Semi-Annual Progress Report on
 THREE DIMENSIONAL FLOW FIELD INSIDE COMPRESSOR ROTOR, INCLUDING BLADE BOLNDARY LAYEPS

M. POUAGARE, J. M. GALMES, B. LAKSHMINARAYANA, and K. N. SACHIDANANDA MURTHY

NASA Grant NsG 3266
Hational Aeronautics \& Space Administration Lewis Research Center

(AASA-CR-168410) THREE DIAENSIONAL FLOW
482-17175
FIELD IASIDE CONPAESSOR ROTOR. INCLUDING
BLADE BOUNDARY LAYERS Semiannual progress
Report (Pemnsylvania State Unive) $87 \mathrm{p} \quad$ Unclas HC A05/HPA01 CSCL 21E G3/07 11409

TURBOMACHINERY LABORATORY Department of Aerospace Engineering The Pennsylvania State Iniversity University Park, PA 16802

Semi-Annual Progress Report

on
THREE DIMENSIOMAL FLOW FIELD INSIDE COMPRESSOR ROTOR PASSAGES, INCLUDING BLADE BOUNDARY LAYERS

M. Pouagare, J, M. Galmes, B. Lakehminarayana, and K. N. Sachidananda Murthy

to

NASA Lewis Research Center
Project Monitor: Dr. P. Sockol

Turbomachinery Laboratory
Department of Aerospace Engineering
The Pennsylvania State University
: University Park, PA 16802

January 1982

PREFACE

The progreas of research on "Three Dimengional flow Field Inside a Compreseor Rotor Blade Passage, Including Blade Boundary Layers" (NASA Grant NSG 3266) for the six-month period ending December 31, 1981, is briefly reported here. Dr. J. M. Galmes, Kesearch Asmociate in Aerospace Engineering, has the responsibility for turbulence modelling. Mr. Pouagare, a doctoral candidate, has asamed reaponaibility for the development of the computer program to predict the blade boundary layer. The measurements reported were carried out by M. Pouagare and K. N. Sachidananda Murthy,
B. Lakehminarayana Principal Investigator

TABLE OF CONTENTS

Pare
NOMENCLATURE iv

1. NUMERICAL aNALYSIS OF bLade and hub wall boundary layers 1
Introduction 1
Momentum Equations 2
Numerical Solution of tin Three Momentum Equations 4
Pressure Correction Equations 6
Status of the Computer Program 9
2. TURBULENCE MODELLING FOR BOTH HIGH AND LOW REYNOLDS NUMBER FLOW SUBJECTED TO ROTATION 10
Int roduction 10
Turbulence Equations 13
Qualitative Analysis of k and ε Equations 16
k-E Model for High Reynolds Number flows 19
k-E Model for Low Reynolds Number Flows 22
Eddy Viscosity Law 27
Conclusions 28
3. MEASUREMENTS OF THREE DIMENSIONAL FLOW FIELD INSIDE A COMPRESSOR ROTOR PASSAGE 30
Experimental Program 30
Typical Results 30
4. PAPERS, THESES, AND REPORTS PUBLISHED DURING JULY 1981 - DECEMBER 1981 33
REFERENCES 34
APPENDIX 1 Transformed Momentum Equations and Jacobian Matrices 39
APPENDIX 2 Literature Survey on the Effects of Curvature and Rotation on Turbulence Structure 48
FIGURES 61

NOMENCLATURE

S	blade epacing
SS	suction surface
S_{11}	etrain tencor
$u^{\prime}, u^{\prime 1}$	fluctuatins velocity
t	cime
$\bar{U}^{\mathbf{1}}$	man contravariant velocity
$\overline{u_{1}} u_{j}$	Reynolds tensor
$\mathrm{U}_{\mathbf{t}}$	blade tip apeed
U, V, W	velocities in radial, tangential, and axial direction, respectively
v	Kolmogorov velocity scale
W	relative velocity
WR	radial velocity, W_{r} / U_{t}
WT	relative tangential velocity, W_{θ} / U_{t}
Wz	axial velocity, $\mathrm{W}_{2} / \mathrm{U}_{t}$
x^{j}, x_{j}	contravariant and covariant coordinates variables
Y	tangential distance measured from camber line ($y=0$ on suction side, $Y=S$ on presaure aide for the data in the passage for the wake, $Y=0$ is the center of the wake)
2	axial distance normalized by the blade chord ($2=0$ at the leading edge)
α, β	constants
$\delta_{1 j}$	Kronecker tensor
$E=2 v \overline{s_{i j}^{\prime} s^{i j}}$	turbulent dissipation rate
$\varepsilon_{1 p q}$	permutation tensor
η	Kolmogorov length scale
n_{2}	$\partial n / \partial z$
η_{θ}	$\partial \eta / \mathbf{2} \theta$

μ
μ_{T}
$\boldsymbol{\xi}, \eta, R$
ξ_{z}
$\boldsymbol{\xi}_{\theta}$
ρ
$\sigma_{k}, \sigma_{\varepsilon}$
Ω
Ω^{P}

Subscripts
$1, j, k, \ell, m, n$
(p)
r

S

T

2
θ
molecular viscosity
turbulent viacosity
transformed coordinates in the streamise, normal, and radial directione, reapectively
$\partial \xi / \partial z$
$\partial \xi / r \partial \theta$
density
modeling constante
angular velocity
contravariant component of angular velocity
indices
value at the wall
radial component
static
total
axial component
tangential component

1. NUMERICAL ANALYSIS OF BLADE AND HUB WALL BOUNDARY LAYERS

Introduction

The flow in a turbomehinery blade passage has a predominant flow direction. The viscous diffusion in the atreamwise direction is usually amall and the elliptic influence is transmitted upstream through the pressure field. So the streamise diffusion terms in the Navier-Stokes equatione can be neglected in couparison to the diffusion in the radial and tangential directions. Starting with a guessed pressure field, it is possible to converge on the full elliptic solution by iterating between a parabolic solution and an iteration of the pressure field. 'The main steps of the calculation are given below. It is assumed that the properties at the streamwise station 1 are known and solution at the streamwise atation $1+1$ is sought.
-1. The three momentum equations are solved simultaneously to get

2. The energy equation and the perfect gas relation are solved to get the temperature T and the density ρ.
3. The streamwise pressure gradient is corrected by the use of mass conservation across the cross-section.
4. The cross-flow velocity components, determined from the momentum equations, are corrected by including in them the irrotational velocity corrections that satisfy the continuity equation. This step requires the solution of a poisson equation for $\$$ defined later.
5. A poisson equation is solved to determine the transverse variation of pressure. The equation for the pressure is derived by appropriately differentiating and suming the two transverse momentum equations.
6. Steps 1 to 5 are repeated until convergence is achieved.
7. Turbulence closure equations are solved to get a new value for the effective viscosity.
8. Solution is marched to the next streamise station. The flow chart of the computer program is shown on the next page.

The Momentum Equations

The Navier-Stokes equations in cylindrical coordinates are transformed into the computational domain neglecting viscous diffusion terms in the direction ξ.

The transformed equations can be written in the form,

$$
\begin{equation*}
\frac{\partial E}{\partial \xi}+\frac{\partial F}{\partial \eta}+\frac{\partial G}{\partial R}+C=\frac{1}{R e}\left[\frac{\partial P}{\partial R}+\frac{\partial Q}{\partial \eta}+S\right] \tag{1}
\end{equation*}
$$

The derivation of this equation is given in Appendix 1.
The column vector of unknowns is $g=\left[\begin{array}{l}\dot{U} \\ v \\ W\end{array}\right]$
The column vectors E, F, G, C, P, Q, S are given by

$$
\begin{aligned}
& E=\frac{1}{J}\left[\begin{array}{l}
\xi_{z} \rho U^{2}+\xi_{\theta} \rho U V+\xi_{z} p \\
\xi_{z} \rho U V+\xi_{\theta} \rho V^{2}+\xi_{\theta} p \\
\xi_{z} \rho U W+\xi_{\theta} \rho V W
\end{array}\right] \\
& F=\frac{1}{J}\left[\begin{array}{l}
\eta_{z} \rho U^{2}+\eta_{\theta} \rho U V+\eta_{z} p \\
\eta_{z} \rho U V+\eta_{\theta} \rho v^{2}+\eta_{\theta} p \\
\eta_{z} \rho U W+\eta_{\theta} \rho V W
\end{array}\right] \\
& G=\frac{R_{r}}{J}\left[\begin{array}{l}
\rho U W \\
\rho V W \\
\rho w^{2}+p
\end{array}\right]
\end{aligned}
$$

Flow Chart for the Computer Program

$$
\begin{aligned}
& C=\left[\begin{array}{l}
\rho U W / R \\
2 \rho V W / R+2 \rho \Omega W \\
\frac{\rho}{R}\left(W^{2}-V^{2}\right)=\rho R^{2} R-2 \rho \Omega V
\end{array}\right] \\
& P=\frac{R_{r}}{J}\left[\begin{array}{l}
\mu\left(R_{r} \frac{\partial U}{\partial R}+n_{z} \frac{\partial W}{\partial n}\right) \\
\mu\left(n_{\theta} \frac{\partial W}{\partial n}+h r \frac{\partial V}{\partial R}-\frac{V}{R}\right) \\
\frac{4}{3} \mu R_{r} \frac{\partial W}{\partial R}-\frac{2 \mu}{3}\left(n_{\theta} \frac{\partial V}{\partial n_{r}}+n_{z} \frac{\partial U}{\partial n}+\frac{W}{R}\right)
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& S=\left[\begin{array}{l}
\frac{\mu}{R}\left[R_{r} \frac{\partial U}{\partial R}+n_{z} \frac{\partial W}{\partial n}\right] \\
\frac{2 \mu}{R}\left[n_{\theta} \frac{\partial W}{\partial n}+R_{r} \frac{\partial V}{\partial R}-\frac{V}{R}\right] \\
\frac{2 \mu}{R}\left[R_{r} \frac{\partial W}{\partial R}-n_{\theta} \frac{\partial V}{\partial \eta}-\frac{W}{R}\right]
\end{array}\right]
\end{aligned}
$$

Numerical Solution of the Three Momentum Equations

The numerical scheme is based on the Linearized Block Implicit Method of Briley and McDonald (1979). Equation 1 is written in the form

$$
\begin{equation*}
\frac{\partial H(g)}{\partial \xi}=D(g)+\hat{S}(g) \tag{2}
\end{equation*}
$$

where $H(g)=E(s)$

$$
\begin{aligned}
& D(s)=\frac{1}{R e}\left[R_{r} \frac{\partial P}{\partial R}+\frac{\partial Q}{\partial n}\right]-\frac{\partial F}{\partial \eta}=\frac{\partial G}{\partial R} \\
& \hat{S}(g)=S(g)-C(s)
\end{aligned}
$$

The finite difference form of equation (2) is

$$
\left(H^{1+1}-H^{1}\right) / \Delta \xi=\left\{[D(g)+\hat{S}(g)]^{1+1}+(1-\beta)[D(g)+\hat{S}(g)]^{1}\right.
$$

where β is the weighting factor.
The incarization is done as follows:

$$
\begin{aligned}
& H^{1+1}=H^{1}+\left(\frac{\partial H}{\partial \xi}\right)^{1} \Delta \xi=H^{1}+\left(\frac{\partial H}{\partial g}\right)^{1} \frac{\partial g}{\partial \xi} \Delta \xi=H^{1}+\left(\frac{\partial H}{\partial g}\right)^{1}\left(g^{1+1}-g^{1}\right) \\
& \hat{S}^{1+1}=\xi^{1}+\left(\frac{\partial \hat{S}}{\partial \xi}\right)^{1} \Delta \xi=\hat{S}^{1}+\left(\frac{\partial \hat{S}}{\partial g}\right)^{1}\left(g^{1+1}-g^{1}\right) \\
& D^{i+1}=D^{1}+\left(\frac{\partial D}{\partial \xi}\right)^{1} \Delta \xi=D^{1}+\left(\frac{\partial D}{\partial g}\right)^{1}\left(g^{1+1}-g^{1}\right)
\end{aligned}
$$

The inearized schase is then given by,

$$
\begin{equation*}
\left(\frac{\partial H}{\partial g}\right)^{1}\left(g^{1+1}-g^{1}\right) / \Delta \xi=D^{1}+\hat{s}^{1}+B\left[\frac{\partial D}{\partial g}+\frac{\partial \hat{S}}{\partial g}\right]\left(g^{1+1}-g^{1}\right) \tag{3}
\end{equation*}
$$

Defining $A=\left(\frac{\partial H}{\partial g}\right)^{1}-\beta \Delta \xi\left(\frac{\partial \hat{S}}{\partial g}\right)^{1}$

$$
L=-B \frac{\partial D}{\partial g}
$$

and

$$
\Delta_{g}{ }^{1+1}=g^{1+1} \cdots g^{1}
$$

Equation 3 can be written as

$$
(A+\Delta \xi \mathrm{L}) \Delta \mathrm{g}^{1+1}=\Delta \xi[\mathrm{D}+\hat{\mathrm{S}}]^{1}
$$

or

$$
\left(A+\Delta \xi\left(L_{\eta}+L_{R}\right)\right) \Delta \Delta^{1+1}=\Delta \xi[D+\hat{s}]^{1}
$$

Factorizins the shame based on the Douglas-Gunn aplit one gete

$$
\begin{aligned}
& {\left[A+\Delta \xi L_{\eta}\right] \Delta g^{\star}=\Delta \xi[D+S]^{1}} \\
& {\left[A+\Delta \xi L_{r}\right] \Delta g^{1+1}=A g^{\star}}
\end{aligned}
$$

The Jacobian matrices appearing in equation 3 are given in Appendix 1.

Pressure Correction Equations

The pressure is considered to be composell of three parts.

$$
\begin{equation*}
P(\xi, \eta, R)=P_{i}\left(\xi, \eta_{0} R\right)+P_{v}(\xi)+P_{c}(\eta, R) \tag{3}
\end{equation*}
$$

P_{i} is the initial guessed pressure field. $P_{V}(\xi)$ and $P_{c}(\eta, R)$ are oneand two-dimensional presaure corrections, respectively.

The velocity components are decomposed as folluys

$$
\begin{align*}
& U=U^{*}+U^{\prime} \\
& V=V^{*}+V^{\prime} \tag{4}\\
& W=W^{*}+W^{\prime}
\end{align*}
$$

U*, V*, W* are the velocity componente which are calculated from the momentum equations. $U^{\prime}, V^{\prime}, W^{\prime}$ are the corrections needed for the continuity equation to be satisfied.

The U-momentum equation is written as follows.

$$
\begin{aligned}
& \frac{\partial}{\partial \xi}\left(\frac{\xi_{z}}{J} \rho^{\prime} U^{*}\left(U^{*}+U^{\prime}\right)+\frac{\xi_{\theta}}{J} \rho\left(U^{*}+U^{\prime}\right) V^{\star}\right)+\frac{\partial}{\partial \eta}\left(-\frac{n^{\prime}}{J} \rho U^{*}\left(U^{*}+U^{\prime}\right)+\frac{n_{\theta}}{J} \rho\left(U^{\star}+U^{\prime}\right) V^{*}\right) \\
& +\frac{\partial}{\partial R}\left(\frac{R_{r}}{J} \rho\left(U^{*}+U^{\prime}\right) W^{*}\right)+\frac{\rho\left(U^{*}+U^{\prime}\right) W^{\dagger}}{R}=-\frac{\partial}{\partial \xi}\left(\frac{\xi_{\varepsilon}}{J}\left(P_{1}+P_{V}\right)\right) \\
& =\frac{\partial}{\partial n}\left(\frac{n_{z}}{J}\left(P_{1}+P_{c}\right)\right)+\frac{1}{R_{t}}\left\{\frac{\partial}{\partial R}\left[\frac{R_{r}}{J}\left[\mu\left(R_{r} \frac{\partial}{\partial R}\left(U^{*}+U^{\prime}\right)+\eta_{z} \frac{\partial W^{*}}{\partial n}\right)\right] .\right]\right. \\
& +\frac{\partial}{\partial n}\left[\mu\left(\frac{n_{\theta}^{2}+n_{2}^{2}}{J}\right) \frac{\partial}{\partial n}\left(U^{*}+U^{\prime}\right)+\frac{\mu}{3} \frac{n_{z}}{J}\left(n_{\theta} \frac{\partial V^{\hbar}}{\partial n}+n_{z} \frac{\partial}{\partial n}\left(U^{*}+U^{\prime}\right)\right]\right. \\
& \left.\left.-\frac{2}{3} \frac{n_{z}}{J}\left(R r \frac{\partial W^{*}}{\partial R}+\frac{W^{\prime}}{R}\right]\right]+\frac{\mu}{R}\left[R_{r} \frac{\partial\left(U^{*}+U^{\prime}\right)}{\partial R}+\eta_{z} \frac{\partial W^{*}}{\partial n^{\prime}}\right]\right\} \text {. }
\end{aligned}
$$

The above equation can be rearranged to give,

$$
\begin{aligned}
& \frac{\partial}{\partial \xi}\left(\frac{\xi_{z}}{J} \rho U^{*} U^{\prime}+\frac{\xi_{\theta}}{J} \rho V^{*} \not U^{\prime}\right)+\frac{\partial}{\partial \eta}\left(\frac{n_{z}}{J} \rho U^{*} U^{\prime}+\frac{n_{\theta}}{J} \rho V^{\prime} U^{\prime}\right)+\frac{\partial}{\partial R}\left(\frac{R_{r}}{J} \rho W \hbar U^{\prime}\right)+\frac{\rho W^{\prime} \not U^{\prime}}{R} \\
& =-\frac{\partial}{\partial \xi}\left(\frac{\xi_{z}}{J} P_{V}\right)-\frac{\partial}{\partial \eta}\left(\frac{n_{z}}{J} P_{c}\right)+\frac{1}{R e}\left[\frac{\partial}{\partial R}\left[\frac{R_{r}^{2}}{J} \mu \frac{\partial U^{\prime}}{\partial R}\right]+\frac{\partial}{\partial n}\left[\frac{\mu}{J}\left(n_{\theta}^{2}+n_{z}^{2}\right) \frac{\partial U^{\prime}}{\partial \eta}+\frac{\mu}{3 J} \frac{\left.n_{z}^{2} \frac{\partial U^{\prime}}{\partial n}\right]}{} \quad+\frac{\mu}{R} R_{r} \frac{\partial U^{\prime}}{\partial R}\right]\right.
\end{aligned}
$$

