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ABSTRACT

This report documents modeling and control system design for the
Large Space Systems Technology (LSST) Reference Platform. The LSST
Reference Platform consists of a central bus structure, solar panels, and
platform arms on which a variety of experiments may be mounted. Simple G
structural models and classical frequency domain control system designs H
are developed. The report shows that operation of multiple independently 12
articulated payloads on a single platform presents major problems when }
subarc second pointing stability is required. Experiment compatibility AL
will be an important operational consideration for systems of this type. )
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1. INTRODUCTION

This report documents modeling and control system design for the .
Large Space Systems Technology (LSST) Reference Platform, The LSST

Reference Platform consists of a central bus structure, solar panels, b

A bt s R ok A A

A B PN SO,

and platform arms on which a variety of experiments may be mounted.

Figure 1-1 shows one possible configuration.

The objective of this report is to identify major control problems
associated with precision pointing of experiment payloads. Simple
structural models and classical frequency domain control system designs

are used.

KL T

B A major result of this report is to show that operation of multiple
. independently articulated payloads on a single platform will present k
L . major problems when high performance is required. Experiment compatibility
!

will be an important operational consideration for any systems of this

type.

The report which follows has six sections and six appendices.
Section II defines the structural model for the platform. Mode shapes b
and frequencies are presented and controllability/observability issues

| discussed. Section III defines control system requirements. In Section

IV the control system design is developed. Rate plus position feedback
controllers are used, Control system design is evaluated in Section V, and

in Section VI a summary is given along with comments on future study options.

ey N

The Appendices document the model development for the platform
structure. The model is developed in a building block fashion using

g e il

finite element techniques. In Appendix A a model for the flexible
platform cross arms is given. In Appendix B the flexible solar panels
are added. Appendix C presents transfer functions for the model of

Appendix B. Two-hinged experiments are added to the model in Appendix D, 1

L

and in Appendix E a technique for reshaping rigid body modes is given.

Appendix F presents time response plots in support of Section V.
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LSST Reference Platform Configuration

1-1.

Fig.




I1I. STRUCTURAL MODEL

This section presents mode shapes for the LSST Reference Platform.
Techniques developed in Appendix E are used to reshape the rigid body
mode shapes so that they are easier to interpret. Some comments on
controllability and observability are then made.

A, CONFIGURATION

Figure 2-1 shows a model of the spacecraft configuration. This
configuration is the same as that presented iu Appendix D. The variables

{ i=1,2,3 and
Yy» Y5 are rotational degrees of freedom. Vl, V2, V3, 01, 62, and 63 are

V1 i=1,2,...,6 are translational degrees of freedom; 0

assoclated with the platform arms, V4, Vg, and V6 with the solar panels
and Yi» Y3 with the experiment packages. The central bus mass and inertia
arc represented by M,, M¢, I, and IS(M2 = Mg = 1/2 total bus mass,

I, = Ig = 1/2 total bus inertia). The bus is assumed to be rigid.

The experiment packages are hinged with respect to their bases. These
bases have masses Ml' M3 and inertias Il‘ 13 and are connected to the
central bus by massless beams of length La and flexural rigidity EIa‘

The experiment packages have masses Ml’ M3 and inertias about their
hinge point of Il’ 13. The distances from the hinge point to the
experiment package mass centers are Ll’ L3. The experiment packages

and their connecting arms are assumed to be rigid.

The solar panels are represented by “4. 16’ Mg, 16 (M4 = Mg, 14 = Ib).
The masses M, and H6 are connected to the central bus by massless becms

of length Lb and flexural rigidity Elb.

B, PARAMETER VALUES AND NATURAL FREQUENCIES

Table 2-1 1ists two sets of parameter values used for simulation
purposes, Parameters for the bus and solar panels are similar to those
of Appendix B, Parameters for the experiment packages approximate those
of SIRTF®., As can be seen from Table 2-1, the two data sets are identical
except for the length of the platform arms.

% .
Shuttle Infrared Telescope Facility (See Aviation Week, Sept. 15, 1980),

R
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Table 2-2 lists the natural frequencies for the 6 elastic modes of the
model, The primary difference between set 1 and set 2 is the change in
frequency of the platform arm modes which results from shortening the
arms per Table 2-],

C. MODE SHAPES

The mode shapes for the 5 rigid body modes and first 4 elastic modes
are sketched in Fig, 2-2 and Fig. 2-3. These mode shapes do not change
qualitatively for the different data sets,

Numerical values for the first 9 mode shapes for the parameters of
Table 2-1, set 1, are given in Table 2-3 for the coordinates of interest
(01, az, 63, Y1» 73). These coordinates are associated with actuvation
and/or sensing. The center of mass for the solar panels (M, Mg, M6) and
platform arms (Ml, M,, M3, Ml, M3) has been appended to each mode shape.
Note that these mass centers are not associated with any physical point

of the structure,

The rigid body mode shapes of Fig. 2-2 and Table 2-3 are more
complicated than they reed to be. For this reason, the technique developed
in Appendix E was applied to obtain more pleasing shapes. The resulting
shapes are presented in Fig. 2-4 and Table 2-5.

In order tc obtajin the rigid body shapes the following steps were
used. First it was desired to eliminate translation of the solar panel
center of mass from all but one mode. The computer algorithm selected
the mode shape with the largest value of solar panel center of mass
translation (mode 3 of Table 2-3) and using this mode shape as described
in Appendix E it eliminated this coordinate from modes 1, 2, 4, and 5.
This resulted in five new mode shapes,

Next the algorithm was told to eliminate the arm center of mass
translation from all but one of e modes 1, 2, 4, or 5, Mode 1 was
selected and four new mode shapes found,

Next, the algorithm was told to eliminate the bus rotation angle (62)
from all but one of the modes 2, 4, or 5. Mode 5 was selected and three

new mode shapes were found,
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Finally, the algorithm was told to eliminate the experiment rotation
engle (71) from all but one of the modea 2 or 4, Mode 4 was selected and
two new mode shapes resulted.

It should be noted that if a different set of coordinates or a different
ordering had been selected, then different rigid body mode shapes may
have resulted, The reason for selecting the mass center coordinates will
be more clear when controllability/observability issues are discussed
later in this section.

D. CONTROLLABILITY

The controllability of various modes can be seen as follows:
The equations of motion for the platform are

Mx + DX + Kx = Bu
wvhere
M, Dand K =

mass, damping, and stiffness matrices for the structure, respectively.

x = physical coordinate vector (dimension n)
u = control vector (dimension m)

B = control distribution matrix (n x m)

In modal coordinates this equation becomes

T 2

q+oTDog+atqe=el Bu

where ¢ (the modal matrix) satisfies

x=¢q

T

¢ Me=1

ok ¢ = 1% = atag. (2,22, ..., D)
Ai = ith natural frequency

1f we assume modal damping, then OTDO « D is diagonal. Hence, we see
thet the matrix product OTB determines the ability of the control u to
influence the modal dynamics.




6
The control forces (torques) applied to the platform are given by
F=Bu
where
u=rfo, T T,)T
‘27173
= gctuator torque vector (T2 is central bus torque, Tl and T3

are experiment torques)

[ o 0 0 ]
0 0 0
0 0 0
0  -4.8E84 0

0 0 -4 .8E4
B= (2,076 0 0
0 0 0
0 0 0
0 0 0
0 4,886 O

0 0 4 .BE4 |

= Control distribution matrix

Notice that B includes torque scaling for each actuator. Notice also that
the actuators which articulate the experiment systems ('I‘1 and T3) apply
a torque to the experiments and an equal and opposite toique to the platform

arms at the point of attachment.

Table 2-6 gives the matrix product OTB for the eigenvectors of Tables 2-4 .
and 2-5, Here, only the first 9 modes of ¢ are included, so that OTB is
a 9 x 3 matrix. '

We can determine the ability of an actuator to influence each mode
directly from the elements of QTB. For example, mode 1 (arm translation),
mode 3 (solar panel translation), and mode 6 (solar panel symmetric bending)
cannot be influenced by any of the three terque actuators and hence these

modes are uncontrollable. Modes 4 and 8 can be influenced by T, and T3

1
but not Tz.
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It should be noted that for distinct eigenvalues, the ability of a
force to influence a mode implies controllability of that mode (see
Ref. 2-1). For modes associated with repeated eigenvalues, however, this
is not the case. Since there are five rigid body modes, then at least
five actustors are required to provide controllability of these modes.
Clearly torque actuators cannot move the spacecraft mass center, so any
mode shape having a spacecraft mass translation is not controllable, In
Table 2-3 all of the rigid body modes have mass center translation. 1In
Table 2~5 only modes 1 and 3 have CM translation, so that modes 2, 4,
and 5 form a controllable subset of rigid body modes and modes 1 and 3

form an uncontrollable subset,

E. OBSERVABILITY

The sensors we will consider measure positions and rates of 62, Yy

and Y3 Since we have

x =9 q

the outputs are y = Cx where

x = [V, V, V30, 056, V,V, V(,wrlwr3lT
000 O 000 o0 0l
C = 00 O 000 10
000 00O O0O0O0 01
Now
y = Cx = C¢q

s0 C¢ determines the influence of a given mode on the sensor outputs,

Table 2-7 gives C¢ for the eigenvectors of Tables 2-4 and 2-5.

From Table 2-7 we see that modes 1, 3, and 6 do not influence the
system outputs, and hence are unobservable. A comparison of Table 2-7
with Table 2-6 shows that actustor and sensor influence results are the
same (e.g. if ¢y is influenced by Tl’ then it influences the sensor output
in Y- Similarly for T, and 6,, and for T, and 73.).




For distinct eigenvalues, the ability of a mode to influence a sensor
output implies observability of that mode. For repeated eigenvalues,
however, this is not the case. A minimum of five sensors would be required
for observability of the rigid body modes of Table 2-3 or Tabie 2-5.

