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ABSTRACT

We propose that the kind of stellar variability exhibited by the

sun in its magnetic activity cycle should be considered as a pro-

totype of a class of stellar variability. The signature includes

long 'periods' (compared to that of the radial fundamental mode),
erratic behavior, and intermittency. As other phenomena in the

same variability class we nominate the luminosity fluctuations of
ZZ Ceti stars and the solar 160 m oscillation. We discuss the

possibility that analogous physical mechanisms are at work in all

these cases, namely instabilities driven in a thin layer. These

instabilities should be favorable to grave modes (in angle) and
should arise in conditions that may allow more than one kind of

instability to occur at once. The interaction of these competing

instabilities produces complicated temporal variations. Given
suitable idealizations, we show how to begin to compute solutions

of small, but finite, amplitude and we discuss the prospects for

further developments.

THE PROPOSAL

VARIABLE VARIABILITY

An aim of this paper is to argue that the kind of vari-

ability that the sun displays in its magnetic activity cycle is

the prototype for a category of stellar variability that should
be isolated and studied as a generic phenomenon. We are not re-

ferring here to the group of solar type stars that show magnetic
activity, though they and the sun do make up a class of variable

star in the usual sense of the term. We are speaking of a kind

of variability and thus of a broader category, if a more abstract

one, than that of a class of star. The kind of variability that
we have in mind includes intermittency, such as the sun exhibited
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when it went through the Maunder minimum [i], and irregularity

such as the cycle displays when it is detectable. We presume

that all solar type variables show this variable variabillty_

as we may call it. We suggest that the time dependence of ZZ
Ceti stars [2] is of the same kind, details aside. The stars in

this latter class are variable white dwarfs with marked temporal

intermi+tency and, if they are in the same variability category
as the sun, this could be useful for solar studies since ZZ Ceil

periods are of the order of ten minutes. We belleve too that the

" sun shows variable variabillty in several ways and in particular

through the 160 m oscillation, which is sometimes quite hard to

detect and is always very noisy [3]. There are other examples
that come readily to mind, but we mention only these since they

are the only ones that we have done serious calculations for in
the way that we shall describe below.

The point of isolating a kind of variability is that it

may help to identify the physical mechanism that produces the var-

iations. In the case of the simplest kind of stellar varlability,

that exemplified by the regularity of Cephelds, we normally try to

find a mechanism analagous to that of the Cepheids, in which case
we might expect that a static star is overstable or vlbratlonally

unstable to small perturbations. Then periodic solutions will

bifurcate from the static solutions in a fashion called a Hopf

bifurcation [4] nowadays. Overstability is more complicated than

ordinary or direct or dynamical instabili'_ in which perturbations
to a static configuration grow monotonicdlly and steady solutions
bifurcate from the static ones.

MODELS OF APERIODICITY

The contrast between direct instability and overstability

is made vivid by systems that can manifest either depending on the

value of some system parameter such as angular velocity. We sug-

gest that such a system is implicated in the solar cycle. Quali-
tative evidence for this remark is provided by a model construct-

ed to explain the solar 5m oscillation as a convective overstab-

ility [5]. _he model could be either overstable or directly un-
stable according to the values of certain parameters. As in most

such systems there are two important parameters, one controlling

the amount of each instability. The system is said to have co-
dimension two [6]. Such a system can be rewired, so to say, so

that one parameter controls the relative amounts of both kinds of

instability and another controls the total amount of instability.
When the system is set to hover between the two instabilities and

the amount of instability is turned up, the resulting oscillations

become aperiodic. This led to the conjecture that unstable sys-

tems hovering between the two kinds of instability would gener-

ally behave aperiodically. This suggestion was tested on a one-

zone model for radial pulsation [7]. The idea was that for a
mean £ < 4/3 one gets direct (or dynamical) instability while for

£ > 4/3 one may have overstability. For F-4/3 one might expect

274

1982009140-267



erratic behavior, and that was what was found. This is the kind
of behavior we are Fostulating to explain the time dependence of
the solar cycle and _f other variable variables.

