https://ntrs.nasa.gov/search.jsp?R=19820008439 2020-03-21T10:44:13+00:00Z

50272-101

15. Supplementary Notes
16. Abstract (Limit: 200 words)

The object of this research is to determine and analyze the different scattering mechanisms that contribute to the radar cross section of finite flat plates. The Geometrical Theory of diffraction, the Equivalent current and the newly developed corner diffraction, are used for this study. In addition, a study of the cross-polarized field for a monopole mounted on a plate is presented using novel edge wave mechanism in the analysis. The results are compared with Moment Method solutions as well as measured data when available.
17. Document Analysis a. Descriptors
b. Identifiers/Open-Ended Terms
c. Cosati fiela/Groud
12. Availability Statement

19. Security Class (This Report)	21. No. of Pages
Unclassified	366
20. Security Class (This Page) Unc lassified	22. Price

I would like to express my sincere appreciation to both my graduate advisor, Professor Leon Peters, Jr. and Professor W.D. Burnside for their guidance and constant encouragement. A special thanks to Professor Peters for his patience with me during the course of this work, and a debt of gratitude is also owed to Professor Burnside for all his help and above all for his friendship. DISSERTATION

Typing Guide Paper
I thank Professor R.C. Rudduck for his helpful suggestions, and, both Dr. N. Wang and E. Newman for providing the moment method solutions used in our work. I would like, also to acknowledge the typist, the draftsmen, and photographer for an excellent job.

The material in this report has been used in partial fulfillment of the degree Doctor of Philosophy in Electrical Engineering at The Ohio State University.

1st page Chapter end line
$\ldots \ldots$ list page Chapter end line Lasi TFAT LNNF

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS iii
LIST OF TABLES vii
LIST OF FIGURES viij
Chapter
I. INTRODUCTION 1
II. THEORETICAL BACKGROUND 5
A. Introduction 5
B. Diffraction by a Wedge 5
C. Equivalent Current Concept 11

1. Introduction 11
2. Equivalent Current Formulation 11
D. Diffraction by a Corner 18
E. Broadside Echo Area Patterns of Flat Plates 21
F. Edge Wave Formulation 28
III. BACKSCATTERING FROM A PERFECTLY CONDUCTING STRIP 31
A. Strip Geometry 31
B. $\quad \mathrm{TM}_{z}$ Polarized Case 32
C. $T E_{z}$ Polarized Case 35
D. Discussion 41
IV. H-PLANE BACKSCATTERING FROM PLATES 54
A. Plate Geometry 54
B. Equivalent Current Formulation 56
$\left\{\begin{array}{l}\text { inch } \\ 1 \text { inder Guide }\end{array}\right.$

L1/2 inch

Centur Guide

1. inch
$\xrightarrow{\text { inch }}$
Table
Page
2. SINGLE, DOUBLE AND TRIPLE EDGE DIFFRACTED RAYS USED
IN NORTHROP FIN ANALYSIS
3. SINGLE, DOUBLE AND TRIPLE EDGE DIFFRACTED RAYS USED IN RCS COMPUTATION FOR 2λ SQUARE PLATE AND $\theta=60^{\circ}$188
4. DOUBLE AND TRIIPIEESCORNER DIERRACTIONSOINCLUDED IN

 190
4. SINGLE, DOUBLE AND TRIPLE EDGE DIFFRACTION TERMS INCLUDED IN E-PLANE RCS PATTERN ANALYSIS FOR TRIANGULAR PLATE PROBLEM 219
5. SINGLE AND TRIPLE EDGE DIFFRACTION TERMS INCLUDED IN H-PLANE RCS PATTERN ANALYSIS FOR TRIANGULAR PLATE PROBLEM 220
6. EDGE WAVE DOUBLE CORNER DIFFRACTION TERMS INCLUDED IN H-PLANE RCS PATTERN ANALYSIS FOR TRIANGULAR PLATE PROBLEM 227
7. EDGE WAVE TRIPLE CORNER DIFFRACTION TERMS INCLUDED IN h-PLANE RCS PATTERN ANALYSIS FOR TRIANGULAR PLATE PROBLEM 231
1 st page Chapter end line — — — — - - lst page Chapter end line

20. H-plane echo width pattern of a $\lambda / 4$ wide strip. 44
 45
22. E-plane echo width pattern of ${ }^{-} \lambda / 4^{-w i d e}$ strip with \because
fourth order diffraction term included. 46
23. Contribution to $\mathrm{H}-\mathrm{pl}$ ane echo width pattern by single diffraction mechanism for $\lambda / 4$ strip width. 47
 single diffraction mechanism for a 3λ wide strip. 48
25. Contribution to E-plane echo width pattern by single diffraction 1 méchaniscms for λ d/PN 49
26. Contribution To Tyoing Guide Paper single diffraction mechanisms for a 3λ wide strip. 50
27. Contributions to E-plane echo width patterns by double diffraction mechanism. 51
28. Contributions to E-plane echo width; patterns by triple diffraction mechanisms. 52
29. Plate Geometry. 55
30. Equivalent Current Components used for computation in a pattern cut other than the principal planes. 57
31. Edge on case geometry. 60
32. Edge on case interactions. 61
33. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for a 4×4 inch flat plate using first order equivalent currents ($\lambda=1.28$ inch). 6434. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for a 5×5 inch flat plateusing first order equivalent currents ($\lambda=1.28$ inch)6535. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for a 6×6 inch flat plateusing first order equivalent currents ($\lambda=1.28$ inch). 66
36. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for a $3 \lambda \times 3 \lambda$ flat plate using first order equivalent currents.67
37. E_{θ}, three-dimensional RCS pattern plot, for a $2 \lambda \times 3 \lambda$ plate using first order equivalent currents.

38. Edge on RCS of a rectangular plate as a function of plate length ($b / \lambda=0.53$).

40. Edge on RCS of a rectangular plate as a function of plate length ($b / \lambda=2$).71
41. Northrop Fin. 73
42. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, of Northrop Fin at 17.76 $G H Z$, using first order Equivalent currents. 75
43. E_{θ}, effect of pletatesrotatsioneonT θ § $\equiv 190^{\circ}$ RCS pattern of Northrop finyatrij ${ }^{7} 6^{6} \mathrm{GHz}$ Paper 76
44. $E_{\theta}, \theta=90^{\circ}$ RCS pattern of Northrop fin at 9.067 GHz 77
45. Plate modification of Northrop Fin. 78
46. $E_{\theta}, \theta=90^{\circ}$ RCS patterns for the plates shown in Figure (45) compared to Northrop Fin at 9.067 GHz 79
47. Plate geometry (Actual size). 81
48. Model used for the plate shown in Figure 47. 82
49. $E_{\theta}, \hat{\theta}=90^{\circ}$ RCS pattern, for the plate shown in Figure 47, using first order Equivalent Currents. 83
50. Geometry for a plate with no straight edges (Actual J size). 84
51. Model used for the plate shown in Figure 50 : 85
52. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the plate shown in
Figure 50 , using first order Equivalent currents. 86
53. Plate geometry. 88
54. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the plate shown in Figure 53, using first order Equivalent currents. 89
55. Disk geometry.st page Chapter end line 90
56. Disk models gèometry. 91
57. $E_{\theta, \theta}=90^{\circ}$ RCS pattern, for the 8 sided disk model
\therefore susing first order Equivalent currents (ka $=8: 28$)
58. $E_{\theta}, \theta=90^{\circ}$ RCS patitern, Chforethéir2esided disk model using first order Equíivalent currents ($k a=8.28$)
59. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the 8 sided disk model, using first order Equivalent currents ($k a=8.59$).95
60. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the 12 sided disk model,
using first order Equivalent currents (ka $=8.59$).
61. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the 8 sided disk model, using first order Equivalent currents $\underset{\text { OHES }}{ }(\mathrm{ka}=9.45)$.
62. $E_{\theta}, \theta=90^{\circ}$ RCSypattern, Tidforptherl2 sided disk model, using first order Equivalent currents ($k a=9.45$).98
63. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the 8 sided disk model, using first order Equivalent currents ($k a=10$).99
64. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the 12 sided disk model, using first order Equivalent currents ($k a=10$).
65. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the 8 sided disk model, using first order Equivalent currents ($k a=20$).101
66. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the 12 sided disk model, using first order Equivalent currents ($k a=20$).102
67. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the 8 sided disk model using first order Equivalent currents.
68. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the 12 sided disk model using first order Equivalent currents.
69. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the 12 sided disk model using first order Equivalent currents compared to the rim integration method ($k a=8.28$).106
70. $E_{\theta}, \theta=90^{\circ}$ RCS pattern, for the 12 sided disk model using first order Equivalent currents compared to the rim integration method (ka/ $=10$)
71. Comparison between-the-Equiva.l.entscurrent andapornernd line diffraction methods for $E_{\theta}, \theta=90^{\circ}$ RCS pattern for

$$
\{1 \text { inch }
$$

Center Guide

72. Comparison between the Equivalent current and corner diffraction methods for E E θ aple $\bar{\theta}=60_{\text {ine }}^{0}$ RCS pattern for a $2 \lambda \times 2 \lambda$ flat plate.
73. Comparison between the Equivalent current and corner diffraction methods for $E_{\theta}, \theta=30^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ flat plate. 112
74. Radiation integral pattern. 113
75. Comparison between the Equivalent current and corner diffraction methods for $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the plate shown in Figuré 53 Its ${ }^{\text {at }}$. OGA GHZ. 114
76. Comparison between the Equivalent-current and corner diffraction methods for $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 8 sided disk model. 115
77. Comparison between the Equivalent current and corner diffraction methods for $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 8 sided disk model. 116
78. Comparison between the Equivalent current and corner diffraction methods for $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 8 sided disk model. 117
79. Comparison between the Equivalent current and corner diffraction methods for $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 8 sided disk model. 118
80. Plate and radar geometry. 123
81. Shadowing effects. 125
82. Definition of parameters for higher order edge diffraction. 126
83. Illumination of shadow regions by corner diffraction. 127
84. $E_{P H}, \theta=90^{\circ}$ RCS pattern, for Northrop fin at17.76 GHz using first, second and third orderEquivalent currents. _ , - lst page Chapter end line

$$
\{1 \text { inch }
$$

$\int_{\sqrt{2}} 1$ inch

Center Guide

11/2 inch

$$
\begin{aligned}
& \text { 85. } \mathrm{E}_{\mathrm{PH}}, \theta=90^{\circ} \text { RCS pattern, for Northrop fin at } \\
& 17.76 \mathrm{GHz} \text { using first, second and third order } \\
& \text { Equivalent currents. }
\end{aligned}
$$

86. $E_{P H}$, single edge diffraction contribution to $\theta=90^{\circ}$ RCS, pattern for Northrop fin at 17.76 GHz 132
87. E_{PH}, double edge diffraction contribution to $\theta=90^{\circ}$ RCS pattern for Northrop fin at 17.76 GHz 133
88. $E_{P H}$, triple edge diffraction contribution to $\theta=90^{\circ}$ RCS pattern for Northrop fin at 17.76 GHz 134
89. $E_{P H}$, sum of doubfich Discerertation contributions to $\theta=90{ }^{\text {Typing }}{ }^{\text {G'ide }}$ RCS pattern for North- rop fin at 17.76 GHz 135
90. Double edge diffraction ray paths for Northrop fin. 136
91. E_{PH}, double edge diffraction contribution to $\theta=90^{\circ}$ RCS pattern for Northrop fin due to ray (4-2) at 17.76 GHz 137
92. E_{PH}, double edge diffraction contribution to $\theta=90^{\circ}$ RCS pattern for Northrop fin due to ray (2-4) at 17.76 GHz 138
93. Shadowing effects associated with Northrop fin. 139
94. $E_{P H}, \theta=90^{\circ}$ RCS pattern, for Northrop fin at 9.067 GHz using first, second and third order Equivalent currents. 141
95. $E_{P H}$, single edge diffraction contribution to $\theta=90^{\circ}$ RCS pattern for Northrop fin at 9.067 GHz 142
96. E_{PH}, double edge diffraction contribution to $\theta=90^{\circ}$ RCS pattern for Northrop fin at 9.067 GHz 143
97. $E_{P H}$ triple edge diffraction contribution to $\theta=90^{\circ}$ RCS pattern for Northrop fin at 9.067 GHz 144
98. $\mathrm{E}_{\mathrm{PH}}, \theta=90^{\circ}$ RCS page Chapter end line Rhns for the plates shown in Figure 45 compared to that of Northrop fin at

$$
\text { 9.067 GHZ. LOST TEXT LINE } 145
$$

$$
\{1 \text { inch }
$$

$\xrightarrow{11 / 2 \text { inch }} \sim$ Pigure \quad Center Guide
99. $E_{P H}, \theta=90^{\circ}$ RCS pattern, for the plate shown in
 Equivalent currents.
100. Disk geometry.

$$
\begin{aligned}
& \text { 101. Ray paths for the double and triple edge diffraction } \\
& \text { mechanisms for the disk models. }
\end{aligned}
$$

102. $\mathrm{E}_{\mathrm{PH}}, \theta=90^{\circ}$ RCS pattern, for the 8 sided disk model using first, second and third order Equivalent currents ($k a=8.28$). 150
 using first, second and third order Equivalent currents ($k a=8.28$). 151
103. $E_{P H}, \theta=90^{\circ}$ RCS pattern, for the 8 sided disk model using first, second and third order Equivalent currents (ka = 8.59). 153
104. $\mathrm{E}_{\mathrm{PH}}, \theta=90^{\circ}$ RCS pattern, for the 12 sided disk model using first, second and third order Equivalent currents ($k a=8.59$). 154
105. $\mathrm{E}_{\mathrm{PH}}, \theta=90^{\circ}$ RCS pattern, for the 8 sided disk model using first, second and third order Equivalent currents ($k a=9.45$). 155
106. $\mathrm{E}_{\mathrm{PH}}, \theta=90^{\circ}$ RCS pattern, for the 12 sided disk model using first, second and third order Equivalent currents ($k a=9.45$). 156108. $\mathrm{E}_{\mathrm{PH}}, \theta=90^{\circ}$ RCS pattern, for the 8 sided disk modelusing first, second and third order Equivalentcurrents ($k a=10$).157109. $\mathrm{E}_{\mathrm{PH}}, \theta=90^{\circ}$ RCS pattern, for the 12 sided disk modelusing first, second and third order Equivalentcurrents ($k a=10$)
107. $E_{P H}, \theta=90^{\circ}$ RCS pattern, for the 12 sided disk model using first, second and thind orider Equivalent
currents compared to the rim integration method $(k a=10)$.
108. $\mathrm{E}_{\mathrm{PH}}, \theta=90^{\circ}$ RCS pattern for the 12 sided disk model, using first, second and cthirdeordernEquivalent currents compared to the rim integration method ($k a=10$). 160
109. Rectangular plate geometry. 164
110. E_{PH}, $\theta=90^{\circ}$ RCS pattern for a 4×4 inch flat plate using first, second and third order Equivalent currents ($\lambda=1.28$ inch). 166
111. $\mathrm{E}_{\mathrm{PH}}, \theta=90^{\circ}$ RCS pattern for a 5×5 inch flat plate currents ($\lambda=1.28$ inch). 167
112. $E_{P H}, \theta=90^{\circ}$ RCS pattern for a 6×6 inch flat plate using first, second and third order Equivalent currents ($\lambda=1.28$ inch). 168
113. E_{PH}, contribution of double edge diffraction to $\theta=90^{\circ}$ RCS pattern ($\lambda=1.28$ inch). 169
114. E_{PH}, contribution of triple edge diffraction to $\theta^{\prime}=90^{\circ}$ RCS pattern ($\lambda=1.28$ inch $)$. 170
115. Conical pattern geometry 173
116. Edge diffraction mechanisms contributing to the RCS due to edges \#1 and 3. 175
117. Edge wave mechanisms contributing to the RCS. 176
118. Edge wave double corner diffractionemechanism. 178
119. Edge wave diffraction cases. 179
120. Effect of edge \#4 on the edge wave field. 180
121. Edge wave triple corner diffraction. 182
122. Effect of edge \#4 on the incident field on corner \#1 for the edge wave triple corner diffraction case. 183
123. $\mathrm{E}_{\mathrm{PH}}, \quad \theta=90^{\circ}{ }_{1} \mathrm{RCS}$ pattern, for a $2 \lambda \times 2 \lambda$ plater 2λ using first, second and third order Fquivalent ter end line currents.187

$$
\{2 \text { inch }
$$

127. E_{θ}, individual contributions of edge diffraction mechanisms to $\theta=60^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. 189

$$
\begin{aligned}
& \text { 128. } E_{\theta} \text {, individuă contributions of edge wave double } \\
& \text { corner diffraction mechanism to } \theta=60^{\circ} \text { RCS pattern } \\
& \text { for a } 2 \lambda \times 2 \lambda \text { plate. }
\end{aligned}
$$

129. E_{θ}, individual contributions of edge wave triple
corner diffraction mechanism to $\theta=60^{\circ}$ RCS pattern
for a $2 \lambda \times 2 \lambda$ plate.
130. E_{θ}, sum of all edge wave mechanisms contributing to

131. $E_{\theta}, \theta=60^{\circ}$ RCS $\begin{aligned} & \text { Typing Guide Paper } \\ & \text { pattern for a } 2 \lambda \times 2 \lambda \text { plate. }\end{aligned}$
132. E_{θ}, corner diffracted field component due to single diffraction mechanism for $\theta=60^{\circ}$ case.
133. E_{θ}, sum of corner, double and triple edge diffraction fields for $\theta=60^{\circ}$ case. '195
134. $E_{\theta}, \theta=60^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. 196
135. $E_{\theta P H}$, edge diffraction contribution to cross- polarized RCS pattern for $\theta=60^{\circ}$ case. 196
136. $E_{\theta P H}$, edge wave contribution to cross polarized RCS pattern for $\theta=60^{\circ}$ case. 197
137. E $\mathrm{EPH}_{\mathrm{PH}}, \theta=60^{\circ}$ cross-polarized RCS pattern for a $2 \lambda \times \lambda$ plate. 197
138. $E_{\theta}, \theta=45^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. 199
139. $\mathrm{E}_{\theta}, \theta=30^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. 200
140. $E_{\theta}, \theta=45^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate usingcorner diffraction method instead of EC single edgediffraction component.
141. $E_{\theta}, \theta=30^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate using corner diffraction method instead of EC single edge diffraction component.
142. Possible edge wave mechanisms.

$$
\{1 \text { inch }
$$

143. E_{θ}, individual contributions of edge diffraction mechanisms to $\theta=45^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate.
144. E_{θ}, individual-contributions-of-edge - wave double corner diffraction mechanism to $\theta=45^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. 206
145. E_{θ}, individual contributions of edge wave triple corner diffraction mechanism to $\theta=45^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. 207
146. E_{θ}, sum of edge diffraction mechanisms (single, double and triple) contributingltos $\theta=45^{\circ}{ }^{\circ} \mathrm{R} C S^{\downarrow}$ pattern for a $2 \lambda \times 2 \lambda$ plate. Typing Guide Paper 208
147. E_{θ}, sum of edge wave mechanisms contributing to $\theta=45^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. 208
148. E_{θ}, individual contributions of edge diffraction mech- anisms to $\theta=30^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. 209
149. E_{θ}, individual contributions of edge wave double corner diffraction mechanism to $\theta=30^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. 210
150. E_{θ}, individual contributions of edge wave triple corner diffraction mechanism to $\theta=30^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. 210
151. E_{θ}, sum of edge diffraction mechanism (single, double, and triple) contributing to $\theta=30^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. 211
152. E_{θ}, sum of edge wave mechanisms contributing $\theta=45^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. 212
153. Triangular plate geometry. 216
154. Edge diffraction mechanisms for triangular plate problem. 218
155. Edge wave doubit côner diffactont méchanism for a triangular plate. $\rightarrow \ldots$ lst page Chapter end li 222
156. Effect of edge \#2 on edge wave fields.
157. Edge wave field due to interaction $C_{1}-C_{2}$.
158. Modification of-ineident-fiel-d-direct-ion on C_{2}.
159. Edge wave triple corner diffraction mechanism for
triangular plate. 228
160. Edge wave field
161. Edge wave field due to interaction $C_{1}-C_{2}-C_{1}$. 228
162. $\mathrm{E}_{\mathrm{PH}}, \mathrm{PH}=0$ RCS pattern for a triangular plate $\left(\alpha=30^{\circ}, a / \lambda=2\right)$. 232
163. $E_{P H}, P H=0$ RCS pattern for a triangular plate $\left(\alpha=30^{\circ}, a / \lambda=-13\right)$ SIS / DISSERTATION 233
 $(\alpha=30 \%, a / \lambda=9)$. 234
164. Possible higher order .interactions for triangular plate problems. 236
165. Single edge diffraction contributions to $H-p l a n e ~ R C S$pattern of a triangular plate with $\alpha=30^{\circ}$ and$\frac{a}{\lambda}=2,3$ and 9.237
166. Triple edge diffraction contribution to H-plane RCSpattern of a triangular plate with $\alpha=30^{\circ}$ and$\frac{a}{\lambda}=2,3$ and 9.238
167. Total edge wave diffraction contribution to H-planeRCS pattern of a triangular plate with $\alpha=30^{\circ}$ and$\frac{a}{\lambda}=2,3$ and 9.
168. Shadowing effects due to triple edge diffractionfor triangular plate problem.240
169. $E_{P H}, P H=0$ RCS pattern for a triangular plate $\left(\alpha=45^{\circ}, a / \lambda=4\right)$. 241
170. $E_{P H}, P H=0$ RCS pattern for a triangular plate $\left(\alpha=60^{\circ}, \quad a / \lambda=4\right)$. 242
 $\left(\alpha=90^{\circ}, \quad a / \lambda=-4\right)$.
171. Single edge diffraction contribution to H -plane RCS pattern of a triangular plate with $a / \lambda=4$ and $\alpha=45^{\circ}, 60^{\circ}$ and 90°.
172. Triple edge diffraction contribution to H-plane RCS pattern of a triangular plate with $a / \lambda=4$ and $\alpha=45^{\circ}, 60^{\circ}$ and 90°.
174., Total edge wave diffraction contribution to $H-p l a n e$ RCS pattern of a triangular plate with $a / \lambda=4$ and $\alpha=45^{\circ}, 60^{\circ}$ and 90°.
173. Edge on RCS for THESIS Tringular plate as a function of its
length $\left(\alpha=30^{\circ}\right)$.
174. $E_{\theta}, P H=0$ RCS pattern for a triangular plate $\left(\alpha=30^{\circ}, \frac{a}{\lambda}=2\right)$.
175. $E_{\theta}, P H=0$ RCS pattern for a triangular plate $\left(\alpha=30^{\circ}, \frac{a}{\lambda}=3\right)$.
176. $E_{\theta}, P H=0$ RCS pattern for a triangular plate $\left(\alpha=30^{\circ}, \frac{a}{\lambda}=9\right)$.251
177. Single edge diffraction contribution to the E-plane RCS pattern of a triangular plate with $\alpha=30^{\circ}$ and $\frac{a}{\lambda}=2,3$ and 9.252
178. Double edge diffraction contribution to the E-plane RCS pattern of a triangular plate with $\alpha=30^{\circ}$ and $\frac{a}{\lambda}=2,3$ and 9.
179. Triple edge diffraction contribution to the E-plane RCS pattern of a triangular plate with $\alpha=30^{\circ}$ and $\frac{a}{\lambda}=2,3$ and 9 .254
180. $\mathrm{E}_{\theta}, \mathrm{PH}=0$ RCS pattern for a triangular plate $\left(\frac{a}{\lambda}=4, \alpha=45^{\circ}\right)$.
181. $E_{\theta}, P H=0$ RCS pattern for a triangular plate $\left(\frac{a}{\lambda}=4, \alpha=60^{\circ}\right)^{\text {st }}$. page Chapter end line

$$
\begin{aligned}
& \text { 184. } \mathrm{E}_{\theta}, \mathrm{PH}=0 \text { RCS pattern for a triangular plate } \\
& \left(\frac{a}{\lambda}=4, \alpha=90^{\circ}\right) \text {. } 2 \text { inch Chapter Ling }
\end{aligned}
$$

185. Single edge diffraction-contribution-to the E-plane RCS pattern of a triangular plate with $\frac{a}{\lambda}=4$ and $\alpha=45^{\circ}, 60^{\circ}$ and 90°. 258
186. Double edge diffraction contribution to the E-plane RCS pattern of a triangular plate with $\frac{a}{\lambda}=4$ and $\alpha=45^{\circ}, 60^{\circ}$ and 90°. 259
187. Triple edge diffraction contribution to the E-plane RCS pattern ofiraEtriangulions pate with $\frac{a_{1}}{\lambda}=4$ and $\alpha=45^{\circ}, 60^{\circ}$ and 90° !g Guide Paper 260
188. Monopole geometry. 263
189. Scattered field components due to monopole. 265
190. Image monopole mechanism. 266
191. Image monopole fields. 267
192. Edge wave mechanisms due to monopole. 271
193. Parameter definition for pattern function. 274
194. Plot of pattern function for plate corner angles 90° and 120°. 275
195. Edge wave mechanism due to image monopole. 277
196. $E_{\theta P H}, \theta=90^{\circ}$ field pattern in $d B$ for a $1 \lambda \times 1 \lambda$ plate. 281
197. $E_{\theta P H}, \theta=90^{\circ}$ field pattern in $d B$ due to corner C_{11} for a $2 \lambda \times 2 \lambda$ plate. 282
198. $E_{\theta P H}, \theta=90^{\circ}$ field pattern in $d B$ due to corner C_{1} and direct monopole illumination for a $2 \lambda \times 2 \lambda$ plate. 283
199. $E_{\theta P H}, \theta=90^{\circ}$ field pattern in $d B$ due to corners C_{1}, C_{4} and direct monopole illumination for a $2 \lambda \times 2 \lambda \mathrm{plate}$. 284
200. $E_{\theta P H}, \theta=90^{\circ}$ total field pattern in $d B$ for a $2 \lambda \times 2 \lambda$ plate. 286
 $2 \lambda \times 2 \lambda$ plate. 287

202. $E_{\theta P H}, \theta=90^{\circ}$ total field pattern in $d B$ compared to measurement for $a_{\varepsilon} 2 \lambda_{r} x_{2}$? $\lambda_{-p 1}$ ate or Lino
 203. $E_{\theta P H}, \theta=90^{\circ}$ total field pattern in $d B$ for a $2 \lambda \times 2 \lambda$ plate.
 289

$$
\begin{aligned}
& \text { 204. MM solution for } E_{\theta P H}, \theta=90^{\circ} \text { field pattern in } d B \text { for a } \\
& 2 \lambda \times 2 \lambda \text { plate. }
\end{aligned}
$$

205. $E_{\theta P H}, \theta=90^{\circ}$ total field pattern in $d B$ for a $2 \lambda \times 2 \lambda$ plate. 291
206. MM solution for $E-\theta=90^{\circ}$ field pattern in $d B$ for a $2 \lambda \times 2 \lambda$ plate. THESHS/ DISSERTAT 292
207. $E_{\theta P H}, \theta=90^{\circ}$ total field pattern in $d B$ for a $3 \lambda \times 3 \lambda$ plate. 293
208. $M M$ solution for $E_{\theta P H}, \theta=90^{\circ}$ field pattern in $d B$ for a $3 \lambda \times 3 \lambda$ plate. 294
209. $E_{\theta P H}, \theta=90^{\circ}$ total field pattern in $d B$ for a $3 \lambda \times 3 \lambda$ plate. 295
210. MM solution for $E_{\theta P H}, \theta=90^{\circ}$ field pattern in $d B$ for a $3 \lambda \times 3 \lambda \mathrm{pl}$ ate. 296
211. $E_{\theta P H}, \theta=90^{\circ}$ total field pattern in $d B$ for a $4 \lambda \times 4 \lambda p 1 a t e$. 297
212. $E_{\theta P H}, \theta=90^{\circ}$ total field pattern in $d B$ for a $6 \lambda \times 6 \lambda$ plate. 298
213. $E_{\theta P H}, \theta=90^{\circ}$ field pattern. 299
214. $E_{\theta P H}, \theta=90^{\circ}$ field pattern. 300
215. Parameter definition for shadowing problem geometry. 307
216. Case of intersecting vectors \bar{h}_{1} and \bar{h}_{2}. 309
217. Parameter definition for the determination of the illuminated region upper bound on edge i and lower bound on edge j 310
218. Determination of illuminated region upper bound ongedge i_{i} and the lower bound on edge j for case 312

219. Determination of illuminated region upper bound on edge i and the lower bound on edge j_{2} for ${ }_{i}$ case b.
 220. Parameter definition for the determination of the illuminated region lower bound on edge i and upper bound on edge j.
 315
 221. Determination of illuminated region lower bound on edge i and upper bound on edge j for case c.
 317

222. Determination of illuminated region lower bound on edge i and upper bound on edge j for case d. 318
223. Cases of non-intersectingisSERTA ${ }^{\text {Thectors }}$ TION h_{2}. 320
224. Method used to determine if edge i illuminates edge j when \bar{h}_{1} does not intersect \bar{h}_{2}. 321
225. Determination of the illuminated regiontower and upper bounds on edge j for case e. 322
226. Determination of the illuminated region lower and upper bounds on edge j for case f. 324
227. Method used to determine if edge \mathbf{i} illuminates edge j when \bar{h}_{1} and \bar{h}_{2} does not intersect (case of Figure 203-b). 326
228. Determination of the illuminated region lower and upper bounds on edge j for case g. 327
229. Determination of the illuminated regions for case h. 329
230. Parameter definition associated with triple edge diffraction mechanism. 336
231. Parameter definition associated with triple edge diffraction mechanism. 338
232. Edge wave mechanism associated with the radiation problem. 341
233. Parameter definition associated with the corner diffraction. 344
234. Edge wave mechanismage Chapter, issociated with the scattering r end 1 problem. 347

235. Effect of half pl ane on edge wave mechanism. 348
236. Strip geometry used iintself-conscistent UTD solution. 350
237. Self-consistent UTD concept. 351
238. Ray configuration for self-consistent analysis. 353
239. E-plane echo width pattern of 3λ wide strip using the self-consistent UTD concept. 356
240. E-plane echo width pattern of 1.42λ wide strip using the self-consistent UTD concept. 357
241. E-plane echo width pattern of $\frac{\lambda}{4}$ wide strip using the 358
242. TE_{z}, broadside echo width for a perfectly conducting $\operatorname{strip}\left(\frac{a}{\lambda}=0.1-0.9\right)$. 360
243. TE_{z}, broadside echo width for a perfectly conducting $\operatorname{strip}\left(\frac{a}{\lambda}=1-2.3\right)$. 361
244. TM_{z}, broadside echo width for a perfectly conducting $\operatorname{strip}\left(\frac{a}{\lambda}=0.1-1.0\right)$. 362
1st page Chapter end linc
— - lst page Chapter end line

Center Guide
1 inch

The object of this research is to analyze the Radar Cross Section (RCS) of finite flat plates at high frequencies. The different physical mechanisms which contribute to the RCS are carefully studied and their important characteristics are explained.
 significant mechanisms have been neglected, particularly for rectangular, non-rectangular and non-circular plates both for angles of incidence in the principal and outside the principal planes. Second, the cost may be prohibitive for such computations even for large modern day computers for physical optics solutions for very large plates (in terms of wavelength) particularly when multiple interactions are significant and for Moment Method solutions where the size is increasing to the upper limit that may be so treated. Third, and perhaps least significant, fitting the shape of some non-rectangular plates with rectangular patches in the Moment Method solution can lead to significant errors.

