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|significant mechanisms have been neglected, particularly for rectangular),
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INTRODUCTION

The object of this research is to analyze the Radar Cross Section
(RCS) of finite flat plates at high frequencies. The different physical
mechanisms which contribute to the RCS are carefully studied and their
important characteristics are explained.

'

) . THESIS / DISSERTATION ) f
Prior studies havet%uff d. n éexggggrrespects. First and foremost

vp1i Ege bl]l d
non-rectangular and non-circular plates both for angles of incidence
in the principal and outside the brincipa] planes. Second, the cost
may be prohibitive for such computations even for large modern day com-
puters for physical optics solutions for very large plates (in terms
of wavelength) particularly when multiple interactions are significant
and for Moment Method solutions where the size is increasing to the
upper limit that may be so treated. Third, and perhaps least signifi-
cant, fitting the shape of some non-rectangular plates with rectangular
patches in the Moment Method solution can lead to significant errors.

Several authors have analyzed the RCS from finite plates using
GTD techniques. One of the difficulties that they encountered is the
calculation of RCS at and near broadside. The Physical Optics Theory
(PO) was one of the first techniques used in estimating the RCS values
at or near broadside, but it fails to account for polarization dependenc:
for pattern regions beyond the main lobe, particularly for non principle
planes. The Physical Optics solution also becomes quite expensive to
run on modern computer?sfor general shaped fins 2} higher frequencies

t page Chapter end lin
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[of Diffraction (GTD) has also beéen Used in conjunction with the’forwgrg_
scattering theorm to compute the fields in the direction of the shadow
boundary for circular and square plates as did Keller [201,-Ryan [Zq
and Millar [9-1] . Ross [e8] moditiedpthe Geometrical Theory of Diffrac-
tion solution for the echo width of a perfectly conducting strip to
compute the RCS for rectangular plates using a particular normalization
procedure. In all of the previous GTD solutions, the RCS is only com-
puted in the principal plane.

The estimation of RCS at grazing incidence has also been discussed

in the literature. Ross [2?] provided measured data of RCS as a func-
. THES?YS / DISSERTATION
tion of the length of a-Fsgﬁgggqigrdg1§;e. Hey, et. al [34 , also pre- |

aper
sented measured data for rectangular and triangular plates but did not

present an analytical model and did not describe the physical phenomena
that led to the unexpectedly high RCS.

In this dissertation, we will attempt to present techniques that
will enable one to compute the RCS at broadside and throughout the pat-
tern in any pattern plane. We will also present an analytical model
that will describe the physical phenomena contributing to the RCS at
grazing incidence. These new techniques will be used to analyze the
RCS of different plate geometries of different shapes.

Two basic methods are to be used to compute the RCS for plates.
The first method for analysis of scattering from plates is a well known
Tow frequency technique commonly referred to as the Moment Method (MM).
The surface currents and the resulting scattered field can be found
by enforcing the boundary conditions on the plate surface. One of the
first MM solutions applied to plates problems was the wire grid tech-
nique, developed by Richmond [1], which employed a point matching tech-
nique. This solution qequired the determin%}iﬁpmyf approximately 100

h
S¢ page (Jhapteq en .
unknown currents per square wavelength in ord Kathat-the,wire.grid; ade-

e et et ™ LOL

quately model the perfectly conducting surface. Richmond [Z]has devel-
loped a more sophisticated approach_iindwhich_the_reaction-technique—is——
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used to solve for the unknown currents. This solution still requirqi__‘
approximately 100 unknown currents per square wavelength. Another ap-
proach is to divide the surface of the conducting plate into rectangular
patches each having two orthogonalsunknown Lcomplex currents [3]. This
surface current patch approach reduces the unknown currents to about

20 per square wavelength. This allows .a larger plate to be considered.

However, this approach is restricted to shapes that can be fit by an
array of square patches. A1l these techniques are restricted to low
frequencies due to the limitations imposed by the vast storage and com- -
puter time required for such computations, which result in a high cost
per data point. The Geometrical Theory of Difgﬁgction (GTD) and Equiva-

) THESIS / DISSERTATI )
lent line source conceptﬁyare basica]];giggp,frequency methods which

ping Surde ;
are based on two canonical problems, i.e., wedge diffraction and infin-
ite line source radiation. Some examples where this method has been
used include determining the diffracted fields by a body made up of
finite axially symmetric cone frustums [4], the radiation patterns of
rectangular wave guides [5], and horn antennas [6]. The MM solution |
will be used in this dissertation primarily to provide data to be used
as a check on the GTD solutions developed herein. The author is in-
debted to Dr. Newman whose computer programs have been used to obtain

all of the Moment Method data presented here.

The basic approach used herein for the analysis of RCS of plates
is centered on using the Equivalent current technique in computing the
patterns including the main lobe region.

In Chapter III, the scattering from a perfectly conducting strip
is discussed in detail. The understanding of this problem is essential
in the analysis of RCS from plates.

Chapter IV discusses in detajl the RCS pattern effects of the first
1st page Chapter ena liné

order interaction terms, _In addition, the Equivalent,cunzent.method,

is compared to corner diffraction method. Note that the plate can have
(an_arbitrary orientation_in_space. Iv4r L\ N

e —_ e - 31L’..:' Hl\‘L
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Chapter V discusses the effects of higher order edge interactichs ]
on the E-plane RCS pattern for a general shape plate. 4
2 inch Chapter Line
In Chapter VI we. present—a-detaited—analysis of the effects of
higher order interactions including the newly developed edge wave mech-
anism on RCS pattern computation for a rectangular plate. Both the

for a linearly polarized incident plane wave.

pattern computat1on for a tr]angular*plateA:rKDN
Typing Guide Paper
Chapter VIII discusses the cross poarization effects for a monopole
mounted on a plate. The analysis is based on the use of the newly

developed edge wave mechanism. Finally, a summary of the present study
is made in Chapter IX.

1st page Chapter end line
~~~~~~~ st page Chapter‘ end lme

| LAST  TRAT LWL

E-plane and off the principle plane RCS pattern analysis are considered

)

Chapter VII extends the previous analysis to the: E and H- p]ane RCS‘
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THEORETICAL BACKGROUND

I
1

{A. INTRODUCT ION

i

; An analytic method for computing the radar cross section (RCS)of

1a general flat plate foriafiSncildént” 5ﬁﬁ?ééjwhas been developed using

Ethe Geometrical Theory of>b1g¥¥éfg;gﬁ (ETD) and the Equivalent Current
T(EC) concept. The GTD is a ray optical technique and it, therefore,
Ea]]ows one to gain substantial physical insight into the significant
fphysica] mechanisms involved,in the RCS. Accordingly, one is able to
‘determine the dominant diffraction mechansims for a given geometry.

| The basic GTD and the EC concepts needed in order to achieve this goal |
iare discussed in this chapter. In this dissertation, the far zone:
WScattered fields are treated, the plates used are flat and perfectly
‘conducting and the surrounding medium is free space. An ert time

tdependence is assumed throughout and suppressed.

|
'B. DIFFRACTION BY A WEDGE
r

: The Un1form Theory of ‘Diffraction (UTD) developed ‘by KouyomJ1an and
{Pathak 7] is sufficiently general to handle the three dimensional )
'effects of the flat plate with straight edges. Figure 1 shows the geome-
!try used to evaluate the fields diffracted by a wedge. A source whose
iradiated electric field is given by E'(s) at the edge, is located at

!
r
1{ 1st page Chapter end line

— et et e e e s It page Chaptoer eond line

. . . !
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Point 0 (p', ¢', z'). This source can rad1ate a p]ane cy11ndr1ca1

conical or spherical wave incident on the wedge. Kouyoumjian and
Pathak [7, 8], have shown that the diffracted fields at P (p, ¢, 2) can
be written in a compact way if these fields are written in terms of a
'ray fixed coordinate system. This coordinate system is centered at the
diffraction point QE’ (or points of diffraction in case of plane wave),
this point is unique for a given source and observation points. The
incident ray diffracts as a cone of rays whose axis is the edge, such
that Bo = 66.

The orthogonal unit vectors associated with the ray fixed coor-
dinate system are defined as

i

} f = -§

| { = B' X ¢'
i s = X ¢

where I is the 1nc1dent direction unit vector, and s is the diffraction
direction unit vector. The diffracted field .is given by [7, 8]

E(s) ~E'(Qp) " D(s, T) A(s) e (1)

(2a)

( ) _e_.]'ﬁ;/4 . < ; (k o
; D. L,%9',8,) = ‘ cot L a (8~
! S,h °  2n \/an s1ne en

+ cotéZn—)F (KL a (g)) ¢ cot (—2;‘]-1:>F (kL a (B ))
+ \

+ cot (IZnB) F (kL a @ +)) ‘ ‘ (2b)

S aBaT L otele e -k © e amas e e e - — b e e 4 b i a1 e = - -



L |
If n=2, the wedge becomes a half plane and the form for DS
' |

Yo

ejx.J/r e'sz dr. ' (2¢)
]

&~ (8) = 2 cosz<?93§i—1ﬂil> (2d)
|

where NE are the integeréf\which most nearly satisfy the equations:
f 21mN+
and

[}
)
™
aas”

1]

=

27inN"

]
—
™
~—

1]
iy

I+
]

with g'= g% = ¢'x ¢~ .

EThe magnitude and phase of the transition function F(x) are shown in
Figure 2. When x is small, F(x) is given by:

; o ‘.. .. .

i F(x) ~ [ﬁx - 2xedT/4 -'§ x2 e-Jﬂ/f} dF X, (3a)
i .

and when x is large

| . y
-1+ dh-7 2 I%% % & . (3)

reduces
,h

to:

F(ka (87) 7 F(ka (81) |
cos 87 /2 cos B+/2 '
(4)

The diffracted fields can also be written in a matrix form as:

gl
As) ek (5 )
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The DS coefficient is referred to 45 the soft scalar diffraction co:— -
efficient when the soft boundary condition is used, i.e.,

!

and the Dh coefficient is referred to as the hard scalar diffraction
coefficient obtained when the hard boundary condition is used, i.e.,

G =0 . (6b)
3N | wedg :

THESIS / DISSERTATION

2 inch Chapter Line (6a)

wedge) =0

|

terms are associated with the reflected field.

The spread factor is given by

1 plane, cylindrical, and conical wave

A(s)=¢ VS incidence. ‘ (7a)

s' J . L.
“\/———————— spherical wave incidence
" s(s+s')

The L is a distance parameter, which is dependent on the type of
illumination.and is given by -

Note that the g~ terms dreiassdciated With'the incident field and the 3+

Prace #

; 1 irich

1 inch

1 .2 P
.rs sin” g, for plane wave incidence,
ss'
L= ohs' for cylindrical wave incidence, and (7b)
ss' sinZB _
—flopegnicalaandrsphericalz wave incidence,
> sts' Ist page Chapter cond linc
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1. Introduction

The Equivalent Current (EC) concept has been used by many authors.!
Millar [9-111, developed the basic idea as early as 1955, he used it
to solve different problems éﬁch»as.diffrgctthTfrom"abéktgregl,fieids |
along the caustic line, coupling through elliptical apertures. In 1968,
Ryan and Rudduck hﬂ~ introduced the concept implicitly in a GTD so- i
Tution. In 1969, the concept was formalized by Ryan and Peters_[13-14]‘
to-obtain the same basicpresult @s<Milllar.ABuenside and Peters P%
used the concept to evaluatecthevitial RESFrom a finite cone. They
also corrected the misleading impressions generated in [}4 .

2. Equivalent Current Formulation

The UTD edge diffraction concept is suitable for the analysis of |
geometries where diffraction appears to come from a single or group |
of single isolated points along an edge. However, one must introduce
an integral approach when the diffracted field at some observation point
is the confluence of diffraction points on the edge. This point repre-
sents a caustic, in this case, the equivalent currents are used in con-
Junction with a free space Green's function to obtain the radiated field
In the analysis to follow, no interactions such as higher order diffrac-
tion will be considered, although the method of equivalent currents
allows these interactions to be included, as will be seen. The only
limitation on the usage of this concept is that the edge diffracted
fields must have the same spatial behavior as do the fields of the in- i
finite line source, i.e.,v%= . To compute the continuous diffracted
fields in the vicinity of such a caustic, an equivalent current is set
up on this edge and triedatedwas alfinite Tiné Source placed at the posi- |
tion of the finite edge.—Figure-3- iTlustratedthe GeGRietry ofa'finite
wedge illuminated by a plane wave, where the caustic lies in the far

2 inch Chapter Line é,l_
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to be a segment of a wedge of infinite length (i.e.,

d}

a two dimensional ,

wedge). The equivalent current concept consists simply of determining ‘

-the current flowing at the pos1t1on of the edge of the infinite wedge
(in the absence of the wedge)wwhlch_wo
field as the edge of the wedge.
."field of a Z-dirggted infinite electric line source [}ﬂ is givén by

The

apter, Lin

component of the far electric

e-sz cos B,

i L T Y
ES =7 K/ I® ”éJ'"./4 e-‘]k‘tp
o~ 2 ===
0"t nfome, T 4o

Jn/4
S _ . m’ e
He = Y0 k I

‘Jktp

NN

similarly for an infinite magnetic line source, one has

e-sz cos Bo

where: Z_ is the impedance of free space

|

|

ﬁnd

o

0

K = 25

= » A is the wave length

|

l

\ K ='KsinB o= s sin B
; Ky o ° 0

i
r

Y _ 1is the admittance 6f free space

Z =S COs Bo.

uld- produce the same diffracted

(9)

(10)

Figure 4 shows the infinite line source geometry, ‘the Z component (i.e. n
parallel to the line source) of the far fields 'is given by:

=-§§ sin Bo , Hg = -Hg sin

S_ 'y 1€
EZ = ZO..kt I

i
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Figure 4. Iﬁfinite'line source geometry.
g ke
WS = -y " /4 sing._ & ¢ o~Jkz cos 8 (12)
z o Kt —_ 0 ,
2 ZMkt \/O
The diffracted fields from an infinite wedge [7] are
-jn/4 . -Jiks
s e e i e
E; = 6 (n,0,0') —= E , and (13)
z y/2mk= sin 8, L5 |
t
}
- /4 o tiks !
Z 'Y O, Z :‘, ’
W/Zﬁk-51" Bo \/s - '
| ' S
where )
ﬁ - . ] "y 4 | l 1
G" =R (ns0-¢') + R (n,p+')
L - ) — . el it : e e e
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with R(n,p) = -% ni% 1 . -
cos-r'{‘-cosE ‘

n
1 inch

One can rewrite equations (13) and (14) -such that

o _ijr d p
Jjn/4 i e ‘kt

E; = Ge(n,¢a¢') -\e/T-_kt—\— EZ T e'j[kz cos B0 (15)
Tk /o
.
=ik
-3/ IR
Hé - Gm(n,¢,¢') e el - o-Jkz cos Bo (16)

NETR g \] o
where k., p are defined in Equation (10)

4Eﬁua¢1ng Equat1ons (11) and (15) and also Equations (12) and (16) ,‘i
ne‘obta1ns |

e b e _ - o - l ’
25 G(n,0.0' E

1° = S 20a% el — and - .

o sin® B - (17) i

m_2i GMne,0')  ui
"= yx -g-éklk-l' Hz (18)

where the incident fields in Equation (17) and (18) represent the com-
ponents of the incident field tangential to the edge. So Equations
(17) and (18) are, -

.2 6S(n,,0' £l
7:¥: sin2 Bo tan and (19) k
m_2i 6™(n,0,¢' i -
=¥ '__QTE'L"—l_ Htan  » ‘ (20)
E 0 -sin BO
. e e e L WLTTTUNNEY AT T e e ]
[; T - Y O -

1 irfch
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where Elan and Hian are the tangential components to the edge of the
incident electric and magnetic fields. One can-now apply-the- vector

potentialafunctions given by

_ , -j-'é‘]?-?"l :

ReL fTe ST g (21)
T |r-r'| | -

|

and 1

!

t
=1 (o -FE] L ’s
F=7z J’I SLf:f:j‘—" ?2 , (22)

I | r-v'] i

!

where L is the contour of the edge and ¥, ¥' are defined as in
Figure 5.

_T?hé equation for the far zone scattered field is

€ _ -
B = dou Atpans (23)
and
o s
Y= -doe Fypgns (24)
where E® is the electric field due to I® and A" is the magnetic field
due to I" with
He - Fe =m _]sﬁm page Chapter end line
- Z— and E - Y—- ° + ~ e .,{ ()25)
o) 0 - e o Int nngr Chopror oot
- o o e
‘ e i e e s L e Chaptor end L

¥
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Figure 5. Definition of the radiation integral parameters.-

i z
There has been some discussion :about the use of the sin2 B, term !

‘in Equations (19) and (20), particularly for the case of a straight

FRPage #

1 inch

finite edge, where the observat1on point does not 1ie on the diffraction.

2_1inch Chapter Line .
cone. In this case, the—so%ut+on—fa14s—to -satisfy rec1proc1ty Sen1or

18 has suggested that s1n B should be in the form sin B sin B where
the superscripts i and d refer to the incident and d1ffracted rays

This seems to be a "best fit" but, since the configuration of rays de-
‘viates sufficiently from the canonical solution, it can only be con-
‘sidered as approximate. In reality, this difficulty occurs in that one
is now trying to represent a corner diffraction for the finite edge,

~ o =

.i.e., those observatiomipoints fob ying=in~the lsually conical bundle
‘of rays can be reached on 4By rays i fFRECYed by the corner. This
;is#not unlike the physical optics solution for a flat plate which also
fails to satisfy reciprocity since it is forcing the physical optics

currents to represent the edge diffraction.

T e - — !

1 ) <

[N

- - —_— - 1‘71:: ulL - e e —_
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'D. DIFFRACTION BY A CORNER

|
edges. Figure 6 shows the corner diffraction geometry. A new diffrac-

tion coefficient that handles diffraction from corners 'is needed. An

anpirical solution is broposed by Burnside and Pathak [1% and is based
on the asymptotic evaluation of the radiation integral which employs

the equivalent edge currents that would exist in the absence of the

corner. The corner diffraction is then found by appropriately (but

at present empirically) modifying the asymptotic result for the radia-

tion integral which is characterized by a saddle point near an end point.

The diffraction coefficient is still in its development stages. How-

ever, it has been shown to be very successful in predicting the fields

diffracted by a corner for a number of plate structures. Accordingly,

it is discussed here il thisasectibonrand hasdbéehcused to obtain some

. [interesting results. The Corrner Fdiffracted f1eldjassoc1a€25 ﬁ{¥hllne

one corner and one edge in the near f1e1d w1th spher1ca1 wave 1nc1dence
‘1s given by

| N _jiks :
i S - (26a)
l [ SII(SIA+SII) - S .
' 1ot anvae Ol oned Hine
~~~~~~~ 1st page Chapter end lin¢
Ly QYA W ’ N
18
- — — NIRRT i S
7
1 inch
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A corner is formed by the intersection of a pair of finite straight - —
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Dg FCS(QE) . — L1 inch
\/ . . —
= sin sin :
| . ¢ Pe 511 Boc |
‘ (cos g._.-cos B_)
c oc - e
- )  Ch(Qg))
i [ ] / 'J 1T/4
% | kL a oc (26b)
énd
| . .
i ‘ -2 ‘ !
e () = -e 311 . QkL a(g ))I L_a(87)/A |
> 24f2mk sinB ) | cos B7/2 kL a(mB -8
. : |
i |
? |
¥ | :
el L a(8" YA ] (26c) -
. PR
cos B /2 KL a(m8, -8.)
|
| o
The function F(x) was defined in Equ?tion (2c), and 3
] a(B) = 2 cos2 (B/2) where
BE =10’ | o
e g e e GG e T e
5 L=323 sin“ g, and L; = < —
i (s'+s") Sc*s

“for spherical wave incidence. .
2 inch Chapter Line -

The function D (QE) is a modified version of the diffraction coef-
ficient for the half plane case (n=2). The modification factor

1F L G(Q/L

kLca(ﬁ#Boc'Bc)
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o
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;is a heuristic funcfioqwgpggﬁigsqnqggghqt1thq diffraction coefficient
will not change sign abruptliyiwheniit: passes~ through the shadow bound-
- aries of the edge, i.e., the corner diffracted field will ensure the ; L
continuity of the fields as the edge diffracted field shadow boundary 11 f e
is crossed. In Figure 7, we show a corner formed by the intersection ;

of two edges (a) and (b). With each edge there is a corner field compons

ent associated with it. While there is only one edge diffracted field

component due to diffraction from edge (b), diffraction from edge (a) does

not contribute since Qéa) lies on the edge extension. Another sitqa~

tion is shown in Figure 8, where both Q(a) and Q(b) lies on their edge '

extension. Therefore, no edge d1ffract1on f1e1d component is present.
Only corner fields will be present at the receiver. Observe that there
are two components of the corner diffracted fields present, one for each
of the coordinate systems shown. Figure 9 shows the case where edge and
corner diffracted fields from both edges are incident upon the receiver.