We have to ask at once whether it is reasonable to expect
to find many systems arranged not only to be unstable but also to
be unstable in several ways. Our answer is yes but our reasons
are complicated. Let us ,imply say here that one reason lies in
the circumstance that many systems do have long periods compared
to their natural radial periods. To see what this may mean, con-
sider the case of convective overstability. How may we engender
slow variations in the elementary theory of convection?

CELL SIZES AND TIME SCALES

When you heat a fluid from below to induce convection you
generally are doing something thermally complicated, but approxi-
mately you are usually fixing the temperatures on the top and bot-
tom boundaries of the fluid. When the imposed temperature differ-
e_ice is large enough, s:stained motions may begin [8]. These mo-
tions are organized into cells which tesselate the layer on a hor-
izontal scale comparable to the layer thickness. However, if you
instead specify the heat flux on the boundaries, the cel]_ are as
large in the horizontal as the geometry will allow [9]. Such big
cells are easier to excite and are slower to react than the more
popularly sized cells.

In a case where overstability is also possible, the role
of the boundary conditions is very important too. For, not only
are the growth rates small, as in normal convection, but the fre-
quencies of the overstable modes are also small. Hence boundary
conditions that favor large horizontal scales in rather thin
layers will tend to put such systems willy-nilly into the states
we want them. Whether those boundary conditions are realistic in
a given configuration cannot be stated I, advance, but at least
they are frequently not implausible. MoLeover, it is not always
easy to say ahead of time precisely which conditions will induce
large horizontal scales and relatively low frequencies. But that
they may arise naturally is attested by studies of instabilities
relating to ZZ Ceti stars [i0,ii]. The periods turn out to be
long compared to the fundamental period of the star which is reck-
oned in seconds. This is just the kind of situation that we need
for the analysis we shall describe.

GETTING STARTED

Even if it is true that mild instabilities in thin shells

lead to the variable variability we have described, it might not
always be obvious which thin shell is involved. However once the
idea is there, we have the motivation to look for the right kind
of instability. For the solar cycle a clue is provided by the
familiar problem [12] of bu41ding strong magnetic fields in many
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solar dynamo models. The general idea is that differential rota-

tion produces a toroidal field whose strength builds till it goes

unstable and buckles to protrude from the sun and create spots.

The difficulty in this picture is that turbulent convection and
magnetic buoyancy [12] will quickly destroy any ordered field so
it is not clear how a significant toroldal field can persist for

any time in the solar convective zone. A way out of this diffi-

culty is to form the ordered field just below the convective zone
[13]. Large scale convection produces flux expulsion [12] and

topological pumping [14]. However, since the material just below

the convection zone is a good conductor, it does not readily al-

low the field to penetrate it. The field is nevertheless swept

into an intermediate region by penetrative convection, which may
be mild enough to leave it ordered. As the field builds up in _

the bottom of the penetrative zone, the penetrative motion will

be impeded and the convection zone recedes leaving behind a lay-

er of ordered field. Ultimately, the layer becomes thick enough
for magnetic buoyancy to overwhelm the local stable temperature

gradient. There follows a new round of solar activity. Of course
other observable manifestations of such a process should exist

and it is unclear as yet whether we are on firm grounds [15].

l

THE 160 m OSCILLATION

For another illustration of the procedure consider the 160 m •

oscillation. Here there is no accepted explanation and our view

is that the nature of the oscillation leads us to look for a thin i
overstable layer. The low frequency points to gravity waves and

perhaps to an important role for buoyancy. The popular objection

to explaining the 160 m period as owing to gravity waves is that
the spectrum should be dense and some claim that a broad band of

frequencies should be excited. However, if we are dealing with a

thin layer, we may study waves whose lengths are much greater than

the layer thickness. It is then possible to strike a balance be-

tween nonlinearity and dispersion so that a solitary wave or a
train of them is produced as in the theory of shallow water waves

[16]. In this picture, which may be described by our procedures,

the 160 m period should be the travel time of the solitary wave
around the sun. This gives a clue to where the waves are excited.

In a stably stratified gas, linear gravity waves propagate

with a maximum speed given roughly by [17]

Cg - (7_I gH) _ = (7-17 R,T)½, )

where R, is the gas constant. For present purposes we can write
this as

Cg - i0' cm/s,
%
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%,.

where T_ = T/10_K. If the layer in question has radius 7×10*°rcm,

we find a period

p = 10_ r/T_-_rain.