Several authors have analyzed the RCS from finite plates using GTD techniques. One of the difficulties that they encountered is the calculation of RCS at and near broadside. The Physical Optics Theory (PO) was one of the first techniques used in estimating the RCS values at or near broadside, but it fails to account for polarization dependence for pattern regions beyond the main lobe, particularly for non principle planes. The Physical Optics solution also becomes quite expensive to run on modern computers for general shaped fins at higher frequencies where the f in is large in terms of wavelength. The Geometrical Theory

$\xrightarrow{\text { L1/2 inch }} |$| Centcer Guide |
| :--- |
| of inch |
| scattering theorm to compute the fields in the direction of the shadow |
| boundary for circular and square plates as did Keller $[20]$, Ryan $[21]$ |
| and Millar $[9-11]$. Ross $[28]$ modifiedpthe Geometrical Theory of Diffrac- |
| tion solution for the echo width of a perfectly conducting strip to |
| compute the RCS for rectangular plates using a particular normalization |
| procedure. In all of the previous GTD solutions, the RCS is only com- |
| puted in the principal plane. |

The estimation of RCS at grazing incidence has also been discussed in the literature. Ross [28] provided measured data of RCS as a function of the length of a-rectangulardiate. Hey, et. al [31], also presented measured data for rectangular and triangular plates but did not present an analytical model and did not describe the physical phenomena that led to the unexpectedly high RCS.

In this dissertation, we will attempt to present techniques that will enable one to compute the RCS at broadside and throughout the pattern in any pattern plane. We will also present an analytical model that will describe the physical phenomena contributing to the RCS at grazing incidence. These new techniques will be used to analyze the RCS of different plate geometries of different shapes.

Two basic methods are to be used to compute the RCS for plates. The first method for analysis of scattering from plates is a well known low frequency technique commonly referred to as the Moment Method (MM). The surface currents and the resulting scattered field can be found by enforcing the boundary conditions on the plate surface. One of the first MM solutions applied to plates problems was the wire grid technique, developed by Richmond [1], which employed a point matching technique. This solution required the determination of approximately 100 unknown currents per square wavelength in orderathat-the wire prefidiade- $^{\text {and }}$ quately model the perfectly conducting surface. Richmond [2]has developed a more sophisticated_approach_in which the_reaction-technique-is
used to solve for the unknown currents. This solution still requires approximately 100 unknown currents per square wavelength. Another approach is to divide the surface of the conducting plate into rectangular patches each having two orthogonallunknown Lcomplex currents $[3]$. This $\xrightarrow{l \text { inch }}$ surface current patch approach reduces the unknown currents to about 20 per square wavelength. This allows a larger plate to be considered. However, this approach is restricted to shapes that can be fit by an array of square patches. All these techniques are restricted to low frequencies due to the limitations imposed by the vast storage and computer time required for such computations, which result in a high cost per data point. The Geometrical Theory of Diffraction (GTD) and Equivalent line source concepts are basicallyahigh frequency methods which are based on two canonical problems, i.e., wedge diffraction and infinite line source radiation. Some examples where this method has been used include determining the diffracted fields by a body made up of finite axially symmetric cone frustums [4], the radiation patterns of rectangular wave guides $[5]$, and horn antennas $[6]$. The MM solution will be used in this dissertation primarily to provide data to be used as a check on the GTD solutions developed herein. The author is indebted to Dr. Newman whose computer programs have been used to obtain all of the Moment Method data preṣented here.

The basic approach used herein for the analysis of RCS of plates is centered on using the Equivalent current technique in computing the patterns including the main lobe region.

In Chapter III, the scattering from a perfectly conducting strip is discussed in detail. The understanding of this problem is essential in the analysis of RCS from plates.

Chapter IV discusses in detail the RCS pattern effects of the first order interaction terms. In addition, the Equivalyenthcurtent methode is compared to corner diffraction method. Note that the plate can have an arbitrary orientation in space. If $\in \mathbb{L}$ LME

Chapter V discusses the effects of higher order edge interactions on the E-plane RCS pattern for a general shape plate.

2 inch Chapter Line
In Chapter VI we present-a-det-ailed-analysis of the effects of higher order interactions including the newly developed edge wave mechanism on RCS pattern computation for a rectangular plate. Both the E-plane and off the principle plane RCS pattern analysis are considered for a linearly polarized incident plane wave.

Chapter VII extends the previous analysis to the E and H-plane RCS pattern computat ion for a triangular piateATION

Typing Guide Paper
Chapter VIII discusses the cross polarization effects for a monopole mounted on a plate. The analysis is based on the use of the newly developed edge wave mechanism. Finally, a summary of the present study is made in Chapter IX.

1st page Chapter end line

- - - - - list page Chapter end line

b. Diffraction by a wedge

The Uniform:Theory of Diffraction (UTD) developed by Kouyomjian.and Pathan [7] is sufficiently general to handle the three dimensional effects of the flat plate with straight edges. Figure 1 shows the geometry used to evaluate the fields diffracted by a wedge. A source whose r radiated electric field is given by $E^{i}(s)$ at the edge, is located at

1st page Chapter end line
$\ldots \ldots$ lit page Chapter end line
\qquad
1.5

Center Guide

11/2 inch

Point $0\left(\rho^{\prime}, \phi^{\prime}, z^{\prime}\right)$. This source can radiate a plane, cylindrical, conical or spherical wave incident on the wedge. Kouyoumjian and Pathak $[7,8]$, have shown that the diffracted fields at $P(\rho, \phi, z)$ can be written in a compact way if these fields are written in terms of a ray fixed coordinate system. This coordinate system is centered at the diffraction point Q_{E}, (or points of diffraction in case of plane wave), this point is unique for a given source and observation points. The incident ray diffracts as a cone of rays whose axis is the edge, such that $\beta_{0}=\beta_{0}^{\prime}$.

The orthogonal unit vectors associated with the ray fixed coondinate system are defined as

$$
\begin{aligned}
& \hat{I}=-\hat{S}^{\prime \prime} \\
& \hat{I}=\hat{B}_{0}^{\prime} \times \hat{\phi}^{\prime} \\
& \hat{S}=\hat{\beta}_{0} \times \hat{\phi}
\end{aligned}
$$

where \hat{I} is the incident direction unit vector, and \hat{s} is the diffraction direction unit vector. The diffracted field is given by [7, 8]

$$
\begin{equation*}
\bar{E}^{d}(s) \sim \bar{E}^{i}\left(Q_{E}\right): \bar{D}_{E}(\hat{s}, \hat{I}) \quad A(s) e^{-j k s} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\bar{D}}_{E}=-\hat{\beta}_{0}^{\prime} \hat{\beta}_{0} D_{s}-\hat{\phi}^{\prime} \hat{\phi} D_{h} \tag{2a}
\end{equation*}
$$

and

$$
\begin{align*}
& D_{s, h^{\prime}}\left(L, \phi, \phi^{\prime}, \beta_{0}\right)=\frac{-e^{-j \pi / 4}}{2 n \sqrt{2 \pi k}} \sin \beta_{0}\left[\cot \left(\frac{\pi+\beta}{2 n}\right) F\left(k L a^{+}\left(\beta^{-}\right)\right)\right. \\
& +\cot \left(\frac{\pi-\beta^{-}}{2 n}\right) F\left(k^{-} a^{-}\left(\beta^{-}\right)\right) \mp\left\{\cot \left(\frac{\pi^{+} \beta^{+}}{2 n}\right) F\left(k L a^{+}\left(\beta^{+}\right)\right)\right. \\
& \left.+\cot \left(\frac{\pi^{-} \beta^{+}}{2 n}\right) F\left(k L a^{-}\left(\beta^{+}\right)\right)\right\} \tag{ab}
\end{align*}
$$

with

$$
\begin{align*}
& F(x)=2 j|\sqrt{x}| e^{j x}|\sqrt{x}| \tag{2c}\\
& a^{ \pm}(\beta)=2 \cos ^{-j \tau^{2}} d \tau \tag{2d}\\
& { }^{+}\left(\frac{2 n \pi N^{\ddagger}-(\beta)}{2}\right)
\end{align*}
$$

Where $\mathrm{N}^{ \pm}$are the integer which most nearly satisfy the equations:

$$
2 \pi n N^{+}-(\beta)=\pi
$$

and

$$
2 \pi \mathrm{nN}^{-}-(\beta)=-\pi
$$

with $\beta=\beta^{ \pm}=\Phi^{\prime} \pm \phi^{\prime}$.
The magnitude and phase of the transition function $F(x)$ are shown in Figure 2. When x is small, $F(x)$ is given by:

$$
\begin{equation*}
F(x) \sim\left[\dot{\pi} x-2 x e^{j \pi / 4}-\frac{2}{3} x^{2} e^{-j \pi / 4}\right] \quad e^{j\left(\frac{\pi}{4}+x\right)} \tag{3a}
\end{equation*}
$$

and when x is large

$$
\begin{equation*}
F(x) \sim 1+\frac{j}{2 x}-\frac{3}{4} \frac{1}{x^{2}}-j \frac{15}{8} \frac{1}{x^{3}}+\frac{75}{16} \frac{1}{x^{4}} . \tag{ib}
\end{equation*}
$$

If $n=2$, the wedge becomes a half $p l a n e$ and the form for $D_{s, h}$ reduces to:

$$
D_{s, h}\left(L, \phi, \phi^{\prime}, \beta_{0}\right)=\frac{-e^{-j \pi / 4}}{2 \sqrt{2 \pi k} \sin \beta_{0}}\left[\frac{F\left(i k L a\left(\beta^{-}\right)\right)}{\cos \beta^{-} / 2} \mp \frac{F\left(k L a\left(\beta^{+}\right)\right)}{\cos \beta^{+} / 2}\right] \text {. }
$$

The diffracted fields can also be written in a matrix form as:

$$
\left[\begin{array}{cc}
E_{\beta_{0}^{d}}^{d} & (s) \tag{5}\\
E_{\phi}^{d}(s)
\end{array}\right] \sim\left[\begin{array}{cc}
-D_{s} & 0 \\
0 & -D_{h}
\end{array}\right] \quad\left[\begin{array}{c:c}
E_{B_{0}^{\prime}}^{i} & \left(Q_{E}\right) \\
E_{\phi}^{i} & \left(Q_{E}\right)
\end{array}\right] \quad . \quad A(s) e^{-j k s}
$$

$\xrightarrow{41 \% \text { inch }} \rightarrow$
C. EQUIVALENT CURRENT CONCEPT
(artir Guide
1 inch

1. Introduction

$$
2 \text { inch Chapter Line }
$$

The Equivalent Current (EC) concept has been used by many authors. Millar $[9-11]$, developed the basic idea as early as 1955 , he used it to solve different problems such as diffraction from apertures, fields along the caustic line, coupling through elliptical apertures. In 1968, Ryan and Rudduck [12] introduced the concept implicitly in a GTD solution. In 1969, the concept was formalized by Ryan and Peters [13-14] to obtain the same basiceresult las \subseteq Millari.A Büriside and Peters [15] used the concept to evaluatent also corrected the misleading impressions generated in $[16]$.

2. Equivalent Current Formulation

The UTD edge diffraction concept is suitable for the analysis of geometries where diffraction appears to come from a single or group of single isolated points along an edge. However, one must introduce an integral approach when the diffracted field at some observation point is the confluence of diffraction points on the edge. This point represents a caustic, in this case, the equivalent currents are used in conjunction with a free space Green's function to obtain the radiated fields. In the analysis to follow, no interactions such as higher order diffraction will be considered, although the method of equivalent currents allows these interactions to be included, as will be seen. The only limitation on the usage of this concept is that the edge diffracted fields must have the same spatial behavior as do the fields of the infinite line source, i.e. $\frac{1}{\sqrt{5}}$. To compute the continuous diffracted fields in the vicinity of such a caustic, an equivalent current is set up on this edge and treatedras alfinite line source placed at the position of the finite edge. - Figure -3 ilustrates"the geometry of aldinite wedge illuminated by a plane wave, where the caustic lies in the far fietd of the finite edge. This wedge of length ℓ will be cons idered
and

(b)

- —————— wis wis bras end line

Figure 3. Finite wedge geometry.
to be a segment of a wedge of infinite length (i.e., a two dimensional wedge). The equivalent current concept consists simply of determining : the current flowing at the position of the edge of the infinite wedge (in the absence of the wedge.) Which-woul.d_produce the same diffracted field as the edge of the wedge. The component of the far electric field of a Z-directed infinite electric line source $[17]$ is given by - by

$$
\begin{equation*}
E_{\theta}^{s}=z_{0} k_{t} I^{e} \frac{e^{j \pi / 4}}{2 \sqrt{2 \pi k_{t}}} \frac{e^{-j k_{t} \rho}}{\sqrt{\rho}} e^{-j k z \cos \beta_{0}} \tag{8}
\end{equation*}
$$

similarly for an infinite magnetic line source, one has

$$
\begin{equation*}
H_{\theta}^{s}=Y_{0} k_{t} I^{m} \frac{e^{j \pi / 4}}{2 \sqrt{2 \pi k_{t}}} \frac{e^{-j k_{t} \rho}}{\sqrt{\rho}} e^{-j k z \cos \beta_{0}} \tag{9}
\end{equation*}
$$

where: Z_{o} is the impedance of free space

$$
\begin{align*}
& Y_{0} \text { is the admittance of free space } \\
& \mathrm{k}=\frac{2 \pi}{\lambda}, \lambda \text { is the wave length } \\
& \mathrm{k}_{\mathrm{t}}=\hat{k} \sin \beta_{0}, \rho=s \sin \beta_{0}, z=s \cos \beta_{0} . \tag{10}
\end{align*}
$$

and

Figure 4 shows the infinite line source geometry, the Z component (i.e.g parallel to the line source) of the far fields is given by:

$$
E_{Z}^{S}=-E_{\theta}^{S} \sin \beta_{0}, H_{Z}^{S}=-H_{\theta}^{S} \sin \beta_{0}
$$

$$
\begin{equation*}
E_{Z}^{s}=-Z_{0} i k_{t} I^{e} \frac{e^{j \pi / 4}}{2 \sqrt{2 \pi k_{t}}} \sin \beta_{0} \frac{e^{-j k_{t} \rho}}{\sqrt{\rho}} e^{-j k z \cos \beta_{0}} \tag{11}
\end{equation*}
$$

Figure 4. Infinite line source geometry.

$$
\begin{equation*}
H_{z}^{s}=-Y_{0} k_{t} I^{m} \frac{e^{j \pi / 4}}{2 \sqrt{2 \pi k}} \sin \beta_{0} \frac{e^{-j k_{t} \rho}}{\sqrt{\rho}} e^{-j k z \cos \beta_{0}} \tag{12}
\end{equation*}
$$

The diffracted fields from an infinite wedge [7] are

$$
\begin{align*}
& E_{Z}^{s}=G^{e}\left(n, \phi, \phi^{\prime}\right) \frac{e^{-j \pi / 4}}{\sqrt{2 \pi k} \sin \beta_{0}} E_{Z}^{i} \frac{e^{-j k s}}{\sqrt{s}}, \text { and } \tag{13}\\
& H_{Z}^{s}=G^{m}\left(n, \phi, \phi^{\prime}\right) \frac{e^{-j \pi / 4}}{\sqrt{2 \pi k} \sin \beta_{0}} H_{Z}^{i} \frac{e^{-j k s}}{\sqrt{s}}, \tag{14}
\end{align*}
$$

where

$$
G^{\frac{i}{m}}=R\left(n, \phi-\phi^{\prime}\right) \mp R\left(n, \phi+\phi^{\prime}\right)
$$

One can rewrite equations (13) and (14) such that

$$
\begin{align*}
& E_{Z}^{S}=G^{e}\left(n, \phi, \phi^{\prime}\right) \frac{e^{-j \pi / 4}}{\sqrt{2 \pi k_{t}}} E_{Z}^{i} \frac{e^{-j k_{t} \rho}}{\sqrt{\rho}} e^{-j k z \cos \beta_{0}} \tag{15}\\
& H_{Z}^{S}=G^{m}\left(n, \phi, \phi^{\prime}\right) \frac{e^{-j \pi / 4}}{\sqrt{2 \cdot \pi k_{t}}} H_{Z}^{i} \frac{e^{-j k_{t} \rho}}{\sqrt{\rho}} e^{-j k z \cos \beta_{o}} \tag{16}
\end{align*}
$$

Where k_{t}, ρ are defined in Equation (10)
管quating Equations (11) and (15) and also Equations (12) and (16) one obtains

$$
\begin{align*}
& I^{e}=\frac{2 j}{Z} \frac{G^{e}\left(n, \phi, \phi^{\prime}\right)}{\sin ^{2} \beta_{0}} \quad E_{Z}^{i} \quad \text { and } \tag{17}\\
& I^{m}=\frac{2 j}{Y_{0}^{k}} \frac{G^{m}\left(n, \phi, \phi^{\prime}\right)}{\sin ^{2} \beta_{0}} H_{Z}^{i} \tag{18}
\end{align*}
$$

where the incident fields in Equation (17) and (18) represent the components of the incident field tangential to the edge. So Equations (17) and (18) are:

$$
\begin{align*}
& I^{e}=\frac{2 j}{Z k} \frac{G^{e}\left(n, \phi, \phi^{\prime}\right)}{\sin ^{2} \beta_{0}} \quad E_{\tan }^{i} \tag{19}\\
& I^{m}=\frac{2 j}{Y_{0} \cdot k} \frac{G^{m}\left(n, \phi, \phi^{\prime}\right)}{\sin ^{2} \beta_{0}} \quad H_{\tan }^{i}, \tag{20}
\end{align*}
$$

where $E_{t a n}^{i}$ and $H_{t a n}^{i}$ are the tangential components to the edge of the incident electric and magnetic fields. One can now apply the vector potentialafunctions given by

$$
\begin{equation*}
\bar{A}=\frac{1}{4!\pi} \int_{L} \bar{I}^{e} \quad \frac{e^{-j k\left|\bar{r}-\bar{r}^{\prime}\right|}}{\left|\bar{r}-\bar{r}^{\prime}\right|} \quad d \ell^{\prime} \tag{21}
\end{equation*}
$$

where L is the contour of the edge and $\bar{r}, \bar{r}^{\prime}$ are defined as in Figure 5.

The equation for the far zone scattered field is
and

$$
\begin{equation*}
\bar{E}^{\mathrm{e}}=-j_{\omega \mu} \bar{A}_{\text {trans }} \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\bar{H}^{m}=-j_{\omega \varepsilon} \quad \bar{F}_{\text {trans }} \tag{24}
\end{equation*}
$$

where \bar{E}^{e} is the electric field due to $\overline{\mathrm{I}}^{\mathrm{e}}$ and $\overline{\mathrm{H}}^{m}$ is the magnetic field due to \bar{I}^{m} with

$$
\begin{equation*}
\bar{H}^{\mathrm{e}}=\frac{\overline{\mathrm{E}}^{\mathrm{e}}}{\mathrm{Z}_{0}} \text { and } \overline{\mathrm{E}}^{\mathrm{m}}=\frac{1}{\frac{\bar{H}^{\mathrm{m}}}{Y_{0}} \text { page Chapter end line }} \tag{25}
\end{equation*}
$$

$11 / 2$ inch

Figure 5. Definition of the radiation integral parameters.
$\Rightarrow \quad$ There has been some discussion about the use of the $\sin ^{2} \beta_{0}$ term in Equations (19) and (20), particularly for the case of a straight finite edge, where the observation point does not lie on the diffraction cone. In this case, the-sofution-fails-to-satisfy reciprocity. Senior 18 has suggested that $\sin ^{2} \beta_{0}$ should be in the form $\sin \beta_{0}^{i} \sin \beta_{0}^{d}$ where the superscripts i and d refer to the incident and diffracted rays. This seems to be a "best fit" but, since the configuration of rays deviates sufficiently from the canonical solution, it can only be considered as approximate. In reality, this difficulty occurs in that one is now trying to represent a corner diffraction for the finite edge, i.e., those observationtpoints notllying in thée úsually conical bundle of rays can be reached on ${ }^{\top} y^{\prime \prime} b^{i} y^{3}$ rays diffancted by the corner. This is not unlike the physical optics solution for a flat plate which also fails to satisfy reciprocity since it is forcing the physical optics currents to represent the edge diffraction.
D. DIFFRACTION BY A CORNER

A corner is formed by the intersection of a pair of finite straight $\quad . . . \xrightarrow{\longrightarrow}$ edges. Figure 6 shows the corner diffraction geometry. A new diffracion coefficient that handles diffraction from corners is needed. An empirical solution is proposed by Burnside and Pathak $[19]$ and is based on the asymptotic evaluation of the radiation integral which employs the equivalent edge currents that would exist in the absence of the corner. The corner diffraction is then found by appropriately (but at present empirically) modifying the asymptotic result for the radiadion integral which is characterized by a saddle point near an end point. The diffraction coefficient is still in its development stages. However, it has been shown to be very successful in predicting the fields diffracted by a corner for a number of plate structures. Accordingly, it is discussed here in' this asectelioñ fan d has do èèn used to obtain some interesting results. The corner diffracted fieldeascociaterd with line one corner and one edge in the near field with spherical wave incidence is given by

$$
\begin{gather*}
{\left[\begin{array}{c}
E_{\beta_{o}^{c}}^{c} \\
E_{\phi}^{c}
\end{array}\right]=-\left[\begin{array}{ll}
E_{\beta_{0}^{\prime}}^{i} & \left(Q_{c}\right) \\
D_{s}^{c}\left(L, L_{c}, \phi, \phi^{\prime}, \beta_{0}, \beta_{c}, \beta_{o c}\right) \\
E_{\phi^{\prime}}^{i} & \left(Q_{c}\right) D_{h}^{c}\left(L, L_{c}, \phi, \phi^{\prime}, \beta_{o}, \beta_{c}, \beta_{o c}\right)
\end{array}\right]} \\
\sqrt{\frac{s^{\prime}}{s^{\prime \prime}\left(s^{\prime}+s^{\prime \prime}\right)} \sqrt{\frac{\dot{s}^{\prime}\left(s+s_{c}\right)}{-s_{c}}} \frac{e^{-j^{\prime \prime} k s}}{s}} \tag{26a}
\end{gather*}
$$

$$
\begin{align*}
& \left\{\begin{array}{c}
D_{s}^{c} \\
\\
D_{h}^{c}
\end{array}\right\}=\left\{\begin{array}{l}
c_{s}\left(Q_{E}\right) \\
C_{h}\left(Q_{E}\right)
\end{array}\right\} \frac{\sqrt{\sin \beta_{c} \sin \beta_{o c}}}{\left(\cos \beta_{o c}-\cos \beta_{c}\right)} \\
& F\left[k L_{c} a\left(\bar{\pi}: \beta_{o c} \beta_{c}\right)\right] \sqrt{\frac{8 \pi}{k}} \frac{e^{-j: \pi / 4}}{4 \cdot \pi} \tag{26b}
\end{align*}
$$

and

$$
\begin{align*}
& c_{s, h}\left(Q_{E}\right)=\frac{-e^{-j \frac{\pi}{4}}}{2 \sqrt{2 \pi k}} \sin \beta_{0}\left[\frac{F\left(\mathrm{KL} a\left(\beta^{-}\right)\right)}{\cos \beta^{-} / 2}\left|F\left\{\frac{L a\left(\beta^{-}\right) / \lambda}{k L_{c} a\left(\pi+\beta_{o c^{-\beta}}{ }_{c}\right.}\right\}\right|\right. \\
& \left. \pm \frac{F\left[{ }^{[} k L a\left(\beta^{+}\right)\right]}{\cos \beta^{+} / 2}\left|F\left\{\frac{L a\left(\beta^{+}\right) / \lambda}{k L_{c} a^{1}\left(\min ^{\prime} \beta c^{-\beta}{ }_{c}\right)}\right\}\right|\right] \tag{26c}
\end{align*}
$$

The function $F(x)$ was defined in Equation (Rc), and

$$
\begin{gathered}
a(\beta)=2 \cos ^{2}(\beta / 2) \text { where } \\
\beta^{ \pm}=\phi \pm \phi^{\prime} \\
L=\frac{s^{\prime} s^{\prime \prime}}{\left(s^{\prime}+s^{\prime \prime}\right)} \sin ^{2} \beta_{0} \text { and } L_{c}=\frac{s_{c}}{s_{c}+s}
\end{gathered}
$$

for spherical wave incidence.

```
inch Chapter Lino
```

The function $D_{S, h}\left(Q_{E}\right)$ is a modified version of the diffraction coedficient for the half $p l$ ane case $(n=2)$. The modification factor

$$
\left\lvert\, F\left[\frac{L a(\beta) / \lambda}{k L L_{c} a\left(\pi+\beta_{o c}-\beta_{c}\right)}\right]\right.
$$

Center Guide
is a heuristic function that insures that the diffraction coefficient will not change sign abrupthliyicwheniidt: passes through the shadow boundaries of the edge, i.e., the corner diffracted field will ensure the continuity of the fields as the edge diffracted field shadow boundary is crossed. In Figure 7, we show a corner formed by the intersection of two edges (a) and (b). With each edge there is a corner field compon: ent associated with it. While there is only one edge diffracted field component due to diffraction from edge (b), diffraction from edge (a) does not contribute since $Q_{E}^{(a)}$ lies on the edge extension. Another situation is shown in Figure 8, where both $Q_{E}^{(a)}$ and $Q_{E}^{(b)}$ lies on their edge extension. Therefore, no edge diffraction field component is present. Only corner fields will be present at the receiver. Observe that there are two components of the corner diffracted fields present, one for each of the coordinate systems shown. Figure 9 shows the case where edge and corner diffracted fields from both edges are incident upon the receiver.
E. BROADSIDE ECHO AREA PATTERNS OF FLATE PLATES

The broadside echo area of flat plate structures can also be computed by use of Equivalent Current (EC) concepts provided this is done quite carefully. It iss apparent chat, the $E_{C} C_{y}$ cannot be used when 'a caustic and a shadow or reflection boundary coincidearnthiscisł béso cause the EC is obtained from the far field diffraction coefficient * (see Equations (19) and (20)), which becomes singular in the direction . of the reflection or shadow boundary. Keller $[20]$ showed that this singularity could be eliminated by considering the diffraction from points on the opposite sides of the iprate '(ornt aperture). He invoked the forward scattering theorm and used only the imaginary component of the diffraction coefficient. Ryan [21] used essentially this approach as did Millar $[9-11]$ to find the scattered field in the direction of the shadow boundary for square and circular plates. However, there is an error of a factor of two in Ryan's solution for the circular plate. Ryan also used both a set of electric and magnetic Equivalent Currents which corrected the error and lead to the correct resultor

1st page Chapter end line
Figure 7. Case of only-one-edge-diffractéd firevd antaboth cornernine fields are received by the receiver.

> 1st page Chapter end line

Figure 8. Case where $\overrightarrow{n T} \overrightarrow{\operatorname{corner}} \overrightarrow{\mathrm{fi}} \overrightarrow{\mathrm{lds}}$ lst page Chapter end line Figure 8. Case where only corner fields are received by the receiver.

1st page Chapter end line
Figure 9. Case of alt edge and corner diffracted fields are receive by the receiver. usi ir or liws

Careful examination of these prior studies leads one to a means of generating the fields in the direction of the shadow or reflection boundary as has been achieved by others but also over the main lobe that is formed in the vicinity of this caustic.

Consider the plate shown in Figure 10. To compute the scattered fields in the vicinity of the broadside, only the components of electric and magnetic currents perpendicular to the incident plane are used. This, in essence, is the same as representing the plate structure as being segmented into strips as is shown in Figure 11.

One must, however, inject a word of caution at this point. If the observation point from a straight edge is too far removed from the space occupied by the actual set of diffracted rays, then the Equivalent. ;currents on that edge should not be expected to predict the fields at the observation point accurately. This has already been suggested and is now done with the corner diffraction.

Abstract

T The Equivalent current method will give results for the appropriate regions of space near broadside that are accurate to within a one $d B$ which is acceptable in most RCS applications. However if a greater accuracy is desired, one has to include the higher order diffraction contributions. An example of such a case is the scattering from an elongated plate as shown in Figure 12. The double and triple diffracted field components should be included in this solution to improve the results. The above method of analysis is one of the reasons that the strip is to be reconsidered in some detail in Chapter III. Observe that this approach eliminates the need to use Physical Optics (PO) or the Physical Theory of Diffraction (PTD) for this type of scattering.

Figure 10. Equivalent Currents to be used in principle plane pattern computation.

Figure 11. Strip model. LAS CET 1 NHL

$$
\text { paci } 26
$$

inch

Center Guide

Pate \#
1% inch

FIRST ORDER DIFFRACTION MECHANISM

THIRD ORDER DIFFRACTION MECHANISM

SECOND ORDER DIFFRACTION MECHANISM

Figure 12. Diffraction mechanism for a plate elongated in the transverse direction.
F.-EDGE WAVE FORMULATION

If one considers a!monopole on a perfectly conducting plate, the field diffracted by a corner on the plate is given by Equation (26). A An interesting result is obtained if one considers the case when the monopole field is diffracted from the corner along the extension of the edge, as shown in Figure 13. In the following notation for $C_{i j}$ the first subscript indicates corner i and the second indicates edge j.