Writing the above equation in finite difference form and dropping the mixed derivatives and the off diagonal teras we get,

$$
\begin{aligned}
& \frac{1}{\Delta \xi}\left[\frac{\xi_{z}}{J} \rho U^{*}+\frac{\xi_{\theta}}{J} \rho V^{*}\right]_{i+1, j, k} U_{i+1, j, k}^{\prime}+\left(\frac{\rho W \hbar}{R}\right)_{i+1, j, k} U_{i+1, j, k}^{\prime}=-\frac{\partial}{\partial \xi}\left(\frac{\xi_{z}}{J} P_{c}\right) \\
& -\frac{1}{\operatorname{Re}}\left[\left(\frac{R_{r}^{2} \mu}{J}\right)_{1+1, j, k+1}+\left(\frac{R_{r}^{2} \mu}{J}\right)_{i+1, j, k-1}-2\left(\frac{R_{r}^{2} \mu}{J}\right)_{i+1, j, k}\right. \\
& +\left[\frac{\mu}{J}\left(n_{\theta}^{2}+1.333 n_{2}^{2}\right)\right]_{1+1, j+1, k}+\left[\frac{\mu}{J}\left(n_{\theta}^{2}+1.333 n_{z}^{2}\right)\right]_{1+1, j-1, k} \\
& \left.-2\left[\frac{\mu}{J}\left(n_{\theta}^{2}+1.333 n_{z}^{2}\right)\right]_{i+1, j, k}\right]_{i+1, j, k}^{\prime}
\end{aligned}
$$

or

$$
\begin{equation*}
U^{\prime}=A \frac{\partial P_{c}}{\partial \xi} \quad \text { where } A \text { is a known quantity } \tag{5}
\end{equation*}
$$

Using V momentum equation one gets

$$
\begin{equation*}
V^{\prime}=B \frac{\partial P_{C}}{\partial \xi} \quad \text { where } B \text { is a known quantity } \tag{6}
\end{equation*}
$$

From continuity equation, we get

$$
\iint_{n R} \frac{\rho}{\sqrt{1+n_{x}^{2}}}\left(u+\eta_{x} v\right) d R \quad d \eta=\dot{m}=\text { constant }
$$

or

$$
\begin{gather*}
\iint_{n R} \frac{\rho}{\sqrt{1+n_{X}^{2}}}\left(U^{*}+A \frac{\partial P^{\prime}}{\partial \xi}+\eta_{x^{*}} V^{\star}+\eta_{x} B \frac{\partial P^{\prime}}{\partial \xi}\right) d R d n=\dot{m} \\
\frac{\partial P^{\prime}}{\partial \xi}=\frac{\dot{m}-\iint_{n R} \frac{\rho}{\sqrt{1+n_{x}^{2}}}\left(U^{*}+\eta_{x} V^{\star}\right) d R d \eta}{\iint_{n R} \frac{\rho}{\sqrt{1+n_{x}^{2}}}\left(A+\eta_{x} B\right) d R d \eta} \tag{7}
\end{gather*}
$$

To correct the cross-flow velocity component the following velocity potential is introduced

$$
\begin{gather*}
\frac{\partial \phi}{\partial R}=\frac{R_{r}}{J} \rho w^{\prime} \tag{8}\\
\frac{\partial \phi}{\partial \eta}=\frac{\eta_{\theta}}{J} \rho v^{\prime}+\frac{\eta_{z}}{J} \rho u^{\prime} \tag{9}
\end{gather*}
$$

The continuity equation in the transformed plane becomes

$$
\begin{equation*}
\frac{\rho W}{R}+\frac{\partial}{\partial R}\left(\frac{R_{r}}{J} \rho W\right)+\frac{\partial}{\partial \xi}\left(\frac{\xi_{\theta}}{J} \rho v+\frac{\xi_{z}}{J} \rho u\right)+\frac{\partial}{\partial n}\left(\frac{\eta_{\theta}}{J} \rho v+\frac{\eta_{z}}{J} \rho U\right)=0 \tag{10}
\end{equation*}
$$

or

$$
\begin{align*}
\frac{\rho}{R}\left(W^{*}\right. & \left.+W^{\prime}\right)+\frac{\partial}{\partial R}\left(\frac{R_{r}}{J} \rho\left(W^{*}+W^{\prime}\right)\right)+\frac{\partial}{\partial \xi}\left(\frac{r^{\prime}}{\nu_{\theta}} \rho\left(u^{*}+v^{\prime}\right)+\frac{\xi_{z}}{J} \rho\left(U^{*}+u^{\prime}\right)\right) \\
& +\frac{\partial}{\partial}\left(\frac{\eta_{\theta}}{J} \rho\left(v^{*}+v^{\prime}\right)+\frac{n_{z}}{J} \rho\left(u^{*}+u^{\prime}\right)\right)=0 \tag{11}
\end{align*}
$$

or
$\frac{\rho}{R} W^{\prime}+\frac{\partial}{\partial R}\left(\frac{R}{J} \rho W^{\prime}\right)+\frac{\partial}{\partial \xi}\left(\frac{\xi_{\theta}}{J} \rho V^{\prime}+\frac{\xi}{J} \rho U^{\prime}\right)+\frac{\partial}{\partial \eta}\left(\frac{\eta_{\theta}}{J} \rho V^{\prime}+\frac{\eta_{z}}{J} \rho U^{\prime}\right)=-\dot{m^{\prime}} *$
where \dot{m}^{*} can be evaluated from $U^{*}, V^{*}, W^{*}, \rho$. \dot{m}^{*}, hould be zero, if continuity is matiafied.

Using equation: 5, 6, 8, and 9 in 12 one gete

$$
\begin{equation*}
\frac{J}{R} R_{r} \frac{\partial \phi}{\partial R}+\frac{\partial^{2} \phi}{\partial R^{2}}+\frac{\partial^{2} \phi}{\partial \eta}=-\dot{m}^{\star}-\frac{\partial}{\partial \xi}\left(\frac{\xi_{\theta}}{J} \rho \text { B } \frac{\partial P^{\prime}}{\partial \xi}+\frac{\xi_{z}}{J} \rho \text { A } \frac{\partial P^{\prime}}{\partial \xi}\right) \tag{13}
\end{equation*}
$$

In order to derive the Poisaon equation for the pressure, the n-momantum equation is diferentiated with reapect to η and the R-momentum equation with respect to R. Then they are added together. The rasult is

$$
\begin{equation*}
\frac{\partial}{\partial n^{2}}\left(\frac{n}{J} p\right)+\frac{\partial}{\partial R^{2}}\left(\frac{R r}{J} p\right)=c \tag{14}
\end{equation*}
$$

where C contains known quantities.

Status of the Computer Program

The part of the computer program that solvea the three momentum equation has been completed. Coding of the poisson equations is under development.

2. TURBULENCE MODELING OF BOTH HICH REYNOLDS MUMER AND LON REINOLDS NUMDER FLOWS SUBJECTED 10 ROTATLON

Introduction

The three dimensional viacid and turbulent $\boldsymbol{q f f e c t s}^{\text {in }}$ in turbomachinery are mainly caused by the three dimensional boundary layer on blades and waken, annulus wall and hub wall boundary layers, shock-boundary layar interaction, and secondary flow. These viecous and turbulence effects play a dominant role In the atudy of iaproved deaign, better efficiency, off deaign performance, etc.

While appreciable amount of work has been done in underatanding the Inviacid effects in turbomachinery, there has been no investigation related to the blade boundary layers in compressor rotors. Because of the complicated rature of the problea, compressor, turbine and rotor fan blade boundary layers still continue to be one of the least underatood phenomena in turbomachinery. The boundary layers are three dimensional with laminar, transitional, turbulent and separation zones. The flow field is a function of several parameters such as incidence, solidity, blade geometry, hub/tip ratio, camber, radial and chordwise presaure gradients, inlet turbulence, Reynolds number, Rosaby number, Mach number, etc.

A knowledge of the boundary layer characteristics, both mean and turbulence properties, is essential in the prediction of flow behavior in these blade passages. The Penn State group, presently involved in the study of the endwall flows, has initiated recently a detailed study, on both the experimental and analytical point of view, of the blade boundary layers. The experimental survey of the flow is in preparation and will be started very soon. The existing and well proven techniques of single hot wire and x-wire are to be used in measuring the development of boundary layers on turbomachinery
rotor blades. Both measurements of mean and turbulent flow field are to be performed.

Analyais of three dimensional boundary layer is equally complex due to the fact that additional effects auch as Coriolis and Centrifugal forces change the structure of turbulence, thus invalidating most of the turbulence modele that are presently used in computing turbulent boundary layers. In the case of turboanchinery rotor flows, the turbulence is affected mainly by the curvatures of both the blade surface and the atreamines, by the body rotation, and in the case of the boundary layer, by the low Reynolds number effecta. All thase effects make the flow to be highly non-isotropic. Moreover, as it can be seen in the experimental results of Castio and Bradshaw (1976) and, Johnston, Halleen and Lezius (1972), the curvature and/or the rotacion may affect the stability of the boundary layer and an augmentation or suppression of the turbulence may resuit. With such phenomena occurring, it appears that assumptions based on the well known isotropic eddy viscosity concept should fail badly, as the Reynolds stress tensor is not aligned with the mean strain tensor when additional production or destruction of turbulence are coupled with the production due to the shear.

Most of the present models are valid for non-rotating systems. These Include Jones and Launder (1972) for $k-\varepsilon$, Launder, Reece, and Rodi (1975) and Lumley and Khajeh-Nouri (1974) for the full Reynolds stress model. The effects of curvature in high Reynolds number flows have not yet been accounted for properly in the turbulence modeling. We may mention the attempt by Gibson and Rodi (1981). As far as the rotation effects are concerned, very few attempts have been made to introduce such effects in the calculation schemes. However, in the available turbulence models, the effect of rotation is not properly modeled in the transport equations of Reynolds stress or the dissipation rate. Moreover, the boundary layers flows are of the low

Reynolds number type. If we are interested in modeling the turbulence behavior very near the wall, then it is necesaary to introduce this effect in the modeling assumptions.

The formu*ation of the closure problem will vary depending upon the information and accuracy desired. In fact, the calculation procedures for three-dimensional viacous flows require large memory storage and largé computer time to solve the three momentum and continuity equations. Moreover, such codes are still in a phase of development and are generally tested only for simple cases (e.g., laminar flows). Hence, the introduction of turbulence models in these codes necessitate careful attention and simple models may permit control of the stability of the numerical scheme. However, in rotating turbulent flows, zero equation models fail to represent even the gross properties, due to the fact that the length and time scales are assumed empirically. The two-equation model is a compromise between a full Reynolds stress model which needs the resolution of seven more transport equations as complicated as the Navier-Stokes equations themselves, and the empirical models. Therefore, as a first step, attempts are being made to include the effect of rotation in the $k-\varepsilon$ model. Modeling of the rotation effect and the low Reynolds number effect in the turbulence closure equations are described in this report.

A literature survey on both the analytical and the experimental work is given in Appendix 2. Some of the important conclusions of this survey are:

1. Only few calculations are available for the calculation of the three-dimensional boundary layer in rotating frames.
2. No complete Reynolds stress model is available for rotating turbulent flows. Very few attempts have been made to account for the rotation effects
in the $k-\varepsilon$ model, but none are really based on a logical analyais. In fact, the most up to date resulta in modeling are those of Raj (1975) and Hah and Lakehainarayana (1980). The major effort, then, should be given to the analysis of the diesipation rate equation and to the Reynolds strese equations.
3. Detailed measurements providing informations on the effects of both the Roseby and the Richardson number on turbulence are not very numerous. So, every new result would be of great intereat, particularly if the rotation effect can be isolated from the other effects.

Turbulence Equations

The turbomachinery boundary layers and wake must be represented in a relative rotating frame of reference, which includea both the curvature and rotation terms, to eliminate the effect of periodic unsteadiness. The transfomation of the turbulence equations as well as the momentum equations from a stationary coordinate aystem to a rotating coordinate system is quite complicated. Moreover, the necessity for the turbulent model to be as general as possible, indicates that the generalized tensor formulation is the most adequate representation of the set of equations. The equations of the mean and turbulent quantities representing an incompresaible flow are derived in a rotating frame and are presented in conservative form. Continuity equation

$$
\begin{equation*}
\bar{U}_{1}^{1}=0 \quad u \quad u:_{1}^{1}=0 \tag{15}
\end{equation*}
$$

Momentum equations

$$
\begin{equation*}
\left(\rho \dot{\bar{U}}_{i}\right)+\left(\rho \overline{\mathrm{U}}_{1} \bar{U}^{j}\right),_{j}+2 \varepsilon_{i p q} \rho \Omega^{p} \bar{U}^{q}+\rho\left[\left(\Omega_{j} x^{j}\right) \Omega_{i}-\left(\Omega_{j} \Omega^{j}\right) x_{i}\right]=-\left(\overline{\mathrm{p}} \dot{\delta}_{i}^{j}+\rho \overline{u_{i}^{\prime} u^{\prime j}}-p_{i}^{j}\right),_{j} \tag{16}
\end{equation*}
$$

with $P_{i}^{j}-2 \mu S_{i}^{j}$ for Newtonian fluid and $S_{i j}=\frac{1}{2}\left(\bar{U}_{i, j}+\bar{U}_{j, 1}\right)$.

Reynolde stresa equations

$$
\begin{align*}
& +\overline{p^{\top} u_{i, j}^{\prime}} \delta_{k}^{j}+\overline{p^{\top} u_{k, j}^{\prime}} \delta_{i}^{j}-\overline{\rho u_{i}^{\prime} u^{\prime J}} \bar{u}_{k, j}-\overline{\rho u_{k}^{\prime} u^{\prime j}} \bar{u}_{i, j} \\
& -\overline{P_{k}^{j} u_{i, j}^{\prime}}-\overline{P_{i}^{j} u_{k, j}^{\prime}}-2 \rho \Omega^{P}\left(\varepsilon_{i p q} \overline{u_{k}^{\prime} u^{\prime q}}+\varepsilon_{k p q} \overline{u_{i}^{\prime} u^{\prime q}}\right) \tag{17}
\end{align*}
$$

Kinetic energy equation
$\frac{1}{2} g^{i k} \overline{u_{i}^{\prime} u_{k}^{\prime}}=\bar{k}$
$(\rho \dot{\bar{k}})+\left(\rho \bar{k} \bar{U}^{j}\right)_{, j}=-\left(\overline{p^{\prime} u_{i}^{\prime}} \delta^{i j}+\overline{\rho k u^{\prime j}}-\overline{u_{i}^{\prime} P^{i j}}\right), j-\rho \overline{u^{\prime i} u^{\prime j}} \bar{U}_{1, j}-\overline{p^{i j} u_{i, j}^{\prime}}$
where $-\rho \bar{u}^{\prime 1_{u}^{\prime}} \bar{U}_{i, j}=$ production and $\overline{P^{I j} u_{1, j}^{\prime}}=\rho \varepsilon=2 \mu \bar{S}_{i j}^{\prime S^{\prime 1 j}}$

Dissipation equation

$$
\begin{align*}
& -4 V \overline{s^{1 k_{p}} i_{i k}}-8 \mu \varepsilon_{i p q} \Omega^{P} \overline{s^{i\left(k_{u} i_{k}^{q}\right.}} \tag{19}
\end{align*}
$$

The curvature terms are implicitely included in equations 15 through 19. The rotation effect appears both explicitely and implicitely. We are now focusing our analysis on the rotation effect principally.

In the momentum equation, the rotation appears through the Coriolis and Centrifugal forces, but it also affects implicitely the results through the Reynolds stresses. In fact, looking at equation 17, these Reynolds stresses
are explicitly affected by the Coriolis forces, but are also implicitiy affected by the rotation through the triple velocity correlations, the pressure velocity correlations, the pressure strain correlation, the production by the atressea themselves, and the diasipation.

Following these remark it is evident that a full Reynolde atrese model should give better reaults than the models based on an isotropic eddy viscoaity hypothesis, particularly in three-dimenaional flows.

However, the difficulty to handie solution procedures for three dimensional turbulent flows and the particular problem of modeling the dissipation equation lead us, in a firsc step, to direct our efforts in developing a $k-\varepsilon$ model for both high and low Reynolds number flows. This model necessitates the resolution of two transport equations for k and ε, and the Reynolds stresses are related to the mean atrain through an eddy viscosity. The present k-E model cannot account for the anisotropy of the turbulence which exiats in the boundary layer around a blade. A modification to the relation giving the eddy viscosity is presently under development, in order to include the effects of the rotation.

The rotation also appears explicitly in the equation for the dissipacion rate ε. It seems [Hanjalic and Launder (1978)] that some of the major problems in caiculations come from the modeled equation for the dissipation rate ε. Hence, there is a need for better analysis of this equation. Following Tennekes and Lumley (1972), we may develop a qualitative analysis of the equations k and ε in order to provide the magnitude of each term and then to derive a model for high Reynolds number and low Reynolds number flows.