So we want a layer such that

T_ = 3600r. :_

This layer needs to be in the deep interior. We propose that

the argument makes it worthwhile to inquire whether the 160 m
oscillation can be excited in the solar core. •

Fortunately, a suitable mechanism is already known: Dilke

and Gough [18] found an overstability that should exist in the

present solar core. For this instability to be in keeping with

our prescription we must postulate a thin layer rich in 3He at

the edge of the nuclear burning region. Granted this, the kind
of nonlinear analysis that we shall now illustrate goes through.

It has been done for a mildly nonBoussinesq model and it needs

more refinements. Nevertheless there are some interesting fea-

tures of the solutions. For example, a mild thermal anomaly prop-

agates about the core. This contributes to energy generation,

and to get the right solar luminosity, we have to lower the cen-

tral temperature a bit. How significant the change is depends on

the amount of SHe we put in; a careful comparison with the oscil-

lation data will be needed to make a quantitative statement. In

fact no numerical estimates of any kind are given in the next sec-

tion, which is too physically bare to be anything but a demon-
stration model. As we shall explain below, it is too primitive

mathematically. Yet we think its general design is good and if

you are looking for an approach to these problems, you might
want to consider this possibility.

THE PROCEDURE

FORMULATION OF A TRACTABLE PROBLEM

The General Model

To discuss the dynamics of a hypothetical magnetic layer

located just under the solar convective zone, we might reasonably
presume that this layer is subject to a given heat flux from below

and that it passes this same flux on to the layers above it. Sim-
ilarly, we might guess that the overlying convective zone pumps a

horizontal magnetic field downward into the layer. In the static

state the field continues to diffuse slowly downward, and there
will be a slight time dependence. We may avoid this complicatio.,

by assuming that the field is removed from the bottom boundary of

g
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the layer at the rate that it is being fed in at the top. This is
the idealization we propose for the sun's magnetic layer. For
semiconvection we would likewise assume that the flux of hellum
at the top and bottom boundaries is prescribed.

We assume that the geometry is plane-parallel and let z _
be the upward coordinate, y be the horizontal coordinate corres-
ponding to the eastward direction and x be the equivalent north-
ward direction. The fluid is confined to the layer -d/2<_z<d/2.

Though the calculations that follow are detailed, they
a_e stripped down to the barest essentials for this demonstration.
No extras are included. Thus we assume here that all of the pa-
rameters characterizing the fluid, such as the gas constant, the
acceleration of gravity, the specific heat at constant pressure,
the permeability, and the several diffusivities, are constants.
The main dependent variables of interest for the convective pro-
cess are the velocity and the state variables such as temperature,
magnetic field and molecular weight. To describe state variables
we shall use a standardized notation which we illustrate for the
case of temperature.

The Dependent Variables

Let the temperature, T, be decomposed into a static part
and a convective part:

T(x,z,t) = T(z) + 6T(x,z,t)

where t is time. We allow no y-dependence and consider only a
two-dimensional problem. Let

T = T(0)o

be used as a temperature scale and let

d
= ¥0

This measures the temperature contrast across the static layer.
A scaled temperature disturbance is then defined by

6T-I T+-S-IToe,cp%

where Cp is the ratio of specific heats and g is the accelera-
tion of gravity. For the other state variables we proceed simi-
larly. For example we might introduce a scaled magnetic pertur-
bation in the two dlmenslonal case where the fleld has only a y-
component •

- ls- pls
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where O is density. An analogous scaled varl_ble would be used
for molecular weight.

We shall assume that the velocity is solenoidal, and this
is not a bad approximation for the kind of gravity wave solutlon
we are after. The velocity can therefore be described by a non-
dimensional stream function:

where K is the thermal diffusivity.

