5555553.23 5555553.23 55555553.23 55555553.23 5555555555		÷ 5:	
7377 7377 7377 7375 7375 7375 7375 7375		H+++++++ MIN.CHK. PT.LOC.I COV.CHAN	
TCTAL TCTAL (DEG.R.) 712.79 699.49 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.10 688.100 688.100 688.10000000000000000		++++++++ MIN.CHK. Area Margin	00000000000000000000000000000000000000
720 720 720 720 720 720 720 720 720 720		++++++++++++++++++++++++++++++++++++++	0.5385 5287 5388 0.5588 0.5101 0.5101 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5528 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.5558 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.55580 0.555800 0.555800 0.555800 0.55580000000000
5776AM. 50776AM. (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./14.) (1./	COLARYOUT COLARYOUT COLARANG. CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG) CDEG CDEA ANG. CDEA ANG. CDEA ANG. CDEA ANG. CDEA ANG. CDEA ANG. CDEG) CDEA ANG. CDEG) CDEG ANG. CDEG) CDEG CDEG CDEG CDEG CDEG CDEG CDEG CDEG	++++++++ SH.LOC. As Fract DF S.S.	000000000000000000000000000000000000000
Reference of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	SEGMENT TURN.RATE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000000	YOUT CONE Mach No. At Shock Location	0,9208 0,9208 0,9153 0,9153 0,9153 0,9255 0,9255 1,05285 1,05285 1,05285 1,05285 1,05285 1,05285 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05255 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,055555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,05555 1,055555 1,05555 1,05555 1,055555 1,055555 1,055555 1,055555 1,055555 1,055555 1,055555 1,055555 1,05555555 1,05555555 1,05555555555
AS AS AS AS AS AS AS AS AS AS	CCATTON CCATTON CCHORD CCHORD 0.32281 0.3214 0.3214 0.3214 0.3214 0.3214 0.3214 0.3214 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2955 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.2935 0.29350 0.2935 0.29350 0.293500 0.293505 00000000000000	+++++ LA IST SEG. 1 5.5.CAM. 1 (DEG)	128.23 188.32 18.32 18.33 17.129.33 17.129 17.235 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 24.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.5
C	X-11-11-11-11-11-11-11-11-11-11-11-11-11	++++++++++++++++++++++++++++++++++++++	111110 001 001 000 000 000 000 0
ALE CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTION OF CONTRACTICACTION OF CONTRACTION OF CONTRACTION OF CONTRACTICACTION OF CONTRAC		+++++++++ Ran.pt. B L.angle (Deg)	80000000000000000000000000000000000000
TANG VELVEL (F1/5EC (F1/5EC (F1/5EC (F1/5EC (F1/5EC (F1/5E) (F1/5EC (F1/5E) (F1/5EC (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC) (F1/5EC)	XI DOODOODOOOO	+++++ 	
MERD. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd. Merd.	L.E.RAD C.H.C.RAD 0.0135 0.01156 0.01156 0.01156 0.01156 0.00050 0.00050 0.0062	ADE IN.B ADE IN.B ANG (DE	04000046660
「 して、 して、 して、 して、 して、 して、 して、 して、	E C C C C C C C C C C C C C C C C C C C	AMLINE IN BL Angl (Deg	88888888888888888888888888888888888888
A T 200000000000000000000000000000000000	■	ET STRE S.S.ING ANGLE (DEG)	11111111111
2000 000 000 000 000 000 000 000 000 00	00000000000000000000000000000000000000	TNC INC. Angle (Deg)	00000000000000000000000000000000000000
RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAMILINE RAM	FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML IN FEAML INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INFORM INTERT INFORM INFORM INTERT I	EAMLINE PCT . PASS .	
	22 L	518 NO.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ż

· ...

***

** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 18, WHICH IS THE DUTLET OF STATOR NUMBER, 1, OF STASE NUMBER, 2 **

1	ratic Temp. EG.R. J	๗๛๛๛๛๛๛๛๛๛๛๛ ๗๛๛๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛๛๛๛	MEAN SPACING	1.3829 1.3412 2939 1.2570 1.2570 1.2570 1.2570 1.2570 1.2570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.25570 1.255700 1.255700 1.255700 1.255700 1.255700 1.255700 1.255700 1.255700 1.255700 1.255700 1.255700 1.255700 1.255700000000000000000000000000000000000		
	PSIA) (DI	11111111111111111111111111111111111111	AERO. CHORD (IN.)	11.75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 75533 755		
	TOTAL S TEMP. P	6689 6699 6689 6689 66887 66887 66887 66887 6689 6689	ELEMENT SOLIDITY	14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 144444 144444 144444 144444 144444 144444 144444 144444 144444 144444 144444  144444 144444 144444 144444 1444444 144444 144444		
	TOTAL Press. (PSIA) (	00000000000000000000000000000000000000	SHOCK LOSS COEF.		.E.EDGE Ir.cent R*d0/dr	0.1054 0.0656 0.0556 0.0389 0.0389 0.0385 0.0385 0.0355 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.05550 0.05550 0.055500000000
	STREAM. CURV.	60000000000000000000000000000000000000	STATOR LOSS COEF	00000000000000000000000000000000000000	46 +++ XX.CAMB. T T.LOC. C CHORD C	0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 0066699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 0066999 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 006699 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 0066999 00669999 00669999 00669999 00669999 00669999 00669999 0066999 0066999 0066999 0066999 0066999
	COM STREAM E SLOPE	00000000000000000000000000000000000000	DIFFUSION Factor	00000000000000000000000000000000000000	LAYOUT CON T.LLADE MA Angle F (Deg)	00000000000000000000000000000000000000
	NO. ABS.FL	00000000000000000000000000000000000000	STAGE AD.EFF.	00000000000000000000000000000000000000	KE ++ − BLADE OU HGLE DEG)	
	SS. ABS L. MACH SEC)	11200200000000000000000000000000000000	STAGE PO.RATIO	11111111111111111111111111111111111111	STREAMLIN DEV. DUT. ANGLE AN CDEG) CI	1123.860 99.990 99.990 99.990 11. 12. 12. 12. 12. 12. 12. 12. 12. 12.
	ANG, AL EL. VI SEC) (FT.	00000000000000000000000000000000000000	STATOR Po.ratio	00000000000000000000000000000000000000	OUTLET -E.RAD. /CHORD	0.0139 0.0119 0.0119 0.0119 0.0115 0.0115 0.0097 0.0097 0.0072 0.0072
	TERD. T	40000000000000 1999499999999 148947748999	EAL HEAD COEF.	0.2885852 28969 289699 288552 2885852 2885852 2885852 288585 288585 288585 288585 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28858 28558 28558 28558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27558 27556 2755757 2755757 2755757 2755757 2755757 2755757 27557575	ES TANG. BS/IN)	88,588 88,585 88,585 88,588 8,585 8,595 77,995 77,995 77,995 77,20 8,522 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222 8,222
	XIAL P Vel. V V/SEC) (F1	1000000000000 100000000000 10000000000	HEAD ID COEF.	00000000000000000000000000000000000000	BLADE FORC R.AXIAL BS∕IN) (L	00000000000000000000000000000000000000
	AXIAL A CCORD. (F (IN.) (F	, , , , , , , , , , , , , , , , , , ,	FLOW COEF.	444444 444444 444444 444444 444444 44444	LOCAL Radius Foi CIN.) (LU	₽88880222490 80800055400 80800055400 80800055400 80800055400 808000054000 80800224000 80800224000 80800224000 80800224000 808000224000 808000224000 808000224000 808000224000 808000224000 808000224000 808000224000 808000224000 808000224000 808000224000 8080002000 8080002000 8080002000 808000000 800000000
	MLINE Madius (IN.) 9 302 1	, , , , , , , , , , , , , , , , , , ,	MLINE	00000000000000000000000000000000000000	MLINE PCT. SPAN	1 1 1 1 1 1 1 1 1 1 1 1 1 1
	SJREA NO. A TTP	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STREA NO. R	F	STREA ND.	

** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 19, WHICH IS AN ANNULUS **

STATIC TEMP. (DEG.R.)	666661123746666633 66666112373666633 71611237369 71611237467 7161168
STATIC PRESS. (PSIA)	4844988888 484498888 48449888 48449888 48449888 48449888 48449888 4844988 4844988 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498 484498688 48449868
TOTAL TEMP. (DEG.R.)	<pre>/ 40 4 40 40 40 40 40 40 40 40 40 40 40 4</pre>
T0TAL Press. (P5IA)	20020202020202020202020202020202020202
STREAM. CURV. (1./IN.)	
STREAM. SLOPE (DEG)	
ABS.FLOW Angle (Deg)	
ABS. MACH ND.	00000000000000000000000000000000000000
ABS. VEL: (FT/SEC)	20000000000000000000000000000000000000
TANG. Vel (FT/SEC)	
MERD. VEL (FT/SEC)	55555555555555555555555555555555555555
AXIAL VEL. (FI/SEC)	88999999999999999 9899999999999 98999999
AXIAL COORD (14.) 14.460	66666666666666666666666666666666666666
STREAMLINE ND. RADIUS (1N.) 11P 9.302	HI109899999999999999999999999999999999999

ULTER TO AN ANNITUS XX ĉ

	STATIC TEMP. (DEG.R.)	681.67 671.31 667.35	663.59 661.19 660.61	661.92 661.92 665.36 677.80
	STATIC Press. (PSIA)	30.534 30.536 30.575	30.628 30.697 30.780	30,972 31,218 31,326
*	TOTAL TEMP. (DEG.R.)	710.16 699.64 695.41	691.27 688.37 687.16	685.24 685.24 687.48 695.01
A ANNULUS	TOTAL Press. (PSIA)	35.272 35.320 35.344	35.354	36.217 36.217 36.217
HICH IS AN	STREAM. CURV. (1./IN.)	-0.006 0.017 0.023	0.031	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
N. 20. H	STREAM. SLOPE (DEG)	-0.39 0.39 1.08	2.23	2 3 3 4 5 1 2 3 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 5 1 2 4 5 1 5 1 2 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
AT STATIO	ABS.FLOW . Angle (Deg)	00.00 00.00		
SAML INES	MACH NO	0.4589 0.4612 0.4601	0 . 4 5 8 2 4 5 4 5 6 4 5 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 4 7 4 5 7 4 5 7 4 7 4 7 4 7 4 5 7 4 6 7 4 7 7 7 7	0.424 0.4332 0.4209 0.3993 0.3575 0.3575
S ON STRE	ABS. VEL. (FT/SEC)	586.64 585.12 587.04	576.03 572.87 566.07	555.94 545.50 510.35 504.83 55.77
PARAMETER	TANG. Vel. (FT/SEC)	0.00	00.0	
ILUES OF 1	MERD. VEL. (FT/SEC)	586.64 585.12 587.12	578.05 572.87 566.07	556.96 545.50 530.35 664.83 455.77
¥7 **	AXIAL VEL (FT/SEC)	586.62 585.11 581 91	572.45	556.15 544.59 529.39 553.96 455.20
	AXIAL CODRD.	15.700 15.705 15.728	15.775 15.803 15.829	15.857 15.887 15.918 15.953 15.992 16.000
	STREAMLINE No. Radius (IN.)	TIP 9.298 1 9.243 2 8.985 1 9.325	6 7.878 8.170 8.170	7 572 95 7 266 96 901 10 6 986 11 6 986 HUB 6 986

.....

# ** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 21, WHICH IS AN ANNULUS **

STATIC TEMP. (DEG.R.)	66666666666666666666666666666666666666	
STATIC Press. (PSIA)	2000 2000 2000 2000 2000 2000 2000 200	
TOTAL TEMP. (DEG.R.)	200, 79 699, 57 699, 57 6891, 29 6888, 57 2888, 288 6885, 79 6885, 79 6885, 79 96, 529 97 29 97 97 97 97 97 97 97 97 95 95 95 95 95 95 95 95 95 95 95 95 95	
TOTAL Press. (PSIA)	2425 2425 2425 2425 2425 2425 2425 2425	
STREAM. CURV. (1./IN.)	0.123 0.102 0.1922 0.0933 0.0887 0.0887 0.0887 0.0887 0.0887 0.111	
STREAM. SLOPE (DEG)	445447778888889 9997497919180 997497919180 99979898888	
ABS.FLOW Angle (deg)		
ABS. MACH ND.	0.52 0.52 0.52 0.51 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	
ABS. VEL. (FT/SEC)	66666666666666666666666666666666666666	
TANG. VEL (FT/SEC)		
MERD. VEL. (FT/SEC)	6666.866666666666666666666666666666666	
AXIAL VEL (FT/SEC)	66666666666666666666666666666666666666	
AXIAL COORD. (IN.) 17.000	17.054 17.054 17.156 17.156 17.255 17.551 17.551 17.551 17.551 17.551 17.551	17.600
STREAMLINE NO. RADIUS (IN.) TIP 9.319	10200000000000000000000000000000000000	1/1 9 9/H

# ** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 22, WHICH IS AN ANNULUS **

STATIC IEMP. (DEG.R.)	670.68	661 08	658 33	657.94	658.59	659.67	661.10	662.84	668.04	679.93	
STATIC PRESS. (PSIA)	28.919	29.579	29.873	30.158	30.436	30.698	30.963	31.224	31.484	31.690	
TDTAL TEMP. (DE3.R.)	709.59	695.39	691.31	688.45	687.25	686.42	685.82	685.32	687.54	694.91	
TOTAL Press. (PSIA)	35.272	35.344	35.364	35.374	35.357	35.305	35.231	35.111	34.840	34.217	
STREAM. Curv. (1./IN.)	0.139	0.116	0.111	0.107	0.104	0.101	0.099	0.097	0.095	0.082	
STREAM. Slope (deg)	9.72	10.73	11.26	11.80	12.35	12.91	13.51	14.15	14.86	15.70	
ABS.FLOW Angle (Deg)	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	
ABS. Mach Nd.	0.5408	0.5113	0.4974	0 4832	0.4681	0.4516	0.4337	0.4131	0.3833	0.3331	
ABS. VEL. (FT/SEC)	685.81 663 13	643.84	625.32	607.07	588.35	568.12	546.15	520.85	485.18	425.25	
TANG. VEL (FT/SEC)	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	
MERD. VEL.	685 81 663 32	643 84	625.32	60/.07	588.35	568.12	546.15	520.85	485.18	425.25	
AXIAL VEL (FT/SEC)	675.96	632.58	613.28	534.25	574.74	C/ . ECC	531.04	505.05	463.96	409.37	
AXIAL COORD. (IN.) 17.750	17.764	17.892	17.960	18.031	18.105	15.139	15.269	18.360	18.461	18.579	10.01
SIREAMLINE NO. RADIUS (IN.) TIP 9.407	2 9.1356	3 8.905	5 6666	0 0 0 0	6 8.152	1.813	8 7.575	9 7.253	10 6.897	11 6.430	100 P.400

** VALUES OF PARAMETERS ON STREAMLINES AT SIATION, 23, WHICH IS AN ANNULUS **

STATIC TEMP. (DEG.R.)	6661119 6661119 6661119 6661119 8661138 8651132 8651132 8651132	680.33
STATIC PRESS. (PSIA)	2000 2000 2000 2000 2000 2000 2000 200	31.769
TOTAL TEMP. (DEG.R.)	44 46 46 46 46 46 46 46 46 46 46 46 46 4	694.87
TOTAL Press. (PSIA)	84111111111111111111111111111111111111	34.217
STREAM. CURV. CLIN.)	00000000000000000000000000000000000000	0.114
STREAM. SLOPE (Deg)	2125.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.0	21.69
ABS.FLOW Angle (deg)		00.00
ABS. MACH NO.	00000000000000000000000000000000000000	0.3275
ABS. VEL. (FT/SEC)	666666666 66666666 666666666 6667667 6676767 667767 70767 70767 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 7076 70777 70777 707777 7077777777	918.31
TANG. Vel. (FI/SEC)		0.00
MERD. VEL. (F7/SEC)	66660 66660 66660 66660 660 660 600 600	10.014
AXIAL VEL. (FT/SEC)	656.81 617.51 617.51 559.55 559.55 558.15 551.09 551.09 551.09 10.09 10.09	00.000
AXIAL COORD. (IN.) 18.500	108 601 186 601 186 601 186 601 186 601 186 746 196 74	19.600
STREAMLINE ND. RADIUS (IN.) TIP 9.572	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HUB 6.745
		-

## VALUES OF PARAMETERS ON STREAMLINES AT STATION, 24, WHICH IS AN ANNULUS **

STATIC TEMP. (DEG.R.)	6641.56 6664.55 6669.135 6669.135 6669.135 66641.57 66641.57 70
STATIC PRESS. (PSIA)	244 244 246 246 246 247 246 247 247 247 247 247 247 247 247 247 247
T01AL TEMP. (DEG.R.) 700 te	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
TOTAL PRESS. (PSIA)	20000000000000000000000000000000000000
STREAM. CURV. CL./IN.)	
STREAM. SLOPE (DEG) 21 17	869969967
ABS.FLOW Angle (deg) 0.00	
ABS. MACH NO.	00000000000000000000000000000000000000
ABS. Vel. (F1/5EC) 675.94	651.26 631.26 631.35 631.35 561.35 561.16 561.16 77 23 23 23 23 23 23 23 23 23 23 23 23 23
TANG. Vel. (FT/SEC) 0.00	
MERD. VEL. (FTJSEC) 675.94	651.24 631.34 631.35 596.125 561.17 686.13 486.13 427.23
AXIAL VEL. (FT/SEC) 630.31	00000000000000000000000000000000000000
AXIAL COORD. (IN.) 19.250	19.476 19.568 19.568 19.568 19.683 19.683 19.683 20.259 20.259 20.566 20.566 20.566
STREAMLINE NO. RADIUS (IN.) TIP 9.812 1 9.766	HLI 7.28930 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.28940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.29940 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.299400 7.2994000 7.299400000000000000000000000000000000000

-----

80

.

è

# ** VALUES OF PARAMETERS ON STREAMLINES AT STATION, 25, WHICH IS AN ANNULUS **

STATIC TEMP. (DEG.R.)	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
STATIC PRESS. (PSIA)	30.068 50.244 50.244 50.640 50.640 50.803 51.20 51.20 51.20 51.20 51.20 51.20 51.20 51.20 51.20 51.20 51.20 51.20 51.20 50 51.20 50 51.20 50 51.20 50 50 50 50 50 50 50 50 50 50 50 50 50
TOTAL TEMP. (DEG.R.)	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TOTAL Press. (PSIA)	82888888888888888888888888888888888888
STREAM. CURV. (1./IN.)	000000000000 00000000000 0000000000000
STREAM. SLOPE (DEG)	26.20 25.92 25.95 26.29 26.29 26.29 26.29 26.29 26.29 26.29 26.29 27.65 26.53 26.53 26.53 27.55
ABS.FLOW Angle (Deg)	
ABS. Mach ND.	0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.4400 0.44000 0.44000 0.44000 0.44000 0.44000 0.44000 0.44000 0.44000 0.44000 0.44000 0.44000 0.44000 0.44000 0.440000 0.44000 0.44000 0.44000 0.44000 0.440000000000
ABS. Vel. (FT/SEC)	661 67 67 67 67 67 67 67 67 67 70 70 70 70 70 70 70 70 70 70 70 70 70
TANG. VEL. (FT/SEC)	
MERD. VEL (FT/SEC)	6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 7 6 6 7 6 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7
AXIAL VEL. (FT/SEC)	0,000,000,000,000,000,000,000,000,000,
AXIAL COORD. (IN.)	20.00 20.00 20.00 20.00 20.60 20.60 20.60 20.60 20.60 20.60 20.60 20.60 20.60 20.60 20.60 20.60 20.60 20.60 20.60 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.000 20.000 20.000 20.00000000
STREAMLINE No. Radius (IN.)	TIP 10.149 2 10.149 5 9.208 5 9.208 6 9.208 6 8.5019 8 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 8.5019 10 7.5518 10 7.551

