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SUMMARY

A proposed optical vector-matrix multiplication scheme encodes the matrix
elements as a holographic mask consisting of linear diffraction gratings. The
binary, chrome-on-glass masks are fabricated by e-beam lithography. This
approach results in a fairly simple optical system that promises both large
numerical range and high accuracy. A simple holographic mask has been
fabricated and tested.

INTRODUCTION

There has recently been considerable interest in optical computing since
it offers very high computation throughput rates for mathematical operations
amenable to parallel computation. One class of such operations, vector-matrix
multiplication, can be used for performing discrete Fourier transforms,
coordinate transformations, pattern classification, and many other
computations. The general vector-matrix multiplication may be written as:

Yn = i Hmn Xp o (m=1,2,...M)

One optical approach to performing this computation uses N light sources
to represent the components x, of the input vector, M detectors to represent
the components yp, of the output vector, and suitable optics to assure that a
fraction Hpn of the light from source xp gets to each detector yp. The
problem can be suitably scaled so that all parameters fall within acceptable
positive ranges. Optics to perform the function of the matrix H generally
will be fixed, while the sources are modulated to represent various input
vectors x,

In principle, the performance of this optical computer is dependent on a
number of considerations involving the opties, detectors and sources. In
practice, numerical range and accuracy will usually be limited by matrix
element imperfections, while speed will be limited by the amount of light
reaching the detectors. For this reason, our work has focused on efficient
optics to precisely distribute light among the various detectors,

In most schemes for optical vector-matrix multiplication, the matrix is
encoded as a rectangular array of apertures or gray tones in a mask. This
approach, represented in Figure 1, encounters several limitations. A complex
optical system is required in order to illuminate and receive light from
specific columns and rows of the matrix mask. Much light is discarded in
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providing uniform illumination to the mask, with the mask passing only about
half of what remains. Numerical range and accuracy are limited by the
space-bandwidth product of the mask (generally less than 10° with conventional
plotting techniques). Small matrix elements result in small apertures with
low relative accuracies. If results differ from those intended, it is
generally difficult to modify a mask except by starting anew.

PCGH CONFIGURATION

Our approach to optical vector-matrix multiplication is based upon an
e-beam generated diffractive mask which we call a partitioned computer
generated hologram (PCGH) (see Figure 2). Each of N PCGHs is illuminated by
collimated light from a single element of the source array and thus represents
one column of the NxM matrix mask depicted in Figure 1. Each PCGH is
partitioned into M linear gratings which diffract light to the M detectors.
The optical power diffracted by a particular grating is made proportional to
the value of the required matrix element.

Figure 3 illustrates a PCGH intended to produce 10 equal intensity outputs
when uniformly illuminated. This PCGH contains 10 equal area gratings, each
with its own spatial frequency. Facets are arranged symmetrically about the
center to provide immunity to beam wander.

The PCGHs are fabricated as binary chrome-on-glass holograms where the
pattern is delineated via e-beam lithography. A glass plate is first coated
with a layer of chrome and a layer of e-beam resist. A pattern is exposed in
the resist by e-beam direct writing and the resist is developed. The
developed resist then serves as a mask for etching the pattern into the
chrome.

Qur e-beam PCGH optical vector-matrix multipliction scheme has several
advantages over the scheme in Figure 1. E-beam lithography offers a higher
space-bandwidth product, which can translate into greater numerical accuracy.
Also, the PCGHs are in the Fourier plane of the transform lens with respect to
the detectors. This means that the only requirement for light to reach a
particular detector is that it be traveling in the right direction upon
leaving the PCGH. Therefore, the input modules, consisting of source,
collimating lens and PCGH, may be located anywhere within the aperture of the
transform lens., This same immunity to shifts allows a PCGH to be partitioned
into facets in any manner consistent with dividing up the available light
amongst the various detectors (providing, of course, that the facets do not
become too small). Other advantages relate to optical efficiency. All light
striking the PCGH can be used. Light need not be wasted in achieving uniform
illumination; non-uniform illumination is acceptable so long as its effects
are accounted for in the partitioning. Small facets associated with lesser
outputs can be made physically larger by placing them where PCGH illumination
is lowest. The various considerations which go into the design of a PCGH are
discussed in the following sections.