The three rotation sensors have no capability to sense translation of
either the platform arms or the solar panels., In Table 2-5 modes 2, 4,
and 5 form an observable subset of rigid body modes, and modes 1 and 3 form

an unobservable subset,

Since modes 1, 3, and 6 are neither influenced by the actuators, nor
do they influence the sensor outputs we may eliminate them from further

consideration in control system design.
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Table 2-1, Parameter Values
Parameter SQ 1 Set 2
Platform Arms
L, (m) 15 6
EI_ (N-n? x 106) 20 20
M. (kg x 10%) 0.3 same
M, (kg x 103) 6.0 "
My (kg x 107) 0.3 "
I, (kg-n® x 10%) 0.1 "
1, (kg-n® x 103) 50.0 "
I, (kg-n® x 10%) 0.1 "
Solar Panels
L, (m) 20.0 same
EL, (N’ x 10°%) 0.1 "
M, (kg x 10%) 0.5 "
Mg (kg x 103) 6.0 "
My (kg x 10%) 0.5 z
Ig (kg-m2 X 103) included "
in I2
Experiment Packages
Lel (m) 3.6 same
Le3 (m) 3.6 "
M, (kg x 10%) 3.3 "
M, (kg x 10°) 3.3 "
1., (kg-m® x 10°) 48.0 "
1., (kg-a’ x 10°) 48.0 "
P T T A R P e S P

o L




aibling ol Ko Mt b il it R B S Soae_stl S G

10
Table 2-2. Natural Frequencies for the LSST Reference Platform
Set 1(1) Set 2(2)
Mode (4z) (rad/s) (Hz) (rad/s)
Rigid Body Modes
1-5 0 0 0 0
Solar Panel Mode
6 (lst symmetric) L0471 .296 0471 .296
7 (1st antisymmetric) .0639 L4011 .0984 .618
Platform Arm Modes
8 (lst symmetric) .912 5.73 3.59 22.5
9 (lst antisymmetric) 2.18 13.7 4.54 28.5
10 (2nd symmetric) 36.8 231. 58.4 367.
11 (2nd antisymmetric) 36.8 231, 58.5 3€7.
(1) Platform arm length = 15 m
(2) vPlatform arm length = 6 m
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Table 2-3. Rigid Body Mode Shapes Before Reshaping
| RIGID BODY MODES
'Coordinate 1 2 | 3 '; 4 5
’ Y 1.49 E-4 1.23 E-5 -8.57 E-10( 7.23 E-6 1.15 E-3
'8 ; 1.49 E-4 1.23 E-5 -8.57 E-10| 7.23 E-6 1.15 E-3 |
Y 3 1.49 E-4 1.23 E-5 -8.57 E-10| 7.23 E-6 1.15 E-3
| Y 2,46 E-3 | -3.46 E-3 2.11 E-7 | -2.92 E=3 | -4.59 E-3
Y -3.58 E-3 | -3.08 E-3 3.82 E-7 | 3.24 E-3 | -3.85 E-3
CM (S.P.) i -4.20 E-11 | 1.06 E-6 1.20 E-2 | -3.99 E-7 | -3.22 E-13
CM (ARMS) | 6.14 E-3 3.30 E-4 1.76 €-7 | €.10 E-3 | -8.38 E-4
Table 2-4, Elastic Mode Shapes
‘ ELASTIC MODES '
;Coordinate | 6 , 7 8 9
9, B 3.28 E-18 1,25 E-3  .-3,04 E-3 | 3.12 E-3
0, . 2,97 B-18 | 1.25 E-3 3.04 E-3 | 3.12 E-3
0, % 3.03 E-13 | 1.24 E-3 3.01 E-11] -4.14 E-3
Y, -2.90 E-16 |-4.62 E-3 6.16 E-3 | -2.57 E-3
Yy 1 -1.01 E-17 |{-4.62 E-3 -6.16 E-3 | -2,57 E-3
L
CM (S.P.) { -4.99 E-11 | 4.84 E-17 | -8.56 E-19| 2.29 E-20
CM (ARMS) | 2.44 E-16 |-2.36 E=9 | -2.13 E-11 -3.53 E-11

R AT e B s ke e ke .
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Table 2-5, Rigid Body Mode Shapes After Reshaping
RIGID BODY MODES i
Coordinate 1l 2 ' 4 5 7
0, 3,28 E-10 -5.28 E-12 : 1.66 E-15 1,01 E-11 1,16 E-3
8, 3.68 E-10 1.85 E-11 = 1.67 E-15| -2,25 E-11  1.16 E-3
0, ! 3.38 E-10 3.24 E-14 | 1.67 E-15| 1.01 E-15  1.16 E-3
o) -1.21 E-9 -2.10 E-11 | -5,28 E-14{ -5.40 E-3 | -4.30 E-3 '
Yy -1.34 E-9 -5.18 E-3 4,53 E-14| 1.55 E-3 | -4.30 E-3 |
CM (S.P.) -2.38 E-15 2.37 E-15 ; 1.20 E-2 | -1.24 E-15 | -1,13 E-17
CM (ARMS) 8.70 E-3 -1.52 E-11 | -1.88 E-13| 2.02 E-11 | -1.20 E-11
Table 2-6, ¢TB for the Eigenvectors of Tables 2-4 and 2-5
{ Mode T LY T3 !
1 0 0 0
2 0 0 -2.48 E2
3 0 0 0
4 0 -2.59 E2 7.43 E1
5 2.39 E3 -2.62 E2 -2.63 E2
6 0 0 0
7 2.56 E3 -2.81 E2 -2.81 E2
8 0 4,42 E2 -4.,42 E2
9 -8.56 E3 -2.73 E2 -2.73 E2
Table 2-7, C¢ for Eigenvectors of Tables 2-4 and 2-5
‘ I
Coor- | MODE 1
dinate | 1 1 4 s 7 8 ' 9
, 10 0 } 0 1.16E-3| 0 | 1.248-3] 0 -4.14E-3]
. 0 0 | 0] -5.408-3{-4.29E-3| 0 | -4.61E-3 6.16E-3|~2.57E-3 |
i |
3 0| -5.18E-3| 1.55E-3/-4,29E-3| 0 | -4.61E-3 —6.16E-3l-2.57E—3
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LSST Reference Platform Model

Fig. 2-1.
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I1II. CONTROL SYSTEM REQUIREMENTS

This section gives a brief statement of the controls, objectives, and

|
i
1

requirements for the platform.

! A, OVERVIEW

There are many requirements which attitude control systems for the
LSST Platform have to satisfy. These include a capability for:

e

{

i (1) stabilization and initial acquisition of celestial references

i (2) maintaining a prescribed attitude in the presence of various

' disturbance inputs

(3) experiment :'ointing control

(4) reorientins; the gross pointing direction to obtain a new viewing
configuration or for reboost

(5) reboost (or station keeping) to maintain a specified orbit

Of these five requirements, only the second and third will be addressed in

what follows.

R R

B. STABILITY REQUIREMENTS

F oo TRERNERETRRR T TR TN
e e e o B e A 2nn 4/
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Requirements for attitude control include both accuracy and stability.
In this report we shall limit ourselves to a consideration of stability.
In addition to pointing stability we will also consider linear acceleration

T

levels, since some experiments (e.g. material processing experiments) are

¢ concerned with these.

Table 3-1 lists requirements for pointing stability and acceleration
levels for some of the more stringent missions being considered for the
platform. Pointing stabilities in the range of .01 to 1 arc sec will
almost certainly require sophisticated pointing systems. The shuttle
infrared telescope facility has pointing requirements in this range

(.1 arc sec).

Pointing stabilities in the range of 10 to 1000 arc sec will require
less sophisticated pointing systems. In this range many users would prefer

1 e s R W SN TR e SRR G PO, | e




* s ot Lo A

18

the basic platform control systea to meet their stability requirements.
The cryogenically cooled telescope has pointing requirements in this
range (30 arc sec).

Pointing stability requirements below .0l arc sec will probably
require image motion compensation. This problem will not be addressed
in this report. There are a number of users with pointing requirements
between 1 and 10 arc seconds. Most probably they will require pointing
systems although there are some users that would like the basic platform
to provide this pointing capability., The high energy gamma telescope has
pointing requirements in this range (6 arc sec).

Table 3-1. Platform Requirements

Requirement Specification

pointing system stability .05 to 5 urad (.01 to 1 arc sec)
i platform stability .05 to 5 mrad (10 to 1000 arc sec)
; platform acceleration 1 to 10 mm132 (10-5 to 10“3 g)
i

S

I TN




IV, CONTROL SYSTEM DESIGN

This section documents control system design for the LSST Reference
Platform of section II. The purpose of this design effort was to obtain
some simple control system designs which would be suitable for identifying
the major control problems associated with the LSST reference platform,

No attempt has been made here to obtain designs having optimal performance
in any sense. Classical frequency design techniques are used based on
simplified rigid body models of the platform. Rate plus position feedback
controllers are used with ideal actuators and sensors assumed. The bus and
experiment package controllers are designed independently. Before beginning

the control system design, several control concepts are discussed,

A. CONTROL CONCEPTS

Three control concepts for the LSST platform will be discussed in
what follows. The first technique is the simplest conceptually and provides
independent control for the bus structure and experiment packages. The
second scheme allows for limited one-way information exchange between the
bus and experiment package control systems, The final concept provides
limited, or unlimited two-way information exchange between control systems.

l. Independent Control

Figure 4-1 illustrates the various control schemes symbolically.
Only two experiment packages are illustrated, but in actuality there
could be many more. Indepandent control (s the simplest conceptually,
Here, each control system operates independently using its own set
of sensors and actuators.

2. One-Way Interface

With the one-way interface scheme the central bus can send
information to each experiment package. In this case the bus controller
operates independently, but the experiment package controllers take
into account the data from the central bus structure in some way 80

as to ioprove pointing accuracy.

|
[
|
|
!
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The one-way interface scheme could also be implemented in the
other direction. That is, each experiment control system could send
the bus controller information which would help it to minimize the
effects of disturbance inputs introduced by that experiment package.
This might be as simple as a status bit indicating whether or not the
experiment control actuators are torquing, or, it could be a more complete
information exchange. With this scheme the experimen- package control
systems would operat< independently, but the bus controller would not
be totally independent. This one-way interface approach would make
the bus controller design dependent on varying experiment package

designs and as such may not be very practical.

3. Two-Way Interface

This method gives each control system access to information
available to the other control systems, This might be a partial or
total information exchange. With this scheme the controllers are all
interdependent to some extent. This dependence could be complete, so
that in effect there is only one central controller, or it could be
less complete allowing more independence of action., As tiie number
of experiment packases increases, this two-way interface could become
rather complicated, The two-way interface also makes the bus controller
design dependent on the various experiment package designs and as such

may not be very practical.

4, Sensors and Actuators

As a minimum we assume that each experiment package has some
means of torquing to maintain its desired orientation. A two-axis
(e.g. azimuth, elevation angle) torquing capability might be typical.
In addition, each package may or may not have its own (angular)
position and rate sensors, If an experiment package has position
sensors, it may or may not have the ability to directly measure target

position.

