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1. Introduction

1.1 overview

The prediction of the behavior of turbulent reacting floors

is a major concern of current cort),uption research. Such modeling
E

is required in order to enhance the understanding of the phenomena

involved and to design and evaluate the performance of combustion
N devices. A principal, element to be derived from the modeling

of these floats is an expression for the reaction rates of the
various species iiryolved in any particular combustion process
under consideration.

Currently, several approaches for the determination of

the properties of turbulent, reacting flows exist. (l) of the

present approaches. the :method of utilizing an assumed probability

density function (pdf) for temperature and species, concentratiohs
r

	

	 hat, been selected for use in this study. The motivation for

selecting this approach is its relative computational simplicity

and its basis in the probabilistic nature of turbulence

D

1.2 objective

This work is examining the effects of temperature and 	 }

species concentrations fluctuations on reaction rates in turbulent,

reacting flows by means of the presumed pdf approach. The follow-

ing items are the subject of the present study:

k	 1. The utilization of the temperature-derived most- likely
pdf of reference (2) to describe the effects of Ytiempera-

tune fluctuations on the Arrhenius reaction rate

constant.

E
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2. The utilization of the most-likely bivariate pdf

of reference (2) to describe effects of temperature
y

v
	 and species concentrations fluctuations on the

reaction rate.

3. Development of a criterion for the use of an

`	 "appropriate" temperature pdf.

Section 2 presents a brief review of the general theory

of pdf ' s. Sections 3 and d review the formulation of models

to calculate the mean turbulent Arrhenius reaction rate constant

and the mean turbulent react lc:n rate, respectively. Section 5

presents the results of calculations using these models.
r

Section 6 presents conclusions and the direction of future work,

dealing with the combined effects of- temperature-_and species

fluctuations on reaction rates. In Section 7, we deal with the

criterion for the selection of a temperature pdf.

2. Review of the General Theory

Zhe discussion in this section is taken largely from

reference (1).

2.1 Probability Density Functions

A parameter x is said to be a continuous random variable if

tlere exists a probability density function, p(x), which satisfied

the following conditions (3)

pcx^ o	 ;or all	 (1a)

io

	

p(x) dx = 1	 ('lb )
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The pdf may, of course, be , defined on an interval other

than (-a*, + a*) , for example (0,I). Since the pdf is defined on

a specific interval, the functional value of p(x) is zero

elsewhere.

Equation (1) must be satisfied by a pdf of a one -dimensional

continuous random variable. Probability density functions may

be written for a multi-dimensional continuous random variable.

A probability density function for a two-dimensional continuous

random variable, denoted p (x,y),,•is termed a bivariate or Joint

pdf. For such a pdf, the conditions corr esponding to equation,

(1) are:

p tX^y^ O	 for all x and y	 (2a)
.^ r

p (k,j d x d y_	 _ &,
_40

The expected, or mean value of a one-dimensional continuous

random variable, x, is expressed as:

= E Cx) =	 x• p cry) d Y.

(3)

The variance of a one-dimensional continuous random variable,

x is expreGaed as:

^O

Z

-00

(4)
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.A useful quantity derived from the variance is the standard

deviation which is the„square root of the variance. Equation

(4) is a special case of the more general expression for tho

Kth moment of a random variable, x, about its expectation.

The general expression for the Kth moment of a random variable

is given by (3) :
r

K	 %- E (0) K	
Y.

•a o^. K	 (5)

Clearly, for the special case of K=2, equation (5) is equal

to equation (4) .

Equation (3) may be extended to functions of a continuous

random variable. In the case of a function f(x) of a one-

dimensional random variable having a pdf ^(x), the mean value of

f(X) is:	 as

f (x) :f f (Yo- pCk^ dx

_so	 (6)

Similarly, in the case of a function g(x,y) of a tv;o-dimensional

random variable, having the joint pdf p(x,y), the mean value of

g (x, y) is:r..r
9 Ck, y)

-00

9(x,Y).Poq) dx dy
(7)

The correlation coefficient, pxy , is a parameter defined.

with respect to the two-dimensional/cont^Friuous random variable

(x,y) and is expressed as:



^5^

.r

10 1

[x—EW][y EWI
/x

y	 V cx^ v cy j
The correlation coefficient 4 Qt a measure o

linearity between x and y. Values of the correlation co--

efficient near +l or -1 reflect a high degree of linearity,

while values of the correlation coefficient near zero indicate

a lack of linearity. Positive values of the correlation co-

efficient indicAte that as y increases, x increases. Negative

values of the correlation coefficient indicate that y increases

as x decreases.

The numerator of equation (8) is defined as the covariance

of x and y. The covariance is denoted by a'Xy and is expressed as:

y = X O Y I _	 ck-x ^cy_ y^. rK ,y^^ dyp
0 ,	 (9)

The significance of the covariance can be ascertained 'by con-

sidering a two-dimensional random variable (x,y). x and y are

termed independent .random variables if the value of x has no

influence on the value of y (and likewise, thevalue of y has no

influence on the value of x). When x and y are independent

random variables the covariance is zero. Hence, the covariance

may be considered as a minimum "criterion" of statistical

dependence. This criterion can assure, at the very least, that



F	 dt	 F o

when the covariance is not zero, the variables are not indepen-

dent. However, no statement can be made concerning independence

on this basis Alone, if the covariance is zero. j.