The B,oussinesq Equations

Next we make an approximation which forces us to give up
some qualitative features of the problem that are of ast-ophyslcal
interest, but which permits us to bring out the basic nature of
the phenomenon as simply as possible and to illustrate the kind of
calculation that the subject entails. This is the Bousslnesq ap-
proximation in which we omit density fluctuations except insofar
as they directly produce driving by buoyancy forces. Bousslnesq
theory also neglects pressure fluctuations in the equation of
state. The pressure fluctuation enters only as a gradient term
in the equation of motion as needed to maintain the solenoldal
condition on the veloclty field. In hydromagnetic convection the
analogous approximation is the neglect of fluctuations in the
otal pressure (gas plus magnetic). On introducing these approxl-
mations we are led to the following equations for two-dimenslonal
Boussinesq magnetoconvection [19] :

(_t-oV_)V2@ = -u_eR_x o + oT_zSaxZ + 8 ($'v2@) (i)_(x,z) '

(_t_v2)e_ _x_ = _(_,e)"_(x,z)' (2)

(_t_TV2)Z- _x_ = _(_,Z)_)(x, z) ' (3)
where

B"

I s - o__j B_01,R = ._T +'gd>%1,
O " _/_ , T " rgK.

Here _ is +i If the vertical gradient of F is in the unstable
sense _and is -I if it is in the stable sense (F may be e or T),
p stands for gas pressure, _ for kinematic viscosity, _ for per-
meability, and _ for magnetic diffusivity. The Rayleigh (R and S)
and Prandtl (o and T) numbers appear because we have used natural
units for length (d) and time (d'/_). We have followed one stand-
ard practice in assuming that the Rayleigh numbers are positive and
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separating out the stability discriminants, _. We find this
cumbersome Ind we prefer to adopt a particula_ choice for them:

_0 = i, _F_ =-i,

which is the typical case for semiconvection [20]. We make

this choice even though semiconvection plays a secondary role

in destabilizing ZZ Ceti stars [I0] because it is one of the
few cases for which we know explicitly the right discriminants

to select. For the magnetoconvective model of the solar cycle, a

number of possible _ combinations may arise in the important mag- i

netic layer and, in any case, for that situation, there appear to

be vital nonBoussinesq effects. (We suspect too that differential

rotation is important and that adds another _.) So it would be
misleading to try to describe a solar model at the present minimal
level. But elementary as the present example is, it seems to con-

tain the essential nonlinear dynamics of semiconvection, which

may play a very significant role in certain variable stars and

whose time dependence, we suspect, is a good example on which to

base thinking about variable variability.

The Boundary Conditions

When we go from magnetoconvection to semiconvection, in

two dimensions, we have to deal with precisely the same set of
Boussinesq equations, but now Z is the perturbation in molec-

ular weight instead of the magnetic disturbance. These equations
are also the right ones for thermohaline convection, which has a

much greater following [21] and which has inspired our notation

(Z for salinity, S for saline Rayleigh number). All the computa-
tions we know of in this subject have been done with 8 and x

vanishing on the upper and lower boundaries [24]. As advertised,

we here fix fluxes on the upper and lower boundaries. Hence,
the pertubation fluxes must vanish on these boundaries and we

require that

_z 8 = 0, _z Z = 0 @ z = ±4- (4a,b)

We also need kinematic conditions on top and bottom and we assume
that the boundaries are stress free but not deformable. Then

- O, _ - 0 @ z = ±!,. (5a,b)

An advantage of having the fixed-flux boundary conditions is that
they generally favor large horizontal scales and once this is

realized, we can use the methods generally associated with the

theory of shallow water waves [16,22]. This permits us to in-
clude in our asymptotic studies several effects that have been

difficult to treat other than by numerical methods. But the main

physical interest of these large horizontal scales is that they
also involve slow behavior such as we would like to postulate in
a model for variable variability.
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The Scaled Equations

To find approximate solutions we proceed by asymptotic
methods, combining amplitude expansions with scaling of time and
space coordinates. To ensure small amplitude, we assume that the
layer is only mildly unstable. Let

R - R o + e2R2, S - S O + ¢2S 2,

where ¢2<<1 and R 0 and S O are values of R and S that rer * , '_J
fluid neutrally stable while R 2 and S z are arbitrary.