The bus controller will have a torquing capability plus position

and rate sensors, As a minimum, sensors and actuators will be located




on the central bus structure, but additional actuators and sensors
could be located on the flexible portion of the structure if.

necessary to obtain the desired performance.

RARERERE o

The information exchange, then, can be one in which sensor and
\ actuator information is exchanged, and/or one in which estimated

‘ state vector information is exchanged,

D i+ A Tl i

» ’ 5. Design Approach

The approach to designing a control system for the LSST platform
should be in the order of conceptual complexity. First the independent
controls approach, then the one-way interface. The two-way interface
may or may not be a viable alternative and should be attempted only
as a last resort., In fact any scheme which makes the bus controller

dependent on the various experiment packages would be an operational

B o 4
L S I N EL I

nightmare and should be avoided if at all possible.

The bus controller should be attempted first with all actuators
and sensors on the rigid central structure. However, if performance
improvement is needed, the location of sensors on portions of the
flexible structure might be considered. Location of actuators on the
flexible structure is much more difficult and should be attempted only

if other approaches fail to provide the required performance.

The remainder of this report considers only the simplest design approach,
that being iuadependent control systems for the central bus and each experiment.
It will be assvined that each control system has its own torquers and its
own position and rate sensors. All sensors will measure inertizl position

and rate,

B. BUS CONTROLLER DESIGN

A block diagram for the buc controller is shown in Fig. 4-2. Symbols

in Fig, 4-2 are defined as follows
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6 = Commanded bus angle (nominally zero)

[ -]
[ ]

Actual bus angle (relative to some inertial coordinate system)

]
[

Torque applied to bus by controller

T4

J = Platform inertia

Disturbance Torque applied to bus

J = Torquer gain (an estimate of J)
, Kp = Position gain
Kr = ‘Rate gain
In Fiy. 4-3 the block diagram has been redrawn in a format convenient for

controller design purposes. Here 1(1_/1(.p is the rate to position gain also

called Krp-in what follows.

The forward loop transfer function from Fig. 4-3 is

(S99 3

K
G(s) =

e

JS

The feedback loop transfer function is

H(s) = Krp S+1

From this the closed loop transfer function is

£ (q) w808
ac 1+G(s)H(s)

~

K J ~
= P -
2. - e 4;
JSS4K_JK_ S+K _J i
porp P |

~
K_J/J
P /

i

or —ei' (S) = 2 A ) .
c S +(KpKth/J)s+KpJ/J |

1
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Now if J = J then we have

K
_—n

??'(5) =72
s?4k K s+

¢ p TP P

The characteristic equation for the system is then

82 +KK S+K =0
p rp P

Next define the damping and natural frequency as ; and w, respectively,

so that

2§mn.= KpKrp

From this we can determine Kp and Rtp given desired values for w, and ¢

2
Kp = wn (4-1)
Kr = ZCwn (4-2)
K = 2t/w (4-3)
rp n .

Or, given Kp and Krp we can determine Z and w

w = K_
P

= K

=% KK

=% “n Krp

For the purposes of this design, we will choose
w, = 0.0l Hz

= 0,0628 rad/s

¢ = 0,707

|
|
|

s
|
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then

K = mz = 3,94E-3 rad/s2
P n

K_ = 88.6E-3 rad/s e,

K _=2235s
p

To complete the controller design we must have a value for 3. Figure 2-1
shows a sketch of the platform model. It is not immediately obvious how

to calculate 3, because of the hinged experiment packages. Suppose,
however, that we assume that the experiment pointing angles (yl and 73)
remain zero. This is equivalent to saying that the commanded (inertial)
pointing angles are zero for Yy and Y3 and that the experiment controllers
are functioning ideally. Then so far as the bus controller is concerned
the mass of the experiment Mel can bf lumped with the platform mass Ml’*
and similarly with Me3 and M3. Then J can be calculated as follows

A 2 2
ERCHE S T S ST R RE N CARE R RE S P

3t My)

Then for the parameters of Table 2-1, set 1, we have

~

3= (0.3 + 3.3 + 0.3 + 3.3)E3 (15)°

+ (0.5 + 0.5)E3 (20)° + S0E3

[

P
2.07E6 kg-m"~

For Table 2-1, set 2 data we have

-~

J

7.2E3 (6)% + 1.0E3 (20)% + SOE3

92
0.709E6 kg-m”

This completes the bus controller design,

C. EXPERIMENT CONTROLLER DESIGN

A block diagram for the experiment controllers is shown in Fig. 4-4,

This figure is identical to Fig. 4-2 except for the additional commanded

*

The inertia of the experiment about its hinge point need not be included
since we assume that the experiment does not rotate relative to an inertial
reference frame,
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inputs 'l‘c and ;c. ‘l‘c and Qc are the commanded torque and rate
respectively.

For the experiment controllers we will choose two values for

the natural frequency:

w, = 1 Hz = 6.28 rad/s
and
w, = 0.1 Hz = 0,628 rad/s

In each case we will select ¢ = 0.707,

Now using Eqs. 4-1 through 4-3 we can compute the gains Kp, Kr,

and Krp' For a 1-Hz controller we have:

K = wz = 39,4 rad/s2
P n
= = /!
Kr ZCwn 8.88 rad/s

Krp = ZC/wn = 0,225 s

For the 0.1-Hz controller we have:
Kp = wi = 0.394 rad/s2
L 20w = 0.888 rad/s
Krp = 2;/wn = 2,25 s

The value for J can be read directly from Table 2-1.

~

2
J = Ie1 = I e3 = 48E3 kg-m

This completes the design of the experiment controllers.

D. COMBINED DESIGN

A block diagram for the combined system is shown in Fig. 4-5. The
commanded inputs are shown ecz for the bus controller, Y3 for the experiment
*
3 controller, and Yorr Tcl for the experiment 1 controller. For the

purposes of design evaluation, only the experiment 1 controller has a non-

x. .
Yc1 1is not shown on this diagram, because for the simulations conducted, vy,

was set to zero. A better design could have been achieved using a nonzero

value for ;cl' but this was not realized until after all simulations had been
completed.
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zero commanded input. The success of the control system design is to be
measured by how closely the bus and experiment 3 controllers maintain

02 and Y4 mear zero in the presence of commanded slews of the experiment 1
controller,

E. CLOSED LOOP SYSTEM EIGENVALUES

The open loop eigenvalues for the LSST reference platform are given
in Table 2-2, Table 4-1 shows the system gains used for simulation purposes.
Figures 4-6 and 4-7 show the associated closed loop eigenvalues for these
gain values, (uncontrollable/unobservable modes are not plotted unless

noted otherwise),

Figure 4-6, Run F12, shows the closed loop eigenvalues for the 15-m
platform arms when open loop torquing is used for experiment 1. Note the
2 closed loop poles at the origin. This is an indication that thae rigid
body mode associated with experiment 1 becomes uncontrollable when the
feedback gains are set to zero. The bus controller frequency and damping
are somewhat higher than the design values of .0628 rad/s and .707 damping.
Also, the experiment 3 controller frequencies are somewhat higher than the
design values, and critically damped. The elastic mode vibration

frequencies all have low values of damping.

Figure 4-6, Run F10, shows the closed loop eigenvalues for 1l5-meter
platform arms and 1.0-Hz experiment controllers, Note that the bus
damping and frequeuncy is close to the desired values of 0,707 and 6.28E-2 rad/s.
The experiment control frequencies, however, are critically damped with
frequencies of 5.0 and 59.0 rad/s. The elastic mode vibration frequencies

(for the coutrollable modes) all have small values of damping.

Figure 4-6, Run F13, is similér to Run F1l0 except that the eigenvalues
associated with the experiment 3 controller are shifted lower because of the

lower gains used.

Runs Fl7 - F19 use the same estimate for the plaiiorw inertia
(I = 2.07E6 kg-m>) as for Runs F12, F10, and F13. The design value of

e ———— A .t sk P L o
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0.709 ks-m2 was not used to demonstrate the effect of parameter error on
system performance, The results are shown in Fig. 4-7. Note that in

all cases closed loop system response remains stable. In fact, damping

for the elastic modes of the platform is actually improved over many cases
{ with 15-m platform arms. Based on the results shown in Figs. 4-6 and 4-7,

we might say that the design is adequate for the purposes of identifying

- major control problems, although it is in no way an optimum design.

X
? Table 4-1. Control System Gains for Performance Analysis
ARM CONTROL
RUN LENGTH | BANDWIDTH EXP. 1 GAINS EXP. 3 GAIN
' : K K
\ wnl “nz l(p 2 Kt P 2 r
' (m) (Hz) (Hz) (rad/s”)| (rad/s) | (rad/s")| (rad/s)
F12 15 * 1,0 0.0 0.0 39.4 8.88
F10 15 1.0 1.0 39.4 8.88 3%.4 8.88
l F13 15 1.0 0.1 39.4 8.8 | .39 .888
Fl7 6 * 1.0 0.0 0.0 39.4 8.88
i F18 6 1.0 1.0 39.4 8.88 39.4 8.88
{ :
§ F19 6 1.0 0.1 39.4 8.88 «394 .888 :
ALL RUNS USE THE FOLLOWING DATA: _
Bus Inertia est, J = 2,07E6 kg—mz 2 1
Exp. 1 and Exp, 2 Inertial est. J = 48.0E6 kg-m ! 14
Bus Gains KP = 3,94E-3 rad/s? Kr = 88.6E-3 rad/s ! i
i
]
* Open Loop Torquing g

A T i A A i




INDEPENDENT CONTROL:

EX PERIMENT EX PERIMENT
PACKAGE BUS PACKAGE
CONTROL g%w CONTROL
SYSTEM SYSTEM

ONE-WAY INTERFACE:

EXPERIMENT BUS EX PERIMENT
PACKAGE | DATA CONTROL DATA | PACKAGE
CONTROL SYSTEM CONTROL
SYSTEM SYSTEM

TWO-WAY INTERFACE:

EX PERIMENT BUS EX PERIMENT
PACKAGE | DATA R ONTROL DATA | PACKAGE
CONTROL SYSTEM CONTROL
SYSTEM SYSTEM

Fig. 4-1.

Control Concepts for the LSST Reference Platform
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Fig., 4-4. Experiment Controller Block Diagram
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Fig. 4-5. Control System Configuratfon
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V. CONTROL SYSTEM EVALUATION

In this section the transient response performance of the combined
system is examined. Comments are alsuv made on additional factors which

can affect performance.