### . ç 00100

BIADE         SCITION         MATAL         DETAIL         DETAIL <thdetail< th=""> <thdetail< th=""> <thdetail< th=""></thdetail<></thdetail<></thdetail<>			SECTION STIFFNESS (IN.)**6 0.0373769 0.0373769 0.03782303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.03282303 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.0328230 0.03282300 0.03282300 0.03282300 0.03282300 0.03282300 0.03282300 0.032823000 0.03282300000000000000000000000000000000	$\begin{array}{c} G = (1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,$	0.0227
SECTION NO.         SECTION NO.         CONDINITES         SALAL LOCATION OF STACKING LIFE IN COMPRESSOR         S.200           STATAL LOCATION OF STACKING LIFE IN COMPRESSOR         S.200         MUMBER OF BLADES         STELLUA         STELUA         STELLUA         STELLUA		. <b>N</b> I	SECTION TORSION CONSTANT CONSTANT (IN.)*** 0.00225925 0.00225925 0.00225925 0.00225925 0.00225925 0.00225925 0.00225925 0.00225925 0.00225925 0.00225525 0.00225525 0.00225525 0.00225525 0.0022552525 0.0022552525 0.0022552525 0.0022552525 0.0022552525 0.0022555255 0.00225552525 0.0022555255 0.0022555555 0.0022555555 0.00225555555555	* * * * * * * * * * * * * * * * * * *	3.0227
BLADE         SECTION         PODERTIES         OF STACKING LINE         NO. IT         CONDUMTES         SECTION         PODERTIES         OF STACKING LINE         NO. IT         CONDUMTES         SECTION         PODERTIES         CONDUMTES         CONDUMTES         CONDUMTES         SECTION         PODERTIES         CONDUMTES         CO	R.	= 5.200	IMAX SETTING Angle (DEG.) 10.568 11.056 12.156 13.156	FECTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTION CCTIO	2.2703
BIADE         SECTION         FARTAL LOCATION OF STACKING LINE IN CATACLUANC A           DE         SECTION         SECTION         SECTION         SECTION         SECTION         SECTION         DE         LUC           THND         TACKING POINT         SECTION         MODE         CLUBBIA         CLUBBIA <th>010K M0. 1</th> <th>COMPRESSOR</th> <th>OF IMERTIA GH C.G. IMAX IMAX (IN.) HH4 (IN.) HH4 (IN.) 101571 0.096598 0.092087</th> <th>G. / 0.4 00 00 00 00 00 00 00 00 00 00 00 00 00</th> <th>0.0249</th>	010K M0. 1	COMPRESSOR	OF IMERTIA GH C.G. IMAX IMAX (IN.) HH4 (IN.) HH4 (IN.) 101571 0.096598 0.092087	G. / 0.4 00 00 00 00 00 00 00 00 00 00 00 00 00	0.0249
DE         SECTION         PROPERTIES         OF STACK           DE         SECTION         STACKING POINT         SECTION         SECTION         SECTION           0         1005         1005         SECTION         SECTION         SECTION         SECTION           0         1005         111342         0.1205         0.1335         0.1335         0.1335           0         0         11342         0.11835         0.1335         0.1335         0.1335           0         0         0         11342         0.1235         0.1335         0.1335           0         0         0         0         0.1335         0.1335         0.1335           0         0         0         0         0.1335         0.1335         0.1335           0         0         0         0         0.1335         0.1335         0.1335           0         0         0         0         0         0.1335         0.1335           0         0         0         0         0         0.1335         0.1335           0         0         0         0         0         0         0.1335         0.1335           0 <td< td=""><td>CLLUMING R</td><td>ING LINE IN</td><td>MCMENTS THROU Throu Thi Thi Throu The Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Co</td><td>C C C C C C C C C C C C C C C C C C C</td><td>0.9249</td></td<>	CLLUMING R	ING LINE IN	MCMENTS THROU Throu Thi Thi Throu The Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Coccess Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Co	C C C C C C C C C C C C C C C C C C C	0.9249
BLADE SECTION PROPERTIES OF STATE           DE SECTION (100)         STACKING POLNT (100)         SECTION (100)         STALL LOCATION (100)           COURDINATES (100)         SACINATES (100)         SECTION (100)         SECTION (100)         AXIAL LOCATION (100)           CTOC         COURDINATES (100)         SECTION (100)         SECTION (100)         COURDINATES (100)         SECTION (100)           COURDINATES (100)         SECTION (100)         COURDINATES (100)         SECTION (100)         COURDINATES (100)         SECTION (100)           SECTION (100)         COURDINATES (100)         SECTION (100)         SECTION (100)         SECTION (100)         COURDINATES (100)         SECTION (100)         COURDINATES (100)         SECTION (100)         SECTION (100)         SECTI	I NO. I	4 DF STACKI	SECTION AREA (IN.) #*2 (IN.) #*2 0.32659 0.232659 0.28709	N N N N N N N N N N N N N N N N N N N	2.2703
DE         SECTION         STACKING POINT         SECTION         AX           RED:         LOORDINATES         54.0         AX           RED:         LOORDINATES         SECTION         STACKING POINT           RED:         LOC         LOC         COURDINATES         SECTION         AX           RED:         LOC         LOC         COURDINATES         SECTION         AX           FIN:         COURDINATES         CTM         COURDINATES         SECTION         AX           FIN:         CTM         CTM         CTM         COURDINATES         SECTION         AX           FIN:         CTM         CTM         CTM         COURDINATES         SECTION         AX           FIN:         CTM         CTM         CTM         CTM         CTM         L1355           FIN:         CTM         CTM         CTM         CTM         L1355           FIN:         CTM         CTM         CTM         L1355	LES OF STA	IAL LOCATION	DE SECTION COORDINATES I H (IN.) 0.2300 0.1836 2 0.1836	01 14 14 14 14 14 14 14 14 14 1	0.0272
DE         SECTION         STACKING POINT         SECTION           0.000         STACKING POINT         54.0           0.000         COURDINATES         34.0           0.000         COURDINATES         54.0           0.000         COURDINATES         54.0           0.000         COURDINATES         54.0           0.000         COURDINATES         560110           0.000         COURDINATES         560110           0.000         CIN.)         CIN.)           0.000         CIN.)         CIN.)           0.1135         0.10355         11.055           0.000         0.021         0.1035           0.001         CIN.)         CIN.)           0.1135         0.1035         0.1000           0.001         0.0219         0.2045         0.1000           0.001         0.0219         0.2046         0.1000           0.001         0.0259         0.2046         0.1000           0.001         0.0259         0.2046         0.1000           0.001         0.0259         0.2046         0.1000           0.000         0.2246         0.2046         0.2000           0.000         0	ON PROPER	AX		C C C C C C C C C C C C C C C C C C C	0.0272
DE SECTION NUMBER OF BLADE ESCTION FRAD. COURDIMATES COURDIMATES CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) CIN.) C	LADE SECTI	= 34.0	SECTIN SECTIN ANGUN DEGCE 10.35.05 12.135515 13.135515 13.135515 13.135515 13.135515 13.135515 13.135515 13.135515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.555515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.55515 13.555515 13.555515 13.555515 13.5555555555	N 2000000000000000000000000000000000000	2.2703
DE SECTION NUMBER FETTION FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO FILO F	#0 **	OF BLADES	ING POINT ATES A H C IN C IS350 0.18356 0.18356 0.18356	III XII 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,0295
0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		NUMBER	244691 00F	00100000000000000000000000000000000000	0.0295
			ADE SECTION 0. EATION 1. ADE SECTION 1. ASTON	<ul> <li>Щ странововововововововововововововововововов</li></ul>	2.25/2

÷

-

F

## ** BLADE SECTION PROPERTIES OF STATOR NO. I FOLLOWING ROTOR NO. 1 **

= 5.200 IN.	IMAX SECTION SECTION SETTING TORSIGN TWIST ANGLE CONSTANT STIFFNESS	(DEG.) (IN.)**4 (IN.)**6 14.274 0.0016300 0.0297061	IS 219 0.0014535 0.0282116	16.743 0.0011448 0.0253396	SECTION NO. 8 COORDINATES L HP HP	(IN.) (IN.) (IN.)	0.0000 U.U.4.5 U.U.4.5 0.0044 ******* 0.0263		0.1000 0.0306 0.0821		0.5000 0.0944 0.1015 A 4000 0 1210 0.2219	0.5000 0.1443 0.2567	0.6000 0.1643 0.2859	0.8000 0.1942 0.3291	0.9000 0.2042 0.3431	1,0000 0.2109 0.3524	1.1000 U.Z143 U.3369 1.2000 0.3566	1.3000 0.2112 0.3515			1,7000 0,1639 0,2815	1.8000 0.1431 0.2507				2.2488 0.0010 ******	2.2614 ******* 0.0248	2.2675 0.0135 D.UL3
CKING LINE IN COMPRESSOR	DN MOMENTS OF INERTIA Through C.G. Thim	<pre>&lt;2 (IN.)**4 (IN.)**4 a0 0.0013310 0.087776</pre>			H ND. 7 COORDINATES	(IN.) (IN.)		00000.0 KKKKKKK 1	0 0.0264 0.0813	0 0.0563 0.1305		0 0.1272 0.2437	0 0.1449 0.2710			0.1858 0.3327	0 0.1556 0.3368	0 0.1855 0.3314	0 0.1794 0.3219			0 0.1246 0.2367	0 1.1030 0.2026				7 ******* 0.0294	3 0.0158 0.0158
ON OF STAC	SECTIO S AREA	K ( IN. ) #	6 0.2648	2 0.2437	SECTION	CIN.)	00000.0	0.0051	000100	0.2000	0.3000	0.5000	0.6000	0.7000		1.0003	1.1000	1.2000	1.4000	1.5000			1.900	2.0000	2.100	2.200	2.261	2.269
AXIAL LOCATI	BLADE SECTION C.G. COORDINATE		1.1332 0.194	1.1323 0.203 1.1311 0.221	6 COORDINATES		0186 0.0186			0519 0.1302	0769 0.1718		1346 0.2655	1482 0.2871	1900.0 1601	1724 0.3248	1749 0.3286		1660 0.3137	1574 0.3002		131/ 0.231	0.1986	0713 0.1606	0450 0.1169	.0156 0.0672		0181 0.0181
34.0	SECTION	ANGLE (DEG.)	15.152	16.060 16.529	SECTION NO.		0.0000 0.	*** 5600.0	0.0242 0.0	0.2000 0.	0.3000 0.	0.4000 0.	. 0 000 o. u	0.7000 0.	0.8000 0.		1.1000 0.	1.2000 0.	1.4000	1.5000 0	1.6000 0.		1.9000	2,0000 0	2.1000 0	2.2000 0	2.2462 U	2.2699 0
NIMBER OF BLADES =	STACKING POINT COORDINATES		1.1338 U.15/5 1.1332 D.1946	1.1323 0.2033 1.1311 0.2212	5 COORDINATES		1208 0.0208	**** 0.0390			0,1707	0923 0.2058	1103 U.235U 1257 D.2615	1385 0.2825	1486 0.2990			1632 0.3222		1468 D.2950	1360 0.2773	1226 0.2550	1055 0.1964	0.659 0.1597	0413 0.1175	0139 0.0697		8*** 0.0204 0204 0.0204
	BLADE SECTION Rad.	ND. LOC.	5 7.300 6 6.725	7 6.150 8 5.575	SECTION NO.			0.0108 ***	0.2268 0.1		0.3000 0.1	0 4000 0		0 7000 0	0.8000 0.	0.9000	1 1000 0	1 2000 0	1.5000 0.	1 5000 0	1.6000 0.	1.7000 0.		2 0000 0	2.1000 0.	2.2000 0.	2.2439 0.	2.2535 ### 2.2732 0.

.

