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ABSTRACT

PR Time-stationary solutions to the Vlasov-Poisson equation for ion holes
and double layers are examined along with particle simulations which pertain to
recent observations of small amplitude e¢/ T, ~1 electric field structures on
auroral field lines Both the time-stationary analysis and the simulations sug-
gest that double layers evolve from holes in 10n phase space when their ampli-
tude reaches e¢/ T, ~1. Multiple small amplitude double layers which have
- ( been seen in long simulation systems and are seen to propagate past the space-

- craft may account for the acceleration of plasma sheet electrons to produce the

discrete aurora.

We have examined time-stationary solutions to the Vlasov-Poisson equation for ion holes

) and double layers which pertain to particle simulations we have performed and recent observa-
et

; tions 1n space [Temerin et al, 1982] In the simulations, small amphtude e¢/ T. ~1 double

layers appear to evolve from holes in 1on phase space when a current carried by electrons drift-

ing at or near their thermal speed is applied to a long system ~1000 Debye lengths In longer

current-driven simulation systems, multiple e¢/ T, ~1 double layers evolve [Sato and Okuda,

1981]. In contrast, when a potential 1s applied across a simulation system, whichever e¢/ T, 1s

applied appears as an tsolated double layer which forms at the boundary and propagates into the

system [Hubbard and Joyce, 1979; Kindel et al 1981]

Figure 1 shows an example of small amphtude e¢/ T, ~1 double layers and solitary

waves observed on the $3-3 satellite at 5000 km over the auroral zone There are two types of
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aperiodic structures in the parallel electric field component which appear to be independent of
the 10n cyclotron wave pertod 1n the perpendicular electric field component symmetric solitary
wave pulses with no net potential jump and asymmetric pulses which we identify as small
amphtude e¢/ T, ~1 double layers These structures are observed on the millisecond times-
cale to propagate past the spacecraft at a velocity greater than 50 km/s For a typical example,
the inferred velocity was 80 km/s and the pulsewidth was 4 ms This yields a scale length of
320 m, which 1s 43 Debye lengths assuming a 10 eV, 10 cm™ thermal electron population.
Thus scale length for the double layer thickness is consistent with the cur;ent-drxven simula-

tions, as 1s the spacing of one to a few thousand Debye lengths

The propagation speed, a lower limit of 50-100 km/s, is comparable to both the energetic
1on beam speed and the ton acoustic speed 1n the region where the double layers are observed.
These are regions of upward-directed 1on beams and downward-accelerated electrons measured
by the particle detectors on S3-3. Temerin et al [1982] suggest that it 1s possible to account for
a substantial portion of the potential drop necessary to explain the observed particle distribu-
tions in the cumulative potential drop of the multiple double layers along an auroral field line.
It is not possible to determine the direction of propagation from the double probe measure-
ment, as explained in Figure 3 of Temern et al. [1982]. However, we expect the solitary
wave/double layer structures to be tied to the ion beam [Lotko, 1981al, which propagates
upward relative to the spacecraft Furthermore, the observations allow only the two possibihi-
ties 1llustrated in Figure 2 The downward-pointing smaller amplitude electric field 1s always
seen first, corresponding to a downward-propagating compressional mode or an upward-
propagating rarefactive mode. In erther case, the net electric field 1s upward, which 1s con-
sistent with the particle data Lotko [1981] has shown that, in the presence of an upward 10n
beam, the downward-propagating compressional mode is damped, while the upward-propagating
rarefactive mode can be amplified by resonant particles A rarefactive precursor to the double

layer 1s also seen 1n the current-driven simulations discussed below.

A train of ~150 small amplitude double layers has been seen in one 45 second interval.
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One hundred fifty e¢/ T, ~1 double layers are adequate to accelerate plasma sheet electrons
from 100 eV to 15 keV. Thus, the entire auroral potential drop might be distributed in small

amplitude double layers

I. Simulations of Current Driven Double Layers

The preceding S3-3 data looks very much like the small amplitude double layers seen in
current-driven simulations 1n long systems [Sato and Okuda, 1980, 1981, Hudson and Potter,
1981; Kindel et al, 1981). There have been two distinctly different types of double layer simu-
lations, those in which a potential 1s applied across the system, and those in which a current is
mmposed In the former case, whatever potential 1s imposed appears as a sheath at the boun-
dary, which then detaches and propagates 1nto the system Thus large amplitude e¢p/ T,>> 1
double layers are possible when a potential difference is imposed across a bounded system.
When a current is imposed, current-driven instabilities result which trap 1ons Holes in 1on
phase space with associated negative potential spikes then appear (cf , Hudson and Potter, 1981).
As noted by Hasegawa and Sato [1980), in the presence of a current, such a negative potential
spike will reflect some of the electrons carrying the current, resulting in an excess of electrons
on one side, a deficit on the other, and a net double layer potential jump. Thus 1t appears that
the 10n holes play a crucial role 1n the formation of double layers 1n current-driven systems