" A. TRANSIENT RESPONSE

Computer simulations were performed to determine system performance.
Table 5-1 summarizes the results (for a definition of the symbols used
in Table 5-1, see Figs. 2-1 and 4-5). All runs were made with a bus
control frequency (wnz) of 0.01 Rz, The commanded torque (Tcl) was a
square wave input of + 20 N - m, followed by an equal duration -20 N - m
input. The commanded torque durations were chosen to give the desired
final commanded angle (Y1 ) at the end of the torquing sequence assuming
that the base point (M ) was inertially fixed The commanded angle as
a time function was taken as the second integral of torque according to
Newton's law (again with the assumption that the base point was fixed).
The experiment inertias of Table 2-1 were used (‘l‘c1 - Iel ;cl)'

Table 5-1 presents the peak transient responses for the experiment 3
pointing angle (73) the bus pointing angle (02) and the bus acceleration
W,).
requirement of 5 urad by up to70 times, and is 60 to 7000 times a 0.05-urad

A comparison of Tables 5-1 and 3-1 shows that Y4 exceeds a stability

requirement, Acceleration levels are within the lO-mm/s2 requirement but
exceed a 0.1-—mm/s2 requirement by 6 to 30 times, 62 performance is between
2 and 5 mrad (400 to 1000 arc sec). This is within the 5-mrad requirement
but 40 to 100 times the 0.C5-mrad requirement, From this we see that the
pointing requirements of Table 3-1 cannot be easily met using controllers

of the type considered here.

A comparison of the six representative simulation runs illustrates

several clear trends. It should be kept in mind that experiment 1 is

e

creating the disturbance, and experiment 2 (fixed to the bus) and 2xneriment

) are feeling the influence of the disturbance. Using a closed loop

* ;
In the simulations, the base point (M]) was not inertially fixed, so that ]
the open loop torque command was in error,
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controller for experiment 1 (compare Runs F10 and F12) results in a smoother
disturbance torque profile, and as such improves pointing stability for

both v, and 6,. It also reduces acceleration levels at the bus (Vz)
Increasing experiment 3 bandwidth (compare Runs F10 and F13) increases Y3
stability, but has an adverse affect on V2° Decreasing the arm length
(compare Runs F10 and F18) increases pointing stability of both v5 and 63
and in most cases decreases acceleration level (V2) The reader is referred
to Appendix F for time plots of an example simulation (Run F1Q).

B. ADDITIONAL FACTORS WHICH CAN AFFECT PERFORMANCE

There are many factors not considered in this study which could have
a major influence on the absolute performance 6f the LSST reference platform,
Imperfect sensors and actuators, gimbal friction and flexibility, and more
complex structural dynamics could all result in poorer performance than
that presented here., On the other hand improved controller gain selection
or more scphisticated controllers could improve the performance results.
For example, base motion compensation could be added using an additional
sensor for each experiment package (an accelerometer), and image motion
compensation could be implemented for some types of experiment packages
by the addition of another actuator (a secondary mirror drive for example).
For these reasons, the performance results of Table 5-1 should not be

taken as absolutes in any sense, Yet Table 5-1 does indicate the difficulty

- which is faced when attempting to design a control system for a platform

of this type.

Table 5-1. Performance Results

CONTROL BANDWIDTH PEAK RES PONSE
ARM w w ’
ENGTH [ ™ ) T3 i ,
RUN (m) (H2) (H2) (urad) (mrad) (mmis”)
F12 | 150 * L0 5.00 | S.11 3,000
F10 15.0 L0 L0 .59 {32 0. 964
F3 | 150 1.0 0l 357,00 | 3.25 0,608
i 6.0 * 1.0 1220 | 3.10 0. 848
F18 6.0 L0 L0 .13 | 228 0.819
F19 6.0 1.0 01 25400 | 72 0,819
*OPEN LOOP TORQUING ;
Yo, © 88 mrad, Tc = 20 N-m, wn = 0,01 Hz for all runs,
] ] 2

e
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VI. SUMMARY AND FUTURE STUDY

Several control problems for the LSST Reference Platform have been
identified and quantified in this report. Perhaps the most important of
these is that operation of multiple independent control systems on a
single platform presents a major problem when high performance is
required., Experiment compatibility will be an important operational
consideration. Control system design is complicated by large shifts in
structural parameters which occur as a result of variations in the number
and location of experiments mounted on the platform. Structural vibration
frequencies in the controller bandwidth further complicate the design
problem, It has been found that conventin:-: controllers miss performance

requirements by a wide margin when these factors are taken into account.

It should be noted that the lighter the platform is, independent of
its stiffness, the greater is the controller interaction problem, The
best structural design solution, from this standpoint, would be to place
the Queen Mary in orbit. This might post other problems, however, from

socio-political-economic viewpcints.

It should also be noted that problems with platform flexibility cannot
be solved by simply making the platform arms more rigid. As Appendix F
illustrates, elastic vibration of the solar panels is the dominant pointing

error once the initial slew transient (of experiment 1) has subsided.

Two control approaches have been identified for future study. The
first approach is to add additional sensors and/or actuators to individual
experiment controllers. Base motion and image motion compensation fall
in this category. The second approach is to allow information exchange
between controllers, particularly one~way exchange from the bus controller
to the experiment controllers, The challenge is to develop controllers
which can significantly reduce the controller interaction problem and at
the same time reduce controller sensitivity to structural parameter

variations,
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APPENDIX A, MODEL FOR PLATFORM WITH FLEXIBLE CROSS ARMS

This Appendix documents the application of standard finite element
techniques to modeling the LSST reference platform with experiments rigidly
attached to the platform arms. The platform arms are modeled as flexible
appendages to a rigid bus. The solar panels are assumed to be rigid.

A six-degree-of -freedom model is developed for planar motion of the platform
cross arms. The equations of motion are developed using a lumped mass
approximation and a consistent mass matrix approach. The double diagonali-
zation procedure for obtaining mode shapes and frequencies is discussed

and the effect of parameter variations on mode shapes and frequencies is
illustrated.

The purpose of this appendix is to provide a building block to more
complete models of the LSST reference platform as developed in Appendices
B and C. It is felt that this building block approach to modeling provides
increased understanding of the structural model which is useful for controls

design work.

1. Configuration

Figure A-1 shows the simplified configuration used for modeling of
the platform cross arms. Motion is constrained to the plane. The motion
of interest for the initial modeling activity will be for rotatioms about
the x axis., These rotations are tightly coupled with displacements along
the z axis. For small angles the y axis motion is considered negligible.
Hence, the model has six degrees of freedom, the vertical displacements
Vl, Vz, V,; and rotagions 91, 62, 03. The masses Ml and M3 (taken to be
point masses) and inertias I1 and 13 are associated with two rigidly
attached science and applications packages. The mass M, and inertia I, are
associated with the central bus, The connecting elements are taken to be

beams with length L, mass per unit length m, and flexural rigidity EI.

A 2. Stiffness Matrix

The stiffness matrix for a beam element is the standard one used for
finite element techniques (see for example Ref. A-1, p. 158). With

reference to Fig, A-2 we have,

;
E
.
;
;
!
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Here, Vl and V2 are the vertical displacements of the beam end points,

and 6, and 6, are the rotations at these points (positive slope = positive
1 2

rotation). Fl, F2 are the corresponding applied forces and Tl’ Tz are

the applied torques.

Equation (A-1l) can also be written

', 6 L - 3] [v]
2 2
Nl (327 a3 e -
3
F2 6 L6 -3 |y,
T2, a2 a? |,

Next, if we have two beam elements, we can find the combined stiffness
matrix using thz standard direct stiffness approach., With reference to
Fig. A-3 we have,

sz 6 3L -6 3] Tvz
2 2
Ta| .21 (3L 2% 3L L% |,
03 (A-3)
F3 6 a6 |y,
T, L 12 o 22 e
L 3J N - b3J
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3.

Mass Matrix

mL
520

156

54
22L
:13L

Equation (A-4) defines the

54
156
13L

-22L

156
22L
54
-13L

[}
(-}

stiffness matrix (K) for the system of Fig. A-l.

2L

Equation (A-5) can be rewritten

22L

a?
-13L
-8

-13
-22
-3L

4l

54
13L
156
-22L

e iy a e imims

So that combining Eq. (A-2) and Eq. (A-3) we obtain

L 4 0 0]
]
I
c e el e —ee
0 , =6 3L
a? | . 2
- e ol
-3l 6 -3L
(2 -3 28

techniques (see Ref, A-1, p. 163 for example) .

consistent mass matrix for this beam element is

v
Ll v
2| s
2| |3
1 1%

3L
-3t
22

aL

(A-4)

The consistent mass matrix is the standard used for finite element

1f the mass per unit length of the beam in Fig. A-2 is m then the

(A-5)

(A-6)
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The consistent mass matrix for the second mass element is identical

(since we assume m and L are the same), so the combined result is

g -

(156 22t 54 a3 0 O]
20 a2 @ a2 o o
L 54 1L 32 0 54 -13L
TR 4y w2 o a? o -n?
0 0 s4& 3L 15 .22
o o an - 2 a4l

N

-

To the mass matrix of Eq. (A-7) we must add the discrete masses and
inercias of Fig. A-l

so that the mass matrix for the system of Fig. A-l is

M‘MB+MD

with My taken from Eq. (A-7).

4, The Equation of Motion

The equation of motion for the system of Fig. A-l is

MV+KVs=F

where

T
Vs= [V16l V292 V363]
F= (F

and M and K are as defined above.

111 FoTp

T
F4T4]

nodal coordinate vector

= force vector

(A-7)

(A-8)

(A-9)

%
1
}
i
1
]
5
!
i
»
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In many cases, the effect of HB is negligible and the equation of
motion may be approximated as

ubiin(v-r (A-10)
with M, defined by Eq. (A-8).

S. The Eigenvalue Problem

If we set V= v eist f where v is a scalar and f is a vector of
dimension 6, then Eq. (A-9) gives us

ist

(-s2ME+KE) velSt=F (A-11)
now set F = 0 and s? = A, so
AMf=Kf (A-12)

To put this in the standard eigenvalue problem form we will use a double
diagonalization procedure:

First we chose 01 so that

T .
F Ol g and Ql M 01 1 (A-13)

here Ol is the eigenvector matrix of M, with the individual eigenvectors

scaled to satisfy Eq. (A-13).
Applying Eq. (A-13) to Eq. (A-12) we obtain

rg=0 Ko g (A-14)

1
or

rg=Kg (A-15)
This is now in standard eigenvalue form. Now set

g = ¢2h
vhere ¢, is the eigenvalue matrix for K. Then

T. =
Ah=2¢, K¢, h=Kh (A-16)
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Now, K is symmetric and hence K is too. So OZT K ¢, 1s diagonal
and consists of the eigenvalues of the system. The eigenvectors are

hy = (100000
h, = (010000 (A-17)

h6 =[(000001])
These can be transformed back into the coordinates of Fig. (A-2) with

oi = @1 02 hi 1 = 1,...'6 (A-la)
This solution procedure for the eigenvalue problem is well known and avoids
inverting the mass matrix, It also allows the eigenvalue routines to work
with symmetric matrices throughout, Notice, however, that if Eq. (A-10)

is to be used, MD is already diagonal and hence easily inverted. 1In this
case, there is no need to use the double diagonalization procedure.