2.2 Arrhenius Reaction Rate Constant and Reaction Rate
Expressions

For the purposes of the study presented herein, the follow-
..	 i

ing one-step, irreversible reaction is considerei

F+ J 0'^''p
(10)

, F, 0, P = fuel oxidizer, and''product species
respectively

J = stoichiometric coefficient 	 ,

The disappearance of F and O are related by:

CIr
	 t	 c  Co

dt	 J d t

where: cF , co = concentrations of fuel and oxidizer,
respectively

The negative signs in equation (11) indicate that the concentra-

tions of F and 0 decrease as the reaction proceeds. The

reaction rate of fuel is expressed as

	

where k (T)	 Arrheni,us reaction rate constant	 (12)

T = temperature

	

n, m	 constants dependent upon the particular reaction,

The Arrhenius reaction rate constant is expressed as;

t.	
k (T) = ATBexp (-TA/T )

	
(13)
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where A, E w constants dependent upon the particular reaction

TA m activation temperature of the particular reaction.'

Equation (13) can be modified by the introduction of the dimen-

sionless temperature:

,.
t = T - Tmin

Tmax - Tmin	 (14)

The temperatures Tmax and Tmin are defined so that the

dimensionless temperature t can only assume values within the

interval. (0 0 1). Thus, Tmin may be the lowest temperature of

the unreaoted constituents and Tmax may be the equilibrium

combmstion temperature of the reaction. Substitution, of

(14) into (13) yields:

KW -8 A (K R j t +KL) 
B

• expt-'Th /(K, t +
,(15)

where k  = Tmax - Tmin

k2 = Tmin

Equation (12) is also modified by the introduction of the

following dimensionless concentrations:

Co-e
r =	 ^ ro

F	 M OOL	 ^.^ h	 w.^• C was h
CF 	 a

(16)

In these expressions, "max" and "min" denote maxtimum and

minimum values, respectively. Equation (16) ensures that rF and

ro only assume values within the interval (0,1). For the

case where the minimum concentrations are zero and the maximum

-7-



concentrations are the initial values, the combination of

equations (12) and (16) yields:

F	 ,

(17)

where cF°  c0 °	 initial noncentrations of fuel and oxidizer,
,respectively

2.3 Mean Turbulent Arrhenius Reaction Rate Constant and
Mean Turbulent Reaction Rate Expressions

In a turbulent reacting flow, the mean turbulent Arrhenius

reaction rate constant can be calculated by treating the

temperature as a continuous random variable and specifying an

appropriate probability density function for the temperature.

This concept is employed in Reference (1) along with the

analogs of equations (6) and (15) in the present work to yield:
i

k W : K fit) •pct) dt
O

(lR)

where: KW	 mean turbulent Arrhenius reaction
rate constant.	 P.,

The above expression provides a direct, relatively simple

method of taking into account the effects of temperature

fluctuations on the Arrhenius reaction rate constant in a

turbulent, reacting flow.

Similarly, the expression for the mean Turbulent reaction

rate can be developed from an extension and combination of

îj

equations (7) and (17). Thus:

0 0 6 (l,9)
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where w. - mean turbulent reaction rate of fuel.

This expression utilizes a joint pdf for temperature and species.

Equations (18) and (19) can be applied to one-step reactions,

or multi-step mechanisms, by considering each elementary reaction

separately. The pdf's used here are considered to be valid at

an instant in time, and thus are not functions of time.	 E3

^w.

	

	
In order to compare the magnitude of a mean turbulent

Arrhenius reaction rate constant to the corresponding laminar

term, an amplification ratio is defined. The laminar Arrhenius

reaction rate constant is calculated by inserting the mean

dimensionless temperature in equation (15). The amplification

ratio is obtained by dividing equation (18) by (15):

Z = Rt/kz	 (2Q)

where: Z - reaction rats constant amplification ratio'

J	 mean turbulent reaction rate constant

kt	corresponding "laminar" reaction rate constant

A similar term may be defined for the ratio of a mean turbulent
i

reaction rate to the corresponding "laminar" reaction rate. The

"laminar" reaction rate is calculatt% ,O, by inserting mean values

of dimensionless temperature and concentrations into e t,3on..,(1.7) .'; 	
i

The ratio of equation (19) to (17) defines the reaction ;rate

amplification ratio:

Z	 W / 
w^	 (21)

where Z	 reaction rate amplification ratio

wt = mean turbulent reaction rate

corresponding "Laminar" reaction rate.

_g..



Ln

Equation (21) is the reaction rate amplification ratio

in which the mean turbulent reaction rate is calculated with

consideration of the combined effects of temperature and species

eoncentrati;one fluctuations. in order to compare this amplifi-

cation ratio to one which considers only temperature fluctuations,

the following is defined with the aid of equation (17)

1	 Kc ( r, C.; )" ro G : ^
• )"^

^ b
kA t ror G R	 ^'o Go

This expression involves a mean turbulent reaction rate in which

a mean turbulent reacton rate constant is employed along with

laminar values of concentrations. The corresponding laminar

reaction rate also contains these same concentration terms..

Thus, the concentration terms cancel.. The reaction rate

amplification ratio for this case is:

Z^	
Kt

KX	 (22)

This amplification ratio may be compared to that calculated,

by use of equation (21). Hence, the combined effects of tempera-

ture and species concentrations fluctuations on the reaction

rate may be compared to effects of only temperature fluctuations.

3. Probability Density Functions
for Temperature

3.1 Most Likely pdf

The most-likely pdf is shown in reference (21 to be the

`

	

	 statistically-most-likely pdf of a continuous random variable

for a given flow. It is important to note that although this



NOPW

0
0 t

•)
t
01)

R

1.0.
0

1.0	 0

Of is the most-likely pdf, it is not necessar ily the pdf

For a given flow. The utility of the most-likely pdf is

that any number of moments can be incorporated into the pdf

and, hence $ greater accuracy achieved.