We have examined the 7T,/ T, dependence of double layer formation in a series of
current-driven simulations using a system 2048 A p long with 32000 particles for an electron
drift equal to 1ts thermal speed We find that holes in ion phase space and double layers form
for T,/ T, = 20 and 4 but not for 7,/ 7, = 3 and 1 This result is related to the existence cri-

teria for 1on holes discussed below.

II. Analytic Ion Holes and Double Layers

We have examined time-stationary solutions to the Vlasov-Poisson equation for ion holes

and double layers using the following distribution functions for free and trapped electrons and
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where C = 1/v27 and A = exp(~v$/2) [F(v¢/2,¢/0) + T(B,y/0)]. A is solved for by
evaluating F and T, which are defined 1n the Appendix. The parameters ug, vg, o and B are
defined below, 8 = T,/ T, 1s the free electron-ion temperature ratio, and the potential varies
with increasing x from ¢ = 0 to ¢ = — normalized to the free ion temperature. Schamel
[1972] first used these distribution functions to study jon acoustic solitons. Subsequently,
Buarbarua and Schamel [1981] studied 10n holes using Boltzmann electrons, which do not carry
the current required to produce double layers 1n the simulations. Recently, Schamel and Byjar-
barua [1981] have computed double layer solutions using the above distribution functions with
current, but for @ > 0, which corresponds to an 1on beam vs an ion hole in the trapping
region This type of solution permuts the large amplitude e¢/ T, >> 1 double layers obtained
when a potential 1s applied across the system in simulations and laboratory experiments. We
will concentrate on the small amphitude (e¢/ T. ~1) double layers which are connected 1n
parameter space to ton hole solutions to the Vlasov-Poisson equation. These are obtained using
the full set of distribution functions above for o < 0, which corresponds to a depletion of 10ns
in the trapping region. QOur primary contribution s to vary the electron dnft vo, as well as
T,/ T,. Other parameters of the solutions are ion dnft ug and the trapping parameters
a=T/T,and 8= T,/ T,,. While « and 8 are formally the ratios of free to trapped particle
temperatures, they are physically proportional to the density of 1ons and electrons in the trap-

ping region. Thus, a(8) =1 and uy (vg) = O reduces the trapped distributions in (1) to
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Boltzmann, while «(8) > 1 corresponds to an excess and «(8) < 0 corresponds to a deficit of

particles in the trapping region (cf, Figure 1, Schamel, 1972).

Integrating Poisson’s equation once yields a simple harmonic oscillator equation for ¢ (x)

1n a classical potential V (¢) which determines the spatial dependence of ¢
(' (N + V() =0 2
The Sagdeev potential ¥V for ion holes and double layers 1s shown 1n Figure 3. The latter must
satisfy V'(—¢ma) = 0 while the former need not This 1s because ¥V'(¢) 1s proportional to
charge density, since (2) 1s an integral of Poisson’s equation, and there is a net charge density
at —¢ ., for a soliton On the other hand, the electric field and therefore charge density must
vanish at —¢n,, for a laminar double layer This imposes the additional constraint

V' (—¢mn) = 0 on double layers, which therefore occupy a subset of 10n hole parameter space

In our first study we reproduced Bwarbarua and Schamel’s [1981] result for Boltzmann
electrons Figure 4 1s an existence dragram for 1on holes 1n parameter space which agrees with
their Figure 7. We present this result because our integration scheme described in the Appen-
dix differs shightly from thetrs. The dashed line indicates a cutoff where ion holes become dou-
ble layer solutions satisfying V'(—¢ ) = 0. This and the previous figure suggest that an ion
hole growing 1n amplitude by resonant particle interaction may evolve into a double layer.
Increasing —¢ ., 1n Figure 3a can convert the ton hole Sagdeev potential into a double layer
Sagdeev potential ke Figure 3b However, we emphasize that the calculation of Figure 4 1s
time-stationary, and the foregoing 1s merely a plaustbility argument to suggest that when the

1on hole amplitude becomes sufficiently large, 1t becomes a double layer.