The 01 of Eq. (A-18) are the system mode shapes and the natural

frequencies are given by

w, = /X; 1=1,...,6 (A-19)

6. Effects of Parameter Variations

Table A-1 presents eight sets of parameter values which were used to
represent the platform arm model for Fig. A-l, These values are believed
to be representative of a power system/platform similar to the 25-kW

power system reference concept proposed by Marshall Space Flight Center,

Table A-2 presents the modal frequencies associated with the parameter
values of Table A-1, The mode shapes are shown in Fig. A<4 (the mode
shapes do not vary qualitatively with changes in parameter values). The

following observations can be made:.

* A comparison of the results for data sets 7 and 8 show that the
mass per unit length of the beam element has a negligible effect
on the frequencies. Hence, the consistent mass matrix approach may

be set aside in favor of the simpler diagonal lumped mass matrix.
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s A comparison of results for data sets 2 and 3 shows that the inertias
(Il’ I, I3) have little effect on the first symmetric bending

mode (mode 3).,

* A comparison of results for data sets 4 and 5 shows that the inertia
I, has little effect on the second bending modes (modes 5 and 6).

¢ Increasing L, Hi' or Ii reduces the modal frequencies and increasing

El increases them.

7. Comparison of Results to those for a Simple End Loaded Cantilever

Beam

The modal frequencies for the first bending mode may be compared to

those of a simple end loaded cantilever beam (see Fig, A-5).

The tip deflection is (see for example, Ref. A-2, p. 518)

The differential equation is:
M ; +Kys=0
£1} K
ytgy=0
So that the natural frequency of vibration is just

2 _K_ 3EI

using the parameter values of data set 2 we see

6
23 x 33.45 X lg = 37,74 rad/sec
(3x107) x (3)

n

= 6,0 Hz

(A-20)
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This is close to the results of data sets 1-5 (5.3 to 7.3 Hz)., Hence, to
a first approximation, Bq. (A-20) can be used to estimate the lowest

o —— —— — et P g

'F
E frequency of the system of Fig, A-1,
E‘ Table A-1, Parameter Values
d l I EI M M2 M3 I) I2 13
‘ Data ; L (N") = (kg- (xg- (kgm2 (kgm (k kgm
| Set ‘ (@) x106) (kg/m) x103)  x103) x103) x103) xlgg) x103)
1 3 38.45 12.3 3 13 3 0 86 0
2 ' 0 : ' 0 0 0
3 1.2 47 1.0
4 1.2 559 1.2
5 ' 4.2 4,2
6 15 1.2 1.2
| ¢
7 | 19.2 ! |
| i
8 ; L 12.3 J ‘ Y J ,
| Table A-2, Modal Frequencies (Hz)
! Mode Number ‘
- Data
Set 1 2 3 4 5 ]
1 0 0 7.3 7.7 641 642
2 7.3 907 1139 1753
3 6.8 8.4 34 35
4 6.0 6.8 34 35
LS 5.3 5.8 20 22
6 0.6 1.0 14 14
L7 0.5 0.7 10 10
L8 v v 0.5 0.7 9 9
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MODE 1: RIGID BODY TRANSLATION

MODE 2: RIGID BODY ROTATION

MODE 3: 1st SYMMETRIC BENDING

MODE 4: 1st ANTISYMMETRIC BENDING

MODE 5: 2nd SYMMETRIC BENDING

MODE 6: 2nd ANTISYMMETRIC BENDING

Fig., A-4,

Mode Shapes
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APPENDIX B, MODEL FOR PLATFORM WITH RIGIDLY ATTACHED EXPERIMENTS

This Appendix documents the application of standard techniques to
modeling the LSST platform with experiments attached rigidly to the
platform arms, The platform arms and sclar panels are modeled as flexible

appendages to a rigid bus,

Nine-degree~ and eleven-degree-of-freedom models are developed by

adding flexible solar panels to the model developed in Appendix A.

1, Configuration

Figure B-1 shows a simplified configuration used for developing an
eleven-degree-of -freedom model for the LSST reference platform. The two
degrees of freedom 64 and 05 are later eliminated (see sections which
follow) to obtain a nine-degree-of freedom model. The variables ea, 65,
VA’ V5, and V6 are associated with the solar panels., The central bus mass
and inertia are represented by M,, MS, 12, and Ig (M, = Mg = 1/2 total bus
mass, 12 = IS = 1/2 total bus inertia). The two experiment (payload)

packages are represented by Ml, I1 and M3, I3. The masses M, and M3 are

1
assumed to be connected to the bus by massless beams of length L, and
flexural rigidity EIa. The solar panels are represented by MA’ I4 and
Mc, I (Ma =M, I, = 16). The masses M, and M, are assumed to be
connected to the central bus by massless beams of length Lb and flexural

rigidity EIb. Since the bus is rigid we have 8, = 6

2 5°

2, Solar Panel Model

7“he solar panel model has six degrees of freedom (before applying the

constraint that 92 = 65). The stiffness matrix found by finite element
techniques (see Appendix A, Eq. (A-4)) is

(6 3L -6 3L o o] [v]

a2 3L 2 o0 o o

2E1, Bl 4
a3 L 0

symmetric 6 '3; Ve

06,

—r g



Here Fi’ i = 4,5,6 are the forces associated with the displacements Vi,
1i=4,5,6; and T T i = 4,5,6 are the torques associated with the rotatious

g . 8y, 1=4,5,6.

J A diagonal mass matrix is used (see Appendix A, Eq. (A-8)).

M 4

7 " 9 o

; Fa % Y.‘J

;z sl :

3 51 . M 5

: Tg Ig ;S

| Fe M Vg

' [T L 'e] |’
My

| 3. Constraint Implementation (8, = 651

s for the platform have an identical form,
=T

v The stiffness and mass matrice
| (Appendix A Egs. (A-4) and (A-8)). In order to combine them we set T2

L and 62 = 65 to obtain an 11 by 11 mass matrix and stiffness matrix.

5’

This procedure is straightforward. First reorder the rows and columns

of the matrices so that for the platform arms we have the T2, 62 equation

on the bottom:

' Fy reordered T V1
\ T] stiffness 8
E Fol = matrix v,
| Fs (or reordered V3
; L mass matrix) 83

L TZ. L § Lez_ ;

| .

For the solar panels reorder the rows and columns of the matrices so that ‘

the Tg, 65 equation is on the top (and then set Tg = T,, 95 = 62):

H S ol r “r
: Tz reordered ez-1 i
; F stiffness v ]
4 matrix 4 j
i Tal = (or reordered| | e,
£ mass matrix) v
5 5 b
Fe Ve

TR PP Cy
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Now, combine these equations to obtain an 11 x 11 matrix. For ;
; example, the mass matrix becomes |
? r - 1(1.° t
E F2 ", Y2
:3 "5 3| i
2 3 % \
2|~ (I*1g) 7 |
Fa My Ya
| s Mg Vs
6 Me Y6 l
‘ T I.{ |o L
| - 6 B L '6d Iy Gd 1} ﬂ
L The stiffness matrix is similar, it will look something like: l
- d . . 'ﬁ
Reordered : W T o
K matrix : 4
for platform |L
: - | arms ch - —
-~ = T T 7 Reordered L
. | K matrix '
; ! for solar
; | ! |  panels ) L A

The common element (C) will be the sum of two terms, one from each of the

two stiffness matrices,

4. Static Condensation : f
i

What we have now is an eleven-degree~of -freedom model. However, the

degrees of freedom associated with the rotation angles 6, and 66 are not .
essential for a preliminary model. Excluding these degrees of freedom
still provides two flexible modes for the solar panel (first symmetric

and antisymmetric bending modes) as will be shown in what follows.

S e Rl ot
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) The process of eliminating 04 and 96 from the lumped mass matrix is

R simply to set I, = 6 = 0 and compress the matrix to a diagonal matrix (M)
of dimension 9.

% ea and 96 can be eliminated from the stiffness matrix using a process
konown as static condensation (see, for example, Ref., A-1, p. 172). To
accomplish this we begin by reordering the elements of the stiffness matrix
and partitioning it so that it has the following form

a - p I - F -
F, | v
T 8
F, | v,
F3 l Y3
T 6

3 | 3
= K K

T, tt | 6,
Fa Vq
Fg | Vg
Fe I Ve
Ta K TK %
T ot | 08 8

L 6. b L 6-

or
Fe Kt Keo | [Vt
Fo | Kot Koo | |V
where Ft’. = [F1T1F2F3T3T2F4F5F6]
_ T
Fe = [T4T6]
Vt =4[Vl 2V38332V4V \' ]
T
Ve = [ekeﬁl

e ——— e T
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and Ktt' Kte' Ket’ Kee, are the partitioned elements of the reordered
stiffness matrix,

Now set I, = 16 = 0, Also set Ta = T6 = 0, since we assume that no

external torques will be applied to the masses L MG‘

or

V. = ~K K.V (B-1)

-1

Fe = & ge K

v

K oc) Ve

tt = Keo
So the reduced stiffness matrix is represented by:

. -1 : .
K=K - K Koo Ko (B-2)

Using K and M we can now work the problem with nine degrees of fruedom
instead of eleven. Also, Eq. (B-1) can be used to solve for 8, and 66
under the assumption that I, = Ig = 0, Notice that 8, and 6, will not

be zero.

5. The Equation of Motion

The equation of motion for the system of Fig. B-l is

A e -

M Vt + K Vt = Ft

where ﬁ, ﬁ, Ve, and Ft are as previously defined.