E. BROADSIDE ECHO AREA PATTERNS OF FLATE PLATES

The broadside echo area of flat plate structures can also be com-
‘puted by use of Equivalent Current (EC) concepts provided this is done
fduite carefully. It iafgppanent(;hggt@heGECdcannot be used when
‘a caustic and a shadow-or reflection boundary coincidépThiscis! bene
icause the EC is obtained from the far field diffraction coefficient
» (see Equations (19) and (20)), wh1ch becomes singular in the d1rectnon4: J
,of the reflection or shadow boundary. Keller [?q showed that this sin-
gularity could be eliminated by considering the diffraction from points f
on the opposite sides of the!pTaté-(oP" apertire). He invoked the For-
“ward scattering theorm and used only the imaginary component of the dif-
fraction coefficient. Ryan [24 used essentially this approach as did
Millar [Q-lﬂ to find the scattered field in the direction of the shadow
boundary for square and circular plates. However, there is an error

.of a factor of two in Ryan's solution for the circular plate. Ryan also
used both a set of electric and magnetic Equivalent Currents which cor-
rected the error and lead to the correct mesult:p,

~ ———— sl 2,'111\.1_.4_-_...._....._.---,-.-.
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Careful examination of these prior studies leads one to a means
Tof generating the fields in the direction of the shadow or reflection ;
,boundary as has been achieved by others but also over the main lobe f
ithat is formed in the vicinity of this caustic. '

Consider the plate shown in Figure 10. To compute the scattered
‘fields in the vicinity of the broadside, only the components of elec-
tric and magnetic currents perpendicular to the incident plane are used.'

- This, in essence, is the same as representing the plate structure as

‘being segmented into strips as is shown in Figure 11.

One must, however, inject a word of caution at this point. If
the observation point from a straight edge is too far removed from the
space occupied by the actual set of diffracted rays, then the Equ1va1ent
'currents on that edge should not be expected to predict the fields at
the observation point accurately. This has a]ready been suggested and |
is now done with the corner diffraction.

s

The Equivalent current method will give results for the appropriate
regions of space near broadside that are accurate to within a one dB

which is acceptable in most RCS applications. However if a greater |
accuracy is desired, one has to include the higher order diffraction i

i

lcontributions. An example of such a case is the scattering from an

elongated plate as shown in Figure 12. The double and triple d1ffracted
field components should be included in this solution to improve the

_iresults. The above method of analysis is one of the reasons that the !

strip is to be reconsidered in some detail in Chapter III. Observe that
this approach eliminates the need to use Physical Optics (PO) or the
Physical Theory of Diffraction (PTD) for this type of scattering.

|
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| Figure 12. Diffraction mechanism for a plate eTongated in the trans- |
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If one considers aimonepole:on:a perfect1y conduct1ng plate, the

f1e1d d1ffracted by a corner on the plate is given by Equation (26).
An interesting result is obtained if one considers the case when the
monopole field is diffracted from the corner along the extension of

fthe edge, as shown in Figure 13. In the following notation for C i

- 'the first subscript indicates corner i and the second indicates edge j.

e

%

i

1

JAB /80

In this case, namely along the edge extension, the different para-
meters defined in Equation (26), i.e., s, s', s", all will approach
1nf1n1ty and Bo® Boc will approach zero. Using a 1imiting analysis
[24 Equation (26) y1er$§e;ii;T

] ede ol (s i)

e-jks
\/sC 3 (27a)

0 N GBI SR OR RS

jwhere

SN GO U, W

Dgew) o-Jn/4 (1+cos Be ) e [ 41 )
| 211___1 [2 s_ sin ?—]

Dr(]ew) mcn L/%)pter* Line

4 3

b s !
sin ) Sin %ﬂ

cos %- cos %L : (27b)

\ /
‘Equation (27) describes a non-decaying wave which propagates on the

——

edge of the plate, henGéjEthéSname ledgé-wave. [TFhis edge wave is ex-

‘cited by diffraction from5th DL orharof TR edge. This field satis-

e e m e e maneis - mmm e en e e e = ey

f1es the wave equation and the edge condition and therefore, is a valid ‘
so]ut1on for the fields propagating on an edge

l

|
|

b
! :
b— g
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r Figure 13. Edge wave mechanism due to a monopole mounted on a plate.
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-Ithat the diffracted field across the plate is cross polarized with res- —
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The derivation of Equation (27) and a detailed discussion of the
edge wave mechanism is shown in Appendix C. It is interesting to note e
pect to the field diffracted by the corner as is shown in Figure 13,
This cross polarization effect is a consequence of the edge wave mech-
anism. It is one of the primary sources that contribute to the cross
polarization field in scattering and antenna problems. This topic is
going to be discussed in substantial detail in Chapters VI and VIII.

1st page Chapter end linc
______ — lst page Chapter end line
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BACKSCATTERING FROM A PERFECILY.CONDUCTING STRIP

The infinite strip problem is a simple one, because the strip is
the simplest shape which exhibits multiple diffraction from edges.

The understanding of the different, mechanisms-ithat form the solution

for the strip will help tojqunderstand: andrsolve other related problems.
The scattering of plane waves by a perfectly conducting strip has been
treated extensively. J. Freeland, et. al, -[Zﬂ found an approximate
solution for the current on the strip and used it in conjunction with

the radiation integral to find an approximate current pattern which i
is used with the GTD pattern to construct a pattern which is accurate :
at all aspects. J.S. Yu, et. al., @él, used Sommerfeld's exact sol- i
ution [24 in conjunction with the ?eciprocity theorm and a self- :
consistent GTD formulation to account for higher order diffraction to |
obtain the required radiation patterns for the H-polarized plane wave !
ycase. Reference [24 lists some of the moré‘significant papers on the
gscattering by a strip. The objective of this work is to compute the
ibackscattered field pattern using the Kouyomjian-Pathak (K-P) form of the

diffraction coefficient and compare the results with the exact Mathieu
solution.

A. STRIP GEOMETRY

The perfectly conducting strip is assumed to have infinite length,
zero thickness and finite. width. cAshomogenegus;plane wave is

e e e o lst page Chapter end line
VTG AW AN AL -
— - _o3L ot ——— -
1 inch
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> illuminating the strip with both the TE and TM polarization cases con=

sidered. Figure 14 shows the strip geometry in which an infinite strip

is located in the X-Z p]ane where.a/) is the strip width. The angles | 1 inch
inch Chapte roLine

($,0') are the 1nc1dent—and -scattering—angles—respectively and p, Py

are the distances from edges (1) and (2) to the observation point.

| The phase is referred to edge (1).

B. Tw;z POLARIZED CASE

A homogeneous E-polarized plane wave is incident at an angle ¢',

assuming that the planeiwaveShasDuritEampl4tude’) then the incident field

can be written as: Typing Guide Paper | i

- <

Figure 14' Strip geonfs’tr_‘ypig_}e__cfici eldt l;;:e Chapter end line
LAST NN AV RWNL
e 2.0 et N
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The backscatter case ¢=¢' and Equation (30) reduces to !

Jk(x cos ¢1 + y sin Ji) —

=7 e (28)

For this case the only impontant diffraction~component is the single | Jneh o
diffracted one from edges 1 and 2. The double diffracted component

is a slope diffracted wave which has a negligible contribution to the
total back scattered field. The general expression for the two dimen-

sional diffracted field from an edge is given by::

e-Jkg

ed - £1 (g , where (29)
S ni591S / DISSERTATION
) S Typing Guide Paper
Dy is”the'soft ordinary scalar diffraction coefficient given by:
_a-Ju/4
D = e 1 - - _—_—lff—'" (30) |
27V 2nk cos B /2 cos B /2 j
where
B = ¢ |

and s is the distance from the diffraction point to the receiver and
E](Q) is the value of the incident field at the diffraction point Q. i

-e-j'ﬂ'/q’ _‘7 1
D, = —/— I ; (31)
2 Vonk' sicos ¢

the field diffracted from edges (1) and (2) are given by

-ik
ed - p{De? (32)

(1) e
1st page Chapter end line
_______ lst page Chapter end line
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-~ > d _ (2) _j2ka cos ¢ el _
E(2) = D¢ e 1 w/"TT‘ (33?»—*—
where the subscripts (1) ahd (2) indicate edges (1) and (2) such that | inch

2 inch Chapter Line |

D(l) ‘Jﬂ/4 1 )

S cos ’
z,/ k.

(2) _ -e‘J"/4 1

T ogme ey e

¢ = i 4 |

The total diffracted field is given by add1ng Equat1ons (32) and (33) or
THESIS /S DISSERTATIO

d o-n/4 Tybing Guide F3a$er sin (ka cos ¢7) ;
E & |cos (ka cos ¢}) +

total Wliﬁij 1 cos ¢} ‘

s | ' 'jkp |

oJka cos ¢; e (34) |

N |

i

The echo width is defined [ ] i

|

Le = limit l——"\ (35) !

pre i

Note that while Equation (31) becomes infinite as ¢'+90° (broadside).

Equation (34) remains finite since the _E%ETS'

cancel in the limit as ¢i+90° Equation (34)1

d oI/ -Jkp

Etotal (¢' = 90) = (36)
“

substituting Equation (36) into (35) one gets:

1 i
term and the ———— oS ¢2 term;
then reduces to, '

2

Lo (6" = 90) = ka (37) .

which is the required value as given by physica] optics approximation.

It is the combination'sf TRPUIFFARYRd F1&1d Ffom the two edges that
. . — — o — — s — 1st page Chapter end line
cancels this singularity.
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| (41).,_in_the_same_manner_as_justidiscussed,i.e.., -

C. /TE, POLARIZED.GASE |

For this case, the homogeneous plane wave incident field is given
2 ihch Chapter Line

by
ﬁi =% ejk (x cos 4Si +y sinc_l-d)i) (38)

For the TE case it is necessary to include higher order diffraction
terms to obtain the required pattern.

The effect of these-fields becomessimporiant as the angle of inci-
dence approaches grazingyineidencede Thersingle diffracted field is
obtained in a similar manner as in the TM case with soft, ordinary
diffraction coefficient DS replaced by the hard ordinary diffraction
coefficient, i.e.,

o = e 1+ L (39)
E R — + '
h 2.f 2mk cos ¢'
and the fields are given by:
¢ _ (1)edke
P )
: ‘ -jkp . |
H?Z) - Déz)eJZka cos ¢ e - (41) !
[0 .
with , ‘
L7 '
1) - =€ L) and

== (1+
e cos ¢

-in/4
D(2) = =€ .S - 1 + 1

S a | —)
2 /2."1( ‘st paggyé-hpter end line
— — __,.?2._._0 Ist page Chapter end line
The total singly diffracted field is then given by the sum of (40) and
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d - e | cos (ka cos ¢}) - j !
2mk cos ¢f !
-jko ;
. 7 e 2
edka cos ¢7 [==ch Chapter Line (42) |
The double diffraction mechanisms are illustrated by rays in Figure
15. The field diffracted from edge (1) give rise to two rays which
i are in turn diffracted from edge (2). The sum of the fields of these
two rays give the double diffracted field from edge (2), i.e.,
| He .\ =R, +R (43)
(21) 1 2
- - THESES/LN%S[RTATKN% |
Where . ly" < (‘:' jT;v RSN ‘
R
TOP SIDE ;
[} .
¢ﬁ ' |
( q (2) |
K—_" |
(a) :
R, i
* |
! :
4)[ ¢2 v
(n = (2)
‘ a
A .
. BOTTOM
SIDE |
(b)
o 3 R ( & ty 1
Figure 15. " Double diffraction field componentFfor ¥ RiF pcnd line
. (@) Top side; (b) Bottom s1de
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2 inch Chapter, I’l ine

1 "'Jk
Ry = 3 Dy (L,21,01) Dy (L,mey,0) S e3K2 €05 ¢f

YR

-
Na

b,

E where

_e~I/4 e [2kL coszs'/Z] N

Dh (L9¢s¢|) = =
2 +f 21k cos B /2

F [2kL cos?fsf'ir/_z]{|5/ DISSERTATION (26)

T 1, .
cos B'/2 Typilny dec Paper

gt= o4 and ¢,¢" are as defined in Figure 16.

aaal

1st page Chapter end linc

T SENAY ARl

. e o e Ga s+ w

> ! ' i oJka cos ¢
R, = D, (L,0,6') D, (L,m0!,0) S—x 1 (44)
1 2" h 17 “h*=2" 71 f"‘\ 1/

Figure 16. Definition-of~incidence -and=diffra&ttion dngresy end line
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-~ Caad = = =
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since s' = « 2 inch Chapter Line 1 inch

i+ The % factor in Equations (44) and (45) is introduced since the ray
- along the surface is at grazing incidence. From Equation (46), one
concludes that

i 1 2
th THESIS / DISSERTATION
! en Typing Guide Paper
i
'5 d _p . |
o Mar) = Ry =Ry, and
[ ] .
-jka -jko- l
d . | oy €9 jka cos ¢f e73%P
5 H(21) - Dh (a,0’¢1) Dh (aQW'?lso) ~ e 1 (47) :

Since reciprocity must hold for the doubly diffracted field, the doub]y:
diffracted field from edge (1), i.e., H?IZ) must be equivalent to '
Equation (47). The total doubly diffracted field is then givey by:

‘ -jka : 1 'jkp
y2d _ 20, (a,o,¢i) 0, (a,n-¢i,0) e pJka cos ¢7 € 77 (48)

e '

i where the superscript, 2d, indicates double diffraction.

Figure 17 illustrates the different diffraction mechanisms that
combine to give the triple diffracted field from edge (1). In this
i case, the incident field on edge (1) is the doubly diffracted field
from edge (2).

H =R, +R, + R, +R 49
(121) 1 2 1st 3,oage4Chaptor~ end line (49)
UG UG U S st page Chapter end line
Lo
R OS-: K0S S
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Figure 17. Triple diffraction field components for a strip.
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in a similar way, one finds that all 4 components are equal, i.e.,

Hiao1) = 4 Ry - (50)

where
-j2ka -e-Jkp

a \[75_‘ (51)

Ry = % D, (2,0,07) D,( 5,0,0).D,(a,¢7,0) &

or

1st page Chapter end linggka -Jkp
H(121) = Dh(a’0’¢f)’Dh¢?’°’°)“Dh(a’¢ﬂ;Q):Ei; ’“ﬁéiftr enc(52)he
| The triple diffracted field friom edge: (2).uis obtained by multiplying |

Equation (52) by
- 39
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Jka cos ¢1 with ¢1 rep]aced by m- ¢1
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So the total triple d1ffracted field is given by
: 2 inch Chapter® Line ‘ -

3d

¢ = 2 § sin (ka cos ¢}) Dy (a,0,4]) D, (3,0,0) Dy (a,4{,0)

. -jk
-jeka . , e I%p
e edka cos ¢p

Ve Vo

where the superscript 3d-indicates.triple- diffsaction. The sum of
Equations (42), (48), and((53) @ives: theptotal backscattered field for ;
i the TE case. Note that at normal incidence, the total backscattered
field is dominated by the single diffraction term given by Equation
(42), which in turn, leads to the same value for the echo width given
by Equation(37).."

(53)

i
i
The sum of the singly, doubly and triple diffracted field compo- i
nent is sufficient for computing the backscattered field for strip length
of wavelength and above. For smaller lengths, higher order diffractions

must be included. Note that the fourth order diffraction term is
given by

4d ' X ' jk . i
H™" = 2 D, (a,0,0{) [Dh(%,o,o) ]2 D, (a,m-¢{,0) eI*® €08 o1 ,
e-J3ka e-Jkp
a-\/ a -" p (54)
| The derivation of Equation (54) follows the same procedure used for
the doubly and triple diffracted fields. A self consistent UTD solu-
tion for the strip which accounts for all higher order diffraction

. terms’ is presented in1Appéndix Dhapter end line

— et e — — 15t page Chapter end line
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D.  DISCUSSION ﬁ N

The data computed using the above analysis is compared with the
exact solution for a stnip%_iﬁﬁghé%?ffgiéélﬁjﬁﬁstrate the accuracy of
this analysis for strip widths 3\ and 0.25\. 1In all of these figures,
the data is normalized to broadside level. Figures 18 and 19 show the
results for both TM and TE cases for a 3 strip width. The agreement
with the exact solution is quite good. The results in Figure 19 are
obtained by using diffraction terms up to the third order. Figures

20 and 21 show the TM and TE plane patterns for a strip width of %.
The TE pattern remainsTinzagreenehtSwithRtheTéxact solution while the
TM pattern deviates apprec¥abPy Fordangi@sesF incidence less than 40°
from edge on. This deviation is caused by the failure of our assumption
that the field diffracted from one edge to the other is a homogeneous
cylindrical wave. As the strip size gets smaller, the nature of the
diffracted field on the surface of the strip becomes more complex than
a simple homogeneous cylindrical wave. Figure 22 shows the effect of
adding the fourth order diffraction term to the results shown in Fig-

ure 21. This indicates that adding more higher order diffraction terms
will not improve our result near edge on.