In this case, namely along the edge extension, the different parameters defined in Equation (26), i.e., s, s', s", all will approach infinity and $\beta_{0}, \beta_{0 C}$ will approach zero. Using a limiting analysis [22], Equation (26) yields,

$$
\left\{\begin{array}{c}
E_{\beta_{o}^{(e w)}}^{(e w)} \tag{27a}\\
E_{\phi}^{(e w)}
\end{array}\right\}=\left\{\begin{array}{ll}
E_{\beta_{0}^{\prime}}^{i}\left(Q_{c}\right) & D_{s}^{(e w)} \\
\left(s_{c}, \phi, \phi^{\prime}, \beta_{c}\right) \\
E_{\phi^{-}}^{i}\left(Q_{c}\right) & D_{h}^{(e w)} \\
\left(s_{c}, \phi, \phi^{\prime}, \beta_{c}\right)
\end{array}\right\} \sqrt{s_{c}} \frac{e^{-j k s}}{s}
$$

jwhere

$$
\begin{align*}
& \left\{\begin{array}{l}
D_{s}^{(\mathrm{ew})} \\
D_{h}^{(\mathrm{ew})}
\end{array}\right\}=\frac{e^{-j \pi / 4}}{2 \sqrt{\pi^{k}}} \frac{\left(1+\cos \beta_{c}\right)}{2 \sin \left(\beta_{c} / /\right)_{p t e r} L_{i n}} F\left[2 k s_{c} \sin ^{2}\binom{\beta_{c}^{\beta}}{2}\right] \\
& \left\{\begin{array}{ll}
\sin \frac{\phi}{2} & \sin \frac{\phi^{\prime}}{2} \\
\cos \frac{\phi}{2} & \cos \frac{\phi^{\prime}}{2}
\end{array}\right\} \tag{27b}
\end{align*}
$$

Equation (27) describes a non-decaying wave which propagates on the edge of the plate, hence, EthéSname ledgewave. T This edge wave is excited by diffraction from thincorner of this edge. This field satisfies the wave equation and the edge condition and therefore, is a valid solution for the fields propagating on an edge.

Center Guide

1 inch

The derivation of Equation (27) and a detailed discussion of the ledge wave mechanism is shown in Appendix C. It is interesting to note that the diffracted field across the plate is cross polarized with res- $\xrightarrow{\text { inch }}$ pect to the field diffracted by the corner as is shown in Figure 13. This cross polarization effect is a consequence of the edge wave mechanism. It is one of the primary sources that contribute to the cross polarization field in scattering and antenna problems. This topic is lgoing to be discussed in substantial detail. in Chapters VI and VIII.

1st page Chapter end line

— — — — — - lst page Chapter end line

BACKSCATTERING FROM A PERFECTLLY CONDUCTING STRIP

The infinite strip problem is a simple one, because the strip is the simplest shape which exhibits multiple diffraction from edges. The understanding of the different mechanisms that form the solution for the strip will help tofunderstand andrsolve other related problems. The scattering of $p l a n e$ waves by a perfectly conducting strip has been treated extensively. J. Freeland, et. al, [23] found an approximate solution for the current on the strip and used it in conjunction with the radiation integral to find an approximate current pattern which is used with the GTD pattern to construct a pattern which is accurate at all aspects. J.S. Yu, et. al., [24], used Sommerfeld's exact solution [25] in conjunction with the reciprocity theorm and a selfconsistent GTD formulation to account for higher order diffraction to lobtain the required radiation patterns for the H-polarized plane wave case. Reference [26] lists some of the more significant papers on the scattering by a strip. The objective of this work is to compute the lbackscattered field pattern using the Kouyomjian-Pathak (K-P) form of the diffraction coefficient and compare the results with the exact Mathieu solution.
A. STRIP GEOMETRY

The perfectly conducting strip is assumed to have infinite length, zero thickness and finittet width. CAahomogeneousitplane wave is
— — — — - \quad lst page Chapter end line

Center Guide

1 inch
illuminating the strip with both the TE and TM polarization cases considered. Figure 14 shows the strip geometry in which an infinite strip' is located in the $X-Z$ plane where a/ λ is the strip width. The angles \xrightarrow{l} inch (ϕ, ϕ^{\prime}) are the incident-and-scattering-angles-respectively and ρ, ρ_{2} are the distances from edges (1) and (2) to the observation point. The phase is referred to edge (1).
B. TMZ POLARIZED CASE

A homogeneous E-polarized plane wave is incident at an angle ϕ^{\prime}, assuming that the plane-waveshas uniteamplitude then the incident field can be written as: Typing Guide Paper

Figure 14. Strip geometry. ${ }^{1}$ st page Chapter end line

- — - - lst page Chapter end line

For this case the only important dififfractionncomponent is the single diffracted one from edges 1 and 2. The double diffracted component is a slope diffracted wave which has a negligible contribution to the total back scattered field. The general expression for the two dimensional diffracted field from an edge is given by

$$
\begin{equation*}
E^{d}=E^{i} \text { (Q) } D_{S} \frac{e^{-j k s}}{\sqrt{\sqrt{1-S} I S} / \text { DIS'SERTATION where }} \tag{29}
\end{equation*}
$$

D_{S} is the soft ordinary scalar diffraction coefficient given by:

$$
\begin{equation*}
D_{S}=\frac{-e^{-j \pi / 4}}{2 \sqrt{2 \pi k}}\left\{\frac{1}{\cos \beta^{-} / 2}-\frac{1}{\cos \beta^{+} / 2}\right\} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\bar{E}^{i}=\hat{z} e^{j k\left(x \cos \phi_{1}^{\prime}+y \sin \phi_{1}^{\prime}\right)} \tag{28}
\end{equation*}
$$ sional diffracted field from an edge is given by i.

where

$$
\beta^{ \pm}=\phi \quad \pm \phi^{\prime}
$$

and s is the distance from the diffraction point to the receiver and $E^{i}(Q)$ is the value of the incident field at the diffraction point Q. The backscatter case $\phi=\phi^{\prime}$ and Equation (30) reduces to

$$
\begin{equation*}
D_{S}=\frac{-e^{-j \pi / 4}}{2 \sqrt{2 \pi k}}\left[1 \quad \frac{1}{1}\right] \tag{31}
\end{equation*}
$$

the field diffracted from edges (1) and (2) are given by

$$
E_{(1)}^{d}=D_{S}^{(1)} \frac{e^{-j k \rho}}{\sqrt{\rho} \text { 1st page Chapter end line }} \quad \begin{align*}
& \quad-\cdots-\cdots \text { list page Chapter end line } \tag{32}
\end{align*}
$$

inch
Page: \#

where the subscripts (1) and (2) indicate edges (1) and (2) such that

$$
\begin{aligned}
& D_{S}^{(1)}=\frac{-e^{-j \pi / 4}}{2 \sqrt{2 \pi k}}\left(1-\frac{1}{\cos \phi_{1}^{1}}\right), \\
& D_{S}^{(2)}=\frac{-e^{-j \pi / 4}}{2 \sqrt{2^{\pi k}}}\left(1-\frac{1}{\cos \phi_{2}^{\prime}}\right), \text { and } \\
& \phi_{2}^{\prime}=\pi-\phi_{1}^{\prime} .
\end{aligned}
$$

The total diffracted field is given by adding, Equations (32) and (33) or

$$
\begin{align*}
& E_{\text {total }}^{d}=\frac{-e^{-j \pi / 4}}{\sqrt{2 \pi k}} \\
& \quad e^{j k a} \cos \phi_{1}^{\prime} \frac{e^{-j k \rho}}{\sqrt{\rho}} \tag{34}
\end{align*}
$$

The echo width is defined 27] by

$$
\begin{equation*}
L_{e}=\underset{\rho \rightarrow \infty}{\operatorname{limit}}\left[2 \pi \rho \quad\left|\frac{E^{d}}{E^{i}}\right|\right] \tag{35}
\end{equation*}
$$

Note that while Equation (31) becomes infinite as $\phi^{\prime} \rightarrow 90^{\circ}$ (broadside). Equation (34) remains finite since the $\frac{1}{\cos \phi}$, term and the $\frac{1}{\cos \phi_{2}^{\prime}}$ term cancel in the limit as $\phi{ }_{1} \rightarrow 90^{\circ}$. Equation (34) then reduces to

$$
\begin{equation*}
E_{\text {total }}^{d}\left(\phi^{\prime}=90\right) \simeq \frac{e^{j \pi / 4}}{\sqrt{2 \pi k}} k a \frac{e^{-j k \rho}}{\sqrt{\rho}} \tag{36}
\end{equation*}
$$

substituting Equation (36) into (35) one gets:

$$
\begin{equation*}
L_{e}\left(\phi^{\prime}=90\right) \simeq k a^{2} \tag{37}
\end{equation*}
$$

which is the required value as given by physical optics approximation. It is the combination ${ }^{1}+{ }^{\circ}$ the diffanter field from the two edges that cancels this singularity. ———— list page Chapter end line

$$
\sqrt[4]{ } 1 \text { inch }
$$

C. TE POLARIZED CASE

For this case, the homogeneous plane wave incident field is given by

$$
\begin{equation*}
\bar{H}^{i}=\hat{Z} e^{j k\left(x \cos \phi_{1}+y \sin \phi_{1}\right)} \tag{38}
\end{equation*}
$$

For the TE case it is necessary to include higher order diffraction terms to obtain the required pattern.

The effect of thesefields becomes important as the angle of incidence approaches grazingyinciidencede Therssingle diffracted field is obtained in a similar manner as in the TM case with soft, ordinary diffraction coefficient D_{s} replaced by the hard ordinary diffraction coefficient, i.e.,

$$
\begin{equation*}
D_{h}=\frac{-e^{-j \pi / 4}}{2 \sqrt{2 \pi k}} \quad\left[1+\frac{1}{\cos \phi^{\prime}}\right] \tag{39}
\end{equation*}
$$

and the fields are given by:

$$
\begin{align*}
& H_{(1)}^{d}=D_{h}^{(1)} \frac{e^{-j k \rho}}{\sqrt{\rho}} \tag{40}\\
& H_{(2)}^{d}=D_{h}^{(2)} e^{j 2 k a \cos \phi_{1}^{\prime}} \frac{e^{-j k \rho}}{\sqrt{\rho}} \tag{41}
\end{align*}
$$

with

$$
\begin{aligned}
& D_{h}^{(1)}=\frac{-e^{-j \pi / 4}}{2 \sqrt{2 \pi k}}\left(1+\frac{1}{\cos \phi_{1}^{\prime}}\right) \text { and } \\
& D_{h}^{(2)}=\frac{-e^{-j \pi / 4}}{2 \sqrt{2 \pi k}} \text {, }\left(1+\frac{1}{\text { st }} \text { pagos }\right) \text { end line }
\end{aligned}
$$ The total singly diffracted field is then given by the sum of (40) and (4.1),_,_in_the_same_manner_as_jus.tidiscussed,_i..e...

The double diffraction mechanisms are illustrated by rays in Figure 15. The field diffracted from edge (1) give rise to two rays which are in turn diffracted from edge (2). The sum of the fields of these two rays give the double diffracted field from edge (2), i.e.,

$$
\begin{equation*}
H_{(21)}^{d}=R_{1}+R_{2} \tag{43}
\end{equation*}
$$

where
THESIS/ DISSERTATION

(2)
(a)

Figure 15. Double diffractionfield components for a strip. and line \ldots (a) Top side; (b) Bottom side.

where
$D_{h}\left(L, \phi, \phi^{\prime}\right)=\frac{-e^{-j \pi / 4}}{2 \sqrt{2 \pi k}}\left[\frac{F\left[2 k L \cos ^{2} \beta^{-} / 2\right]}{\cos \beta^{-} / 2}+\right.$ $\frac{F\left[2 k L \cos ^{2} \beta^{+}+y / 2\right]}{\left.\cos \beta^{+} / 2 T^{T y p i}\right]}$ neg Guide Paper
$\beta^{t}=\phi \pm \phi^{\prime}$ and ϕ, ϕ^{\prime} are as defined in Figure 16.

Hst page Chapter end line
Figure 16. Definition-of-incidence-and diffraction Chanter. end line

$$
R_{1} \equiv R_{2}
$$

then

THESIS / DISSERTATION

Typing Guide Faper

$$
\begin{align*}
& H_{(21)}^{d}=2 R_{1}=2 R_{2} \text {, and } \\
& H_{(21)}^{d}=D_{h}\left(a, 0, \phi_{1}^{\prime}\right) D_{h}\left(a, \pi-\phi_{1}^{\prime}, 0\right) \frac{e^{-j k a}}{\sqrt{a}} e^{j k a \cos \phi_{1}^{\prime} \frac{e^{-j k \rho}}{\sqrt{\rho}}} \tag{47}
\end{align*}
$$

Since reciprocity must hold for the doubly diffracted field, the doubly: diffracted field from edge (1), i.e., $H_{(12)}^{d}$ must be equivalent to Equation (47). The total doubly diffracted field is then givey by:

$$
\begin{equation*}
H^{2 d}=2 D_{h}\left(a, 0, \phi_{1}^{\prime}\right) D_{h}\left(a, \pi-\phi_{1}^{1}, 0\right) \frac{e^{-j k a}}{\sqrt{a}} e^{j k a \cos \phi_{1}^{i}} \frac{e^{-j k \rho}}{\sqrt{\rho}} \tag{48}
\end{equation*}
$$

where the superscript, 2d, indicates double diffraction.

Figure 17 illustrates the different diffraction mechanisms that combine to give the triple diffracted field from edge (1). In this case, the incident field on edge (1) is the doubly diffracted field from edge (2).

$$
\begin{equation*}
H_{(121)}=R_{1}+R_{2}+R_{1 \text { st }}+R_{\text {page }} \text { Chapter end line } \tag{49}
\end{equation*}
$$

$\ldots \ldots$ lsit page Chapter end line

Center Guide

1
Page \#
$11 / 2$ inch

(2)
(a)

Figure 17. Triple diffraction field components for a strip.
in a similar way, one finds that all 4 components are equal, ie.,

$$
\begin{equation*}
H_{(121)}=4 R_{1} \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{1}=\frac{1}{4} D_{h}\left(a, 0, \phi_{1}^{\prime}\right) D_{h}\left(\frac{a}{2}, 0,0\right) D_{h}\left(a, \phi_{1}^{\prime}, 0\right) \frac{e^{-j 2 k a}}{a} \frac{e^{-j k \rho}}{\sqrt{\rho}} \tag{51}
\end{equation*}
$$

or
1st page Chapter end lincj2ka $-j k \rho$
where the superscript $3{ }^{3 d}$ indicatesstriple diffrgaction. The sum of Equations (42), (48), andref(53:) (gives theptotal backscattered field for the TE case. Note that at normal incidence, the total backscattered field is dominated by the single diffraction term given by Equation (42), which in turn, leads to the same value for the echo width given by Equation (37)..

The sum of the singly, doubly and triple diffracted field component is sufficient for computing the backscattered field for strip length of wavelength and above. For smaller lengths, higher order diffractions must be included. Note that the fourth order diffraction term is given by

$$
\begin{align*}
H^{4 d} & =2 D_{h}\left(a, 0, \phi_{1}^{\prime}\right)\left[D_{h}\left(\frac{a}{2}, 0,0\right)\right]^{2} D_{h}\left(a, \pi-\phi_{1}^{\prime}, 0\right) e^{j k a \cos \phi_{1}} \\
& \frac{e^{-j 3 k a}}{a \sqrt{a}} \frac{e^{-j k \rho}}{\sqrt{\rho}} \tag{54}
\end{align*}
$$

The derivation of Equation (54) follows the same procedure used for the doubly and triple diffracted fields. A self consistent UTD solution for the strip which accounts for all higher order diffraction terms is presented in ${ }^{1}$ Appendijx Dhapter end line
$\xrightarrow{\text { l1/2 inch }}$
D. DISCUSSION

Center Guide
linch

The data computed using the above analysis is compared with the exact solution for a stri.p. 2 inch Chanter $18=28$ Line instrate the accuracy of this analysis for strip widths 3λ and 0.25λ. In all of these figures, the data is normalized to broadside level. Figures 18 and 19 show the results for both TM and TE cases for a 3λ strip width. The agreement with the exact solution is quite good. The results in Figure 19 are obtained by using diffraction terms up to the third order. Figures 20 and 21 show the TM and TE plane patterns for a strip width of $\frac{\lambda}{4}$. The TE pattern remainstineagreementswith the Texact solution while the
 from edge on. This deviation is caused by the failure of our assumption that the field diffracted from one edge to the other is a homogeneous cylindrical wave. As the strip size gets smaller, the nature of the diffracted field on the surface of the strip becomes more complex than a simple homogeneous cylindrical wave. Figure 22 shows the effect of adding the fourth order diffraction term to the results shown in Figure 21. This indicates that adding more higher order diffraction terms will not improve our result near edge on.

Comparing Figures 20 and 23, it is noted that the TM pattern is computed very accurately by just using single diffraction. This indicates that even for smaller strip widths, the interaction between the two edges is negligible and therefore, there is no need to include a slope diffraction term to account for edge interactions. On the other hand, comparing Figures 25 and 26 , illustrating the E-plane single diffraction term with their counterparts in the H-plane as illustrated in Figures 23 and 24, one observes the similarity between the two. Accordingly, one concludes that it is the double and triple diffraction terms in the E-plane pattern ${ }^{3}$ cthatereate thed difference between the E and H-plane patterns. $-\ldots$ lint page Chapter end line

Centcr Guide

Figure 18. H-plane echowidthpattern of a 3λ wide strip. $1 / 97$ il 110%
pai 42

1 st page (inapcer end the ...
-............ ist page Chapter end line Figure 19. E-plane echo width pattern of a 3λ wide strip.
\qquad us Nat lind

Figure 20. H-plane echo width pattern of a $\lambda / 4$ wide strip.
\qquad

2ha: 44

Figure 21. E-plane echo width pattern of a $\lambda / 4$ wide strip.

$11 / 2$ inch

1 st page Chapter end line
Figure 22. E-plane echo_width_pat.tern_of 'ajth/4awidelstriprwith-1 fourth order diffraction term included.

ist page Chapior end line
Figure 23. Contribution to H-plane-echo widthatattéñoyrsingle idiffraction mechanism for $\lambda / 4$ strip width.

Conter Guide

Figure 25. Contribution to Ex-pane echo widthopattern by single diffraction "mechanisms for $\lambda / 4$ stripowidth. hapter end line

Figure 26. Contribution toE-plane echo width pattern by single diffraction mechanisms for a 3λ wide strip.

Center Guide

$+$

$$
\begin{aligned}
---a / \lambda & =0.25 \\
-1 / \lambda & =0.5 \\
a / \lambda & =3
\end{aligned}
$$

 fraction mechanisms. - mn list page Chapter end line

Figures 27 and 28 show the contributions to the E-plane pattern

 by the double and triple diffraction terms. For a 3λ strip, the double diffraction term is only needed for incidence angles up to 40° and triple diffraction to 10^{0} fromedgenonter The inigh value obtained for these two terms for a 0.25λ strip makes it necessary to include higher order terms to offset this increase.THESIS / DISSERTATION
Typing Guide Paper

1st page Chapter end line
— — — — — - lst page Chapter end line

Centir Guide

1 inch

H-PLANE BACKSCATTERING FROM PLATES

A. PLATE GEOMETRY

Figure 29 illustrates the geometry used to define the plate which
 has N edges with the edgeyvectorisigiven byyer

$$
\begin{align*}
& \bar{e}_{p}=x_{p} \hat{x}+y_{p} \hat{y}+z_{p} \hat{z} \quad, p=1,2, \ldots, N \text {, and } \tag{55}\\
& \bar{e}_{p}=\bar{c}_{p+1}-\bar{c}_{p}=\dot{e}_{p} \hat{e}_{p} \tag{56}
\end{align*}
$$

Where \bar{c}_{c} is the position vector of the $p^{\text {th }}$ corner and e_{p} is its length. The p^{th} edge unit vector is then given by

$$
\begin{align*}
& \hat{e}_{p}=\frac{\left(x_{p+1}-x_{p}\right)}{l_{p}} \hat{x}+\frac{\left(y_{p+1}-y_{p}\right)}{l_{p}} \hat{y}+\frac{\left(z_{p+1}-z_{p}\right)}{l_{p}} \hat{z} \\
& \hat{e}_{p}=\bar{x}_{p} \hat{x}+\bar{y}_{p} \hat{y}+\bar{z}_{p} \hat{z} \tag{57}
\end{align*}
$$

lor

The plate normal unit vector and the binormal unit vector to the th edge ${ }_{\text {\% }}$ are defined, respectively, by

$$
\begin{equation*}
\hat{n}=\frac{\hat{e}_{p} \times \hat{e}_{p+1}}{\left|\hat{e}_{p} \times \hat{e}_{p+1}\right|}=n_{x} \hat{x}+n_{y} \hat{y}+n_{z} \hat{z} \tag{58}
\end{equation*}
$$

… ——....... list page Chapter end ino

Conter Guide

Figure 29. Plate Geometrys one boporen anc ine
and

$$
\hat{b}_{p}=\frac{\hat{n} \times \hat{e}_{p}}{\left|\hat{n} \times \hat{e}_{p}\right|}=b_{x} \underline{x+2 b_{y} \hat{\hat{y}} \hat{\hat{y}}+\hat{b}_{z} p \hat{z}_{e r} \text { I_ine }}
$$

B. EQUIVALENT CURRENT FORMULATION

The analysis of backscattering in this chapter from plates is done using the Equivalent current principle discussed in Chapter II. The H-plane pattern is analyzed here by using the first order edge diffraclion fields to formulate the Equivalent currents which are given by

$$
\begin{align*}
& I_{(1)}^{e}=\frac{2 j}{Z_{0}^{K}} \frac{G^{e}\left(n, \phi, \phi^{\prime}\right)}{\sin ^{2} \beta_{0}^{2}(p)} \quad\left(\bar{E}^{i} \cdot \hat{e}_{p}\right) \tag{60}\\
& I_{(1)}^{m}=\frac{2 j}{Y_{0}^{K}} \frac{G^{m}\left(n_{2} \phi, \phi^{\prime}\right)}{\sin ^{2} \beta_{0}^{(p)}} \quad\left(\bar{H}^{i} \cdot \hat{e}_{p}\right) \tag{61}
\end{align*}
$$

The derivation of Equations (60) and (61), and the definition of the different parameters is shown in Appendix (B). In these equations the subscripts of $\mathrm{Im}_{(1)}$ indicate the order of diffraction and the superscripts. indicate current type, i.e., the electric or magnetic currents.

The backscattered field is computed by substituting these currents into the radiation integral. The RCS is computed by using

$$
\begin{equation*}
\sigma:=\lim _{r \rightarrow \infty} 4 \pi r^{2} \frac{\left|E^{s}\right|^{2}}{\left|E^{i}\right|^{2}} \tag{62}
\end{equation*}
$$

It should be noted that Equations (60) and (61) are valid for computation of principle E and H plane patterns. For any other pattern cut, as the one shown in Figure 30 , one has to use the components of the Equivalent currents perpendicular to the plane of incidence accordingly Equations (60) and (61) are modified by replacing

Figure 30. Equivalentic CuryentiComponents used for computation in a pattern-cut-other than_the princibiple (pllaneser end line
l inch

where the unit vector \hat{e}_{\star} is defined as a unit vector normal to the plane of incidence, i.e.,

$$
\begin{equation*}
\hat{e}_{\star}=\frac{(\hat{I} \times \hat{n})}{|\hat{I} \times \hat{n}|} \tag{64}
\end{equation*}
$$

where \hat{I} is the incident Thitt vector and $\hat{n}^{\text {pren }}$ is the plate normal unit vector defined in Equation (58).

This use of Equivalent currents is necessary since the far field diffraction coefficient of a single edge becomes singular as the observation point approaches a shadow or reflection boundary. A diffraction from a second point in the incident plane is required to remove this singularity as was done earlier for the strip (see Equation (36)). A physical representation is that the plate takes the form of an array of strips parallel to the incidence plane.

Therefore, only the components of the Equivalent Currents perpendicular to the incidence plane need to be considered.
C. BACKSCATTERING FROM RECTANGULAR PLATE

Calculating the backscattered field from a perfectly conducting plate has been investigated by several authors. Ross $[28]$ has applied the Geometrical Theory of Diffraction and physical optics methods
 in agreement with measūred dāt except för lretionse near edge ond incindence.

$$
\int_{0}^{3}
$$

One of the reasons for the failure of his solution is the use of a plane. wave diffraction coefficient for the higher order diffraction mechanisms: Yu [29] improved the result for a rectangular plate by using the technique developed by Ufimtsev[30], who used nonuniforming indrical waves in
conjunction with the reciprocity principle to describe the secondary dif-
fraction. His solution also did not include a necessary edge wave mechfraction. His solution also did not include a necessary edge wave mechanism. This problem is also to be discussed in this section for the RCS of thin rectangular plate at grazing incidence as a function of plate length and vertical polarization. Hey, et. al [31] and Knott, et. al [32] have reported measured data for flat plates two wave lengths in width and lengths as small as $0,05 \lambda$ and as long as 7λ. Ross [28] also provided an emperically, $\begin{aligned} & \text { rderivedsequațion to } \\ & \text { fit }\end{aligned}$ the measured data. Finally, a set of different shaped plates are studied. In several instances, the edge wave mechanisms have not been included and this will be noted as is appropriate.

1. RCS From Thin Rectangular Plate Illuminated At Edge On

The geometry of the problem is shown in Figure 31. A rectangular plate of length $\frac{a}{\lambda}$ and width $\frac{b}{\lambda}$ is located in the $x-y$ plane, and is illum-! inated at edge on by a plane wave of unit amplitude and polarized parallel to edges 2 and 4 . The term $C_{i j}$ defines corner i on edge j. The incident field is given by

$$
\begin{equation*}
\bar{E}^{i}=\hat{x} e^{j k y} \tag{66}
\end{equation*}
$$

As this field is diffracted from corner C_{11}, it excites an edge wave. Over the surface of the plate, the field of this edge ray is of course, polarized perpendicular to the plate. This field illuminates the back edge. The field diffracted back y this edge interacts with the front edge and corners $\mathcal{C}_{q 91}$ and $C_{43 \text { or }}$ Figure 32 illustrates the different interactions that contribute-to the backescatteredrafieldd $0 \mathrm{~b}=$ serve that the second corner diffraction is required to convert the z-pol-ari-zed-field-on-the-surf-acé-oflthe-pitate-to-the-originat-x-potarized

Gernter Guidr

Figure 31．Edge on case geometry．
state．Also，these z－polarized fiellds on the surface of the plate will yield a strong cross polarized component for some non－grazing incidence and radiation angles．This cross polarizing mechanism has not been \square studied in detail at this fime but the teenniques developed herein are directly applicable to it．

Figure 32－a illustrates the interaction between corner C_{11} and itself．The different parameters shown in the figure are defined by

$$
\begin{aligned}
& s_{1}=\sqrt{a^{2}+\left(b-x^{2}\right)^{2}} \\
& \text { THESIS/ DISSFRTATION } \\
& { }^{\beta_{c_{1}}}=\tan ^{-1} \frac{\left(b-x^{4}\right)^{i n g}}{a}, \text { GUi O and } \beta_{0}=\frac{\pi}{2}{ }^{\beta} c_{1}
\end{aligned}
$$

(c) EDGE DIFFRACTION FROM FRONT EDGE

Figure 32. Edge on case interactions. 1 sit pare Chancer end iria M, 2n M

61 i

where $D_{h}^{(e w)}$ is defined in Equation (27). Using the Equivalent current concept, one can find the field due to the back edge. This field, in turn, diffracts from corner C_{11} and radiates the desired x-polarized field cômponent given by,

The mechanism consisting of diffraction from corner C_{11} to corner C_{21} back to corner C_{11} and hence to the source is inherent in Equation (68). Of course, there is a similar component that comes from corner C_{43}.

The interaction between C_{11} and C_{43}, shown in Figure $32-b$ is found in a similar way. In this case the field diffracted by the back edge is diffracted also by the front edge. The necessary parameters shown in Figure 32-b are defined as follows:

$$
\begin{aligned}
& s_{2}=\sqrt{a^{2}+x^{\prime 2}} \\
& \beta_{c_{2}}=\tan ^{-1} \frac{x^{\prime}}{a} \\
& \beta_{d}=\frac{\pi}{2}-\beta_{c_{2}}
\end{aligned}
$$

and $s_{1}, \beta_{c_{1}}, \beta_{0}$ are as defined before.
The backscattered field due to this interaction is given by 1 st page Chapter enid line

Figure 33. $E_{\theta}, \theta=90^{0}$ RCS pattern for a 4 inch flat plate ($\lambda=1.28$ inch).

Figure 34. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for a 5×5 inch flat plate ($\lambda=1.28$ inch)

i irmoin

Figure 35. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for a 6×6 inch flat plate in: ($\lambda=1.28$ inch).
$\left[\begin{array}{l}\text { Cing inch }\end{array}\right.$
$\xrightarrow{\text { inch }}$

$\rightarrow-$

1st parge Chapter ond line
Figure 36. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for a $3 \lambda \times 3 \lambda$ flat plate. 'ond lins
\qquad

Figure 38. Edge on RCS of a rectangular plate as function off plate length ($b / \lambda=0.53$).

Figure 39. Edge on RCS of arectangular plate as a function of plate length ($b / \lambda=2$.) .

Figure 40. Edge on RCS of a rectangular plate as a function of plate length ($\mathrm{b} / \mathrm{\lambda}=2$).
have not been included in the solution. A three dimensional plot for the RCS from a $2 \lambda \times 3 \lambda$ rectangular $p l a t e ~\left(E_{\theta}\right.$ polarization) is shown in Figure 37. Again, only Equivalent currents corresponding to first order interactions árehusedato generàte the data shown. As will be shown in Chapter VI, the higher order interactions play a very important role in RCS computations in pattern cuts other than the principal one. These interactions are not included in Figure 37. Figure 38 shows the RCS of a rectangular plate illuminated at edge on. The plate width is 0.53λ. The results are compared with measured data obtained by [32], and the results are in good agreement for plate lengths 3λ and above. At the lower sisizes, the agreement is in error by several decibiles.JuThis Findicates that for small plate widths and lengths, higher order interactions that involve other corners become significant and should be included in the solution. This becomes clearer if one compares Figure 38 and Figure 39. Figure 39 shows the results compared to measured data obtained by [31] for a 2λ plate width. Over the same plate lengths range, i.e., $(2 \lambda-2.6 \lambda)$, the peak to peak deviation is about 0.5 dB in Figure 39, while it is about 2.5 dB in Figure 38. By examining Figures 38 and 39 , one notices the rapid change of the fields near a pattern null. This behavior makes the results more sensitive to measurement alignment errors in that region of the pattern. The computed results for the null value in both Figure 38 and 39 is in error by several decibles. Note that the measured results span the computed results at $\frac{a}{\lambda}=2.4$, which indicates an alignment error in the measured results. In Figure 40 , similar results are presented for a 2λ plate width. The agreement is good which indicates that the dominant mechanisms for large plate sizes are the ones discussed earlier.
D. BACKSCATTERING FROM A GENERAL SHAPE PLATE

1st page Chapter end line
In this section, the-RCS. patterns of different ctiypes ϵ of (platès are analyzed. Northrop $[34]$ analyzed the plate shown in Figure 41 by subdividing-it-into a-number-of-strips- whe-scattering-from each

Figure 41. Northrop Fin.
of these strips was obtained using Ufimster's strip solution and then summing these to give the scattering from the plate. This model has two disadvantages:

1. As the plate geometry changes, one has to find the optimum number of strips that give satisfactory results.
2. If a pattern cut other than the principle plane cut is required, the modification of the strip model is not a simple task.

