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INTRODUCTION

In recent years a growing interest has developed in incoherent optical processing
(ref. 1). As the invention of the laser was an important force in coherent optics,
the advent of fast and very compact solid state light sources is a major force be-
hind this interest.

Incoherent optical processing has indeed several appealing characteristics,
namely higher immunity to optical noise and reduced dynamic range requirements than
coherent processing as well as an inherent versatility of input format (serial or
parallel).

A very fast fully parallel incoherent optical multiplier was developed at Stan-—
ford (refs. 2 and 3) and this device has been shown to be capable of performing com—
plex-valued arithmetic on vector formatted data arriving in parallel to the processor
inputs.

There is a considerable number of applications for processors of this sort how-
ever there is a need to extend their capability for two~dimensional parallel data.
Indeed one can understand the interest in speeding real time processing capabili-
ties in the context of reconnaissance sensors, two-dimensilonal beamforming, etc.

This work addresses the latter case. We propose an extension of the concepts
developed earlier to the new generation of matrix-matrix multipliers using incoher-
ent light. This new technology has the potential of addressing problems involving
two-dimensional mathematical transforms, two-dimensional pattern recognition, and
high-speed processing of synthetic aperture radar data among others.

SYSTEM ARCHITECTURE

Let us then consider the matrix multiplication

L= A8, (1)
whereLéJis an M x K matrix, and B ,and C are K x N and M x N matrices respectively.

The element cp, in the m-th row and n-th column is given in terms of the ele-
ments g of A and by, of B by
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A matrix can, of course, be viewed as an ordered collection of column vectors.

71


https://core.ac.uk/display/42858049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

If we define 0 0 . .. bOn .+ .0
o o0 ... b1n .
N-1 . . .
B, = Z Bn wvhere Bn = . . . (3a)
(S —
n=0 . . .
_O « . . bK—l,n . e . 0_
and
r -
o 0 ... COn .. . 0
< e o .
N-1 . . .
C,= EB where EE = . . . (3b)
n=0 . . .
_Q . e CMFl,n . . . O_

the matrix product C = A B becomes the sum of N matrices C, whose only non-zero
elements are in its n-th column. In consequence, the matrix product C ,can be seen
as an ordered collection of column vectors each of which is the product of A by the
corresponding column vector of B, A matrix-matrix multiplication can then be ex-
pressed as a series of matrix-vector multiplications. The technology developed for
the incoherent optical matrix-vector multiplier (ref. 2) can then be extended to
this new application.

The concept here is to combine N matrix-vector multipliers in a single proces~-
sor. The physical realization of this architecture is depicted in Figure 1.

The.elements of matrix éﬁ are entered as irradiance values of a two-
dimensional incoherent array that may be realized using narrow-band light-emitting
diodes (LED), laser diodes, or even an array of polished optical fiber ends. The
elements of matrix A, are encoded as transmission values of an optical transparency
or as reflected values of an optically reflective device. 1In either case, its im-
plementation can be fixed in time (e.g., a film transparency) or it can vary with
time (e.g., a real time optical modulator).

The first block of optics (figure 1) images horizontally the input array B, onto
the optical mask A and spreads vertically the light of each light source along the
corresponding vertical column. Figure 2 illustrates the illumination produced by
the central column of a 3 x 3 input matrix on a 3 x 3 mask. The light transmitted
through the mask encodes all the possible inner products of the column vectors of
the input matrix by all the row vectors of the stored matrix.

The second block of optics (figure 1) integrates these inmer products and
focuses the light on the proper output array locations -- imaging vertically and
focusing horizontally onto the vertical column corresponding to the particular

“At this stage, we assume that the elements of A, and B,are real and non-
negative. Later, we will remove this restriction.
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horizontal row at the input. This is a demanding operation that can be more clearly
visualized in the case of a 3 x 3 matrix. We illustrate in figure 3 how we obtain
the outputs (1, 1) and (3, 2). The output (3, 2) can readily be seen as the inner
product of the 3-rd row of matrix A and the 2-nd column of matrix B, as would be
expected. Finally, figure 4 shows the light path through a particular cell in the
stored mask. The element ay, (the central element in this example) maps the ele-
ments of the k-th row of input B ,onto the elements of the m-th row of output,C,

OPTICAL IMPLEMENTATION

The optics block labeled "Optics I" in figure 1 has the same requirements as the
mask illumination of the incoherent optical matrix-vector multiplier (ref. 3). 1In
the latter case, a discrete set of classical discrete optical elements in one ver-
sion and an array of multimode planar waveguides in another version were used. In
the present case, a very similar form of the classical discrete optical components
approach mentioned could certainly be used.