6. The Eigenvalue Problem

The eigenvalue problem has the same form as that given in Appendix A,
Eq. (A-12)

AME =K f

Yot iae N s
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where A is the scalar eigenvalue (A = mnz = natural frequency squared) and
f is the eigenvector (or mode shape) associated with A,

7. Mode Shapes for System Elements

In order to visualize the system mode shapes, it is instructive to
first examine the mode shapes of the individual elements. Our model has
two types of elements as shown in Fig. B-2. Type 1 has 4 degrees of freedom
giving two rigid body modes and two elastic modes. Type 2 has 3 degrees of
freedom, éiving two rigid body modes and one elastic mode,

Figure B-3 shows the mode shapes for the type 1 element, The type 2
element has the same first three mode shapes shown in Fig. B-3 but lacks
the 4th mode.

The first two mode shapes involve no strain energy (since the beam
element connecting the end masses is undeformed) and have w = 0. The 4th
mode shape has a higher strain energy than the 3rd mode and also a higher

natural frequency.

8. Sample Computer Run Results

Four computer runs were made with the eleven-degree—of -freedom model and

two runs with the nine-degree-of -freedom model. Table B-1 lists the parameter

values used and Table B-2 the resulting natural frequencies.

Comparison of runs 4 and 5 show that the results are identical for
the first nine modes. 1In other words, run nine confirms the fact that

eliminating 64 and 66 is equivalent to setting Ia and 16 to zero.

Comparison of runs 2 and 3 shows that increasing the mass and
inertia of the experiments (MIII, M3,13) results in lower frequencies for
the bending modes of the platform arms, but has little or no effect on the

solar panel modes.

Comparison of runs 1 and 2 shows that increasing L and decreasing EI

lowers the natural frequencies as we would expect,

- As pointed out in Appendix A, the lowest frequency is roughly propor-
tional to JIEI/ML3 or

w, = C //Eli ; C = constant
ML

[ S P e e, - P

e
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Between runs 1 and 2 this ratio for the platform arms changed by an amount
“a1 _ /1000/10
roviaies
n2

This agrees well with the computer run results for the lst symmetric mode:

W
-Bl--‘3.91/.546 = 7,2 for platform arms
“n2

“n1
;E— = _356/.035 = 10 for solar panels.

n2

Compatison of rung 2 and 4 shows what the result of neglecting I“
and 16 is on the modes retained. The platform arm modes are unaffected
and the solar panel mode frequencies increase somewhat (compare modes 8 and
9 for runs 2 and 4)., When using the nine-degree-of-freedom model, the
flexural rigidity (EI) can be reduced somewhat as compared with the eleven-
degree -of -freedom model if the same modal frequencies are desired for the

modes 8 and 9,

The mode shapes for the system of Fig. B-1 are sketched in Figs. B-4
through B-6. The mode shapes do not differ qualitatively from rum to run,
The shapes are various combinations of the element shapes sketched in

Fig. B-3., Table B-3 lists the mode shapes quantitatively for run 6.

9. Comments on Interaxis Coupling

The mode shapes of Figs, B-4 through B-6 demonstrate clearly that x
and y axis rotations are tightly coupled (see Fig. B-1 for axis definition).
For example, any input which excites the symmetric bending modes of the

. *
platform arm will cause the rotations 6, and 03 . But, because the symmetric

bending mode results in a displacement 32, this motion will cause rotations
of M, and Ms about their y axes. This in turn will excite torsional

modes (not modeled in this paper) associated with the solar panels and
platform arms. In this way, we can see that all six masses will have
rotations about their y axes as a result of an excitation of a platform

arm symmetric mode,

*The torques Tl and T,, for example, will excite these modes (but T, will not) .

TR
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The magnitude of this coupling will depend on the parameters of the
model and may or may not be small enough to permit meaningful single axis
control system designs. This coupling effect will be examined more
carefully in future work.

e e o i =
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Parameter

Platform Arms
La (m)

Ela(N-n%x105)
My (kg x 10%)
L (kg-m2x103)
M, (kg x 10%)
I, (kg-n?x103)
M3 (kg x 103)

1, (kg-fx10%) |

Solar Panels
Ly (m)

E1, (N-nx10%)
My (kg x 10%)
1, (kg-m®x10°)
Mg (kg x 10°%)
Ig

M (kg x 10%)
1 (kg-nPx10%)

Table B-1 Run Parameters

Run 2

Run 6

w & o

15
20

- w 11

!

'

ol

50

50

I I

15
20

20

[ —
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Table 8-2

P o

Rigid Body Modes

1 (solar panel translation)

—~

LA S AL /A

2 (arm translation)

3 (rotation)

Platform Arm Modes

4 (1st symmetric)
5 (1st antisymnetric)
: 6 (2nd symmetric)
| 7 (2nd antisymmetric)

Solar Panel Modes

8 (1st symmetric)
. 9 (1st antisymmetric)
S 10 (2nd symmetric)

11 (2nd antisymmetric)

{.-... PG Shegh). Al aisc bt et s i ol e aul il b o o ( 2 TN
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Natural Frequencies (Hz)
Run1 Ruin2 Ruin3d Rind4 RinS5 Runb ;
0 - 0 |
0 i 0
0 —— 0
3.9 .546 430 .546 .546 .546 !
5.75 2.04 1.98 2.04 2.04 2.04
29.3 1n.7 5.86 11.7 1.7 1.7
29.3 n.7 5.95 WN.7 1.7 11.7
|
.356  .035  .035  .047  .047 04|
.584 .039 .03  .049  .049 0493
1.33 J33 0 133 22,5 X X
1.37 .130 129 22.5 X X
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‘ Table B-3 Mode Shapes for Run 6
i E?(_"‘- Mode Number and Displacement
é\ ate 1 2 3 4 5 6 7 8 9
? i 0 -9,1E-3 -1,1€-2 9.1E~3 2.46-3 7.4E-4  7.5E-4 0 -6.0E-3
v, 0 -9.1E-3 0 -9.1E.3 0 -7.4€-4 0 0 ]
Va 0 -9.1E-3 1,1E-2 ?.15-3 -2.46-3  7,4E-4 -7 .SE-4 0 6.0E-3
1 0 0 7.4E-4 -1.8-3 -2.5E-3 2.2E-2 2.2E-2 0 4.0E-4
3 0 0 7.4E-4 1.8E-3 -2.5£-3 -2,2E2 2.2E-2 0 4.0E-4
2 0 0 7.4L-4 0 4.1€.3 0 4.6E-4 0 3.9€-4
V4 1,28-2 0 -1.5E-2 0 4.0E-5 0 1.38-7 2.9E-2 .2.8E-2
Vg H.ZE-Z 0 0 0 0 0 -0 -4,9€-3 0
Ve 1.2E-2 0 1.58-2 0 -4 .0E-5 0 -1.3€-7 <. 9E-2 -2.8£-2

- T ——
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Fig., B-1. Model for Platform X Axis
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Fig. B-3, Mode Shapes for Type 1 Element
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SOLAR PANELS

o O O
RIGID BODY TRANSLATION OF o 7N
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Fig. B-4. Rigid Body Modes
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MODE 6: 2nd SYMMETRIC BENDING MODE

MODE 7: 2nd ANTISYMMETRIC BENDING MODE
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Fig. B-5. Elastic Modes for Platform Arms
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MODE 8: 1st SYMMETRIC BENDING MODE

MODE 9: 1st ANTISYMMETRIC BENDING MODE

MODE 10: 2nd SYMMETRIC BENDING MODE

MODE 11: 2nd ANTISYMMETRIC BENDING MODE

Fig. B=6, Elastic Modes for Solar Panels
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APPENDIX C. TRANSFER FUNCTIONS

This Appendix documents transfer functions for the nine-degree-of -
freedom model of Appendix B, Transfer functions are developed from modal
data. Comments on observability and controllability are made for torque
actuators and angular position sensors on the central bus or on the

platform arms., Transfer functions are included for noncolocated actuators

and sensors.

1. Transfer Function Derivation

This section addresses the derivation of transfer functions between
a force (or torque) at any point in a structure to a sensor at any point

in the structure.

For this purpose the system model is assumed to have n degrees of

freedom and be of the form

Mx + Kx = F = Bu (c-1)

is the np"dimensional nodal coordinate vector
is the m"dimensional" control input vector
is the n"dimensional" force vector

is the 2 "dimensional' output vector

is the n x n stiffness matrix

x

u

F

y

M is the n X n mass matrix

K

B is the n x m control distribution matrix
c

is the £ x n output matrix

Let ¢ be the n x n matrix of eigenvectors for this system such that:

and

oT Ko =%

where I is the identity matrix and Az is the diagonal matrix of eigenvalues

(or modal frequencies squared).
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Then Eq. (C-1) can be rewritten in terms of the modal coordinates q
\ (x = 9q) as
a+A2q-oTF (c-2)
\ Suppose we now assume modal dampins* and write
q+Di+A2q=0e" F (c-3)

where D is a diagonal damping matrix.

Now take the Laplace transform of Eq. (C-3) to obtain:
a(s) = (s21 + sD + A2)L T F (C-4)
or in terms of the original coordinates

x(s) = 0(s?1 + sD + 12)"L T R(g) , (C=5)

Equation (C-5) gives the transfer matrix relating F to x. The transfer

matrix between u and y is given by
y(s) = ¢ 0?1 + sp + AL 8T B u(s) | (C-6)

To find the transfer function between any force (Fj) and nodal coordinate

(xk) we proceed as follows: define

Q(s) = (sZI + sD + 1\?')-l

diag. (Ql(s) Qz(s) veo Qn(s))

2,-1

= (<2 4
Qi(s) = (s" +-2 ;i wy + wy )

¢i = [¢l ¢2 LS ¢n]

and

~ T
¢i = [¢1i ¢21 cee ¢ni]

*
See, for example, Rer. A-~l, pages194-199 for a discussion of this assumption,
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where
oji is the jth component of the ith eigenvactor
;1 = ith modal damping coefficient
w, = ith natural frequency
Then, from Eq. (C-5) we have
r‘ -
x(8) = [0) 05 «v 0] [Qy(8) 1 [eT] ro
T
Q,(s) ¢,
¢ T
Q (s) %
. - J
v T
= (1 ¢ Qs)9,") F(s) (-7

i=]

Equation (C-7) is an alternate representation of the transfer matrix given
in Eq, (C-5). Now define

x(s) = (x1 Xy ven xn)T

T
F(s) = (F| Fp ... F)
so that
n
x, (s) = (i§l¢ki Q(s) ¢54) Fy(s) (c-8)

Equation (C-8) defines the transfer function between the force Fj and the

nodal coordinate Xy .