We anticipate that, as in ordinary conx,c_tlon theo_
amplitude of the motion is 0(¢) and we thereff,re _,:t

_=¢Y. 1
J

However it is best not to rescale the temperature in Bousslnesq !,
convection with fixed flux [23]. As with many nonlinear problems,
we expect a close connection between amplitude and (here spatial)
periodicity and we accordingly scale the horizontal coordinate to _
be proportional to amplitude. We also assume long time scales, _
but the factor by which we stretch the time is found essentially
by trial and error. We let

= ¢x, _: = ¢'t.

Then we follow a deplorable notational trick that is widely used
in fluid dynamics and drop the tildes. The reason is that the
tildes make the equations cumbersome to read while the other let-
ters we might have used for a rescaled time are preempted. The
equations that we want to study now are

ezz . ¢2 (_x_exx+Yzex_Yxez) + ¢,et (6)

= ¢2 +Y Zx-Yxrz) + ¢ (7)TZzz (Yx-T/:xx z Srt

_ + ¢2[_2y + l(¥zy z _y y ]Yzzzz = Rex TSI:x xxzz _ zx x zzz )
(8)

¢_ I ¢s

+ _-_tzz + c" [-Yxxxx + _(VzYxxx-Vx_xxz)] + --oYtxx

where the subscripts z,x,t signify partial differentiation with
respect to the variables indicated.

Now we set out to find asymptotic solutions for small ¢
taking the other parameters, o and T, to be of order unity. This
may not be the best choice for astrophysics, but it is often used
by numerical experimenters and it provides a simple introduction.
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EXPANSIONS

For small ¢ we consider expansions of the form,

Y = Yo + cY, + ¢2¥2 + -.. ,
0 = 8o + ¢81 + _z02 + ... ,

= _ + cEl + cZ_2 + ...

'_he boundary conditions are ,_ _
f

=0, =0 Yn=0 ¥ =0 @ z-±/.0nz _nz ' ' nzz _

From (6)-(8) we obtain
[

8Ozz = 0, X0zz = 0 (9a,b)
and

= (R0f - "tSog)xYOzzz z . (I0) ' _.

The solutions are

80 = f(x,t), FI = g(x,t) ,

where f and g are arbitrary functions to be determined and

Yo " (R0f - _S.g)x P(z)
where

P¢z) = z'+
In exactly the same way we find that

8, - f1(x,T), Z, = g, (x,T)

where f, and g, are also arbitrary so far and

y, - (P_f, - TSogl)xF(Z)•

Next we find that r'

82z z = ¥Ox - OOxx + ¥Oz8Ox - ¥OxSOz

T_zz " YOx - _'xx + YOzrOx - YOXr'Oz

which may be written as

8Zzz = (R0f-TS, g)xx P - fxx + fx(R°f - _S.q)x p' , (lla)

'_7., = (l%f-TSog)xxP - Xgxx + gx (l_f - TSeg)xP' " (llb)

Since (lla,b) are inhomogeneous forms of (9a,b), we know _
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that we have to remove the secular terms. If we integrate (lla,b)
in z from -½ to + J we find that the integrals on the ;eft side
vanish. Hence, so must the integrals on the right side, and
the expression of that fact gives the solvability conditions for
(lla,b). On noting that the Integral of P is 151)-I, we
obt31n the conditions

xfj " lJ: A - 0; & - • 1121
llgxx _ -_(s,+s,)

For (12) to have nontrlvial solutlons we require that det& - 0,
whence we find that

R0 -So" 51

This determines a critical value for the total Rayleigh number,
R-S, which is just that found for the B6nard problem with fixed
heat flux [9]. We also may note that the right and left null
vectors of a are respectively

IPII• - , , - II_, -So11.
T-!

"ge see that (12) is satisfied for

f-_g.

Now we may solve 111) and we obtain

e, . f2(x,T) + %(Z)fxx + G,(z)(fx )"

TtEz T'gz(x,t) + THz(Z) fxx + G,(z) (fx 12,

where f, and g, are yet two more functions to be found and

G, = z s - Jz' + Hz
and

- _(" - _.' + H.' - ,.1".
where an arbitrary constant has been :hosen for later convenience,

Next from (8) we find, after some reductions, an equation
for ¥, This is easily solved and we obtainZZZZ"