Qualitative Analyals of k and ε Equatione

Equation 18 represents the evolution of the kinetic energy k. It is interesting to note that the rotation tera vanishes identically, and this equation is independent of the coordinate syatem. It is clear, however, that even though the Coriolis forces have no direct effects in this equation, the rotation affects the kinetic energy principally through the production by the mean strains and also through the disaipation term. The production term depends on how the Reynolds stresses are represented and the dissipation term is deacribed by equation 19, which is the exact form of the equation of evolution for the disaipation rate. Different authors have pointed out the difficulty in solving this equation, and one of the nost suitable methods to simplify the equation is to use the high Reynolds number approxisation. With thia asaumption, terme which are domisant at low Reynolds number are eliminated. At this point, we may note that equation 19 is not independent of the transformation from non-inertial frame of reference to a rotating frame.

In Tennekes and Lumley (1972), it is shown how orders of magnitude may be assigned to various correlations appearing in these equations. Instantaneous quantities appearing in the correlations are of two types, belonging either to the energy containing range of eddies, or to the dissipation range. The former has characteristic frequency u^{\prime} / ℓ (where u ' is a fluctuating velocity scale, while ℓ is a length scale of the gross structures). The dissipation rate is of order u^{\prime} / l. The latter has characteristic frequency v / η (where v and η stand for the Kolmogorov velocity and length scales), with $v / \eta \sim$ $\operatorname{Re}^{1 / 2} u^{\prime} / \ell\left(\right.$ with $\left.R e=u^{\prime} \ell / V\right)$. The correlation coefficient between two quantities from the same range may usually be taken as unity, but the coefficient between two quantities from different range is of order of the time scale
ratio $n / v / h / u^{\prime} \approx \operatorname{Re}^{-1 / 2}$. In addition, we may make uee of the more faniliar fact that derivatives which are external to correlations correspond to acalea in the energy containing range, while derivativen within the correlation correspond to dissipation scales. We wish to apply this sort of reasoning to the equations for the kinetic energy k and its dissipation rate ε. Applied to the dissipation equation it is particularly useful, because the dynanice of these quantities is dominated by the saall scales, and interacts only weakly with the energy containing eddies. Proceeding in this way, we may provide an order of magnitude for each term of equations 18 and 19.

Kinetic Energy Equation (equation 18)

The convective terma $(\rho \bar{k})+\left(\rho \bar{k} \ddot{U}^{j}\right), j$ are of the ame order as $\rho \frac{\left(u^{\prime}\right)^{3}}{l}$ The production term $\left(-p u^{\prime 1} u^{\prime J} \bar{v}_{1, j}\right)$ is of order $\rho \frac{\left(u^{\prime}\right)^{3}}{\ell}$
The dissipation terim ($-p \varepsilon$) is of order $\rho \frac{\left(u^{\prime}\right)^{3}}{\ell}$
In the "diffusion" term $-\left(\overline{p^{\prime} u_{i}^{\prime}} \delta^{1 j}+\overline{\rho k u^{\prime j}}-\overline{u_{i}^{\prime} P^{I J}}\right),_{j}$, the two first terms are of order $\rho \frac{\left(u^{\prime}\right)^{3}}{\ell}$, while the last one, representing the diffusion by the molecular processes, is of order $\rho \frac{\left(u^{\prime}\right)^{3}}{l} \mathrm{Re}^{-1}$ and is negligible for high Reynolds number flows.

Diseipation Equation (equation 19)

The convective terms $(\rho \varepsilon)+\left(\rho \varepsilon \bar{U}^{j}\right), j$ are of the same order $-\rho \frac{\left(u^{\prime}\right)^{4}}{\ell^{2}}$.
The terms involving derivatives of mean atrain $-4 \mu \overline{s_{i k}^{\prime} u^{j j}} \bar{s}_{j j}^{i k}$ is of the order $\rho \frac{\left(u^{\prime}\right)^{4}}{l^{2}} \mathrm{Re}^{-1}$.

The terms involving mean derivatives and rotation

$$
-4 \mu \bar{U}_{j}^{j} \overline{s^{\prime i k}} \overline{u_{i, j}^{\prime}}-4 \mu \overline{s^{1 k_{V}} j_{k}^{j}}\left(\bar{U}_{i, j}+2 \varepsilon_{i p j} \Omega^{p}\right)
$$

 and then we write

$$
\begin{aligned}
& \overline{s^{I k}} u_{i, j}=\frac{\varepsilon}{3 v}\left(\delta_{j}^{k}+\alpha \sqrt{\frac{\bar{v}}{\varepsilon}} s_{j}^{k}\right) \\
& \overline{s^{\prime I k_{u}}{ }_{k}^{j}} \approx \frac{\varepsilon}{3 v}\left(\delta^{i j}+\beta \sqrt{\frac{\bar{v}}{\varepsilon}} s^{i j}\right)
\end{aligned}
$$

and aince the mean flow is considered incompreastble the only terme which contribute are the cecond teras in the last two relations. Therefore, the firat term involving mean derivatives is of the order $\rho \frac{\left(u^{\prime}\right)^{4}}{\rho^{2}} R^{-1 / 2}$ and the second term is of order $\rho \frac{\left(u^{\prime}\right)^{4}}{\ell^{2}} R^{-1 / 2}\left(1+2 \frac{\Omega \ell}{u^{\prime}}\right)$.

The teras involving the triple correlation between the fluctuating derivative $-4 \mu s^{s^{1 k_{u}}}{ }_{i, j} u_{k}^{j}$. Following once again Lumley (1970) it is of the order

$$
\mu\left(\frac{\varepsilon}{v}\right)^{3 / 2}\left(B+C\left(s_{i k} s^{i k} \frac{v}{\varepsilon}\right)\right)
$$

Therefore it is of order $\rho \frac{\left(u^{\prime}\right)^{4}}{\ell_{1}^{2}} R^{\frac{1}{1 / 2}}\left(B+R e^{-1}\right)$.
The terms involving the correlation with pressure fluctuations

$$
-4 v \overline{s^{1 k_{p}} i_{i k}}
$$

We may write a poisson equation for this term and then the solution of the equation is as follows: [Chou (1945)]

$$
\begin{align*}
& \nu \overline{s^{\prime i k}{ }_{p}!_{i k}}=\frac{\mu}{2 \pi} \iiint\left[\bar{U}_{(1), n}^{m} \overline{\left(u_{(1)}^{\prime n} s^{\prime I k}\right)}\right]_{(1), k i} \frac{{ }^{d V_{(1)}}}{X} \\
& +\frac{\mu}{2 \pi} \iiint\left[u^{u^{\prime \prime}(1)}{ }^{u(1)}{ }^{\prime n} s^{r^{1 k}}\right]_{(1), \text { mnki }} \frac{d v_{(1)}}{x} \\
& +\frac{v}{4 \pi} \iint\left[\frac{1}{x} \frac{\partial\left(\overline{P^{\prime}}(1), k^{\prime} S^{\prime 2 k}\right)}{\partial n(1)}-\overline{P^{\prime}(1), k^{\prime^{1 k}}} \frac{\partial 1 / X}{\partial n(1)}\right] d S \tag{1}
\end{align*}
$$

This solution introduces higher leval of corralation and then, at this level of closure assumption we may neglect chis term.

The terma involving the correlation between the derivatives of the fluctuating etrain

$$
-4 \mu v{ }^{n j} s_{j}^{1 k_{j}} s_{i k, n}^{1} \sim\left(\frac{\varepsilon}{v}\right)^{3 / 2}\left(A+C\left(s_{i k} s^{1 k} \frac{\nu}{\varepsilon}\right)\right)
$$

Therefore it is of order

$$
\rho \frac{\left(u^{\prime}\right)^{4}}{e^{2}} R^{\frac{1}{R^{\prime}}}\left(A+R^{-1}\right)
$$

The "diffusion" terms $-\left(\overline{\rho \varepsilon U^{\prime J}}\right)_{j}+g^{n j} \sum_{g_{n j}}$. The first term is of order $\rho \frac{\left(u^{\prime}\right)^{4}}{\ell^{2}}$ while the last one in of order $\rho \frac{\left(u^{\prime}\right)^{4}}{\ell^{2}} \operatorname{Re}^{-1}$. This order of agnitude analyais is sumarized in Table 1.
k- ε Model for High Reynolds Number Flows
High Reynolds number flows occur generally far from walls, in that case the viscous diffusion may be neglected in equation 18 , then only the diffusion term ($\overline{\mathrm{k} u^{\prime J}}+\overline{p^{\prime} u^{\prime J}}$), needs to be modeled. For this term we follow the proposition of Jones-Launder and we write (in generalized tensor notation)

$$
\left(\overline{p u^{\prime j}}+\overline{p^{\prime} u^{\prime j}}\right)_{, j}=-g^{\ell j}\left(\frac{\mu_{T}}{\sigma_{k}} \bar{k}, \ell\right)_{, j}
$$

The production term is defined through the law of eddy visconity.
In regard to the dissipation equation, we may neglect all the terms of order of magnitude less than $\rho \frac{\left(u^{\prime}\right)^{4}}{\ell^{2}}$; therefore, the only terms left are the convective terms, the "turbulent diffusion" and the production and dissipation by the correlations of fluctuating derivatives (Table 1). These two terms have been derived by Lumley and Khafeh-Nouri (1974). At this point
Table 1. Order of Magnitude of Terns in the Dissipation Equation

Physical Nature	. Tern	Order of Mapaltude
Convection	$(\rho \dot{\varepsilon})+\left(\rho \varepsilon \overline{\mathbf{U}}^{\mathbf{j}}\right), j$	$\rho \frac{\left(u^{0}\right)^{4}}{e^{2}} \times 1$
Diffusion	$g^{n j} \mu \varepsilon_{, n j}-\left(\rho \varepsilon u^{\cdot j}\right), j$	$\rho \frac{\left(u^{0}\right)^{4}}{i^{2}} \times\left(1-R^{-1}\right)$
Production by Mean Strain Derivatives	$-4 \mu\left(\overline{s_{i k}^{i} u^{\prime j}} s_{j}^{1 k}\right)$	$\rho \frac{\left(u^{i}\right)^{4}}{e^{2}} \times R e^{-1}$
Production by Mean Strain and Rotation		$\rho \frac{\left(u^{0}\right)^{4}}{\ell^{2}} \times R^{-1 / 2}\left(1+\frac{\Omega l}{u^{0}}\right)$
Production by Fluctuating Strains	$-\overline{s^{i k}{ }_{u, j}^{\prime} u_{i k}^{\prime j}}$	$\rho \frac{\left(u^{6}\right)^{4}}{l^{2}} \times l^{1 / 2}\left(1+e^{-1}\right)$
Decay Due to Fluctuating Strain	$-4 \mu v_{g}^{n j} S_{j,}^{1 k_{j}} S_{i k, n}^{\prime}$	$\rho \frac{\left(u^{\prime}\right)^{4}}{l^{2}} \times e^{1 / 2}\left(1+e^{-1}\right)$

of modeling, assumptions to get these two terms are widely based on physical and dimenaional analysia. In fact, for high Reynolds number flows, the dissipation processes occur almost only at high wave numbers (e.g., the smallest structures); therefore, an isotropy hypothesis may represent the amall structures quite well. Moreover, looking at the kinetic energy apectrum we may assume that three zones are defined, the production zone (low wave numbers), the inertial zone, and the dissipative zone (high wave numbers). By this way, a time scale based upon the time that the gross structures transfer their energy to the dissipative structures may be defined. This time scale is of the order of k / ε. So, the processes are simplified, and the ε equation may be written in the transport form where the sources and dissipation terme are relatod to those existing in the k equation, by the tise scale. Then following Lumley and Khajeh-Nouri (1974), the equation 19 reduces to

$$
(\dot{\rho})+\left(\rho \varepsilon \bar{U}^{j}\right)_{, j}+\left(\overline{\rho \varepsilon u^{\prime J}}\right)_{,_{j}}=c_{\varepsilon_{1}} \frac{\varepsilon P}{k}-c_{\varepsilon_{2}} \rho \frac{\varepsilon^{2}}{k}
$$

The "difrusion termi" may be approximated by a gradient formulation (JonesLaunder). Then with the formulation for the eddy viscosity, the model is complete; the constants $\sigma_{k}, \sigma_{\varepsilon}, C_{\varepsilon_{1}}, C_{\varepsilon_{2}}$ appearing in equation 20 are those. found by Jones and Launder (1972)

$$
\begin{gather*}
(\rho \dot{\bar{k}})+\left(\rho \bar{k} \bar{U}^{j}\right), j=g^{\ell j}\left(\frac{\mu_{T}}{\sigma_{k}} \bar{k}, \ell\right)_{, j}+P-\rho \varepsilon \\
(\rho \dot{\varepsilon})+\left(\rho \varepsilon \bar{U}^{j}\right), j=g^{\ell j}\left(\frac{\mu_{T}}{\sigma_{\varepsilon}} \varepsilon_{\ell \ell}\right)_{l_{j}}+c_{\varepsilon_{1}} \frac{\varepsilon}{k} P-c_{\varepsilon_{2}} \frac{\varepsilon^{2}}{\bar{k}} \tag{20}
\end{gather*}
$$

The formulation for the eddy viscosity proposed by Jones-Launder is given by,

$$
\mu_{p}=c_{\mu} \rho \frac{k^{2}}{\varepsilon}
$$

This formula assumes a local equilibrium between the production and the dissipation of turbulence. But in the case of a rotation, the production ard the dismipation evolve differently because of the differences in the range of wave number the two processes are occurring. As the production is . principally located in the low wave number zone, the effect of the rotation should be more important on the production than on the dissipation which can be seen at nearly isotropic. Therefore, the relation giving the eddy viscosity should be corrected in the case of a rotation. This is being presently carried out.

We may remark at this point that no direct effect of rotation appears in the dissipation equation derived for high Reynolds number flows. That can be related to the weak aniantropy of the dissipation in that case. The analysis given above has been carried out earlier, except for its representation in a generalized tensor form.
k-E Model for Low Reynolds Number Flows
First of all, we may want to define what we call a "low Reynolds number flow'. If we are interested on the statistical properties of the turbulence, it is useful to derine local parameters, such as local Reynolds number based on the turbulent quantities, Richarison numbers, etc. The Reynolds number which is interesting to characterize the turbulence behavior is based on the kinetic energy and its dissipation rate and is written as follows:

$$
R_{T}=\frac{k^{2}}{v e} \sim R e
$$

The fact that a flow will be of the high or low Reynolds number type will depend on the value of R_{T}.

For low Reynolda number flow the viacoum diffumion may not be neglected, moreover very near a wall the dimipation in not inotropic. Many of the terma we were naglecting my be important very near a wall. Therefor wa must go back to equation: 18 and 19 and analyze the terme which ware neglected before.

Equation for the Turbulent Kinatic Energy k

The production and turbulent diffuation terms are modeled aimilar to the high Reynold number and the effect of low Reynolda number will appear through the addy vinconity. The only tarm which neade to be modeled in the

Generally the value of the diasipation at the wall is different from zerc. Following the argument of Jones and Launder (1972), it is uneful to make the disaipation e equal to zero at the wall for improvement in calculation. It is necesmary, then, to know the value of the disaipation at the wall. We may write the kinetic energy equation at the wall, then equation 18 becomes

$$
{(p e)_{(p)}}=e^{\ell j}\left[\left(\mu+\frac{\mu_{9}}{\sigma_{k}}\right) \bar{k}_{\ell l}+\mu\left(\overline{u^{\prime \prime} u_{l}^{\prime}}\right)_{1}\right]_{, j(p)}
$$

And introducing the following lypothesis:

1. $\mu_{T}=0$ at the wall
2. If y is the normal direction to the wall, we may write $u^{\prime}=a(c) y ; v^{\prime}=b(t) y^{2} ; w^{\prime}=c(t) y$. Therafore very near the wall. ($y^{+} \leq 8$) the kinetic energy is $k=\left(a^{2}+c^{2} V_{2} * y^{2}\right.$; then the first derivative of k is zero at the wall, while the second derivative is a constant.
3. $\mu_{T}-C_{\mu} F_{\mu} \rho \frac{k^{2}}{\varepsilon}$ with $\varepsilon \sim k^{3 / 2} / \ell$ and ℓ is a mixing length then $\mu_{T} \sim y^{2}$ and the first derivative of μ_{T} should be zero, while the second derivative should be conatant. Then ($p e)_{(p)}=g^{l j}\left(\frac{5}{3} \mu \bar{k}, \ell_{j}-\mu \nu_{T, i j} s_{R}^{I}\right)(p)$.

Moreover, if we use the correction function F_{μ} for the sublayer in the relation for μ_{T}, it appeare that we may neglect the second term. Therefore $(\rho \varepsilon)_{(p)} \approx s^{\ell j} \frac{5}{3} \mu F_{i f}(p)$ which is a constant.

This can be written, following Jones-Launder (1972), as

$$
{ }_{(p \varepsilon)_{(p)}}=\frac{10}{3} \mu_{g^{\ell j}} k_{\rho l}^{1 / 2} k_{\rho j}^{1 / 2}
$$

Which can be aeen as a generalization to the formulation proposed by Jones and Launder for a two dimenaional boundary layer.

$$
(\rho \varepsilon)_{(p)}=2 \mu\left(\frac{\partial k / 2}{\partial y}\right)^{2}
$$

The kinetic energy equation reduces then to

$$
\begin{equation*}
(\rho \bar{k})+\left(\rho \bar{k} \bar{u}^{1}\right)_{\cdot j}=g^{\ell j}\left(\left(\mu+\frac{\mu_{T}}{\sigma_{k}}\right) \bar{k}_{\ell \ell}\right)_{\cdot j}+p-\rho \varepsilon-\frac{10}{3} g^{\ell j} \mu_{l} \bar{k}_{l}^{1 / 2} \bar{k}_{j}^{1 / 2} \tag{21}
\end{equation*}
$$

Equation for Disaipation Rate

The effect of rotation may be important in low Reynolds number flows (near a wall) unlike the high Reynolds number case (particularly in the case of turbomachines). This effect must be modeled in the equation. But this term is not the only one to be retained in the equation, some other terms which are related to the anisotropy of the disaipation at low Reynolds numbers are of the same Importance.