Two possible shapes of the most-likely pdf for one
A

variable (e.g., temperature) are shown in Figure l

Figure 1. Possible shapes of the one-variable
most-likely pdf (a) spike (b) Gaussian- like.

The expression for the temperature-derived most-likely pdf is:

pCt^ _ en e +^t +,t;Jp

where the constant coefficients AO, al, X2 	 are obtained

from the simultaneous solution of the following constraint

equations for known values of dimension-less mean temperature

and the mean square fluctuation of dimensionless temperature:

(23)

-11-
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k;
d

1

0

r^

at

1	 At^^'0

at t'
0

Equation (23) may be utilized in equation (18) to obtain

the following expression for the mean turbulent reaction rate

constant:
•	 1	 g	 ,

Kt A (K,t + K L) • VLK P I-TA+K ,6)].1^•  Ctl dt/(Kit
o

where p (tI is the temperature-derived most-likely pdf,

a equatioin (23)

The corresponding "laminar" term is calculated by use of t

in equations (15). This yields:

K = A (K^t +K i )B ' ^^ C"TA I NJ +K,),p
The ratir of (27) to (28) is the reaction 'rate amplification

ratio, Z:

Z Kt / KX

i

For the purposes of a parameter study, values of mean

temperature and mean square temperature fluctuation are selected

Lt
—12—

4

..^	 :,:.	 n.,....^.msv	 `!aw!w!*!^naa^tw^ern•'L...:. 	
..._...„„e,_,^

->

S

(24)

(25)

(26)

(27)

(28)

(29)



C 0
0

teaT.

nsum 1. Poenible thapos *L -Iho boto pdt# (a) revowbIbW
A Spike t b) Clausslart4.1k*

►.0

F,_,	 IF

• in order to examine the effeots of their variation on the mean

,turbulant Arrhenius reaction rate constant. The results of

this study are presented in Section S.

The computational procedure to determine the values of

the reaction rato constant amplification ratio in descr4bed
below:

Procedure:

I. Select Values for A t Do TA t Tminp Tmax # E and t''2

2. utilize Newton's Method to solve for the constant
coefficients of equation (23).

3. Numerically integrate equation (27) to obtain Ft.

4. Utilize E in equation (28) to obtain kk
S. Calculate Z with equation (29).

3.2 nota pdf

The beta pdf is utilized in Reference (1) as a pdf for the

tomperatura. The selection, of the beta pdf is based on its

usefulness in approximating experimentally determined temperature

pdf I s in turbulent, non-reacting flows. Two possible shapes

of the beta pdf are shown in Figure 2.

PIU

,

k
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The expression for the beta pdf is:

^^ 	 (a; 6)	 4L- 1 16 -1
p ^"	 aC+-^

where r - gamma function

a, b a constants dependent on hand t'^

The expressions for a and 6 are:
0.

r -

(30)

(31a)

I

I

}
it

Y

(31b)

8quation (30 is utilized in equation (18) to obtain

the following expression for the mean turbulent Arrhenius

reaction rate constant:

Kt ` A (K,{ + KL^b' ex ..''+^A (K t ^ K ,)" . p (0'A t
0 p	 ^	 ^

where p (t) is the beta pdf.

The procedure for evaluating equation (32) is given in

Reference (1). 8quation (32) and equation (28) are inserted

in Equation (29) to obtain the reaction rate constant ampli.fi

cation ratio.

The results of a parameter study with the model given by

equation (32) are presented in Reference (1)	 In this para-

meter study, values of mean temperature and mean squar-,

temperature fluctuation are selected in order to examine effects

of their variation on the mean turbulent Arrhenius reaction

rate constant. The.results of this study are presented in

x.1,4-

(32)



Section 5 for comparison with the results obtained lay ut ilizing

the temperature-derived most-likely pdf In equation (29).

4. %loint Probability Densi!iX Functions for
Tem2erature, and Species

4.1 Most-likely Divariate pdf

The most-likely pdf of section 3 is easily extended to

tw) or more variables (e.g., temperature And one species

concentration; temperature and two species concentrations, ate.).

The form of the most-likely bivariate pdf for temperature and

one species concentration is.- (2)

fir. , t^ _ e + I t 	 I-or +	 t r-Or
4L

(33)

where w a priori probability dependent upon the*
OL FeTE'Ron rate

t - dimensionless temperature

rr = dimensionless concentration of fuels 112
^X 

P constants

The constant coefficients 	 are determined

from the sixiultaneous solution of the followinq constraint

equations for known values of	 V and

S	 p ^rF ,'^^ d r d^ ^ 1
0	 ( 34)

rF
"p

(rF ot)drjrdt_rF
	

(35)

tt

	

(36)

0 0

-Is-



j CAF - r^ ^ • t^ p^'F , 1	 fSo^	 a
(37)

equation (34) follows from equation (2) . Equations (35) and

(36) are expressions for the dimensionless mean concentration

of fuel species and dimensionless mein temperature, respecttvely.

Equation (37) is the expression for the covariance of the

dimensionless fuel species concentration rr and the dimensionless

temperature t.

Fora given value of t and rf , the value of the covariance

is obtained by utilizipg equation (8). Por the purposes of

this study, an approximate value of the correlation is taken.

to be -0.9 from Reference (1). for an assumed adiabatic,

turbulent diffusion flame. Hence,.