Comparing Figures 20 and 23, it is noted that the TM pattern is
computed very accurately by just using single diffraction. This indi-
cates that even for smaller strip widths, the interaction between the
two edges is negligible and therefore, there is no need to include a
slope diffraction term to account for edge interactions. On the other
hand, comparing Figures 25 and 26, illustrating the E-plane single
diffraction term with their counterparts in the H-plane as illustrated
in Figures 23 and 24, one observes the similarity between the two.
Accordingly, one concludes that it is the double and triple diffraction
terms in the E-plane pdtteri*thatlereste thel difference between the

E and H-plane patternsT — — — — — — lIst page Chapter end line
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Figures 27 and 28 show the contr1but1ons to the E-plane pattern._
by the double and tr1p1e d1ffract1on terms. For a 3) strip, the double
diffraction term is on]y needed for incidence angles up to 40° and :
triple diffraction to 10° fromédgetomte The lhigh value obtained for l

these two terms for a 0.25\ strip makes it necessary to include higher
order terms to offset this increase.
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H-PLANE BACKSCATTERING FROM PLATES

A. PLATE GEOMETRY

Figure 29 illustrates the geometry used to define the plate which

has N edges with the edgeyveectonsi.givenbyen

&y = Xy Xty y+ 2, 2 s p=1,2,. C e N, anq (55)
TS I T | - (58)
th

where Eb is the position-vector-of the p~" corner and gb is its Tength.
th edge unit vector is then given by

."_ - R z -7 A‘
e - o) o, Uen) g Upnty)
% o %
or
ey = Xy X+ Y, ¥+ 72 (57)

X

o

{The plate normal unit vector and the b1norma] unit vector 40 thep~

,edge . are defined, respectively, by

~ e X e N N
le X e +1‘ ‘ )
p: 1ot p&g\‘ Cnapusr‘ end line 7 7
Qr 4 — e e e o e e LGE page Chaptor end line

is assumed to be perfect 1y conductingsand-of zeno, thickness. The plate
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iB' EQUIVALENT CURRENT FORMULATION

The analysis of backscattering in this chapter from plates is done
using the Equivalent current principle discussed in Chapter II. The
H-plane pattern is analyzed here by using the first order edge diffrac-

" tion fields to formulate the Equivalent curxents;which are given by

§ P T ;
‘ _ 21 6%(n,e,0") (7.2 |
i Ie = _&J (E' e) and (60) l
! (1) " ZK in2p(P) P ' i
i 0 l
ﬁ . . m ] ’ 2 A i
= 2J G (n,¢,¢ ) 771

M. = (H'e &) , (61) .

SR G KGR0 p : 5

|
oo m——— ~

The derivation of Equations (60) and (61), and the definition of the
different paramsters is shown in Appendix (B). In these equations the

subscripts of_ITl) indicate the order of diffraction and the superscripts
indicate current type, i.e., the electric or magnetic currents. '

i
_ . |
l The backscattered field is computed by substituting these currents |
into the radiation integral. The RCS is computed by using

52 ‘
? o= lim 4m? IEL . (62)
: |

, Prco IE1|2

It should be noted that Equations (60)Aand (61) are valid for éomputation
of principle E and H plane patierns. For any other pattern cut, as

the one shown in Figure 30, one has to use the components of the Equiva-
. 1st page Chapter end linc .
fent currents perpendicular to the plane ofy jincidence,accordingly Egua-

tions (60) and (61) are modified by replacing
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where the unit vector e, is defined as a unit vector normal to the plane
incidence, i.e., '

6. = (I x n) (64)
* [T xnl
xn THESIS / DISSERTATION

Ny Goice N

oo, . . \ 73 PANpn . ‘
where I is the incident Unit Vectorand nPis the plate normal unit vector

defined in Equation (58).

This use of Equivalent currents is necessary since the far field
diffraction coefficient of a single edge becomes singular as the observa-
tion point approaches a shadow or reflection boundary. A diffraction |
from a second point in the incident plane is required to remove this i
singularity as was done earlier for the strip (see Equation (36) ). ’
A physical representation is that the plate takes the form of an array !
of strips parallel to the incidence plane. :

Therefore, only the components of the Equivalent Currents perpen- |
dicular to the incidence plane need to be considered. ' :

C. BACKSCATTERING FROM RECTANGULAR PLATE

Calculating the backscattered field from a perfectly conducting
plate has been investigated by several authors. Ross [28] has applied
the Geometrical Theory of Diffraction and physical optics methods

to predict the RCS of d Tonducting Pectangul@r!plate. His results were
Dacae

R T AR AL -

B8

1 inch

. . g g e e p e 1L Chaptaer end, line
in agreement with measuUred data except for regions near %dge on ‘incidence.
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One of the reasons for the failure %f'his solution is the use of a plan;‘
wave diffraction coefficient for the higher order diffraction mechanisms,

developed by Ufimtsev[sdl who "gsed-noHuiform™Eylindrical waves in |

conjunction with the rec;procity principle to describe the secondary dif-

fraction. His solution also did not include a necessary edge wave mech-

anism. This problem is also to be discussed in this section for the

RCS of thin rectangular plate at grazing incidence as a function of

plate length and vertical polarization. Hey, et. al [34 and Knott,

et. al [34 have reported measured data for flat plates two wave lengths

in width and lengths as.small-as 0,05\ and-as-jong as 7A. Ross [28]

also provided an emperically derdivedicequatsion to fit the measured data. ’

Finally, a set of different shaped plates are studied. In several in-- ‘

stances, the edge wave mechanisms have not been included and this will !
l
.
i
!

be noted as is appropriate.

1. RCS From Thin Rectangu]ar Plate I1luminated At Edge On

The geometry of the problem is shown in Figure 31. A rectangular
% and width % is Tocated in the x-y plane, and is i]]um-!
inated at edge on by a plane wave of unit amplitude and polarized parallel
to edges 2 and 4. The term Cij defines corner i on edge j. The

incident field is given by}

plate of length

=% kY | (66)

As this field is diffracted from corner Cll’ it excites an edg?yyave.\
Over the surface of the plate, the field of this edge ray is-of course, -
polarized perpendicular to the plate. This field illuminates the back !
edge. The field diffracted back y this edge interacts with

the front edge and corqgn§‘giweangg43cp Figure; 32 illustrates the dif-
ferent interactions that contribute-to. the backisecatteredtfiieldd 0b=
serve that the second corner diffraction is required to convert the

53 e

z-polarized-field-on—the-surfacé-of L the-pidte-to-the-original—x=poTarized

_— A .59.;“' b

1 inch
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B

. ) . _ L . .
-3 state. Also, these z-polarized fields on the surface of the plate will

jyield a strong cross poTarized component for some non-grazing incidence

fand radiation angles.. This cross-polarizing mechanism has not been [
'studied in detail at this Tim@But“tRe'fethnigies developed herein are
4

‘directly applicable to it.

i
t

"Figure 32-a illustrates the interaction between corner Cl1 and
.itself. The different parameters shown in the figure are defined by
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The value of the edge wave field at Lhe back edge due to corner C11
is given by.

2 inch Chapter Lin?;jksl

(ew) _ (i (ew) T e
EZ =t (chl) Dh (Sl’ 0, 2 BC]_) .\/._;._.\ ’ (67)
1
where Dﬁew) is defined in Equation (27). Using the Equivalent current

‘concept, one can find the field due to the back edge. This field, in
turn, diffracts from corner Cl1 and radiates, the-desired x-polarized. «-

field -‘component.given-by, - FR SO
b .
; ; : -Jks 2
ed o _ gldka eﬁJ.'—‘PéSLf/ [NERFRTATION, e 1 "
X : Typirlg Clihie P2ller2’ e
m S.1nB0 y ypo 1 .‘/ S

(68)

- : . R ) 7 7 i
!The mechanism consisting of diffraction from corner Cyy to corner Cpy |
lback to corner €7 and hence to the source is inherent in Equation (68).'
0f course, there is a similar component that comes from corner C43.

The interaction between C11 and C43, shown in Figure 32-b is found '
in a similar way. In this case ‘the field diffracted by the back edge
is diffracted also by the front edge.

in Figure 32-b are defined as follows:

The necessary parameters shown

s, = a + x'2 Z
-1 x!'
| BCZ = tan e ’ \
B, = = -8B
d 2 C2

Eand S1» BC s Bo are as defined before.

|

The backscattered field due to this interaction is given by

; 1st page Chapter end line
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A similar expression holds for the interaction between C43 and Cll'

L DISSERTATION, .
field from the front éﬁ§3§f§?%/;§3évaluated by using the Equivalent
I'yping Guide Faper

current method and the field is given by’

. -Jky
gd = b J2ka e

(70)
X o y

The total backscattered field is obtained by summing up all the three
different components. b

2. Discussion

Figures 33-35 show the results for H-plane pattern (Ee-polariza-
tion) for three different square flat plate sizes. The results are

solution included higher order diffraction terms. His calculations are
good everywhere except near grazing incidence. This error is caused by
the use of plane wave diffraction coefficients which become singular
near grazing incidence in the higher order diffraction terms formulation.
The -équivalent’. current solution as developed herein overcomes this
difficulty as shown by the good agreement with the measured results.
Figure 36 shows the H-plane RCS pattern for a 3) x 3x plate. It is com-

. 1st page Chapter end line

pared with a moment method solution using surface patches,model, deyeloped
by Newman P ]. . For ‘near -edge of.incidencé; the two solutions give
results which differ significantly.isTherreason_is_that_higher—order—- -

diffraction terms and the edge wave mechanisms discussed earlier
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The third field component shown in Figure 32-c¢ is the edge diffracted
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have not been included in the sé]ution. A three dimensional . .__|

plot for the RCS from a 2) x 3x rectangular plate (Ee polarization) |
is shown in Figure 37. Again, only Equivalent currents corresponding
to first order interaction? HrehusedetbCgenerite the data shown. |

As will be shown in Chapter VI, the higher order interactions play

a very important role in RCS computations in pattern cuts other than

the principal one. These interactions are not included in Figure

37. Figure 38 shows the RCS of a rectangular plate illuminated at

edge on. The plate width is 0.53p. The results are compared with
measured data obtained by [32], and the results are in good agreement
for plate lengths 3) and,above. ;At;the lowersizes, the agreement

is in error by several degfiblesi>uThisFindicates that for small plate
widths and lengths, higher order interactions that involve other cornerj
become significant and should be included in the solution. This be-
comes clearer if one compares Figure 38 and Figure 39. Figure 39 l
shows the results compared to measured data obtained by [311 for a E
2) plate width. Over the same plate lengths range, i.e., (2) - 2.6)),
the peak to peak deviation is about 0.5 dB.in Figure 39, while it

is about 2.5 dB in Figure 38. By examining Figures 38 and 39, one
notices the rapid change of the fields near a pattern null. This
behavior makes the results more sensitive to measurement alignment er-
rors in that region of the pattern. The computed results for the
null value in both Figure 38 and 39 is in error by several decibles.
Note that the measured results span the computed results at-f = 2.4, !
which indicates an alignment error in the measured results. In Fig-
ure 40, similar results are presented for a 2) plate width. The agree-
ment is good which indicates that the dominant mechanisms for large
plate sizes are the ones discussed earlier.

D. BACKSCATTERING FROM A GENERAL SHAPE PLATE
1st page Chapter end line
In this section, -the-RCS. patterns .of diffenent typescof pldtésrare
analyzed. Northrop [34 analyzed the plate shown in Figure 41 by
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iFigure 41. Northrop Fin.
i

~ of these strips was obtained using Ufimster's strip solution and then
summing these to give the scattering from the plate. This model has
| two disadvantages: . !

r |

{ 1. As the plate geometry chaqges, one has to find the optimum

| number of strips that give saﬁisfactory results.

2. If a pattern cut other thén the principle plane cut is
« required, the modification ofithe strip model is not a simple
task. _ i

| The Equivalent current method used%to analyze the different types
of plates overcomes all of these difficu]ties. While the Equivalent
current model used in the region of the broadside Tobe is in essence

a modified version of the strip model, this model reduces to a much
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“{simpler model for other regions of the pattern. ‘It becomes a simple™—]

set of line currents around the perimeter of the plate which are used
in conjunction with a free space Green's function. Thus, the RCS
patterns of these Equivalent—currents—can-readily be computed for

any observation point. The results obtained by this method for the

H-plane pattern (E, polarization) is shown in Figure 42. The solution

8
actually traces the solution obtained by Northrop and is in good agree-

and* 150%PH<180°%, the Equivalent current solution differs from measure-
ments. This may require the use of the edge wave mechanism. It was

| found that at such highrfiréquenciess<(173767\GHZ)) the RCS patterns

are extremely sensitive toPorfentation™2Th'Figure 43, the results

obtained by rotating the plate in the x-z plane by a mere 2.5° are
shown. A drop by 10 dB is obtained at PH=0°.

The principal H-plane RCS pattern is dominated by the fields
diffracted by the front edge. In regions near edge on, the Edge wave
mechanism gives a significant contribution. This is seen in Figure
42 (150%PH<180° region) and also in Figure 44 which shows the princi-
pal H-plane RCS pattern for Northrop fin at 9.067 GHz compared to
measured results obtained by Mr. Chu [3]. Good agreement is ob-
tained and one notes the existance of ripple in the angular region
0°-60°, which is caused by the edge wave mechanism that is not yet
included in our solution. Figure 45 shows three different modifi-
cations to Northrop fin. The effect of these different modifications
on the H-plane RCS pattern is clearly seen in Figure 46 which shows
the H-plane pattern for these plates compared to that of the Northrop
fin. One notices that a small change in the angles between edges
results in more than 13 dB reduction in RCS in these planes. Of course,