Y, - [l_f,-TSeg,+(l_ - S,)f]xP(S) + Pz(Z)fxx x + 0,(Z) xfxx x

where

P' " '5_(z'O-_z'10l 483 ' 18_475'i z --_-_--z96345,+ I___).9.35
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_h is an odd polynomial, which is all we need to know about it. 2,

And so it goes. At e' the time derivatives appear:

@Szz = ?*x - 8*xx + ¥*zS°x + ¥°zS*x + 8°t

_- _ +
_ZSzz _*x TZ*xx + _*zZ°x + ¥°zZ*x Z°t

We integrate these two equations in z across the layer as we did

- in the previous orders. We obtain a pair of differential equa-

tions, or a matrix differential equ tion. We multiply this by I,

the le_t null vector of A, and obtain the solvability condition

(R° - S°/T) ft = 0.

This means that either ft or its coefficient must vanish. If the
former is true, we have chosen the wrong time scale. Indeed that
is so if we want certair kinds of solutions. For example, if T=I

or if both _8 and _Z are positive, we expect steady convection and
should scale-the time accordingly. However, for the problem we
are studying, we choose to let

- s0/T= 0.

Then we have

= (1) 51, SO = (--/--T)5! (13a,b)%
1 _- I-T

Having thus removed secular terms we may solve the two equations

that result from the z-integration and we get

=- l-_f . (14)
f*xx -Tg*xx T t

We are now near the end and may at last skip to order ¢_, which
leads to the equations

8_z z : ?2x-82xx+_0z82x-_0x82z+_ *z81x+_2zS0x+Sit (15a)

TL+z z : TZx-TF2xx+T0zFZx-TOF2z+TXzFXx+T2zE0x+FXt. (15b)

Now we integrate (15a,b) over z and we find that

+I/2

f*t + f [¥2x-82XX+¥0Z82X-¥0xSZz] dz = 0 (16a)
-L/2

and

+i/2

gtt - f [-_ZX+TF_XX-_0ZF2X+¥OXEzZ ] dz - 0. (16b)
-I/2
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It is then straightforward to derive from (14) and (16a,b)

an equation for f. The final step involves some integrations and
we obtain then the evolution equation

ftt- _fxxxx- <Tfxxxxxx- _[(fx)S]xxx = 0, (17)

: where

_ = (_ - s_)151,

f (Pz-H2)dz = .1967893 ... - K,
--I/2

and

,/2
(51)2f P2dz = 1.2301587 ... - _.

--I/2

Equation (17) is a nonlinear wave equation whose properties we are

attempting to understand. Here we sketch one of its approximate

solutions that gives the flavor of the answers we seek.

BUOYANCY WAVES

When the amplitude of f is infinitesimal, the evolution

equation may be linearized and it has a solution of the form

f = e nt cos(kx).

This gives us

n2 = .[k_'(p-Kk 2) .

So we have instability whenever

__> Po - Kk_.

If the situation is only slightly unstable we can once again

make an amplitude expansion. Let

16z
_= _0 +_

where 62 << 1 and I is an arbitrary parameter; 6 is analogous to ¢

in the previous development and _ is analogous to Rz- Sz. Hence

we scale the amplitude with 6 and set

f - 6F.

We also define a slow time

s - 6t.
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The evolution equation becomes

_:_(Fxxxxxx+ k2 ) = 6_ _ _[(Fx)']xxx}Fxxxx {Fss - X Fxxxx

We expand again:

F = F 0 + 6F l + 62F2 + ... .

In leading order we find the linear problem

Foxxxxxx + k2Foxxxx = 0 ,

with the solution

F0 = X(s)cos(kx) + Y(s)sin(kx) ,

where X and Y are arbitrary functions. Then in the next order,

KT + bz FIxxxx)(F*xxxxxx

= (X-Ak_X) cos(kx) + (_-Xk_Y)sin(kx)

- _)k_[Xsin(kx9 - Ycos(kx)]
xxx

We multiply by sin(kx) and integrate from 0 to 2_/k; then we mul-

tiply by cos(kx) and integrate. This leads to coupled equations

for X and Y. Rather than write these directly we prefer to use

as variables _ and # where

X = _ cos#, Y = _, sin#.

Then

F = _D_ cos(kx + #).