Ot	 ro
F

(38)

where 
Ao
	 = -0.9

In addition, in order to utilize equations (35), (36), (37)

and (38), the following relationships from Reference (1) are

employed:

(39)

to
F	 3

(40)

The + ► a ,' term appearing if, equation (33) is an a priori
r.,r

probability depondent upon the reaction rate. In the present

i

i

„	 ti.



t

1

study, t and rF are treated as passive scalars. This

simplification is seen as an initial step in the utilization

of the most-likely pdf. For this case, Reference (2) shows

that the q-term is a constant. For purposes of calculation,

this term is set equal to unity.

Equation (33) may be utilized in equation (19) to obtain

the following expression for the mtaan turbulent reaction rate:
^	

8
W ` - A S S ^k  t ^' K ^ • exp - TA (KI t.+. Q r^, e-R

o •

^JcF CrF -1) + ce^ • hC^, rF 	ACP

(41)

where p(t,rF,) = most-likely bivariate pdf.

The corresponding "Laminar" term is calculated by use of and

rF in equation (17) Refecence (1) shows that equation (17)

may be rewritten as:

'or C F J C F (rI -1 + Cb

(42)
The ratio of equation (41) to (42) is the reaction rate

amplification "ratio Z^:

7.
W 

.9•	
(21)

For the purposes of a parameter study with the model

given by equation (41) , the following one-step, irreversible

reaction is considered:

N 1 4 i 0 --* "a.

(43)
+g



The results of this parameter study are presented in Section S.

The computational procedure to determine the values of

the reaction rate amplification ratio is described below.
e

Procedure

I. Choose values for A, 8, TA, Tmin, Tmax, t and t
2. Utilize 'Newton's Method to solve for the constant

coefficients of equation (33).

3. Numerically integrate equation (41) to obtain wt.
4. Insert t and i into equation (42) to obtain wV

li 	 5. Calculate Z with equation (21)

4.2 Modified Bivariate Gaussian pdf

This is an alternative two-dimensional pdf, as initially

presented in Reference (1) and is given by equation (44):

p (to	 pt +ih

I	 t

	

(toe) dt dr	 OS 0-4

O b

In the above equation, p(t,r) is the bivariate Gaussian pdf

given by:

t-

'XP (t-,A, ^^_rr^ .	 ,L
^r" r

Q-t

(44)



Rgiiatian (44) is utilized in equation (19) to obtain
1

the following expression for the mean turbulent t6action rate:

t
*-A	 (Kit +KL)g• CIL -• A tK,t 4-V. •

0 0

rF CF JCF 
(
tF- i+ • ^1, Co tt j rOat drF

a

(45)
where f (t,rr) = modified bivariate Gaussian pdf.

Discussion of the modified bivariate Gaussian pdf and

the procedure for utilizing equation (45) are given in

Reference (1) .

The ratio of equation (45)

amplification ratio, Z

ZI Wt
I ij

to (42) is the reaction rate

(21)
The results of a parameter study with this model are

presented in Reference (1). This parameter study considers

the one-step, ,)rreversible reaction given by equation (43)

The results o af, the parameter study of Reference (1) are

compared to 61ose obtained by means of the most-likely bivariate

pdf in Section S.

5. Results

Throughout the discussion in this section, the use of

the terms "temperature." and "concentration" denote mean dimen-

sionless temperature and mean dimensionless species concentra-

tion, respectively. The use of "r" in all figuY.,es denotes

r 

_yg-
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5&1 The 4ffects of Temperature Fluctuations on the Arrhenius
Reaction Rate Constant

The effects of temperature fluctuations on the Arrhenius

reaction rate constant are presented in this first subsection.

The calculations are performed with the temperatur,::-derived

most-likely pdf. The results of these calculations are com-

pared with those obtained by use of the beta pdf taken

from Reference (1).

5.1.1 Computational Aspects

All numerical integrations are performed using Simpson's

Rule. Newton's Method is used to solve for the unknown

coy-efficients in equation (23) 	 Details concerning this

technique and the associated proof of convergence and error
analyses will appear in the next progress report.

5.1.2 Discussion of Results

Table 1. shows the cases considered. The data presented

are obtained from Reference (5) and are considered to be typical.

All the following results 'are stated with regard to both the

temperature"derived most-likely and beta pdf's. Proposed ex-

planations for the phenomena involved are given in Refexence (1).

Table 1. Gorse Data

Cane B TA TmaxNo.
(01K) (0K)

1 0 10116. 2500.

2 0 51000. 2500.

3 1I 10116. 2500.

4 0 10116. 3000.

Note: A	 8.4 x 1013 , Tmin	 5000K, fo- all cases.

-20-
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variation with mean tem a attire and tem a at re fluctuation

Figures 3. through 7. show the variation of the reaction

rate constant amplification ratio with mean temperature and

mean square temperature fluctuation. The following are

observed:

4	 l) The reaction rate constant amplification ratio

increases with increasing values of mean square

temperature fluctuation, at constant values of mean

temperature for both pdf's. Refer to rigures 3.

through 7.

2) The reaction rate constant amplification ratio

decreases with increasing values of mean tempera-

ture fluctuation for both pdf's. Refer to

Figures 3. through 7.

3) The same values of z are obtained with the use of

both pdf's for values of t = 0.5, 0.6. Refer to

Figures 5. and 6.

4) Nearly the same values of Z are obtained with the

use of both pdf's for values of t equal to 0.2

through 0.7 and, for t = 0.8 and t`'' 2 < 0.04.

Variation with activation temperature

Figure 8. shows the variation of the reaction, rate canstant

amplification ratio with the activation temperatur; As may be

seen, a decrease in the activation temperature results in a

similar decrease in Z for the two pdf's.

-21-
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Variation with temperature exponent, D.