this reduction is achieved at the expense of an increase elsewhere.
1st page Chapter end line
~~~~~~~ lst page Chapter end line
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ment with their measurements. In the region near edge on, i.e., 0%<PH<30°
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The following results to be discussed demonstrate the versitility ]
and power of the Equivalent current method. Only first order diffrac-
tion Equivalent currents are used to compute the results. All plates

2 inch Chapter L.ine | ’
are located in the x-z plane—and-the-H-plane-RGS pattern is computed

in the plane 6=90°.

1 inch

Figure 47 shows a plate with a curved edge smoothly connected
to a straight edge which forms a triangular type junction. The model
used in the analysis is shown in Figure 48. It uses three straight
edges to model the curved part of the original plate. Figure 49
shows the H-plane RCS Patteérns (E OpoTarization)’'for this plate and '
the agreement between caléBiBted”dhdmé30REd data is quite good. = |

{ The deviation between the two results, especially as one approaches

the edge on case, is due to several factors. The first is probably the]
effect of the finite curvature of the curved edge which is not accounted:
for in this particular model. The second factor is probably the higheri
order interactions such as edge wave mechanism and multiple diffractions
between edges. Figure 50 shows a plate which has no straight edges. E
The plate model used in the computation is shown in Figure 51. It uses;
18 edges to model the curved edges of the original plate. Figure 52 !
shows the computed H-plane pattern compared to measured data. In the
region 90°<PH<180°, the computed results are quite good. It predicts ;
quite closely the general behavior of the lobe structure. However, in i
the region 45°<PH<90°, our model does not predict the deep nulls shown
in the measured data. It is our understanding that this lobe structure
results from a creeping wave 1ike mechanism associated with the edge
curvature. Such mechanisms give rise to two waves which interact with
each other to give the deep nulls observed in the measured data. Again
the failure of this model to simulate the finite edge curvature is pro- 1
bably the cause of the deviation between the two results. As a first
approximation, one can'ileFEHE eGP REVE MEChanTén to simulate the ef-
s ey e e e e e e — lat mage Chapter cnd line
fects of the finite curvature of an edge. Such a method has not yet

,been included in our solution. . .. . .
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ate involves a large triangular section. The H-plane pattern is

shown in Figure 54. The computed resu]ts are compared to measured
2 inch Chap L e

idata and good agreement-as obta1ned ~—Ihe devi-ation between the two
gresults in the region 0% PH30° s probably due to higher order inter-
;actions involving the edge wave mechanism. Such interactions are going
ito be discussed in the following chapters.
d

QE. BACKSCATTERING FROM A DISK

1

thin circular disk has beeRiavailable forPiany years [36 37] Several
{authors worked on a more efficient way to calculate the scattered
field. DeVore, et. al., E3d , succeeded in reducing the difficulty
lin obtaining the Eigenvalues for oblique incidence. Bechtel |39
ﬂused Keller Geometrical Theory of Diffraction to compute the disk
‘RCS for both principal polarizations using first order diffraction.
gHis results were in good agreement with measured data for angles less
' than 30° from broadside. For angles greater than 300, his E-plane
jpatterns deviate considerably from measured data. This is due to
%neg]ecting the higher order interactions. The H-plane pattern, on
'the other hand, deviates from measured data due to neglecting the
ieffect of creeping waves for near edge on incidence as discussed by
iRyan, et. al PKﬂ. A more detailed list of references concerning
scattering from a disk is shown in [261 .

In this section we use the Equivalent current method to compute
ithe H-plane RCS pattern of a disk using the Equivalent currents corres-
ponding to first order diffraction. The geometry of the problem is
shown in Figure 55. A disk of radius a is located in the y-z plane.
The pattern cut is takémtimthe %-yaplaneenTherdisk is modeled by

a multi-sided plate. Figure 56 shows two ﬂi%te model’sp1a %%Phcntbllne
sides and the other has 12. The number Pf sides used is limited by

Leys, 1y £

[its electrical Tength which should be of the order of a wavelength.

| . 87_1' e
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texact solution obtained by using a computer code made available by ,
Professor Hodge Pui. This exact solution is based on Andrejewski's
rigorous eigenfunction soTutionNto thA8LdisK-S¢attering problem. The !

{first order Electric Equivalent currents are used to compute the H-plane
qpattern from the two disk models shown in Figure 56 for different plate
,sizes. Due to the symmetry of the problem, the pattern is computed for
ﬁpattern angles between zero and 90 degrees. Figures 57-58 show the H-
fp]ane RCS for the 8 and 12 sided plates respectively. The plate size
}is ka=8.28. The results are compared to Bechtel's Solution [3Q] where
he used Keller's Geometrical,Theasy.of; Diffraction to compute the disk
tRCS as well as the exactrsolutjionuidBothasotutions are in good agreement
;with the exact one in the main Tobe region. As one moves the incidence
'angle toward edge on incidence, both solutions start to deviate from

: the exact case. This is due to the fact that in the region near edge
lon the creeping wave mechanism [4@] contributes extensively to the RCS
gpattern. Our solution does not include this mechanism. Hence, these
fresults would indicate the angular extent for which the creeping wave
Eis significant. One could use the forward scattering of the edge wave
i mechanism to simulate the creeping wave effect. However, the corner !

diffraction coefficient does not adequately treat this case as yet.

hF1gures 59-66 show the H-plane pattern for different plate size and
for both models. As the plate size is increased, the 12 sided plate
:mode1 gives better results than the 8 sided plate model in the range .
10%PH<50°. This is because the 12 sided plate models the disk more |
closely than the 8 sided one, as the plate size is increased. Note also
chat the 12 sided plate always gives a lower level at edge on compared

ito that of the 8 sided plates. This is due to the edge size which is |
smaller in the 12 sided model. The results shown in Figures 57-66 are
computed in a pattern cut that passes through the plate edges as shown
in Figure 56. Figures 167-68,show;theresults obtained for two plate

sizes, ka=8.28 and 20,-for- the -case. when- thetpatternCcutotis~ traken lsuch
that it passes through two plate corners in a symmetrical way. The region
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< 2-near edge on is still in error whic% indicates the importance of in-.—__

cluding the creeping wave contribution to complete the solution. Some .

slight 1mprovement in the reg1on away from edge on is noted. In i .

. [l
Figure 69 and 70 our resu]t computed u51ng the 12 51ded disk-- U —
model is compared to a solution provided by Mr. Chu PZ] , in wh1ch he

dused the Equivalent Current method to compute the RCS pattern by inte-
i
i

grating numerically over the disk rim. His solution does not include
athe creeping wave contribution. Figure 69 shows the results for ka=8.28.
{The Chu solution traces the GTD solution obtained by Bechtel while in
Figure 70 the results for ka=10 are shown. The Chu solution gives bet-
ter results in the regjon_ gppggHiso which Andicates that using a
disk model with more edge§pcmgseruresemb3esrthe actual structure and
iprovides better results.
F. COMPARISON BETWEEN CORNER DIFFRACTION AND THE EQUIVALENT

CURRENT METHOD i

As was shown in the previous sections, the Equivalent current
Emethod gives adequate results for RCS computations. This method gives
jits most accurate results in the principal plane, since the radar

- 1ies on the cone of diffracted rays. As the radar is moved off
gthe principal plane, its direction is moved away from the specular
:one, and accordingly, one would expect that the first order Equivalent
! current method results would become weaker as one moves further away ,
'from the principal plane and other mechanisms would become more

significant.

In this section, the use of corner diffraction method is discussed ‘
as an alternative way to the Equivalent current approach to compute :
the contribution of first order diffraction to the RCS from plates.

1st page Chapter end line

‘The corner diffracted-ﬁield.Qlﬂ-—was discussed @arlier innChapter
II. For the case of far field and plane wave incidence, Equation (26)
reduces—to-give birh Lo LA
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| c j c
i EBO EB'O(QC) Ds
E - e-jks
(71)
c 3
L E"’.a - Q) D
; where
’ tan Bo "
c . c [Br " i '
?ﬁ ,(.:;(QE) 8n PR (72)
i and
| .
r~z E 21/ k coszB o, cos ¢ k coszBoc

| | | - (73)

* substituting Equation ( into ( one obtains

1 ‘
! j tan B
r DC= ¢ //l/l cosz¢/x 4
s; 8nk cos cos ¢ k cos’ B, /11 -
c 4 <
(74)
] Equat1ons (72-74) were obtained by|subst1tut1ng
L= . LC = o . :
’ B.= T- Boc RPTI B,=T/2 f and
=9’

!

; he definition of all the d1fferent parameters can be found in Chapter
, , Section D.
|
R

!




P N R - R =

j For the special case whenfgo = %, Equation (74) reduces to._give
! : c

0§ = -e I8 <1 ¥l |
“h 41/ 2nk cos ¢ (75)

The above Equations were used to compute the RCS for some of

the plates discussed in sections D and E. The plates are located
f in the x-z plane. The H-plane (Ee polarization) is computed in the
. x-y plane. The results are compared with those obtained by using
f the Equivalent current method. Figure‘?i shows the RCS pattern for
' a 2\ square plate. The pattern is taken in the prineibel plane

i (e=90°). The agreement between the two methods is excellent as one

| would expect. Figures 72 and 73 show the RCS conical patterns for the
| same plate. - The -patterns were taken for 6=60° and eéﬁogffespec-
% tively. The two methods agree well in the main lobe region. They
- start to deviate in the side lobes region especially as one approaches
edge on incidence. The reason for this difference is that in the
Equivalent current method, the three dimensional behavior of the scat-

. tered fields is computed through the radiation integral. One would

~ question its accuracy in predicting the fields level as the receiving

., point is moved out from the main lobe region of the radiation integraT
pattern as is shown in Figuref74. 'In the corner diffraction method,
the three dimensional effects are #aken care of by the transition

{ functions involving BC and BOC; E?en though the two methods give

% two results that differ in the side lobe region, this difference is

. not going to affect the final resu]ts, since in this case, higher

5 order 1nteract1ons contr1bute s1gn1f1cant1y 'to all regions of the RCS 0

pattern ..This 1s»tofbe d1scussed vnemore deta1] in:Chapter-V- and VI.

g — e e——

Figure 75 shows the H-plane RCS pattern for the plate shown ‘
in Figure 56. The agreement between .the two methods is good
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for the entire pattern. Figures 76-77 show the H-plane RCS patterns

éfor a disk for two sizes, ka-8.59 and 9.45. The pattern cut is taken
ithrough two corners in a symmetrical way. Figures 78 and 79 show the
gsame data for the case when the pattern cut is taken through the edges

as shown in Figure 56. The agreement is sufficient for engineering
applications.

Finally, one should note that when using the corner diffraction
method to compute the fields in the'H-plane case, the pattern angles
should be displaced by some small numbers, i.e., PH + €1 and o + €.
where ¢, and ¢, are muchst essathantonesr This technique follows the

. . . A A 3 211
same reasoning used in~Chapter TII—toobtain ‘theFieTdV3ite 3t broad
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' G. SUMMARY OF H-PLANE BACKSCATTER ANALYSIS

Page #

The analysis in this dissertatjon.is. being introduced sequentially i 1 inch .

according to the complexity. This chapter focuses attention on the H-

iplane patterns where the Electric field vector is oriented perpendicular
ito the plane of incidence.
¢

Q The techniques used to obtain the broadside RCS in the H-plane are

{in general applicable for any other plane. The major developments for

ith1s broadside RCS analys1s being the or1entat1on of first order Equiva-
QIS DISSEERTATION

l]ent Currents taken perpeg%lggngbﬁgothe Epc1dence plane and then s1mp1y

‘us1ng the accuracy of the computer to remove the s1ngu1ar1ty at near

normal incidence. This makes it possible to approximate the broadside

\RCS with good accuracy. l
e

It would be expected that the near edge on incidence RCS is dominated
by the leading edge of the plate for this polarization and in generaT 2
gthis is found to be true exclusive of creeping wave type of phenomena. i
iThe effect of such creeping waves are evident in the RCS patterns of i
the circular disks for PH near 90°. However, for rectangular plates '

;whose Ieadipg edge is longer than the edge parallel to the direction
lof propagation, the leading edge diffraction is the dominant mechanism.
éEven here for smaller square plates whose dimensions are of the order
fof a few wavelengths, the multiple corner diffraction and edge diffraction
mechanisms become significant but not dominant.

However, as the plate becomes elongated in the direction of propa-
gation, these multiple corner diffraction mechanisms become dominant
terms and must be incorporated in the analysis. A later chapter will
discuss in detail the H-plane RCS patterns for a narrow triangular plate

1st page Chapter end linc
where some rather interesting features appear.
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A set of rather general shaped!p]ates have been treated using on1yj
the first order Equivalent Currents. For this polarization, it is seen'
that in general this g1vesoadequate results. The curved edges of these

inch. Chapter L.ine
plates have been modeled- by—stra1ght«44ne—segments Variations from

measured results, while small, appear since creeping waves, edge waves
gmultiple corner diffractions have not been included in the analysis,
‘primarily because they are not dominant mechanisms. These more complex
Uphenomena will be discussed in Tater chapters, particularly for the
%E-p]ane patterns.

The one topic beyUthfhéSséoﬁé~dfEfﬁi%AaiﬁgéYtation is the creeping
uideo B2anon

fevident in the RCS patterns for the circular disk for near edge on inci-
!
idence.

The following chapter focuses attention on the higher order d1ffrac-
ition mechanisms. These are particularly important for the E-plane RCS
patterns and become dominant mechanisms for non-principal plane patterns

1st page Chapter end linc
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wave analysis. The effect/Fof'&he creep1ng wave on the RCS is particularly
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E-PLANE BACKSCATTERING FROM PLATES USING
: HIGHER ORDER INTERACTIONS

A. INTRODUCTION

In Chapter IV, the effect of jthesfinstrorder, interactions on RCS
.computation were discussedwirTheseiiinteractions generally involved only ‘
}single edge diffraction terms. The fields associated with these mech- ‘
anisms were sufficient for computing the H-plane pattern. The results ‘
‘obtained by using the Equivalent Current (EC) method or Corner diffraction
iwere in good agreement with the measured results through out the pattern.
TSome deviation between the calculated and measured results were observedl
1in the near edge on region. These variations were due to the higher i

order interactions to be discussed here and in the following chapters.

!
} In this chapter the interaction between plate edges shall be consid-
.ered. This involves double and triple diffracted rays between edges.
?The EC method is to be used to compute their contribution to the RCS.
iThese two types of multiply diffracted interactions will be seen to be
very important components in the computation of E-plane RCS patterns.

¢

a' The incident field is assumed to be a homogeneous plane wave and
¥

iis given by
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where . o '
g =x sing' cosfFH1:+ y sine1siﬁ?H1§+ z cos@’

Figure 80’ shows the plate and radar: geometry. The plate is located in
the x-z plane. The E-plane RCS pattern is taken in the x-y plane.

B. EQUIVALENT CURRENT FORMULATION
THESIS / DISSERTATION

Typing Guide Paper ’
The fields of the doub]y and triply diffraction rays between plate |

edges are computed by constructing the corresponding magnetic Equivalent
icurrent and using it together with the radiation integral to compute
‘the far backscattered field. ) :

In the analysis of these two mechanisms, one has to consider the
Ishadowmg effect between edges. In Figure 81 an electromagnetic plane

TR IS DISSt—RTA
wave is 1nc1dent on th£}B§2né%§/ the d1ffracted f1e1d then illuminates

uud i
fa part of the q edge and in turn the f1e1d diffracted from the qth
edge illuminates part of the vth edge. The method used to determine

~the illuminated region on an edge is shown in Appendix A.

The Equivalent currents corresponding to the double and triple edge :
diffraction fields are given by:s

] sua @R (qfP)).g ) |
ITza 23 Vomk ? — 51 p th)(sl’0,¢.(p),8(p))
' Yok sin B, g sin Bop °
(a) o
Dhq (Sl,¢( ),‘,@éog@égf?z?ft&ﬁgilméanh; and (77)
~~~~~~ 1l -~ l1st page Chapter end line
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= = (p) () 4(p) ,
1(3) ?;F sin B(p)s1n B(Q)S1n B(V) (Sl’o’¢ o )

2 1nch CDapUer luvv

e e % 5V g

\/Sl ﬁ (85" e,) (78)

The derivation of Equations (77 78) is shown in Appendix B. In l
these equations the subscripts of 1(2 3) indicates the order of d1ffrac-i
tion and the superscript indicates current type, i.e., the electric
;or ‘magnetic currents. Figure)82. defines the different parameters used,
where Q( P) Q(q), Q(V) def1nes the d1ffract1on po1nts on edges p, q,
and v,respect1ve1y /The edge un1t :vectors. are ep,¥eq,eeJ for ‘these d

! S T

?and‘sl, s, are the distances between these diffraction points. I and

d are the incident and diffracted unit vectors.
-

v

|
"
es

3
p ——

When Ghe subst1tutes these currents 1nto ‘the® rad1at1onv1ntegra1‘E;:}

numer1ca1 “integriation has to- be. used to evaluate _it. The. 1ntegrat1on is
‘carried out only over the illuminated part of the edge Observe that

there is a shadow boundary effect in the ray trajectories of Figure 81"
This could be circumvented by adding corner diffracted fields to the

fields incident on edge q (and subsequently to the field of edge v) as
'is shown in Figure 83’and 1nc]ud1ng these results in the Equ1va1ent
iCurrents. \\A pu]se type 1ntegrat1on seHeme was used 1n comput1ng ;_ =
the data presenfed in this chapter. B '

l
|
l
'

One must observe that if the Equivalent Current is used only over
the illuminated region, then the integration will approximate the fields
from the diffraction caused by the resulting shadow boundary.

C. BACKSCATTERING FROM A GENERAL SHAPE PLATE
1st page Chapter end line

_________ s d lin
The E-plane pattern for anarbitrary shébé”i]atcuﬂapa Hoggwcoﬁplex

problem than the H-plane case.LlIh1§\}§ because the E-plane is dominated

.
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were considered, these were found to give adequate results for the geom-
etries used in our analysis, however, fourth order diffraction or even
higher may be included when dealing with smaller size geometries or wheﬁ_
considering patterns other than the principal E-plane. ~The EC method is
used in computing the contributions of all of these three mechanisms. :
When cbmputing the fields caused by the double and triple edge diffrac-
tion, ray tracing techpiques dnust,becusedrtordetermine the extent of th%
illuminated region on anredgegass>neededforrthe numerical evaluation of |
the radiation integrals associated with these interactions. ~The fields
diffracted from one edge to the other across the plate are assumed to be
plane waves. '

Using these three mechanisms, the E-plane pattern for the Northrop
fin [34 shown in Figure 41 has been alanyzed. In Figure 84 our E-plane
RCS plane for the Northrop fin at 17.76 GHz is compared with their solu-
tion and also to their measured results. Northrop treated the problem
by breaking the plate into parallel strips. Our solution actually traces
the Northrop solution. But both solutions deviate from the measured
data near edge on regions. Considerable effort was directed to computing
the null value at PH=150°. It was found that the E-plane pattern is
extremely sensitive to orientation at high frequencies (17.76). This is
clearly seen by examining Figure 85 which shows the results obtained by
hotating the plate in the X-Z plane by a mere 2.5°, compared to the same
measured data. The calculated results in Figures 84, 85 span the experi;
mental results reported by Northrop. This explains the deviation between
measured and calculated results in the region 110°<PH<180°. However,
the deviation observediin ghgﬁregquggg<Pﬂg§D%im§ caused by not including
the edge wave contributﬁon~in-our—solutionlstNoteetﬁabatﬁewnobatiéhWEPH

is used to indicate the PH component of the Electric field in the
LAST TR WINE

128~ 1y

1 inch

Page #
by the back edge, accordingly inter%ction between the plate edges plmy;_
an important role in E-plane RCS pattern computations. These become
“|quite significant for near the edge on region as has been seen earlier el
it e nEen L o ] ) inch
for the strip. Only single, 'dolible3na>Eripld edge diffracted fields
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standard spherical coordinate system. Typical E-plane patterns (EPJ‘*”
polarization) for single, double and triple edge diffraction components
for Northrop fin at 17.76 GHﬁugreC§hggq3gn ﬁ}gyres 86-88. In Zlgures 1 inch
87-88, one only observes—the—patterns—for-the-range 90 <PH<180 since

the higher order terms are significant only in this region as is apparant
by the comparison between Figure 84 and Figure 86. One also observes
from Figures 87 and 88 that these terms, namely double and triple dif-
fractions, are only needed for about 40° from edge on. This becomes

even clearer by examining Figure 89 which shows the sum of these two

components. ;
THESIS / DISSERTATION ;

' The ray mechanisms that Were {ic10d8 Sn computing the double edge

diffraction term are shown in Figure 90 where the incident ray is in

the x-y plane. The ray diffracted from edge 4 (Figure 90-a) will illum-
inate part of edge 2. This illuminated region will or course depend

on the angle of incidence on edge 4; however, the ray diffracted from
edge 2 (Figure 90-b) will illuminate the entire edge 4. In Figure 91,
one observes the component of the RCS pattern obtained using the EC as-
sociated with the double diffracted ray between edges 4 and 2 (ray 4-2),
while that associated with the double diffracted ray between edges 2

and 4 (ray g-4) is shown in Figure 92.