We have explored the dependence of 1on hole and double layer solutions on the parame-
ters T,/ T,, 8= T/ T, and vy For 8 =1 and vy = 0 corresponding to Boltzmann electrons,
increasing T,/ T, to 20 1n Figure 5a and decreasing T,/ T, to 4 1n Figure 5b does not change
the available parameter space for ion hole solutions if one normahzes to e¢/ T, That is, the
solutions are always restricted to e¢/ 7, < 1 for Boltzmann electrons. However, decreasing

T,/ T, to 3 1n Figure 6 changes the topology to multivalued solutions
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We also varied the electron trapping parameter 8. In Figure 7 for 8 = 3, the parameter
space shrinks and e¢/ T, ~0 4 1s the maximum allowed amplitude for an 1on hole or a double
layer. In Figure 8 for 8 = 0 1, the parameter space expands to allow e¢/ T, = 25 For the
Boltzmann electron case (8 = 1), the amplitude was always restricted to e¢p/ T, < 1. Increas-
ing B increases the density of electrons reflected from the flanks of the ron hole, which may

short out the potential and reduce the maximum allowed e¢/ T,, and conversely

Next we examined the vg dependence. For 8 =1 and T,/ T; = 20 and 4, Figure 9a and
Figure 9b show that the maximum allowed e¢/ T, 1s larger for vo = 0.6 than for vy = 0 (see
Figure 5a, b) The maximum allowed 1on hole amplhitude e¢/ T, increases with vg, but still
remains close to unity, even for the large values of vg = 06 and 1 used in the current-driven
simulations [Sato and Okuda, 1980, Hudson and Potter, 19811 As vy approaches umity
(vg > 0 8), double layer solutions are no longer obtaned at the maximum amplitude ion hole
solution This result is discussed in the context of current-driven simulations in the following
sectton For B=1and T,/ T, = 3, the same kind of multivalued solutions are obtained for

arbitrary vgas in Figure 6

Finally, we allowed both « and 8 to assume negative values No upper limit on ion hole

amplitude and no double layer solutions were obtained for this case

III. Discussion

To study the temporal evolution of an 1on hole into a double layer requires examination
of the time dependent Vlasov-Poisson equation, obtaining an evolution equation for the particle
distribution functions and potential a° la the KdV equation Lotko [1981a] has worked on the
nonhnear growth and damping of 1on acoustic solitons due to resonant particle interaction, and
has shown that compresstonal ton acoustic solitons can be amplified by interacting with an ton
stream, while rarefactive 1on acoustic solitons amplify by interacting with an electron stream,
which exists in the 1on beam frame. Lotko [1981b] has shown that the downward-propagating

compressive mode in Figure 2a will be damped because 1t 1s propagating against the ron beam,
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while the upward propagating rarefactive mode in Figure 2b can be amplified. Whether a mode
1s amplified or damped depends on whether there are more or fewer resonant particles traveling
faster than the wave, as in the case of linear Landau growth or damping In the saturated state
where there 1s no further wave particle momentum exchange, it is possible to construct a
potential profile which looks like Figure 2b by matching a soliton and double layer solution to
the Vlasov-Poisson equation at the potential minimum The foregoing analysis 1s for ion acous-

tic solitons. Analysis of the temporal evolution of 1on holes 1s in progress.

The time-stationary analysis in the preceding section is consistent with the simulations we
have performed. For example, the ion holes are observed to evolve into double layers with
edp/ T, ~1 for T,/ T, = 20 and 4, but neither ion holes nor double layer formation are
observed for T,/ T, = 3 and 1, for vy = 1 imtially. Although vy = 1 mtially in our simula-
tions, 1t drops to vg = 08 by 7 = 500 mp‘el for T,/ T; = 20, well after 1on holes have formed,

but before the double layer has formed [ Hudson and Potter, 1981]

In summary, current-driven simulations done before solitary waves and double layers
were seen in the S3-3 data look remarkably like the observations The simulations and time-
stationary solutions to the Vlasov-Poisson equation suggest that these small amplitude double

layers evolve from holes 1n 10n phase space when the amplitude reaches e¢/ T, ~1
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1V. Appendix

Our treatment differs from that of Schamel and Buarbarua [1981] 1n how the velocity dis-
tributions are integrated to obtain denstities, and in how those densities are integrated to obtain
a pseudo-potential In both treatments the relevant functions are integrals over velocity space
of the particle distribution functions multiplied by a factor exp(wé/2), where wy is the dnft
velocity of the particles Our integration of the trapped distribution 1s the same as that of
Schamel [1972) and gives a function T related to the plasma dispersion function and the Daw-
son mtegral