Figure 9. shows the variation of the reaction rate

constant amplification ratio with the temperature exponent, D.

xt is observed that an increase in the temperature exponent

results in similar increases in A, for both pdf's.

Variation with maximum temperature

Figures 10. and 11. show the variation of the reaction.

rate constant amplification ratio with the maximum temperature.

It is seen that in both cases the value of Z is relatively

insensitive to changes in Tmax.

From these results, it is concluded that quite similar

results are obtained by the use of the beta and most-likely pdf's.

Since the former has been experimentally verified in many non

reacting, turbulent flows, this .similarity in behavior lends

support to the physical correctness of the most-likely pdf.

5.2 Effects of 'Temperature and Species Fluctuations on the
Reaction Rate

The effects of temperature and species concentrations

fluctuations on the mean turbulent reaction rate are presented

in this subsection. The calculations are performed with the

most-likely bivariate pdf. (2) The results of these calculations

are compared with those obtained by means of the modified

bivariate Gaussian pdf taken from Reference (1).

5.2.1 Computational. Aspects

During the course of this study, a method was developed to

transform the double integrals of equations (34) through (37)

to single integrals. This rendered the evaluation of the asso-

ciazed unknown constants practical by means similar to those

mentioned in Section 5.1.1. Details of this transform method

-2'2-
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and the associated numerical techniques will appear in a future

status report.

5.2.2 Discussion of Results

Table 2 shows the cases considered. The initial values

of concentrations are taken from Reference (5). All other data

are also taken from Reference (5) and are considered to be

typical. All the following results are stated with regard to

both the most-likely bivariate and modified bivariate Gaussian

pdf's. Proposed explanations for the pheonomena involved are

given in Reference (1).

Case	 TA	 Tmax 	 r;2	 t12

,No.	 B	 (0K)	 (OK)	 P	 R2 vs
Y

r 4L ,

1	 0	 ` ` 101.16.	 2500.	 -0.9	 rj H 	 2/3 t'2__2

4	 0	 10116.	 3000.	 -0.9

5	 0	 10116.	 2500.	 -0. 5

6	 0	 10116.	 2500.	 -0.9	 rH2	 1/2 t,2
2

Note: A 8.4 x 1013, Tmin 500 OK, CFI = 2.405 x 10-59mol/em3 ►
2

CO2 = 1.5 ,x 10^6gmol/cm3, rH2 = 1-t, for all cases.

Variation with fluctuations a nd mean values of temperature and species

rigures 12. through 17. show the variation of the reaction

rate amplification ratio with temperature and species fluctuations,
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at .various constant values of mean temperature and mean concentra-

tion. These results consider combined effects of temperature and

Species 41JUctuationa s The following are observed.

1) The reaction rate amplification ratio increases with

increasing values of fluctuations: for values of t from

0.2 through O.S. Refer to Figures 12. through 15.

2) The reaction rate amplification ratio reaches a

relative maximum and then decreases with increasing

fluctuations at E w 0.6. Refer to Figure 16.

3) The reaction rate amplification ratio decreases with

increasing fluctuations and is rlk.is	 unity at

t a 0.7. Refer to Figure 17. ''Y- ` implication of Z'

is that species .luctuations are resulting in an

"unmixedness" effort which is reducing the tu rbulent

reaction rate to values less than the "laminar "-calculated

values.

4) The reaction rate amplification ratio decreases with

increasing values of E (and correspondingly decreasing

values of r) at constant values of fluctuations. Refer

to Figures 12. through 17. ThiA implies that in this

turbulent flame, the principal turbulent amplification

is occurring in the region of flame ^,nitiation.

a) The use of the most-likely bivariate pdf yields values

of Z greater than, equal to and less than values obtained

with the use of the modified bivariate Gaussian pdf, for

values of t = 0.2 1 0.3 and 0.4. Refer to Figures

12., , 13., and 14.
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. 6) The use of the most-likely bivariate pdf always yields

values of Z
f

 greater than the values obtained with

the use of the modified bivariate Gaussian pdf for

values of t aw O.S f 0.6p 0.7. Refer to Figures 15,1

16. and 17. The results obtained in the previous

section lend greater credence to thu values obtained

using the most-likely bivariate pdf.

Figure 16 reveals that both joint pdf f s are sensitive to

the value selected fog Tmax' U!Alch was not the case for the

temperature-only pdf ° s.

variation with the co-"relation coefficient

`

	

	 Figure 19. shown the variation oc the reaction rate

amplification ratio with the correlation coefficient. xt is

observed that the value of Z f exhibits a relatively small decrease

with an 11% increase in the value of t»

f2
Variation with r HI vs t

F	 Figure 20. shows the variation in the reaction rate ampli-

fication ratio with an approximate change of 30% (2/3 to 1/2), in,-	

f
2

the relationship between r^h 2 and t 	 The following are observed:
f

1) The value of Z is generally low(sred by this.
f

2) The decrease in Z is substantial with the use of the

most-likely bivariate pdf. This suggests that the most

likely pdf will serve as a more sensitive indicator of

the correctness of a given turbulence--rearti.on model,

when compared with the modified Gaussian_.

,
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E
	 5.,3.1 Discussion of Results

Variation with fluctuations and mean temperature

Figures 21. through 26. show comparisons of the variat ion

of the reactioni rate amplification ratio for the two-variable

and , one-variable models with values of the fluctuations and

mean temperature.

The following are observed:

1) The reaction rate amplification ratio increases with

increasing temperature fluctuations at constant values

of i, for t = 0.2 through O.S. This trend is realized

for both the one-variable and two-variable models.

Refer to,Figures 21. through 24.