" The EC method used to compute the field components shown in Figures
84-88 has an inherent error caused by the shadowing effect of an edge
as is shown in Figure 93. To correct this inherent error, one has to
include the corner diffracted fields .which are the only ones that can il
luminate the shadowed part of an edge. It should be noted that this
source of error does not considerably affect our results since the doubl
diffracted field is only needed in the region near edge on and by ex-
amining Figure 91 and Figure 92, it is clear that the difference between
the two results is verySmaPRhearasdge” onpreg1on, however, this dif-

~~~~~~~~~ Chapt d Ui
ference could be large for a different plate g%%ﬁgiry apter end fine

D

LAST T AC LN

131 g

1 inch



! Contcr Guicoe

inch

1% inch

S

. TN :

| /7
sl - | NORM. TO 45.45 dBY)? 1
: :

/)¢ (dB) .

- i
o 1
= -
l -

. . 1 S . § u ] i v H i ¥ i—l ) . i
J. 30. 60. 20. 120, "i50. 180. f

1 . .

PH g
Figure 86. EPH’ single edge -diffraction’ contribution to e = 90° RCS-
‘ pattern for Northrop fin at 17.76 GHz.
B e e e ek N T I e e
e e

AN
; .
ol dinen

JAI3 /80 A

acier #



1% inch

JAB/B0

i o Coenter Cuide
i
|

‘.Z" o :
: : o B g+ i i
|

X

o /X% (dB)
-10.

'250

‘Figure 87. E,,, doub1e*edge“ﬁiffraction contribution to 6 = 909 RCS
PH .U ooge Uhagter end line

pattern for Northrop fin at 17.76 GHz.

l e O AN

133.

S U R VTR A A e e -

4>
I inch




1% inch

JAB/80

\V4

P,

1 inch

Coenter Guidge

5Figure 88.

4‘_<'f/>\2 (dB)
- =10,

-2.5-\'

v e e e

“4Q,
(Co]
(@]

EPH’ tr1p1e edge d1ffract1on contr1but1on to 6 = 90° RCS

st nage Chapter end line ‘

pattern for Northrop fin at 17.76 GHZ. ;

}(, VL A VAN Cd

! :

?? !

- e A3B e
A

1 inch

‘{7

s 1 inch



{ 1 inch
b

% inch

Caonter Guide

[

FPacge #

g+
X 9
. i
PH -
& 4 Ty
j
X
|
. %
o '
S
b

{
Q.. T _.l,v‘l,,,,,;,_l ’_I lA L | . ’ 3
=l!'?90 120 150 180 o |
PH , =y :

(Figure 89. Epy, sum of .double and triple edge. diffraction contribu-

' tions to 6 = 90% RCS. pattern forgNorthropafincat d7:76inc
| GHz. ' |
)‘ ) M I . .
JLW_ - o w35 — - -

\JA[}}/@O

45
1 inch

o



5 Centcr Guide
. :J

4 inch

- — : ‘z
i
ILLUMINATED
REGION
R —f—

i

(a) RAY PATH 4-2

Az

(1)

ILLUMINATED [
REGION

(b)) RAY PATH 2-4

'Figure 90. Double edge diffraction ray paths. - ~aPeer end it
| |
gl TR W AT 1J
| o
U~ 72100 I |- 1 L S

45

i

1 1 inch

2

JAB/B0

NCH
_ P

——



1% inch
<

JAB /80

?Fﬁgure 91.

i

20,

.C?(%?'(de)
-10.

-250

Cantor Guide

¥

B e i e o —— e e i e — e i

““0-

e T T S —

N/ S

PH

Epy» -double edge diffraction contributian,

l T
150

to . 0.=.90

NGNS TR
RCS pattern for Northrop fin due to ray (4-2) at 17.76 GHz.

I I S Bt

" 137, .,

[N s S

Page #

e . e s T

AL £ E . e . cEEEaEx



I Caonter Guide

f
1 inch v
it ' : : Flage st
7 :
)4 inch e I
G ) e
|
1/ 1 inct
_ |G
E
i
{ X g 1
\ \ |
: " PH :
1 0
- 3] 4 i
: R y |
b o ‘
[ |
‘)' ) i
: a
i
‘ '9
’J I
j - 5
' @ '
‘ © !
| ~ !
R i
! N |
' < !
! b |
Ji «
I
§
P ‘
: i
[ |
‘ ,
i {
“ :
| i
| .
|
i i
' !
‘ — !
\ i

.Figure 92. EPH’ doub]e edge d1ffract{aﬁ éontr1but1on to 6 = 90° RCS
siooegoe Lhamer‘ end linc ‘

pattern for Northrop fin due to ray (2-4) at 17.76 GHz. i

W R LAy ey YA

!
e e L e - -— - -

I e 138 !

JA /80 ~ L



Contcr Guide

L inen FPage #

14 inch

| ; e ] R
< > : S
i u
i
|
” 2 inch Chapter line ;:.1__1”(
S LT !
I
!
{
i
',
J
)z !
l
|
1
‘ |
| | | |
'LLUMINATED EDGE DIFFRACTED
- '
. X - :
‘ — B Te— (
Yy T ~—-
T —~ < T —
SHADOW —
REGION / = =N
y | CORNER DIFFRACTED
RAYS 7
| |
‘r :
‘ r
‘;
Figure 93 ing effacte sesociatad B
igure 33.  Shadowing effe cts’ _assoc1ated w1th Northmp e cnd line
; ; i!
: e AN RIS — J‘
%» )
| |
rL»e-——__‘v_.._._,_. - _}/\{‘]:39 PR — - e e )
25

1 inch

JAB/B0 ' 7



1Y% inch

P 3

-

JAB /80

Centc r Guide
i .
. b ineh

In Figure 94, the E-plane RCS Lattern for the Northrop fin at
9.067 GHz is shown. The results are compared to measured results ob-
tained by Mr. Chu [34 Note the good agreement between the two results

omch Chapter Line
especially in the region- 0—<PH<90~—as—compared-to that in Figure 84.
This indicates that at higher frequencies, the edge wave fields contri- :

bute more significantly to the lower levels of the RCS pattern. !

In Figures 95'and 97 the individual contributions to the E-plane
RCS pattern are shown due to single, double and triple diffraction mech%n-
isms of Northrop fin at 9.067 GHz. The effect of mbdifying the Northroﬁ
fin geometry as shown nnﬂF1gure 45145>Féen/ﬁn‘F1gure 98. Again a small |
change in the plate angle¢PFaSuit¢'9% mor2 than 15 dB reduction in the
E-plane RCS pattern. Of course this also implies the RCS has increased
in some other regions of space. Table 1 shows the different edge dif-
 fracted rays associated with single, double and triple diffraction mech-|

| anisms which were used in our solution. It was found that double and

¥

TABLE 1
SINGLE, DOUBLE AND TRIPLE EDGE DIFFRACTED RAYS

USED IN NORTHROP FIN ANALYSIS

S1ng]e o Double : Triple |
yedge # edge # - edge # edge # - edge # - edge #
2 2 -4 2 -4 -2
4 4 -2 4-2-4 !
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| tween our result and the exactysolution:isifar superior.__As_one

triple edge 1nteract1ons between ed?es 2 and 4 are the ones that coquii
bute significantly to the E-plane RCS pattern. The contribution of other
edge interactions involving edges 1 and 3 were insignificant. However ;
when computing the RCS pattenn-inca.plane other than the principal E-

plane these interactions should be included.

v
I

Finally the E-plane RCS péttern for the plate shown in Figure 47
is seen in Figure 99, it is compared to measured results [35]. The 4
agreement between the two results is quite good. The deviation between -
them in the region 0%<PH<45° is probably caused by the finite curveture .

of the plate and also by not including the edge wave fields in our i
solution THESIS / DISSERTATION '

Typing Guide Paper

v

D. BACKSCATTERING FROM A DISK

The E-plane RCS pattern for a disk is analyzed by using the Equiva-
lent current method. The geometry used is shown in Figure 100. The
disk of radius a is in the y-z plane and the pattern is taken in the
x-y plane. The disk is modeled by a plate with finite number of edges.
Figure 56 shows the two models used in our analysis, and the results
presented here are compared with the exact solution PI]. Our solution
includes the Equivalent currents associated with single, double and
triple edge diffraction. Figure 101 shows typical ray paths for double
and triple diffraction. Note that use of diffraction between straight
line segments eliminates the need@ﬁo consider caustics as would have been
necessary if the diffraction by the circular rim were used.

Figures 102 and 103 show the E-plane (EPH polarization) pattern
for ka=8.28 for both models, the 8 and 12 sided plates respectively.
These results are compared with the exact solution and also to results

obtained by Bechtel [Bﬂ . His results deviate considerably from the
15tapage (yhapter end line

exact one in the range 45 <PH<90". This 1sopegggée(bmgpiglugggg does

— — tS
not include higher order diffraction contributions. The agreement be-
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<§1% inch .| Would expect the 12 sided model gives better agreement, part1cu]ar1y

in the region near 30° since it better fits the disk.

The deviations betweenithe, twozsolutionscare obviously due to the Q;l_iDEiLg>
finite curvature of the disk, accordingly as the number of edges is
increased, better agreement is obtained. In Figures 104-109, we show
the results for different disk sizes. As the size is increased, the
12 sided model gives better results than the 8 sided one. Again, our
solution includes single, double and triple edge diffraction mechanisms
and the EC method is used to compute their contributions to the E-plane
RCS pattern. In F1gures 110, 111, we show %%E)KFSU]t computed using

S1$ / DISSERTATI ) ;
the 12 sided disk model. compared tothe_ solution provided by Mr. Chu [42 .

He used the EC method to compute the coitt?bution of first order diffrac-
tionto the E-plane RCS pattern by integrating numerically over the disk
rim. The deviation between his results and the exact solution is due
to the fact that his solution does not include any higher order inter-
actions. However, Burnside, et. al., [lq computed the contribution of
double diffraction terms to the axial RCS of a finite cone using the

EC method. A similar approach could be used to compute the contributions
of the doubly and triply diffracted rays across the disk which is the
Timiting case of a finite cone. Note that when using this approach,
one has to consider the Tine caustic located on the axis of symmetry.
This introduces a phase shift of + % radians as the multiply diffracted
rays cross the disk. The use of a multi-sided plate to model the disk
circumvents the caustic problem. By using the approach shown in [15
one can compute the RCS of disks which have radii as small as 0.3).

By using our method, the number of edges that can be used to model the
disk is limited by the edge electrical length which should be of the
order of a§@$§§léﬁg§ﬁ;:} Accordingly, one can handle disk sizes such
that

[ S )
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n is the total number of edges used to model the disk.

E. “SUMMARY-OF - E=RLANE. BACKSCATTER. ANALYSIS

In this chapter we analyzed the E-plane patterns where the Electri
field vector is oriented parallel to the plane of incidence.
THESIS / DISSERTATION
The techniques usedytorebtaindthe>broadside RCS in the H-plane
case were also used to compute the broadside RCS in the E-plane analysi

The E-plane analysis is a more complex problem than the H-plane
case since the RCS is dominated by diffractions from the back edge of
the plate. Therefore, multiple edge diffractions had to be included
in the solution. Together with first order diffractions, the effect
of second and third order edge diffractions were considered. The EC
method was used to compute the contribution to the E-plane RCS pattern

contribution near the edge on region. It was found that there is an
inherent error associated with these higher order interactions due

to the shadowing effect between the plate edges. This error could be
circumvented by including the corner diffracted fields in the EC
formulation.

These edge diffraction mechanisms were also used to compute the
E-plane pattern for a general shape plate. The curved edges of this
plate have been modeled by straight 1ine segments.- Deviation from
measured results in thecregion éﬁguﬁggm edge 1on.were observed since
edge wave multiple corner. diffractions-havet notgbeenhincludedrdnithe

analysis primarily because the edge wave diffraction coefficient is
AT YA VAND

l inch
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of these higher order interactions. These mechanisms gave a significant
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not adequate to treat these 1ntera%tions. The E-plane RCS pattern ﬁdﬁ—
a disk is also analyzed by using the EC corresponding to first, second
and third order edge diffractions and adequate results were obtained.
It was found that increasing”the NUMBEF of-&dGes used to model the disk
does improve the results, however, the number of edges is limited by
the electrical length of an edge which should be of an order of a wave-
Tength. One should point out that the disk problem could be analyzed
using the approach shown in [15] which will allow one to analyze disk

sizes smaller than that allowed by the straight 1ine segment approach.

In the fo?lowinngggg§E§§; wecgontinue-toydiscuss the effect of
these higher order edgeTdififractionemeechanisms together with that of
the edge wave multiple corner diffraction. These mechanisms become
dominant particularly for non-principle plane patterns.
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BACKSCATTERING FROM RECTANGULAR PLATES USING HIGHER
ORDER INTERACTIONS INCLUDING E-PLANE AND NON-PRINCIPAL
PLANE PATTERNS

A. INTRODUCTION
THESIS / DISSERTATION

PPage #

In this chapter ourTtdiscussioncof itheceffect of higher order inter-

actions on RCS pattern computations is continued. The geometry used

in the analysis is a perfectly conducting rectangular plate. The E-plane

RCS pattern and conical pattern planes for 6= 300, 45°, dhd 60° are
‘analyzed. The single, double and triple edge diffraction mechanisms
discussed in Chapter V are included.

In addition, another type of interaction now to be considered is
the edge wave mechanism which is a degenerate form of the Corner dif-
fraction mechanism. The goal of this chapter is to introduce and use
these multiple diffraction mechanisms as needed. Again the incident
field is a homogeneous plane wave and its electric field is given by
Equation (76). '

- B. E-PLANE CASE

In Chapter III, where the Echo Width of a strip was analyzed, it
was noted that the multiply diffracted fields between the strip edges

!

were the ones that create the difference between the E “and H-plane pat-
‘terns. In a similar way;ithesgofieldsplay, the;same role in the analysis.
of E-plane patterns fonia_nectqngulan_platéstlnw&iguﬁéﬁ%lzgrthe TR
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plane. The E-plane pattern is taken in the x-y plane, i.e., e;90° plane.

1y magnetic Equivalent currents corresponding to the first, second and . @ ch
Only mag d 2 inch Chaptee‘ Lmrq ? L >

third order edge diffracted-fields—were-usedv—-They proved to be suf-

ficient to produce satisfactory results for practical applications; how-
ever, fourth order diffraction terms or even higher may be needed when
dealing with small plate sizes.

Z - o . - l!

The results obtained using the Equivalent Current(EC) method for
‘the E-plane RCS pattern (E“gﬁ*béﬂ%?i%éf78ﬁ)”?or three different square
flat plate sizes are shown in Figures 113-115. The results are com-
‘pared to measurements and to results obtained by Ross [Zé]. Ross also
‘used a normalization scheme to reduce the strip scattering solution to
‘one applicable to the finite sized plates. This is not needed when the -
equivalent currents are introduced. His results are good everywhere ex-
cept near grazing incidence. This error is caused by the use of the plane
wave diffraction coefficients for the higher order interactions and was
‘eliminated in our solution when the proper diffraction coefficients are
used as shown by the good agreement with the measured results. An inte-
gration step of 0.1\ was used in evaluating the radiation integrals for
the double and triple diffraction field components. The contribution of
the double diffraction mechanism to the E-plane RCS pattern for the 3 dif-
ferent sized plates is shown in Figure 116. This field component contri-
butes to the RCS throughout the pattern. Its magnitude increases grad-
‘ually as one approaches edge on incidence. An increase of approximately
0.5)\2 in the plate area results in an increase of approximately 2 dB
in RCS due to this component of the field at edge on incidence. Fig-
ure 117 shows the contribution of the triple diffraction mechanism for
‘the same 3 plates. ThilsS¥iRldecomponent is 6nly fheeded for incidence
angles up to 40° from &dge-ons —A Simi1aF ntrERY of PRISRINTtRTYC |
2 dB in RCS at edge on incidence is noticed when the area of the plate
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<= <>1is increased by approx1mate1y 0.5x Because of the symmetry of the.__|
geometry, the contribution of the s1ng]e diffracted fields is similar
to the H-plane patterns shown in Figures 33-35. | 4
j 2 inch Chapter L.ine l l inch
iC. OFF PRINCIPAL PLANE CASES

i
A

In this section the RCS pattern when 9#900 is analyzed. This coni-
.cal pattern is a function of the azimuth angle ;* (PH) when 6=g  is held
constant The incident field is polarized in the g-direction. Figure
'118 defines the geometry used in our analysis. The symbol (PH) is used
ihereafter for this parameter to, avoid-confusing,it with the parameter ¢
;of Figure 1 used in edger1ffmact1on. Paper

j
: |
g 1. Analysis ‘
E The solution to this case is a complex one. The value of the RCS :
i .
”1s lower by an order of magnitude and thus one has to consider many pos—-
's1b1e interactions that involve edges and corners of the plate. Some
of these are, double and triple edge diffractions, edge to corner dif-

*fract1on multiple corner to corner diffractions and the newly deve]opedl

Eedge wave . These higher order interactions were found to contribute
. significantly to the RCS pattern. As one moves further away from the
iprincipa] plane, more interactions must be included to give satisfactory
%results. The edge wave mechanism contribution becomes very significant E
‘when the RCS pattern is taken in the plane of the plate, i.e., x-z plane:
iFurthermore, one has to consider the effect of each individual edge of
dthe plate since different edges contribute different terms and these

terms are now significant for one pattern and insignificant in another.
This will be discussed in more detail later. The incident field can

be written in the edge coordinate system as:

ist page Chaptor* end line

i _ ~ia ~
E'=E'9 = ¢ (p) ¢(p) sz) st page Chapter end 11(79)
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;, s E;, are the incident ¢, é field components defﬁned in the,__]
+ (p) (p)

p~ edge coordinate system. The subscripts ¢2p) and sz) indicate

the ¢*, B* field components ﬁgeynggegiegnd_¢@6), §zp) are the corres-

ponding ¢* and B“unit vectors.

Consider edge #1 shown in Figure {1iB:» The incident field on this
edge can be written as:

B (1) (80)
When PH is equal to Odgﬁaggaa?’Ed%é%?%%}f§6§jpéﬁttes to:
. Typing Guide Paper
! = = ]. - | i = .
El (PH=90) = E, 3%,y cand <. EL =0,  (82)
(1) ) (1) (1y = B (1)

respectively.

From Equations (81, 82), there must be a transition region in
space where both g8* and ¢* exists.

The ¢* component will be responsible for the following inter-
actions: '

1. Single, double and triple edge diffraction fields. The

EC method is used to compute their contributions.

2. Edge wave fields that involve double and triple corner dif-
fractions on the same edge.

3. Cross polarized edge wave fields, i.e., ¢ to g field polari-

zation conversion. This also requires double and triple
1st page Chapter end line

corner diffractions on the same edge. Ist page Chapter end line
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There is a distinct possibility that multiple corner, and cornéF
to edge contributions can contribute for rays that tend to propagate
around the perimeter of tge,plate. Unfortunately the current diffrac-

) L. . 2 inch Chapter L.ine I
tion coefficient is not-—-adequate-for-evaluating these terms.

The B” component will contribute .to the RCS through single order

! edge diffraction and edge wave fields interactions similar to those

' discussed above in 2 and 3. Edge #3 will give similar interactions

to the ones discussed above.

1. Figure: 120 shows fhe‘ €dgewaveeméchanism iteractions. They involve

there are similar interactions on the other two edges of the plate.

g For edges #2 andT4jEtheSinclidentEfield i'$°polarized only in the g*

. . vinina ,Guide c
direction throughoufoﬁﬂrﬁhtté?ﬁf f?ngr

—.i i I i ‘
=E_. d . =
i
|
|
respectively. ;
Accordingly edges 2 and 4 will contribute to RCS pattern only

- through single edge diffractions and edge wave fields similar to those
discussed above in 2 and 3.

In Figureg;l?,wsome’piffﬁé?diffgneprQQQg1diffrq§tigﬁ méchénisms a

|
I
S~
1.

-~ -

=£id54ﬁﬁe;diﬁhs£n§£édé In evaluating the fields due to the double and
triple diffraction mechanisms, all possible combinations of edge dif-

fraction between any two or any three edges are considered. The eval- |
uation of these fields follow the same procedure used above in part

. e e epep e = —o Gt DAQe Chapter end line
double and triple corner diffractions on the same edge.p 0f course
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>;K§57H~GE§E}VE-Eﬁéf‘ﬁé_do not show any diffraction mechanism that encnn;}

cles the plate in a manner similar to creeping waves. .

; 1 inct
a. Edge Wave Doub]e Corner Intéractioni'Mechanisms | LN

g This mechanism is shown in Figure 121 where only the interaction
:due to edge #1 is illustrated. The same analysis holds for the other
ﬁedges. Because of the cross polarization effect associated with the edge
?wave mechanism (see Appendix C), one has to consider the different pos-
isible combinations of incidence and diffracted fields, i.e., B“Bs B d>»
i9"Bs ¢"¢ where the f1rst 1etﬁgc/1pd1$gtg§jthe pojlarization of the inci-
dent field and the secondyﬁhe@pojgrdzat1gp&of the diffracted field.

!
The general form for the edge wave field is

. e e —

4 ) , N
e £1.(00) 0{® (Lg%, 0.8) : |
<Ed>— <E1’ " D(ew)(]; ‘ k 5 ks (as)
o) ot e h > ’¢’Bc)/ : E
Ewhére Sc is the distance from the source to the corner, s is the distancé

5from the corner to the receiver. The edge wave diffraction coefficient

'is given by

-jn/4  (1+ cosec) !

! (ew) e
! D (L,¢»0”sB.) = - !
- € 2yfaki sin g2
| . (86)
5 sin % sin %
! F(2kL sin? g_/2) g | g
cos sin
SS¢
wheres | = ——
s+s_
¢ 1st page Chapter end line
~~~~~~~ lst page Chapter end line
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AL}% inch $>ZQ'EV'EF€"H§THHEH in Figure 16 and B. Ts defined as in Figure 122. é;__

detailed discussion of the edge wave mechanism and the derivation of
Equation (85) is shown in Appendix C. Note that there are some limita- !
tions to the use of Equationi(85) sincecthisiequation was derived from 3 _l_ﬂl21ﬁ>

the imperically derived corner diffraction coeff1c1ent, it is valid on]y
for the two diffraction mechanisms shown in F1guref122:

Let us consider first the case when both the incidence and dif-
fracted fields are polarized in the B direction, i.e., (B“B case).