Two kinds of terms may be discerned, which are important at low Reynolds numbers (see Table 1 and equation 19).

1. Terms of Order $R_{T}^{-1 / 2}$

These terms come from the Interaction of the dissipation with the mean gradients and with the rotation velocity. They also arise from the terms representing the production of velocity gradients by stretching by fluctuating strain rate and representing the destruction of these gradients by viscosity on the other hand.

The terme related to mean quantitiea are

$$
-4 \mu\left[\bar{u}_{i k}^{J} \overline{s^{\prime} k_{u_{1, j}^{\prime}}}+\left(\bar{u}_{1, j}+2 \varepsilon_{i p j} n^{p}\right) s^{1 k_{u}^{\prime}} \frac{1}{k}\right]
$$

Then following Lumley (1970) thin term can be reduced to:

$$
=\frac{4}{3} \mu \sqrt{\frac{E}{v}}\left[\alpha \bar{U}_{j}^{j} s_{j}^{k}+\beta\left(1+2 \frac{\varepsilon_{i p j} n^{n^{P}}}{\bar{u}_{1, j}}\right) \bar{u}_{1, j} s^{1 j}\right]
$$

In the cane of a turbomehinary with $\Omega=\left(0,0, \Omega_{3}\right)$, the coafficient $\left(1+2 \frac{\varepsilon_{1 p 1} \Omega^{R}}{\bar{u}_{1, j}}\right)$ may be aliuplified. In fact this term appears to be important only very near a wall. Therefore, in this region the boundary layer approximintions are valid and the coofficient may be approximated uning the only velocity gradiente which are important. We may, then define a gradient Richardson number as followe:

$$
R_{1 c}=-2 \frac{\varepsilon_{i p i} \Omega^{P}}{\bar{U}_{1, j}}
$$

Hence,

$$
1+2 \frac{\varepsilon_{i p j} \Omega^{p}}{\bar{u}_{i, j}}=1-R_{i c}
$$

If we assume that a relation of the gradient type exists between the Reynolds atress tensor and the strain tensor and that the energy spectrum is not different from an equilibrium one, then we may assume that this term is proportional to the production, then the terms related to maan quantities can be proportional to

$$
\frac{4}{3} \frac{E}{k} p F_{1}\left(R_{T}, R_{1 c}\right)
$$

The terme related to fluctuating etrain rate are

$$
-4 \mu s^{\prime I k} u_{i, j}^{\prime} u_{j}^{j}-4 \mu v_{g}^{n j} s_{j}^{1 k} s_{i k, n}^{\prime}
$$

Following Lumley (1970) we approximate these two terms as follows:

$$
\begin{aligned}
& s^{1 k_{u_{1, j}^{\prime}}^{u} j_{k}^{j}} \approx\left(\frac{\varepsilon}{v}\right)^{3 / 2}\left(B+a_{1} s_{i k} s^{1 k} v / \varepsilon\right) \\
& s^{n j} \overline{s_{j}^{!}{ }_{j}^{1 k} s_{i k, n}^{\prime}} \approx\left(\frac{\varepsilon}{v}\right)^{3 / 2}\left(A+a_{2} s_{1 k} s^{i k} v / \varepsilon\right)
\end{aligned}
$$

Then the part which is of order $R_{T}^{-1 / 2}$ may be approximated by:

$$
4 \frac{\varepsilon}{k} P F_{2}\left(R_{T}\right)
$$

So the total contribution of terms of order $R_{T}^{-1 / 2}$ may be reduced to:

$$
\frac{\varepsilon}{k} P F\left(R_{T}, R_{l c}\right)
$$

where the function F must be eatablished.
2. Terms of Order $\mathrm{R}_{\mathrm{T}}^{-1}$

There are two terms of this kind, the first one represents "exactly" the diffusion processes by molecular viscosity and does not need to be modeled; the second term is $-4 \mu \overline{s_{i k}^{\prime} u^{\prime J}} S_{S_{j}}^{i k}$. We may note that the correlation between $S_{i k}^{\prime}$ and $u^{\prime J}$ should be weak because each term belongs to a different range of wave number. A first approximation then, is to consider the term $\overline{S_{i k}^{\prime} u^{\prime j}}$ as a flux of $S_{i k}^{\prime}$ by $u^{\prime j}$ and to introduce the gross hypothesis that this flux is related to the gradient of the mean strain and then:

$$
-4 \mu \overline{s_{i k}^{\prime} u^{\prime j}} s_{\rho_{j}}^{1 k} \approx 4 \mu \nu_{T} C_{\varepsilon_{3}}^{\prime} g^{\ell j}\left(S_{1 k, \ell} s_{j j}^{1 k}\right)
$$

However this term should be of little importance in the major part of the boundary layer.

It is rearkable that this term can be considered as a generalization of a term proposed by Jones and Launder (1972) for the calculation of a two dimansional boundary layer. Therefore, the dissipation equation reduces to:

$$
\begin{align*}
(\rho \varepsilon)+\left(\rho \varepsilon \tilde{u}^{-j}\right)_{\cdot j} & =\varepsilon^{\ell j}\left[\left(\mu+\frac{\mu_{I}}{\sigma_{\varepsilon}}\right) \varepsilon_{, \ell}\right]_{\cdot j}+c_{\varepsilon_{1}} F_{\varepsilon}\left(R_{T}, R_{i c}\right) \frac{\varepsilon}{k} p \\
& +c_{\varepsilon_{2}} \rho \frac{\varepsilon^{2}}{k}+c_{\varepsilon_{3}} \mu \nu_{T} g^{\ell j}\left(s_{i k, \ell} s_{i j}^{i k}\right) \tag{22}
\end{align*}
$$

The constants $\sigma_{\varepsilon}, C_{\varepsilon_{1}}, C_{\varepsilon_{2}}$ are the aame as the ones for the high Reynolds number case. The constant $\mathrm{C}_{\varepsilon_{3}}$ reduces to the value 2 , in the case of a two dimenaional boundary layer [see Jones-Launder (1972)]. Then, the damping function F_{E} must be established. According to the analysia given above F_{E} should be a linear function of the Richardeon number and en exponential function of the Reynolde number. Then the form of F_{ε} should be:

$$
F_{\varepsilon}\left(R_{T}, R_{i c}\right)=1-f\left(R_{T}\right)\left(1-\alpha R_{i c}\right)
$$

Eddy Viscosity Law

We need a formulation to relate the Reynolds stress tensor to the strain tensor, through an eddy viscosity coefficient. This hypothesis means that [Tennekes-Lumley (1972)] the gross structures get the tendency to be oriented with the principal axis of the strain tensor to extract more energy to the mean field, and that the turbulent structures are approximately convected within the mean velocity direction. Therefore, the main hypothesis to derive the viscosity law assumes that the turbulent viscosity is isotropic. But for three dimensional flows and particularly for boundary layer flows, the velocity vector \vec{U} and $\vec{\nabla}$ are not aligned in general. Therefore, the
isotropic eddy viscosity is not adapted to predict the behavior of the Reynolds etresees. The best way to avoid this problem would be to olve the complete et of Reynolds etresses equations. However, es first step attempts will be made to derive an expression for eddy viscosity. In fact, in its most general form the eddy visconity is a fourth order tensor, and for the particular case where only two directions in the flows are of equal importance (that is the case for blade boundary layers) we may introduce two different eddy viscosity coefficients which can take account for the non-isotropy of the flow. This has been done for a mixing length hypothesis by Koosilin and Lockwood (1974). Using this concept, the anisotropy introduced by the rotation could be included in the definition of the viscosity law.

An attempt is presently under development to take account for the effect of the rotation in the eady viscosity law.

Conclusion

The analysis of the kinetic energy and the dissipation equation has been performed, and some remarks can be made at this time.

Firstly, an order of magnitude analysis of equations 18 and 19 showed that the rotation does not affect the dissipation rate explicitly in high Reynolds number flows. In fact, in such flows the dissipation is nearly isotropic and it is logical that the rotation does not affect e because of the analogy of each direction. At low Reynolds number, the dissipation becomes non-isotropic, both the effects of Reynolds number and Richardson number may be important in this case.

Secondly, it appears that the effects of rotation are more important on the production terms than on the others. In fact, if we exarine equation 17 it is easy to show that the keynolds stresses may be greatly affected by the rotation while the kinetic energy and its dissipation rate are not so much affected. Then it is evident that the most important relation which controls the calculation is the eddy viscosity coefficient.

Thirdly, we my make another remark which is also related to the preceeding coment. The analyais of the disaipation equation shows that the effect of rotation should affect the "production" term instead of the "dissipation" term in the equation for ε. Moat of the models at the present time account for the rotation through the "dissipation" term (ace Launder, Priddin, Sharme (1977); Howard, Patankar, Bordynuik (1980)]. Nevertheless, our analysis seems to be in accord with the remark which was made by Launder et al. (1977) that the corrections might have been better made on the "production" term of the ε equation instead of on the decay part.

A computer code has been written to check the model presented here, in simple cases auch as flat plate boundary layers, boundary layers on rotating cylinder. The program is based on the Patankar-Spalding procedure (1970) and is used to solve the parabolic transport equations for the velocities, the kinetic energy and its dissipation. It is operational for two dimensional boundary layers on flat plates, and is being modified to calculate boundary layers on rotating cylinder. These calculations are performed in order to check the assumptions made for low Reynolds number modeling. Then the model could be included in the three-dimensional computer codes developed at Penn State.

3. MEASURPMENTS OF THE THREE DTMENGIONAL FLON IMSIDE AN AXIAL FLOW COMPRESSOR ROXOR PASSAGE

Experimantal Prorram

The measurements reported in this report ware performed using the Axial Flow Compressor facility in the Department of Aerospace Engineering.

The flow.is aurveyed acrose the ontire passage at ax axial locationa (one upatrean, four inside the rotor passage, and one downstream) and at five radial locations. Measurementa wore taken at five radial locationa ($R=0.58,0.67,0.75,0.83,0.918$) at each of the following axial stations inside the pasaage: $Z=-0.5$ (upatream), $0.26,0.5,0.73,0.97$, and 1.06 .

The data inside and downatream of the rotor were acquired with a fivehole probe, rotating with the rotor. The data upatream were acquired with a atationary five-hole probe. All the measurements ware taken at the deagn flow coefficient $\phi=0.56$.

The results of the measurements are compared with the predictions from the Katsanis and McNally (1977) computer program.

Typical Results

A small sample of the experimental data and some comparisons with the predictions from the Katsanis and McNally (1977) program are presented here.

The measured and predicted blade to blade distributions of the axial (WZ), tangential (WT) and radial (WR) relative velocity at $R=0.918$ (near the tip) and at $Z=0.26,0.5,0.73,0.97$ are shown in Figures 1 through 4. All the components of velocity are nomalized with respect to the tip speed velocity. The predictions for the axial velocity are quite good at the
lant two axial stations (1.e., $2=0.73,0.93$). At the firat two axial atations, the agreement is only reasonable and the alope of the predicter and maazured profilea are of opposite sign.

The prediction for the tangential velocity are quite good except at the last axial station $2=0.97$. Nevertheless, at this location the shape of the predicted and meaured profiles are strikingly identical. The difference in magnitude comen from the fact that the code cannot predict the flow near the trailing edge accurately. This is because it cannot incorporate the Kutta condition correctly, since it is based on an inviscid analysis. The program does not have the ability to predict blade to blade distributions of radial velocity. The predicted radial velocity profiles that are shown in Figures 1 through 4 are computed by assuming that the meridional angle calculated in the S_{2} surface solution is constant along the entire blade passage.

The measured blade to blade distributions of the relative total pressure and the static pressure are shown in Figures 5 through 8. Both the total and the static pressure are normalized by $1 / 2 \rho U_{t}^{2}$.

The static pressure profiles are fairly linear with the loading decreasing as we go from $Z=0.26$ to $Z=0.97$.

The relative total pressure profiles are almost flat. The mean value of relative total pressure is almost constant. The difference of the mean relative total pressure at $Z=0.26$ and $Z=0.97$ is less than 1 percent. This indicates that the losses in the inviscid part of the flow through the blade passage are very amall.

The measured profiles of the axial, tangential, and radial relative velocity downstream of the rotor are shown in Figures 9 through 13. The axial location is not the same for different radial locations due to the geometrical constraint on the probe.

The velocity defect is maximum at the location $Z=1.049, R=0.587$ and minimum at the location $2=1.085, R=0.918$.

The radial velocity is leas than 10 percent of the tip apeed velocity at all locations and mostly outwards. This agrees well with masuremente taken by Dring at al. (1981) and Davino and Lakohminarayana (1981). Small inward radial velocity at the pressure side region can be seen at the radial locatione neereat to the hub and casing while in the mid-apan region the radial velocity is everywhere outwarda.

Inward radial velocity at the presaure side region is induced by the shed vorticity, Shed vorticity reaulta from the gradient in blade loading across the apan. Since the loading in the mid-span is relatively uniform, there is no atrong shed vorticity in that region so inward radial velocity cannot exist. This justifies the present experimantal reaults.

The measured profiles of the relative total pressure and the static presaure downatream of the rotor are ahown in Figures 14 through 18. As it was expected the relative total presure profilea follow the behavior of the axial and tangential velocity profiles.

The static pressure profiles show an increase of the static pressure in the wake region. This comes in contrast to the classical assumption of constant static pressure acrose the wake. Similar observation has been reported by Lakshminarayana and Javino (1980).

4. PAPERS, THESES, REPORTS PUBLISHED DURING SUKY 1981 - DECEMBER 1981

B. Lakahminarayana and T. R. Covindan, "Analyeis of Turbulent Boundary Layer on Cancade and Rotor Blades of Turbomachinery," AIMM Joumal, Vo1. 19. No. 10, pp. 1333-1341, October 1981.
C. Hah, "Three Dimensional Structuras and Turbulence Closure of the Wake Developing in a Wall Shear Layer," AIM Papar 81-1269, 1981.

REPERENCES

Alcaraz, E. (1977), "Contribution a 1^{\prime} etuie d'un jet plan turbulent evoluant le long d'une paroi convexe a faible courbure," These d'Etat, Univ, Claude Bernard, Lyon.

Arand, A. K. and Lekghainarayana, B, (1975), "Three-dimenaional boundary layer in a rotating helical channel," Joumel of Fluida Encineering, Vol. 97, No. 2.

Anand, A. K. and Lakshminarayana, B. (1978), "An experimental atudy of three-dimensional turbulent boundary layer and turbulence characteristics inside a turbomachinery rotor passage," Joumal of Engineering for Power, Vol. 100.

Arzoumanian, E., Fulachier, L., and Dumas, R. (1979), "Experimental inventigation of the three dimenaional turbulent boundary layer on an axially rotated cylinder," Second International Symposive on Turbulent Shear Flows, The Pennaylvania State University.

Bertoglio, J. P. (1980), "Homogeneous turbulent field within a rotating frame," AIAA 13th Fluid and Plagma Dynamica Conference.

Bertoglio, J. P., Charnay, G., and Mathieu, J. (1980), "Effets de la rotation sur un champ turbulent cisaille: application au casdes turbomachines," Journal de Mecanique Appliquee, Vol. 4, No. 4.

Biesonnette, L. R. and Mellor, G. L. (1970), "Experiments on the behavior of an axisymaetric turbulent boundary layer with a audden circumferential strain," Journal of Fluid Mechanice, Vol. 63, Pt. 2, pp. 269-413.

Bradahaw, P. (1969), "The analogy between stream curvature and buoyancy in turbulent shear flows," Joumal of Fluid Mechanics, Vol. 36, Pt. 1, p. 177.

Bradshaw, P. (1977), "Compressible turbulent shear layers," Annual Review of Fluid Mechanics.

Briley, W. R. and McDonald, H. (1.979), "On the structure and use of inearized block implicit schemes," Journal Comp. Phys., Vol. 34, pp. 54-73.

Castro, I. P. and Bradshaw, P. (1976), "The turbulence structure of a highly curved mixing layer," Journal of Fluid Mechanics, Vol. 73, pp. 265-304.

Chou, P. Y. (1945), "On velocity correlations and the solutiona of the equations of turbulent fluctuation," Quarterly of Applied Mathematics, Vol. 3, No. 38.

Cousteix, J. and Aupoix, B. (1979), "Comparison of various calculation methods for three dimersional turbulent boundary layer," Second Symposium on Turbulent Shear Flows, The Pennsylvania State University.

Daly, B. J. and Harlow, F. H. (1970), "Transport equations in turbulence," The Physice of Fluids, Vol. 13, No. 11.

Davino, R. and Lakshminarayana, B. (1981), "Characteristics of mean velocity in the amulus wall region at the exit of turbomachinery rotor passage," AIAM Paper 81-0068 (to be published in AIAA Journal, 1982).

Dring, R. P., Joslyn, H. D., and Hardin, L. W, (1981), "An investigation of axial compressor rotor aerolynamics," ASME Paper 81-GT-56.

Gibson, M. M. (1978), "An algebraic stress and heat-flux model for turbulent shear flow with atreamline curvature," Int. Journal of Heat and Mass Transfer, Vol. 21.

Gibson, M. M. and Rodi, W. (1981), "A Reynolds-stress closure model of turbulence applied to the calculation of a highly curved mixing layer," Journal of Fluid Mechanics, Vol. 103.