2) The value of Z^ decreases with increasing t at constant

values of tt for both the one-variable and two-variable

models. Refer to Figures 21, through 26.

3) The value of Z^ increases with increasing temperature

fluctuations at t = 0.6, with the use of the one-variable

model. Also at this value of t, Z
r
 increases, reaches

a relative . maximum, then decreases with increasing

temperature fluctuations, with the use of the two-variable

model. Refer to Figure 25.

4) The value of Z^ increases with increasing temperature

fluctuations at t 0.7, with the use of the one-variable

model. For all values of t' ` , this model yields values

of Z > 1. At this same value of t, Z ` decreases with

increasing temperature fluctuations and is always less

than unity, with the use of the two-variable model.

Refer to Figure 26.
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These results clearly indicate the necessity for multi-

dimensional pOf models since, in temperature-only models,

the species "unmixedness" reduction in the reaction rates

(Z < 1) is 'totally absent.

6. conclusions and Direction of FutLur,^Work

6.1 Conclusionp.'

6.1.1 Effect of Temperature Fluctuations on the Ar•henius
Reaction Rate Constant

The effects of temperature fluctuations on the Arrhenius

reaction rate constant are assessed by treating the temperature

as a continuous random variable and utilizing two pdf's for

temperature. The pdf's are the temperature-derived most-likely

and the beta. The ratio of the mean turbulent Arrhenius reaction

rate constant to the corresponding laminar term is defined as the

amplification ratio, Z. The results obtained by means of both

pdf's exhibit the following trends:

1. Z is always greater than unity:
.	 -

2. Z i	 Ty ..increases as t increases, at constant t

3. Z decreases as-E increases, at constant t

4. For wide ranges of t and t	 the use of both pdf's
yields nearly identical numerical results.

S. Z is relatively insensitive to moderate changes in TIand B.	 A

6. ` Z is insensitive to moderate changes in Tmax a.

6.1.2 Effects of Temperature and Species Fluctuations on the
Reaction Pate

The effects of temperature and species fluctuations on

the reaction rate are assessed by treating both the temperature

-27-
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ii
and species concentration as continuous random variables

and utilizing joint pdf r s relating them. The pdf " are the

most-likely bivariate and modified bivariate Gaul;"`sian.

A reaction rate amplification ratio Z'i.s defined at the

ratio of a mean turbulent reaction rate to the corresponding

laminar term. Also defined is a reaction rate amplification

ratio with a mean turbulent reaction rate composed of a mean

turbulent Arrhenius reaction rate constant and laminar values
s

of concentration. This amplification ratio only considers the
effect of temperature fluctuations on the reaction rate. xt
is possible to compare the combined effects of temperature

and species fluctuations to those of only temperature fluctua-
tions by comparison of the two-variable (temperature and species)
and the one-variable (temperature) models. These one"variable
models utilize the temperature derived most-likely and beta

pdf's. The results of the two-variable models exhibit the
following trends:

1. Z of the combined case may be greater than, equal to

or less than that of the temperature -only case.
r	 ,	 .

2. Z of the combined case increases with increasing

temperature and species concentration fluctuations, at

low values of mean temperature and correspondingly high

values of mean species concentration. At higli values

of temperature and correspondingly low values of con--
r

centration, Z decreases with increasing fluctuations.
r

3. Z of the combined case is sensitive to changes in Tmax,

4. Z of the combined case is nearly insensitive to small

i
	 changes in P.



5. The values of Z^ obtained with the use of the most-

likely bivariate pdf are moderately sensitive to

changes in the relationship between temperature and

species fluctuations. The values of 7' obtained with

the use of the modified bivariatp Gaussian pdf is in-

sensitive to moderate changes in this same relationship.

6.2 Direction of Future Work

1. Continue development of a temperature--two species

fluctuations mode. (previously identified as model. lx,

Reference lc).

2. Evaluate the "q" term in equation (33) to allow the

treatment of reactive scalars.

3. Utilize the three-variable analog of equation (33) in

order to elizintate the assumption on which eguatibn (41)

is based (previously .,denti ied as model xxa,

Reference 1c).

R

t

7. Development of a Criterion for the use

7.1 introduction

A criterion for selecting between the beta (or oneR -dimensipinal

most-likely) and ramp pdf's is under investigation. The flatness

factor and skewness are studied for potential use as criteria.

The ramp , pdt generates values of flatness factor between 2.0 and

2.5. The beta pdf also generates these values of the flatness

factor since it is a continuous distribut4on (its range of flat-

ness is 1.66 and 8.61.) However, when the flatness factor is

between 2.0 and 2.5, the skewness for each of the pd£'s is

-29-
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distinct. This leads one to choose skewness as A secondary

criterion With flatness factor beinq prInary.

A comparison of the beta and most-li)caly pdf's is made with

the conclusion that they do not yield 
aC 

tOvalent values for the

higher order mom%nts.

7.2 Moments 
of 

a pdf

Every probability density function (pdf) has an infinite

number of moments associated with it. The most commonly used

moment is they first, called the mean, ji. The mean is defined

t. ^w d

Alternatively, Ili t- may be used. This moment is also

called the expected value $ n(t).

	

The second moiiient is tho variance; Vii Tho 	 root o 1

the variance is the standard deviation, a # and is given by:

(r	 a ) it	 (47)

if the polynonial is expanded and tiultipliod through by p(t)t

one obtains
M	 00	 so

IL	 t p[t^dt " z /t+^. pctldt^,,' jpC^d'i.ft
.so	 (48)

The only factor that is not known in Equation (A8) is

PW dt	
(49)
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Similarly, higher order moments will also contain a term of

the same form, or

F.