### RIADE SECT

	I.N	SECTION SECTION TORSION TWIS? TORSION TWIS? (IN.)**4 (IN.)**6 0010197 0.0242280 0010197 0.0238766	
×	= 5.200	I MAX SETTING Angle C Deg C Deg 16.3646 10.368 246 10.368 20.368	
5 R0T0R NO. 1 *	IN COMPRESSOR	rs of INERTIA 20UGH C.G. IMAX 144 (IN.)*44 144 (IN.)*44 154 0.072372 26 0.072372 186 0.108931	000 DEMAT 0124 0100 0100 0100 0100 0000 0000 0000
FOLLOWING	ING LINE	MOMENT Intr Intr (In.)* 0.00163 0.00173 0.00238	CO CO CO CO CO CO CO CO CO CO
OR NO. 1	DF STACK	SECTION AREA (IN., **2 (0.23474 0.23147 3.32688	SECTION CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONT
PROPERTIES OF STAT	AXIAL LOCATION	BLADE SECTION C.C. COORDINATES (IN.) (IN.) (IN.) (IN.) 1.1294 0.2497 1.1351 0.2299	0 000 011 11 1 0 000 01 11 11 10 0 000 01 11 1
ADE SECTION I	34°D	SECTION SETTING SETTING Angle (Angle 15.693 15.693 15.593 10.353	SECTION (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (1)
	NUMBER OF BLADES =	STACKING POINT COORDINATES L NHA L NH CIN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.) (IN.	C C C C C C C C C C C C C C C C C C C
	-	BLADE SECTION RAD. NG. (100) 3 5.025 10 5.025 11 9.600	

84

	8.4500 IN. Re surface Y (IN.)	111111 000000000000000 4.0000000000 000420040000 0002000000000 000200000000	1,E 1,E 1,E 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	5.7250 IN. Se surface Y CIN.)		0.01259 0.01259 0.012259 6.00081 6.350 6.350 7.18
HTATION **	XCUT DF PRESSU ZZ (IN.)	111111 1000000001 10000000001 100000000	1	XCUT OF 6 PRF55UF CIN.)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
INE ORIE!	JN 3 FOR 4 Surface 7 (IN.)			N 6 FUR SURFACE Y CIN.)	-0.4480 -0.12632 -0.126335 -0.126335 -0.12649 -0.12649 -10.25635 -10.2085 -10.2085 0.12624 0.1365	
TURBOMACS	SECTION SUCTION CINCS	1		SECTION SUCTION CIN. )		
40. I IN THE	0.0250 IN. Re surface Y (IN.)		T.E. 1.1186 0.0532 0.0272 0.0000 -11.29 83.90	.3000 IN. E surface Y (IN.)		T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
ING ROTOR N	XCUT DF 9 PRESSUR Z 2 (IN.)		- L.E.E. - L.G.564 0.3697 0.6273 33.36 83.36 83.90	XCUT DF 7 PRESSUR Z (IN.)	1-1-1-1 100008031000000000000000000000000000000	
FOLLOW)	N Z FOR SUPFACE (IN.)	-0.3486 -9.2763 -0.875 -0.0875 -0.0875 0.0890 0.0890 0.0875 0.0126 0.0125 0.1255 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1757 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.1755 0.17550 0.17550 0.17550 0.17550 0.17550 0.17550000000000000000000000000000000000		I 5 FOR Surface Y CIN.)		
STATOR NO.	SECTION SUCTION CIN.)	1		SUCTION SUCTION Z CIN.)		
<b>DINATES DF</b>	9.6000 IN. Re Surface Y (IN.)		1.1237 0.0015 0.0015 0.0000 17.36 83.91	E SURFACE Y TN.)	-0,4290 3746 -0.3746 -0.3746 -0.1484 -0.0184 -0.0184 -0.0184 -0.0184 -0.0184 -0.0778 -0.0778 -0.0778	1.1203 1.1203 0.0261 0.0227 0.0227 0.0227 0.0227 0.0227 0.0200 0.0227 0.0200
TTON COORI	XCUT DF 5 PRESSUF Z (IN.)		1 L L C E E E E E E E E E E E E E E E E E	XCUT DF 7 PRESSUR Z (IN.)	1	-1.6457 -0.4090 0.00229 35.18 35.18
BLADE SEC	N I FOR A SURFACE (IN.)	-0.3742 -0.3742 -0.2943 -0.2913 0.1043 0.1043 0.1043 0.1043 0.1043 0.1163 0.1163 0.1163 0.1163 0.1163 0.1163 0.1218 0.1218 0.0220	METERS IN.) IN.) IN.) E (DEG) EG)	N 4 FOR : Surface Y (IN.)		METERS IN.) IN.) IN.) IN.) E (DEG)
**	SUCTION SUCTION Z CIN. )		LIPSE PARA CIRCLE Z ( CIRCLE Z ( CIRCLE Y ( CIRCLE Y ( CIRCLE Y ( CIRCLE Y ( TANG, CD AXIS SLOP	SECTIO SUCTION Z (IN.)	1	LIRGE PARA CIRCLE C CIRCLE C A A A A C CIRCLE C C C CIRCLE C C C CIRCLE C C C C C C C C C C C C C C C C C C C
	FRACT. OF Surf.	00000000000000000000000000000000000000	SURF.	FRACT. DF SURF.	00000000000000000000000000000000000000	END ELL END C END

8
Ľ.
1
ĩ
2
8
μ.
<b>T</b>
Ξ
¥
E
ē
5
-
ų
E.
z
ľ
ŝ
~
0
5
õ.
Q
H.
3
Ξ.
ы
L_
-
÷
R
~
ö
AT
5
<u>10</u>
ഹ
ш.
4
Ĩ
ġ
10
5
ō
0
3
ш
 #
1
85
*

	.0250 IN. E surface Y (IN.)	-0.5465 -0.4737 -0.4737 -0.4737 -0.0737 -0.0737 0.0529 0.0027 0.0027 0.0027 0.1056 0.1055 0.1055 0.1055	1100000000 110000000000000000000000000			
TATION **	XCUT OF 5 PRESSURI Z (IN.)	00000000000000000000000000000000000000				
IHE ORIEN	N 9 FOR Surface Y (IN.)	0. 523 0. 523 0. 523 0. 523 0. 122 0. 122 0. 122 0. 122 0. 122 0. 122 0. 123 0. 123 0. 123 0. 52 0.				
TURBOMACH	SECTION SUCTION (IN.)	1				
D. I IN THE	5750 IN. E surface Y (IN.)		1.E. 1.1356 0.1203 0.00135 1.35 1.35 84.37	.5997 IN. E surface Y (IN.)		T.E. 1.1237 0.0016 0.0295 0.0000 127.36 83.91
NG RDTOR NO	XCUT OF 5. PRESSURE CIN.)	1		XCUT OF 9 PRESSUR Z (IN.)	-1.0558 -0.9570 -10.9570 -10.9570 -10.62111 -0.2078 -0.2078 -2078 -2078 -2078 -2078 -2078 -2078 -2078 -2078 -2078 -2078 -2078 -2078 -2078 -2078 -1179 -1179	- 1.0515 - 0.3956 0.0297 37.84 83.93
LOLLOWI	L & FOR SURFACE	-0.5068 -0.5211 -0.5211 -0.5251 -0.1536 -0.1538 -0.1538 -0.1538 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1548 -1		H II FOR SURFACE (IN.)		
STATOR NO. 1	SECTION SUCTION Z Z			SECTION SUCTION Z CIN.)	1250.1 9869.0 9895.0 9895.0 9895.0 9259.0 9259.0 9259.0 9259.0 1.0259.0 1.0259.0 1.0259.0 1.0259.0 1.0259.0 1.1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.0 1.1255.000	
NATES OF	1500 IN. Surface T	00 0 0 0 0	1.1293 0.1300 0.0000 0.0000 1.9.35 84.26	5000 IN. 5 SURFACE 7 (14.)		T.E. T.E. T.E. T.E. T.E. T.E. T.E. T.E.
TION CODEDI	XCUT DF 6. PRESSURE Z		1,10 1,0 0,420 0,0164 0,0164 0,900 840,96	XCUT DF 4 PRESSURI (IN.)	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	L . E. E. L . C. E. C. D. 5436 C. 0113 G. 0000 G. 47 647 647
ILANE SEC	SURFACE	-0.4770 -0.3946 -0.2346 -0.2515 -0.0515 -0.0515 -0.0515 -0.2155 0.2155 0.2155 0.2155 0.2155 0.2155 0.2155 0.2155 0.2155 0.2155 0.2155 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.2755 0.27550 0.27550 0.27550 0.27550 0.27550 0.27550000000000000000000000000000000000	461685 IN.) IN.) IN.) E (DEG) EC)	N 10 FOR Surface (IN.)	00000000000000000000000000000000000000	METERS IN.) IN.) IN.) E (DEG) EG)
8C; *	555710 SUCTION Z (IM.)		CIRCLE Z CI CIRCLE Z CI CIRCLE Y CI CIR RAD CI CIR RAD CI IPSC ECCENT AXIS SLOPI	SECTION SUCTION CIN.)	10000000000 100000000000 1000000000000	LLIPSE PARA CIRCLE Z C CIRCLE Y C CIPCLE Z C C CIPCLE Y C C CIPCLE Z C C CIPCLE Z C C CIPCLE Z C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C CIPCLE Y C C C C C C C C C C C C C C C C C C C
	FRACT. OF SURF.		EHD EHD EHD EHD EHD EHD EHD EHD EHD EHD	FRACT DF SURF.	0000000000000 001000000000000000000000	

### ** BLADE SECTION PROPERTIES OF ROTOR ND. 2 **

÷N.