V2y
T(x,y) =2C exp(xy) fexp(—xtzl 2) dt
0

where C =1/+/27 Our treatment differs 1n the integration of the free population Schamel

integrates exp(v¢ /2) times the free population

fr (0 = Cexp(=hlx(»¥*=2¢)% + vl |v|>(=2¢)"* (A1)

over velocity space to obtain

F(v¢/2,¢) =exp(vd/2) (1 = erf/$) exp(p) + K(v¢/2,¢) (A2)
[Schamel, 1972] where
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K(x,y) =2/Jnx f ddx cos ¢ exp(—ytan’p + xcos’p) erf (/x cos p)
0

We, however, make a change of variables in the velocity integral u = + (v — 2¢)% and use

7 exp(—u?/2) cosh (u vy (A3)

) _ r u
F(32/2,¢) =2 cf0 ey

This can be written 1n two ways

FOv¢/2,¢) =f du [ lexp (—u?/2+ uvp +exp (—u?/2— uvpl (Ada)
0

—u
u? + 24)%

or
FO}3/2,0) = =2VgTw + Cexp(d /D[ aw(l(w + v 2+ 261% + [(w — v9)? + 261%)
0

Yo
x wexp(=w?/ 2} =2 dwl(w— v+ 261* wexp(=w?/2) (A4b)
0

In our evaluation, we make the change of variables u = V2 tané to change the infinite
limits to a finite interval of zero to 2, and we numerically integrate this result. (A4a) 1s used

for vg < 4 5, and (A4b) 1s used for vy > 4.5
The difference in evaluation of F also leads to different forms for the integral of F used

n the pseudo-potential. Schamel integrates (A2) over ¢ for the pseudo-potential, whereas we

integrate (A3) over ¢ to find

G(v3/2,6) = 2C[ du ulu?+2¢1%exp(—u?/ 2) cosh (u vo) (A5)
0
The Sagdeev potential is then
=—9{0exp(=v¢/DIGCWE/2, W+ d)/)—GOE/2,u/0)+D@B, (y+¢)/6)

- D@, ¢/0)) + Aexp(—=ud I DIG(~u¢/2,-¢) — G(=ul/2,0) + Dla,~P}
where D(x, y) = (T(x,y) — 2Jy/ @)/ x.

For vg < 45, (AS) 1s integrated just as 1s F in (Ada) For vy > 45, we use a method
simular to that used in (Adb)
The small amplitude expression for our F agrees with that of Schamel [1972] and the

numerical evaluation of F agrees with the small amphtude expansion to better than 1 part in

10° The numerical evaluation of G agrees with the small amplitude expansion to better than 1
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Figure Captions

Figure 1 The two perpendicular and one parallel electric field components shown Examples of double

layers (DL), solitary waves (SW) and electrostatic jon cyclotron (EIC) waves are marked

Figure 2 (a) Downward propagating compressive and (b) upward propagating rarefactive modes consistent

with S3-3 electric field data 7 1s 10nosphere and M 1s magnetosphere

Figure 3 Sagdeev potential ¥ defined by (2) for (a) 1on holes and (b) double layers

Figure 4 Existence diagram for 1on holes assuming Boltzmann electrons « 1s the ratio of free to trapped
1on temperature and ug 1s the free ion drift in the wave frame normalized to its thermal speed Negative o
corresponds to a deficit of trapped 1ons (hole), see (1) The dashed line corresponds to double layer solu-

tions

Figure 5 (a) Same as Figure 4 for T,/ T, = 20 (b) Same as Figure 4 for T,/ T, = 4

Figure 6 Same as Figure 4 for T,/ T, = 3, except that solutions are now multi-valued where curves cross,

while end points satisfy double layer criterion V' (—¢ ) =0

Figure 7 Same as preceding figures with 8 > 1, which corresponds to an excess of electrons over the
Boltzmann level 1n the trapping region B 1s the ratio of frec to trapped electron temperature, proportional to

the density of trapped electrons (see (1))

Figure 8 Same as Figure 7 with 8 < 1, which corresponds to a deficit of electrons relative to the Boltzman

level 1n the trapping region

Figurc 9 (a) Same as Figure 5a with vy = 06, where vg1s the free electron drift in the wave frame normal-

1zed to its thermal speed  (b) Same as INgure 5b with vg = 06
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