Using (C-7) we can write (C-6) as
T T
y(s) =c(121 ¢, Q ¢, ) B u(s)

.(g

i=]

(c-9)
T
¢ ¢i Q ¢i B) u(s)

now set

T
2

T T,T
B = [Bl B, ... Bn ]

C = [cl CZ [ CR‘]
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where each B1 is a 1 x m row vector and each Ci is a n x 1 column vector.

Then
&3
121 1% 7 By
= 1] xm row vector
and
{ ¢, 9 c,
j=1

= £ X 1 column vector

n n
y(s) = [igl(jzl Cytye) Q) Z

K L 9 (8) B,] u(s)
i=l

now, define

By = (Bil 12+ B/

~ - ~

Ci = (Cli C21 N Cli)

where Bij and Cki are scalars. Define

y(s) = (yl Yy e yz)T

u(s) = (ul u2 e um)T

so that n
y.(8) =) C.Q,(s)B,] ul(s)
Kk o kit S

Equation (C-12) defines the transfer function between the control input u

and the output Yy

2. Transfer Function Symmetry

Bj)l u(s)

(C-10)

(c-11)

(C-12)

3

Equation (C-8) demonstrates that the following two transfer functions

are equivalent:
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To find the inverse of the matrix (M32+K) we can use Cramer's rule,
numerator of the inverse has the form

X X
=@ = (o
J k

This result is known as Maxwell's law of reciprocal deflections (discovered

®
in 1864) , The Symmetry seen here arises because of the symmetry of the
original M and K matrices,

3. Transfer Function Zeros

The number of zeros (Nz) in the numerator of Eq. (C-7) (or (C-12)) {s not

at all obvious., An upper bound is Nz = n - 2, This can be seen by expanding

Eq. (C-7) over a common denominator which is the product

n
X (242 Gyu, s+ wiz)
i=1

However, in many cases the degree of the numerator polynomial will be less
than n-2 when k#j,

As an example, consider the system of Fig, C-1.
transfer function xl(a)/Fl(s) has 6 zeros
x3(3)/F1(S) has 2 zeros, and x

For this system the
» x2(8)/F,(s) has 4 zeros,
4(8)/Fl(s) has no zeros.-

This can be demonstrated as follows,

The system equations are
A
(K1j=Ki+Kj)
2 - - -
'FHIS"'KI .Kl rxl rrl
2
X A T 2| [T
T A, RN
2
-X M s°4K X F
. § 3 6J3J | 4 -4-‘
Me? + K

The

x
See for example, Ref, C-1, p. 494,

s ms A e
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Ny, Ny Ny N,
_"u B2 M3 Wy,

and the denominator is the determinant of (Hs2 + K). Each element Nij is
found by deleting the ith row and jth column of Mgl + K) and taking the
determinant with proper siga. So

——

L 2 .
Mzo +K12 -l2 0 :

| 2

| b Pl s K

| 2

F 0 -13 H‘s 413

In this case, the coefficient of the 86 term is Mz M3 Ma so N11 has degree ;

6. For le we have:

Sl -Kz 0
2 |
,‘ M= -|0 Mys 4Ky =Ky g
f 2 '
; 0 "3 H‘s +K3 !
D

In this case, there is no 86 term and the s“ term coefficient is Kl M3 MA‘
For N13 we have:
< 2 0
1 M ¥y,

wye|o ) %5 = 0y X, k)

0 0 M 4‘,




So, in this case, we have s as the highest degree of s.

For 814 we have:

ey,
T L L T AN

0 0 -l,

80 le is just a constant term, and there are no zeros in the transfer
functions x, (8)/F, (s) = x, (8)/F,(s).

So we conclude that for chain systems of this type we car determine
pretty much by inspection the number of (finite) zeros. For other systems

this is not so easy, especially when the M and K matrices are full or nearly °

full,

It should be noted, however, that if zeros at infinity are included,

then every transfer function can be thought of as having the same number of
zeros as poles,

Suppose that we compute the transfer functions using Eq. (C-7). Then
because of computational inaccuracies the order of the numerator polynomial

for each transfer function will almost always turn out to be n-2 for systems
of any size.

1f a polynomial root finder is employed it will attempt to find n-2
roots., It may or may not be successful and if it is successful, some
of the roots found may have very large magnitudes. The user of such a
program should understand that the most probable explanation for the root
finder bombing out or obtaining roots with very large magnitude is that the
true system has fewer zeros than n-2.

1f the root finder does bomb out, it is necessary to reduce Che

polynomial to a lower degree (by simple truncation) before attempting
another solution. If the root finder obtains very large values for the
zeros (as compared to the pole magnitudes) then these zeros should usually
be discarded (which is equivalent to replacing them by zeros at infinity).
Some judgement is required, however, on what is '"too large."

B VS
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4. Numerical Results for Nim-_b_ciru-of ~Freedom Model

The initial control problem for this structure is related to the angles,
61, 9y, 8, vhere 61 and 63 are the experiment pointing angles and 6, is the

central bus orientation angle.

The associated control torques are defined as Tl' Ty and T3; where
Ti' 1 =1,2,3 is the torque applied at "1’ { = 1,2,3 about the x axis.

The transfer functions of interest are:

Tl (s) = transfer function between a torque applied at Ml and the
1 rotation angle at same location.

82

Tr-(s) = transfer function between a torque applied at the central
2 bus and the rotation angle at same location,

®

T (s) = transfer function between a torque applied at the central
2 bus and the rotation angle at Ml'

o

T (s) = transfer function between a torque applied at M3 and the
k)

rotation angle at Ml.
Also of interest are the following transfer functions

) 8
1
= (8) = = (8)
T,

and

6 8
1
= (8) = == (8)
T3

There arc many other possible transfer functions of lesser interest

which will not be discussed.

Figures C-2 through C-5 present pole/zero configurations for the fcur
principal transfer functions resulting from the modelof Appendix B using

!
%
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the Run 6 datc set parameters. For simplicity of platting no damping has
been added., The gain (K) of the transfer function has also been shown using
the following convention

K (s-2,)(s-23) ... (s-2)

R P ] 7= R (=

" where

Zi = the 1ith zero
and

Pj = the jth pole.

5. Observability and Controllability

The pole/zero plots of Figs. C-2 through C-5 give us information on
observability and controllability, Whenever pole/zero cancellation occurs
this is an indication that either observability or controllability (or both)
has been lost (see next section).

¢]
Figure C-2 shows us that for Tl-(s) there is a pole/zero cancellation at

w = 0,296 rad/s. This frequency co%responds to the first symmetric mode of
the solar panels. Any motion observed at Ml as a result of solar panel motion
must be transmitted through the bus. The symmetric modes of the solar
panels, however, are not transmitted to the platform arms (see Appendix B)
so this indicates a lack of observability, Furthermore, this mode is not
controllable since rotations and displacements of the platform arm cannot
excite the symmetric modes of the solar panels, '
62 .
Figure C-3 shows us that for T_'(s) there are pole/zero cancellations at
w = 0,296, 3,43, and 73.3 rad/s. 2These frequencies correspond to the
symmetric modes of the solar panels and platform. Since the symmetric modes
do not affect 62 these modes are not observable, and since a torque T2
cannot excite these modes they are not controllable either.
°) %
Figure C-4 shows us that for Tr-(s) and T (s) there are pole zero
cancellation at w = 0,296, 3.43, ang 73.3 rad/%. As before the solar

panel mode is neither controllable or observable., This is true for both

e " " - e i I N LT T T S T

e g ke ke .k e e e
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not controllable, In the case of T (s) the reverse is true: ' the
platform arm symmetric modes are con%rollable but not observable.

] )
Figure C-5 shows us that for Tl (s) and —2 (s) all the modes are control-

lable and observable except the solgr panel symmetric modes which are

neither controllable nor observable,

It should be noted that controllability and observability of a particular
mode are necessary if we are to change the dynamics of a system related to
that mode, but do not in themselves assure us that a satisfactory comtrol
system design can be achieved., For example,’the configurations of
Figs, C-3 and C-4 will be much more difficult to control because of the
consecutive pole patterns on (or near) the imaginary axes, and because of the

right -half plane zero(s).

It should be noted that although the symmetric modes of the platform
arms and solar panels are not controllable or observable at the central
bus when considering 8, and T2, they become both controllable and observable
when torques and motions about the y-axis of the bus are included. The
present model does not include these torques explicitly, but they are

implicit in the forcesfé and FS and the displacements V2 and VS.

6., More on Pole Zero Cancellations

In the previous section we used arguments associated with the mode shapes
to determine whether pole zero cancellation arose from loss of controllability
or from loss of observability, or both. In this section we will make the

argument a bit more precise.
The system equations as stated earlier are:
MX + Kx = F

and
a+rig=e'F (C-13)

where

s=¢ q _ (C~14)

R s . amametcds - 5 aaini o gar . o) o e loay .

T (s) and = (s). The platform arm symmetric modes are observable in Tr-(s) but

- v g a1

L _.m-.ui.,a_ o
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and ¢ is the eigenvector (mode shape) matrix, Here x represents physical
coordinates, and q the modal coordinates, For illustrative purposes,

consider a 3-dimensional system with x = [x1 X3 x3]T, q= [q1 9, q3]T,
z P (F, Fp Fy]", and

B Here [¢11 ¢12 ¢13]T represents the ith mode shape. Now, Eq. (C-13) can be

written as follows

| . 2.1 T 11
L UG +o 9 ‘n %% 4| |h
Qruy ag | = |6 €& 6| |F
- 2
*
BBl TR ) $50 %32 43 | Py
- J S J

From this it is clear that for 9, to be influenced by Fj we must have ¢mj ¢ 0
(this is the controllability issue).

% Similarly, Eq. (C-14) can be written

i. (<Y T 160
: | x 1 21 3 Ex
' x 2 Y2 ) |92

From this we see that for q, to influence the output at X, we must have
L # 0 (this is the observability issue).

Now consider an n-dimensional system. The transfer function between

the Force Fj and cutput x, was found before (see Eq. (C-7)). For the
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t

undamped case we have:

¢,,9
-—-(S) 2 _%1_ﬂ51r

e e o e

8 + u
¢, ¢ ¢ . ¢ ¢ . ¢ t
e R - R . B (c-15) |
2 2 2 2 2
s"+uw 8" +w s" +w ]
1 m n
Now, if either omj = Q or ¢mk = (0, then the term involving 32 + mmz
disappears §i .e., the transfer function has no pole at 92 +w 2)
2

Hence, if —- (s) is written with the term sz + wo in its denominator, it

g ey g

must have the same term in the numerator. In other words, we must have pole
zero cancellatiqn. Hence, we can examine the entries in the eigenvector
matrix to determine controllability and observability; or we can look for
pole zero canceilations in the transfer functions and if they occur look

at the eigenvector matrix to determine their cause.