		SECTION SECTION	CONSTANT STIFFNESS	.0001190 0.0074213 .0001217 0.0076849	.0001879 0.0092866	- 4 COORDINATES	TAP HS HS (IN )	0.0158 0.0158		0.007 0.0401	0013 0.0489 0018 0.0467	0022 0.0633	.0024 0.0689	.0026 0.0768	.0026 0.0792	CUSU.U C2VU.	0023 0.0803	.0022 0.0788	.0018 0.0729	.0016 0.0684		.0006 0.0566	.0003 0.0412	.0000 #######	.0157 0.0157
	1 0 2 2 1	IMAX	ANGLE (DEG.)	60.303 59.946	56.500 0.	SECTION NO.	CIN.) (	0.0000	0.0160 0	0.1000	0.2000 0	0.4000	0 6000	0.7000	0.8000	1.0000	1.1000 0	1.2000 0	1.4000 0	1.5000 0	1 7000	1.8000	1.9000	2.0085 0.	2.0104 ***
** 4	IN COMPRESSIN	DE INERTIA	IMAX (IN.)**6	9 0.027616 9 0.028379 7 0.028379	4 0.033954	RDINATES	(IN.)	0.0142 0.0251		0.0358	0.0502	0.0560	0.0648	0.0678	0.0699	0.0716	0.0712	0.0580	0.0651	0.0613	COCN.0	0.0443	0.0369	*****	0.0275 0.0138
RUTOR NO. 2	KING LINE J	STN3MOM' N	IMIN 2 (IN.)**		0.000053	NO. 3 COO	(IN.)	2910.0	0.000	0.0001	0.0003	0000	1000.0	0.000	-0.0002-	-0.0002	-0.0002		0.0003	0.0004	0.000	0.0002	0.0001	0.000 *	******
EKITES OF	ON DF STAC	SECTIO	(IN.)*K		0.12597	SECTION	CIN.)	0.0129	0.0142	0.1000	0.3000	0.4000	0.6000	0.7000	0.9000	1.0000	0007.1	1.3000	1.4000	00001	1.7000	1.2000	2.9000	2.0101	2.0118
TUR FRUP	XIAL LOCATI	ADE SECTION COORDINATE	) (IN.) 56 0 070	69 0.023 86 0.023	97 0.034	DRDINATES HS	(IN.)	0.0249	*****	0.0397	0.0462	0.0566	0.0606	0.0536	0.0673	0.0680	0.0668	0.0651	0.0624	0.0542	0.0484	0.0416	0.0246	10100 0	0.0119
	4	TTON BL TING C.G.	6.) CIN.	1.00	545 1.00	H NO. 2 CO	(IN.)	****	0.0000	1000.0-	-0.0004	-0.0007	-0.0008	8000.0-	/000.0-	-0.0006	1000.0-	0.0003	0.0007	0.0012	0.0012	0.0010	0.0001	0.000	0.119
	ES = 38.0	HT SEC S SET	.) (DEI 127 60.3	120 59.4	016 56.	SECTIO	( NI)	0.0114	0.0125	0.2000	0.3009	0.5000	0.6000	0.050.0	0.9000		1.2000	1.3000	1.5000	1.6000	1.7000	1.8000	2.0000	2.0073	2.0195
	BER OF BLAD	COORDINATE COORDINATE	N.) (IN 9941 -0.0	9968 -0.0	0.0	OORDINATES HS	0.0115	0.0235	0.0112	0.0389	0.0516	0.0566	0.0603	0.0666	0.0682	0.0683	0.0680	0.0662	0.0597	0.0548	1850.0	0.0328	0.0223	0.0223	0.0112
	IUN	C)ION RAD. LOC.	(IN.) (1 9.525 0.	9.375 0. 9.000 0.		UN NU. I C	0.0118	××××××××××××××××××××××××××××××××××××××	1000-0-00	10 -0.0001	1000.6- 0	1000.0-00		0 0.0002	0 0.0003	0.0009	0 0.0012	0 0.0016	0.0024	0 0 0024		0.0011	0.0000	******	1 0.0112
		BLADE SC No.		~~~			0 000	0.010	0.100	0.200	0.400	0.500	002.0	0.800	006.0	1.100	1.200	1 400	1.500	1 600		1.900	000	2.005	2.015

•

### ** BLADE SECTION PROPERTIES OF ROTOR NO. 2 **

	NOI.	NESS	9××0	5261	7829	0622	ES				-	*	5	9	3	•	-		~	4	•0	0			.,	<u>.</u>	<b>.</b>	<b>.</b> ,	~ .		2	*	'n	÷	
	SECT	STIFF			0.012	0.014	RDINAT	ЧS	(IN)	0.022	940.0	*****	0.061	0.080	0.097	0.111	0.124	0.134	0.141	0.147	0.150	0.152	0.151	0.147	141.0	CC1.0	0.125		0.1.0	0.085	0.067	*****	0.046	0.023	
IN.	SECTION TORSION	CONSTANT	TXX( NI)	0.0003779	0.0005354	0.0007364	NO. 8 COD	ЧH	CIN. >	0.0223	******	0.0000	0.0044	0.0095	0.0139	0.0177	0.0208	0.0233	0.0251	0.0264	0.0270	0.0270	0.0264	0.0254	1020.0	0.0216	0.0190	10.0 0	<b>4210.0</b>	0.0086	0.0045	0.0000	*****	0.0234	
: 9.200	IMAX Setting	ANGLE	(DEG.)	692.15	626 639	45.763	SECTION I	••	(IN.)	0.000	0.0177	0.0234	0.1000	0.2000	0.3000	0.4000	0.5000	0.6000	0.7000	0.8000	0.9000	1.0000	1.1000	1.2000	000C · T	1.9000	1.5000	0000-1	1.7000	1.8000	1.9000	1.9992	2.0051	2.0237	
COMPRESSOR	DE INERTIA	IMAX	0 0770 0	0.02/000	0.047056	0.051918	<b>UINATES</b>	HS	IN. )	1.0207	1.0411	****	1.0553	.0707	. 0843	.0960	.1058		.1199	. 1242	.1268	.1275	.1266	.1239	C6 11 .	.11.55	.1058	C 9 6 0 .	0220	.0731	.0591	.0436	****	.0425	.0214
IC LINE IN	MOMENTS C	NIMI	5**( 'NI)	0.0000123	0.0001650	0.0002500	0. 7 COORE	нP	(IN.) (	0.0207 0		0.0000 ××	0.0028 0	0.0059 0	0.0086 0	0.0108 0	0.0126 0	0.0139 0	0.0149 0	0.0154 0	0.0156 0	0.0154 0	0.0149 0	0.0141	0.1110	0.0116	0.0102		0.0064 0	0.0043 0	0.0022 0	0.0001 0	0.0000 **		0.0214 0
OF STACKIN	SECTION ARFA		(IN.)**2	0.15855	0.1770	0.19733	SECTION NO		(IN.)	0.0000	0.0171	0.0213	0.1000	0.2000	0.3000	0.4000	0.5000	0.6000	0.7000	0.8000	0.9000	1.0000	1.1000	1.2000	1,000	1.4000	1.5000	10002	1.7000	1.8000	1.9000	2.0000	2.0023	2.0064 *	2.0242
L LOCATION	SECTION DRDINATES	Ŧ	CIN.)	2040.0	0 0578	0.0716	INATES	HS	IN. )	.0191	.0379	****	. 0497	.0623	.0734	. 0829	8060.	.0972	.1021	.1056	.1075	.1050	.1071	.1048	1101.	7967	. 0898	2220.	. 07.54	.0633	.0521	.0397	****	. 0387	.0195
VIX'V	BLADE C.G. CO	- 		1.0132	1 0140	1.0164	6 COORD	ЧР	IN.) (	0191 0	0 *****	** 0000'	0018 0	.0037 0	.0053 0	.0066 0	.0075 0	.0082 0	.0056 0	.0088 0	.0087 0	.0085 0	.0080	.0074 0	. 000/	0 200.	.0049 0	.0039 0	6200.	0 6100.	0 6000.	0000.	** 0000.	0 *****	.0195 0
38.0	SECTION	ANGLE	(DEG.)		000 05	45.830	ECTION NO.		(IN.) (	0.0000	0.0163 **	0.0195 0	0.1000 0	0.2000 0	0.3000 0	0.4000 0	0.5000 0	0.6000 0	0.7000 0	0.8000 0	0.9000	1.0000 0	1.1000	1.2000		1.4000	1.5000	n nnng . I	1.7000 0	1.8000 0	1.9000 0	2.0000 0	2.0047 0	2.0076 **	2.0244 0
BLADES =	G POINT Inates	Ŧ	(IN.)	0100	0.0359	0.0536	ATES 5	.0	<u>.</u>	174	348	***	447	551	543	721	187	340	550	308	924	127	20	000	3.1	02	175	21	59	55 <b>5</b>	62	560	***	550	176
NUMBER OF	STACKIN CODRD		CIN.C	1.0004	1 0133	1.0161	5 COORDIN	E E	H.) (IN	174 0.0	0.0 ***	**** 000	012 0.0	024 0.0	033 0.01	C40 0.0	045 0.0	0.0 0.0	0.0 0.0S	056 0.0	049 0.0	047 0.0	044 0.0		10.0 0.0	0.1 0.04	025 0.0	0.9 0.0	076 0.01	0.0 0.0	004 0.00	000 000	~**** 000	.0.0 ****	176 0.0
	SECTION	100.	(18.)	0.220	2.2.2	7.125	TION NO.	¥ د	N.) (IN	0000 0.0	0153 ****	0177 0.0	1000 0.0	2000 0.0	3000 0.0	4000 0.0	5066 0.0	6000 <u>1</u> 0	7000 0.0	\$000 0.0	9000 0.0	0.00 0.00	1000 0.0	2000 0.0			5000 0.0		7000 0.0	5000 D.O	9000 0.0	0.00 0.00	0067 0.0	**** 0500	0245 0.0
	BLADE	ЧО.		ń w	• ~	•0	SEC		Ē	0	0	0	0	~	0	ò	0	0	0	•	0	-	-		-				-	7.F	-	~	~	2.	~

-----

88

,

	IN.	SECTION SECTION TURSION TURSI CONSIANT STIFNESS (IN.)**4 (IN.)**6 0.0012231 0.0153157 0.0012231 0.01545411 0.001442 0.0124582 0.0016418 0.0183776	<pre>4. 12 COORDINAT ************************************</pre>
	= 9.200	IMAX SETTING ANGLE ANGLE (UEG.) 42.207 33.189 33.189 33.342 27.384	N E Construction of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec
OR NO. 2 **	G LINE IN COMPRESSOR	MQMENTS OF INERTIA THROUGH C.G. THROUGH C.G. TMIN IMAX (IN.)**4 (IN.)**4 (IN.)**4 (IN.)**4 0.005596 0.05669 0.0002598 0.061317 0.0002598 0.063013 0.0017578 0.069021	11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11       .         11 <td< td=""></td<>
TIES OF ROT	OF STACKIN	SECTION AREA (IN.)**2 (1.)*2439 0.24858 0.24858 0.24858	× × × × × × × × × × × × × × × × × × ×
HADE SECTION PROPER	AXIAL LOCATION	HN BLADE SECTION IG C.G. COORDIMATES I. (IN.) I. 0179 I. 0179 I. 0169 I. 0156 I. 0156	10. 10 HP COORDINATES ************************************
*	38.0	SECTIN SETTIN SETTIN ANGLE (DEG() 28.219 28.22977 26.2877 26.2877	M M M M M M M M M M M M M M
	NUMBER OF BLADES =	LADE         SECTION         STACKING POINT           NO.         LOC:         L         H           IO.         LOC:         L         H           9         6.750         L.0186         0.0757           10         6.375         L.0120         0.1050           11         6.000         1.0120         0.1505           12         5.650         1.0170         0.2195	SECTIUN ND. 9 COORDINATES ( 000 0 1013 0 1013 0 0.0239 0.0258 0.0001 ******** 0.0258 0.0014 ******** 0.0258 0.0014 0.0239 0.0000 0.0147 0.1309 0.0000 0.0147 0.1309 0.0000 0.0447 0.1802 1.0000 0.0447 0.0000 1.0000 0.04400 1.0000 0.04400 1.0000 0.04400 1.0000 0.04400 1.0000 0.04400 1.0000 0.04400 1.0000 0.04400 1.0