Gibson, M. M. and Younis, B. A. (1981), "Calculation of a turbulent wall fet ofi a curved wall with a Reynolds stress model of turbulence," Mechanical Engineering Department, Imperial College.

Gibson, M. M., Jones, W. P., and Younis, B. A. (1981), Physica of Fluids, Vol. 24, No. 3, p. 386.

G8rtler, (1959), Ing. Arch., No. 28.
Hah, C. and Lakshminarayana, B. (1980), "Numerical analysis of turbulent wakes of turbomachinery rotor blades," Journal of Fluids Engineering, Vol. 102.

Hah, C. (1981), "Three-dimensional atructures and turbulence closure of the wake developing in a wall shear layer," AIAA 14th Fluid and Plasma Conference, aIAA Paper 81-1269,

Hanjalic, K. and Launder, B. E. (1972), "A Reynolds stress model of turbulence and its application to thin shear flows," Journal of Fluid Mechanics, Vol. 52, Pt. 4.

Hanjalic, K. and Launder, B. E. (1978), "Turbulent transport modeling of separating and reattaching shear flows," Report TF/78/8, University of California at Davis.

Hoffman, P. M. and Bradshaw, P. (1978), "Turbulent boundary layers on surfaces of mild longitudinal curvature," Aerospace Report 78-04, Imperial College.

Howard, J. H. G., Patankar, S. V., and Bordynuik, R. M. (1980), "Flow prediction in rotating ducts using Coriolis-modified turbulence models," ASME Journal of Fluids Engineering.

Hunt, I. A. and Joubert, P. N. (1979), "Effects of small streamline curvature on turbulent duct flow," Joumal of Fluid Mechanics, Vol. 91, Pt. 4.

I-Man Moon, (1964), "Effect of Coriolis force on the turbulent boundary layer in rotating fluid machines," Report No. 74, Massachusetts Institute of Technology.

Irwin, H. P. A. H. and Smith, P. A. (1975), "Prediction of the effect of streamine curvature on turbulence," Phyeics of Fluids, Vol. 18.

Johnaton, J. P, (1970), Thermosciences Division, Mechanical Engineering Department, Stanford University, Report MD24.

Johnston, J. P., Halleen, R. M., and Lezius, D. K. (1972), "Effect of spanwise rotation on the structure of two dimensional fuily developed turbulent channel flow," Journal of Fluid Mechanics, Vol. 56, Pt. 3.

Jones, W. P. and Launder, B. E. (1972), "The prediction of laminarization with a two-equation model of turbulence," International Joumal of Heat and Mass Transfer, Vol. 15.

Katsanis, T. and McNally, W. (1977), "Revised Fortran program for calculating velocities and streamines on the hub-shroud mid-channel stream surface of an axial-, radial-, and mixed-flow turbomachine or annular duct," NASA TND 8430.

Koosilin, M. L. and Lockwood, F. C. (1974), "The prediction of axisymmetric turbulent swirling boundary layers," AIAA Journal, Vol. 12, No. 4.

Koyama, M., Masuda, S., Ariga, I., and Watanabe, I. (1979), "Turbulence structure and three dimensionality of a rotating two-dimensional turbulent boundary layer," Second Symposium on Turbulent Shear Flow, London.

Lakshminarayana, B. and Davino, R. (1980), "Mean velocity and decay characteristics of the guidevane and stator blade wake of an axial flow compressor," Journal of Engineering for Power, Vol. 102, pp. 50-60.

Lakshminarayana, B., Jabbari, A., and Yamaoka, H. (1972), "Turbulent boundary layer on a rotating helical blade," Journal of Fluid Mechanics, Vol. 51, Pt. 3.

Lakshminarayana, B. and Reynolds, B. (1979), "Turbulent characteristics in the near wake of a compressor rotor blade," AIAA Journal, Vol. 18, No. 11.

Lakshminarayana, B. and Govindan, T, R. (1981), "Analysis of turbulent boundary layer on cascade and rotor blades of turbcmachinery," Fifth International Symposium on Airbreathing Engines, Bangalore.

Launder, B. E., Reece, G. J., and Rodi, W. (1975), "Piogress in the development of a Reynolds stress turbulence closure," Joumal of Fluid Mechanics, Vol. 68, Pt. 3.

Launder, B. E., Priddin, C. H., and Sharma, B. I. (1977), "The calculation of turbuleat boundary layers on spinning and curved surfaces," ASME Journal ol Flut ds Engineering.

Launder, B. E. and Morse, A. (1979), "Numerical prediction of axisymetric free shear flowe with a second order Reynolds-stress closure," Proc. Firat Sypposium on Turbulent Shear Flows, Heidelberg.

Lohmann, R, P. (1973), "The response of develioped turbulent boundary layer to local transverse surface motion," Ph.D. Thesis, University of Connecticut.

Lumley, J. L. (1970), "Toward a turbulent conatitutive relation," Journal of Fluid Mechanics, Vol. 41, Pt. 2.

Lumley, J. L. and Khafeh-Nouri, B. (1974), "Computational modeling of turbulent transport," Advances in Geophysics, Vol. 18A.

Majumdar, A. K., Pratap, V. S., and Spalding, D. B. (1977), "Numerical computation of flow in rotating ducts," ASME Journal of Fluids Engineering.

Majumdar, A. K. and Spalding, D. B. (1977), "A numerical investigation of three-dimensional flows in a rotating duct by a partialiy-parabolic procedure," ASME Paper 77-WA/FE-7.

Margolis, D. P. (1963), "An investigation of a curved mixing layer," Ph.D. Thesis, The Pennsylvania State University.

Moore, J. (1973), "A wake and an eddy in a rotating radial flow passagePart 1: Experimental observations," ASME Paper No. 73-GT-57.

Murakami, M., Kikyama, K., and Nishibori, K. (1981), "Three-dimensional boundary layer development in an axially rotating pipe," Department of Mechanical Engineering, Nagoya University, Japan.

Nakamura, I., Yamashita, S., Watanabe, T., and Sawaki, Y. (1981), "Threedimensional turbulent boundary layer on a spinning thin cylinder in an axial uniform stream," Department of Mechanical Engineering, Nagoya University and Mie University, Japan.

Nakano, S., Takahashi, A., Shizawa, T., and Honami, S. (1981), "Effects of stable and unstable free streams on a turbulent flow over a concave surface," Department of Mechanical Engineering, University of Tokyo.

Patankar, S. V. and Spalding, D. B. (1970), Heat and Mass Transfer in Boundary Layers, A General Calculation Procedure, Intertext Book, London.

Patanker, S. V. and Spalding, D. B. (1972), "A calculation method for heat, mase and momentum transfer in three-dimensional parabolic flows," International Journal of Heat and Mass Tranafer, Vol. 15.

Prandtl, L. (1930), Reprint in L. Prandtl gesammelte Abhandiungen 2, 778, Berlin, Springer, 1961.

Raj, R. (1975), "Form of the turbulence disaipation equation as applied to curved and rotating turbulent flows," Department of Mechanical Engineering, City University of New York, New York.

Raj, R. and Lakshminarayana, B. (1975), "On the investigation of cascade and turbowachinery rotor wake characteristics," NASA CR 134680.

Ravindranath, A. and Lakshminarayana, B. (1980), "Mean velocity and decay characteristics of the near wake and far wake of a compressor rotor blade of moderate loading," Journal of Engineering for Power, Vol. 102.

Sharma, B. I. (1977), "Computation of flow past a rotating cylinder with an energy-dissipation model of turbulence," ATAA Journal, Vol. 15, No. 2.

So, R. M. C. and Mellor, G. L. (1975), "Experiment on turbulent boundary layers on a concave wall," Aeronautical Quarterly, Vol. 26.

Spitz, P. (1980), "Etude numerique et experimentale d'un ecoulement turbulent complexe: couche limite soumise a un brusque cisaillement transversal," These $3^{\text {eme }}$ cycle IMST, Marseille, France.

Townsend, A. A. (1980), "The response of sheared turbulence to additional distortion," Journal of Fluid Mechanics, Vol. 98.

Tennekes, H. and Lumley, J. L. (1972), A First Course in Turbulence, M.I.T. Press, Cambridge.

Wilcox, D. C. and Chambers, T. L. (1977), "Streamline curvature effects on turbulent boundary layers," AIAA Joumal, Vol. 15, No. 4.

AFPENDIX 1
Transformed Momentum Equations and Jacobian Matricee

Momentum Equation in z-Direction

$$
\begin{aligned}
\frac{\partial}{\partial z}\left(\rho U^{2}\right) & +\frac{\partial}{r \partial \theta}(\rho U V)+\frac{\partial}{\partial r}(\rho U W)+\frac{\rho U W}{r}-\frac{\partial P}{\partial z}+\frac{1}{R e}\left[\frac{\partial}{\partial r}\left[\mu\left(\frac{\partial U}{\partial r}+\frac{\partial W}{\partial z}\right)\right]+\frac{\partial}{r \partial \theta}\left[\mu\left(\frac{\partial v}{\partial z}+\frac{\partial U}{r \partial \theta}\right)\right]\right. \\
& \left.+\frac{\partial}{\partial z}\left[2 \mu \frac{\partial U}{\partial z}-\frac{2}{3} \mu\left[\frac{\partial r}{\partial r}+\frac{\partial V}{r \partial \theta}+\frac{\partial U}{\partial z}+\frac{W}{r}\right]\right]+\frac{\mu}{r}\left(\frac{\partial U}{\partial r}+\frac{\partial W}{\partial z}\right)\right]
\end{aligned}
$$

The coordinate tranuformation is of the form

$$
\begin{aligned}
& \xi=\boldsymbol{\xi}(\mathbf{z}, \mathbf{r} \theta) \equiv \boldsymbol{\xi}(\mathbf{z}, \theta) \\
& \eta=\eta(z, r \theta) \equiv \eta(z, \theta) \\
& \mathbf{R}=\mathbf{R}(\mathbf{r}) \quad \equiv \mathbf{R}(\mathbf{r})
\end{aligned}
$$

$\xi_{0} \eta, R$ are the transformed coordinates in the streamwise, normal, and radial directions, respectively.

$$
\begin{aligned}
& \frac{\partial}{\partial z}=\frac{\partial}{\partial \xi} \xi_{z}+\frac{\partial}{\partial \eta} n_{z} \\
& \frac{\partial}{\partial \theta}=\frac{\partial}{\partial \xi} \xi_{\theta}+\frac{\partial}{\partial \eta} n_{\theta} \\
& \frac{\partial}{\partial r}=\frac{\partial}{\partial R} R_{r}
\end{aligned}
$$

$$
\begin{aligned}
\text { L.H.S. } & =\xi_{z} \frac{\partial}{\partial \xi}\left(\rho U^{2}\right)+\eta_{z} \frac{\partial}{\partial \eta}\left(\rho U^{2}\right)+\xi_{\theta} \frac{\partial}{\partial \xi}(\rho U V)+\eta_{\theta} \frac{\partial}{\partial \eta}(\rho U V)+R_{r} \frac{\partial}{\partial R}(\rho U W)+\frac{\rho U W}{R} \\
& =\frac{\partial}{\partial \xi}\left(\frac{\xi_{z}}{J} \rho U^{2}+\frac{\xi_{\theta}}{J} \rho U V\right)+\frac{\partial}{\partial \eta}\left(\frac{n_{z}}{J} \rho U^{2}+\frac{n_{\theta}}{J} \rho U V\right)+\frac{\partial}{\partial R}\left(\frac{R_{r}}{J} \rho U W\right)+\frac{\rho U W}{R}
\end{aligned}
$$

$$
\begin{aligned}
& \text { R.H.S. }=-\left(\xi_{z} \frac{\partial P}{\partial \xi}+n_{z} \frac{\partial P}{\partial n}\right)+\frac{1}{R e}\left[\frac{\partial}{\partial R}\left[\frac{R_{r}}{J}\left[\mu\left(R_{r} \frac{\partial U}{\partial R}+\xi_{z} \frac{\partial N}{\partial \xi}+n_{z} \frac{\partial W}{\partial n}\right)\right]\right]\right. \\
& +\xi_{\theta} \frac{\partial}{\partial \xi}\left[\mu\left(\xi_{z} \frac{\partial V}{\partial \xi}+n_{z} \frac{\partial v}{\partial n}+\xi_{\theta} \frac{\partial u}{\partial \xi}+n_{\theta} \frac{\partial u}{\partial n}\right)\right] \\
& +n_{\theta} \frac{\partial}{\partial n}\left[\mu\left(\xi_{z} \frac{\partial v}{\partial \xi}+n_{z} \frac{\partial v}{\partial n}+\xi_{\theta} \frac{\partial u}{\partial \xi}+n_{\theta} \frac{\partial u}{\partial n}\right)\right] \\
& +\xi_{z} \frac{\partial}{\partial \xi}\left[2 \mu\left(\xi_{z} \frac{\partial U}{\partial \xi}+\eta_{z} \frac{\partial U}{\partial n}\right)-\frac{2}{3} \mu\left(R_{r} \frac{\partial W}{\partial R}\right.\right. \\
& \left.+\xi_{\theta} \frac{\partial V}{\partial \xi}+\eta_{\theta} \frac{\partial V}{\partial n}+\xi_{z} \frac{\partial U}{\partial \xi}+n_{z} \frac{\partial U}{\partial n}+\frac{W}{R}\right] \\
& +n_{z} \frac{\partial}{\partial \eta}\left[2 \mu\left\{\xi_{z} \frac{\partial U}{\partial \xi}+n_{z} \frac{\partial U}{\partial n}\right\}-\frac{2}{3} \mu\left(R_{r} \frac{\partial W}{\partial R}\right.\right. \\
& \left.+\xi_{\theta} \frac{\partial V}{\partial \xi}+\eta_{\theta} \frac{\partial V}{\partial \eta}+\xi_{z} \frac{\partial U}{\partial \xi}+\eta_{z} \frac{\partial U}{\partial \eta}+\frac{W}{R}\right] \\
& \left.+\frac{\mu}{R}\left[R_{r} \frac{\partial U}{\partial R}+\xi_{z} \frac{\partial W}{\partial \xi}+\eta_{z} \frac{\partial W}{\partial n}\right]\right]
\end{aligned}
$$

Dropping the diffusion terms in the $\boldsymbol{\xi}$ direction, we get,

$$
\begin{aligned}
\text { R.H.S. }= & -\left(\xi_{z} \frac{\partial P}{\partial \xi}+\eta_{z} \frac{\partial P}{\partial \eta}\right)+\frac{1}{R e}\left[\frac{\partial}{\partial R}\left[\frac{R_{r}}{J}\left[\mu\left(R_{r} \frac{\partial U}{\partial R}+n_{z} \frac{\partial W}{\partial n}\right)\right]\right]\right. \\
& +\eta_{\theta} \frac{\partial}{\partial n}\left[\mu\left[\eta_{z} \frac{\partial V}{\partial n}+\eta_{\theta} \frac{\partial U}{\partial n}\right)\right] \\
& +\eta_{z} \frac{\partial}{\partial n}\left[2 \mu \eta_{z} \frac{\partial U}{\partial \eta}-\frac{2}{3} \mu\left(R_{r} \frac{\partial W}{\partial r}+n_{\theta} \frac{\partial V}{\partial n}+\eta_{z} \frac{\partial U}{\partial \eta}+\frac{W}{R}\right)\right] \\
& \left.+\frac{\mu}{R}\left[R r \frac{\partial U}{\partial R}+n_{z} \frac{\partial W}{\partial n}\right]\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { - }-\left(\xi_{z} \frac{\partial P}{\partial \xi}+n_{z} \frac{\partial P}{\partial n}\right)+\frac{1}{R e}\left[R_{r} \frac{\partial}{\partial R}\left[\mu\left(R_{r} \frac{\partial U}{\partial R}+n_{z} \frac{\partial W}{\partial n}\right)\right]\right. \\
& +\frac{\partial}{\partial n}\left[\mu \frac{n_{z} n_{\theta}}{J} \frac{\partial v}{\partial n}+\frac{n_{\theta}^{2}}{J} \frac{\partial u}{\partial n}\right]+2 \mu \frac{n_{z}^{2}}{J} \frac{\partial u}{\partial n} \\
& \left.\left.-\frac{2^{2}}{3} \mu \frac{n_{z}}{J}\left[R_{r} \frac{\partial N}{\partial r}+n_{\theta} \frac{\partial v}{\partial n}+n_{z} \frac{\partial U}{\partial n}+\frac{W}{R}\right]\right]+\frac{\mu}{R}\left[R_{r} \frac{\partial U}{\partial R}+n_{z} \frac{\partial w}{\partial n}\right]\right] \\
& =-\left(\xi_{z} \frac{\partial P}{\partial \xi}+n_{z} \frac{\partial P}{\partial n}\right)+\frac{1}{R e}\left[\frac{\partial}{\partial R}\left[\frac{R_{r}}{J}\left[\mu\left(R_{r} \frac{\partial U}{\partial R}+n_{z} \frac{\partial W}{\partial n}\right)\right]\right]\right. \\
& +\frac{\partial}{\partial n}\left[\|\left[\frac{\eta_{z} n_{\theta}}{J} \frac{\partial v}{\partial n}+\frac{n_{\theta}^{2}}{J} \frac{\partial u}{\partial n}+2 \frac{n_{z}^{2}}{J} \frac{\partial u}{\partial n}-\frac{2}{3} \frac{n_{z}}{J} R_{r} \frac{\partial w}{\partial r}-\frac{2}{3} \frac{n_{z} n_{\theta}}{J} \frac{\partial v}{\partial n}\right.\right. \\
& \left.\left.-\frac{2}{3} \frac{n_{2}^{2}}{J} \frac{\partial v}{\partial n}-\frac{2}{3} \frac{\eta_{2}}{J} \frac{W}{R}\right]+\frac{\mu}{R}\left[\mathbf{R}_{2} \frac{\partial u}{\partial R}+\eta_{z} \frac{\partial v}{\partial n}\right]\right] \\
& =-\left[\xi_{z} \frac{\partial P}{\partial \xi}+n_{z} \frac{\partial P}{\partial n}\right]+\frac{1}{R e}\left[R_{r} \frac{\partial}{\partial R}\left[\mu\left[R_{r} \frac{\partial U}{\partial R}+n_{z} \frac{\partial w}{\partial n}\right)\right]\right. \\
& +\frac{\partial}{\partial n_{-}}\left[\left(\frac{\left(n_{\theta}^{2}+n_{z}^{2}\right)}{J} \frac{\partial u}{\partial n}+\frac{1}{3} \frac{n_{z}}{J}\left(n_{\theta} \frac{\partial v}{\partial n}+n_{z} \frac{\partial u}{\partial n}\right)-\frac{2}{3} \frac{n_{z}}{J}\left[R_{r} \frac{\partial V}{\partial r}+\frac{W}{R}\right)\right]\right. \\
& \left.+\frac{\mu}{R}\left[\mathbb{R}_{x} \frac{\partial U}{\partial R}+n_{z} \frac{\partial w}{\partial n}\right]\right]
\end{aligned}
$$