The second block of optics —- Optics II -- has more demanding requirements. In
effect, it must steer the light transmitted by each cell in the stored mask to all
N elements in the corresponding row of the output detector array (figure 4). Holo-
graphic optical elements can be used as the steering beam devices in this type of
processor. An example of the application of this technology was shown by S. Case
and his co-workers in the paper '"Multifacet Holographic Optical Elements," presented
at the Optical Society of America Annual Meeting in October 1980 (Abstract in
J.0.8.A., 12, 1980).

In this context, we suggest the geometry depicted in figure 5 where each narrow-
band light source and each cell of the stored mask are located behind a holographic
optical element (HOE). This is a well established technology with the potential
for a highly efficient light management.

COMPLEX-VALUED ARITHMETIC

It is, of course, important for a processor to have the capability to perform
complex-valued operations. The incoherent optical processor we report here manip-
ulates light intensities which are real-valued and non-negative in nature. Methods
for encoding complex numbers similar to those used in the incoherent optical ma-
trix-vector multiplier (ref. 4) can be applied here.

The complex-valued arithmetic capability built in this processor is an immediate
extension of the schemes utilized before, and for completeness, we will briefly
elaborate two possible methods.

A. Three Vector Decomposition

Each complex quantity is decomposed uniquely along the three phasors l.exp [30],
l-exp [J27/3] and 1l-exp [j4n/3]. There is more than one way to perform this decom-—
position (ref. 4, Appendix A) but we do not need to dwell on it here.
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The three matrices can be decomposed according to

j 2n j 4n
: 30 3 3
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B,= B, e” + B_ e + B, e (4)
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where the elements of the different matrix components are all real-valued non-
negative quantities.

The matrix-matrix multiplication C,= A B can now be expressed in terms of these
quantities as

C A A A B

9 OB R ¥ I

C = A A A B (5)
! T N I

C A A A B

2] L2 & b |

from which the output complex-valued matrix C,can be obtained after the proper re-
combination of its real valued and non-negative components Cgp, Cj and Co.
L= ;3 M

The processor's configuration is shown in figure 6,where we have omitted the
optics. The size of the input and output arrays increases by a factor of 3 and the

stored mask by a factor of 9.

B. Biased Real and Imaginary Parts Decomposition

Another encoding scheme decomposes each complex quantity into its real and
imaginary parts and adds to these a bias term.

A ,and B can then be decomposed into their real and imaginary parts.

A= A+ 3A

AR
= _‘_I’ (6)
By= By + iBy
and we can express C as
R e I -}
_ (7
2 IR

Assuming known the dynamic range of the elements of the real and imaginary parts
of A and B, we assign a bias matrix Eé to matrix A and a bias matrix EB to matrix B.
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These bias matrices have constant elements. All elements in the same column are
identical, but they can vary from column to colummn.

If now we configure the system as it is shown in figure 7, the detected outputs
EB and EL are given by

Eé}= A BR - éLEl:+ {éﬁﬁ&,— AIBB]

() o
C! = AB A_B A_B A_B
e J3+AL+[J&+&&]

+f’ﬁ[f§+f§+ﬁ+fﬁ] (8b)

The real and imaginary parts Cp and Cy of the product C,(given by equation
(4)) can be obtained from equations (8a) and (8b)

o]

,
SR R I R R R oo
B B

+ + B (9b)

C.=¢C! -1A B, +A_B - B, |B, +
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In each equation, the first bracket is known a priori and it can be electron-

ically represented by a fixed voltage. The second bracket can be measured, adding

an extra transparent row to the stored mask. Hence, with proper and straightforward

post—-detection electronics, one obtains the desired product real and imaginary

parts.