N

l
where k io the moment desired.

xn order to calculates any moment, it is sufficient to
calculate E(te) and then multiply by the appropriate constants

to obtain they moment desired.

Moments higher than a are given by the following general

equation:

0" N	 r J
Note that eXpansion of the (t-ji) N tern will yield the term

tm p (t) dt.
'The third moment -is called the si eWnOSs, and the ;fourth

is called the flatness factor.

7.3 Moments of the Beta pdf

The beta pdf, proposed by Rhodes (5) to describe to buJ,ern

flow properties, is given by:

f	 "C'(
e	 ^'

where

(5Q)

(51)

(53)

f

A

I

and

(54)



The denominator of Equation (52) can be expressed using

the Gamma function:

	

r7	 b

The moments of the Beta pdf are
4

1

	

r1	 ..._	 ^t	 )N^
	 it	 CN ^ ^.)

0
where N is the mean. If the polynomial. in Equation (56) is

expanded, there is always a f e p (t) dt term to bc, evaluated.

It can be evaluated using a farm of Equation (55):

1r j4+ 6^	 k s^^	
L-f

	

C K	 4. ^C6	 f {t-tart
0

{K^a -/ ^^^ ^^ dtr c1 r 1)
0

if one lets x in Equation (57) equal. (k+a) and ywb, then

P (a+4)	 r (Qt10 • Prey

	

11 (a). r(4)	 h Cat6 Fk)

f ^K •ptt)d^ = ^Cx"^
1' ^a) • r' CK + 9L + 6

0

R

(55)

(56)

(57)

(58)

(59)
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y

.	 Equation (59) has been used to evaluate the moments.

The skewness and flatness factor distributions as functions
-- T

of t and t are shown in Figures 27 30. The distribution

is symmetric about t=0 . 5, therefore only one graph is needed

for both 't=0.4 and t̀=0.6 since they have . ,t ihe same values. The

only difference is in the skewness - for t=0.4, the skewness

is positive, for t=0.6, the skewness has the same magnitude but

is opposite in sign. The same holds true for t=0.1,0.9; t=0.2,0.8;

I'	 t=0.3;0:7,' etc.

i

7.4 Moments of the Pope Pdf

The most-likely pdf proposed by Pope (2'F7) I"¢zs 'the form:

P Ct) : e "
b* ^,-t a,4. 1

(60)

where Xi .1Xy, 2 are three constants which are functions of

t and t' T. Since there are three unknowns three equations are

required to determine the three constants. However, only

two algebraic equations can be developed (Appendix E):

+ ^J. 

'A." 

x	 fte x ) . 

I

e ^^
	 ^ +

;I

The required third equation is an integral etivataLon defining

one of the properties of a pdf, or its first two moments, namely

j pc^)dt

-3,3-
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f

s

j^ _	 . p^-^^ d{ {#1
0

Any one of these three equations can be used as the third

equation.

Once the three k's are known, the higher order moments

can be found using the following equation;

N T siy	 V	 (66)

Graphs of the skeviness and flatness factor as a function

of t and t' Z are presented in Figures 27 - 30. As with the beta

pdf, the values of the flatness factor are symmetric about

E=0.5. That is, the same values of the flatness factor are

obtained for t=0.4 and t=0.6. The same is true for the skew-

ness, except that the signs are reversed (negative values when

X0.5). One interesting phenomenon encountered was that there

seemed to be no solution obtainable for some t " when t=0.1 or

0.9. Some data points were obtained, but not enough to permit

a comparison with other pdf's.

7.5 Comparison between the Beta vs. Pope Pdf's

The .;behavior of the beta and PoPe pdf's is very similar

near t=0.5. As can be seen from Figure 30, both curves follow

e trend and approach each other at high t' 2 . At t=0.4,0.6,

(64)

(65)
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othe flatness factor curves are fairly similar and approach

i
	 each other at high values of the fluctuations. The skewness

curves are not as similar as the flatness curves.

The differences between the pdf's becomes more pronounced

at E-0.3 1 0.7. The skewness curves are essentially the same

except they are a little further apart. The flatness factor
L

curves are distinct now as the Pope pdf has a maximum while the

beta does not. At the maximum, the flatness factor for the

Pope pdf is approximately 13% higher than for the beta pdf.
is

	

	
At t-0.2,0.8, there is a Large difference in the flatness

factor curves. Both curves have a maximum, but the Pope pdf

'

	

	 has a much more pronounced peak. The skewness curves have

basically the same shape as before, but again are further apart.
The two skevness curves always cross each other, with the

point of intersection moving to the right with increasing t.

After the intersection, the Pope pdf yields higher values than
the beta pdf.

The conclusion that can be drawn from these curves is that

the beta and Pope most-likely pdf's yield values for the higher-

order moments which can differ substantially. Both encompass

the same range of values, but the differences are such that, on

this basis, they are not interchangeable,

7.6 Moments of the Ramp pdf

The ramp pdf was developed by Antonia and Atkinson (81 after

observing ramp-like temperature fluctuations under a variety of

conditions. The pdf is composed of two parts a rampl.ike



structure with high -frequency Gaussian fluctuations super-

imposed. The general equation for the ramp pdf is

JL

a( 1•r9
(67)

Vhere the incomplete Gamma function is defined as

r ^4I x,	
f q-r a ..-t d t

x (68)

There are 4 constants in equation (22) which are adjust-

able; a',S,c, and a* W is an implicit normalizing factor.)

Antonia et. al., hF^le shown that if a 1 =1.8,0=1.25, c-1.0, and

a*=0.25, good correlation with experimental results is obtained.