The field diffracted from corner #2 (C,) along the edge and evalu-
THESIS /. DISSER A TION ;

ated at corner #1 (C ) is given &ide Paper

e JkE
This incident field on tﬁ appears to be- com1ng from an 1ma§é“;ource
located at point 0 shown in F1gure\1g3, This source is created by the !

E(l) = EBA (C2) (eW)

(2,67,2.8))
(1) 1°2°"1

(87)

#2 ' . #L.__,‘_____

: - i
H -_(4) ,,'/"g, d ;
! (2) T |
‘; 7 {
W -~ i
(3) i :
#a) #a) .

=

y 1st page Chaptor end’ hine —
DAGE

Figure 123. Effect of edge %4 On the adge Wave F9eld!
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diffraction process due to edge #4.‘ Due to this effect, the incident—
field on.~G1 given by Equation (87) is modified by this reflection co-

efficient, i.e., Equation (87) is modified as follows:
inch Chapter L.ine

-JKE

d - (eW) .1 e J%% |
3h R -Jjn/4
.where =
{ 2Tk (89)

The d1ffracted field toHhesrecéiver $rom L i'sothen given by

;
Typing Guide Pa Jksl

tg,,, Bl (thope) Ve 8 . (50)

substituting Equation (88) into (90) one gets

= E

d i (ew),. .. m (ew),
EB B‘ (Cz) DS (Rnd)ls?s Bl)RDS (ns%,q)lssl)
(1) (1) :
. -Jks
oodkt e 1 (91) ‘
Sl ‘ |

There is another term due to d1ffract1on from Cl to C2 The two terms -

-are equa] and both are g1ven by Equat1on (91) So the total d1ffracted

! f1e1d for the B B 1nteract1on is -given by L @‘5j,b'“::

d

ed =2l (c) 0l (g, 07,28 )RD ) (1,2, 41,8,)
By~ CB7qy 2 Os (2,47,358 RDS™ (L4575 8

. -dksy (92)
-Jkl e - .
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and the ¢ polarized term is l ]
d _ /i (ew),. . (ew) 5>
E = 2E . (C )D (}Q’ 20, )RD (2,°3¢ 8 )
¢(1) ¢ (1) 27h 2 incf:l Chslpter‘h Line 1
R 'jksz (100)
o-d2ke’ e :
T S
2

To compute the fie]@s due to Ci(Figure;12¢~b), one has to consider
the effect of edge 4 on the incident field. This effect is shown in ~
Figure 125.7 Again the incident field appears to be coming from an
image source at infinity.-The figldcomponentsydiffracted from €y are
given by modifying Equationsr(98=100): Such that .. \@ ‘

e (ew) i 4o T o yp2pleW) o T o
) 2587y 10 (R, 07s75 B8 IRODEY (27,1 18)

ke | (101)
omikE S

e

- . 183~ it

Sl \

A p
() 1,77 v
/
\\\\\,/’// P
/S S
(2) 4
4
. (3) :
4%)3; *ﬁtﬂ’

. it preo Chantor oﬁiad [ne
Figure 125. —Effect of edge #4 on the 1nc1dent f1e1d Yonsgonner, #1.for

the triple edge wave d1ffract1on case

LAST TRAC LML —

1 inch

Page #

1 inch



124 inch

Centcer Guide

1 inch

4

JAB/80

Y

E¢ = ZE;' (CZ) (ew)»& ¢,ndeslr)’§ﬁ(ew)(2 0 ¢1’Bl)
(1) (1)
-ka e-Jksl . (94)
51
4’\ .‘:‘3—'4‘_ —e — e T e, .- _,_,/r:»r“"‘ﬁ"*\/yl

Note that for backscatter ¢1=¢i, aléo the cross polarization components;
i.e., B‘¢ and ¢“B are equivalent. Following the same procedure, the

fields due to B“¢ and ¢“B comb1ned together are given by
: inch Chapter Line

Eg . -4E;>‘ (CZ)Dr(]eW)(E’d)]f’o’Bl)RDgeW)(E’ %,Cbl,sl)
(1) (1) '
o -dks (93)
kg e 1 ; '
Sl |

and that for ¢“¢ is given by

THESIS / DISSERTATION
d

b, Edge Wave Triple Corner: Interact1on -Mechanism

Figure 124 illustrates the triple edge wave diffracted fields from
Ci and/02 on edge #1. Similar terms exist for each of the remaining
edges.

Consider the field diffracted from gb. In this case the double
diffracted field from Qﬁ is incident on C%. Since the edge wave for-
mulation as developed here is valid when either the source or the receive
is in the far field region, we assume that the source of the incident
field on CE is in the far field. Therefore the value of double dif-

fracted field evaluated at CE is
1st page Chapter eng; line

: ke,
d _ i (ew) j+-T—g—yp—€_ 15U “J%% page Chapter end line
E) = EB,(l)(cz)D (2] $137.8) R == T (95)
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’_If one now cons1ders the 33 1nteract1on, then the d1ffracted f1e1d fromT
IC2 to the receiver is given by

-jks;?

20
sg(1)= €050 ) (5.750.89) ofebrefgm (96)

where the negative sign is due to the fact that the edge wave field is
polarized in the opposite direction to that of the B polarization.

Substituting Equation (95) into (96), .one obtains

d . g plew) (ew)
E = -E_. C R, D , ’B
By ® (1)( 2’)FI—§|‘ES§S /¢1D2 By IR a2 10B1)
Typing Guide Paper |
ok e 2 (97)
erJZkl‘ e
52

There are two possible combinations of B polarized triple diffraction
terms. These are due to the double diffraction terms discussed earlier,
namely B“B and ¢°B. These two possible combinations are B“$“B and s
B“B“B. Therefore, the total B polarized triple diffracted edge wave
field from C, is given by '

d ' (EW) .ﬁ"\ - T (eW) ) il
= ‘2E (C )D (29¢ s5s B )RD ("Q"—!¢ »B )
-JZkz e °

The cross polarized triple d1ffracted term can be wrltten in a simi-
lar way 7

d . (ew) (ew)
EB( 1) (1) (c2)1D<ht ngtfjeq) jhapl)RrDSmd(%l’z’ b8y
, -Jk52 ~~~~~~ st page Chapter end 1%9 9)
e-jZkZ e
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e'jZk‘&f,if 2 inch Chaptahd Line '
51
d i (ew) 5 . 20 (ew) i o
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D, DISCUSSION

{used is shown in Figure 118. The

E

ispherica] coordinate system.

S ANFOS T CTUYTE A TTTION
nrole

arnen

notation EPH is used to indicate the

:backscattered field PH component defined with respect to the standard

" The above analysis is used to combute the RCS pattern for a 2\ x 2
plate. The incident field is polarized in the 6-direction. .The geometry

|
i
E
|

i ,
3 Figure 126 shows the E-plane RCS pattern. The results are compared’
y

iwith Moment Method (MM) solution provided by Dr. Newman“[33]. Only single,

idouble and triple edge diffraction mechanisms were used to compute the |

0%<PH<40°.
was not included in the solution.

B T

[YIRI

If the edge wave field is included

for just one point at PH=30°, as shown ﬁi}Figure 126, then the value
of the RCS agrees well with the MM solution.

1st page Chapter end linc

Ist page Chapter end line

L34 LML

! !
‘pattern by the EC method. The two results are in excellent general agree-
ment throughout the pattern, however, they deviate slightly in the region
The cause for this deviation is the edge wave field which
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Let us now proceed to discuss the case when the plane wave is 1nc1-

tion contributions. Figure 127-d shows the sum of the single, double
and triple edge diffraction terms. These field components contribute
significantly in the main and first lobe region while the edge wave mech-
anism dominates the rest of the pattern. Again the EC method was used
to compute the results shown in Figure 127. Table 2 shows the different
single, double and triple edge diffraction mechanisms that were included
in our solution for 8=60° case.

PSS AR AR |

Iyplnq Cutde fdpt e T

TABLE 2 ‘
SINGLE, DOUBLE AND TRIPLE EDGE DIFFRACTED RAYS US%P IN
RCS COMPUTATION FOR 2X SQUARE PLATE AND 6 = 60

Pane

. .._A-.h_ P (S P

Single Double Triple
Edge # Edge #-Edge # Edge #-Edge #-Edge
1 1-3 , 1-4 1-3-1, 1-3-2, 1-3-
2 ‘ 2-3 , 2-4 1-4-3, 1-4-2
; 3 3-4 , 3-1 2-3-4, 2-3-1
% 0
4 4-2 , 4-3 2-4-2, 2-4-3
/ 3-4-1, 3-4-2
| 3-1-3, 3-1-4, 3-1-2
| 4-2-3, 4-3-2, 4-3-%
i . t
—-::— —_ ._.v__:’:_.v_g Ist page Chapter end line
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Figure 128 shows the individual contr1but1ons of the edge wave doub]e

i.e., 78, B s ¢ '8 and. ¢ ¢ components ‘Notice
that the B“¢ and ¢”“B components are equal Their contribution is in !
h Chapter Line

the transition region as—one expects—~—F1gure-129 shows comparable field
components for the edge wave tr1p1e d1ffract1on mechanism. . In both
Figures 128 and 129 one*not1ces that the 8B f1e1d component contr1bute :
significantly in the edge on region while the 8¢, ¢“B and ¢”¢ “combine
to contribute to the rest of the pattern.
the edge wave mechanism (double and triple diffraction) is shown in
Figure 130 where the importance of the edge wave mechanism is clearly
seen. It dominates th&Hpattedn’ uplteS602 From @Uge on, where the edge
diffraction takes over. 'TFABTS 3°5H0s TRECHifferent double and triple |

corner diffractions used to compute the edge wave contribution.

diffraction mechanism,

The total contribution of

EDGE WAVE SOLUTION FOR 8=60° CASE

|
TABLE 3 t
DOUBLE AND TRIPLE CORNER DIFFRACTIONS INCLUDED IN

Double
Corner #-Corner @

Triple
Corner #-Corner #-Corner #

1-2 , 2-1 1-2-1 , 2-1-2
2-3 , 3-2 2-3-2 , 3-2-3
i 3-4 ’ 4-3 3-4-3 ’ 4-3-3
| 4-1 , 1-4 1-4-1 , 4-1-4
| 1st page Chaptelr end line ]
~~~~~~~ Ist page Chapter end line
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R
patterns of Figures 127 and 130. This result is compared to MM solution

Lith the agreement being quite good. However, the two solutions deviate:
in two regions. The firstgjsiA@hSQ%§3§5309[yhere the deviation in this L inch 3
}egion becomes clear if we examine the point PA=90° in Figure 131 which
corresponds to the point PH=60° in Figure 126 and noting the field is

5 null. In such a situation the phasing between the single, double and
%rip]e edge diffraction which determines the field value at this point
becomes very critical when computing the fields numerically. The second
region is 30°<PH<50°, where other types of interactions involving the
edge wave mechanism shou]d be included and a more accurate edge wave

1S/ DISSERTATIO

diffraction coeff1c1ent shgg]d be. Ssgeloped It 1s obvious that the

two types of edge wave interaction discussed here are the dominant ones \

for the case ¢= =60°. However, the need for a more accurate diffraction
coefficient as is discussed in Appendix C and the inclusion of other
types of interactions becomes more clear as one moves further away from
the principal plane. ' . :
|

In Figures 132-134, the effect of using the corner diffraction method
is shown instead of the EC method for evaluating the first order diffrac-;
tion fields. By comparing Figure 131 and Figure 134, one notices a s]ight
Jmprovement for 30°%PH<60°. As indicated in Chapter IV, corner diffrac-

tion will give more accurate results as one moves off the principal plane.
! ,

< : l

The higher order interactions are one of the primary sources that
contribute to.the cross polarized field component (EePH)'
our purpose here to present a study on cross polarization sources in
scattering problems but rather to point out that a thorough investiga-
tion of this problem should include a complete study of all possible '
higher order interactions.

It is not

page Chapter end linc
Figures 135 and 136 show the contr1but1ons of edge d1ffract1on

~~~~~~~ napler nu o rine
(single, double and triple) and the edge wave mechan1sm to the cross

polarized field component (gePH&,qbothvmeehanisms,contribute : .
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Significant1ly to the cross polarized RCS through out the pattenndﬁfﬁi;‘l
combined effect of both mechanisms is shown in Figure 137. Notice the
high level of this field component compared to the principal polarization
field component shown in Figurerl38napter L.inc | ! inch

i As was stated before, one would expect that more higher order in-
‘teraction mechanisms involving edge waves become more significant and
%have to be included in the solution. As different pattern cuts are
%considered, edge waves on different edges contribute to the RCS by dif-
:ferent interactions depending on how strongly it was excited. For in-
istance, consider the 8 60 pattern. Here the edge waves on edges #1 and
HESIS / DISSERTATION

]3 are more strongly exc1ted)than those on edges #2 and 4. However, the
!s1tuat1on is reversed for the 8= 30 pattern and are equally excited when,
;e-45 . While the two edge wave mechanisms considered here namely the l
:double and trip]e diffraction were sufficient to give satisfactory re- l

Esults for o= =60° pattern cut, they do not appear to be completely adequate

afor the 6=45° and §=30° patterns. Figures 138 and 139 show the RCS pat-» ’

tern for 6=45° and 30° respectively. The calculated results are compared
ito MM solutions, both results do not show as good agreement especially E
31n the region 20%PH<70°. This is not too surprising since much effort |
{was devoted to finding the appropriate mechanisms for the 8= 60° pattern,l
gand then these were used to obtain the 6=45° and 9=30° patterns. No

fcomparab]e study was performed to improve these Tatter patterns. Further-
‘more, the diffraction coefficients used herein are approximate and can ’
gbe improved substantially. In Figures 140 and 141, the total RCS pat- 3
'tern is shown for 6=45° and 30° respectively but'using Corner diffractioJ
1method to compute the contribution of first order d1ffract1on A slight!

1mprovement is noted near_ PH = 300 for 0 = 30 case, However, the . .

L e o

dev1at1on between our resu]t and MM so]ut1on ijs still substantial in
the region 20 <PH<60°% which indicates that a higher order inter-
actions are needed to correct for this deviation between the two

page Chapter end line
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e 2=|The individual contr1but1ons of edge diffraction and edge wave P—

mechanisms are illustrated in F1gures 143-145; whereas, in Figures 146
and 147 the total contribution of edge diffraction (single, double and
triple) and that of edge wavé"(doubTérdnd triple) diffraction mechanisms| —
'to 0=45° RCS pattern are shown. Note that the edge wave fields contribute
;to the RCS throughout the pattern. In Figures 148-152 similar results
%are shown for 8=30° RCS pattern. Note that for this case the 8°¢ and 4”8
'iare negiigﬁb}e since the pattern is dominated by the edge waves on edges
g#2 and 4 where the incident field is polarized in the B direction with
grespect to these two edges. Edges 1 and 3 contribute slightly through
the ¢“¢ component. The different £dge (dififraction and corner to corner
diffraction terms used to>c0mputeLthe edgexdiffraction and Edge wave con-

1 mc h

itributions for 6= 45 and 6= 30 are similar to those used for 8= 60 case ‘
and are shown in Tables 2 and 3 above.

Finally a word should be said on the contribution of the edge wave
‘fields to the E-plane pattern. If one examines Figure 139 specifically
at PH= 900 he notices the good agreement between the two solutions. How
tever if one examines F1gure 126 at PH=30° which corresponds to the same
observation point as PH=90° in Figure 139, he notices the difference
between the MM solution and our solution which does not include the
,edge wave f1e1ds As was noted before, the RCS value at PH=90° in Fig-
gure 139 is a]so plotted in Figure 126 at PH= 30°. This leads one to
conc]ude that it is the edge wave field that makes the difference between
the two solutions in Figure 126 in the region 0%<PH<40°.

" In evaluating the double and triple edge diffraction fields for

]
!

ithese different patterns, it was found that the integrals converge slow-
ly and an integration step of 0.01)x was needed to get a convergent ;

solution.
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JLEZ inch - [ ET SUMMARYOF "E-PLANE “AND NON- PRITCIPAL PLANE PATTERNS FOR A i
RECTANGULAR PLATE

In this chapter the discussionagnethe_effect of higher order interw ! tNCh

actions on RCS @h%(;bﬁtjnugq; The analysis focuses on treating the E-
plane and non-principal plane RCS patterns for a rectangular plate.

For the E-plane patterns of a 2 square plate, the single, double
and triple edge diffraction terms were included in the solution, and
the EC method was used to compute their contributions. As was noted

in Chapter V, the double and triple edge d1ffract1on terms become sig- .
THESIS / DISSERTA
nificant near the edge 09 reg1qgu1dgo¢gve5”

is needed to obtain good agreement with results obtained using the

the edge wave contribution

Moment Method. For a 3\ square plate or larger, the single, double
and triple edge diffraction terms are sufficient to obtain good agree-
ment with measured results.