The equations are

_-.AS 2 - ,_k_._ - _vk'-,_' = 0.
and

+ o.
We find that

$ - b/A'

where b is arbitrary and we get the amplitude equation

- b'/.,_' - Xk_ - _vkS_ ' = 0. (18)

This has the integral
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where

v = {(b2/_2 - _k_2 - _k'_'

and _ is a constant. Solutions may be expressed in elliptic
functions, but it is instructive simply to look at plots of the
amplitude and phase, here for b . .001, A = -2 and k - i.

l
oI
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THE CAVEATS

We have suggested that a certain kind of variability is

caused by instabilities in thin layers on large horizontal scales
with long periods. This opens the way for an analysis such as we

have just sketched. The calculations may be elaborate, but they
are feasible. Their astrophysical interest lies in the relative

ease with which they may be extended to allow for nonBoussinesq
effects [25,26], when those are not too pronounced. Thus one can

treat compressibility, <-mechanism, "and so on, and the extension
'27] Into more general boundary conditions has been studie6 t •

other words, a number of features of nonlinear nonradial pulsa-

tion can be studied along the lines we have outlined here. It

only requires finding the right instability.

$

However, the main outcome so far is only qualitative be-

cause (18) has an infinite number of possible solutions and we

have not given a method for selecting one from among them. The
removal of this degeneracy requires the introduction of higher

order information and this may be effected by procedures that we
shall go into elsewhere. Nevertheless, the cyclic character of

the solutions is a correct, if particular, asymptotic consequence

of the equations.

Yet equation (18) is too tame and it gives only periodic
solutions. Nor do the higher order corrections remove this fail-

ing. But we do have a situation with two competing instabilities

such as the models mentioned at the beginning did. If they give

chaotic solutions [5,28] why do we not find them from (18)? The
formal difference is simply that (18) is second order whereas the

model equations are third order. If we analyze the latter in the

neighborhood of the onset of the instabilities, we may reduce them

to second order equations. Chaos in the models arises only for

highly unstable conditions and was discovered by numerical means.

If we want to study strongly nonlinear conditions in the problems
discussed here, we have to solve nonlinear partial differential

equations, and that is a far more difficult task than solving the

model equations, which are ordinary differential equations. Per-

haps when the full numerical solutions are found, there will ap-

pear just the rich structure we see in the solar cycle; that is

certainly one thing that should be attempted. But there is anoth-
er way to enrich the time dependence of our model that we believe

is relevant to the solar case a,d must be included in any event.

If we consider a case with three competing instabilities,

the procedures described here lead to a third order amplitude equa-

tion near a critical point at which all three instabilities begin
at once. We have been studying these questions with colleagues

in Nice and that work [29] will provide some concrete examples of
what we mean. FOE ou_ present purposes we need only the simple
extension of the idea of competing instabilities to the case of

three instablitie_. It turns out that in each of the examples of
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variable variability cited here, there seem to be three competing
instabilities (at least potentially) in the models that are being
proposed. Consider the case of solar variability and the picture
that it is driven from the base of the convective zone [13].

In the process of solar spin down [30], it has been sug-
gested, when the hydromagnetic torques of the solar wind brake
the convective zone, it in turn pumps a secondary flow into the
subconvective layers [31]. The convective pumping process is
resisted by the stable layers, hence it can penetrate only into a
shallow layer below the convective zone [30,32]. This layer in-
itially supports the rotational difference between the convective
zone and the radiative interior, but it ultimately loses stabil-
ity. The further developments are not fully unders£ood, but one
of the plausible possibilities is that the resulting motions main-
tain the layer in conditions near to marginal instability. This
is the source of the third competing instability that we believe
must be included in the description of the solar activity cycle.
For schematic versions of this problem, if the geometry is right,
one gets third order equations for the amplitude of the motion.
Therein, we suggest, lies the cause of some of the chaos of the
solar cycle.

This hint of further developments only underscores how in-
complete is the picture we have presented here. But at least we
have been able to see one direction to go in which to find the
source of variable variability. The temporal behaviors that are
emerging at this stage of the work have some of the right kind of
qualitative behavior and the mechanism of competing instabilities
seems to provide a possible basis for understanding the examples
of stellar variability that we have mentioned here.
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