PCGH DIFFRACTION ANALYSIS
Each facet of the PCGH contains a linear grating to diffract incident
light to the appropriate detector. The spatial frequencies of these linear

gratings are determined by the system geometry. First-order diffracted light

310



from a facet of spatial frequency V will be focused in the detector plane a
distance VAF from the transform lens axis (Figure 1), where A 1is the
wavelength and F the transform lens focal length. Our design is for a
10-element linear detector array. This requires 10 equally spaced grating
frequencies. The widest possible detector separation is achieved for grating
frequencies nAv, where Av is the frequency separation and n = 10, 11, 12, 13,

14, 15, 16, 17, 18, and 19. Then the unwanted harmonic frequencies from the square
wave gratings begin at 20Av and will not coincide with the desired outputs.

MODULAR FACETS

The matrix values are encoded into the PCGH via grating area modulation.
The hologram must therefore be divided into facets such that the amount of
light diffracted by a facet to its detector is proportional to the required
matrix element. Various considerations lead us to partition the PCGH into
facets along a square grid.

Mathematically, the transmittance of a facet can be regarded as the
product of its aperture and an infinite linear grating. By the Fourier
convolution theory, the diffraction pattern of this facet is the diffraction
pattern of its aperture convolved with the delta function from the infinite
linear grating. 1In other words, the effect of the linear grating is to shift
the location of the diffraction pattern of the facet aperture.

Figure 4 indicates the diffraction pattern due to a square aperture of
dimension D. The main lobe has a width 2\F/D and contains 81.5% of the energy
passing through the aperture, which we label as 0 dB. The sidelobes form a
rectangular array with sidelobe energy diminishing inversely as the square of
the distance from either axis. The figure indicates the energies (in dB) of
the various sidelobes relative to the main lobe. It is seen that their
energies diminish most rapidly along a diagonal.

Crosstalk between channels depends on how these diffraction patterns
overlap adjacent detectors. As indicated earlier, the separation of detectors
is AVAF. As facets are made smaller, their diffraction patterns become
larger, requiring higher grating frequencies to separate them. For this
reason, we impose a minimum square facet size, based on detector separation
and an acceptable level of crosstalk. We size our detector aperture to
capture only the main lobe of this minimum facet diffraction pattern. A
larger aperture would capture lesser lobes of the channel of interest, but
also some greater lobes of adjacent channels, thereby degrading the
signal-to-noise ratio. Also, zero intensity at the edges of the detector
aperture eases mechanical tolerances,

In the diffraction pattern of Figure 4 the square box in the center
represents the detector aperture. Similar boxes are used to indicate possible
locations of adjacent detectors, These have been separated diagonally to use
the more rapid sidelobe decay (implying grating fringes which run diagonally
within the facets). A separation of 2AF/D in each dimension results in 29 dB
of crosstalk with some very bright axial sidelobes just outside the detector
aperture. A separation of 3)\F/D yields a much more comfortable 37 dB
crosstalk. With this as our choice, the minimum facet size will be D = 3 V@/Au
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The above discussion of crosstalk implies that each facet is a minimum
square facet. This would be a severe constraint on system numerical range.
In practice, we form the facet for each channel from many minimum sized
modular subfacets. Therefore, the diffraction pattern for a single channel is
not that of a single subfacet, but rather the pattern is due to the aperture
consisting of all subfacets for that channel. Crosstalk can be minimized by
clustering all required subfacets of a given spatial frequency into one or two
large facets with minimum perimeter, such as was done in the PCGH of Figure 3.

To have the greatest flexibility in partitioning the PCGH, we would like
the modular subfacets to be ag small and numerous as possible. Since they can
be no smaller than D = 3‘V€7Av (with our 37 dB crosstalk limit), we want a
large spatial frequency separation Av. However, a large spatial frequency
separation implies large spatial frequencies and hence small grating periods.
If the grating period becomes comparable in size to the e-beam spot size,
considerable grating duty cyele errors with corresponding diffraction
efficiency errors will result. For these reasons we have elected to start
with grating frequencies of 60 to 114 1lp/mm (measured along either axis) and
0.5 mm subfacets. This gives us 400 subfacets in a 1 em x 1 cm PCGH and a
maximum numerical accuracy of about 20 dB. With Gaussian illumination, the
effective number of subfacets is extended to more than 5000 since the corner
facets have about 6% the intensity of illumination of the central facets.