For a non-principal plane case, where the incidence electric field
vector is oriented in the'e-direction, the single and multiple edge
diffraction terms and the interactions associated with the edge wave
mechanism were found to be dofiinant: termsi in the region outside the
main beam. Two types of edge wave interactions were considered in our
analysis -- the double and triple corner diffractions. They proved
to be sufficient for 6=60° case while for 6=45° and 30°, they do not
appear to be completely adequate. The solution could be further improved
if a more accurate corner diffraction coefficient is developed which
will permit the addition of more edge wave interactions, such as the
ones shown in Figure 142, to be included in the solution.

These higher order interactions were found to be one of the primary

sources of cross polarized f1e1d components wh1ch is of a comparable
1st page Chapter end

lTevel compared to that of the grlgglgplapolar1zatlon fapter end line
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The techniques used herein tolcompute the contributions of single]

and multiple edge diffractions and that of the edge wave mechanisms

are also used to compute the RCS pattern of a triangular plate. This
inch Chapter Line
is the subject of the next—chapter.

THESIS / DISSERTATION
Typing Guide Paper
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H AND E-PLANE BACKSCATTERING FROM A TRIANGULAR PLATE

A. INTRODUCTION

In this chapter, we analyze the backscattening in the principal
planes of triangular plquééngTthﬁﬂgentiyerfor this part of the study ’
| is the previous lack of theoretical values that agree with measured ‘

results [34 R [44 for an incident y polarized wave (see Figure 153).
Our original solution at tip on incidence agreed reasonably well with )
the measured data as shall be seen later. However, when the angle 6 |
increased from zero (in the x-z plane) for the H-plane case, the resu]t{
deteriorated significantly for-% small and o = 300, also, when 06 is i
close to 180° for the E-plane case, the results were not in good agree-t
ment with the measured data. Since this topic was essentially suggested
as a final step in this dissertation by a curious advisor, it has not
been carried to completion (with his consent). It remains as a sign
post to show that there is still significant research to be considered

on this topic in the future.

!
Here again, the Equivalent Current method and the Edge Wave formu-

lation are also used in our analysis. The plate geometry is defined

in Figure 153, the plate is located in the y-z plane, and the pattern

is taken in the x-z plane. The incident field is a linearly polarized

homogeneous plane wave whose field is given by

1st page Chapter end linc
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Figure 153. Triangular plate geometry.
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E =y Ey eJX9 | for H-plane case and, ——]
i ' (108)"
7=y Jkg ‘
H =yH e , for E-plane case. 4
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where g = x sing' + 2z cose].

The ray mechanisms to be used to compute the E-plane and the H-plane

patterns are discussed. At this time either the set of rays or the

Corner diffraction coefficients are not quite complete. As we shall

see, something is amiss for small values of 8 other than 6 = 0 in the

H-plane. The H-plane results are presented_ﬁ;gﬁ} primarily because

RT.A

this represents a reg?&ﬁﬁﬁﬁé?é/ms%%?ﬁgik is necessary. The E-plane
Typing Guide Fape

results, while not complete, are such that stra1ght forward applications

of existing techniques should eliminate deviations from measured data.

'B.  ANALYSIS

o

The E-plane pattern for the triangular plate is analyzed, using 1
the EC method technique discussed in Chapters IV and V, to compute the i
cbntributions of single, double and triple edge diffraction to the RCS i
pattern. Here again, the shadowing effect associated with multiple
edge diffraction mechanisms is élso present in this problem and is
handled by the same technique discussed in Appendix A. The equivalent '
current corresponding to the first order edge diffraction is given by !
Equation (60) and that corresponding to the second and third order
edge diffractions are respectively given by Equations (77, 78). Figure
154 shows the single, double and triple edge diffraction ray mechanisms
associated with the triangular plate. Table 4 lists the different edge
diffractions that have been included in our solution for E-plane RCS
pattern. Note that the doubly diffracted rays 1 - 3 and 3 - 1, also
the triple diffracted ray 1-3-1,1-3-2,3-1-2ad3-1-3,

page Chaotcr‘ end linc

. st
were not included. The1r contr1but1ons were, found to.be.insignificant.
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(a) SINGLE EDGE DIFFRACTION

(b) DOUBLE EDGE DIFFRACTION

(EC) TRIPLE EDGE DIFFRACTION
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_ TABLE 4. . e e
SINGLE DOUBLE AND TRIPLE EDGE DIFFRACTION TERMS INCLUDED
IN E-PLANE RCS PATTERN ANALYSIS FOR TRIANGULAR PLATE PROBLEMS
' THESIS / DISSERTATION
SINGLE . TOUBLES ide Papel TRIPLE
Edge=# Edge #-to-Edge # Edge #-to-Edge #-to- Edgf#‘
1 1 - 2 1 - 2 -1
2 - 1 1 - 2 - 3
2 2 - 3 2 - 3 - 11}
3 - 2 2 - 1 - 3
3 3 - 2 I3
3 - 2 - 1
|
e
,‘4< . ( ’
o The H-plane RCS pattern is also studied by computing the contri=

' \

' butions of edge diffraction using the EC method and the edge wave mech-'

TV Sy «

inch Chapter L.ihe
order edge diffraction are—included—in-the-solution. The second order

edge diffraction terms were not included in our solution because of ‘
the symmetry of the problem, where, the doubly diffracted rays between

- edge 1 and 2 are canceled by those rays diffracted between edge 3 and

2, while the rays diffracted between edge 1 and 3 had insignificant
contribution. The steps involved in this analysis are given in the
following section. Table 5 Tlists the different edge diffractions that

T

have been included inTour=SoTution'sFor-i-pTane-RCS pattern.
Typing Guide Paper

The incident field on edges 1 and 3 can be written in terms of

- the edge coordinate system component as

LG, Japy et e
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TABLE: 54

SINGLE AND TRIPLE-EDGE-DIFFRACTION TERMS.INCLUDED IN H-PLANE RCS

PATTERN ANALYSIS FOR TRIANGULAR PLATE PROBLEMS
SINGLE. TRIPLE
- Edge # Edge # - Edge # - Edge #
1 1 - 2 - 1
2 1 - 2 - 3
3 3 - 2 - 3
3 -~ 2 ~ - 1
R N IR o <
1) = E4r v B r
(1) 7 Fo'(q) (1) 7 TBqy T(2)
and
.i Al . A. '
(106) -

=i i
=B, . .
"(3) " (3) ¢(‘:?‘).—|ESE B5(3) A®)erraTion

A A Tyoping Guide K Paper . . ',
where ¢', B' are the unit’vectors in the %dge fixed coordinate frame.

When 6 = 0° or 90°, Equation (105) reduces to

W
o =i A0y -1 o
4 (1)
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¥Equatioh (106) gives similar results for 6=0° and 90°. The ) component‘

of the incident field associated with edges 1 and 3 is the one that
gives rise to all higher order edge interactions involving the plate
edges which will contribute to both the principal polarization and the

cross polarization RCS patterns.
THESIS / DISSERTATION

A Typing Guide Paper
The edge wave mechanisms, namely double and triple corner d1ffrac-

tions discussed in Chapter VI, are also included in our solution.

1. Edge Wave Double Corner Interaction Mechanism

This mechanism is shown in Figure 155, where the field diffracted
from Cl is then diffracted from corners C2 and C3 on edges 1 and 3,
respectively. Note that the edge wave field associated with edge 1
and propagating on the surface of the plate is oppositely polarized
to that associated with edge 3. Figure 156 shows the effect of edge
2 on the edge wave field incident on C2.‘ The field diffracted from
edge 2 will appear to be coming from an image Tike source located at
0'. This affects the incident field on C2 by introducing a reflection
coefficient to account for the energy reflected by edge 2.

In Figure 157, the double corner diffraction case is shown for
the interaction between corners C1 and C2. Again, one has to consider
the different combinations of incident and diffracted fields, i.e.,
B'8, B'¢s ¢'B, and ¢' ¢, where the first letter indicates the polariza-

page Chapter end line
tion of the incident f1e]d and the second the po]ar1zat1on of the d1f-

~~~~~~ napter en
fracted field.
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Figure 155, Edge wave double corner diffraction mechanism for a
trianqullart plate. Chapter end line
~~~~~~ -= Ist page Chapter end line
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Effect of edge #2 on edge wave fields.
#
1st page Chapter end linc
Edge wave field due .E.O.ln}.gralgp%gtgcd C-JhCEZ-Ster‘ end line
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Eneh Letus consider Tirst the case when both the incident and diffract-
ed fields are polarized in the B di#ection,'i.e., (B'B case). The incij
dent field on Cy is given by
i 2 inch Chapter Linc Mﬁ%
|
i . -jke
, d _ i (ew) S e”J
v E =E (C ) D;Ifi (2’ 0 s B ) R == ) (109)
h (2) B'(l) 17— 1* 2° P1 ﬁ

#where R is the reflection coefficient due to edge 2 and is given by

H

f THESIS / DISSERTATION
! Typing Guide Paper

,“ _J'"
R = e

VfEFE sin v

%Because of the limitation of the edge wave formulation as is discussed
iin Appendix C, one had to assume that the field incidentofri‘;c2 is inci-
ident along the extention of edge 1 rather than at an angle o as is dictat-
ed by the reflection process due to edge 2. This is shown in Figure 158.
b ,

The diffracted field from C, to the.radar is then given by °

|

E 1st page Chapter end line
FSubStituting Equation (109) into_(110), we iget vage Chapter end line

!
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B = Ea  (C) D (0158 R 0{®) (0,T0..8))
(1) (1) .
. —jk52
esdki e~ | (111)
SZ ]

There is another term due to diffraction from C2 to Cl’ ji.e., (Interac-
tion C2-C1), the two terms-are equal and both are given by Equation
(111), so the total diffracted field for the B'8 interaction on edge