The complete transformed z-momentum equation is

$$
\begin{aligned}
& \left.\frac{\partial}{\partial \xi} \frac{\xi_{z}}{J} \rho v^{2}+\frac{\xi_{\theta}}{J} \rho v v\right)+\frac{\partial}{\partial n}\left(\frac{\eta_{z}}{J J} \rho v^{2}+\frac{\eta_{\theta}}{J} \rho v v\right)+\frac{\partial}{\partial R}\left(\frac{R_{r}}{J} \rho v W\right)+\frac{\rho U W}{R}+\frac{\partial}{\partial \xi}\left(\frac{\xi_{z}}{J} p\right) \\
& +\frac{\partial}{\partial(}\left(\frac{\eta_{z}}{J} P\right)=\frac{1}{R e}\left[\frac{\partial}{\partial R}\left[\frac{R_{r}}{J}\left[-\mu\left(R_{r} \frac{\partial U}{\partial R}+n_{z} \frac{\partial w}{\partial \eta}\right)\right]\right]\right. \\
& +\frac{\partial}{\partial n}\left[\mu\left[\frac{\left[n_{\theta}^{2}+n_{z}^{2}\right]}{J} \frac{\partial U}{\partial n}+\frac{1}{3} \frac{n_{z}}{J}\left[n_{\theta} \frac{\partial v}{\partial n}+n_{z} \frac{\partial U}{\partial n}\right)-\frac{2}{3} \frac{n_{z}}{J}\left[R_{r} \frac{\partial W}{\partial R}+\frac{W}{R}\right)\right]\right. \\
& \left.+\frac{\mu}{R}\left[R_{-} \frac{\partial U}{\partial R}+\eta_{z} \frac{\partial W}{\partial n}\right]\right]
\end{aligned}
$$

Momentur Equation in θ Direction

$$
\begin{aligned}
\frac{\partial}{\partial z}(\rho v v) & +\frac{\partial}{r \partial \theta}\left(\rho v^{2}\right)+\frac{\partial}{\partial r}(\rho v W)+\frac{2 \rho V W}{r}+2 \rho \Omega W=-\frac{\partial P}{r \partial \theta}+\frac{1}{R e}\left[\frac{\partial}{\partial r}\left(\mu\left(\frac{\partial W}{r \partial \theta}+r \frac{\partial}{\partial r}\left(\frac{V}{r}\right)\right)\right)\right. \\
& +\frac{\partial}{r \partial \theta}\left(2 \mu\left(\frac{\partial v}{r \partial \theta}+\frac{W}{r}\right)-\frac{2}{3} \mu\left[\frac{\partial W}{\partial r}+\frac{\partial V}{r \partial \theta}+\frac{\partial U}{\partial z}+\frac{W}{r}\right]+\frac{\partial}{\partial z}\left(\mu\left[\frac{\partial V}{\partial z}+\frac{\partial U}{r \partial \theta}\right]\right)\right. \\
& \left.+\frac{2 \mu}{r}\left(\frac{\partial W}{r \partial \theta}+r \frac{\partial}{\partial r}\left(\frac{V}{r}\right)\right)\right]
\end{aligned}
$$

Transferring from r, θ, coordinate aystem to R, η, ξ coordinate system with $R=R(r), \eta=\eta(z, r \theta) \equiv \eta(z, \theta), \quad \xi=\xi(z, r \theta) \equiv \xi(z, \theta)$ we get

$$
\begin{aligned}
& \text { L.H.S. }=\xi_{z} \frac{\partial}{\partial \xi}(\rho U v)+\eta_{z} \frac{\partial}{\partial \eta}(\rho U v)+\xi_{\theta} \frac{\partial}{\partial \xi}\left(\rho v^{2}\right)+\eta_{\theta} \frac{\partial}{\partial \eta}\left(\rho v^{2}\right) \\
& +\frac{\partial}{\partial R}\left(\begin{array}{ll}
\frac{R r}{J} & \rho V W
\end{array}\right)+\frac{2 \rho V W}{R}+2 \rho \Omega W \\
& =\frac{\partial}{\partial \xi}\left(\frac{\xi_{z}}{J} \rho V V \cdot \frac{\xi_{\theta}}{J} \rho V^{2}\right)+\frac{\partial}{\partial n}\left(\frac{\eta_{z}}{J} \rho U V+\frac{\eta_{\theta}}{J} \rho V^{2}\right)+\frac{\partial}{\partial R}\left(\frac{R}{J} \rho V W\right)+\frac{2 \rho V W}{R}+2 \rho \Omega W
\end{aligned}
$$

$$
\begin{aligned}
\text { R.H.S. }= & -\left(\xi_{\theta} \frac{\partial P}{\partial \xi}+\eta_{\theta} \frac{\partial P}{\partial n}\right)+\frac{1}{R e}\left[\frac{\partial}{\partial R} \frac{R_{r}}{J}\left[\mu\left[\xi_{\theta} \frac{\partial W}{\partial \xi}+\eta_{\theta} \frac{\partial W}{\partial n}+R_{r} \frac{\partial V}{\partial R}-\frac{V}{R}\right]\right]\right. \\
& +\xi_{\theta} \frac{\partial}{\partial \xi}\left[2 \mu\left(\xi_{\theta} \frac{\partial V}{\partial \xi}+\eta_{\theta} \frac{\partial V}{\partial n}+\frac{W}{R}\right)-\frac{2}{3} \mu\left[\mathbb{R}_{r}^{-} \frac{\partial H}{\partial R}\right.\right. \\
& \left.+\xi_{\theta} \frac{\partial V}{\partial \xi}+\eta_{\theta} \frac{\partial V}{\partial n}+\xi_{z} \frac{\partial U}{\partial \xi}+\eta_{z} \frac{\partial U}{\partial \eta}+\frac{W}{R}\right] \\
& +\eta_{\theta} \frac{\partial}{\partial n}\left[2 \mu\left(\xi_{\theta} \frac{\partial V}{\partial \xi}+\eta_{\theta} \frac{\partial V}{\partial n}+\frac{W}{R}\right)-\frac{2}{3} \mu\left[R_{r} \frac{\partial W}{\partial R}\right.\right. \\
& \left.+\xi_{\theta} \frac{\partial V}{\partial \xi}+\eta_{\theta} \frac{\partial V}{\partial \eta}+\xi_{z} \frac{\partial U}{\partial \xi}+\eta_{z} \frac{\partial U}{\partial \eta}+\frac{W}{R}\right] \\
& +\xi_{z} \frac{\partial}{\partial \xi}\left(\mu\left[\xi_{z} \frac{\partial V}{\partial \xi}+\eta_{z} \frac{\partial V}{\partial n}+\xi_{\theta} \frac{\partial U}{\partial \xi}+n_{\theta} \frac{\partial U}{\partial n}\right]\right) \\
& +\eta_{z} \frac{\partial}{\partial n}\left(\mu\left[\xi_{z} \frac{\partial V}{\partial \xi}+\eta_{z} \frac{\partial V}{\partial n}+\xi_{\theta} \frac{\partial U}{\partial \xi}+\eta_{\theta} \frac{\partial U}{\partial n}\right]\right) \\
& \left.+\frac{2 \mu}{R}\left(\xi_{\theta} \frac{\partial W}{\partial \xi}+\eta_{\theta} \frac{\partial W}{\partial \eta^{\prime}}+R_{r} \frac{\partial V}{\partial R}-\frac{V}{R}\right)\right]
\end{aligned}
$$

R.H.S. $=-\left(\xi_{\theta} \frac{\partial P}{\partial \xi}+n_{\theta} \frac{\partial P}{\partial n}\right)+\frac{1}{R e}\left[\frac{\partial}{\partial R}\left[\frac{R_{r}}{J}\left[\mu\left(n_{\theta} \frac{\partial N}{\partial r}+R_{r} \frac{\partial V}{\partial R}-\frac{V}{R}\right)\right]\right]\right.$

$$
\begin{aligned}
& +n_{\theta} \frac{\partial}{\partial \eta}\left[2 \mu\left(n_{\theta} \frac{\partial V}{\partial \eta}+\frac{W}{R}\right)-\frac{2}{3} \mu\left[R_{r} \frac{\partial W}{\partial R}+n_{\theta} \frac{\partial V}{\partial n}+n_{z} \frac{\partial U}{\partial n}+\frac{W}{R}\right]\right. \\
& \left.+n_{z} \frac{\partial}{\partial n}\left[\mu\left[n_{z} \frac{\partial V}{\partial n}+n_{\theta} \frac{\partial U}{\partial n}\right)\right]+\frac{2 \mu}{R}\left(n_{\theta} \frac{\partial W}{\partial n}+R_{r} \frac{\partial V}{\partial R}-\frac{V}{R}\right)\right]
\end{aligned}
$$

$$
=-\left(\xi_{\theta} \frac{\partial P}{\partial \xi}+\eta_{\theta} \frac{\partial P}{\partial n}\right)+\frac{1}{R e}\left[\frac{\partial}{\partial R}\left(\frac{R_{r}}{J}\right)\left[\mu\left(n_{\theta} \frac{\partial N}{\partial \eta^{\prime}}+R_{r} \frac{\partial v}{\partial R}-\frac{v}{R}\right)\right]\right.
$$

$$
+\frac{\partial}{\partial \eta}\left[2 \mu \frac{n_{\theta}}{J}\left(n_{\theta} \frac{\partial V}{\partial n}+\frac{W}{R}\right)-\frac{2 \mu n_{\theta}}{3 J}\left[R_{r} \frac{\partial w}{\partial R}+n_{\theta} \frac{\partial V}{\partial \eta}+n_{z} \frac{\partial U}{\partial n}+\frac{W}{R}\right]\right.
$$

$$
\left.+\mu \frac{\eta_{z}}{J}\left[n_{z} \frac{\partial v}{\partial n^{2}}+n_{\theta} \frac{\partial v}{\partial n}\right)\right]+\frac{2 \mu}{R}\left[n_{\theta} \frac{\partial W}{\partial \eta}+R_{r} \frac{\partial v}{\partial R}-\frac{v}{R}\right]
$$

$$
=-\left(\xi_{\theta} \frac{\partial P}{\partial \xi}+n_{\theta} \frac{\partial P}{\partial n}\right)+\frac{1}{R e}\left[\frac{\partial}{\partial R}\left(\frac{R_{r}}{J}\left[\mu\left[n_{\theta} \frac{\partial w}{\partial n}+R_{r} \frac{\partial V}{\partial R}-\frac{v}{R}\right]\right]\right)+\frac{\partial}{\partial n}\right]_{-}^{2 \mu m_{\theta}^{2}} \frac{\partial V}{\partial n}
$$

$$
+2 \mu \frac{\eta_{\theta}}{J} \frac{W}{R}-\frac{2 \mu \eta_{\theta}}{3 J}\left(R_{r} \frac{\partial N}{\partial R}+\frac{W}{R}\right)-\frac{2 \mu n_{\theta}^{2}}{3 J} \frac{\partial V}{\partial \eta}-\frac{2 \mu \eta_{\theta} \eta_{z}}{3 J} \frac{\partial U}{\partial \eta}+\mu \frac{\eta_{z}^{2}}{J} \frac{\partial V}{\partial \eta}
$$

$$
\left.\left.\left.+\mu \frac{\eta_{z} \eta_{\theta}}{J} \frac{\partial U}{\partial \eta}\right]+\frac{2 \mu}{R}\left[n_{\theta} \frac{\partial W}{\partial \eta}+R_{r} \frac{\partial V}{\partial R}-\frac{V}{R}\right]\right]\right]
$$

The complete transformed θ-momentum equation is

$$
\begin{aligned}
& \frac{\partial}{\partial \xi}\left(\frac{\xi_{z}}{J} \rho U V+\frac{\xi_{\theta}}{J} \rho V^{2}\right)+\frac{\partial}{\partial \eta}\left(\frac{\eta_{z}}{J} \rho V V+\frac{\eta_{\theta}}{J} \rho V^{2}\right)+\frac{\partial}{\partial R}\left(\frac{R_{r}}{J} \rho V W\right)+\rho V W \frac{2}{R}+2 \rho \Omega W \\
& +\frac{\partial}{\partial \xi}\left(\frac{\xi_{\theta}}{J} \mathbf{P}\right)+\frac{\partial}{\partial n}\left(\frac{n_{\theta}}{J} \mathbf{P}\right)=\frac{1}{\operatorname{Re}}\left[\frac { \partial } { \partial R } \left(\frac{R_{r}}{J}\left[\mu\left(n_{\theta} \frac{\partial W}{\partial n}+R_{\mathbf{r}} \frac{\partial V}{\partial R}-\frac{V}{R}\right)\right]\right.\right. \\
& +\frac{\partial}{\partial n}\left[\mu\left(\frac{n_{\theta}^{2}+\eta_{z}^{2}}{J}\right) \frac{\partial v}{\partial n}+\frac{\mu}{3} \frac{n_{\theta}}{J}\left(n_{\theta} \frac{\partial v}{\partial \eta}+\eta_{z} \frac{\partial U}{\partial n}\right)-\frac{2}{3} \mu \frac{n_{\theta}}{J}\left(R_{\mathbf{r}} \frac{\partial W}{\partial R}+\frac{W}{R}\right)\right. \\
& \left.\left.+2 \mu \frac{\eta_{\theta}}{J} \frac{W}{R}\right]+\frac{2 \mu}{R}\left[\eta_{\theta} \frac{\partial W}{\partial \eta^{\prime}}+R_{r} \frac{\partial V}{\partial R}-\frac{V}{R}\right]\right]
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial}{\partial z}(\rho U W) & +\frac{\partial}{r \partial \theta}(\rho v W)+\frac{\partial}{\partial r}\left(\rho W^{2}\right)+\frac{\rho\left(W^{2}-v^{2}\right)}{r}-\rho \Omega^{2} r-2 \rho S N=-\frac{\partial P}{\partial r}+\frac{1}{R e}\left[\frac { \partial } { \partial r } \left[2 \mu \frac{\partial W}{\partial r}\right.\right. \\
& \left.-\frac{2 \mu}{3}\left[\frac{\partial W}{\partial r}+\frac{\partial V}{r \partial \theta}+\frac{\partial U}{\partial z}+\frac{W}{r}\right]\right]+\frac{\partial}{r \partial \theta}\left(\mu\left(\frac{\partial W}{r \partial \theta}+r \frac{\partial}{\partial r}\left(\frac{V}{r}\right)\right)+\frac{\partial}{\partial z}\left(\mu\left(\frac{\partial U}{\partial r}+\frac{\partial W}{\partial z}\right)\right]\right. \\
& \left.+\frac{1}{r}\left[2 \mu\left[\frac{\partial W}{\partial r}-\frac{\partial V}{r \partial \theta}-\frac{W}{R}\right]\right)\right]
\end{aligned}
$$

going from r, ∂, z to R, η, ξ we get

$$
\begin{aligned}
& \text { L.H.S. }=\xi_{z} \frac{\partial}{\partial \xi}(\rho \cup W)+\eta_{z} \frac{\partial}{\partial \eta}(\rho U W)+\xi_{\theta} \frac{\partial}{\partial \xi}(\rho \vee w)+\eta_{\theta} \frac{\partial}{\partial \eta}(\rho \vee w)+\frac{\partial}{\partial R}\left(\frac{R}{J} \rho w^{2}\right) \\
& +\frac{\rho}{R}\left(W^{2}-v^{2}\right)-\rho \Omega^{2} R-2 \rho \Omega v \\
& =\frac{\partial}{\partial \xi}\left(\frac{\xi_{z}}{J} \rho U W+\frac{\xi_{\theta}}{J} \rho W W\right)+\frac{\partial}{\partial n}\left(\frac{\eta_{z}}{J} \rho V W+\frac{\eta_{\theta}}{J} \rho V W\right)+\frac{\partial}{\partial R}\left(\frac{R_{r}}{J} \rho W^{2}\right) \\
& +\frac{\rho}{R}\left(W^{2}-v^{2}\right)-\rho \Omega^{2} R-2 \rho \Omega v \\
& \text { R.H.S. }=-R_{r} \frac{\partial P}{\partial R}+\frac{1}{R e}\left[\frac { \partial } { \partial R } \frac { R _ { r } } { J } \left[2 \mu R_{r} \frac{\partial W}{\partial R}-\frac{2 \mu}{3}\left[R_{r} \frac{\partial W}{\partial R}+\xi_{\theta} \frac{\partial V}{\partial \xi}+\eta_{\theta} \frac{\partial V}{\partial n}+\xi_{z} \frac{\partial U}{\partial \xi}+\eta_{z} \frac{\partial U}{\partial \eta}+\frac{W}{R}\right]\right.\right. \\
& +\xi_{\theta} \frac{\partial}{\partial \xi}\left[\mu\left(\xi_{\theta} \frac{\partial W}{\partial \xi}+\eta_{\theta} \frac{\partial W}{\partial n}+R_{r} \frac{\partial V}{\partial R}-\frac{V}{R}\right)\right] \\
& +\eta_{\theta} \frac{\partial}{\partial n}\left[\dot{\mu}\left(\xi_{\theta} \frac{\partial W}{\partial \xi}+n_{\theta} \frac{\partial W}{\partial n}+R_{r} \frac{\partial V}{\partial R}-\frac{V}{R}\right)\right] \\
& +\xi_{z} \frac{\partial}{\partial \xi}\left[\mu\left[R_{r} \frac{\partial U}{\partial R}+\xi_{z} \frac{\partial W}{\partial \xi}+\eta_{z} \frac{\partial W}{\partial n}\right]\right] \\
& +\eta_{z} \frac{\partial}{\partial n}\left[\mu\left[R_{r} \frac{\partial U}{\partial R}+\xi_{z} \frac{\partial W}{\partial \xi}+\eta_{z} \frac{\partial W}{\partial n}\right]\right] \\
& +\frac{1}{R}\left[2 \mu\left(R_{r} \frac{\partial W}{\partial R}-\xi_{\theta} \frac{\partial V}{\partial \xi}-n_{\theta} \frac{\partial V}{\partial T}-\frac{W}{R}\right)\right]
\end{aligned}
$$