TRIMMING METHODS

To extend our numerical accuracy beyond about 20 dB, it is necessary to
employ a separate lithography step to adjust the relative amplitudes of the
outputs. The ability to do this trimming is one of the chief advantages of
e-beam lithography and the PCGH. There are several possible methods of
trimming a PCGH once it has been made and tested. The best trimming method is
to add a negative facet, that is to =ay, a facet ex.ctly out of phase with the
existing facet. This is much easier than it might sound: the negative facet
can be written in space already occupied by the existing positive facet,
leaving a completely open area. Linewidth and phase problems are overcome
since, if we write over the whole area, the phase and duty cycle will be
exactly the complement of what was already there. The easiest and probably
best way to trim, because it minimizes registration requirements, is to draw a
square box of the appropriate size somewhere near the middle of the existing
facet.

PARTITIONING

The task of partitioning the PCGH to achieve the correct relative outputs
is greatly simplified by the decision to adopt module facets. The intensities
of rectangular facets are easy to compute for either uniform or Gaussian
illumination. We need only determine which subfacets are to be assigned to
which channels. We do this by means of an algorithm which maximizes accuracy
and minimizes crosstalk. Each subfacet is assigned entirely to onhe channel.
Trimming is then used to achieve the desired numerical accuracy. With a 1 em
x 1 em PCGH, 0.5 mm subfacets and a Gaussian illumination diminishing to e—2
at the edges, a subfacet in the corner will receive only 0.00019 of the total
energy. Therefore, it is possible to obtain as much as 37 dB of numerical
range, with no channel receiving less than a full subfacet.



EXPERIMENTAL RESULTS AND DISCUSSION

The experimental setup for demonstation and evaluation of PCGHs 1is
indicated in Figure 5. Light from a He-Ne laser is passed through a pinhole
spatial filter to create a point source which is then imaged in the detector
plane by a lens. The PCGH is kinematically mounted in a micropositioner
placed immediately after this lens. This mount is designed to allow removal
for trimming and subsequent replacement of the PCGH without disturbing the
alignment. The distance from the PCGH to the detector plane is 50 em. In the
detector plane, we have a single UDT-U55 photodetector mounted on a motorized
translation stage. One of several square apertures, selectable in size from 1
to 2 mm, is placed in front of this detector to define and limit its effective
area. A second identical photodiode directly monitors the laser output. By
ratioing the signals of these two detectors, we eliminate a number of
potential noise sources, including laser power fluctuations. The two detector
signals can be fed into a logarithmic amplifier for strip chart traces and
rough measurements, or else the signals can be measured directly when the
greatest accuracy is required.

Qur experimental work thus far has been aimed chiefly at constructing
experimental apparatus capable of yielding the precise measurements needed for
verifying the 40 dB numerical accuracy and/or 40 dB numerical range we seek.
In this regard, we consider the setup as desceribed to be adequate with only
minor refinements,

We have fabricated the PCGH of Figure 3. This hologram utilizes
diagonally separated outputs, compact facets and symmetry about the axis.
Figure 6 shows the resultant diffraction pattern at the output plane. Since
the grating fringes are written at U45° relative to the facet boundaries, the
many on-axis sidelobes from each output are seen to be diagonally separated
from the adjacent output signals, Figure 7 is an intensity trace through the
centers of the outputs. The spacing of the outputs was selected to give 37 dB
worst case crosstalk between adjacent channels,

In light of our preliminary measurements, the PCGH method of optical
computing appears capable of high numerical accuracy over a wide numerical
range.
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Figure 1.—- A general scheme for optical vector-matrix multipliation.
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Figure 2.- PCGH vector-matrix multiplier.
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Figure 3.- PCGH design showing facet boundaries. (Fringes within facets not
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Figure U4.- Crosstalk from square subfacets.

315



316

PCGH

He Ne I
LASER I DC

Xyz
MICROPOSITIONER -3 DETECTORS
°9
-d
=9
-J

Figure 5.- Experimental setup for demonstration and evaluation of PCCHs.

Figure 6.- Diffraction pattern from the PCGH. The undiffracted beam, all
10 first-order diffracted beams, and the first few second-order beams
are visible.
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