The Equivalent current method used to analyze the different types of plates overcomes all of these difficulties. While the Equivalent current model used in the region of the broadside lobe is in essence a modified version of the strip model, this model reduces to a much
simpler model for other regions of the pattern. It becomes a simple set of line currents around the perimeter of the plate which are used in conjunction with a free space Green's function. Thus, the RCS patterns of these Equivalent-currents-can-readily be computed for any observation point. The results obtained by this method for the H-plane pattern (E_{θ} polarization) is shown in Figure 42. The solution actually traces the solution obtained by Northrop and is in good agreement with their measurements. In the region near edge on, i.e., $0^{\circ}<\mathrm{PH}<30^{\circ}$ and $150^{\circ}<\mathrm{PH}<180^{\circ}$, the Equivalent current solution differs from measurements. This may require the use of the edge wave mechanism. It was found that at such highi-firequenciès are extremely sensitive toporientation. ${ }^{\text {Pan }}{ }^{\text {r }}$ Figure 43, the results obtained by rotating the plate in the $x-z \mathrm{pl}$ ane by a mere 2.5° are shown. A drop by 10 dB is obtained at $\mathrm{PH}=0^{\circ}$.

The principal $H-p l a n e ~ R C S ~ p a t t e r n ~ i s ~ d o m i n a t e d ~ b y ~ t h e ~ f i e l d s ~$ diffracted by the front edge. In regions near edge on, the Edge wave mechanism gives a significant contribution. This is seen in Figure 42 ($150^{\circ}<\mathrm{PH}<180^{\circ}$ region) and also in Figure 44 which shows the principal H-plane RCS pattern for Northrop fin at 9.067 GHz compared to measured results obtained by Mr. Chu [35]. Good agreement is obtained and one notes the existance of ripple in the angular region $0^{\circ}-60^{\circ}$, which is caused by the edge wave mechanism that is not yet included in our solution. Figure 45 shows three different modifications to Northrop fin. The effect of these different modifications on the H-plane RCS pattern is clearly seen in Figure 46 which shows the H-plane pattern for these plates compared to that of the Northrop fin. One notices that a small change in the angles between edges results in more than 13 dB reduction in RCS in these planes. Of course, this reduction is achieved at the expense of an increase elsewhere. 1 st page Chapter end line
— — — — — list page Chapter end line

Figure 42. $\mathrm{E}_{\theta}, \theta=90^{\circ} \mathrm{RCS}$ pattern of Northrop Fin at 17.76 GHz .

Its inch

Figure 43. E_{θ}, effect of plate rotation on $\theta=90^{\circ} \mathrm{RCS}$ pattern of Northrop fin at 17.76 GHz .

Figure 44． $\mathrm{E}_{\theta}, \theta=90^{\circ}$ RCS pattern of Northrop fin at 9.067 GHz ．

1 \% パ

Figure 45. Plate modification of Northrop Fin: All dimensions are in CM.

Figure 46. $E_{\theta}, \theta=90^{\circ}$. RCS patterns for the plates shown in Figure
(45) compared to Northrop Fin at 9.067 GHz .

The following results to be discussed demonstrate the versitility and power of the Equivalent current method. Only first order diffraction Equivalent currents are used to compute the results. All plates are located in the $x-z$ p. - ane-and-the-H-pl-ane-RES pattern is computed in the plane $\theta=90^{\circ}$.

Figure 47 shows a plate with a curved edge smoothly connected to a straight edge which forms a triangular type junction. The model used in the analysis is shown in Figure 48. It uses three straight edges to model the curved part of the original plate. Figure 49 shows the H-plane RCS patitern (E_{θ} polarization') fior this plate and the agreement between calcuinted and measured data is quite good. The deviation between the two results, especially as one approaches the edge on case, is due to several factors. The first is probably the effect of the finite curvature of the curved edge which is not accounted for in this particular model. The second factor is probably the higher order interactions such as edge wave mechanism and multiple diffractions between edges. Figure 50 shows a plate which has no straight edges. The plate model used in the computation is shown in Figure 51. It uses 18 edges to model the curved edges of the original plate. Figure 52
 region $90^{\circ}<\mathrm{PH} 180^{\circ}$, the computed results are quite good. It predicts quite closely the general behavior of the lobe structure. However, in the region $45^{\circ}<\mathrm{PH}<90^{\circ}$, our model does not predict the deep nulls shown in the measured data. It is our understanding that this lobe structure results from a creeping wave like mechanism associated with the edge curvature. Such mechanisms give rise to two waves which interact with each other to give the deep nulls observed in the measured data. Again the failure of this model to simulate the finite edge curvature is probably the cause of the deviation between the two results. As a first
 fects of the finite curvature of an edge. Such a method has not yet been included in our solution.

Figure 47. Plate geometry (Actual size).

Figure 48．Model used for the plate shown in Figure 47. \＆Dimensions in cent imeters．$\quad=$

Figure 49. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the plate shown in Figure 48.

!re:

Figure 50. Geometry for a plate with no straight edges (Actual size).

Figure 51. Model used for the plate shown in Figure 50. Dimensions in centimeters.

Figure 52. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the plate shown in Figure 50.

The closed form solutionsforscatiteringTfroin a perfectly conducting thin circular disk has beéniavailable forparny years [36,37]. Several authors worked on a more efficient way to calculate the scattered field. DeVore, et. al., [38], succeeded in reducing the difficulty lin obtaining the Eigenvalues for oblique incidence. Bechtel [39] used Keller Geometrical Theory of Diffraction to compute the disk RCS for both principal polarizations using first order diffraction. His results were in good agreement with measured data for angles less than 30° from broadside. For angles greater than 30°, his E-plane patterns deviate considerably from measured data. This is due to neglecting the higher order interactions. The H-plane pattern, on "the other hand, deviates from measured data due to neglecting the leffect of creeping waves for near edge on incidence as discussed by Ryan, et. al [40]. A more detailed list of references concerning scattering from a disk is shown in [26].

In this section we use the Equivalent current method to compute the H-plane RCS pattern of a disk using the Equivalent currents corresponding to first order diffraction. The geometry of the problem is shown in Figure 55. A disk of radius a is located in the $y-z p l a n e$. The pattern cut is takenntinithe x-yaplaneenciheirdisk is modeled by a multi-sided plate. Figüre ${ }^{-56}$ shows two piate models; fopter has en line sides and the other has 12. The number of sides used is limited by its electrical length which should be of the order of a wavelength.

Figure 53. Plate geometry. Dimensions in centimeters.

Figure 54. $\dot{E}_{\theta}, \theta=90^{\circ}$ RCS pattern for the plate shown in Figure 53.
Center Guide
$\xrightarrow{2}$

Figure 55. Disk geometry.
1st page Chapter end line
— - lst page Chapter end line

Figure 56. Disk models geometry.

Figure 57. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 8 sided disk model.

$$
(k a=8.28) .
$$

Figure 59. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 8 sided disk model ($\mathrm{ka}=8.59$).

Figure 60. $\mathrm{E}_{\theta}, \theta=90^{\circ}$ RCS pattern for the 12 sided disk model

$$
(k a=8.59) .
$$

Figure 61．$E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 8 sided disk model

$$
(k a=9.45)
$$

Figure 62. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 12 sided disk model ($k a=9.45$).

1% inch

Figure 64. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 12 sided disk model ($k a=10$).

1 incis,

Figure 66. $\mathrm{E}_{\theta}, \theta=90^{\circ}$ RCS pattern for the 12 sided disk model ($k a=20$).
$10 \div-118$

102

Figure 67. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 8 sided'disk modet.' The pattern cut is taken through corners ($k a=8.28$).

Figure 68. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 12 sided disk model. The pattern cut is taken through corners $(k a=20)$.

$$
104
$$

inch

Figure 70. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 12 sided disk model compared to the rim integration method $(k a=10)$.

$$
\left[\begin{array}{l}
E_{\beta_{0}}^{c} \tag{71}\\
E_{\phi}^{c}
\end{array}\right]=-\left[\begin{array}{ccc}
E_{\beta^{\prime}}^{j}\left(Q_{c}\right) & D_{s}^{c} \\
E_{\phi^{\prime}}^{i} & \left(Q_{c}\right) & D_{h}^{c}
\end{array}\right] \quad \frac{e^{-j k s}}{s}
$$

where

$$
\begin{equation*}
D_{S}^{c}=C_{s}\left(Q_{E}\right) \frac{\tan \beta_{O_{C}}}{8 \pi} \sqrt{\frac{8 \pi}{k}} e^{-j \pi / 4} \tag{72}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{h}{C_{s}\left(Q_{E}\right)}=\frac{-e^{-j \pi / 4}}{2 \sqrt{2 \pi k}}\left[\left|F\left(\frac{1 / \lambda}{k \cos ^{2} \beta_{o_{c}}}\right)\right| \mp \frac{-1}{\cos \phi}\left|F\left(\frac{\cos ^{2} \phi / \lambda}{k \cos ^{2} \beta_{o_{c}}}\right)\right|\right] \tag{73}
\end{equation*}
$$

substituting Equation (73) into (72) one obtains

$$
\begin{equation*}
D_{S}^{\mathrm{C}}=\frac{\mathrm{j} \tan \beta_{o_{C}}}{8 \pi k}\left[\left|F\left(\frac{1 / \lambda}{k \cos ^{2} \beta_{O_{C}}}\right)\right| \mp \frac{1}{\cos \phi}\left|F\left(\frac{\cos ^{2} \phi / \lambda}{k \cos ^{2} \beta_{0}}\right)\right|\right] \tag{74}
\end{equation*}
$$

Equations (72-74) were obtained by substituting

$$
\begin{aligned}
& L=\infty, L_{c}=\infty \\
& \beta_{c}=\pi-\beta_{O_{C}} \quad, \quad \beta_{0}=\pi / 2
\end{aligned}
$$

$$
\phi=\phi^{\prime}
$$

The definition of all the different parameters can be found in Chapter II, Section D.

For the special case when $\beta_{0_{c}}=\frac{\pi}{2}$, Equation (74) reduces to give

The above Equations were used to compute the RCS for some of the plates discussed in sections D and E. The plates are located
 $x-y$ plane. The results are compared with those obtained by using the Equivalent current method. Figure 71 shows the RCS pattern for a 2λ square plate. The pattern is taken in the principal plane $\left(\theta=90^{\circ}\right)$. The agreement between the two methods is excellent as one would expect. Figures 72 and 73 show the RCS conical patterns for the same plate. The patterns were taken for $\theta=60^{\circ}$ and $\theta=30^{\circ}$ respectively. The two methods agree well in the main lobe region. They start to deviate in the side lobes region especially as one approaches edge on incidence. The reason for this difference is that in the Equivalent current method, the three dimensional behavior of the scattered fields is computed through the radiation integral. One would question its accuracy in predicting the fields level as the receiving point is moved out from the main lobe region of the radiation integral pattern as is shown in Figure 74 . 'In the corner diffraction method, the three dimensional effects are taken care of by the transition functions involving β_{c} and $\beta_{O_{C}}$. Even though the two methods give two results that differ in the side lobe region, this difference is not going to affect the final results, since in this case, higher order interactions contribute significantly to all regions of the RCS pattern. This is to be discussed innemore detail in Chapter V and VI.

Figure 75 shows the H-plane RCS pattern for the plate shown in Figure 56. The agreement between the two methods is good

ist payn Ciapter and ?ne

Figure 71. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for a $2_{\lambda} \times 2_{\lambda}$ flat plate.
110
is 1 inch

the pego beapi:
Figure 72. $E_{\theta}, \theta=60^{\circ}$ RES pattern for a $2 \lambda^{2} \times 2 \lambda^{2}$ flat pláte. cnci linu
\qquad

Ist poge Chapter ond ino
Figure 73. $E_{\theta}, \theta=30^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ flat plate.

… 2 2 112

Figure 74. Radiation integral pattern.
for the entire pattern. Figures 76-77 show the H-plane RCS patterns for a disk for two sizes, ka-8.59 and 9.45. The pattern cut is taken through two corners in a symmetrical way. Figures 78 and 79 show the same data for the case when the pattern cut is taken through the edges as shown in Figure 56. The agreement is sufficient for engineering applications.

Finally, one should note that when using the corner diffraction method to compute the fields in the H-plane case, the pattern angles should be displaced by some small numbers, i.e., $P H+\varepsilon_{1}$ and $\theta+\varepsilon_{2}$ where ε_{1} and ε_{2} are much'tless3than' oner This' technique follows the same reasoning used in-Chapter III to obtainnt the fiefd vature at broadside.

Figure 75. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the p late shown in figure 53 at 9.067 GHz .

Figure 76. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 8 sided diskyondel The

Figure 77: $E_{\theta}, \theta=90^{\circ}$. RCS pattern for the 8 sjided disk model. The pattern cut is taken through corners ($k a=9.45$).
$11 / 2$ inch

Figure 78. $E_{\theta}, \theta=90^{\circ}$ RCS pattern for the 8 sided disk model. The........ pattern cut is taken through, edges ($k a=8.59$).

117

$x \times \times$ CORNER DIFF. METHOD

The analysis in this dissertationtisc being introduced sequentially \xrightarrow{l} inch according to the complexity. This chapter focuses attention on the H ${ }^{p} \mathrm{pl}$ ane patterns where the Electric field vector is oriented perpendicular to the plane of incidence.

The techniques used to obtain the broadside RCS in the H-plane are in general applicable for any other plane. The major developments for this broadside RCS analysis being the orientation of first order Equivalent Currents taken perpendicula to the incidence plane and then simply lusing the accuracy of the computer to remove the singularity at near ;normal incidence. This makes it possible to approximate the broadside RCS with good accuracy.

It would be expected that the near edge on incidence RCS is dominated by the leading edge of the plate for this polarization and in general this is found to be true exclusive of creeping wave type of phenomena. The effect of such creeping waves are evident in the RCS patterns of the circular disks for PH near 90°. However, for rectangular plates whose leading edge is longer than the edge parallel to the direction of propagation, the leading edge diffraction is the dominant mechanism. Even here for smaller square plates whose dimensions are of the order 'of a few wavelengths, the multiple corner diffraction and edge diffraction mechanisms become significant but not dominant.

However, as the plate becomes elongated in the direction of propagation, these multiple corner diffraction mechanisms become dominant terms and must be incorporated in the analysis. A later chapter will discuss in detail the H-plane RCS patterns for a narrow triangular plate where some rather interst page Chapter end line where some rather interesting features appear. page Chapter ond line

The following chapter focuses attention on the higher order diffrac tion mechanisms. These are particularly important for the E-plane RCS patterns and become dominant mechanisms for non-principal plane patterns

1st page Chapter end line
_ _ _ . - - lst page Chapter ond line

E-PLANE BACKSCATTERING FROM PLATES USING HIGHER ORDER INTERACTIONS

A. INTRODUCTION

In Chapter IV, the effect of the firsstorder interactions on RCS computation were discussedgrirtheseiinteractions generally involved only single edge diffraction terms. The fields associated with these mech-人anisms were sufficient for computing the H -plane pattern. The results jobtained by using the Equivalent Current (EC) method or Corner diffraction iwere in good agreement with the measured results through out the pattern! Some deviation between the calculated and measured results were observed in the near edge on region. These variations were due to the higher order interactions to be discussed here and in the following chapters.

In this chapter the interaction between plate edges shall be considered. This involves double and triple diffracted rays between edges. The EC method is to be used to compute their contribution to the RCS. These two types of multiply diffracted interactions will be seen to be very important components in the computation of E-plane RCS patterns.

The incident field is assumed to be a homogeneous plane wave and is given by

1st page Chapter end line
$\ldots \ldots$ lst page Chapter end line

The derivation of Equations (77-78) is shown in Appendix B. In these equations the subscripts of $I_{(2,3)}^{m}$ indicates the order of diffraction and the superscript indicates current type, i.e., the electric or magnetic currents. Figure 82 def ines the different parameters used, where $Q^{(p)}, Q^{(q)}, Q^{(v)}$ defines the diffraction points on edges p, q, and v, respectively. The edge unit-vectors are $\hat{e}_{p}, \hat{e}_{q}^{-} ; \hat{e}_{j}$ for these edges and s_{1}, s_{2} are the distances between these diffraction points. \hat{I} and \hat{d} are the incident and diffracted unit vectors.

When one substitutes these currents intotheradiation integral, numerical integriation has to be used to evaluate it. The integration is carried out only over the illuminated part of the edge. Observe that there is a shadow boundary effect in the ray trajectories of Figure 81 This could be circumvented by adding corner diffracted fields to the fields incident on edge q (and subsequently to the field of edge v) as is shown in Figure 83 and including these results in the Equivalent Currents. A pulse type integration scheme was used in computing the data presented in this chapter.

One must observe that if the Equivalent Current is used only over the illuminated region, then the integration will approximate the fields from the diffraction caused by the resulting shadow boundary.
C. BACKSCATTERING FROM A GENERAL SHAPE PLATE

1 st page Chapter end line
 problem than the H-plane case. This is because the E-plane is dominated
$\xrightarrow{1 \frac{1}{2} \text { inch }} \underset{\sim}{\text { Linch }}$ Center Guide

Conter Guide

i inch
Winch

Ase Bace Conown and Ino
Figure 82. Definition of parameters for higher̃ódér edgediffaction.

by the back edge, accordingly interaction between the plate edges playan important role in E-plane RCS pattern computations. These become quite significant for near the edge on region as has been seen earlier for the strip. Only singfe, irdoubfenand triple edge diffracted fields were considered, these were found to give adequate results for the geometries used in our analysis, however, fourth order diffraction or even higher may be included when dealing with smaller size geometries or when considering patterns other than the principal E-plane. The EC method is used in computing the contributions of all of these three mechanisms. When computing the fields caused by the double and triple edge diffraction, ray tracing techniques musto be sused tordetermine the extent of the illuminated region on an edgegasjneededaforthe numerical evaluation of the radiation integrals associated with these interactions. The fields diffracted from one edge to the other across the plate are assumed to be plane waves.

Using these three mechanisms, the E-plane pattern for the Northrop fin $[34]$ shown in Figure 41 has been alanyzed. In Figure 84 our E-plane RCS plane for the Northrop fin at 17.76 GHz is compared with their solution and also to their measured results. Northrop treated the problem by breaking the plate into parallel strips. Our solution actually traces the Northrop solution. But both solutions deviate from the measured data near edge on regions. Considerable effort was directed to computing the null value at $\mathrm{PH}=150^{\circ}$. It was found that the $\mathrm{E}-\mathrm{pl}$ ane pattern is extremely sensitive to orientation at high frequencies (17.76). This is clearly seen by examining Figure 85 which shows the results obtained by rotating the plate in the $X-Z$ plane by a mere 2.5°, compared to the same measured data. The calculated results in Figures 84,85 span the experimental results reported by Northrop. This explains the deviation between measured and calculated results in the region $110^{\circ}<\mathrm{PH}<180^{\circ}$. However,
 the edge wave contribution in our-solut-ion!st Notelethatiather rnotation $E_{P H}$ is used to indicate the PH component of the Electric field in the

Figure 84. $E_{P H}, \theta=90^{\circ}$. RCS pattern for Northrop f innat $177,76, G H z=$ nc:
\qquad 129

CALCULATE （ROTATION $=2.5^{\circ}$ ） －－MEASURED
standard spherical coordinate system. Typical E-plane patterns (EPH polarization) for single, double and triple edge diffraction components for Northrop fin at 17.76 GHz are shown in Figures $86-88$. In Figures 87-88, one only observes-the-patterns-for-the-range $90^{\circ} \leq \mathrm{PH} \leq 180^{\circ}$ since the higher order terms are significant only in this region as is apparant by the comparison between Figure 84 and Figure 86 . One also observes from Figures 87 and 88 that these terms, namely double and triple diffractions, are only needed for about 40° from edge on. This becomes even clearer by examining Figure 89 which shows the sum of these two components.

THESIS / DISSERTATION

The ray mechanisms Thant Were includede in computing the double edge diffraction term are shown in Figure 90 where the incident ray is in the $x-y$ plane. The ray diffracted from edge 4 (Figure 90-a) will illuminate part of edge 2. This illuminated region will or course depend on the angle of incidence on edge 4; however, the ray diffracted from edge 2 (Figure 90-b) will illuminate the entire edge 4. In Figure 91, one observes the component of the RCS pattern obtained using the EC associated with the double diffracted ray between edges 4 and 2 (ray 4-2), while that associated with the double diffracted ray between edges 2 and 4 (ray 2-4) is shown in Figure 92.

The EC method used to compute the field components shown in Figures 84-88 has an inherent error caused by the shadowing effect of an edge as is shown in Figure 93. To correct this inherent error, one has to include the corner diffracted fields. which are the only ones that can illuminate the shadowed part of an edge. It should be noted that this source of error does not considerably affect our results since the double diffracted field is only needed in the region near edge on and by examining Figure 91 and Figure 92, it is clear that the difference between
 ference could be large for a different plate geometry. Chapter end line

LAST THKT LINK

1310 an

$$
\overbrace{}^{A} l \text { inch }
$$

is. : 心...
Figure 86. E_{PH}, single edge diffraction cóntribution to $\theta=90^{\circ} \mathrm{RCS}$: pattern for Northrop fin at 17.76 GHz .

Figure 87. E_{PH}, double edge diffraction contribution to $\theta=90^{\circ} \mathrm{RCS}$ pattern for Northrop f in at 17.76 GHZ.
-and

Figure 88. $E_{P H}$, triple ${ }^{5 i}$ edge diff action contribution to $\theta=90^{\circ}$ RS pattern for Northrop fin at 17.76 GHz. Chapter end line

Figure 89. E_{PH}, sum of double and triple edge diffraction contributions to $\theta_{2}=90^{\circ}$ RCS pattern for Northrop fineat 17,76 ine GHz.

Figure 90. Double edge diffraction ray paths.

Conter Guide

Fage :
$\xrightarrow{1 \frac{1}{2} \text { inch }}$

Figure 91. $E_{P H}$, double edge diffraction contribution to $\theta_{0}=90_{i=1 i n s}^{\circ}$ RCS pattern for Northrop fin due to ray (4-2) at 17.76 GHz .
RCS pattern for Northrop fin due to

Figure 92. $E_{P H}$, double edge diffraction contribution to $\theta=90^{\circ} \mathrm{RCS}$ pattern for Northrop fin due to ray $(2-4)$ at 17.76 GHz .

Figure 93. Shadowing efferach Cheren we ine
Northrop finder end linc
\qquad
i inch

In Figure 94, the E-plane RCS pattern for the Northrop fin at 9.067 GHz is shown. The results are compared to measured results obtained by Mr. Chu [35]. Note the good agreement between the two results トい! Farge:

In Figures 95 and 97 the individual contributions to the E-plane RCS pattern are shown due to single, double and triple diffraction mechanisms of Northrop fin at 9.067 GHz . The effect of modifying the Northrop
 change in the plate, ang Tespiñultsico paper than 15 dB reduction in the E-plane RCS pattern. Of course this also implies the RCS has increased in some other regions of space. Table 1 shows the different edge diffracted rays associated with single, double and triple diffraction mechanisms which were used in our solution. It was found that double and

| | TABLE 1 |
| :---: | :---: | :---: |
| Single, | |
| SOUBLE AND TRIPLE EDGE DIFFRACTED RAYS | |
| USED IN NORTHROP FIN ANALYSIS | |

Conter Guide

1 inch

Figure 94. $E_{P H}, \quad \theta=90^{\circ}$ RCS pattern for, Northrop finatye 9.067_{n} GHzine
-

Isi page Chaper pen zine
Figure 95. E_{PH}, single edge diffraction contribútion $\mathrm{to} 0^{\circ} \theta^{\circ}=90^{\circ}$ R'S pattern for Northrop fin at 9.067 GHz .

Figure 96. E_{PH}, double etge diffraction contribution to $\theta=90^{\circ}$ RCS pattern for Northrop fin at 9.067^{GHz}.

ast page Qowotor onc inno
Figure 97. EPH triple edge diffraction contribution top $\theta=90_{1 \in i}^{0} R C S_{9}$ pattern for Northrop fin at 9.067 GHz .

Figure 98. $E_{P H}, \theta=90^{\circ}$ RCS patterns for the plates shown in Fingure. 45 compared to that of Northrop fin at 9.067 . GHz.

Finally the E-plane RCS pattern for the plate shown in Figure 47 is seen in Figure 99, it is compared to measured results [35]. The agreement between the two results is quite good. The deviation between them in the region $0^{\circ}<\mathrm{PH}<45^{\circ}$ is probably caused by the finite curveture: of the plate and also by not including the edge wave fields in our solution. THESIS/ DISSERTATION Typing Guide Paper
D. BACKSCATTERING FROM A DISK

The E-plane RCS pattern for a disk is analyzed by using the Equivalent current method. The geometry used is shown in Figure 100. The disk of radius a is in the $y-z$ plane and the pattern is taken in the $x-y$ plane. The disk is modeled by a plate with finite number of edges. Figure 56 shows the two models used in our analysis, and the results presented here are compared with the exact solution $[41$]. Our solution includes the Equivalent currents associated with single, double and triple edge diffraction. Figure 101 shows typical ray paths for double and triple diffraction. Note that use of diffraction between straight line segments eliminates the need to consider caustics as would have been necessary if the diffraction by the circular rim were used.

Figures 102 and 103 show the E-plane ($E_{P H}$ polarization) pattern for $k a=8.28$ for both models, the 8 and 12 sided plates respectively. These results are compared with the exact solution and also to results obtained by Bechtel [39] ${ }_{1} \dot{m}_{0}$ His results deviate considerably from the exact one in the range $45<5^{\circ} \leq 90^{\circ}$. This is because his splution does not include higher order diffraction contributions. The agreement between our result and the exactusolutionsise far superior.._As_one
$11 / 2$ inch

Ist page Onaptor ond line
Figure 100. Disk geometry. $\cdots \cdots \cdots$ isi page Cinapter enci line
l1/2 inch

inch
(a) DOUBLE DIFFRACTION

(b) TRIPLE DIFFRACTION

Figure 101. Ray paths for the double and triple edge diffraction mech-

Figure 102. $E_{\text {PH }}, \quad \theta=90^{\circ}$.RCS_pat.tern for the 80 sided disk model l_{i} inc using first, second and third order Equivalent currents $-(k a-=-8.28)$.

$$
\longrightarrow \text { EXACT SOL. }
$$

$$
\cdots \text { BECHTEL }
$$

Figure 103. $\mathrm{E}_{\mathrm{PH}}, \theta=90^{\circ}$ RCS pattern for the 12_{a} sidedidisk model using first, second and third order Equivalent currents ($k a=8.28$).

PH
Figure 104. $E_{P H}, \theta=90^{\circ}$.RCS pattern for the 8 sided disk model linc using first, second and third order Equivalent currents

Figure 105. $E_{P H}, \quad \theta=90^{\circ}$ RCS pattern for the 12 sided disk model using first, second and third order Equivalent currents ($k a=8.59$).

Sm-......

Figure 106. $E_{P H}, \theta=90^{\circ} R C S$ pattern for the 8 sided disk mode lc line using first, second and third order Equivalent currents

Centir Buide
?
Parge: \#

PH
igure 107. $E_{P H}, \quad \theta=90^{0}$ RCS pattern for the 12 sided disk model using first, second and third order_Equivalent_currents_ ($k a=9.45$) .

1 inch
inch \rightarrow

Figure 109. $\mathrm{E}_{\mathrm{PH}}, \quad \theta=90^{\circ}$ RCS pattern for the 12 sidedndisk model using first, second and third order Equivalent currents

Figure 110. $E_{P H}, \theta=900$ RCS pattern, for the 12 sided disk model $]_{\text {intusing }}$ first, second and third order Equivalent currents, compared to the rim integrationmethodu(ka=8..28). n! . . .

1!.t para Chaptor ena unc
Figure 111. $E_{P H}, \alpha=90.0$ RCS_pattern, for the rl2gsidedadisk modell,irusing first, second and third order Equivalent currents compared to the-rim-integration methód-(ka-ion).

Centc.r Guide

l inch
 these higher order edgeTdififfrgactioniemechanisms together with that of the edge wave multiple corner diffraction. These mechanisms become dominant particularly for non-principle plane patterns.

1st page Chapter end line

— — _ — - - lst page Chapter end line

\qquad

BACKSCATTERING FROM RECTANGULAR PLATES USING HIGHER
 ORDER INTERACTIONS INCLUDING E-PLANE AND NON-PRINCIPAL
 PLANE PATTERNS

A. INTRODUCTION

THESIS / DISSERTATION
In this chapter ourtdiscussioncof thereffect of higher order interactions on RCS pattern computations is continued. The geometry used in the analysis is a perfectly conducting rectangular plate. The E-plane RCS pattern and conical pattern planes for $\theta=30^{\circ}, 45^{\circ}$, and 60° are analyzed. The single, double and triple edge diffraction mechanisms discussed in Chapter V are included.

In addition, another type of interaction now to be considered is the edge wave mechanism which is a degenerate form of the Corner diffraction mechanism. The goal of this chapter is to introduce and use these multiple diffraction mechanisms as needed. Again the incident field is a homogeneous plane wave and its electric field is given by Equation (76).
B. E-PLANE CASE

In Chapter III, where the Echo Width of a strip was analyzed, it was noted that the multiply diffracted fields between the strip edges were the ones that create the difference between the E and $H-p l a n e ~ p a t-~$ terns. In a similar waysthesefe fieldstplay the $_{\text {sid }}$ same role in the analysis of E-plane patterns for a-rectangular-platestIncigurenllizrthe

163

$$
\int_{8} l \text { inch }
$$

1st page Chapter end line
.... .
Figure 112. Rectangular plate geometry.

geometry of a rectangular plate is illustrated. The plate is in the ${ }^{c} x-z$: plane. The E-plane pattern is taken in the $x-y$ plane, i.e., $\theta=90^{\circ}$ plane. Only magnetic Equivalent currents corresponding to the first, second and $\quad \stackrel{\text { ch }}{\longrightarrow}$ third order edge diffracted-fie.l.ds-were-used- They proved to be sufficient to produce satisfactory results for practical applications; however, fourth order diffraction terms or even higher may be needed when dealing with small plate sizes.