### ** BLADE SECTION PROPERTIES OF ROTOR NO. 2 ##

00 IN.	SECTION SECTION NG TORSION THIST CONSION TIFFNESS (11.) >*** (11.) >*** 0.0017010 0.0196352 0.0017126 0.0198383	
R = 9.2	IMAX SETTI Angl Cdeg 22.87 16.08 22.27	
E IN COMPRESSO	HTS OF INERTIA FROUGH C.G. MAX N MAX N MAX	Contraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
ING LINE	MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MUMULA MU	
N DF STACK	SECTION AREA (IN.) X + 4 0.27049 0.27189	N N N N N N N N N N N N N N
AL LOCATIO	0.2837	0 2 2 2 2 2 2 2 2 2 2 2 2 2
	C.G. GLAL (IN.) (IN.) (IN.) (10128) (10128) (10128)	
38.0	SECTION SETTING ANGLE (DEG.) 21.917 19.735 20.795	SEC 110 N Control of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon
R DF BLADES	CKING POINT CCKING POINT CCCKING CCKING CCCCING CCC CCCCING CCCCING CCC CCCCING CCCCING CCCCING CCC CCCCING CCCCING CCCING CCCING CCCING CCCING CCCCING CCCCING CCCCING CCCING CC	2 2 2 2 2 2 2 2 2 2 2 2 2 2
1820N		000 000 000 000 000 000 000 000
	DE SECTIGN PADO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CONCO CO	<ul> <li>M</li> /ul>

•

والمتواصف والمتعافية

90

ð

ALL DE

**6**0.00 P

** BLADE SECTION COORDINATES OF ROTOR NO. 2 IN THE TURBOMACHINE ORIENTATION **

SECTION 3 FOR XCUT OF 9.0000 IN.	Z Y Z Y (IN.) (IN.) (IN.)	-0.5455 -0.8230 -0.5207 -0.8367		-0.3607 -0.4671 -0.3120 0.4957			0.0471 0.2232 0.1060 0.1857	0.1561 0.3910 0.2100 0.3560 0.2470 0.5566 0.3141 0.5260	0.3594 0.6874 0.3975 0.6618		0.4440 0.0010 0.10010	-0.5328 -0.8293 0.5107 0.8724	SUCTION 6 FOR XCUT OF 7.8750 IN. Suction Surface Pressure Surface			-0.6265 -0.7714 -0.5947 -0.7924 -0.5353 -0.6852 -0.5353 -0.7132	-0.5038 -0.5658 -0.4515 -0.6026	-0.4177 -0.4312 -0.3551 -0.4765	-0.3055 -0.2658 -0.2557 -0.5172 0.3052 -0.1038 -0.1116 -0.1630		0.0599 0.2098 0.1352 0.1486	0.1903 0.5612 0.2542 0.5030 0.1946 0.5047 0.3834 0.4588	0 4344 0.6251 0.4828 0.5328	0.5323 0.7247 0.5697 0.6912	0.6030 0.7949 0.6010 0.700	-0.6100 -0.7810 0.6166 0.7809
9.375C IN.	SUKE SUKFACE	037 -0.8448	534 -0.7384 220 -0.6373	025 -0.4989		016 -0.1529 015 0 0201	982 0.1931	975 0.3660	7/0 U.2304	460 0.7956	969 C.8809	145 -0.8386 868 0.8871	F 8.2500 IN. Ssurf surface		N.) (IN.)	677 -0.8096	110 - 0.500	393 -0.4842	239 -0.3220	0.240 0.0013	250 0.1626		55/ U.464/ 521 0.6135	337 0.7261	919 0.8065	820 -0.7996 778 0.8169
DN 2 FOR XCUT DF	N SURFACE FRES Y (IN.) (IN	-0.8333 -0.50	-0.7427 -0.45	-0.4731 -0.30	-0.2953 -0.20	-0.1192 -0.10	0.2277 0.0	0.3983 0.1		0.8134 0.4	0.8943 0.4	-0.5	0N 5 FOR XCUT 01 N SUBFACE PRE-		(IN.) (I	-0.7912 -0.5	-0./039 -0.0	-0.4457 -0.3	-0.2767 -0.2	1.0- 20110	0.2137 0.1	0.3716 0.2	2.0 /925/0 v	0.7542 0.5	0.8287 0.5	-0.5
D IN. SECTI	Y SUCTIO Y Z IN.) (IN.)	8461 -0.5258		0.2/3 -0.3488 0.991 -0.3488	3255 -0.2555		0216 -0.0604 1950 D.D412	3681 0.1454	5407 0.2528	7975 0.4199	8826 0.4772	8403 8884	0 IN. SECTI		IN.) (IN.)	8242 -0.5973	7407 -0.5488	4 0 C 2 C - 0 . 3 9 6 5	3238 -0.2895	1574 -0.1782		3413 0.1787		7555 0.4987	8382 0.5648	8156 8470
XCUT OF 9.525	PRESSURE SUI Z (IN.) ()	-0.4989 -0.4	-0.4492 -0.	-0-2/2/0-	-0.2009 -0.	-0.1018 -0	0.0030 0.	0.1936 0.	0.2920 0.	0.4406 0.	0.4904 0	-0.5092 -0.	XCUT OF 8.625	. <b>FRESSURE SU</b>	(IN.) (	-0.5427 -0.	-0.4885 -0.	-0.4123 -0.	-0.2152 -0.	-0.1052 -0.		0.2252 0.	0.3355 0.	0.5008 0.	0.5557 0.	-0.5560 -0. 0.5428 0.
SECTION 1 FOR	SUCTION SURFACE Z (IN.)	-05199 -0.8354	-0.4777 -0.7444	-0.4[7] -0.6177 -0 2640 -0 6738	-0.2543 -0.2954	-0.1596 -0.1187	-0.0620 0.0562	0.1416 0.4000	0.2481 0.5683	0 3358 0.7006 2 4146 0.8147	5.4720 0.8951	TRCLE CENTER TRCLE CENTER	SECTION 4 FOR	SUCTION SURFACE	(IN.) (IN.)	-0.5700 -0.8063	-0.5233 -0.7195	-0.4563 -0.5965 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-0.2751 -0.2853	-0.1694 -0.1152	-0.0603 0.0527	0.1674 0.3816	0.2555 0.5425	0.3825 0.6694	0.5307 0.8570	IRCLE CENTER Ircle Center
FRACT	DF SURF.	000	0.05	0.12	07.0	0.40	0.50	0.70	0.80	0.88	1.00	1.E. C.C.	FRACT	SURF		0.00	0.05	0.12	02.0	0.40	0.50	02.0	0.8.0	80 ° 0	1.00	С С Ц Ц Ц

XX NOTIVIN	CTION 9 FOR XCUT OF 6.7500 IN. TION SURFACE PRESSURE SURFACE Z Y Z Y (IN.) (IN.) (IN.)	218         -0.6936         -0.6844         -0.7231           867         -0.4100         -0.513         -0.6511           8895         -0.43576         -0.4136         -0.5333           616         -0.5125         -0.5136         -0.5335           616         -0.5126         -0.5136         -0.5335           616         -0.2576         -0.4136         -0.2395           737         0.2265         0.1239         -0.1239           735         0.2265         0.1239         -0.1239           735         0.2265         0.1239         -0.1239	549 0.5264 0.5863 0.4545 575 0.5960 0.6953 0.5598 467 0.6428 0.7738 0.6000 -0.7783 0.600	CTION 12 FOR XCUT OF 5.6500 IN. TION SURFACE PRESSURE SURFACE 2 N.) (IN.) (IN.) (IN.) (IN.)	252     -0.5929     -0.7817     -0.6594       686     -0.5912     -0.7164     -0.5592       751     -0.5114     -0.5592       751     -0.51195     -0.5498       677     0.01195     -0.5498       927     0.01195     -0.1874       927     0.01129     -0.1874       927     0.11295     -0.1597       928     0.2814     0.1292       9348     0.2814     0.1592       912     0.2129     0.1692       935     0.2814     0.21592       934     0.2163     0.2223       935     0.9288     0.2223       937     0.9282     0.2223       937     0.9282     0.2223       937     0.9282     0.2223	-0.8017 -0.6090 0.9276 0.2487
ROMACHINE ORIE	S50 IN. SE SURFACE SUC Y (IN.) (I	0.7494 -0.7 0.6750 -0.6 0.67515 -0.5 0.45515 -0.5 0.2553 -0.2 0.2653 -0.2 0.2653 -0.2 0.2659 -0.2 0.2659 -0.2 0.2559 -0.2 0.200 -2 0.200 -0 0.200  -0 0.200 -0 0.200 -0 0.200 -0 0.200 -0 0.2000 -0 0.200	0.5045 0.5049 0.5049 0.546 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.4666 0.466 0.4666 0.466 0.466 0.466 0.466 0.466 0.466 0	DOD IN. SE Surface Suc Y (IN.) (I	5521 5523 5523 5523 5523 5523 5523 1551 1551	0.6427 0.4194
. 2 IN THE TUP	XCUT OF 7.12 PRESSURE 5 (IN.)		0.6700	XCUT OF 6 00 PRESSURE 9 (IN.)	0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.7667 -1
UINATES OF ROTCR ND	SECTION & FOR SUCTION SURFACE Z (IN.) (IN.)		0.4982 0.6118 0.6118 0.6744 0.6744 0.70495 0.70495	SECTION 11 FOR Suction Surface Z (IN.) (IN.)	-0.7890 -0.6272 -0.7890 -0.55435 -0.7521 -0.55435 -0.5472 -0.36496 -0.24728 -0.36496 -0.26478 -0.2568 -0.0378 -0.0358 -0.0378 -0.29769 -0.7178 0.29769 0.7178 0.29769 0.27178 0.4134 0.8678 0.41348 0.8678 0.41348 0.8678 0.41348 0.4688	
CTTON CEORI	.5000 IN E Supface Y (IN.)			.3750 IN. E SURFACE Y (IN.)	111111 0000000000000 0000000000000 00000000	-0.6760 0.5387
* BLADE SE	XCUT OF 7 PRESSUR 2 (IN.)	00000000000000000000000000000000000000	0.5158 0.5158 0.6755 0.5393 0.5393	XCUT OF 6 PRESSUR 2 (1N.)	 	-0.7339 0.8131
,	DN 7 FOR 4 SURFACE (IN.)		0.5977 0.5898 0.7542 FFR	04 10 FOR 4 Surface 7 111.)		55
	SECTION SUCTION	-0.6570 -0.6570 -0.60570 -0.60570 -0.4003 -0.1795 -0.1795 -0.1795 -0.1795 -0.1795 -0.1795 -0.2028	0.465 0.4645 0.4645 0.6645 0.6462 2.1RCLE CEN1	SUCTION SUCTION (IN.)		LIRCLE CENT
	EPACI DE SUPE		000	ERACT DF SUPF.	8888888888888888 8876939988888 899988888888 899988888888888 8999888888	ריים הייש ייים

٠

•

92

Ŕ

.....