(For a fuller discussion of the ramp pdf and its properties, see

reference C1).) '.The equation to evaluate the expected values

(which leads to the Foments) for the ramp pdf is M:
N

f I

1

s0 St ) I 'a	
IAL

+ (N-o) rol-I r*
L +

(69)

The effect of changes in the four adjustable constants on

the . skewness and flatness factor is shown in Figures 31 - 34.

It can be seen that the skewness and flatness factor are very

sensitive to changes in a*. Varying a* from 0.1 to 0.5 will

yield values of F between 1.0 and 3.7. This sensitivity requires

that , a* be selected in accordance with the best-available

experimental data, Antonia (8) indicates that a value of a*=0.25

yields very good agreement with his experimenital. data.



With a* held constant atcl*=0.25 and the other con stants

varied, the flatness factor ranges approximately between 2.0

and 2.5. This is in agreement with Fiedler t9) who predicted

that a value of 2 was characteristic of the sawtooth-- like

ramp pdf. The range of the skewness was -'1.57 to -1.25.

k The°skewness'and flatness factor distributions for the

beta pdf are shows in Figures 27 - 30. The flatness factor

ranges from 1.66 to 8.64. Since the beta pdf is continuous,

every intermediate value can be obtained by the proper selection

of t and t'^. This means that the beta pdf will likewise generate

the values 2.0-2.5 for the flatness factor. However, the beta

pdf generates values of skewness between -2.66 and +2,66. When

the flatness factor lies between 2.0 and 2.5, the skewness varies

between -0.82 and +0.82. Recalling that the ramp pdf has 6kew-'

ness values between -1.57 and -1.25 for the same range of flatness

factors, implies that the skewness can be used as the secondary

criterionfor distinguishing between the two pdf's.

The procedure is as follows: if the flatness factor lies

outside the range 2.0 -- 2.5, then always choose the beta pdE

since the ramp pdf does not produce these values. When the

flatness is between 2.0 and 2.5 both pdf's can take on these

values; hence, the skewness must be consulted. If the skewness

is greater than-0.82, choose the beta pdf; if less than -1.25,

select the ramp pdf.

A simpler, though less general, secondary cri.teron is to

determine if the skewness is positive or negative. If it is

p9siti.ve, choose the beta pdf since the ramp pdf can only produce

nZ-^'.ative values for the skewness. If it is neg,ative., the method

indicated in the last paragraph must be used.
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The ske%mess alone cannot be used as a criterion because

the values generated by the two p+df I s are not distinct, but

overlap. The full range of the skewness values for the ramp

pdf is --1.57 to-1.25 and the range of the Beta pdf is --2.66

to +2.66.

Tn order to determine values for the skewness and flatness

factor in a turbulent, reacting flow, a transport equation is
etia^4

being dr,:vel.oped that will enable the determination of,quantities.

 1
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List of Symbols

t

t

T

pre-exponential constant

temperature exponent

instantaneous concentration

initial concentration
expected (mean) value of x

denotes a fuel species

joint pro'flaability density function of (x,y)
function of the two-dimensional continuous
random variable (x r y)

mean value of g(x,y)

function of the continuous random variable, x

At^rhenius reaction rate constant

constants dependent upon Tmin and Tmax

laminar Arrhenius reaction rate constant

mean turbulent Arrhenius reaction rate
constant

constant, defined in equation (30)

denotes maximum value

denotes mihifqum value
order of reaction constant

denotes oxidizer species

denotes a product species

probability density function of x

joint probability density function of (x,y)

dimensionless concentration and constant defined
by equation (30)

mean dimensionless concentration

mean square fluctuation of dimensionless
concentration

dimensionless temperature

mean dimensionless temperature

mean square fluctuation of dimensionless
temperature

temperature

A

B

C

Co

E (X)
F

f (x, y )

g (x . y)

x r

h (x)
K

K1' K2

KR

Kt

m
max

milk
Z

0

P

p (x)
p(x,y)
r

r
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^ A activation temperature
V (XI variance of , ^,

V' value of integral defined by equation (44)
'w reaction rate

w^ laminar reaa.tion rate

wt mean turbulent: reaction rate

,Z reaction rate constants amplification ratio
z Motion  ratAe auplification ratio
Y' carom► function
JIN mean of a continuous random variable ,#
PR Kth moment of a random variable
a2 variance of a continuous random variable
A correlation coefficient



APPENDIX: Moments of the Pq e ,blost-Likely PDr

a
r (2)

P

(3)

where

P(Ov exib (A o * A l i + Aa.-Ex-

Xntograte Eq • (1) LY parts

U  PCf	
t v

"	 o

P
a	 v

X L

0



	

Ube Eq. (3) to eliminate the 
f	

term.

4.

Lpa)	 aW.

L	 L

0

(6)

Substitute Eq.(6) into Eq. (5) to obtain.-
+	 4.

(7)

Equation (7) is one equation that contains only X o " )Llj X2
plus constants.

L)
4+e.
X 4 N

e-	 (7a)

To obtain another equation, start with Eq. (2):

^f'
1	

"^. A L, ( L
A 6 If J+
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Since jt%dx a Ck , we would like the derivative of the

exponent to precede the exponential te;m. This is done

by multiplying acid adding appropriate terms until	 7. ^►`'t
is obtained,

t 4.
d^ 2

O

1^L{	 ^^.	 do

0

^	 4	 '

k64 X j X L	-
low

c8 ^)

(8)

Eqs. U) and (8) are two equations in three unknowns. The

third equation may be any one of the Eqs. (1) , (2) , or (3) .

-44_
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