The results obtained using' the Equivalent 'Current(EC) method for the $E=p l a n e$ RCS pattern (E^{\prime} PH"polarization ${ }^{\prime \prime}$ 'for three different square flat plate sizes are shown in Figures 113-115. The results are compared to measurements and to results obtained by Ross [28]. Ross also used a normalization scheme to reduce the strip scattering solution to one applicable to the finite sized plates. This is not needed when the equivalent currents are introduced. His results are good everywhere except near grazing incidence. This error is caused by the use of the plane wave diffraction coefficients for the higher order interactions and was eliminated in our solution when the proper diffraction coefficients are used as shown by the good agreement with the measured results. An integration step of 0.1λ was used in evaluating the radiation integrals for the double and triple diffraction field components. The contribution of the double diffraction mechanism to the E-plane RCS pattern for the 3 different sized plates is shown in Figure 116. This field component contributes to the RCS throughout the pattern. Its magnitude increases gradually as one approaches edge on incidence. An increase of approximately $0.5 \lambda^{2}$ in the plate area results in an increase of approximately 2 dB in RCS due to this component of the field at edge on incidence. Figure 117 shows the contribution of the triple diffraction mechanism for the same 3 plates. Thils ${ }^{5}$ fieldacomponeñ is'onity needed for incidence angles up to 40° from edge on. A similar inctrease of approximately line 2 dB in RCS at edge on incidence is noticed when the area of the plate

isr puy;
Figure 113. $E_{P H}, \theta=90^{\circ}$ RCS pattern for a 4^{+}x 4 inch fatat plate cinc: using first, second and third order Equivalent currents ($\lambda^{-}=-1.28^{-i n c h}$).

Figure 114. $E_{P H}, \theta=90^{0} \overrightarrow{R C S}$ pattern for a 5×5 inch flat plate using first, second and third order Equivalent currents ($\lambda=1.28$ inch).

CALCULATED

St pagn Ohaper and İmo

Figure 115. $E_{P H}, \quad \theta=90^{\circ} \widehat{R C S}$ pattern for $a 6 \times 6$ inch flat plate using firstisecond and third order Equivalent currents ($\lambda=1.28$ inch .

1 inch
ist page Chapter end line
Figure 116. $E_{P H}$, contribution of double edge diffraction to $\theta=90^{\circ}$ RCS pattern $(\lambda=1.28$ inch $) \cdot n \quad 1 \mathrm{n}$

lIst page Che tor end line
 pattern ($\lambda=1.28$ inch).

In this section the RCS pattern when $\theta \neq 90^{\circ}$ is analyzed. This conical pattern is a function of the azimuth angle (PH) when $\theta=\theta_{0}$ is held constant. The incident field is polarized in the θ-direction. Figure 118 defines the geometry used in our analysis. The symbol (PH) is used hereafter for this parameter to, avojd confusing, ing with the parameter ϕ iof Figure 1 used in edgetdiffrection: Paper

1. Analysis

The solution to this case is a complex one. The value of the RCS is lower by an order of magnitude and thus one has to consider many posSible interactions that involve edges and corners of the plate. Some of these are, double and triple edge diffractions, edge to corner diffraction, multiple corner to corner diffractions and the newly developed edge wave. These higher order interactions were found to contribute significantly to the RCS pattern. As one moves further away from the principal plane, more interactions must be included to give satisfactory iresults. The edge wave mechanism contribution becomes very significant when the RCS pattern is taken in the plane of the plate, i.e., x-z plane. Furthermore, one has to consider the effect of each individual edge of the plate since different edges contribute different terms and these terms are now significant for one pattern and insignificant in another. This will be discussed in more detail later. The incident field can be written in the edge coordinate system as:

$$
E^{i}=E^{i} \hat{\theta}=E_{\phi^{\prime}(p)^{-\phi}(\bar{p})^{+}+E_{\bar{\beta}^{i}}^{i}(\bar{p})^{-\hat{\beta}} \cdot(\bar{p})} \text { lst page Chapter and }
$$

where

$$
\int 1 \text { inch }
$$

$$
\begin{align*}
& \bar{E}_{(1)}^{i}(P H=0)=E_{\beta^{\prime}(1)}^{i} \hat{\beta}^{-}(1) \quad \text { and } \tag{81}\\
& E_{(1)}^{i}(P H=90)=E_{\phi^{\prime}(1)}^{i} \hat{\phi}_{\phi^{\prime}}^{\mathbf{j}}(1) \quad \text { and } \tag{82}
\end{align*}
$$

respectively.

From Equations (81,82), there must be a transition region in space where both β^{\perp} and ϕ^{\prime} exists.

The ϕ^{\prime} component will be responsible for the following interactions:

1. Single, double and triple edge diffraction fields. The EC method is used to compute their contributions.
2. Edge wave fields that involve double and triple corner dif-
fractions on the same edge.
3. Cross polarized edge wave fields, i.e., ϕ to β field polari-
zation conversion. This also requires double and triple 1 st page Chapter end line
corner diffractions on the same edge. lst page Chapter end line

ist puge Compor one ino
Figure 118. Conical pattern geometry..... isi pago Chapier end

The β^{\prime} component will contribute to the RCS through single order edge diffraction and edge wave fields interactions similar to those discussed above in 2 and 3 . Edge \#3 will give similar interactions to the ones discussed above.

For edges \#2 andT4-EthéSinclidentefield Ti's polarized only in the β^{\prime}, direction throughout the pattern, faper

$$
\begin{align*}
& \bar{E}_{(2)}^{\dot{i}}=E_{\beta^{-}(2)}^{\mathfrak{j}} \hat{\beta}_{(2)}^{\prime} \quad \text { and } \quad E_{\phi_{(2)}^{\prime}}^{i} \equiv 0 \quad, \quad \text { and } \tag{83}\\
& \bar{E}_{(4)}^{i}=E_{\beta_{(4)}^{\prime}}^{i} \hat{\beta}_{(4)}^{\prime} \quad \text { and } \quad E_{\phi_{(4)}^{\prime}}^{i} \equiv 0 \quad, \quad \tag{84}
\end{align*}
$$

respectively.

Accordingly edges 2 and 4 will contribute to RCS pattern only through single edge diffractions and edge wave fields similar to those discussed above in 2 and 3.

In Figure 119, some of the different edge diffraction mechanisms associated with the contribution of edges 1 and 3 to the radar cross-section are illustrated. In evaluating the fields due to the double and triple diffraction mechanisms, all possible combinations of edge diffraction between any two or any three edges are considered. The evaluation of these fields follow the same procedure used above in part 1. Figure 120 shows thet edge wave méchanism tinteractions. They involve double and triple corner diffractions on the same edge. of course there are similar interactions on the other two edges of the plate.

Figure 119. Edge diffraction mechanisms contribüt ing to the RCS duèer to edges \#1 and 3.

Stit pare Chaprer and line
Figure 120. Edge wave-mechanisms-contributing to therreser end line

Again observe that we do not show any diffraction mechanism that encircles the plate in a manner similar to creeping waves.

a. Edge Wave Double Corner InteràtiónirMechanisms

This mechanism is shown in Figure 121 where only the interaction due to edge \#1 is illustrated. The same analysis holds for the other edges. Because of the cross polarization effect associated with the edge wave mechanism (see Appendix C), one has to consider the different posisible combinations of incidence and diffracted fields, i.e., $\beta^{\wedge} \beta, \beta^{\wedge} \phi$, $\phi^{-} \beta, \phi^{-} \phi$ where the first letter, indicates the porkarization of the incident field and the secondythe, pollarization, of the diffracted field.

The general form for the edge wave field is
where s_{c} is the distance from the source to the corner, s is the distance from the corner to the receiver. The edge wave diffraction coefficient is given by

$$
\begin{align*}
& \mathrm{D}_{\mathrm{s}}^{(\mathrm{ew})}\left(\mathrm{L}, \phi, \phi^{\prime}, \beta_{\mathrm{c}}\right)=\frac{\mathrm{e}^{-j \pi / 4}}{2 \sqrt{\pi k}} \frac{\left(1+\cos \beta_{c}\right)}{\sin \beta_{c^{\prime} / 2}} \\
& \mathrm{~F}\left(2 \mathrm{~kL} \sin ^{2} \beta_{\left.\mathrm{c}^{\prime} / 2\right)}\left\{\begin{array}{ll}
\sin \frac{\phi}{2} & \sin \frac{\phi^{\prime}}{2} \\
\cos \frac{\phi}{2} & \sin \frac{\phi^{\prime}}{2}
\end{array}\right\}\right. \tag{86}
\end{align*}
$$

where $L=\frac{S S_{C}}{S+S_{C}}$,
1st page Chapter end line
— — ———— list page Chapter end line

(a)

(b)

Ast page Chapter sone line
Figure 121. Edge wave double corner diffractionege Chapter

1'agen 学
$1 / 2$ inch

Figure 122. Edge wave diffraction-cases. lst page Chapter enciline

ϕ, ϕ are def ined in Figure 16 and $\beta_{1 c}$ is defined as in Figure 122. A. detailed discussion of the edge wave mechanism and the derivation of Equation (85) is shown in Appendix C. Note that there are some limitations to the use of Equation (-85) (sinceethis iequation was derived from the imperically derived corner diffraction coefficient, it is valid only for the two diffraction mechanisms shown in Figure 122.

Let us consider first the case when both the incidence and diffracted fields are polarized in the β direction, i.e., ($\beta^{\prime} \beta$ case).

The field diffracted from corner \#2 (C_{2}) along the edge and evalu-

$$
\begin{equation*}
E_{(1)}^{d}=E_{B^{\prime},(1)}^{i}\left(c_{2}\right) D_{s}^{(e w)}\left(\ell, \phi_{1}^{\prime}, \frac{\pi}{2}, \beta_{1}\right) \frac{e^{-j k \ell}}{\sqrt{\ell}} \tag{87}
\end{equation*}
$$

This incident field on C_{1} appears to be coming from an image source located at point 0 shown in Figure 123 . This source is created by the

1st page Chrotor ered lune
Figure 123. Effect of edge-\#4 on the edge wave fisield.

$$
\begin{equation*}
E_{(1)}^{d}=E_{\beta^{\prime}(1)}^{i}\left(c_{2}\right) D_{s}^{(e w)}\left(\ell, \phi_{1}, \frac{\pi}{2}, \beta\right) R \frac{e^{-j k \ell}}{\sqrt{\ell \ell}} \tag{88}
\end{equation*}
$$

where $R=\frac{e^{-j \pi / 4}}{\sqrt{2 \pi k}}$
The diffracted field torthes receiver from Cutis then given by

$$
E_{\beta}^{d}=E_{(1)}^{d} D_{S}^{(e w)}\left(\ell, \frac{\pi}{2}, \phi_{1}, \beta_{1}\right) \sqrt{\ell} \frac{e^{\text {Typing Guide Pap }{ }_{j k} s_{1}}}{s_{1}}
$$

substituting Equation (88) into (90) one gets

$$
\begin{align*}
E_{\beta_{(1)}}^{d} & =E_{\beta^{\prime}}^{i}(1)\left(c_{2}\right) D_{s}^{(e w)}\left(\ell, \phi_{1}^{-}, \frac{\pi}{2}, \beta_{1}\right) R D_{s}^{(e w)}\left(\ell, \frac{\pi}{2}, \phi_{1}, \beta_{1}\right) \\
& e^{-j k \ell} \frac{e^{-j k s_{1}}}{s_{1}} \tag{91}
\end{align*}
$$

There is another term due to diffraction from \widehat{c}_{1} to C_{2}. The two terms are equal and both are given by Equation (91). So the total diffracted field for the $\beta^{\prime} \beta$ interaction is given by

$$
E_{\beta_{(1)}^{d}}^{d}=2 E_{\beta_{(1)}^{\prime}}^{i}\left(c_{2}\right) D_{s}^{(e w)}\left(\ell, \phi_{1}^{\prime}, \frac{\pi}{2}, \beta_{1}\right) R D_{s}^{(e w)}\left(\ell, \frac{\pi}{2}, \phi_{1}, \beta_{1}\right)
$$

$e^{-j k l}$

$$
\begin{equation*}
{ }^{-j k s_{1}} \tag{92}
\end{equation*}
$$

$$
\mathrm{s}_{1}{ }_{1 \text { st p page }} \text { Chapter end line }
$$

——————— list page Chapter end line
$\{$ inch Conter Ouide

(a)

(b)
1 st page Cinapter ond tine
Figure 124. Edge wave triple corner diffractionage Chap line
(182
$\xrightarrow{\text { inch }}$

$$
\begin{align*}
& E_{\phi_{(1)}}^{d}=2 E_{\phi_{(1)}^{\prime}}^{i}\left(c_{2}\right) D_{h}^{(e w)} \xlongequal[\left(\ell, \phi_{1}^{\prime}, 0, \beta_{1}\right) R D_{h}^{(e w)}\left(\hat{\ell}, 0, \phi_{1}, \beta_{1}\right)]{s_{2}} \tag{100}\\
& e^{--j 2 k \ell^{\prime}} \frac{e^{-j k s_{2}}}{s_{2}}
\end{align*}
$$

To compute the fields due to C_{1} (Figure $124-\mathrm{b}$), one has to consider the effect of edge 4 on the incident field. This effect is shown in Figure $125 .=$ Again the incident field appears to be coming from an image source at inf ini-t.y.es The field cemponentis diffracted from C_{1} are given by modifying Equations $(-98=100)$ such that.

$$
\begin{align*}
E_{\beta_{(1)}}^{d} & =-2 E_{\beta^{\prime}(1)}^{i}\left(c_{1}\right) D_{S}^{(e w)}\left(\ell^{\prime}, \phi_{1}^{\prime}, \frac{\pi}{2}, \beta_{1}\right) R^{2} D_{S}^{(e w)}\left(\ell, \frac{\pi}{2}, \phi_{1}, \beta\right) \\
& e^{-j 2 k i ́} \frac{e^{-j k s_{1}}}{s_{1}}, \tag{101}
\end{align*}
$$

$$
\{l \text { inch }
$$

Note that for backscatter $\phi_{1}=\phi_{1}^{\prime}$, also the cross polarization components, i.e., $\beta^{\prime} \phi$ and $\phi^{-} \beta$ are equivalent. Following the same procedure, the fields due to $\beta^{\prime} \phi$ and $\phi^{\prime} \beta$ combined together are given by

$$
E_{\beta_{(1)}^{d}}^{d}=-4 E_{\phi^{-}}^{i}(1)\left(c_{2}\right) D_{h}^{(e w)}\left(\ell, \phi_{1}^{\prime}, o, \beta_{1}\right) R D_{s}^{(e w)}\left(\hat{\ell}, \frac{\pi}{2}, \phi_{1}, \beta_{1}\right)
$$

$$
\begin{equation*}
e^{-j k \hat{\ell}} \frac{e^{-j k s_{1}}}{s_{1}} \tag{93}
\end{equation*}
$$

and that for $\phi^{\prime} \phi$ is given by

b. $:$ Edge Wave Triple Corner Interaction Mechanism

Figure 124 illustrates the triple edge wave diffracted fields from C_{1} and C_{2} on edge \#1. Similar terms exist for each of the remaining edges.

Consider the field diffracted from C_{2}. In this case the double diffracted field from C_{1} is incident on C_{2}. Since the edge wave formutation as developed here is valid when either the source or the receiver
is in the far field region, we assume that the source of the incident field on C_{2} is in the far field. Therefore the value of double diffracted field evaluated at C_{2} is

1st page Chapter end line
$E_{(2)}^{d}=E_{\beta^{\prime}{ }_{(1)}^{i}}^{i}\left(c_{2}\right) D_{S}^{(e w)}\left(\ell^{2}, \phi_{1}, \frac{\pi}{2}, \beta_{1}^{-}\right) R-\frac{e^{-j k l}}{\sqrt{2}}$
page Chapter end ling (95)

$$
\{1 \text { inch }
$$

$$
\begin{aligned}
& \text { THESIS / DISSERTATION }
\end{aligned}
$$

$$
\begin{align*}
& e^{-j k \hat{\ell}} \frac{e^{-j k s_{1}}}{s_{1}} \tag{94}
\end{align*}
$$ C_{2} to the receiver is given by

where the negative sign is due to the fact that the edge wave field is polarized in the opposite direction to that of the β polarization.

Substituting Equation (95) into (96), one obtains

$$
\begin{align*}
& E_{\beta_{(1)}}^{d}=-E_{\beta^{\prime}}^{i}{ }_{(1)}^{\left(c_{2}\right) D_{T H E S I S}^{(e w)}\left(\ell, \phi_{1}, \frac{\pi}{2}, \beta_{1}\right) R R_{S}^{(e w)}\left(\ell, \frac{\pi}{2}, \phi_{1}, \beta_{1}\right)} \\
& e^{-j 2 k \ell^{\prime}} \frac{e^{-j k s_{2}}}{s_{2}}
\end{align*}
$$

There are two possible combinations of β polarized triple diffraction terms. These are due to the double diffraction terms discussed earlier, namely $\beta^{\prime} \beta$ and $\phi^{\prime} \beta$. These two possible combinations are $\beta^{\wedge} \phi^{\prime} \beta$ and $\beta^{\wedge} \beta^{\wedge} \beta$. Therefore, the total β polarized triple diffracted edge wave field from C_{2} is given by

$$
\begin{align*}
E_{\beta_{(1)}}^{d} & =-2 E_{\beta^{\prime}}^{i}(1) \\
& \left.e^{-j 2 k \ell}\right) \frac{e^{-j k s_{2}}}{s_{2}} \tag{98}
\end{align*}
$$

The cross polarized triple diffracted term can be written in a semilar way

$$
\begin{align*}
& E_{B_{(1)}}^{d}=4 E_{\phi^{\prime}}^{j}{ }_{(1)}^{\left(c_{2}\right) D_{1 h t}^{(e w)}\left(\ell, \phi_{1}^{\prime}, 0, \beta_{1}\right) R D}{ }^{(e w)}\left(\ell, \frac{\pi}{2}, \phi_{1}, \beta_{1}\right) \\
& e^{-j 2 k \ell} \frac{e^{-j k s_{2}}}{s_{2}} \tag{ing}
\end{align*}
$$

D. DISCUSSION

The above analysis is used to compute the RCS pattern for a $2 \lambda \times 2 \lambda$ plate. The incident field is polarized in the θ-direction. The geometry used is shown in Figure 118. The notation $E_{P H}$ is used to indicate the backscattered field PH component defined with respect to the standard spherical coordinate system.

Figure 126 shows the E-plane RCS pattern. The results are compared with Moment Method (MM) solution provided by Dr. Newman [33]. Only single, double and triple edge diffraction mechanisms were used to compute the pattern by the EC method. The two results are in excellent general agreement throughout the pattern, however, they deviate slightly in the region $0^{\circ}<\mathrm{PH}<40^{\circ}$. The cause for this deviation is the edge wave field which was not included in the solution. If the edge wave field is included for just one point at $\mathrm{PH}=30^{\circ}$, as shown in Figure 126 , then the value of the RCS agrees well with the MM solution.

1st page Chapter end line
— — — ——— lst page Chapter end line

ist parso Chator und ine -
 second and third order Equivalent currents.

Let us now proceed to discuss the case when the plane wave is incident at an angle $\theta=60^{\circ}$. Figure 127 shows the individual edge diffraction contributions. Figure $127-d$ shows the sum of the single, double and triple edge diffraction terms. These field components contribute significantly in the main and first lobe region while the edge wave mechanism dominates the rest of the pattern. Again the EC method was used to compute the results shown in Figure 127. Table 2 shows the different single, double and triple edge diffraction mechanisms that were included in our solution for $\theta=60^{\circ}$ case.


```
fist page Conger end in ne
```

Figure 127. $E_{P H}$, individual contributions of edge diffraction en cine isms to $\theta=60^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate.

Figure 128 shows the individual contributions of the edge wave double diffraction mechanism, i.e., $\beta^{\prime} \beta, \beta^{\prime} \phi, \phi^{-} \beta$ and $\phi^{-} \phi$ components. Notice that the $\beta^{\prime} \phi$ and $\phi^{-} \beta$ components are equal. Their contribution is in the transition region as-one-expects. F-igure-129 shows comparable field components for the edge wave triple diffraction mechanism. . In both Figures 128 and 129 one notices that the $\beta^{\wedge} \beta$ field component contribute significantly in the edge on region while the $\beta^{\prime} \phi, \phi^{\wedge} \beta$ and $\phi^{\prime} \phi^{\prime}$ combine to contribute to the rest of the pattern. The total contribution of the edge wave mechanism (double and triple diffraction) is shown in Figure 130 where the importance of the edge wave mechanism is clearly
 diffraction takes over. Tiabile $3^{\text {Gidides }}$ then different double and triple corner diffractions used to compute the edge wave contribution.

TABLE 3
DOUBLE AND TRIPLE CORNER DIFFRACTIONS INCLUDED IN EDGE WAVE SOLUTION FOR $\theta=60^{\circ}$ CASE

Double Corner \#-Corner	Triple Corner \#-Corner \#-Corner \#
1-2, 2-1	1-2-1 , 2-1-2
2-3, 3-2	2-3-2, 3-2-3
3-4, 4-3	3-4-3 , 4-3-3
4-1, 1-4	1-4-1, 4-1-4
1st page	nd line
- - - - - lst page Chapter end line	
LATE TNA LINK	

1 st page Chaper and line
Figure 128. E_{θ}, individual contributions of ${ }^{2}$ edge wave double e_{e} cornere diffraction mechanism to $\theta=60^{\circ}$ RCS pattern for a

Figure 129. E_{θ}, individual contributions of edge wave triple corner diffractionsmechanismeto: $\theta:=60^{\circ} \mathrm{RCS}$ pattern for a $2 \lambda \times 2 \lambda$ plate. $-\cdots \cdots-\cdots, \ldots$, lei page Chapter end line

1 inch

Center Guide
. 1 .. Page \#

Figure 130. E_{θ}, sum of all edge wave mechanisms contributing to $\dot{\theta}=60^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate.

kusi:r end line
Figure 131. $E_{\theta}, \theta=60^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate.
\qquad patterns of Figures 127 and 130. This result is compared to MM solution with the agreement being quite good. However, the two solutions deviate in two regions. The first is in $800^{0}<P H \leq 90^{\circ}$, where the deviation in this region becomes clear if we examine the point $\mathrm{PH}=90^{\circ}$ in Figure 131 which corresponds to the point $\mathrm{PH}=60^{\circ}$ in Figure 126 and noting the field is a null. In such a situation the phasing between the single, double and triple edge diffraction which determines the field value at this point becomes very critical when computing the fields numerically. The second region is $30^{\circ}<\mathrm{PH}<50^{\circ}$, where other types of interactions involving the edge wave mechanism should be included and a more accurate edge wave
 two types of edge wave interaction discussed here are the dominant ones for the case $\theta=60^{\circ}$. However, the need for a more accurate diffraction coefficient as is discussed in Appendix C and the inclusion of other types of interactions becomes more clear as one moves further away from the principal plane.

In Figures 132-134, the effect of using the corner diffraction method is shown instead of the EC method for evaluating the first order diffrac-1 tion fields. By comparing Figure 131 and Figure 134, one notices a slight improvement for $30^{\circ}<\mathrm{PH}<60^{\circ}$. As indicated in Chapter IV, corner diffraction will give more accurate results as one moves off the principal plane. ,

The higher order interactions are one of the primary sources that contribute to the cross polarized field component ($E_{\theta P H}$). It is not our purpose here to present a study on cross polarization sources in scattering problems but rather to point out that a thorough investigation of this problem should include a complete study of all possible higher order interactions.

Figures 135 and 136 st page Chapter end linc
Figures 135 and 136 show the contributions of edge diffraction (single, double and triple) and the edge wave mechanism to the cross polarized field component ($E_{\theta P H}$); ;-ibothimechanisms_contribute

Center Guide

L1/2 inch

Page: \#

Figure 134. $E_{\theta}, \theta=60^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. Corner diffraction is used instead of EC single diffraction component.

Figure 135. E_{θ} PH edge diffraction-contributionptojecróss-ipolvarize'd IRCS pattern for $\theta=60^{\circ}$ case.

Figure 136. $E_{\theta P H}$, edge wave contribution to cross polarized RCS pattern for $\theta=60^{\circ}$ case.

Figure 137. $\mathrm{E}_{\theta \mathrm{PH}}, \theta=\overline{6} 0^{-}$cross-polarized RCS pattern for a $2 \lambda \times 2 \lambda$ plate. All edge diffraction; and;edgelwave mechanism contributions. are included.

As was stated before, one would expect that more higher order interaction mechanisms involving edge waves become more significant and have to be included in the solution. As different pattern cuts are considered, edge waves on different edges contribute to the RCS by different interactions depending on how strongly it was excited. For instance, consider the $\theta=60^{\circ}$ pattern. Here the edge waves on edges \#1 and 3 are more strongly excited than those on edges \#2 and 4. However, the situation is reversed for the $\theta=30^{\circ}$ pattern and are equally excited when $\theta=45^{\circ}$. While the two edge wave mechanisms considered here namely the double and triple diffraction were sufficient to give satisfactory results for $\theta=60^{\circ}$ pattern cut, they do not appear to be completely adequate for the $\theta=45^{\circ}$ and $\theta=30^{\circ}$ patterns. Figures 138 and 139 show the RCS pattern for $\theta=45^{\circ}$ and 30° respectively. The calculated results are compared to MM solutions, both results do not show as good agreement especially in the region $20^{\circ}<\mathrm{PH}<70^{\circ}$. This is not too surprising since much effort was devoted to finding the appropriate mechanisms for the $\theta=60^{\circ}$ pattern, land then these were used to obtain the $\theta=45^{\circ}$ and $\theta=30^{\circ}$ patterns. No comparable study was performed to improve these latter patterns. Furthermore, the diffraction coefficients used herein are approximate and can be improved substantially. In Figures 140 and 141, the total RCS pattern is shown for $\theta=45^{\circ}$ and 30° respectively but using Corner diffraction method to compute the contribution of first order diffraction. A slight improvement is noted near $\mathrm{PH}=30^{\circ}$ for $\theta=30^{\circ}$ case. However, the deviation between our result and MM solution is still substantial in the region $20^{\circ}<\mathrm{PH}<60^{\circ}$ which indicates that a higher order interactions are needed to correct for this deviation between the two 1 st page Chapter end line solutions. Some of the different edge wave interactionspthat are still lunder investigation are shown in Figure 142.

Centur Guide
Page \#

1st page Chapter end line
 diffraction method instead of $E C$ single edge diffraclion component.

, Al3/80
Figure 142. Possible $\overline{\text { edge }}$ wave $\overline{m e c h a n i s m s . ~} \overline{\text { list }}$ page Chapter end line $14 i j$ ila $\quad 1011$

4 3
$\overbrace{0} l$ inch mechanisms are illustrated in Figures 143-145; whereas, in Figures 146 and 147 the total contribution of edge diffraction (single, double and triple) and that of edge wâvèn(fodouble fánd triple) diffraction mechanisms to $\theta=45^{\circ}$ RCS pattern are shown. Note that the edge wave fields contribute to the RCS throughout the pattern. In Figures $148-152$ similar results are shown for $\theta=30^{\circ}$ RCS pattern. Note that for this case the $\beta^{\prime} \phi$ and $\phi^{\prime} \beta$ are negigigibe since the pattern is dominated by the edge waves on edges \#2 and 4 where the incident field is polarized in the β direction with irespect to these two edges. Edges 1 and 3 contribute slightly through the $\phi^{\circ} \phi$ component. The. different edge $_{\text {diffifract-ion }}$ and corner to corner diffraction terms used tojcompute the edge, ediffraction and Edge wave contributions for $\theta=45^{\circ}$ and $\theta=30^{\circ}$ are similar to those used for $\theta=60^{\circ}$ case and are shown in Tables 2 and 3 above.

Finally a word should be said on the contribution of the edge wave fields to the E-plane pattern. If one examines Figure 139 specifically lat $\mathrm{PH}=90^{\circ}$, he notices the good agreement between the two solutions. Howlever if one examines Figure 126 at $\mathrm{PH}=30^{\circ}$ which correspond's to the same lobservation point as $\mathrm{PH}=90^{\circ}$ in Figure 139, he notices the difference between the MM solution and our solution which does not include the edge wave fields. As was noted before, the RCS value at $\mathrm{PH}=90^{\circ}$ in Fig ure 139 is also plotted in Figure 126 at $\mathrm{PH}=30^{\circ}$. This leads one to conclude that it is the edge wave field that makes the difference between the two solutions in Figure 126 in the region $0^{\circ}<\mathrm{PH}<40^{\circ}$.

In evaluating the double and triple edge diffraction fields for these different patterns, it was found that the integrals converge slow$1 y$ and an integration step of 0.01λ was needed to get a convergent solution.

1st page Chapter end line

_ _ _ . - list page Chapter end line

$1 / 2$ inch

(a) SINGLE DIFFRACTION.

(b) DOUBLE DIFFRACTION

(c) .TRIPLE DIFFRACTION

1 st page Chapter end line
Figure 143. E_{θ}, individual l contributions, ofisedgeicdiffraction mechañoisms to $\theta=45^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate.

(a) $\beta^{\prime} \beta$ COMPONENT

(b) $\beta^{\prime} \phi$ COMPONENT

(d) ϕ ' ϕ COMPONENT

1st page Chapter end line

 diffraction mechanism to $\theta=45^{\circ}$ RUs pattern for a $2 \lambda \times 2 \lambda$ plate.

'Figure 145. E_{θ}, individual contributions of cedge wave triple corner diffraction-mechani.sm to $\theta \equiv 45$;tRESTpatiternjfor and inc. $2 \lambda \times 2 \lambda$ plate.

Figure 146. E_{θ}, sum of edge diffraction mechanisms (single, double and triple) contributing to $\theta=45$ R RS pattern for ${ }_{l}$ a ${ }^{2}$ end line $2 \lambda \times 2 \lambda$ plate.