# ** BLADE SECTION COORDIMATES OF ROTOR NO. 2 IN THE TURBOMACHINE ORIENTATION **

.4269 IN. E surface Y (IN.)	COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	-0.5863 0.0992
XCUT OF 5 PRESSUR 22	00000000000000000000000000000000000000	-0.8278 0.9640
N 15 FOR Surface (IN.)	-0.5699 -0.5559 -0.05856 -0.05856 -0.0592 -0.0592 -0.0592 -0.25835 0.27455 0.27455 0.1307 0.1307	
SECTION SUCTION CIN.)	44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 44444 444444 444444 444444 44444 444444 444444 444444 4444444 4	
5.2250 IN. Re surface Y (IM.)		-0.5649 -0.0692
XCUT DF		-0.8547 0.9969
N 14 FOR Surface (14.)	-0.5485 -0.5485 -0.54575 -0.05978 -0.05978 0.1581 0.2552 0.12568 0.12568 0.1380 0.0591	
SECTION SUCTION (IN.)	- 0.38801 - 0.38801 - 0.88255 - 0.88255 - 0.65062 - 0.65062 - 0.2070 - 0.2070 - 0.2070 - 0.2070 - 0.2070 - 0.2070 - 1.0198	
4500 IN E Surface Y (IN.)	V 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.5887 0.1164
XCUT DF 5 PRESSUR 2 (IN.)		-0.8249 0.9602
4 13 FOR Surface (IN.)	-0.5723 -0.5723 -0.5366 -0.2366 -0.2366 0.25697 0.2595 0.2595 0.2595 0.2595 0.2595 0.2595 0.2595 0.2595 0.2595 0.2595 0.2595 0.2595 0.2595 0.2595 0.2595 0.2595 0.2595 0.2575 0.2575 0.2575 0.2575 0.2575 0.2575 0.2575 0.2575 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.2555 0.25550 0.25550 0.25550 0.25550 0.25550 0.255500 0.25550000000000	er er
SECTION SUCTION Z CIN.)	00000000000000000000000000000000000000	CIRCLE CENTE Circle Cente
FRACT OF SURF.	00000000000000000000000000000000000000	

93

4

.