Dropping the diffusion terms in the ξ direction, we get,

$$
\begin{aligned}
& \text { R.H.S, }=-R_{r} \frac{\partial P}{\partial R}+\frac{1}{R_{R}}\left[\frac { \partial } { \partial R } \left(\frac{R_{r}}{J}\left[2 \mu R_{r} \frac{\partial N}{\partial R}-\frac{2 \mu}{3}\left[R_{r} \frac{\partial W}{\partial R}+\eta_{\theta} \frac{\partial V}{\partial \eta_{1}}+\eta_{2} \frac{\partial U}{\partial n}+\frac{W}{R}\right]\right)\right.\right. \\
& +n_{\theta} \frac{\partial}{\partial n}\left[\mu\left[n_{\theta} \frac{\partial W_{i l}}{\partial i}+R_{z} \frac{\partial V}{\partial R}-\frac{v}{R}\right)\right]+n_{z} \frac{\partial}{\partial \eta}\left[\mu\left[R_{r} \frac{\partial U}{\partial R}+n_{z} \frac{\partial w}{\partial n}\right]\right] \\
& +\frac{1}{R}\left[2 \mu\left(R_{r} \frac{\partial W}{\partial R}-\eta_{\theta} \frac{\partial v}{\partial n}-\frac{W}{R}\right)\right] \\
& \text { R.H.S. }=-R_{r} \frac{\partial P}{\partial R}+\frac{1}{R e}\left[\frac{\partial}{\partial R}\left[\frac{R_{r}}{J} \int_{-}^{2} \mu_{r} \frac{\partial W}{\partial R}=\frac{2 \mu}{3}\left[R_{r} \frac{\partial N}{\partial R}+\eta_{\theta} \frac{\partial V}{\partial \eta}+\eta_{z} \frac{\partial U}{\partial \eta}+\frac{W}{R}\right]\right)\right. \text {. } \\
& +\frac{\partial}{\partial n}\left[\mu \frac{n_{\theta}}{J}\left[n_{\theta} \frac{\partial N}{\partial \eta}+R_{r} \frac{\partial V}{\partial R}-\frac{V}{R}\right)+\frac{\mu n_{z}}{J}\left[R_{r} \frac{\partial U}{\partial R}+n_{z} \frac{\partial W}{\partial n}\right)\right] \\
& +\frac{1}{R}\left[2 \mu\left(R_{r} \frac{\partial W}{\partial R}-n_{\theta} \frac{\partial V}{\partial n}-\frac{W}{R}\right)\right] \\
& \text { R.H.S. }=-R_{r} \frac{\partial P}{\partial R}+\frac{1}{R e}\left[\frac{\partial}{\partial R} \frac{R_{r}}{J} \prod_{-} \frac{1}{3} \mu R_{r} \frac{\partial W}{\partial R}-\frac{2 \mu}{3}\left[\eta_{\theta} \frac{\partial V}{\partial n}+n_{z} \frac{\partial U}{\partial n}+\frac{W}{R}\right]\right. \\
& +\frac{\partial}{\partial n}\left[\frac{\mu}{J}\left(n_{z}^{2}+n_{\theta}^{2}\right) \frac{\partial w}{\partial n}+\frac{\mu n_{\theta}}{J}\left[\mathbb{R}_{r} \frac{\partial v}{\partial R}-\frac{V}{R}\right]+\frac{\mu \eta_{z}}{J} R_{r} \frac{\partial U}{\partial R}\right] \\
& +\frac{1}{R}\left[2 \mu\left(R_{r} \frac{\partial W}{\partial R}-\eta_{\theta} \frac{\partial V}{\partial \eta}-\frac{W}{R}\right)\right]
\end{aligned}
$$

So the complete transformed equation is

$$
\begin{aligned}
\frac{\partial}{\partial \xi}\left(\frac{\xi_{z}}{J} \rho U W\right. & \left.+\frac{\xi_{\theta}}{J} \rho V W\right)+\frac{\partial}{\partial n}\left(\frac{\eta_{z}}{J} \rho U W+\frac{\eta_{\theta}}{J} \rho V W\right)+\frac{\partial}{\partial R}\left(\frac{R_{r}}{J} \rho W^{2}\right)+\frac{\rho}{R}\left(W^{2}-v^{2}\right) \\
& -\rho \Omega^{2} R-2 \rho \Omega V=-R_{r} \frac{\partial P}{\partial R}+\frac{1}{R e}\left[\frac{\partial}{\partial R}\left[\frac{R_{r}}{J}\left[\frac{4}{3} \mu R_{r} \frac{\partial W}{\partial R}-\frac{2 \dot{\mu}}{3}\left(n_{\theta} \frac{\partial V}{\partial n}+\eta_{z} \frac{\partial U}{\partial \eta}+\frac{W}{R}\right)\right]\right]\right. \\
& +\frac{\partial}{\partial n}\left[\frac{\mu}{J}\left(n_{z}^{2}+n_{\theta}^{2}\right) \frac{\partial W}{\partial \eta}+\frac{\mu \eta_{\theta}}{J}\left[R_{r} \frac{\partial V}{\partial R}-\frac{V}{R}\right]+\frac{\mu \eta_{z}}{J} R_{r} \frac{\partial U}{\partial R}\right] \\
& \left.+\frac{1}{R}\left[2 \mu\left(R_{r} \frac{\partial W}{\partial R}-\eta_{\theta} \frac{\partial V}{\partial \eta}-\frac{W}{R}\right)\right]\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Or } \\
& \frac{\partial}{\partial \xi}\left(\frac{\xi_{z}}{J} \rho W W+\frac{\xi_{\theta}}{J} \rho V W\right)+\frac{\partial}{\partial n}\left(\frac{\eta_{z}}{J} \rho U W+\frac{\eta_{\theta}}{J} \rho V W\right)+\frac{\partial}{\partial R}\left(\frac{R_{z}}{J} \rho W^{2}\right)+\frac{\rho}{R}\left(W^{2}-V^{2}\right)-\rho \Omega^{2} R \\
& -20 \delta N=-\frac{\partial}{\partial P}\left(\frac{R_{r}}{J} p\right)+\frac{1}{R}\left[R _ { r } \frac { \partial } { \partial R } \left(\frac{4}{3} \mu R_{r} \frac{\partial W}{\partial R}-\frac{2 \mu}{3}\left(n_{\theta} \frac{\partial U}{\partial n}+\frac{W}{R}+n_{z} \frac{\partial U}{\partial n}\right)\right.\right. \\
& +\frac{\partial}{\partial n}\left[\frac{\mu}{J}\left(n_{z}^{2}+n_{\theta}^{2}\right) \frac{\partial W}{\partial n}+\frac{\mu_{\theta}}{J}\left[R_{z} \frac{\partial V}{\partial R}-\frac{V}{R}\right]+\mu \frac{n_{z}}{J} R_{r} \frac{\partial \dot{U}}{\partial R}\right] \\
& +\frac{1}{R}\left[2 \mu\left(R_{r} \frac{\partial W}{\partial R}-\eta_{\theta} \frac{\partial V}{\partial V}-\frac{W}{R}\right)\right]
\end{aligned}
$$

Jacoblan of $E_{2} F_{1} G_{2} C_{2} P_{1} Q_{2} S$

$$
J_{E}=\frac{1}{J}\left[\begin{array}{lll}
2 \xi_{z} \rho U+\xi_{\theta} \rho V & \xi_{\theta} \rho U & 0 \\
\xi_{z} \rho v & \xi_{z} \rho U+2 \xi_{\theta} \rho v & 0 \\
\xi_{z} \rho W & \xi_{\theta} \rho W & \xi_{z} \rho U+\xi_{\theta} \rho V
\end{array}\right]
$$

Jacoblan of F

$$
J_{F}=\frac{1}{J}\left[\begin{array}{lll}
2 n_{z} \rho U+n_{\theta} \rho V & n_{\theta} \rho U & 0 \\
n_{2} \rho V & n_{z} \rho U+2 n_{\theta} \rho v & 0 \\
n_{z} \rho W & n_{\theta} \rho W & n_{z} \rho U+n_{\theta} \rho v
\end{array}\right]
$$

Jacoblan of G

$$
J_{G}=\frac{\mathbf{R}_{\mathbf{r}}}{J}\left[\begin{array}{ccc}
\rho W & 0 & \rho U \\
0 & \rho W & \rho V \\
0 & 0 & 2 \rho W
\end{array}\right]
$$

Jacobian of C

$$
J_{C}=\left[\begin{array}{lll}
\rho W / R & 0 & \rho V / R \\
0 & 2 \rho W / R+2 & 2 \rho(V / R+\Omega) \\
0 & -2 \rho(V / R+\Omega) & 2 \rho W / R
\end{array}\right]
$$

Jacobian of P

$$
J_{P}=\frac{R_{r}}{J}\left[\begin{array}{lll}
\mu R_{r} \frac{\partial}{\partial R} & 0 & \mu \eta_{z} \frac{\partial}{\partial n} \\
0 & \mu\left[R_{r} \frac{\partial}{\partial R}-\frac{1}{R}\right] & \mu n_{\theta} \frac{\partial}{\partial n} \\
\frac{-2 \mu}{3} \eta_{z} \frac{\partial}{\partial n} & \frac{-2 \mu}{2} n_{\theta} \frac{\partial}{\partial n} & \frac{4}{3} \mu R_{x} \frac{\partial}{\partial R}-\frac{2 \mu}{3 R}
\end{array}\right]
$$

Jacoblan of Q

	$\left[\mu\left(\frac{n_{\theta}^{2}+\eta_{z}^{2}}{J}\right)\right.$	$\frac{\mu}{3} \frac{\eta_{z}}{J} n_{\theta} \frac{\partial}{\partial n}$	$-\frac{2}{3} \frac{n_{2}}{J}\left(R_{r} \cdot \frac{\partial}{\partial R}+\frac{1}{R}\right)$
${ }^{\mathbf{Q}}$	$\frac{\mu}{3} \frac{\eta_{\theta} \eta_{2}}{J} \frac{\partial}{\partial \eta}$	$\mu\left(\frac{\eta_{\theta}^{2}+\eta_{z}^{2}}{J}\right) \frac{\partial}{\partial \eta}+\frac{\mu}{3} \frac{\eta_{\theta}^{2}}{J} \frac{\partial}{\partial \eta}$	$-\frac{2}{3} \mu \frac{n_{\theta}}{J}\left(\operatorname{Rr} \frac{\partial}{\partial R}-\frac{2}{R}\right)$
		$\mu \frac{n_{\theta}}{J}\left[R_{r} \frac{\partial}{\partial R}-\frac{1}{R}\right]$	$\mu\left(\frac{n_{\theta}^{2}+n_{z}^{2}}{J}\right) \frac{\partial}{\partial n}$

Jacobian of S

$$
J_{S}=\left[\begin{array}{lll}
\frac{\mu}{R} R_{r} \frac{\partial}{\partial R} & 0 & \frac{\mu}{R} \eta_{z} \frac{\partial}{\partial n} \\
0 & \frac{2 \mu}{R}\left[R_{r} \frac{\partial}{\partial R}-\frac{1}{R}\right] & \frac{2 \mu}{R} \eta_{\theta} \frac{\partial}{\partial \eta} \\
0 & -\frac{2 \mu}{R} \eta_{\theta} \frac{\partial}{\partial n} & \frac{2 \mu}{R} R_{r} \frac{\partial}{\partial R}-\frac{1}{R}
\end{array}\right]
$$

APPENDIX 2
 Literature Survey on the Effecta of Curvature and Rotation on Turbulence Structure

In this section a literature survey on experimental and analytical investigation of the curvature and rotation affecte on turbulence is carried out.

Experimental reuults provide information on the physical behavicr of the turbulent flow to anable modeling the effects of the different atrains such as menstrains, curvature effects, rotation effects, etc. The triple velocity correlations, pressure-velocity correlations, dissipation which appear in the Reynolds streas equation, are difficult to measure and, hence, the modeling is more or lese empirical and is based generally on very restrictive assumptions. For example, the turbulence models are often based on the homogeneous fluid properties, local isotropy of dissipative scales, high Reynolds numbers which lead to relatively simple models. On the other hand, experimental work provide reaults tinst can be used to check different turbulence models. Nevertheles, some of the experiments do not provide sufficient information to check all the models in detail. In the past few years, it seems that a great effort has been made to provide experimental data Including all the Reynolds stress tensor terms. dost of the data available Is for simple two dimensional shear flows (free shear flows, boundary layers, jets, wakes, ducts). For the complex flows (following the definition of Bradshaw (1977) for complex flows) which are the most common in engineering practice, very little data and few models are available.

In this section, more emphasis is given to the effect of rotation which is the principal effect we are interested in.

Curvature Effecte

Enperimontal Data

Castro and Bradshaw (1976) have carried out extensive one-point measuremente in a highly curved mixing layer to determine the effecta of atreamine curvature on a shear layer. The principal effect is to diminish the Reynolds strens tensor components when the angular momentum of the mean flow inoreases with radius of curvature and to increase these quantities in the opposite situation. The most spectacular feature of the measurements is that the components of the Reynolds stress tensor after decreasing in the highly atabilizing curvature region, rise rapidly and overshoot the plane-layer value farther downstream before finally decreasing. This indicates the Inadequacy in current modeling for shear layers such as the use of the shear layer thickness to provide a length scale, the rotational invariance of turbulence models based on second order transport equations, and the gradient diffusion hypothesis for turbulent transport.

Changes in turbulence properties can occur even with small curvatures as can be seen in the experiments of Hoffmann and Bradshaw (1978) on a turbulent boundary layer with a mild longitudinal curvature, and of Hunt and Joubert (1979) in duct flow. Data are also reported by So and Mellor (1975) who show that Reynolds stress increases and three-dimensional vortices exist over a concave surface. The experiments of Margolis (1963) deal with the unstable effects in a curved mixing layer. The latest paper by Nakano et al. (1981) covers the effects of stable and unstable freestreans on a turbulent flow over a concave surface, where different shear flows are provided at the inlet to the curved section. Three-dimensional longitudinal
vortices are found. In an unotable fre otrean, turbulent intensitios in the boundary layer an wil as in the free stream are increased. Alcaraz (1977) studied the wall jet developing on a conetant-radius convex curved surface. The flow was nearly two-dimensional, but the curvature was large enough to produce masurable effacts on turbulence.