Figure 147. E_{θ}, sum of_edge wave_mechanisms contributingotor $\theta c=1 c 45^{\circ}$ ine RCS pattern for a $2 \lambda \times 2 \lambda$ plate.

(b) DOUBLE DIFFRACTION

(c) TRIPLE DIFFRACTION
|Figure 148. E_{θ}, individual page Chanter end line anisms to $\bar{\theta}=30^{\circ}$ RCS pattern for jage Unapter mend lim anisms to $\bar{\theta}=30^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate.

(b) ϕ ' ϕ COMPONENT

Figure 150. E_{0}, individual page Chapter end lino E_{θ}, individual contributions of edge wave triple cornerindiffraction mechanism to $\theta=30^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate. \qquad link

1st page Chapter end line
Figure 151. E_{θ}, sum of edge diffäaction mechanism (singipter double, line and triple) contributing to $\theta=30^{\circ}$ RCS pattern for a $2 \lambda \times 2 \lambda$ plate.

In this chapter the discussionapnethe effect of higher order inter $\underset{\sim}{-1 \text { inch }}$ actions on RCS was continued. The analysis focuses on treating the Eplane and non-principal plane RCS patterns for a rectangular plate.

For the E-plane patterns of a 2λ square plate, the single, double and triple edge diffraction terms were included in the solution, and the EC method was used to compute their contributions. As was noted in Chapter V, the double and triple edge diffraction terms become significant near the edge on region oin However? the edge wave contribution is needed to obtain good agreement with results obtained using the Moment Method. For a 3λ square plate or larger, the single, double and triple edge diffraction terms are sufficient to obtain good agreement with measured results.

For a non-principal plane case, where the incidence electric field vector is oriented in the θ-direction, the single and multiple edge diffraction terms and the interactions associated with the edge wave mechanism were found to be dominant ternsi in the region outside the main beam. Two types of edge wave interactions were considered in our analysis -- the double and triple corner diffractions. They proved to be sufficient for $\theta=60^{\circ}$ case while for $\theta=45^{\circ}$ and 30°, they do not appear to be completely adequate. The solution could be further improved if a more accurate corner diffraction coefficient is developed which will permit the addition of more edge wave interactions, such as the ones shown in Figure 142, to be included in the solution.

These higher order interactions were found to be one of the primary sources of cross polarized field components which is of a comparable level compared to that ist page Chapter end line
of the principal polarization

Center Guide

The techniques used herein to compute the contributions of single and multiple edge diffractions and that of the edge wave mechanisms are also used to compute the RCS pattern of a triangular plate. This is the subject of the nex.t-chapter:-

2 inclCHAPTEERTVII I Lime

H AND E-PLANE BACKSCATTERING FROM A TRIANGULAR PLATE

A. INTRODUCTION

In this chapter, we analyze the backscattering in the principal planes of triangular plates ${ }^{2}$. ${ }^{\text {The }}$ incentiverfor this part of the study is the previous lack of theoretical values that agree with measured results [31], [43] for an incident y polarized wave (see Figure 153). Our original solution at tip on incidence agreed reasonably well with the measured data as shall be seen later. However, when the angle θ increased from zero (in the $x-z \operatorname{plane}$) for the $H-p l a n e ~ c a s e, ~ t h e ~ r e s u l t s ' ~$ deteriorated significantly for $\frac{a}{\lambda}$ small and $\alpha=30^{\circ}$, also, when θ is close to 180° for the E-plane case, the results were not in good agreement with the measured data. Since this topic was essentially suggested as a final step in this dissertation by a curious advisor, it has not been carried to completion (with his consent). It remains as a sign post to show that there is still significant research to be considered on this topic in the future.

Here again, the Equivalent Current method and the Edge Wave formulation are also used in our analysis. The plate geometry is defined in Figure 153, the plate is located in the $y-z p l a n e$, and the pattern is taken in the $x-z$ plane. The incident field is a linearly polarized homogeneous plane wave whose field is given by

1st page Chapter end linc
— — — - - - 1 st page Chapter end line

The ray mechanisms to be used to compute the E-plane and the H-plane patterns are discussed. At this time either the set of rays or the Corner diffraction coefficients are not quite complete. As we shall see, something is amiss for small values of θ other than $\theta=0$ in the
 this represents a region where more work is necessary. The E-plane results, while not complete, are such that straight forward applications of existing techniques should eliminate deviations from measured data.

B. ANALYSIS

The E-plane pattern for the triangular plate is analyzed, using the EC method technique discussed in Chapters IV and V, to compute the contributions of single, double and triple edge diffraction to the RCS pattern. Here again, the shadowing effect associated with multiple edge diffraction mechanisms is also present in this problem and is handled by the same technique discussed in Appendix A. The equivalent current corresponding to the first order edge diffraction is given by Equation (60) and that corresponding to the second and third order edge diffractions are respectively given by Equations (77, 78). Figure 154 shows the single, double and triple edge diffraction ray mechanisms associated with the triangular plate. Table 4 lists the different edge diffractions that have been included in our solution for E-plane RCS pattern. Note that the doubly diffracted rays $1-3$ and $3-1$, also the triple diffracted ray $1-3-1,1-3-2,3-1-2$ and $3-1-3$, were not included. Their contributions were found to bentinsignificant.
li/2 inch
(a) SINGLE EDGE DIFFRACTION

(b) DOUBLE EDGE DIFFRACTION

(C) TRIPLE EDGE DIFFRACTION

1st page Chapter end linc
Figure 154. Edge diffraction mec̄hañisms for trinangular plater probleme

The H-plane RCS pattern is also studied by computing the contri= butions of edge diffraction using the EC method and the edge wave mechanism. In this case, namely H-plane pattern, only the first and third order edge diffraction are-included-in-the-solution. The second order edge diffraction terms were not included in our solution because of the symmetry of the problem, where, the doubly diffracted rays between edge 1 and 2 are canceled by those rays diffracted between edge 3 and 2, while the rays diffracted between edge 1 and 3 had insignificant contribution. The steps involved in this analysis are given in the following section. Table 5 lists the different edge diffractions that have been included in Tourssolutionsfor-heqane-RCS pattern. Typing Guide Paper

The incident field on edges 1 and 3 can be written in terms of the edge coordinate system component as
\qquad

$$
\begin{equation*}
\left.\bar{E}_{(3)}^{i}=E_{\phi^{\prime}(3)}^{i} \hat{\phi}_{(3)-1}^{\prime}+E^{i} \quad \hat{B}^{\prime}{ }^{\prime}(3)-3\right) \text { ERTATION } \tag{106}
\end{equation*}
$$

where $\hat{\phi}^{\prime}, \hat{\beta}^{\prime}$ are the unit ${ }^{\text {Tyoing }}$ vectors in the edge fixed coordinate frame.'

When $\theta=0^{\circ}$ or 90°, Equation (105), reduces to
皆

$$
\begin{equation*}
\bar{E}_{(1)}^{\mathbf{i}}\left(\theta=0^{0}\right)=E_{\beta^{\prime}}^{i} \hat{\beta}_{(1)}^{\hat{\beta}^{\prime}}(1) \tag{107}
\end{equation*}
$$

$$
\begin{equation*}
\bar{E}_{(1)}^{i}\left(\theta=90^{0}\right)=E_{\phi^{\prime}}^{i} \hat{\phi}_{(1)}^{\prime}(1)+E_{\beta^{\prime}}^{i} \hat{\beta}^{\prime}(1) \tag{108}
\end{equation*}
$$

$\xrightarrow{\text { Inch }}$

स Equation (106) gives similar results for $\theta=0^{\circ}$ and 90°. The ϕ component of the incident field associated with edges 1 and 3 is the one that gives rise to all higher order edge interactions involving the plate edges which will contribute to both the principal polarization and the cross polarization RCS patterns.

THESIS / DISSERTATION
Typing Guide Paper
The edge wave mechanisms, namely double and triple corner diffraclions discussed in Chapter VI, are also included in our solution.

1. Edge Wave Double Corner Interaction Mechanism

This mechanism is shown in Figure 155, where the field diffracted from C_{1} is then diffracted from corners C_{2} and C_{3} on edges 1 and 3, respectively. Note that the edge wave field associated with edge 1 and propagating on the surface of the plate is oppositely polarized to that associated with edge 3. Figure 156 shows the effect of edge 2 on the edge wave field incident on C_{2}. The field diffracted from edge 2 will appear to be coming from an image like source located at 0^{\prime}. This affects the incident field on C_{2} by introducing a reflection coefficient to account for the energy reflected by edge 2.

In Figure 157, the double corner diffraction case is shown for the interaction between corners C_{1} and C_{2}. Again, one has to consider the different combinations of incident and diffracted fields, i.e., $\beta^{\prime} \beta, \beta^{\prime} \phi, \phi^{\prime} \beta$, and $\phi^{\prime} \phi$, where the first letter indicates the polarizalion of the incident field and the second the polarization of the diffracted field.

THESIS / DISSERTATION
Typing Guide Paper
Figure 156 . Effect of edge \#2 on edge wave fields.

1st page Chapter end line

Where R is the reflection coefficient due to edge 2 and is given by THESIS/ DISSERTATION Typing Guide Paper

$$
R=\frac{e^{-j \frac{\pi}{4}}}{\sqrt{2 \pi k} \sin \gamma}
$$

Because of the limitation of the edge wave formulation as is discussed in Appendix C, one had to assume that the field incident on C_{2} is incident along the extention of edge 1 rather than at an angle α as is dictateed by the reflection process due to edge 2. This is shown in Figure 158.

The diffracted field from C_{2} to the radar is then given by

$$
\begin{equation*}
E_{\beta(1)}^{d}=E_{(2)}^{d} D_{s}^{(e w)}\left(l, \frac{\pi}{2}, \phi_{1}, \beta_{1}\right) \sqrt{l} \frac{e^{-j k s_{2}}}{s_{2}} \tag{110}
\end{equation*}
$$

Note that for backscatter $\phi_{1}=\phi_{1}^{\prime}$ and the cross-polarization components, i.e., $\beta^{\prime} \phi$ and $\phi^{\prime} \beta$, are equivalent. Following the same procedure, the fields due to the $\beta^{\prime} \phi$ and $\phi^{\prime} \beta$ combined together are given by
THESIS / DISSERTATION
Typing Guide Paper

$$
\begin{align*}
E_{\beta_{(1)}}^{d} & =-4 E_{\phi^{\prime}(1)}^{i}\left(C_{1}\right) D_{h i}^{(e w)}\left(\ell, \phi_{1}^{\prime}, 0, \beta_{1}\right) R D_{i s}^{(e w)}\left(\ell, \frac{\pi}{2}, \phi_{1}, \beta_{1}\right) \\
& e^{-j k \ell} \frac{e^{-j k s_{2}}}{s_{2}}, \tag{113}
\end{align*}
$$

and that for the $\phi^{\prime} \phi$ component is given by

$$
\begin{gather*}
E_{\phi_{(1)}}^{\mathrm{d}}=2 E_{\phi^{\prime}(1)}^{\mathrm{j}}\left(C_{1}\right) D_{\cdot h}^{(\mathrm{ew})}\left(\ell, \phi_{1}^{\prime}, 0, \beta_{1}\right) R D_{h}^{(e w)}\left(\ell, 0, \phi_{1}, \beta_{1}\right) \\
e^{-j k \ell} \frac{e^{-j k s_{2}}}{s_{2}} . \tag{114}\\
\text { 1st page Chapter end line }
\end{gather*}
$$

Note that there are similar terms due to interactions between corners c_{1} and C_{3}. In the principal plane and because of the symmetry of the problem C_{1} and C_{2}. Therefore, their contribution is given by Equations (112114). Table 6 shows the different edge wave double corner diffractions that have been included in ournsolution:erNoterthat double diffraction $c_{2} \xrightarrow{\text {,h }}$ to. C_{3} and back are not included.sprimarily because they are currently beyond the state of the art.
:

2. Edge Wave Triple Corner Interaction Mechanism

This mechanism is shown in Figure 159 , and in Figure 160 we show the term associated with edge 1 where the doubly diffracted field from C_{2} is now incident on C_{12} and is diffracted back to the radar. The

$$
\begin{equation*}
\left.E_{(1)}^{d}=E_{\beta^{\prime}(1)}^{i}\left(C_{1}\right) D_{S^{\prime}}^{(e w)} \ddot{\left(l, \Phi_{1}\right.}, \frac{\pi}{2}, \beta_{1}\right) R \frac{e^{-j 2 k \ell}}{\sqrt{l}} \tag{115}
\end{equation*}
$$

Centur Guide
 G_{2} and is given by

$$
R=\frac{e^{-j \frac{\pi}{4}}}{\sqrt{2 \pi k \sin \gamma}} \quad \text { inch Chapter Line }
$$

The diffracted field from C_{1} to the receiver is then given by

$$
E_{(1)}^{d}=-E_{(1)}^{d} D_{s}^{(e w)}\left(\ell, \frac{\pi}{2}, \phi_{1}, \beta_{1}\right) \sqrt{\ell} \frac{e^{-j k s_{1}}}{s_{1}}
$$

where the negative sign is introduced since the diffracted edge wave field is polarized in opposite direction to the β polarization.

Substituting Equation (115) into (116), one gets

$$
\begin{align*}
& E_{\beta(1)}^{d}=-E_{\beta^{\prime}}^{i}(1) \\
&\left(C_{1}\right) D_{\frac{S}{s}}^{(e w)}\left(\ell, \phi_{1}^{\prime}, \frac{\pi}{2}, \beta_{1}\right) R D_{\dot{S}}^{(e w)}\left(\ell, \frac{\pi}{2}, \phi_{1}, \beta_{1}\right) \tag{117}\\
& e^{-j 2 k \ell} \frac{e^{-j k s_{1}}}{s_{1}}
\end{align*}
$$

$$
\begin{align*}
& E_{\beta_{(1)}}^{d}=-2 E_{\beta^{\prime}(1)}^{i} \underset{\left.\left(C_{1}\right) D_{S}^{(e w)}\right)}{2 \text { inch Chapter }}\left(l, \phi_{1}, \frac{\pi}{2}, \beta_{1}\right) R D_{S}^{(\mathrm{ew})}\left(\ell, \frac{\pi}{2}, \phi_{1}, \beta_{1}\right) \\
& e^{-j 2 k \ell} \frac{e^{-j k s_{1}}}{s_{1}} . \tag{118}
\end{align*}
$$

THESIS / DISSERTATION
The combined cross polarizeditrsiple cornerpdiffracted term is given by

$$
\begin{align*}
E_{\beta(1)}^{\mathrm{d}} & =4 E_{\phi^{\prime}}^{\mathrm{i}}{ }_{(1)}^{\left(C_{1}\right) D_{h}^{(e w)}\left(\ell, \phi_{1}, 0, \beta_{1}\right) R D_{\left(\frac{s}{s}\right.}^{(e w)}\left(l, \frac{\pi}{2}, \phi_{1}, \beta_{1}\right)} \\
& e^{-j 2 k \ell} \frac{e^{-j k s_{1}}}{s_{1}} \tag{119}
\end{align*}
$$

and that for the ϕ-polarized term is

$$
\begin{aligned}
& E_{\phi_{(1)}}^{\mathrm{d}}=2 E_{\phi^{\prime}(1)}^{\mathrm{i}}\left(C_{1}\right) D_{h^{(e w)}}^{\left(\ell, \phi_{1}, 0, \beta_{1}\right) R D_{h}^{(e w)}\left(\ell, 0, \phi_{1}, \beta_{1}\right), ~(l)} \\
& e^{-j 2 k \ell} \frac{e^{-j k s_{1}^{s t}}}{s_{1}}-\cdots--\cdots \text { page Chapter end line }
\end{aligned}
$$

$\xrightarrow{11 / 2}$ inch	In a similar way, the triple corner diffracted field associated with edge 3 , i.e., interaction $C_{1}-C_{3}-C_{1}$ can be obtained. In the principal plane and because of the problem symmetry, the field due to this term is equivalent to that associated With edgel-1inand is given by Equations (118-120). Table 7 shows the different triply diffracted terms that have been included in our solution. C. DISCUSSION

The above analysis is used to compute the H-plane RCS pattern for different plate sizes. THe calculated resultsoare compared to measured data provided by Mr. Chu-y[35] CInciguress 161-163, the results for three different size plates $\left(\frac{a}{\lambda}=2,3\right.$ and 9$)$ are shown. The three plates have tip angle $\alpha=30^{\circ}$. Some deviation between the calculated and measured results is observed especially in the region $0^{\circ}<\theta<45^{\circ}$. This indicates that the solution is not valid in this region for $\alpha=30^{\circ}$ and $\frac{a}{\lambda}<3$ except for θ near zero. It also suggests that a more accurate corner diffraction coefficient is needed, and probably, one has to

TABLE 7
EDGE WAVE TRIPLE CORNER DIFFRACTION TERMS FOR TRIANGULAR PLATE PROBLEM

Edge \#	TRIPLE DIFFRACTED TERMS				
	Corner \#	-	Corner	-	Corner \#
1	1	-	2	-	1
3	$1 \cdots$	-	$\cdots 3$	-	1

Figure 161. $E_{P H}, P H=1$ st page Chapter end line PH 0 - - paten for atriangued Chapter end line $\left(\alpha=30^{\circ}, a / \lambda=2\right)$.

 $\left(\alpha=30^{\circ}, \overline{\mathrm{a}} / \lambda \equiv 3\right)$. ——— list page Chapter end line

1st page Chapter end line
Figure 163. E_{PH}, $\mathrm{PH}=0-$ RCS .pattern for-a tri:angulkarCplilatier end line $(\alpha=30, a / \lambda=9)$.

include more higher order diffraction mechanisms whose contributions become more significant as the plate size is decreased. Some of these higher order interactions that are still under investigation are shown in Figure 164. The indi.vidual-eontribut-ions-to the H-plane RCS pattern of single, triple edge diffraction and that due to edge wave double and triple corner diffraction are respectively shown in Figures 165167 for $\alpha=30^{\circ}$ and $\frac{a}{\lambda}=2,3$, and 9 . The slope discontinuity observed near $\alpha=30^{\circ}$ in Figure 166 is due to the effect of edge shadowing. Figure 168, illustrates the case when $\frac{\alpha}{2}<\beta_{0}<\alpha$, where the double difffracted field from edge 2 illuminates both edges 1 and 3, as shown by the ray trajectories dueEtolthe incident rays 1 the double diffracted fieldiriqluminates on fly edge 3 while edge 1 is shadowed. However, when $\beta_{0}<\alpha$, the situation is reversed and edge 3 is shadowed while edge 1 is illuminated. The results for three plates with $\frac{a}{\lambda}=4$ and $\alpha=45^{\circ}, 60^{\circ}$ and 90° are shown in Figures 169-171 respectively. From these figures, one notices that it is the higher order interactions which involve edges 1 and 3 , which are the ones most likely responsible for the deviation between the calculated and measured resuits. As α is increased from 45° to 90°, edges 1 and 3 get further apart and an improvement between the two results is noticed, especially in the region $100^{\circ}<\theta<180^{\circ}$. Observe that in Figure 171 the prediction of the general behavior of the pattern is quite good except in the region $0^{\circ}<\theta<20^{\circ}$ where an error in measurement or the inaccuracy of the edge wave diffraction coefficient are probably the cause of the deviation between the two results. The individual contributions of single, triple edge diffraction mechanisms and that of edge wave double, triple corner diffraction are respectively shown in Figures 172-174 for $\frac{\alpha}{\lambda}=4$ and $\alpha=45^{\circ}, 60^{\circ}$, and 90°. The results for the RCS when the field is incident at edge on the tip side and $\alpha=30^{\circ}$ compared to measured data obtained by Hey, et. al., [31] is shown in Figure 175. Observe that as $\frac{a}{\lambda}$ is increased, the agreement l between the two results improves. Since for this case, namely eldest on incidence, the edge wave mechanism is the only contributor to the RCS, the deviation between

Center Guide
Page \#

1 inch

(b)

(c)
inure 165. Single edge diffraction contribution $\begin{aligned} & \text { find } \\ & \text { ding }\end{aligned}$

- - ————lst image HAldane RCS pattern of a triangular $\overrightarrow{p l a t e} \overrightarrow{\text { with }} \vec{\alpha}=30^{\circ}$ and $\frac{a}{\lambda}=2,3$ and 9 .

Figure 168. Shadowing effectscdue-tortriplenedgèdiffraction term for triangular ${ }^{-1}$ late prōblem. - - ist page Chapter and line

1st page Chapter end line
 $a / \lambda=4)$.

2 anci: Simptop i bir

 USi ITAT LANE

1st page Chapter end line
 $a / \lambda=4)$.

Figure 175. Edge on $\overline{R C S}$ - $\overline{a r}$ a triangular plate as ja function of its length ($\alpha=30^{\circ}$).
the two results is due to the inaccuracy of the edge wave diffraction coefficient. In Figures 176-178, the computed results for the E-plane RCS pattern compared to measured data $[43]$ are shown for three triangular
 butions of single, double, and triple edge diffraction. In Figures 176 and 177, one notices that the two results deviate in two regions, $0^{\circ}<\theta<60^{\circ}$ and $120^{\circ}<\theta<180^{\circ}$. This deviation indicates that there is another mechanism which is significant for these plate sizes especially in the region $120^{\circ}<\theta<180^{\circ}$. Peters [44], showed that a traveling wave mode could be considered in treating the RCS of thin bodies in near edge on regions $\operatorname{HES}^{\text {Techniques }}$ deveplopedoin this dissertation could be applied to obtainpassodution forpcthe RCS in this region. And it is expected that good results would be obtainable. This, however, has not been done at this time. As the plate length $\frac{a}{\lambda}$ is increased from 2 to 9, an improvement between the two results is noticed in the region $0^{\circ}<\theta<60^{\circ}$ as is shown in Figure 178. However, one should not rule out the effect of measurements errors. The contribution of single edge diffraction mechanism to the E-plane RCS pattern for these three plates is shown in Figure 179. Similar results for double and triple edge diffraction mechanisms are shown in Figures 180 and 181, respectively. Note that the higher order interactions have their significant contribution in the region $0^{\circ}<\theta<90^{\circ}$. The E-plane RCS pattern for triangular plates with $\frac{\mathrm{a}}{\lambda}=4$ and $\alpha=45^{\circ}, 60^{\circ}$ and 90°, are shown in Figures 182-184. Good agreement between the two results is obtained except in the region $160^{\circ}<\theta<180^{\circ}$, where the higher order diffractions have not been included as discussed earlier. This contribution, namely the edge wave, becomes weaker as α is increased. The contributions of single, double, and triple edge diffraction mechanisms to the E-plane RCS pattern of these plates are shown in Figures 185-187.
D. SUMMARY OF BACKSCATTERING FROMA.TRIANGULAR PLATE
— - — — - - list page Chapter end line
In this chapter, the H and E plane RCS patterns for a triangular plate_were_analyzed-for-a-p-l-ane-wave Encitdence.
\prod Centar Ouide

Figure 176. $E_{\text {, }}, \mathrm{PH}=0 \mathrm{RCS}$ page Chapter end line $\frac{a}{\lambda}=2$). Only single, double and triple edge diffraction are included.

Sst page Chapter end line
 $\frac{a}{\lambda}=3$). Only single, double and triple edge diffraction are included.

1st page Chapter end line

Only single, double and triple edge diffraction are included.

(c)

Figure 181. Triple edge diff page Chapter end line
Figure 181. Triple edge diffraction contribution to the E-pl ane RCS pattern of a triangular plate with $\alpha=30^{\circ}$ and $\frac{a}{\lambda}=2,3$ and 9 .

 Only single，double and triple edge diffraction are included．

んぶ13 LINK

$$
\int 2 \text { inch }
$$

T Center Quide

$11 / 2$ inch

 Only single, double and triple edge diffraction are included.

$\left\lfloor\begin{array}{l}1 \text { inch } \quad \text { Center Ouide }\end{array}\right.$

 Only single, double and triple edge diffraction are included.

(a)

(b)

Center Guide
Fage: \#

(c)

The H-plane pattern was analyzed by using the EC method to compute the contributions of single and triple edge diffraction mechanisms, also the Edge wave concept was extended to compute the contributions of double and triple edge wave corner diffraction mechanisms. The computed results were compared to measured data where it was found that for $\alpha=30^{\circ}$ and $\frac{a}{\lambda}<3$, our solution does not agree well with the measure "ments in the region near edge on, the tip side. Better agreement could be obtained if a more accurate corner diffraction coefficient is developed and probably more higher order interactions involving the edge waves are included in the solution. As the plate size is increased, better agreement is obtained between calculated and measured data.
yyina du:d lioper
:- The E-plane was also analyzed by using the EC method to compute the contributions of single, double, and triple edge diffraction mechanisms. The results are compared to measured data where some deviation is observed especially in the region $0^{\circ}<\theta<60^{\circ}$ and $120^{\circ}<\theta<180^{\circ}$ for $\alpha=30^{\circ}$ and $\frac{a}{\lambda} \leq 3$. This deviation is caused by neglecting to include the contribution of certain mechanisms not yet included in our solution. As the plate size is increased, better agreement is obtained in the region $0^{\circ}<\theta<60^{\circ}$ while some deviation in the region 120° $<\theta<180^{\circ}$ still remains.

As was stated earlier, the work presented in this chapter has not been carried to completion (with the consent of the advisor). The methods used in our analysis will serve as a guide for further work.

2 inch Chapter Line
This concludes our study on RCS from plate structures. \therefore We haue successfully and clearly shown the important role of higher order interactions which includes the newly developed Edge wave concept in RCS pattern analysis.

A study on the cross polarization field for a monopole mounted on a rectangular plate is presentedsinthenexthichapter. The analysis is based on the Edge wave vónceptuice Paper

A. INTRODUCTION

When an electromagnetic plane wave illuminates an object, the scattered field usually includes both direct and cross polarized components. The direct component has been widely studied in the literature since it is the component typically sensed by the receiver and it tends to be the larger of the two. The cross-polarized component on the other hand is produced as a result of the discontinuities and the finer details of the scatterer. It could also be produced as a result of the asymmetry of the object. The dependence of the cross-polarized component of the scattered field on the scattering object characteristics should be of value in evaluating the inverse scattering properties of the target. Such information may not be as readily obtainable from the direct "return.

B. MONOPOLE ON A RECTANGULAR PLATE

The far zone radiated field of a monopole mounted on a rectangular perfectly conducting plate is analyzed by using GTD, corner diffraction and edge wave diffraction. Figure 188 illustrates the problem geometry. The monopole could be located anywhere on the plate. The following conversion is used throughout this chapter:

> 1st page Chapter end line

The component $C_{i j}$ defines corner ion iedge $j_{\text {a }}$ Chapter end line where

(b) SIDE VIEW

Hst page Chapter end linic
Figure 188. Monopole geometry. $-\ldots$ list page Chapter end line
and N is the total number of edges. C_{j} defines corner j formed by edgenumber j and (j-1).

1. Analysis

2 inch Chapter Line

The principal polarization component of the scattered field, ie., E_{θ} is obtained by summing up the fields due to the different components illustrated in Figures 189-191. In these figures, the field components due to only one edge are shown. The fields associated with the other edges are computed in a similar way. Figure 189. shows the field components due to direct illumination of the source. The different parameters shown are defined below:

$$
\begin{aligned}
& \bar{s} \text { defines the position vector of the monopole, i. e., } \\
& \bar{s}=x_{s} \hat{x}+y_{s} \hat{y}+z_{s} \hat{z} \\
& \bar{s}_{c_{1}}=\bar{c}_{1}-\bar{s} \\
& \bar{s}_{c_{2}}=\bar{c}_{2}-\bar{s}
\end{aligned}
$$

Note that \bar{c}_{1} and \bar{c}_{2} are vectors that specify the positions of corners 1 and 2, and

$$
\begin{aligned}
& \beta_{o c_{1}}=\cos ^{-1} \cdot\left(-\hat{e}_{1} \cdot \hat{d}\right) \\
& \beta_{\mathrm{OC}_{2}}=\pi-\beta_{\mathrm{OC}}^{1} 1 \\
& \beta_{0}=\beta_{o c_{1}} \\
& \beta_{c_{1}}=\cos ^{-1}\left[-\hat{e}_{1} \cdot \bar{s}_{c_{1}}\right] \\
& \left.B_{c_{2}}=\cos ^{-1}\left[\hat{e}_{1} \text { is(ic } \bar{c}_{2} \bar{a} \bar{s} \bar{s}\right)\right] \text { haptér end line } \quad \text { Chapter end line }
\end{aligned}
$$

1st page Chapter end line
Figure 189: Scattered field components. due to monopolèapter end line
Li/2 inch \sim Center Guide

1st page Chapter end line

Figure 190. Image monopole mechanism. - \rightarrow lst page Chapter end line Li: 1) A 11Nは
(1/2 inch

1 st page Chapter end line
Figure 191. Image monopol.e_fiel.ds. \ldots list page Chapter end line

$$
\bar{Q}_{E}=\bar{c}_{1}+t \hat{e}_{1},
$$

with s, s_{1}, s_{2} being the distances to the receiver from the edge difffraction point, corner \#1 and corner \#2, on edge) \#il respectively. The field diffracted from theyedge, isuthen given by

$$
\begin{equation*}
E_{\phi(1)}=-E_{\phi^{\prime}(1)}^{i}\left(Q_{E}\right) D_{h}\left(L, \phi_{1}, 0, B_{0}\right) \sqrt{s^{\prime}} \frac{e^{-j k s}}{s} \tag{121}
\end{equation*}
$$

where

$$
\begin{align*}
& E_{\phi^{\prime}(1)}^{i}\left(Q_{E}\right)=j \sin \theta_{s} \frac{e^{-j k s^{\prime}}}{s^{\prime}}\left(\hat{z} \cdot \hat{\phi}_{(1)}^{\prime}\right) \\
& L=s^{\prime} \sin ^{2} \beta_{0}
\end{align*}
$$

and

Note that θ_{s} is the angle between the monopole axis and the line joining the monopole position and the diffraction point on the edge. For the case considered here, $\theta_{s}=\frac{\pi}{2}$. The field diffracted from C_{1} is given by

$$
E_{\phi}^{c_{1}}=-E_{\phi^{\prime}(1)}^{i}\left(c_{1}\right) D_{h}^{c_{1}}\left(L, L_{c_{1}}, \phi_{1}, o, \beta_{0}, \beta_{c_{1}}, \beta_{o c_{1}}\right)
$$

$$
\sqrt{\frac{s^{\prime}}{s_{c_{1}}}} \frac{\mathrm{e}^{-j k^{1} s^{s t}}}{{ }^{s_{1}}}-\cdots-\cdots-1 \text { page Chapter end line }
$$

$$
E_{\phi_{(1)}^{\prime}}^{\mathrm{i}}\left(c_{1}\right)=j \frac{e^{-j k s^{\prime}} c_{1}}{{ }^{s} c_{1} \quad\left(\hat{z} \cdot \hat{\phi}_{(1)}^{\prime}\right)}, L_{c_{1}} c_{1}=s_{c_{1}}
$$

and $D_{h}^{C_{1}}\left(L ', L_{C_{1}}, \phi_{1}, 0, B_{0}, B_{C_{1}}, B_{0 C_{1}}\right)$ is defined by Equation (26).