## MM BLADE SECTION PROPERTIES OF STATOR ND. I FOLLOWING ROTOR NO. 2 MM

		INN	MBER OF	BLADES	- 42.0		AX1AL	LDCATION	UK NU. 1 DF STACK	-DLLUWING	KUIUK NU. Z In compressor	** = 12.700	IN.	
BLADE NG.	SECTIO RAD LOC	Ζ	COORD.	G POINT Inates H	SECTI SETTI ANGU	C NGN NGN	BLADE .G. COD	SECTION RDINATES H	SECTION	MOMENT THR IMIN	S DF INERTIA DUGH C.G. IMAY	IMAX SETTING ANGLE	SECTION TOTSTON CONSTANT	SECTION THIST
I	CIN.	0e ~r	IN.) 8766	(IN.) 1 1693	CDEG.	0	1N.)	(IN.)	(IN.)**2	*( .NI)	5**( NI ) **	(DEG.)	5**( NI)	9**( 'NI)
~~~	0.02		.8765	0.1506	11.37	201	8765	0.1506	0.28626	0.00061	37 0.036748	11.372	0.0008044	0.0074988
1 • •	7.82		8764	0.1456	13.39		8764	0.1455	0.1/770	0.00050	63 0.034693 30 0.032800	12.514	0.0005081	0.0070623 0.0066661
SEC	I NOIL	0. 1 0	NIGACOC	ATES	SECTION	NO. 2	COORDI	NATES	SECTION N	10. 3 CO(ORDINATES	SECTION	40. 4 COOR	DINATES
:	۔ ڊ ب	4	Ĩ			Ŧ		HS	: :	Ч¥	НS		НР	HS
2 9	0000	0 0763			1.4.1			N N	(IN.)	(IN.)	(IN.)	(IN.)	(IN.)	(IN.)
6	0116			156	0.0117			0424		0020.0	0120.0		0.0186	0.0186
Ö	0332	0.0015		***	0.0293	0.00	*** 01	****	0.0264	0.0008	*****	0.0240	* * * * * * * * * * * * * * * * * * * *	
	0200	0.0076	000	187	0.0500	00.00	73 0.	0625	0.3500	0.0077	0.0588	0.0500	0.0085	0.0557
- c			2.0		0.001.0	0.02	13	0877	0.1000	0.0214	0.0828	0.1000	0.0226	0.0798
òe	0000				0.000			1011	0.1500	0.0343	0.1050	0.1500	0.0357	0.1022
0	2500	0.0700	0.16		0.2500			1.1.1	0.2500	0.0400	652T.0	0.2000	0.0480	0.1228
0	3000	0.0827	0 18	115	0.3000	0.0		1091		20.00	2667.0	0002.0	2640.0	1141/0
ò	3500	0.0943	0.20	153	0.3500	0.080		1852	0.3500	0.0768	0 1769		0 0 0 0 0	2921 0
0	4000	0.1048	0.22	16	0.4000	0.038	39 D .	1997	0.4000	0.0852	0.1910	0.4000	0.0878	0.18.9
	4 5 0 0	1911.0	50	57	0.4500	0.036	59 0.	2127	0.4500	0.0928	0.2036	0.4500	0.0956	0.2015
	2000	2777.0		10	0.5000	0.0	66	2242	0.5000	0.0995	0.2147	0.5000	0.1025	9.2128
èe	2000	0 1354							0055.0	0.1054	0.2244	0.5500	0.1085	0.2225
	6500	0.1411	0.27		0.6500			1070		5077-0	0.2526	0.6000	0.1136	0.2309
0	7000	0.1452	0.28	26	0.7000	0.12	23	2554	0.1000	0.1180	0.2450	0.000	9161 0	8/57.0
0	7500	0.1483	0.28	22	0.7500	0.125	6.0	2596	0.7500	0.1205	0.2491	0.7500	0,1260	0.2475
		0.1504	62.0	50	0.8000	0.127	. 0	2624	0.8000	0.1222	0.2518	0.8000	0.1257	0.2503
		9101.0 9151.0	0.0		0.8500	0.128	26	2639	0.8500	0.1230	0.2532	0.8500	0.1266	0.2517
	9500	0 1505		50		0.1.0		PC03	00000	1221 0	0.2533	0.9000	0.1266	0.2517
-	0000	0.1485	0.28	74	1.0000	0.126	0	598	1.0000	0 1206	1202.0		1242	4052.0
-i-	0200	0.1454	0.28	29	1.0500	0.123	14 O.	2556	1.0500	0.1182	0.2453	1.0500	0.1217	0.2437
			2.0	00	1.1000	0.1.0	0	501	1.1000	0.1149	0.2399	1.1000	0.1183	0.2383
		1111 0	0 U V D C	14			0	101	1.1500	0.1107	0.2331	1.1500	0.1141	0.2315
-	200	0.1229			1.2500	0 104			1.2500		2222	1 25000	0601.0	0.2235
-	0000	0.1146	0.23	64	1.3000	0.097		134	1.3000	0.0933	0.2044	1.3000	1001.0	9012.0
	3500	0.1053	0.22	22	1.3500	0.089	14 D.	2005	1.3500	0.0858	0.1919	1.3500	0.0886	0.1900
-		8960.0			1.4000	0.080	9	861	1.4000	0.0774	0.1779	1.4000	0.0800	0.1759
	2000	0.0707			10002			701	1.4500	0.0682	0.1624	1.4500	0.0706	0.1603
	5500	0.0570	- 14	36	1.5500	0.043	20	111	1.5500	0,0000	0.1400	1.5500	0.0602	0.1430
1 .	000	0.0420	0.12	38	1.6000	0.036	2	120	1.6000	0.0351	0.1042		0 0 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1	71036
-	500	0.0260	60.09	82	1.6500	0.022	0.0	891	1.6500	0.0223	0.084]	1.6500	0.0236	
	000	0.0087	0.07	50	1.7000	0,008	0	644	1.7000	0.0056	9.0602	1.7000	0.0095	0.0571
	267	0.0015			1.7239	100.0-			1 7500	-9.0062	L.0341	1.7500	-0.0057	0.0307
-	613 ×	*****	0.04	55	1.7414	******		201	1.1601	0		1.1292	0.0005 F	*****
1	1529	0.0246	0 02	4 5	1.7531	0.022	6 0.0	226	1.7539	0.0205	0.0205	1.7530	0.0184	0184

.

;

٠.

94

** BLADE SECTION PROFERTIES OF STATOR ND. I FOLLOWING ROTOR ND. 2 *4

= 12.700 IN. FMAX SECTION SECTION FITANG TORSION TWIST ANGLE CONSTANT STIFFNESS ANGLE CONSTANT STIFFNESS FITANG TORSION ANGLE CONSTANT STIFFNESS FITANG ANGLE CONSTANT STIFFNESS FITANG ANGLE CONSTANT STIFFNESS FITANG ANGLE CONSTANT STIFFNESS ANGLE CONSTANT FITANG ANGLE CONSTANT FITANG ANGLE CONSTANT FITANG ANGLE CONSTANT ANGLE CONSTANT FITANG FITANG ANGLE CONSTANT FITANG ANGLE CONSTANT FITANG	SECTION .J. & COORDINATES L N. J. HP CORDINATES C HP C HS C HT
TACKING LINE IN COMPRESSOR TACKING LINE IN COMPRESSOR EA IMIN OF IN COMPRESSOR IMIN J**4 (IN.)**4 J**2 (IN.)**4 (IN.)**4 515 0.0004835 0.029975 4227 0.0005485 0.0229777	IDM NG. 7 COORDINATES ITM 7 COORDINATES ************************************
AXIAL LOCATION OF 5 AXIAL LOCATION OF 5 BLADE SECTION SEC C.G. COORDINATES AR (IN.) (IN.) (IN.) (IN.) (IN.) 0.8763 0.1559 0.1 0.8763 0.1559 0.1 0.8763 0.1519 0.1	6 C C C C C C C C C C C C C C C C C C C
LADES = 42.0 POINT SECTION ATES SETTING TH, 00EG.) 0.1599 14.373 0.1579 15.246 0.1779 15.246 0.1779 15.252	
NUMBER OF E CIION STACKING FRAD. COORDIN LOC. (IN.) (IN.) (IN.) 5.350 0.8764 6.375 0.8763 5.975 0.8763	NN NO NO NO NO NO NO NO NO NO NO
BLADE SE No. 8 3	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $

 $\langle - \gamma \rangle$

j

** BLADE SECTION PROPERTIES OF STATOR NO. 1 FOLLOWING ROTOR NO. 2

. 7	SECTION SECTION CONSIDN THIST CONSIDN THIST CONSIDN STIFNESS CONSIGN (IN.)**6 CON3564 0.0055240 .0003080 0.0079996	
= 12.700 II	IMAX SETTING ANGLE (DEG.) 18.147 9.568 0	
NE IN COMPRESSOR	IENTS OF INERTIA Through C.G. In Max 1.7**4 (IN.7**4 03286 0.027007 07835 0.039064	
ING LI	NUN CO	
OF STACK	SECTION AREA (IN.)**2 0.14159 0.195359	
IAL LOCATION	DE SECTION COORDINATES H (IN.) 5 0.12290 5 0.1678	RDINA RDINA RDINA RNA RNA RNA RNA RNA RNA RNA R
AX	C.G. C.G. C.L. C.N.) 0.876	• TH 0 • C • C • C • C • C • C • C • C • C •
42.0	SECTION SETTING Ancle (Deg.) 17.824 9.569	S E C 1 I C 1 C 1
BER OF BLADES	514CKING POINT COORDINATES L (1) (1N.) (8765 0.2290 .8765 0.1678	CODDING C C C C C C C C C C C C C C C C C C C
1 N	¥	 A a z z z a k n k k z z z z z k z b k k z k k k k z k k k k z k k k z k z
	BLADE SECTIO Rad No. 10 10 10 9 5.80 10 9.29	RECTION RECTIO

2

TURBOMACHINE ORIENTATION **	SECTION 3 FOR YOUT OF 3 2000 TH SUCTION SUPFLOE PRESSION CONTRACT CIN.) CIN.) CIN.) CIN.	- 0.8220 - 6.2909 - 0.3993 - 0.324 - 0.7522 - 0.2344 - 9.3724 - 1.244 - 0.5144 - 0.5144 - 1.244				TO THE REPORT OF	SUCTION SURFACE PRESSURE SUFFACE Z. C.			
2 IN THE	1258 14. Surface (14.)	-0.3157 -9.2738	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8.8237 8.8237 9.8284	0.0428	SURFACE	-8.3566 -6.3356 -8.2525 -8.1985		8,8728 8,0718 9,9675 9,9676 19,0842 19,0842
5 80158 ND.	COT OF 8.4 PRESSURE 2 2 4 3	1100 1100 100 100 100 100 100 100 100 1	1 1 1 1 1	14000 141140 1000 1000 1000 1000 1000 1	10000 1000000	0.8625	KOUT GF / /	1	- - - - - - - - - - - - - - - - - - -	8.48 8.47 9.47 8.58 9.49 8.59 9.49 8.69 8.69 8.69 8.69 8.69 8.69 8.69 8.6
I FOLLOWIN		1 1 1	(* ** 4 (* *) 4) 4 (* * *) 4) 4 (* * * *) 4 (*) 4 (*) 4 (*) 1 - 1		6 6 6 7 1 6 6 1 6 7 1 6 7 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6		0.4 5 F0 4 50 F1 4 50 F1 4 6 7 4 6 1 4 1 6 1 7 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5			
CH ACINI	4 4 40 4 4 40 4 1 4 4 1 4 1 4 4 1 4 1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	(*** + 1 *** 4* (*) +# +4* 4* 4* ** 4* ** 4* ** ** ** *	4 6 7 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	N M N C N M M N M M N M N M N N M N M		20011 2010 2011 2012 2012 2012	1211 00000 01/000 01/000 01/000 01/000	2000-000-000-00 2000-00 2000-000-	1000 1000 1000 1000 1000 1000 1000 100
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		6 69 69 6 69 69 69 69 6 69 69 69 69 6 69 69 69 69 69 69 69 69 69 69 69 69 69		. ए के दें। ए बाह्य के दें। ए देखें के दें। देखें के दें। 1 - 1	829 828 829 829 829 829 829 829 829 829	6282 0- 1000 0-	8253 18. 0.99168 18.0 18.0			
10000 NO1	CJT 05 9.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-5 3156 0.8561	CCUT OF 7 PRE55091 CIM. J	54015 540000000000		
	LAUE SCOT LEFERE SURFACE	-8.2655 -8.2655	- 6 336 8362 8262	00000 00000 000000 000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	asa⊛ ⊒uuu	N . FOR J SURFACE 7 CIM.)		- - - - - - - - - - - - - - - - - - -	
	SECTION SECTION	- 8 325 - 8 325			たい 2-2 (P 2 (4) (R) (P) 2 (4) (R) (P) 2 (4) (R) 2 (4) (R) (R) 2 (4) (R) (R) (R) 2 (4) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R	CIPCLE CENT	SUCTION SUCTION Z	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 - 1 - 1 - 1 - 1 - 1 - 1	9.5131 9.5567 9.6562 9.8590 0.7622 0.8590 0.8590 0.8590 0.8590 0.8590 0.8590 0.8590 0.8590 0.8590 0.5121 0.5121 0.5121 0.5121 0.5121 0.5121 0.5121 0.5151 0.5151 0.5151 0.5151 0.5151 0.5151 0.5567 0.5577 0.5577 0.5577 0.55770 0.55770 0.55770 0.557700 0.55770000000000
	505 CT	63 6 63 6 68 6	0000 0000	000000 141105	0 10 10 10 0 10 10 10 0 10 10 10	ม่ม มหา	100 100 100 100 100 100 100 100	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.000

e de la canada

TABLE III. - Concluded,

** BLADE SECTION COORDINATES OF STATOR NO. I FOLLOWING ROTOR NO. 2 IN THE TURBOMACHIME

CURBOMACHINE ORIENTATION ##	SECTION 9 FOR XCUT OF 5.2000 IN. Suction Surface Pressure Surface Z (N.) (IN.) (IN.) (IN.)		-0.7576 -0.4731 0.8916 0.4568			
STATOR ND. 1 FOLLOWING ROTOR NO. 2 IN THE I	SECTION & FOR XCUT OF 5.900 IN. Suction Surface Pressure Surface (IN.) (IN.) (IN.) (IN.)	-0.7730 -0.4490 -0.7561 -0.4624 -0.7185 -0.5733 -0.4925 -0.4624 -0.5265 -0.1682 -0.4925 -0.13176 -0.5766 -0.16825 -0.4905 -0.5766 -0.16735 -0.5335 -0.1344 -0.21465 -0.1575 -0.2345 -0.2346 -0.1775 0.16405 -0.1751 -0.0578 0.1465 0.1775 0.1656 0.0578 0.1465 0.1775 0.5265 0.05958 0.5264 0.1775 0.5265 0.05958 0.5264 0.1775 0.5265 0.05958 0.5764 0.1775 0.5265 0.05958	-0.7640 -0.4550 0.8874 0.0657			
** BLADE SECTION COURDINATES OF	T. SECTION 7 FOR XCUT OF 6.3750 IN Suction Sufface Pressure Sufface (IN.) (IN.) (IN.) (IN.)	-0.7941 -0.3861 -0.7747 -0.4044 -0.5380 -0.23193 -0.7747 -0.4044 -0.5380 -0.23193 -0.7064 -0.2525 -0.52859 -0.2785 -0.2525 -0.22035 -0.1403 -0.1288 -0.22035 -0.1402 -0.1274 -0.1297 -0.2035 -0.1441 -0.1274 -0.1397 -0.2035 -0.1445 -0.1774 -0.0369 0.1317 -0.1252 -0.3451 0.0859 0.5158 -11652 0.5517 0.0859 0.5158 0.11959 0.6617 0.0863 0.7853 0.1247 0.7851 0.0843	CIRCLE CENTER -0.7845 -0.3945 CIRCLE CENTER 0.8743 0.0888 Section 10 FOR XCUT OF 9.2990 IN	SUCTION SURFACE PRESSURE SURFACE (IN.) (IN.) (IN.) (IN.) - A 3156 - A 2555	-0.1525 -0.1564 -0.1265 -0.1365 -0.5589 -0.1319 -0.5205 -0.2651 -0.5589 -0.1319 -0.5205 -0.2651 -0.5577 -0.0519 -0.5205 -0.2651 -0.1577 0.0210 -0.1214 -0.0585 -0.1202 0.1205 0.1215 -0.0178 0.1525 0.1410 0.1455 0.01156 0.2525 0.1213 0.5175 0.01155	0.6658 0.0913 0.6550 0.0948 0.7879 0.0548 0.7746 0.0098 0.8732 0.0230 0.7596 -0.0235 0.8752 0.0235 -0.0235 circle center -0.8163 -0.2829 circle center 0.8664 0.0003
	FRAC OF SURF	000000000000 00-000000000 000000000000	T.E.	OF SURF.		а 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ŧ

.

98

-.

Ì

IDFFAROW	Cente	rline	Thick	iness	Cente	ertine	Thie	kness
	s ₁	s.2	8 _{m, 1}	⁸ m, 2	s ₁	8.2	⁸ m, 1	8 _{m, 2}
		Orig	ìn			Range (all positive S	
-4	Leading edge	Trailing edge	Maximum thickness	Maximum thickness	0 to S ₁ /c	0 to S ₂ /c	0 to S _{m, 1} 'c	0 to S _{m, 2} /c
ť-	Transition point	Trailing edge						
-2	Leading edge	Transition point						
-1 or <-+	Transition point	'Transition point						
1 or >4	Transition point	T ransition point	Maximum thickness	Maximum thickness	0 to 1.0	0 to 1.0	0 to 1.0	0 to 1,0
2	L eading edge	Transition point						
3	Transition point	Frailing edge						
i	Leading edge	Traiting edge						

A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF

TABLE IV. - SUMMARY OF IDEE (TROW) IN PUT OPTIONS

2

TABLE V. - CHARACTERISTICS OF EMPIRICAL

ADDITIVE TERM AND ITS EFFECTS

ON DENOMINATOR

Mach number in meridional plane, M _m	M ² m	M ² _m - 1	Additive factor	L ni- , `or
0,50	0,25	0.75	0.0001	0,7501
.70	. 49	.51	.0006	.5106
. 80	.64	, 36	.0027	. 3627
. 90	.81	.19	.0150	, 2050
. 95	. 9025	.0975	.0377	.1352
. 97	. 9409	.0591	.0554	.1145
, 99	. 9801	.0199	.0820	.1019
1.00	1.00	,0000	. 1000	. 1000

TABLE VI - SU UMARY OF COLEFICIENTS FOR POLYNOMIAL R_o/r as a function of s

Starra

. . . .

A.

* .

. ----!

MAR 11 1982