SYSTEM PERFORMANCE ESTIMATE

At this stage of the system development, we address ourselves only to the major
performance parameter —— the data throughput.

We can reasonably postulate that it will be feasible to build matrix-matrix mul-
tipliers with complex-valued matrices with sizes larger than 100 x 100. Without
being overly optimistic, we can envision the electronics side of such processors
being driven at clock rates greater than 100 MHz. This implies data throughput
rates exceeding 1012 complex-valued samples per second. This 1s at least two
degrees of magnitude higher than throughput rates obtained with matrix-vector
multipliers.

APPLICATIONS

The parallel processing character of this processor is an essential feature that
is extremely useful when a large number of input channels are present
simultaneously.

A large number of problems dealing with matrix multiplication can be implemented
with this processor. We may refer problems involving Fourier transforms (beam
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nulling, beamforming), image processing problems (pattern recognition, filtering),
and signal identification (signature reconnaissance), to name just a few.

In this work, we will single out two fundamental mathematical applications that
may be implemented using this technique.

A. Two-Dimensional Transforms

Let us consider a two-dimensional array i(k, 1) assuming values in the rectangu-
lar range k =0, 1, . . ., N~-1, 1 =0.1, . . ., N- 1. A two-dimensional trans-
form over this array produces a second array o(m, n) given by

N-1 M-1
o(m, n) = Z Z t(m, n, k, 1) i(k, 1) (10)
k=0 1=0
m=0,1, . . ., N-1
n=0,1, . . ., M- 1

where t{m, n, k, 1) is the transform kernel.
We assume the kernel t(m, n, k, 1) is separable
t(m, n, k, 1) = v(m, k) h(n, 1). (11)
We can then express o(m, n) as

N-1 M-1
olm, n) = Z Z v(m, k) h(n, 1) ik, 1) (12)
k=0 1=0

and factorizing h{(n, 1) and performing first the sum over k, we obtain

N-1 N-1
o{m, n) = Z h(n, I)Z v(m, k)i(k, 1) (13)
1=0 k=0

The sum over k is a matrix product (see equation (2)) producing the intermediate
result

N-1
s(m, 1) = E: v(m, k)i(k, 1) (14)
k=0

which can be written in matrix notation
S VL (15)

where I,is the input matrix, V,is the transform kernel matrix along the columns and
.S,is the intermediate matrix. The output can then be expressed as
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M-1
olm, n) = E: h{n, 1)8(m, 1) (16)
1=0

or in matrix notation

o fo @ (17)

whereLEJis the transform kernel matrix along the rows and O is the output matrix.

Equation (17) shows that two matrix multiplications in sequence can implement a
‘two-dimensional transform (as given by equation (10)) when the transform kernel is
separable.

The immediate application that comes to mind is the two-dimensional discrete
Fourier transform (DFT). The discrete Fourier transform kernel is given by

t(m, n, k, 1) = exp -j ZW;R exp -J Zwﬁl (18)
v(m, k) = exp -] Zﬂgk (19a)
h(n, 1) = exp -j 2L (19b)

Figure 8 illustrates a basic configuration for a two-dimensional DFT implemented
with two matrix-matrix multipliers.

B. Iterative Processing

Another significant application of incoherent optical matrix-matrix multipliers
is in the area of iterative processing. Figure 9 shows a basic configuration.

There are several possible uses for iterative techniques. Important examples
are the phase retrieval problem related to imaging through turbulence (ref. 5)
and the implementation of some numerical methods for matrix inversion.

This work was performed under an ERIM internal research program.
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Figure 1.- Basic block form of the incoherent optical matrix-matrix multiplier.

Figure 2.- Example of B, to A illumination. For simplicity sake we will refer
to matrix A, as the stored mask, though it may be variable with time.
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Figure 3.- Example of A to C illumination.
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Figure 4.~ Example of light path through an individual cell in the stored mask.
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Figure 5.- Matrix-matrix multiplier.

Figure 6.~ Three~vector decomposition configuration.
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Figure 7.- Biased real and imaginary parts decomposition configuration.
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Figure 8.- 2D-FFT.
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Figure 9.- Iterative processor.