The field diffracted from C_{2} is given by

$$
\begin{align*}
& E_{\phi_{(1)}}^{c_{2}}=-E_{\phi_{(1)}^{\prime}}^{i}\left(c_{2}\right) D_{h}^{c_{2}}\left(L, L_{c_{2}}, \phi_{1}, 0, \beta_{0}, \beta_{c_{2}}, \beta_{O C_{2}}\right) \sqrt{\frac{s^{\prime}}{s_{c_{2}}}} \frac{e^{-j k s_{2}}}{s_{2}} \\
& \text { THESIS/ DISSERTATION } \\
& \text { Typing Guide Paper } \tag{123}
\end{align*}
$$

where

$$
E_{\phi_{(1)}^{\prime}}^{i}\left(c_{2}\right)=j \frac{e^{-j k s_{c_{2}}}}{{ }_{c_{c_{2}}}}\left(\hat{z} \cdot \hat{\phi}_{(1)}^{\prime}\right) \text { and } L_{c_{2}}=s_{c_{2}} .
$$

It should be noted that when

$$
{ }^{\beta} c_{2}<\beta_{0}<\beta_{c_{1}} \text { no edge diffraction occurs. }
$$

Figure 190 illustrates the effect of edge 4 on the fields due to edge 1. The field radiated by the monopole diffracts from edge 4 and in turn, illuminates edge 1 . This diffracted field appears to emanate from an image monopole located at point I_{1}. Of course, there is another image monopole. due to diffraction from edge 2, i.e., for each edge on the plate there are two image monopoles that illuminate the edge and significantly contribute to the far scattered field. Figure 191 defines

1st page Chapter end line

— _ _ _ . - list page Chapter end line

Similarly, the field due to corner 2 is given by.

$$
\begin{gather*}
E_{\phi(1)}^{c_{2}}=-E_{\phi_{(1)}^{\prime}}^{i}\left(c_{1}\right) D_{h}^{c_{2}}\left(L^{(I)}, L_{\left.c_{2}, \phi_{1}, 0, \beta_{0}^{(I)}, \beta_{c_{2}}^{(I)}, \beta_{0 c_{2}}\right) \sqrt{\frac{s^{\prime}(I)}{s_{c_{2}}^{(I)}}}}\right. \\
R^{c_{2}} \frac{e^{-j k s_{2}}}{s_{2}} \begin{array}{c}
\text { THESIS/ DISSERTATION } \\
\text { Typing Guido Paper }
\end{array} \tag{126}
\end{gather*}
$$

where

$$
R^{c_{2}}=\frac{e^{-j \pi / 4}}{\sqrt{2 \pi k} \cos \beta_{c_{2}}^{(I)}}
$$

, and

$$
E_{\phi_{(1)}^{\prime}}^{i}\left(c_{2}\right)=j \frac{e^{-j k s_{c_{2}}^{(I)}}}{s_{c_{2}}^{(I)}}
$$

$$
\left(\hat{z} \cdot \hat{\phi}_{(1)}^{\prime}\right)
$$

Note that when $\beta_{C_{2}}^{(I)}<\beta_{0}^{(I)}<\beta_{C_{1}}^{(I)}$ no edge diffraction occurs.

In a pattern plane cut very close to the plane of the plate, the fields due to Equations (121-126) contribute very little to the crosspolarized field components. The major contribution comes from the edge wave mechanism discussed in Chapter II. In a similar way, there are edge wave fields due to the monopole and its images.

1st page Chapter end line
Figure 192: illus.trates-the-edge-wave Imechanjismstasisocitated with: the monopole itself. If one considers the case shown in Figure 192-a and GSillalla

(c)

(d)

Figure 192. Edge wave mechanisms Chapter end line monopole lege Chapter end line

$$
\sqrt{i} \text { inch }
$$

where the super script (I) indicates image monopole and

$$
\begin{aligned}
& L^{(I)}=s^{\prime(I)} \sin ^{2} T \beta_{0}^{(I)} \text { Typing Guide Paper } \\
& R=-\frac{e^{-j \pi / 4}}{\sqrt{2 \pi k} \cos \beta_{0}^{(I)}} \\
& E_{\phi_{(1)}^{\prime}}^{i}\left(Q_{E}\right)=j \frac{e^{-j k s^{\prime}(I)}}{s^{\prime}(I)}\left(\hat{z} \cdot \hat{\phi}_{(1)}^{\prime}\right)
\end{aligned}
$$

For the corner fields one writes

$$
\begin{align*}
& E_{\phi_{(1)} C_{1}}=-E_{\phi_{(1)}^{\prime}}^{i}\left(C_{1}\right) D_{h}^{C_{1}}\left(L^{(I)}, L_{C_{1}}^{(I)}, \phi_{1}, 0, \beta_{0}^{(I)}, \beta_{C_{1}}^{(I)}, \beta_{O C_{1}}\right) \sqrt{\frac{S^{\prime}(I)}{s_{C_{1}}^{(I)}}} \\
& \quad R^{C_{1}} \frac{e^{-j k s_{1}}}{s_{1}} \tag{125}
\end{align*}
$$

where

examine it as a reciprocal problem i.e., a plane wave being incident onthe plate and the field strength received by the monopole. The plane wave is diffracted by C_{2}. This diffracted field excites an edge wave whose field is received by-the-monopole-By-reciprocity, the crosspolarized far field is then given by

$$
\begin{gathered}
E_{\beta_{(1)}}=E_{\phi_{(1)}^{\prime}}^{i}\left(c_{2}\right) D_{s}^{(e w)}\left(\varepsilon, \pi, \pi, \beta_{0 c_{2}}\right) D_{h}^{(e w)}\left(s_{c_{2}}, 0, \frac{\pi}{2}, \beta_{c_{2}}\right) F(\gamma) \\
\frac{e^{-j k s_{2}}}{s_{2}} \\
\text { THESIS/ DISSERTATION } \\
\text { Typing Guide Paper }
\end{gathered}
$$

|where
$D_{S}^{(e w)}$ is defined by Equation (27) and
h

$$
E_{\phi^{\prime}(1)}^{i}\left(c_{2}\right)=j \frac{e^{-j k c_{2}}}{\sqrt{\varepsilon \times s_{c_{2}}}}\left(\hat{z} \cdot \hat{\phi}_{(1)}\right)
$$

and
ε is a very small number ~ 0.01.
$\mathrm{F}(\gamma)$ is a heuristic pattern function which is needed to account for the presence of the adjacent edges and to satisfy the boundary condition lover the plate. It is given by

$$
F(\gamma)= \begin{cases}0 & \text {, over the plate } \\ \frac{\sin \left(\frac{\pi \gamma}{\theta}\right) \text { est page Chapter end line }}{\sqrt{2} \sin \left(\frac{2 \pi}{3}\right)} & \text { otherwise. Chapter end line }\end{cases}
$$

$S_{C_{2}}$ and S_{2} replaced by $\beta_{\mathrm{OC}_{1}}, \beta_{C_{1}}, S_{C_{1}}$ and S_{1} which are defined in ${ }^{2}$ Figure 192-b. THESIS, DISSERTATION Typing Guide Paper

Figure 193 Parameter definition for pattern function.

where
The mechanisms shown in Figures 192-c, d describe the interactions included between two corners. The edge wave excited at one corner prop-: agates unattenuated along the edge and then diffracts from the second one. If one considers the-case-shown-in-F-igure-192-c; the diffracted field is given by

$$
\begin{align*}
& E_{\beta_{(1)}}=-E_{\phi_{(1)}^{\prime}}^{i}\left(c_{1}\right) D_{s}^{(e w)}\left(\varepsilon, \pi, \pi, \beta_{o c_{2}}\right) D_{h}^{(e w)}\left(s_{c_{1}}, \frac{\pi}{2}, o, \beta_{c_{1}}\right) \\
& R F(\gamma) e^{-j k \ell} \frac{e^{-j k s_{2}}}{S^{s} 2^{2}} \tag{129}\\
& \text { THESIS / DISSERTATION } \\
& \text { Typing Guide Paper } \\
& E_{\phi_{(1)}^{\prime}}^{i}\left(c_{1}\right)=j \frac{e^{-j k c_{1}}}{\sqrt{\varepsilon^{E} \times{ }^{s} c_{1}}}\left(\hat{z} \cdot \hat{\phi}_{(1)}\right) \quad, \quad \text { and }
\end{align*}
$$

the term R accounts for the effect of edge 2 which reflects the wave in the reverse direction as was explained in Chapter VI. It is given by

$$
R=\frac{e^{-j \pi / 4}}{\sqrt{2 \pi k} \sin \theta_{1}}
$$

where θ_{1} is the interior angle between edges 1 and 4. A similar expression is obtained for the case shown in Figure 192-d with $\beta_{c_{1}},{ }^{S_{c_{1}}}$, $\beta_{o c_{2}}, s_{2}$ and θ_{1} replaced by $\beta_{c_{2}}, s_{c_{2}}, \beta_{o c_{1}}$, s_{1} and θ_{2}.

The final field component to be considered is the edge wave contribution associated with the image monopole. This is shown in Figure 195. The field due to this mechanism is given by 1 st page Chapter end line ——————— lIst page Chapter end line

$$
\begin{gather*}
\quad E_{B_{(1)}}=E_{\phi(1)}^{i}\left(c_{1}\right) D_{s}^{(e w)}\left(\varepsilon, \pi, \pi, \beta_{o c_{1}}\right) D_{h}^{(e w)}\left(s_{c_{1}}^{(I)}, \frac{\pi}{2}, o, \beta_{c_{1}}^{(I)}\right) \\
R_{1}^{(I)} F(\gamma) \frac{e^{-j k s_{1}}}{s_{1}} \tag{130}
\end{gather*}
$$

'where

$$
E_{\phi(1)}^{i}\left(c_{1}\right)=j \frac{e^{-j k s_{C_{1}}^{(I)}}}{\sqrt{\varepsilon \times s_{C_{1}}^{(I)}}} \quad\left(\hat{z} \cdot \hat{\phi}_{(1)}\right)
$$

and

$$
R_{1}^{(I)}=-\frac{e^{-j \pi / 4}}{\sqrt{2 \pi k} \cos \beta_{c_{1}}^{(I)}}
$$

and from C_{2}, one gets

$$
\begin{aligned}
E_{\beta(1)}= & E_{\phi(1)}^{i}\left(c_{2}\right) D_{s}^{(e w)}\left(\varepsilon, \pi, \pi, \beta_{0 c_{2}}\right) \\
& F(\gamma) \frac{D^{(e w)}\left(s_{c_{2}}^{(I)}, \frac{\pi}{2}, 0, \beta_{c_{2}}^{(I)}\right) R_{2}^{(I)}}{s_{2}} \\
& F
\end{aligned}
$$

where

Two similar expressions exist due to the second image monopole shown in Figure 195-b.

THESIS / DISSERTATION
 If one defines $\mathrm{E}_{\hat{\theta}}$ and $\mathrm{E}_{\hat{\theta \mathrm{PH}}}$ (asithe prineipal and cross-polarized far

 field components defined in the spherical coordinate system, then the contribution of the E_{β} and E_{ϕ} field component defined with respect to the $p^{\text {th }}$ edge coordinate system to the principal and cross-polarized field components are given by$$
\begin{align*}
& E_{\theta}=\left(E_{\phi} \hat{\phi}_{(p)}+E_{\beta} \hat{\beta}_{(p)}\right) \cdot \hat{\theta} \tag{132}\\
& E_{\varphi P H}=\left(E_{\phi} \hat{\phi}(p)+E_{\beta} \hat{\beta}(p)\right) \cdot \hat{\beta H} \tag{133}
\end{align*}
$$

where $\hat{\theta}$ and $\widehat{P H}$ are the θ and PH unit vectors defined in the spherical coordinate system. Note that E_{β}, E_{ϕ} in Equations $(132,133)$ define the total β and ϕ field components due to all of the above diffraction mechanisms discussed above associated with edge p.

2. Discussion

The above analysis is used to compute data for different plate sizes

In Figure 196; the calculated cesults, fornt the cross-polarized field 1 linch component for a 1λ square plate with a monopole mounted at the center is shown. It is compared with measured results and the agreement between the two results is quite good. The general behavior of the pattern is well predicted by our solution. It was found that the contribution of the principal polarization edge and corner diffracted fields to the cross-polarized field component is minimal. Most of the crosspolarized field is due to the edge wave mechanisms discussed earlier. Thus one would expect that when an antennais mounted on a finite structure with several surface discontinuities such as corners, a strong crosspolarized field component will result due to the different edge wave mechanisms created by these surface discontinuities. Note that as the surface structure is changed, one may have to consider other edge wave interactions other than the ones discussed and used in our work. These interactions proved to be adequate for the problems and geometries analyzed here. In Figure 197, a typical field plot is shown from a single corner on a single edge $\left(C_{11}\right)$ for a 2λ square $p l a t e$ with the monopole mounted at the center. Figure 197-a shows the field due to direct monopole illumination while Figure 197-b shows that due to the image monopole illumination, even though the field due to the image monopole is approximately 12 dB lower than that of the direct monopole excitation, the combined effect of the image monopole contribution changes the final result by 1.5 to 2 dB depending on the size and location of the monopole on the plate. The field due to two edge corners, i.e., C_{1} is shown in Figure 198 . The deep null at $\mathrm{PH}=45^{\circ}$ is created by the perfect cancellation of the two irdge waves "on' the two edges forming the corner. For a symmetric geometry, the null created by this corner lines up with that of the final pattern result. In figure 199, the field pattern is shown for two corners (C_{1} and C_{4}) due to a monopole mounted at the center of a 2λ square plate. The pattern maxima is created by such an interaction. The total cross polarized field_due_to

(a) DIRECT MONOPOLE ILLUMINTION

(b) IMAGE MONOPOLE ILLUMINATION (事)

$$
\begin{aligned}
& \text { Figure 197. } \mathrm{E}_{\theta \mathrm{PH}}, \quad \theta=90^{\circ} \text { field_pattern_in idB duejetoccornerr } C_{\text {inforina }} \\
& 2 \lambda \times 2 \lambda \text { plate. }
\end{aligned}
$$

a monopole mounted at the center of $a 2 \lambda$ square plate is shown in Figure 200.: This is compared to a MM solution shown in Figure 201:- The same calculated pattern is compared to measured results in Figure 202 which show good agreement between the two patterns. The MM solution which is obtained by using a 15×15 patch modes differs by a 1.5 dB with ressect to our solution. The MM solution could be improved by either increasing the number of modes or using a non-even mode distribution, i.e., increase the number of modes around the corners since the crosspolarized field pattern structure is controlled by the surface currents near these corners. Figures 203-206 illustrate the effect of the monopole position variation. THE The results areacompared to MM solutions. Both methods predict nearly the same pattern structure. The difference ;is due to the fact that one or two corners are strongly excited by the monopole. In such cases, the MM solution using 15×15 patch mode, is not sufficient to predict the fine details of the lobe structure. By comparing Figure 200 with Figures 203, and 205: one can notice the sensitivity of the cross-polarized field component to variations in monopole location on the plate. Figure 207 shows the results for a monopole at the center of a 3λ square plate and in Figure 208, the MM solution is shown for the same geometry. Both solutions predict nearly the same level with respect to the principal polarization (E_{θ}) but the details of the lobe structure in the MM solution are not as good. Again the 15×15 patch modes used to compute the result are not sufficient to predict these details. In Figures 209 and 210; the effect of varying the monopole location on the 3λ square plate is illustrated. Similar comments hold for this case, too. In Figures 211 and 212, the computed results are shown for a monopole located at the center of a 4λ |and 6λ square plate, respectively. And in Figures 213 and 214, the same results are compared to measured data. Note the non-symmetrical behavior in the measured data which indicate the sensitivity to alignment which become critical 1 st page Chapter end line

Page \#
$11 / 2$ inch

Figure 200. $E_{\theta P H}, \quad \theta=190^{\circ}$ FtotalCfitelldepatternliint $d B$ for a $2 \lambda \times 2 \lambda$ plate
 LAST TEAC LINE

Centur Guide
! inch ! ! fage \#

i.

$\therefore \quad H_{P \text { PH }}$

-ist payc liaptar ad line
Figure 201: MM solution for. $E_{\theta P H},-\theta \equiv 90^{\circ}$ fiteld, patternarinedBefor lane $2 \lambda \times 2 \lambda$ plate. Pattern maxima is 8.81 dBB below principal \longrightarrow polari-zat-ion_-

 ment for a $2 \lambda^{-} \times-2 \lambda^{-}$plate. - lst page Chapter end line

Figure 203. $E_{\theta P H}, \quad \theta=-90^{\circ}$ total-field patternpinj $\in d B=$ forptar 2 derxd2 2 ip plate Pattern maxima is 5.75 dB below principal polarization

$$
\{2 \text { inch }
$$

Figure 204. MM solution Sfor Ea
 polarization and the monopole is located at $x=0.5, y=0.5$.

Figure 205. $E_{G P H}, \quad \theta=90^{\circ}$ total field pattern in dB for a $2 \lambda \times 2 \lambda$ plate Pattern maxima is 5.791 dB list page Uncipalep polarization and the monopole is located at $x=0, y=0.5$.

Centir Guide

1 irce: :
1Page \#
11/2 inch

 polarization and the monopole is located at $x=0, y=0.5$.

292

Figure 207. $\mathrm{E}_{\theta P H}, \theta=90^{\circ}$ total field pattern in $d B$ for a $3 \lambda \times 3 \lambda$ plate 1st page Chapter ad line
Pattern maxima is 13.254 dBabelow principal polarization

Figure 209. $E_{\theta P H}, \theta=90^{\circ}$ total field pattern in $d B$ for a $3 \lambda \times 3 \lambda$ plate. Pattern maxima is 8.89 dB below principal polarization 1 st page Chapter end line and the monopole is located atx $=00$ y 150.75 .

Centur Guide

 polarization and monopole is located at $x=0, y=0.75$.

Figure 211. $E_{\theta P H}, \theta=190^{\circ}$ poatal frieldd pattern ind $_{\text {in }} d B$ for a $4 \lambda \times 4 \lambda$ plate Pattern maxima i.s $16.27-\mathrm{dB}+$ lbelow.cpr incipallerponarizatsion.

Center Guide

Figure 213. $E_{\theta P H}, \theta=90^{\circ}$ field pattern in $d B$ for a $4 \lambda \times 4 \lambda$ plate. Calculated pattern maximatis 16.27 dB below principal polarization.
\qquad

Figure 214. $E_{\theta P H}, \theta=90^{\circ}$ field pattern in $d B$ for a $6 \lambda \times 6 \lambda$ plate. Calculated pattern maxima is 17.78 dB below principal polarization.

SUMMARY

In this work we extended the analysis presented in Chapter III which was used to analyze the Echo width for a perfectly conducting strip illuminated by a homogeneous plane wave to analyze the RCS patterns for perfectly conducting plates

Typing Guide Paper
The Equivalent Current concept was used to compute the contributions of edge diffraction mechanisms that involve single and multiply diffracted rays. The Kouyoumjian-Pathak (K-P) form of the diffraction coefficient was used in conjunction with the Equivalent Currents when the higher order edge interactions are involved. This procedure made it possible to compute the RCS of several finite plate geometries in the near edge on region more accurately in a manner comparable to the computations for the infinite strip.

The broadside scattered fields for flat plates has in the past required the use of a surface integral type of solution such as Physical Optics or the Physical Theory of Diffraction. Also the forward scattering theorm has also been invoked to obtain a single point in the specular direction. The present solution uses the accuracy of present day digital computers to obtain accurate RCS patterns in the region sufficiently near the specular direction such that there is no need to use any of these special procedures.

There has been considerablecdiscussioncofliedge wave mechanisms in the RCS community. In-this dissertation; wethaveyegenériated acnew line
3. The study presented in Chapter VIII on the cross-polarized field of a monopole mounted on a square plate should be extended to a multi-sided plate and arbitrary pattern cuts.

The availability of such diffraction coefficients will enable us to compute the contributions of the many higher order interactions involving the edge wave mechanism and the plate's edges and corners. One such interaction is the simuth at onof thécreeping wave mechanism by the successive edge wave forward diffraction around the plate. Also one could study the cross-polarization RCS patterns from plates more accurately since the edge wave mechanism and the interactions associated with it are one of the major sources of the cross-polarization effects in RCS studies as was seen in Chapter VI. In addition, one could investigate the effect of the higher order diffraction mechanisms on RCS pattern computations in anclane other than thesprincipal ones but with a PH-polarized incident plane,cwave,ifiielidapesuch a problem is more complex 'than the one analyzed in Chapter VI. This will help to improve the results presented in Chapter VII for the H-plane RCS pattern for a triangular plate. andi-sided plate and arbitrary pattern cuts.

l inch

In this section, we discuss the methods used to determine the extent of the illumination of a second edge by the field diffracted from the first edge.. In Figure ${ }_{1}$ (215) we, showsworarbitrary edges, i and j, on a flat plate. The fieldrdiffigactedlfermaedge i is assumed to be a plane wave. This field illuminates part of edge j. The position vectors \bar{P}^{i}
$\binom{1}{2}$ define the location of the diffraction points $\binom{1}{\frac{1}{2}}$ which define the
(lower/upper) bounds of the illuminated region on edge i. Similarly, the vectors \bar{P}_{1}^{j} define the (lower/upper) bounds of the illuminated region $\binom{1}{2}$
on edge j. The unit vector \hat{I} which defines the direction of the ray diffracted from edge i to edge j makes an angle $\hat{\beta}_{\dot{j}}$ with edge unit vector \hat{e}_{i} and is given by

$$
\begin{equation*}
\beta_{i}=\cos ^{-1}\left[\hat{e}_{i} \cdot \hat{I}\right] \tag{134}
\end{equation*}
$$

As was stated in Chapter IV, the position vectors $\bar{C}_{i}, \overline{\mathrm{C}}_{\mathrm{i}+1}, \overline{\mathrm{C}}_{\mathrm{j}}$ and $\overline{\mathrm{C}}_{\mathrm{j}+1}$ defines the corner locations of edges \mathbf{i} and \mathbf{j} respectively.

If we define the vectors, \bar{h}_{1} and \bar{h}_{2} as

$$
\begin{aligned}
& \text { 1st page Chapter end line } \\
&
\end{aligned}
$$

Fage \#

$\xrightarrow{\text { Li/2 inch }}$

1st page Chapter end line Figure 216. Case ofintersecting vectors $\overrightarrow{h_{1}}$ sand $\overline{h_{2}}$.

| Center Guide

 and the lower bound on edge jor pace chapter end line

Figure 219. Determination of flluminater end linc and the lower bound on edge j for case b:

$$
\begin{aligned}
& \theta_{\mathfrak{i}+1}=\pi-\alpha_{1} \\
& r=\frac{U_{1}}{\sin \beta_{\mathfrak{i}}} \sin \theta \frac{2 \text { inch Chapter Line }}{\mathfrak{i}+1} \\
& \bar{r}_{\mathrm{i}}=r \hat{I}
\end{aligned}
$$

In this case, the location of the illuminated region lower bound on edge j is given by

$$
\overline{\mathrm{P}}_{1}^{j}=\overline{\mathrm{c}}_{\mathrm{j}} \quad \begin{align*}
& \text { THESIS / DISSERTATION } \tag{140}\\
& \text { Typing Guide Paper }
\end{align*}
$$

and that of the upper bound on edge i is modified to be

$$
\bar{P}_{2}^{i}=\bar{P}_{1}^{j}-\bar{r}
$$

For the special case $\beta_{i}=\alpha_{1}$, the location of the upper bound on edge i is not modified and that of the lower bound on edge j is given by Equation (140).

To find the location of the illuminated region upper bound on edge j, one proceeds in a similar manner as above. Figure 220 defines the geometry involved where

$$
\begin{align*}
& \bar{v}_{1}=\bar{c}_{j+1}-\bar{P}_{1}^{i}=v_{1} \hat{v}_{1} \\
& \gamma_{1}=\cos ^{-1}\left[\hat{e}_{i} \cdot \hat{v}_{1}\right] \tag{141}
\end{align*}
$$

where V_{1} and \hat{V}_{1} are the magnitude and unit vectors of \bar{V}_{1}. Depending on the values of β_{1}, $\beta_{i}^{1 s t a n d} \underline{Y}_{1}$ one has to consider the following cases:

1st page Chapter end line
Figure 220. Parameter definition_for the determinationoftethe eilluminated region lower bound on edge i and upper bound on edge j.

1 st page Chapter end line
Figure 221. Determination of illuminated region lower bound on edge j_{c} and upper bound on edge j for case c.

1st page Chapter end line
Figure 222. Determination of illuminated region lower bound on edge is and upper bound on edge j for case d .

In the special case where ${ }^{2}$ inch Chater locino of the lower bound on edge i is not modified and that of the upper bound on edge j is given by Equation (143).

B. CASE OF NON-INTERSECTING VECTORS \hbar_{1} AND \hbar_{2}

When the vectors \bar{h}_{1} and \bar{h}_{2} shown in Figure 216 do not intersect, one has to consider the-two specialscasesr shownin Figure 223: where the extension of one edge/passestithroughkthe physical limits of the other edge defined by its corners.

Consider first the case shown in Figure 223-a and examine Figure 224 where we show the method used to find whether the ray diffracted from edge i illuminates (hits) edge j. Define

$$
\begin{equation*}
\psi=\pi-\beta_{i} \tag{144}
\end{equation*}
$$

The ray diffracted from edge \mathbf{i} will not illuminate edge j if

$$
\pi<\psi<\beta_{2}
$$

where β_{i} and β_{2} are defined in Equations $(134,136)$.

Based on the value of β_{i} and γ_{1} defined in Equations (134) and (141), one has to consider the following cases:

Case e: $\quad \beta_{i}<\gamma_{1}$
1st page Chapter end line
Figure 225 illustrates ${ }^{-t h} \mathbf{s}^{\text {c }}$ case where ${ }^{\text {st }}$ page Chapter end line
$\downarrow 1$ inch
Center Guide

Center Guide

(a)

(b)

1st page Chapter end line
Figure 223: Cases of non-intersecting-vectors ${\underset{H}{1}}^{a}$ and Chapter end line

$$
\{l \text { inch }
$$

Figure 225.: Determination of the Chapter end line bounds on edge j for case e.

1st page Chapter end line
Figure 226. Determination of the illuminated region Fower and end line bounds on edge j for case f.

1st page Chapter end line
Figure 227: Method used_to_determine_if_edge;ti pialluminatese edgercij when \hbar_{1} does not intersect h_{2} (case of Figure 203-b).

326

1st page Chapter end line
Figure 228. Determination of the inluminated region Chanter and upper line bounds on edge j for case $g_{\text {ins }}$

1 st page Chapter end line
Figure 229. Determination_of_the_illuminatedtregionsCforpeasechod line
It should be noted that the techniques shown in this Appendix were used
to handle the geometry problem associated with the different plates
analyzed in our work. However, depending on the plate geometry to be
analyzed, one may have to consider other cases associated with the de-
termination of the illuminated region on an edge.
THESIS/ DISSERTATION
Typing Guide Paper

1 st page Chapter end line
— — . . . - list page Chapter end line
$10 T$ In LIN

$$
\bar{H}^{i}=\left(H_{x}^{i} \hat{x}+H_{y}^{i} \hat{y}+H_{z}^{i \hat{z}}\right) e^{j k g}
$$

where

$$
\bar{E}^{i} \times \bar{H}^{i}=\frac{\hat{I}}{Z_{0}} \quad, \text { and }
$$

\hat{I} is the unit vector in direction of propagation, $g=x \sin { }^{i} \cos P H^{i}+$ $y \sin \theta^{i} P H^{i}+z \cos \theta^{i}$
where
THESIS / DISSERTATION
Typing Guide Paper
$\theta^{i}, \mathrm{PH}^{i}$ are the θ and PH angles of incidence defined in the standard spherical coordinate system.

From Equations (153 and 154), one can define

$$
\begin{align*}
& E_{\tan }^{i}=\bar{E}^{i} \cdot \hat{e}_{p} \tag{155}\\
& H_{\tan }^{i}=\bar{H}^{i} \cdot \hat{e}_{p} \tag{156}
\end{align*}
$$

where $\hat{e}_{p}=\bar{x}_{p} \hat{x}+\bar{y}_{p} \hat{y}+\bar{z}_{p} \hat{z}$ is the $p{ }^{t h}$ edge unit vector.
The Equivalent Electric Current vector on edge p is then given by

$$
\begin{equation*}
\bar{I}_{(1)}^{\mathrm{e}}=\frac{2 j}{Z_{0}^{k}} \frac{G^{e}\left(n, \phi, \phi^{-}\right)}{\sin ^{2} \beta_{0}^{(p)}}\left(\bar{E}^{i} \cdot \hat{e}_{p}\right) \hat{e}_{p} \tag{157}
\end{equation*}
$$

or

$$
\bar{I}_{(1)}^{e}=\left(I_{x}^{e} \hat{x}+I_{y_{1}}^{e} \hat{y}+{ }_{p t}^{I_{z} z_{j}} \hat{z}\right) \frac{e^{j k g}}{C r z_{0} p t e r, ~}
$$

$$
-\ldots-\infty \text { list page Chapter end line }
$$

$$
\text { The } \theta \text { and } \mathrm{PH} \text { components of the total scatte }
$$

where the superscript t indicates total field, e and m indicate fields due to Electric or magnetic equivalent currents.

$$
\begin{align*}
& \int_{\text {edge } p} e^{j k\left(g+g^{\prime}\right)} d l^{\prime} \tag{162}
\end{align*}
$$

$$
\begin{aligned}
& E_{P H}^{t}=\frac{j k}{4 \pi} \frac{e^{-j k r}}{r}\left\{\begin{array}{c}
\left(I_{x}^{m} \cos \theta \cos P H+I_{y}^{m} \cos \theta \sin P H-I_{z}^{m} \sin \theta\right) \\
\\
\end{array} \quad+\left(I_{x}^{e} \sin P H-I_{y}^{e} \cos P H\right)\right\} \\
& \quad\left(e^{j k\left(g+g^{\prime}\right)} d \ell^{\prime}\right.
\end{aligned}
$$

where

$$
g^{\prime}=x^{\prime} \sin \theta \cos P H+y^{\prime} \sin \theta \sin P H+z^{\prime} \cos \theta
$$

and $x^{\prime}, y^{\prime}, z^{\prime}$ defines the location of an arbitrary point on edge p.