1 is given by 1st page Chapter énd line

~~~~~~ — lst page Chapter end line
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< — ef =268 (cp) ol® (a, o, 2 8) R ol (2, 3, oy, slt)_q
| (1) (1) :
; -jks. 2 inch Chapter Linc , ( 1 incf_w__}
| R 2
: eIt 2 5 0 (112)

I

3;

gNote that for backscatter ¢1 = ¢1 and the cross-polarization components,
q1 e., B'¢ and ¢'B, are equivalent. Following the same procedure, the
ifields due to the B'¢ and ¢'B combined together are given by

THESIS / DISSERTATION
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d _ i (ew) ' (ew),, T
E = -8E.,  (Cq) D}~ (&, ¢q, O, B7) R DL/ (2, I, 4., B,)
B(l) o (1) 1 ; ¢1 1 'S 2 1 1
|
-JkSZ, e - & -, (113)
2

[
:

1and that for the ¢'¢ component is given by
l
1
|
5

2
i
|
1

d _ ..i (ew) ' (ew)
-Jk52
-Jkl e = — (114)
2

5 1st page Chapter end line

— = — — — — . lst page Chapter end linc
{Note that there are s1m11ar terms due to interactions between corners C1

and Ca. In the: pr1nc1pa1 plane ,and becausepof the symmetry of the probleﬂ
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3 S — these terms are equivalent to those due to interactions between corners

b

Cl and C2 Therefore, their contribution is given by Equat1ons (112-
114). Table 6 shows the different edge wave double corner diffractions
that have been included in iournsolutionterNotesthat double diffraction C2
to. C3 and back are not 1nc]uded,pr1mar1]y because they are currently be-
yond the state of the .art.

2. Edge Wave Triple Corner Interaction Mechanism

L oo L

This mechanism is shown in. Figuré*ISQ“ and in Figure 160 we show
the term associated with edge 1 where the doubly diffracted f1e1d from
C, is- now incident on Cl_and is diffracted _back to the radar The ‘

ESIS / DISSERTATION
value of this field at Cl for the~81§je enm,is. given by

o-J2ke

A

£ = E;'(l) (1) 0 (2, 0}, 3, 8y) R (115)

TABLE 6

EDGEWAVE DOUBLE CORNER DIFFRACTION TERMS FOR TRIANGULAR
PLATE PROBLEM

EDGE # DOUBLY DIFFRACTED TERMS - 1
Corner # - Corner # i
1 1-2  and 2-1 ;
i
g 3 i | 1-3  and  3-1 f
L } AT I
. I
LAvST 1A VAML » -
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Edge wave triple corner diffraction mechanism for
triangular plate.

Fi 1 Ed S] D%ge Chapter end’ iiic
igure 160. Edge wave field due to interaction Clje szapgi' ond line
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whereagain R™accounts for the effect of "edge 2 on the field incident on
—2>f J —]
Lo and is given by ’
2 inch Chapter Line

-J
R = e%

e e e e ()

he diffracted field from C1 to the receiver is then given by

e e

TTHESIS / DISSERTATION
Typing Guide Paper JkSl

ﬁ qg(l) = ‘E?l) D(eW) (2 23 ¢1’ Bl)d[-

(116)

where the negative sign is introduced since the diffracted edge wave
f1e1d is polarized in opposite direction to the 8 polarization.

Substituting Equation (115) into (116), one gets

% Eg(l)- Eg.(l) (Cl) Dg?w) (2, ¢i, %, Bl) R é ) (ls 29 ¢1, 81)
-Jks,
-JZkR, e - £ — . : (117)
1

As was indicated in Chapter V], thergcarectwo possible combinations
of B-polarized triple diffraction-terms.-—Thesepare duecztdcthezdoubliec
diffraction terms, namely g'g8 and ¢ '3. These two possible combinations

L
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£>?re B"¢"B and B'B'B. Therefore, theitotal B-polarized triple diffracted

edge wave field associated with edge'I is given by

2 mch Chapter‘ Lline ( )
d - _opl \ew; ew
E3(1) = ZEB.(I) (Cl) D (2, $]s ?, 31) R Dy (2, 2, 15 Bl)
p 'Jksl
i 'J2k2 e S (118)
\ . . 1
j |
e THESIS / DISSERTATION
The combined cross-:polariZeditwipleicornerPdiffracted term is given by
fi
d g (ew) ; (ew) m
-Jks1
et e (119)
1
and that for' the ¢-polarized term is
= - (ew) ; (ew)
) -jk§15t page Chapter end line
e'JZkR' e — lst page Chapter en(’flz‘("):)we
S . _
1
L/ Uy 0 1ANL ,,1
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In a s1m11ar way, the triple corned diffracted field associated with—
edge 3, i.e., interaction Cl-C3-C1 can be obta1n¢d. In the principal .
plane and because of the problem symmetry, the field due to this term
is equivalent to that associldted with’'€dge’ 1 and is given by Equations |
(118-120). Table 7 shows the different triply diffracted terms that
have been included in our solution.

1 inch

C. DISCUSSION

- The above analysis is used to compute the H-plane RCS pattern for
different plate sizes. I_’The ca]cu]pted results-are compared to measured
data provided by Mr, Chu>{35|g CIn cigures:161-163, the results for '
three different size plates (% = 2, 3 and 9) are shown. The three plates
have tip angle o = 30°. Some deviation between the calculated and mea-
sured results is observed especially in the region 0% < ¢ < 45°, This
indicates that the solution is not valid in this region for o= 30° andg
-% <3 except for 6 near zero. It also suggests that a more accurate

{
corner diffraction coefficient is needed, and probably, one has to |

TABLE -7

EDGE WAVE TRIPLE CORNER DIFFRACTION TERMS FOR TRIANGULAR
PLATE PROBLEM

Edge # TRIPLE DIFFRACTED TERMS
Corner # - Corner # - Corner #
‘ 1 1 - 2 - 1
3 3 | 1 e 3 ; 1
- ‘ !:
Last A kg L.
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[ include more higher . . - ]

include more higher order d1ffract1Ln mechanisms whose contributions
become more significant as the plate size is decreased. Some of these -
higher order interactions that are still under investigation are shown

2 h Chapter Line ‘
in Figure 164. The 1nd1v1dua1 contributions—to the H-plane RCS pattern

1 inch

of single, triple edge diffraction and that due to edge wave double

and triple corner diffraction are respectively shown in Figures 165-

167 for o = 30° and 2 3 2, 3, and 9. The slope discontinuity observed
nearia; = 30° in F1gure 166 is due to the effect of edge shadowing.

Figure 168, illustrates the case when < 3 < a, where the double dif-
fracted field from edge 2 illuminates both edges 1 and 3, as shown by
the ray trajectories dueftolthé incidént rdysiPMand 2. When B,< g,
the double diffracted f1e1d 9 1Gmiirites 2om'Yy edge 3 while edge 1 is \
shadowed. However, when 30 < a, the situation is reversed and edge

3 is shadowed while edge 1 is illuminated. The results for three plates
with % =4 and o = 450, 60° and 90° are shown in Figures 169-171 res- ‘
pectively. From these figures, one notices that it is the higher orderf
interactions which involve edges 1 and 3, which are the ones most likely
responsible for the deviation between the calculated-and measured re- 2
sults. As a is increased from 45° to 900, edges 1 and 3 get further
apart and an 1mprovement between the two results is noticed, espec1a1]y'
in the region 100° < 6 < 180°. Observe that in Figure 171 the predic-
tion of the general behavior of the pattern is quite good except in

the region 0% < 6 < 20° where an error in measurement or the inaccuracyi
of the edge wave diffraction coefficient are probably the cause of the
deviation between the two results. The individual contributions of
single, triple edge diffraction mechanisms and that of edge wave double,

trip1e corner diffraction are respective]y shown in Figures 172-174
for £ = 4 and o = 45%, 60°, and 90°. The results for the RCS when the
f1e1d is incident at edge on the tip side and o = 30° compared to |
measured data obtained by Hey, et. al., [34 is shown in Figure 175.
Observe that as-% is ihereased, (“h@Fagreementlbetween the two results
improves. Since for thisTcaSe, namely edge oﬁo1ﬂ€1den?gte{hé33dggﬁﬁéve

mechanism is the only contr1butor to the RCS the deviation between
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(the two results is due to the 1naCﬁuracy of the edge wave d1ffract1on~]
coefficient. In Figures 176-178, the computed results for the E-plane !
RCS pattern compared to measured data {43] are shown for three triangular _
plates with a = 30° and X&-‘2¥ﬂ3,C9¥3P¢he soTGtion includes the contr1-| —l—uzjlwb
butions of single, double, and triple edge diffraction. In Figures ‘
176 and 177, one notices that the two results deviate in two regions,

0% < 8 < 60° and 120° < 6 < 180°. This deviation indicates that there
is -another mechanism which is significant for these plate sizes espec-
ially in the region 120° < & < 180°. Peters [44], showed that a travel-
ing wave mode could be considered in treating the RCS of thin bodies
in near edge on reg1on%4E:legp91gues developed~in this dissertation
could be applied to obtain,a sodutiion fomethe RCS in this region. And
it is expected that good results would be obtainable. This, however,
has not been done at this time. As the plate length-— is increased
from 2 to 9, an 1mprovement between the two results is noticed in the
region 0° < 8 <60° as is shown in Figure 178. However, one should not E
rule out the effect of measurements errors. The contribution of sing]e;
edge diffraction mechanism to the E-plane RCS pattern for these three §
plates is shown in Figure 179. Similar results for double and triple f
edge diffraction mechanisms are shown in Figures 180 and 181, respectiveiy.
Note that the higher order interactions have their significant contribu-
tion in the reg1on 0° < & < 90°. The E-plane RCS pattern for tr1angu1ar
plates with X =4 and a = 45O 60° and 900, are shown in Figures 182- 184,
Good agreement between the two results is obtained except in the region ,
160° < ¢ < 180°, where the higher order diffractions have not been in- |

t

cluded as discussed earlier. This contribution, namely the edge wave,
becomes weaker as ¢ is increased. The contributions of single, double,
and triple edge diffraction mechanisms to the E-plane RCS pattern of

these plates are shown in Figures 185-187. :
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G——— . The H-plane pattern was analyzed by using the EC method to compute

|the contributions of single and triple edge diffraction mechanisms,

1also the Edge wave concept was extended to compute the contributions
io N

computed results were compared to measured data where it was found that -
Jfor o = 30° and-x < 3, our solution does not agree well with the measure
ments in the region near edge on, the tip side. Better agreement could

‘be obtained if a more accurate corner diffraction coefficient is developed
and probably more higher order interactions involving the edge waves
‘are included in the solution. As the plate size is increased, better !

agreement is obtained between calculated and measured data.

, Lypsity Guide Daper

- The E-plane was also analyzed by using the EC method to compute '
» the contributions of single, double, and triple edge diffraction mech-
anisms. The results are compared to measured data where some deviation
is observed especially in the region 0° < 8 < 60° and 120° < o < 180° |
for o = 30° and-%_ﬁ 3. This deviation is caused by neglecting to in-
clude the contribution of certain mechanisms not yet included in our
solution. As the plate size is increased, better agreement is obtained
in the reg1on 0% < 8 < 60° while some deviation in the reg1on 120°

"< 9 < 180° st111 remains.

4

' . -
_ gm0y

o As was stated.ear]ier, the woré presented in this chapter has not |
been carried to completion (with the consent of the. advisor). The
)methods used in our analysis will serve as a guide for further work.

| 2 inch Chapter Line §<
; This concludes our study on RCS from plate structures. .- We. ?
ghggg*successfu]]y;aﬁd<¢1ééhly_3den;fhéljmpoﬁtént4nb}eldf?hfgh§p:o&dep‘;
{interactions which includes the newly developed Edge wave concept in |
;RCS pattern analysis. i
a A study on the cross polarization field for a monopole mounted

‘on a rectangular plate-is: presented:1n’the/hexfhchapter The analysis

is based on the Edge waveYconCepty:cc Paper T
! B H
ﬂ e NN e .
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CROSS POLARIZATION STUDY FOR A
MONOPOLE MOUNTED ON A RECTANGULAR PLATE

e

A. INTRODUCTION

P

When an electromagnetic plane wave. T
THESIS / DISSERTATIO

tered field usually includes both direct and.cross polarized components.

=

ave i]]uminakfs an object, the scat-

0

iThe direct component has been widely studied in the literature since '
iit is the component typically sensed by the receiver and it tends to ‘
be the larger of the two. The cross-polarized component on the other
ihand is produced as a result of the discontinuities and the finer detai1§

ﬁOf the scatterer. It could also be produced as a result of the asym-
metry of the object. The dependence of the cross-polarized component 3
of the scattered field on the scattering object characteristics should

'be of value in evaluating the inverse scattering properties of the tar- |

Eget. Such information may not be as readily obtainable from the direct ,
sreturn. ‘

i
b

'B.  MONOPOLE ON A RECTANGULAR PLATE | |
¢ :

The far zone radiated field of a monopole mounted on a rectangular
perfectly conducting plate is analyzed by using GTD, corner diffraction
iand edge wave diffraction. Figure 188 illustrates the problem geometry.
[The monopole could be located anywhere on the plate. The following
convension is used throughout this chapter:

1st page Chapter end line

et e el ey e —

where
! j=1,2,.. N and__tdn= podalont
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~— »land N is the total number of edges.l Cj defines corner j formed by edg

11/2 inch f e ———— _——“—“o—.ji
number j and (j-1). ;

. 1 inct
‘1. Analysis 2 inch Chapter L.ine |
i

. The principal polarization component of the scattered field, i.e.,

dEe is obtained by summing up the fields due to the different components

illustrated in Figures 189-191. In these figures, the field componentsi
due to only one edge are shown. The fields associated with the other .
| edges are computed in a similar way. Figure 189 shows the field com-
- ponents due to direct illumination of the source. The different-par-
- ameters shown are defined below:

—

S defines the position vector of the monopole, i. e.,
S = XXty Ytz o |
'
sCl =Cy-S , and ;
- — — |
=C, -5 : . ~
C, 2 i
Note that . : Eﬁ and Eé are vectors that specify the positions of corners'
11l and 2, and |
g _1 A A
: Bocl = CoS -(-e1 e d) R
B =7 -8
Bo = Boc1 ,
B = c:os"1 [—g .S ]
]
¢y 1 ¢y
= -1 I~ ~ <) -~ s .
B = cos € s(tcz)agé)uhapter‘ end linc
2 R e lst page Chapter end line
L4y A AN R
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a= By - 321 !and ,
Scl
t= . sin o 2 inch Chapter l.ine
sin Bo

{The diffraction point QE position vector is then given by3

]

| QE =6t t &
P

gwith S, Sy Sp being the distances to the receiver from the edge dif-
|fraction point, corneri#l_and-corner;#2-.0n-edge #l respectively. The
ifield diffracted from theyedge; isuthen fgiven: by

ST T L X ik T i o e .

. - jks
E, = - Ego (Qg) Dy (Loops0.8) V5" & (121)
(1) (1)
where f

w | i o gdkst A s ;

Etb'(l) (QE) =J s, —r— (z » ¢(1)) '
iand
,‘ L =s' sin%g =]
' 0

i

it

i Note that 6 is the angle between the monopéle axis and the line join-
1

bacge #

1 inch

iing the monopole position and the diffraction point on the edge. For
ithe case considered here, es = %u The field diffracted from Cl is
given by
el e Bl () DL (L L 6rs0088 B )
(0 (1) (0 (1) 1’/ "h 1 1 0°"c M ocy
_J-k1$st page Chapter end linc
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¢(1) Scl 2 inch Chipter‘ Lincl “
\ Cl !
and D, (c, ,¢1,o B ,Bc Boc ) is defined by Equation (26).
1
The field diffracted from C2 is given by
N .
! -Jks
t (o . C 2
: 2 i 2 s' e
y E =-E 1 (C ) D (L’L ’¢ soaB sB. B ) <
i ¢(1) _¢(1) 2’ “h ¢, 1 0*~c,’ oc, sc2 So
THESIS / DISSERTATION (123)
Typing Guide Papcr ’
where \
-Jjks
E', (c,) = i€ 2 (Z+ ¢lyy) and L. =s |

]
It shou]d be noted that when

E
t B < B, < B, no edge diffraction occurs. |
E 1 '

-,
POV R e AL ._,‘,\»~—{,f

b

{
4

Figurekléb\j11ustrates the effect of edge 4 on the fields due to
edge 1. The‘%ield radiated by the monopole diffracts from edge 4 and
f" turn, illuminates edge 1. This diffracted field appears to emanate
from an image monopole located at point I1 Of course, there 15 an-
other image monopole, due to diffraction from edge 2, i.e., for ‘each edge
on the plate there are two image monopoles that illuminate the edge and
significantly contribute to the far scattered field. Figure 191 defines

1st page Chapter end line
— e i — - L5t page Chapter end line
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{Similarly, the field due to corner 2 is given by.
i _
: c . c (1)
d 2 _ i 2 ., (1), (1) (ry (1) s'
. = - ' D L ,L s sV 9 3
E¢(1) €¢(1)(C1) h Cy 198, Bc2 Bocz) SiI;
! 2
i s
¢, oK% (126)
R T 5. THESIS/ DISSERTATION
2 Typing Guide Paper !
) _
'where ‘
o -jn/4 l
R 2_ & , and :
[
2nk  cos sél) .
2 |
e |
o -jksél) f
E', (c,) = § & : (2« 41q9y) |
*1) 2 (D) () g
€2 ':
i !
:Note that when 3é1)<feél) < Bél) no edge diffraction occurs. j
- 2 1 ‘ |
In a pattern plane cut very close to the plane of the plate, the

ifields due to Equations (121-126) contribute very little to the cross-
!polarized field components. The major contribution comes from the edge
wave mechanism discussed in Chapter II. 1In a similar way, there are s
edge wave fields due to the monopole and its images.
1st page Chapter end line
Figure 192 illustrates—the~edge_waveImechanism§ﬂgssbcﬁatediWRth>

the monopole itself. If one considers the case shown in Figure-192-a-and
I R S R 1
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the different parameters associated with the image monopole. The :
d . . . ] 3 > )f)\ .
edge diffracted field due goiggif‘ggggggﬂgli§”g1ven by _Linch
; E(I) = - Ei (Q ) D (L(I) o (I)) SI(I) R e-ij
ﬁ 9(1) d(1) € h 0128 s (124)
lwhere the super script (I) indicates image monopole and
LD 2 gi(D) sinszétI-_')SIS/ DISSERTATION
Typing Guide Paper '
I -Jun/4
| R = a e : ) Y and l
2k (I)
271k cos Bo I
p , ks (D |
PE () = § =y (2 - 4fp) '
g ¢Zl) E st (1) i
5 ) i
| ;
IFor the corner fields one writesi |
! i €L (1) (1) (1) (1) si(1)
g E = - [ (C ) D (L aL s¢ 3093 sB aB ) i
SRRV [ e et VST
- jks
Rcl e 1 (125)
51
where
(. (D oy €1 eI/
Lcl ) Scl SR Ctht- . [T (1) » and
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examine it as a reciprocal problem i.e., a plane wave being 1ncident“bﬁ4

the plate and the field strength received by the monopole. The plane

wave is diffracted by C2' This diffracted field excites an edge wave
. . . 2 inch Chapter l_ine . I

jwhose field is received -by-the-monopole—By-reciprocity, the cross-

ipolarized far field is then given by

\'4

-
il

1 inch

u E = e, (c,) plew) (e,m,m,B )D(ew) (s. 50,58 ) Fly)
} e (127)
E 2 / DISSERTATION
THESIS / DISSE
%Where Typing Guide Paper '
i
Déew) is defined by Equation (27) and ‘
h |
L -J’ksc2 f
¥ -i s e ~ . AI |
E¢h)(c2) =3 ——— (2 ¢py) !
e X SC i
r 2 |
and :

¢ is a very small number ~0.01. i

T T

tF(y) is a heuristic pattern function which is needed to account for

the presence of the adjacent edges and to satisfy the boundary condition
&over the plate. It is given by

0 , over the plate !

(T
Sm<9—1)1st page Chapter end line (128)

— —pomy .._’.gtn%rﬁwbsaeg’e Chapter end line
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< I where vy is an angle defined with respect to the diffracting edge and™™]
6' =2m -6 where :
. . , ’ 2 inch Chapter L ine . l L uneh
® is the interior angle -between—two-adjacent—edges forming the corner.

%These parameters are shown in Figure 1931 Figure:194 shows two plots of
[F(y) for 8 = 90° and 120°.

X
F The field from C1 is found by a similar expression with 8., B ,
u oc,” "¢,
)} R

S. and S, replaced by B_.. , B. , S and S, which are defined

Cy 2 0C1® "¢y’ ey 1
in“Figure LIgZ?;bb THESIS ;~ DISSIERTATION
Typing Guide Paper

— e

- T T —le— s _— -

= e

Figure{i§3§ Parameter definition for pattern function.:
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The mechanisms shown in Figures 192-c,d describe the interactions |
included between two corners. The edge wave excited at one corner prop-
agates unattenuated along the edge and then diffracts from the second

2 inch” Chapter L.ine ‘
one. If one considers the-case-shown—in- F1gure~192 c the diffracted

5fie1d is given by

1 inch

: E = - E1l (C )D(eW)(egﬂ,'ﬂaB )D(eW)(S !1’098 )
!‘
: ) -ij2
a RF (v) e'JkQ, _e_s__ (129)
i THELIS / DISSERTATION
1wher‘e Typing Guide Paper
_J'ks .
{ Cc
g j e 1 ~oa
a ¢ (1) E XS
!

E . (Cl) = (z - ¢(1)) s and ‘l

tthe term R accounts for the effect of edge 2 which reflects the wave
1n the reverse direction as was explained in Chapter VI. It is given
nby

o-d1/ |

V 2nk sin 91

iwhere 04 is the interior angle between edges 1 and 4. A similar expres-.

R =

ear m o reT

Sc
Boc » Sy and el replaced by BC s S 1 !

s B s S3 -'andke
2 ‘ 2 c2 oc1 Y 2°

The final field component to be considered is the edge wave contri-
bution associated with the image monopole. This is shown in Figure

195. The field due to this mechanism is given by
1st page Chapter end line
_______ lst page Chapter end line
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iTwo similar expressions exist due to the second image monopole shown
1 Cm
lin Figure 195:zb.

THESIS / DISSERTATION
If one defines Eg-and(Eqgsy, @siithe fprincipal and cross-polarized far
%

ine]d components defined in the spherical coordinate system, then the ‘
gcontribution of the EB and E<I> field component defined with respect to l
the pth edge coordinate system to the principal and cross-polarized ;

i

field components are given by
; :
!

= A A . 6 '

Ee (E¢ ¢(p) + Eg B(p)) (132)%
f

1

Boon = (B 0y + B Bpy) & (133).

]
! N A

:where § and PH are the ® and PH unit vectors defined in the spherical
!coordinate system. Note that EB’ E¢ in Equations (132, 133) define
the total B and ¢ field components due to all of the above diffraction

mechanisms discussed above associated with edge p.

| |
| 2. Discussion ‘
|

The above analysis is used to compute data for different plate sizeg

and different monopole 1ocdtions "NThéCEaTeul atéd® results are compared
to measured data proviﬂéd‘by‘NASA’Eéﬁﬁ]?‘Lgﬁgrgf%Fi %ﬁﬁa%W%B %Qﬂh&ﬁgﬁt
VT W A .4
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. Method (MM) patch mode solutions provided by Dr. Newman [33].

[}
'

In Figure 196,-the calcu]@ted(J sults. fiorthe cross- polarized f1e1d| L inch '
component for a T\ square plate with a monopole mounted at the center is
shown. It is compared with measured results and the agreement
between the two results is quite good. The general behavior of the
pattern is well predicted by our solution. It was found that the contri-
but1on of the principal po]ar1zat1on edge and corner diffracted fields
to the cross-polarized field component is minimal. Most of the cross-
po]ar1zed field is due to the edge wave mechanisms discussed earlier.
Thus one would expect that whe /3A3§%%%Eﬂ§7¥éjﬁéﬂﬁted on a finite struc-
fyping Guide Fape
ture with several surface discontinuities such as corners, a strong cross-
polarized field component will result due to the different edge wave
mechanisms created by these surface discontinuities. Note that as the
surface structure is changed, one may have to consider other edge wave
interactions other than the ones discussed and used in our work. These
Interactions proved to be adequate for the problems and geometries
analyzed here. In Figure 197, a typical field plot is shown from a
single corner on a single edge (Cll) for a 2\ square plate with the mono-
pole mounted at the center. Figure 197-3 shows the field due to direct
monopole il1lumination while Figure-:197-b shows that due to the image
Tonopo]e illumination, even though the field due to the image monopole |
is approximately 12 dB Tower than that of the direct monopole excita- |
tion, the combined effect of the image monopole contribution changes
%he final result by 1.5 to 2 dB depending on the size and location of
the monopole on the plate. The field due to two edge corners, i.e., Cl‘
1s shown in F1qure<i98\ The deep null at PH = 45° is created by the per-
“fect cancellation of the_two''8dge Waveson 'the two edges forming !
1Jthe corner. For a symmetric geometry, the null created by this cor- }
-ner lines up with that of the final pattern result. In Figure (199>
»the field pattern is shown for two corners (C1 and C4) due to a mono-
po]e mounted at the center of a 2A square plate. The pattern maxima is cre-

ated by such an interaction. The total cross polarized field due to~__--

Z
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a monopole mounted at the center of ‘a 2\ square plate is shown in Figurq
'200.. This is compared to a MM solution shown in Figure 201.> The same
.calculated pattern is comparedc.to measured results in Figure ‘202 which

!
!
1show good agreement between the two patterns. The MM solution which |

”1s obtained by using a 15 x 15 patch modes differs by a 1.5 dB with res-
ﬁpect to our solution. The MM solution could be improved by either in-
#creasing the number of modes or using a non-even mode distribution,
‘i.e., increase the number of modes around the corners since the cross-
’po]arized field pattern structure is controlled by the surface currents
%near these corners, F1gures 203-206~11lustrate the effect of the mono-

SIS / DISSERTATION
ipo]e position var1at1on thé ﬁ;sulg areppompared to MM solutions.

ping Lut >
‘Both methods predict nearly the same pattern structure. The difference
315 due to the fact that one or two corners are strongly excited by the
‘monopole. In such cases, the MM solution using 15 x 15 patch mode,

!
;is not sufficient to predict the fine details of the lobe structure.

By comparing Figure 200 with Figures 2035and 205. one can notice the
ﬂsensitivity of the cross-polarized field component to variations in

5monop01e Tocation on the plate. Figure 207 shows the results for a 1
monopo]e at the center of a 3\ square plate and in Figure 208, the MM ;

et ——————— -

so]ut1on is shown for the same geometry. Both solutions predict nearly :
gthe same level with respect to the principal polarization (E ) but the
deta1ls of the lobe structure in the MM solution are not as good Again
,the 15 x 15 patch modes used to compute the result are not sufficient
?to predict these details. In Figures 209 and 210; the effect

%of varying the monopole location on the 3 square plate is illustrated.
éSimi]ar comments hold for this case, too. In Figures 211 and 212, the

‘computed results are shown for a monopole located at the center of a 4 1
and 6\ square plate, respectively. And in Figures 213 and.214, the |
‘same results are compared to measured data. Note the non-symmetrical be-
havior in the measured data which indicate the sensitivity to alignment
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