Analysis

Tha effect of stabilizing or destabilizing forces on the turbulent motion of homogeneous fluide in flows along curved surfaces was first discussed by Prandtl (1930). Early experiments gave evidence that the intensity of turbulence incresses on concave surfaces and decreases on convex surfaces. Similar effects occur, when the gravity field acte on flow of variable density. Gortler (1959) has pointed out the analogy between the two effects. Bradshaw (1968) proposed a formai algebraic analogy between meteorological parameters, such as Richardson number and the parameters describing the effect of curvature or rotation on turbulent flows. Semi-quantitative use of the analogy shows that the effects of curvature are appreciable if the shear layer thickness exceeds roughly $1 / 300$ of the radius of curvature, The main result of the paper is the introduction of the Richardson numbers for straamine curvature and rotacion which represent the ratio of the "buoyanc" production to inertia production. Bradshaw also proposed a form of the MoninOboukhov formula for the change of mixing length with Richardson number for curved flows. The development of multi-equation models for curved flow began nearly 1975 with Mellor who in fact used the same atress closure approximations for buyyant flow and curved flow to produce a modyfying function for the
eddy viecosity. Irwin and Smith (1975) aimplified the strese-closure of Launder et al. (1975) to colculate the development of boundary layera and wall jete on curved surfaces. The most important reault was that the observed curvature effects could be accounted for by the relatively mall production teras appearing in the Individual Reynolda strese equations. Launder et al. (1977) proposed a two-equation model (k-E). The energy production rate due to curvature appeare in exact form in the energy equation, but the curvature effect ia modeled empirically in the disaipation equation. Gibson (1978) diveloped an algebraic Reynolds strems model, foilowing the Idea that effecte of curvature on heat transfer could only be accounted for by modelling the Reynolds-stress and heat-flux equations. The model is derived from that doveloped for the buoyancy affected turbulence. The Influence of the wall is introduced in the modeling of the fluctuating pressure. It is shown that the effects of streamline curvature on heat transfer are probably aignificantly less than on the ahear stress. That is an impertant result which suggests that the use of a constant turbulent Prandtl number in prediction methods may provide misleading estimates of the heat transfer from curved surfaces. The algebraic Reynolds stress model may be coupled with a one equation scheme (k) or two-equation ($k-\varepsilon$) models to provide a length scale. Recently Townend (1980) introduced the rapiddistorsion approximation to predict the streamwise variation of $\overline{u v} / \overline{q^{2}}$, considering that the complex distortion involves taking account for the history of the distortion. Two remarks are to be made, Firstly, this approach may not be suitable for mild curvature surfaces, where the time scales of turbulence motion and distortion can be of the same order. Secondly, this method predicts only stress ratios, and if it were to form part of a calculation scheme, other equations would be needed to determine the intensities. More recently, Gibson and Rodi (1981) have proposed a full

Reynolde atress model for two-dimennional curved flowe and for high Reynolde numbers. The modeliling is principally based on Launder et al. (1975) model, using the simple gradient diffusion hypothesis for the triple velocity correlation due to Daly and Harlow (1970). In adapting the prescure-strain correlation to curved flow, the mean ahear production as well as the extra strain due to curvature are included, though the effects of curvature are implicitly introduced in the modeling. The modeled ε equation, in the form originally proposed by Hanjalic and Launder (1972) appears to be quite adequate, only a logical change has been done in that equation. The energy production due to mean shear in a simple flow is replaced by the total (shear and curvature) production. However, recently the performance of the modeled equation for ε has been questioned [Launder and Morse (1979), Hanjalic and Launder (1978)] for complex flows. So, one of the most updated works to be done should be the modeling of the exact equation. Particularly when curvature and rotation effects are present. We may mention the latest works of Gibson; Jones, Younis (1981) on curved wall boundary layer and, Gibson and Younis (1981) on curved wall jet more particularly on a convex surface [Alcaraz (1977)]. The only difference in modeling with the previous work of Gibson and Rodi (1981) is in the way of how the pressure strain correlation is modeled, The proposed modification for near-wall effect by Launder et al. (1975) is used. All these calculations are part of a program motivated by the requirement for a general prediction procedure for complex shear flows with density stratification, rotation and streamine curvature.

Rotation Effecte

Experimental Data

It was pointed out by Johnston (1970), that there are two basic effecta of rotation. If components of the coriolis acceleration is parallel to the aurface on which the layers are growing, aecondary flows will tend to develop in the mean flow field of the layers. If a component of the coriolis acceleration is perpendicular to a solid surface, some stabilizing and destabilizing effects are observed in the turbulence structure itself. Both effecte are believed to be important in the flow fields of sentrifugal impellers.

The experimental data available may be classified in two categories. 1. Free shear flowe in rotating frames (e.g., wakes), and 2. Wall shear flows.

In the case of free shear flows, only the experiment of Raj and Lakshminarayana (1975) is known to us. These authors give a detailed measurement of the wake characteristics behind a rotor. The results of Ravindranath and Lakshminarayana (1980) are also available.

In the case of wall shear flows, one may class the different experiments available in three categories:

1. Rotating Cylindere or Pipes
2. Centrifugal Turbomachines
3. Axial Turbomachines
4. Rotating Cylinders in Axial Flow

Almost all the experiments designed in this case are nearly the same.
We may mention here the works of Bissonnette and Mellor (1970), and

Lohmann (1973). In each of these experiments the mean properties and the six components of the Reynolds tensors are masured, but the major effecte due te the rotation occur very near the wall and the turbulent quantities are not measured in this part of the boundary layer. Arzoumanian et al. (1981) has provided data on an axially rotated cylinder with ipecial emphasis in the region very close to the moving wall, nevertheleas, only the following turbulent quantities are measured: $\overline{u^{\prime 2}}, \overline{w^{\prime 2}}, \bar{u} \bar{w}$. The turbulent stresses $\overline{u^{\top} v}$ and $\overline{w^{\top} v}$ are derived by integrating the correaponding momentum equations from mean velocity measurements. Nakamura et al. (1981), In their study of a three-dimensional turbulent boundary layer on a spinning thin cylinder in an axial flow, have given some results on the mean properties. A universal law for velocity distribution is also derived. The experiment on the three dimensional boundary layer developing in an axially rotating pipe of Murakami et al. (1981) show that the flow is affected by two counter effects. One is a destabilizing effect due to an increase of the relative velocity at the wall caused by the pipe rotation, and the other is a stabilizing effect due to the suppression of turbulence by the centyifugal force. The dominant effect depends on the Reynolds number and the rotational speed.

2. Models of Centrifugal Turbomachines

The effects of the coriolis forces in such machines are of great importance. The experiments of I-Man Moon (1964) provide some results on the mean quantities as well as on the following components of the Reynolds stress tensor: $\overline{u^{\prime 2}}, \overline{v^{\prime 2}}, \overline{u^{\top} v}$ for a rotating speed of 165 rpm and $0.48 \leq R_{0} \leq 1.92$. Moore (1973) carried out similar measurements but provided
only mean velocity profiles. Johnston et al. (1972) In their experiment on fully developed turbulent flow in a channel, which is rotating about a epanwise axis, observed three stability related phenomena explained in this paper. They pointed out the Richardson number is an appropriate local stability parameter. For example, local effect of rotational atabilization, such as reduction of the turbulent stress in wall layers, can be related to the local Richardson number in aimple way. In this experiment, the authors also give some quantitative data on mean properties. The paper of Koyama et al. (1979) on "The Turbulence Structure and Three Dimensionality of a Rotating Two Dimensional Turbulent Boundary Layer" is one of the latest results available. This paper has not been surveyed at this time. We may also introduce the partial results of Bertoglio et al. (1980) in a centrifugal testing machine which give some information on the flow in actual impeller.

3. Model of Axial Turbomachines

For such cases, only few results are known, in fact the only available data are the ones provided at The Pennsylvania State University-the experiment of Lakshminarayana et al. (1972) on the turbulent boundary layer on a rotating helical blade. However, no turbulent measurements are included in these results. The more complete experiment was Anand and Lakshminarayana's (1975,1978) on the four bladed rotating helical channel. Some results on turbulence quantities show that the radial component of turbulence intensities is higher than the streamwise component due to the effect of rotation. Moreover, the flow near the annulus wall is found to be highly complex. The turbulent shear stress measurements show that in three dimensional rotating turbulent boundary layers, all three correlations are of the same order of magnitude inside the boundary layer. A deviation is found between the stress

Abstract

tensor and the atrain tensor, that is one of the most important features in three-dimensional flows and represents the anisotropy of the turbulence in such cases.

Analysis

Bradshaw (1969) carried out a simple analysis for both curvature effects and rotation effects and pointed out that the same arguments could be applied to shear layers in rotating fluids and curved flows. The author introduced the gradient Richardson number, the flux and stress Richardson number by analogy with buoyancy analysis. A more detailed qualitative analysis has been carried out by Johnston et al. (1972) for the case of a rotating boundary layer, In their study, they focused attention on the production terme which appear in the Reynolds stress equations and which are due to the interaction by the mean flow and due to coriolis effects, explicitly. In summary, this examination of the production terms lead to conclude that in wall layers the sign and the magnitude of rotation effects might be controlled by a local dimensicnless parameter. This parameter may be related to the gradient Richardson number proposed by Bradshaw and is very useful to characterize the stability or instability of the flow submitted to a rotation. It appears that the first "theoretical" investigations and prediction procedures accounting for all the effects of the flow situation, namely threedimensionality and turbulence, are quite new. In fact the first attempts to calculate three dimensional boundary layer are based on integral methods such as Moore (1973), Lakshminarayana et al. (1981). The first differential calculations seem to be those of Majumdar et al. (1977) and Sharma (1977).

In the former case, the authors are solving the three-dimenaional boundary layer with the method of Patankar-Spalding (1972), which is a marching integration technique for three-dimensional boundary layer problems. The turbulence model which is used in this paper is the well known k-e model without any modifications for the rotation effects. In the latter case, e.g. Sharma's paper, the calculation over an axially spinning cylinder is performed The problem is two-dimensional and solved with the twodimensional marching procedure of Patankar-Spalding (1970). The k-£ model is used to calculate the boundary layer up to the wall. An additional term is included in the transport equation for ε to account for the curvature effect on the dissipation rate. This term is seen as a correction to the "dissipation" of dissipation rate ε by the Richardson number based on the turbulent time scale k / ε. Nevertheleas, this kind of model cannot account for the non-isotropy of the stress tensor. Morecver, no correction for the rotation effects are introduced. In fact, these effects are not very important for the calculation of flow on spinning cylinder. On the problem of the rotating cylinder, an approach similar to Sharma's is due to Spitz (1980) who solved the same momentum equations as Sharma with the same numerical procedure. In this work an attempt is made to include the nonisotropy of the Reynolds stress tensor by taking account for two eddy viscosity factors which represent the difference between the two principal directions. The turbuletse model is based on the mixing length hypothesin. We may also mention the work of Cousteix and Aupoi (1979) who made the same assumptions but used a $k-\varepsilon$ model. But in each of these works no rotation effects were included.

One of the first analyais of the rotation effecte on the turbulence quantities has been carried out by Raj and Lakehminarayana (1975) and Raf (1975), who gave the exact equation in generalized tensor notations and analyzed the turbulent proceasea in the wake of the rotor blade, but no calculationa were carried out. Lakshainarayana and Reynolda (1979) carried out n qualitative analyais of the effects of zotation on turbulence in the near wake of a rotor. This analyais indicates that the rotation has aubstantial effects on the atructure of turbulence. Such as radial component of intensities is higher than the axial and tangential in the near wake and decay more rapidly than the others. The radial components of the stresses are generally higher than those of a corresponding non-rotating case.

Another analysis based on spectral calculus has been carried out by Bertogito et al. and Bertogilo (1980) to study the effects of the rotation on an homogeneous turbulent field. The effects of stabilizing and destabilizing due to coriolis forces are observed, but this kind of approach does not account for the non-linear and inhomogeneous terms in the computation. Nevertheless, some fmportant results show that the pressure-strain correlation in rotating frames may have to be modeled carefully, Another fact is that the use of isotropic functions when modeling may be inadequate, and some parameters, like the direction of the force, have to be taken into account.

The only complete calculation available, which takes into account the rotation effects, is the one performed by Howard et al. (1980). These authors, following the work of Majumdar et al. (1977), used a modified procedure based on the partially-parabolic method of Majumdar and Spalding (1977). They solve the three-dimensional boundary layer equations within a rotating frame. The turbulence model is based on the $k-\varepsilon$ model. Three
modifications to the basic $k-\varepsilon$ model are tested which include effecta of Coriolis force on the turbient energy and dissipation rate. The firat model is based on the work of Wilcox and Chambers (1977) and cake account of the Coriolis effects in both the k and ε equations assuming that the kinetic energy is proportional to $\overline{u^{\prime 2}}$. The second and third models are based on a study of curved boundary layers by Launder et al. (1977), where the k equation is maintained in its usual form and where the Coriolis effect is Introduced through the ε equation. Two forms of the Richardson number are considered. Their conclusion is that the Wilcox-Chambers model give the most satisfactory prediction, and they point out the need for inclusion of a Coriolis model for turbulence modification. Finally, the approach of Hah and Lakehminarayana (1980) and Hah (1981) who introduce an aigebraic Reynolds stress model coupled with a $k-\varepsilon$ model which, though the convection and diffusion are not included, take account forrotation and curvature effects.

Comments

The review of the different paper point out three main features:

1. Only few calculations are available for the calculation of the three-dimensional boundary layer in rotating frames.
2. No complete Reynolds stress model is available for rotating turbulent flows. Very few attempts have been made to account for the rotation effects in the $k-\varepsilon$ model, but none are really based on a logical analysis. In fact, the most up to date results in modeling are those of Raj (1975) and Hah and Lakshminarayana (1980). The major effort, then, should be given to the analysis of the dissipation rate equation and to the Reynolds stress equations.
3. Detailed measurements providing information on the effects of both the Rosaby and the Richardaon nuber on turbulance are not very numerous. So, every new result would be of great intereat, particularly if the rotation effect can be isolated from the other effects.

LIST OF FIGURES

Figure 1. Blade to blade distribution of axial (WZ), tangential (WT), and radial (WR) velocities at $Z=0.26, R=0.918$

Figure 2. Blade to blade distribution of axial (WZ), tangential (WT), and radial (WR) velocities at $2=0.5, R=0.918$

Figure 3. Blade to blade distribution of axial (WZ), tangential (WT), and radial (WR) velocities at $Z=0.73, R=0.918$

Figure 4. Blade to blade diatribution of axial (WZ), tangential (WT), and radial (WR) velocities at $2=0.97, R=0.918$

Figure 5. Blade to blade distribution of stagnation ($P_{\text {Total }}$) and static ($\mathrm{P}_{\text {STATIC }}$) pressure at $Z=0.26, R=0.918$

Figure 6. Blade to blade diatribution of atagnation ($P_{\text {TOTAL }}$) and static ($P_{\text {STATIC }}$) pressure at $2=0.5, R=0.918$

Figure 7. Blade to blade dietribution of atagnation ($P_{\text {TOTAL }}$) and static ($\mathrm{P}_{\text {STATIC }}$) pressure at $2=0.73, \mathrm{R}=0.918$

Figure 8. Blade to blade diatribution of stagnation ($P_{\text {TOTAL }}$) and static ($P_{\text {STATIC }}$) pressure at $Z=0.97, \mathrm{R}=0.918$

Figure 9. Axial (WZ), tangential (WT), and radial (WR) velocity profiles at $z=1.049, R=0.587$

Figure 10. Axial (WZ), tangential (WT), and radial (WR) velocity profiles at $2=1.061, R=0.67$

Figure 11. Axial (WZ), tangential (WT), and radial (WR) velocity profiles at $Z=1.069, R=0.75$

Figure 12. Axial (WZ), tangential (WT), and radial (WR) velocity profiles at $Z=1.077, R=0.832$

Figure 13. Axial (WZ), tangential (WT), and radial (WR) velocity profiles at $Z=1.085, R=0.918$

Figure 14. Stagnation ($\mathrm{P}_{\text {TOTAL }}$) and static ($\mathrm{P}_{\text {STATIC }}$) pressure profiles at $z=1.049, R=0.587$

Figure 15. Stagnation (${ }_{\text {PTOTAL }}$) and static (PSTATIC) pressure profiles at $z=1.061, R=0.67$

Figure 16. Stagnation (Protal) and static (PSTATIC) pressure profiles at
Figure 17. Stagnation (Protal) and atatic (PSTATIC) pressure profiles at $2=1.077, R=0.832$

Figure 18. Stagnation ($P_{\text {TOTAl }}$) and atatic (PStatic) pressure profiles at $z=1.049, R=0.918$

Figure 1. Blade to blade distribution of axial (WZ), tangential (WT), and radial (WR) velocities at $Z=0.26, R=0.918$

ORIGNAL PAGE IS OF POOR QUALITY

Figure 2. Blade to blade distribution of axial (WZ), tangential (WT), and radial (WR) velocities at $Z=0.5, R=0.918$

ORIGINAL PAGE IS OF POOR PUGLITK

Figure 3. Blade to blade distribution of axial (WZ), tangential (WT), and radial (WR) velocities at $Z=0.73, R=0.918$

Figure 5. Blade to blade distribution of stagnation ($\mathrm{P}_{\text {TOTAL }}$) and static ($P_{\text {STATIC }}$) pressure at $Z=0.26, R=0.918$

Figure 6. Blade to blade distribution of stagnation ($\mathrm{P}_{\text {TOTAL }}$) and static ($P_{\text {STATIC }}$) pressure at $Z=0.5, R=0.918$

Figure 7. Blade to blade distribution of stagnation ($P_{\text {TOTAL }}$) and static ($P_{\text {STATIC }}$) pressure at $Z=0.73, R=0.9 f^{L}$

Figure 8. Blade to blade distribution of stagnation ($\mathrm{P}_{\mathrm{TOTAL}}$) and static ($\mathrm{P}_{\text {STATIC }}$) pressure at $Z=0.97, \mathrm{R}=0.918$

ORICINAL PAGE is OF POOR QUALITY

Figure 9. Axial (WZ), tangential (WT), and radial (NR) velocity profiles at $Z=1.049, R=0.587$

TANGENTIAL DISTANCE <Z=1. $061, R=\square .6701$

Figure 10. Axial (WZ), tangential (WT), and radial (WR) velocity profiles at $Z=1.061, R=0.67$

$$
\begin{aligned}
& \text { ORIGINAL PACE IS } \\
& \text { Of POOR PUALITY }
\end{aligned}
$$

Figure 12. Axial (WZ), tangential (WT), and radial (WR) velocity profiles at $Z=1.077, R=0.832$

Figure 13. Axial (WZ), tangential (WT), and radial (WR) velocity profiles at $Z=1.085, R=0.918$

OPIGINAL PAGE IS
Of POOR PUALITY

Figure 15. Stagnation ($\mathrm{P}_{\text {TOTAL }}$) and static (${ }_{\text {STATC }}$) pressure
profiles at $2=1.061, R=0.67$

ORiginal page is OF POOR QUALITY

17

ORIGIIVAL PAGE IS
OF POOR QUALITY

Figure 17. Stagnation (PTOTAL) and static (${ }^{\text {P }}$ (TATC $)$ pressure

$\begin{aligned} & \text { Figure 18. Stagnation (} P_{\text {TOTAL }} \text {) and static (P } \\ & \text { profiles at } Z=1.085, R=0.918\end{aligned}$