The integral shown in Equations $(162,163)$ is given by

 INE

ℓ defines the length of edge p,
$\ell=\sqrt{\left(x_{p+1}-x_{p}\right)^{2} \frac{\text { Dinah chantan i inn }}{+\left(y_{p+1}-y_{p}\right)^{2}+\left(z_{p+1}-z_{p}\right)^{2}}}$,
$a=\sin \theta \cos P H+\sin \theta^{i} \cos P H^{i}$,
$b=\sin \theta \sin P H+\sin \theta^{i} \sin P H^{i}$,
$c=\cos \theta+\cos \theta^{i}$,
$A=a \bar{x}_{p}+b \bar{y}_{p}+c \bar{z} p$ and
$B=a x_{p}+b y_{p}+c z_{T H}$ DIESIS / DISSERTATION
Note that for backscattery $\theta=i \theta g$ andiRH \Longrightarrow sHer
and x_{p}, y_{p}, z_{p} are the rectangular components of corner p position vector.
$\bar{x}_{p}, \bar{y}_{p}, \bar{z}_{p}$ are the corresponding components of edge p unit vector.
For the higher order diffraction terms, only Magnetic Equivalent Currents are needed. These currents are derived in a similar way as shown above. Figure 230 illustrates the double diffraction case from edge p to q. The unit vectors \hat{I} and \hat{d} define the incidence and difffraction directions. $Q^{(p)}$ and $Q^{(q)}$ define the diffraction points on edge p and q respectively. S_{1} is the distance between $Q^{(p)}$ and $Q^{(q)}$.

The diffracted field from edge p is incident on edge q and is given by

$$
\begin{aligned}
& \bar{H}^{\bar{j}^{(q)}}{ }_{\left(Q^{(q)}\right)}^{(q)}=-\frac{1}{2} \beta_{0}^{\prime}(q) \underset{B_{0}^{\prime}}{\mathrm{H}^{(p)}(p)}\left(Q^{(p)}\right) D_{h}^{(p)}\left(S_{1}, 0, \phi^{\prime}(p), \beta_{0}^{(p)}\right) \\
& e^{-j k S_{1}} \quad \text { dst page }{ }^{\beta_{0}^{\prime}(p)} \text { Chapter end line } \\
& \frac{e^{s_{1}}}{\sqrt{2}}-\cdots \cdots-\infty \text { lsat page Chapter end } l(165)
\end{aligned}
$$

The Magnetic Equivalent_Currentsduerto_double_diffraction-i.s-given-b.y-

$$
\begin{align*}
I_{(2)}^{m} & =\frac{2 j}{Y_{0} k} \frac{\sqrt{2 \pi k} e^{j \pi / 4}}{\sin \beta_{o}^{(q)}} D_{h}^{(q)}\left(s_{1}, \phi^{(q)}, o, \beta_{0}^{(q)}\right) \\
& \left(\bar{H}^{i(q)}\left(Q^{(q)}\right) \cdot \frac{2 \text { inch Chapter Line }}{}\right) \tag{166}
\end{align*}
$$

Substituting Equations (165) into (166), one gets

$$
\begin{aligned}
& D_{h}^{(p)}\left(s_{1}, o, \phi^{\prime}(p), \beta_{0}^{(p)}\right) \quad D_{h}^{(q)}\left(s_{1}, \phi^{(q)}, 0, \beta_{0}^{(q)}\right) \\
& \frac{e^{-j k s_{1}}}{\sqrt{s_{1}}} \quad\left(\hat{\beta}_{0}^{\prime(q)} \cdot \hat{e}_{q}\right)
\end{aligned}
$$

In a similar way to Equation (160), we can write

Using Equation (167) into Equations $(162,163$) with the Electric Equivalent Current set to zero, one can get the required scattered field. Note that the integration in this case must be computed numerically and that the integration is only over the illuminated part of edge q.

The third order diffraction mechanism is shown in Figure 231 . The field diffracted from edge q is is now the incite dent field on edge v. Note that as in the strip case, there are 4 rays incident on $\underset{Q}{ }(\underline{v})$ which will contribute to the total diffracted field.

Figure 231. Parameter definit.jon cassociated withetriple edge diffraction mechanism. - — — ———— lst page Chapter end line

The incident field on edge V is

$$
\begin{align*}
& \frac{e^{-j k s_{2}}}{\sqrt{s_{2}}} \tag{169}
\end{align*}
$$

The $\frac{1}{2}$ factor is introduced because of grazing incidence, and

$$
\begin{align*}
& \frac{e^{-j k s_{1}}}{\sqrt{s_{1}}} \tag{170}
\end{align*}
$$

also

$$
D_{h}^{(q)}\left(L, 0,0, B_{o}^{(q)}\right)=\frac{-e^{-j \pi / 4}}{\sqrt{2 \pi k} \sin \beta_{o}^{(q)}}
$$

Using Equations $(169,170)$; one can write for the third order Magnetic Equivalent Current

$$
\begin{align*}
& I_{(3)}^{m}=\frac{-2 j}{\hat{\gamma}_{0} k} \frac{H^{\left.i^{(p)}\left(Q^{(p)}\right) \cdot \hat{e}_{p}\right)}}{\sin \beta_{0}^{(p)} \sin \beta_{0}^{(q)} \sin \beta_{0}^{(v)}} D_{h}^{(p)}\left(s_{1}, o, \phi^{\prime}(p), \beta_{0}^{(p)}\right) \\
& D_{h}^{(v)}\left(s_{2}, \phi(v), 0, \beta_{0}^{(v)}\right) \frac{e^{-j k s_{1}}}{\sqrt{s_{1}}} \frac{e^{-j k s_{2}}}{\sqrt{s_{2}}}\left(\hat{\beta}_{0}^{\prime}(v) \cdot \hat{e}_{v}\right) \tag{171}
\end{align*}
$$

fist page Chapter end line
or \quad list page Chapter end line

Using Equation (172) and the radiation integral, one can find the far scattered field due to third order edge diffraction. The integration in this case is also computed numerically and the integration is carried out over the illuminated portion of edge V.

THESIS / DISSERTATION
Typing Guide Paper

1st page Chapter end line
———————ist page Chapter end line

- Center Guide
|EDGE WAVE FORMULATION

Consider Figure 232 which shows a monopole mounted on a perfectly conducting plate. The field radiated by the monopole is diffracted by corner \#2 (C_{2}) along edge \#1. Note that the field on the plate surface is cross-polarized with respect to the diffracted field. Let us consider just one edge ${ }_{\text {F }}$ Similar resultswint inold for the other edges. Typing Guide Paper

(a) FRONT VIEW
(b) SIDE VIEW

Figure 232. Edge wave mechanism associated with the radiation problem. 1st page Chapter end line $\ldots \ldots$ lst page Chapter end line

$$
L=\frac{s^{\prime} s^{\prime \prime}}{\left(s^{\prime}+s^{\prime \prime}\right)} \quad \sin ^{2} \beta_{0} \text { and } L_{c}=\frac{s_{c}^{-s}}{s_{c}+s}
$$

for spherical wave incidence Figure 233 defines the corner diffraction 1 inch problem. For the case shown-in-Figure -232 the edge diffraction point Q_{E} is located at infinity, accordingly, we can define a normal distance from the monopole to the edge, i.e.,

$$
\begin{aligned}
& S_{n}=S_{C} \sin \beta_{C}=S^{\prime} \sin \beta_{0}, \text { and } \\
& \beta_{o c} \text { and } \beta_{o} \rightarrow 0
\end{aligned}
$$

THESIS / DISSERTATION

$S, S^{\prime}, S^{\prime \prime} \rightarrow \infty$, Therefore ${ }^{\text {Tide Paper }}$

$$
\begin{aligned}
& L \rightarrow S^{\prime} \sin ^{2} \beta_{o}=S_{n} \sin \beta_{o}=S_{c} \sin \beta_{C} \sin \beta_{o} \text {, and } \\
& L_{C} \rightarrow S_{C} \text {. }
\end{aligned}
$$

Using the fact that

$$
F(x) \sim \quad \sqrt{\pi x} e^{j \pi / 4} e^{j x} \quad \text { for } x \text { very small }
$$

THESIS / DISSERTATION
F $\left[2 k L \cos ^{2}\left(\frac{\phi \pm \phi^{\prime}}{2}\right)\right] \xrightarrow[\beta_{0}-0]{\text { Ting Gui }} \sqrt{2 \pi k S_{n}} \sin \beta_{0} \cos ^{2} \frac{\phi \pm \phi^{\prime}}{2} \quad e^{j \pi / 4}$
and

$$
\begin{equation*}
\left|F\left[\frac{2 L / \lambda \cos ^{2}\left(\frac{\phi \pm \phi^{\prime}}{2}\right)}{2 k L_{c} \cos ^{2}\left(\frac{\pi \pi: \beta_{c}}{2}\right)}\right]\right| \rightarrow \sqrt{\frac{\pi S_{n} \sin \beta_{0} \cos ^{2}\left(\frac{\phi \pm \phi^{\prime}}{2}\right)}{2 \pi S_{c} \cos ^{2}\left(\frac{\pi-\beta_{c}}{2}\right)}} \tag{177}
\end{equation*}
$$

Figure 233. Parameter definition associated with the corner diffraction problem.

1st page Chapter end line
— — — — — - lst page Chapter end line

LSST TRAT LINL
344

JAEB 880
l inch

Center Guide
$1 / 2$ inch
"substituting Equations $(176,177)$ into Equations $(174,175)$ one gets :

$$
\begin{align*}
& c_{s}=-\frac{1}{2} \sqrt{\frac{S_{n}^{2}}{2 S_{c} \cos ^{2}\left(\frac{\pi-\beta_{c}}{2}\right)}}\left\{\cos \frac{\phi^{\prime}-\phi^{\prime}}{2} \mp \cos \left(\frac{\phi+\phi^{\prime}}{2}\right)\right\} \tag{178}\\
& \text { " } \text { or } \\
& c_{s_{h}}=-\sqrt{\frac{s_{n}^{2}}{2 S_{c} \cos ^{2}\left(\frac{\pi-\beta}{2}\right)}}\left\{\begin{array}{ll}
\sin \frac{\phi}{2} & \sin \frac{\phi^{\prime}}{2} \\
\cos \frac{\phi}{2} & \cos \frac{\phi^{\prime}}{2}
\end{array}\right\} \\
& \text { THESIS / DISSERTATION }
\end{align*}
$$

$$
\begin{aligned}
& \sqrt{\frac{s^{\prime}}{s^{\prime \prime}\left(s^{\prime}+s^{\prime \prime}\right)}} \sqrt{\frac{s\left(s+s_{c}\right)}{s_{c}}} \rightarrow \sqrt{\frac{s^{\prime}}{s_{c}}}, \text { one obtains }
\end{aligned}
$$

where:

$$
\begin{align*}
& \left\{\begin{array}{cc}
\sin \frac{\phi}{2} & \sin \frac{\phi^{\prime}}{2} \\
\cos \frac{\phi}{2} & \cos \frac{\phi^{\prime}}{2}
\end{array}\right\} \tag{181}
\end{align*}
$$

Equation (181) gives the diffraction coefficient associated with the edge wave mechanism.

A similar result could be obtained for the scattering problem shown in Figure 234:. The diffracted field is given by:

$$
\left\{\begin{array}{l}
E_{B_{B}} \tag{182}\\
E_{\phi}
\end{array}\right\}=\left\{\begin{array}{ll}
E_{\ddot{\beta}}^{i}-\left(Q_{c}\right) & D_{s}^{(e w)} \\
\left(s, \phi, \phi^{\prime}, \beta_{c}\right) \\
E_{\dot{\phi}}^{i}\left(Q_{c}\right) & D_{h}^{(e w)} \\
\left(s, \phi, \phi^{\prime}, \beta_{c}\right)
\end{array}\right\} \quad \frac{e^{-j k s}}{\sqrt{s}}
$$

From Equations (180) and (182) and based on previous experience with GTD method, one can write the following for the edge wave field
where $L=\frac{S S_{C}}{S+S_{C}}$
Note that Equation (183) is only used when either the receiver or the transmitter is in the far field region, i.e., either S or S_{c} is ∞.
A. DISCUSSION

2 inch Chapter Line

The Edge wave mechanism is another form of a surface wave. It is guided by the plate edges and it radiates only at discontinuities such as plate corners.

The Edge wave formulation presented here has some limitations since its derivation is based on the empirically derived corner diffraction coefficient $[19]$... Such 1 imitations are:

Figure 234. Edge wave mechanism associated with the scattering problem.

1. It is only valid for the far field case.
2. If one examines Figure 234 and considers the case shown in Figure 235 for the soft boundary condition case, Equation (181) will predict zero field for the case in Figure 235. $\left(\phi=0^{\circ}\right)$ and a finite value for the case in Figure $234 \cdot\left(\phi=180^{\circ}\right)$. This discontinuity of the -field is-due-to 0^{-2} the fact that the Corner diffraction formulation assumes an infinite half plane exists for the case shown in Figure 235 , and accordingly a diffracted field term associated with the reflected field exists which causes the field cancellation to satisfy the boundary condition on the infinite half plane.
```
ibi paye Limpter ors time
_ _ _ _ - lst page Chapter end line
```

l inch

These limitations can be eliminated by properly solving the canonital problem of corner ${ }^{\top}$ dififfactionide Paper

Figure 235. Effect of haliffpliane Coniredge wave mechanism. — — — ———— list page Chapter end lis..

1st page Chapter end line
— — — — - - last page Chapter end line

along the surface of the strip. There are infinitely many of these waves on each side of the strip. The self-consistent UTD concept combines all these waves on each face into two surface waves traveling in opposite directions with unknown romplex amplitudes as shown in Figure 237.
B. ANALYSIS

The total backscattered field can be written as

$$
\begin{equation*}
H_{t}=H_{t}^{s d}+H_{t}^{m d} \text { THESIS/DISSERTATION } \tag{185}
\end{equation*}
$$

Typing Guide Paper
where the subscript indicates total and the superscripts sd and md indicate single diffraction and multiple diffraction respectively, and

$$
\begin{equation*}
H_{t}^{s d}=H_{(1)}^{d}+H_{(2)}^{d} \tag{186}
\end{equation*}
$$

$$
\begin{equation*}
H_{t}^{m d}=H_{(1)}^{m d}+H_{(2)}^{m d} \quad 2 \text { inch Chapter Line } \tag{187}
\end{equation*}
$$ where $H_{(1)}^{m d}, H_{(2)}^{m d}$ are the total multiply diffracted fields from edges 1 and 2 respectively and are given by

where $D_{h}\left(L, \phi, \phi^{\prime}\right)$ is given by Equation (46) and the $\frac{1}{2}$ is due to grazing incidence.

From Equation (46), one gets

$$
D_{h}\left(a, 2 \pi-\phi_{1}^{\prime}, 0\right)=-D_{h}\left(a, \phi_{1}^{\prime}, 0\right) \quad, \quad \text { and }
$$

$$
D_{h}\left(a, \pi+\phi_{1}^{\prime}, 0\right)=-D_{h}\left(a, \pi-\phi_{1}^{\prime}, 0\right)
$$

Equations (188), (189) then reduce to

$$
\begin{align*}
& H_{(1)}^{m d}=\frac{1}{2}\left(C_{1}-C_{2}\right) D_{h}\left(a, \phi_{1}, 0\right) \frac{e^{-j k \rho}}{\sqrt{\rho}} \tag{190}\\
& H_{(2)}^{m d}=\frac{1}{2}\left(C_{3}-D_{4}\right) D_{h}\left(a, \pi-\phi_{1}^{1}, 0\right) \frac{e^{-j k \rho_{2}}}{\sqrt{\rho_{2}}} \tag{191}
\end{align*}
$$

The complex amplitudes C_{1}, C_{2}, C_{3} and C_{4} are determined by a self-consistent field procedure. At edge 1 , one can write

$$
\begin{equation*}
C_{1}^{\prime}=H_{12}^{(+)}+\frac{1}{2}\left\{C_{3} D_{h}\left(\frac{a}{2}, 0,0\right)+C_{4} D_{h}\left(\frac{a}{2}, 2 \pi, 0\right)\right\} \frac{e^{-j k a}}{\sqrt{a}} \tag{192}
\end{equation*}
$$

$$
\begin{align*}
& H_{(1)}^{m d}=\frac{1}{2}\left\{C_{1} D_{h}\left(a, \phi_{1}, 0\right)+C_{2} D_{h}\left(a, 2 \pi-\phi_{1}, 0\right)\right\} \frac{e^{-j k \rho}}{\sqrt{\rho}} \tag{188}
\end{align*}
$$

The first term on the R.H.S. of Equations (192) and (193) represents the field at edge 1 due-to-the-ray-conf-iguration shown in figure (238a and b) respectively, and is given by

$$
\begin{align*}
& H_{12}^{(+)}=D_{h}\left(a, 0, \pi-\phi_{1}\right) e^{j k a \cos \phi_{1}^{\prime}} \frac{e^{-j k a}}{\sqrt{a}} \Delta A, \tag{194}\\
& H_{12}^{(-)}=-H_{12}^{(+)}=-A \tag{195}
\end{align*}
$$

THESIS / DISSERTATION

and the second term on theorightroftequations (192) and (193) represents the field at edge 1 due to all edge diffracted rays traveling to the left on the top and bottom side of the strip except those shown in figure (238 a and b), respectively.

$$
\begin{align*}
& \text { Since } D_{h}\left(\frac{a}{2}, 2 \pi, 0\right)=-D_{h}\left(\frac{a}{2}, 0,0\right) \text {, then } \\
& C_{1}=A+\frac{1}{2}\left(C_{3}-C_{4}\right) D_{h}\left(\frac{a}{2}, 0,0\right) \frac{e^{-j k a}}{\sqrt{a}} \text {, and } \tag{195}
\end{align*}
$$

(a)

(2)

BOTTOM SIDE
(b)

Figure 238. Ray configuration for self-consistent_analysi.s.

From Equations (197) andut(198:), onescañ.FwifteION Typing, Guide Paper

$$
\begin{equation*}
C_{1}=A+C_{3} D_{h}\left(\frac{a}{2}, 0,0\right) \frac{e^{-j k a}}{\sqrt{a}} \text {, and } \tag{199}
\end{equation*}
$$

$$
\begin{equation*}
C_{3}=B+C_{1} D_{h}\left(\frac{a}{2}, 0,0\right) \frac{e^{-j k a}}{\sqrt{a}} \tag{200}
\end{equation*}
$$

$$
C_{1}=A+M C_{3} \quad, \text { and }
$$

$$
\begin{equation*}
C_{3}=B+M C_{1} \tag{202}
\end{equation*}
$$

where $B=D_{h}\left(a, 0, \phi_{1}\right) \frac{e^{-j k a}}{\sqrt{a}}$, and

$$
M=D_{h}\left(\frac{a}{2}, 0,0\right) \frac{e^{-j k a}}{\sqrt{a}}
$$

Equations (201) and (202) are two simultaneous linear equations from which C_{1} and C_{3} can be found. This gives

$$
C_{1}=\frac{A+M B}{1-M^{2}} \quad, \text { and } \quad \text { LOST THAT LINE }
$$

Center Guide

THESIS / DISSERTATION
The multiply diffracted-fjeplds, caninowfbepfound by substituting Equations (203), (204) into (205) and (206) respectively.

The total backscattered field in the half space $0 \leq \phi \leq \pi$ can now be found by substituting Equations (186) and (187) into (185). The field in the other half space $\pi \leq \phi \leq 2 \pi$ is the opposite sign of that in the half space $0 \leq \phi \leq \pi$.

The above analysis is used to compute the E-plane echo width patterns for different strip sizes. The results are compared to the exact solution for the strip in terms of Mathieu functions. The data presented here is normalized to broadside level.

The E-plane echo width pattern for a 3λ wide strip is shown in Figure 239. The agreement between the SC solution and the exact one is good throughout the pattern. Note that the SC solution gives the same result as that obtained by considering the contribution of single, double and triple edge diffraction mechanisms. This is clearly seen by comparing Figure 19 and 239. The E-plane pattern for a 1.42λ wide strip is shown in Figure $e^{2} 240$.ge The recesult iss compared with a Reaction method solution obtained by R-ichmond-[48], landpthe: twoaresultswagrees very well. Figure 241 shows the E-plane pattern results for a 0.25λ LAST IEAT LINE

355

$$
\int 1 \text { inch }
$$

1st page Chapter end line
Figure 240. E-plane echo-width-pat.tern-of 11:t42 גawidetstrijprusing the: self-consistent UTD concept.
uii li人

wide strip. The result deviates appreciably for angles of incidence less than 40° from edge on. This deviation is caused by the failure of our model to account for the true nature of the diffracted fields on the surface of the strip iwheh was ansumed to be a homogeneous cylindrical wave. The SC method will give satisfactory results for strip widths as low as 0.65入. Figures 242 and 243, show the TE broadside echo width for different strip widths. The SC results are compared to the exact and the reaction method solutions $[48]$ and good agreement is obtained. The TM broadside echo width is shown in Figure 244, where the SC method result is compared to the exact solution [49]. The agreement between the two results is ggod RTATION

Typing Guide Paper

1st page Chapter end line

— lst page Chapter end line

f Figure 243. $T E_{z}$; broadside_echo width-forl:a perfectly conducting'strip $\left(\frac{a^{2}}{\lambda}=1-2.3\right)$.

Figure 244. $T M \underset{z}{ }$ broadside echo width for a perfectly conducting strip $\left(\frac{a}{\lambda}=0.1-1.0\right)$.
JALB/880

1. Richmond, J.H., "A Wire-Grid Model for Scattering by Conducting Bodies," IEEE Trans. Antenna and Propagation, Vol. AP-14, pp. 782-786, Nov., 1966.
2. Richmond, J.H., "Computer Analysis of Three-dimensional Wire Antênnas," Report 2708-4, 22 December, 1969, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared undënECońtrácit IDAAD:105-69-C-0031 for Ballistic Research Laboratory.Typing Guide Paper
3. Wang, N.N., Richmond, J.H., and Gilreath, M.C., "Sinusoidal Reaction Formulation for Radiation and Scattering from Conducting Surfaces," IEEE Trans. on Antenna and Propagation, Vol. AP-23, No. 3, May 1975, pp. 376-382.
4. Ryan, C.E., Jr., Peters, L., Jr., "Evaluation of Edge Diffracted Fields Including Equivalent Currents for the Caustic Regions," IEEE Trans. on Antenna and Propagation, Vol. AP-17, NO. 3, May 1969.
5. Ryan, C.E., Jr., Rudduck, R.C., "Radiation Patterns of Rectangular Wave Guides," IEEE Trans. Antenna and Propagation, Vol. AP-16, pp. 488-489, July 1968.
6. Mentzer, C.A., "Analysis and Design of High Beam Efficiency Aperture Antennas," Final report 3453-1, April 1974, The Ohio State. University ElectroScience Laboratory, Department of Electrical Engineering.
7. Kouyoumjian, R.G., and Pathak, P.H.,'A Uniform Geometrical Theory of Diffraction for an Edge of a Perfectly Conducting Surface," Proc. of the IEEE, vol. 62, NO. 11, November, 1974, pp. 1448-1461.
8. Pathak, P.H., and Kouyoumjian, R.G., "The Dyadic Diffraction Coefficient for a Perfectly Conducting Wedge," Scientific Report No. 5, Report 2183-4, 5 June, 1970, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering, prepared under contráct9AF19'า(628) er592girfor Air Force Cambridge Research Laboratory-(AFCRL=69=0546.) (IAD 707821) =hapter end line
9. Millar, R.F., "An Approximate Theory of the Diffraction of an Electromagnetic Wave by an Aperture in a Plane Screen," IEE Monograph, No. 152R, October 1955.

2 inch Chapter Line
10. Millar, R.F., "The Diffraction of an Electromagnetic Wave by a Circular Aperture," IEE Monograph, No. 196R, September 1956.
11. Millar, R.F., "The Diffraction of an Electromagnetic Wave by a Large Aperture," IEE Monograph, No. 213R, December 1956.
12. Ryan, C.E. and Rudduck, R.C., "Radiation Patterns of Rectangular Waveguides," IEEE Trans. Antenna and Propagation, July 1968, p. 488.
 Fields Including Equivivalenticurrentsocfior the Caustic Regions," IEEE Trans. on Antenna and Propagation, May 1969, pp. 292-299.
14. Ryan, C.E. and Peters, L., Jr., correction to "Evaluation of Edge Diffracted Fields Including Equivalent Currents for the Caustic Region," IEEE Trans. on Antenna and Propagation, March 1970, p. 275.
15. Burnside, W.D. and Peters, L., Jr., "Axial-Radar Cross Section of Finite Cones by the Equivalent Current Concept with Higher Order Diffraction," Radio Science, October 1972, pp. 943-948.
16. Senior, T.B.A. and Uslenghi, P.L.E., "Radiation Patterns of Rectangular Waveguides," IEEE Trans. on Antenna and Propagation, July 1968.
17. Richmond, J.H., personal communication.
18. Knott, E.E. and Senior, T.B.A., "Comparison of Three High Frequency Techniques," Proceeding of IEEE, November 1974, pp. 14681474.
19. Burnside, W.D. and Pathak, P.H., "A Corner Diffraction Coefficient," To appear.
20. Keller, J.B., "Diffraction by an Aperture," Journal of Applied Physics, April 1957, Volume 28, No. 4.
21. Ryan, C.E., "Short Course Notes," The Ohio State University, Department of Electricallcenglineering?nqlá̀ ${ }^{-1}$ e

- - - - - Ist page Chapter end line

22. Burnside, W.D., personal communication.
23. Freeland, J., Kouyoumjian, R.G., Pathak, P.H., "A High Frequency Approximation for the Strip Current," Report 2183-5, 23 March, 1970, The Ohio State University, ElectroScience Laboratory, Department of Electrical Engineering; prepared under contract AF19 (628) - 5929 for Airctiorce Gambridge Research Laboratories.
24. Yu, J.S. and Rudduck, R.C., "On Higher Order Diffraction Concepts Applied to a Conducting Strip," IEEE Trans. on Antenna and Propagation, Vol. AP-15, No. 5.
25. Sommerfield, A., Optics, Academic Press, Inc., New York, (1954), pp. 245-272.
26. Bowman, J.J., Senior, T.B.A., and Uslenghi, P.L.E., "Electromagnetic and Acoustic Scattering by Simple Shapes," Pub. American Elsevier Publishing Company ${ }_{\text {DIS }}$ ISSERTATION
27. Harrington, R.F., "Toime Hamónic Fiefds," McGraw Hill Company, pp. 359-360.
28. Ross, R.A., "Radar Cross Section of Rectangular Flat Plates as a Function of Aspect Angle," AP-14, No. 3, May 1966.
29. Yu, J.S., "Radar Cross Section of a Thin Plate Near Grazing Incidence," IEEE Trans. on Antenna and Propagation, September 1970.
30. Ufimtsev, P.I., Secondary Diffraction of Electromagnetic Waves from a Strip," Zh. Tekh. Fiz., Vol. 28, No. 3, pp. 569-582, 1958.
31. Hey, J.S. and Senior, T.B.A., "Electromagnetic Scattering by Thin Conducting Plates at Glancing Incidence," Proc. Phys. Soc., Vol 72, pp. 981-995, December 1958.
32. Knott, E.F., Liepa, V.V. and Senior, T.B.A., "Plates and Edges," IEEE Trans. on Antenna and Propagation, Nov. 1971, pp. 788-789.
33. Newman, E., Personal Communication.
34. Locus, S.S., Heath, H.C., Oshiro, R.K. and Coleman, J.R., "Radar Cross Section Studies," Final Report, Northrup Corporation, April 1974.
35. Chu, T., "Plates Measurements," Ohio State University, ElectroScience Laboratory Measurements Facilities, Department of Electrical Engineering.
36. Meixner, J., Andrejewski, W., Ann. Phys, lic 7 page 15.7h (1950) end line
37. Flammer, C.J. Appl. Phys., 24, 1224 (1953).

38. Bechtel, M.E., "Application of Geometrical Diffraction Theory to Scattering from Cones-and-Di.sks, - P-roceeding IEEE, August 1965.
39. Ryan, C.E., Jr., and Peters, L., Jr., "A Creeping Wave Analysis of the Edge on Echo Area of Disks, "IEEE Trans. Antennas and Propagation (communication), Vol. AP-16, pp. 274-275, March 1968.
40. Hodge, D.B., "The Calculation of Far Field Scattering by a Circular Metalic Disk," Report 710816-2, The Ohio State University, ElectroScience Laboratory, Department of Electrical Engineering.
41. Chu, T., Personal Communication.
42. Sikta, F.A., Campbê Mrir f h Ohio State University, ElectroScience Laboratory Measurements Facilities, Department of Electrical Engineering.
43. Peters, L., Jr., "End Fire Echo Area of Long, Thin Bodies," IEEE Trans. on Antenna and Propagation, AP-Vol. 58, pp. 138, 1958.
44. Rudduck, R.C., "Application of Wedge Diffraction and Wave Interaction Methods to Antenna Theory," OSU Short Course Notes for GTD and Numerical Techniques, Vol. 1, Sept. 1975.
45. Wang, N., "Self-Consistent GTD Formulation for Conducting Cylinders with Arbitrary Convex Cross Section", IEEE Trans. on Antenna and Propagation, Vol. AP-24, No. 4, July 1976.
46. Pauli, W., "On Asymptotic Series for Functions in the Theory of Diffraction by Light," Phys. Rev., Vol. 54, pp. 924-931, Dec. 1938.
47. Richmond, J.H., "Computer Analysis and Design of Spacecraft Antennas," Informal Status Report, Project 2902, The Ohio State University ElectroScience Laboratory, 15 March, 1971.
48. Richmond, J.H., "On the Edge Mode in the Theory of TM Scattering by a Strip or Strip Grating," IEEE Trans. on Antenria and Propagation, Vol. AP-28, No. 6, Nov. 1980.

1 st page Chapter end line

— _ _ _ - ist page Chapter end line