The discussion in this section and the last has implicitly assumed

that the natural frequencies are distinct. If they are not distinct (for |
}

example we may have several rigid body modes) then our comments must be

modified slightly.

Looking at Eq. (C-15) we see thai pole zero cancellation will certainly
occur if ¢mj = 0 or ¢mk = 0, However, if w =, (for example) then it is
possible to have pole zero cancellation even when ¢1j ¢1k and ¢Zj ¢2k are non- ‘
zero. Thus Omj ¢ 0, ¢mk # 0 is necessary for controllability/observability é
but not sufficient., If, however, ¢mj L # 0 and W is a distinct (nonrepeated)
eigenvalue, then this mode will be controllable and observable (¢mj ¢mk 4 0 is

|
necessary and sufficient). For additional discussion on this topic the reader {
{
|

is referred to Ref. 2-1.

. . " . . L
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Xi = INERTIA DISPLACEMENT AT MASS Mi
Fi = FORCE APPLIED AT MASS Mi

Fig. C-1. Discrete Mass System




jw
73.5 <-2nd ANTISYMMETRIC MODE OF PLATFORM ARMS

3.4
73.3 <=2nd SYMMETRIC MODE OF PLATFORM ARMS

14.2
12.8 <1st ANTISYMMETRIC MODE OF PLATFORM ARMS
5.29

3.43 =-1st SYMMETRIC MODE OF PLATFORM ARMS
1.16

0.310 =-1st ANTISYMMETRIC MODE OF SOLAR PANELS
0.296 = 1st SYMMETRIC MODE OF SOLAR PANELS
0.271

/— 6 POLES, 4 ZEROS (3 RIGID BODY MODES)
o

Fig. C-2, Pole/Zero Configuration for 01/'1‘1(8)

X = POLE
0 = ZERO

GAIN, 3
K = 1x10

[4']
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| 73.5 ~=-2nd ANTISYMMETRIC MODE OF PLATFORM ARMS
| 73.3 <2nd SYMMETRIC MODE OF PLATFORM ARMS

‘ 1.2

AP

12.8 <-1st ANTISYMMETRIC MODE OF PLATFORM ARMS | x = POLE

0 = ZERO
3,43 -«=-1st SYMMETRIC MODE OF PLATFORM ARMS
2.43 GAIN, p
- |K = 20x 10

0.310 <=1st ANTISYMMETRIC MODE OF SOLAR PANELS
0.296 =-1st SYMMETRIC MODE OF SOLAR PANELS

0.274 ‘ |
/— 6 POLES, 4 ZEROS (3 RIGID BODY MODES) 1

o

€8

Fig. C-3. Pole/Zero Configuraiion for BZITZ(S) i
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73.5 -=-2nd ANTISYMMETRIC MODE OF PLATFORM ARMS
73.3  <=-2nd SYMMETRIC MODE OF PLATFORM ARMS
12,8 <-1st ANTISYMMETRIC MODE OF PLATFORM ARMS

3.43 <-1st SYMMETRIC MODE OF PLATFORM ARMS

0.310 =-1st ANTISYMMETRIC MODE OF SOLAR PANELS

0.296 =-1st SYMMETRIC MODE OF SOLAR PANELS
0.29%

/6 POLES, 4 ZEROS (3 RIGID BODY MODES)
o
3.4

Fig. C-4. Pole/Zero Configuration for el/Tz(s) and 02/’1‘1(8)

v8

X = POLE
0 = ZERO

GAIN,
K = -53,3x 107>
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73.5 <—2nd ANTISYMMETRIC MODE OF PLATFORM ARMS
73.3  <2nd SYMMETRIC MODE OF PLATFORM ARMS
i 12.8 -=1st ANTISYMMETRIC MODE OF PLATFORM ARMS

{343 <-1st SYMMETRIC MODE OF PLATFORM ARMS

0.310 =-1st ANTISYMMETRIC MODE OF SOLAR PANELS
0.296 =—1st SYMMETRIC MODE OF SOLAR PANELS

0.274

— 6 POLES, 4 ZEROS (3 RIGID BODY MODES)
o

-10.1 -2.02 2.02 10.1

Fig. C-5. Pole/Zero Configuration for 61/T3(s) and 03/T1(S)

X = POLE
0 = ZERO

GAIN,
K = %48
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This Appendix extends the model of Appendix B to include two hinged
experiment packages, each having a single rotational degree of freedom. It ;
is assumed that these packages are rigid. The resulting model has eleven é
degrees of freedom. The mass and stiffness matrix for the combined system

APPENDIX D, MODEL FOR PLATFORM WITH TWO HINGED EXPERIMENTS ATTACHED s 5
}
;
[

is given.

1, Configuration

Figure 2-1 shows the configuration for the Reference Platform. This

configuration 1is the same as that in Appendix B except for the two experiment

packages represented by the masses Mel’ Me3' The additional degrees of freedom f
are given by the angles " and Yqe g and Y3 are taken to positive for a ; 1
rotation about the plus x axis. Yy is measured from the negative y axis and :
Y3 is measured from the positive y axis (i.e. for the nominal configuration
shown in Fig. 2-1, both Y, and Yy are zero).

2. Development of Equations of Motion for an Experiment Package

Figure D-1 shows a sketch of the experiment packages located on the
y axis of the platform arm. Figure D-2 shows a free body diagram., The !
model developed will be for Yy and Y4 near zero so that forces along the ‘ j
y axis will not be considered. Symbols are defined as follows: ! {

T3 = torque applied about the x axis of the experiment package located
on the plus y axis.,

Fv3 = reaction force applied by the base mount to the hinge point (P3)
of the experiment package in the direction of the z axis,

P3 = point of force application

Yy < angle of rotation about the x axis relative to the inertially
fixed axis y.
3" inertial displacement of point P, along z axis,
o3 = mass of experiment package at location 3,
e3 ™ inertia of experiment package abnut hinge point P3.
el
1 Fore Bro Yo Vo Mo Ly

= distance between hinge point P3 and center of mass of experiment.

\'
Me3
1
L
T are defined similarly.
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Now, if the point P3 were initially fixed, then we would have

Ty = Laa%y

But, since P3 is not fixed we must account for the base acceleration. The
proper relationship in this case is (Ref. D-1, p., 146)

=p XxXMr = I (D-1)
= torque about point P3

= vector from point P3 to cm

% = mass = Me3

Ep = acceleration of point P3 relative to inertial space
Ep = rate of change of angular momentum relative to point P3.

The model being considered will consider only motion along the z axis and

rotation about the x axis (actually there is also rotation about the y

axis because of x-y axis coupling but this effect will be neglected in
what follows). ‘

For vy, near zero we have
3

M =T.e
-p 3%x
e ™ &eB (ey + Y3 ez)
';:p = v3ez

gp = Ie3Y3 €x

The assumption here is that x is a principal axis for the experiment package
and that base motion is along z only e ey, and e, are unit vectors along

the x, y, and z axes respectively.

Substitution into Eq. (D-1) gives

T3 €x = Le3 (ey + Y3ez) X Me3v3ez = Ie373 €x (b-2)

or
Ty = MoalesVs = La37;s

T3 * He3Le3v3 + Ie3Y3 (b-3)
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Now, we can obtain the forze equatior by application of Newton Law,
?v3°z - “33 x (acceleration of CM of experiment package)

Since the position of the CM of the experiment package relative to inertial
space is given by (V3 + 73L‘3) e, ve have

Fo3 = Me3 (V3 + Lggvy) (D-4)

Equations (D-3) and (D-4) gave the force and torque applied to the
experiment package at point P3. The force and torque applied to the platform
arm at this point is the same with aminus sign.

For the experiment pactage on the -y axis of the platform arm Eqs,
(D-3) and (D-4) must be modified slightly. Equation {D=2) becomes

Tie, - Ly (-ey - ylez)x M,,Y.e, = La" 2% (D-5) ,
o |
. - - _ i
Ty = = MleyVy * Ty (0-6) :
i
Also, since the CM position for this experiment package is (Vl-ylbel) e, !
we have '

Fo1=Me1 V- Yiley) (©-7)

To summarize what we have so far:

For the experiment package on +y axis (location 3) the forces and torque
applied to the experiment package are

3 " MealeaVs + Lo3Y3 *

T
Fua = Me3(V3 + L v3)

For the experiment package on -y axis (location 1) the forces and torques
applied to the experiment package are

Ty = = MaletVs * LaM

Fop = Ee1(Vy - Lgvp)

The forces and torques applied to the bus are of opposite sign.




3. The Mass Matrix

Defina the new state varisble vector to be

T
[V V,Vy 9,840, V,VsVg v1Y,]

The cquations of interest are:

Ty

F.«F . +F

% 1 al el

I “« Fy =My ) - Lyv)

i |

; F3 = FaS + l'.423

= F, - M Wy + L 573 (D-9)

Fo=Fa- Ty (p-10)
Fg = Fsp = T3 (D-11)
Flo™- uelLelii1 + Iel;l -T, (D-12)

L.V, +1 (D-13)

F1 = MaalesVs * Te3v3 = T3

where ;

F1 = gsum of external forces (Fal) and experiment package reaction
forces (Fel = - Fvl) applied to Ml'

F3 = gum of external forces (Fa3) and experiment package reaction
forces (Fe3 = - Fv3) applied to M3.

FA = sum of external torques (Fak) and experiment package reaction
torques (-Tl) applied to Il'

Fg
torques (-TJ) applied to 13.

= sum of external torques (Fas) and experiment package reaction

Flo - T3 = torque applied to experiment package at location 3 about

hinge point P3.

Now, let m 1=1,9

j=1,9

13

be the mass matrix elements of Appendix B. Then, by using Eqs. (D-8) to
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(D-13) we can obtain the new mass matrix as

' =
®y "oy tNy

1 =
B3y = My + Ny

! N« -
® .10 Mgl

311 * Meale

[ ]
%10,10 a

[}
®1,11

N =
10,1 " ™1,10

' =
™m1,3 " P31
' =
mlO,j 0 for all j except 1 and 10
! -
mll,j 0 for all j except 3 and 1l
a' =0 for all i except 1 and 10
1,10
N =
mi.ll 0 for all 1 except 3 and 11
L] - .
mij m:L1 for all other i and J

4, The Stiffness Matrix

The stiffness matrix is unchanged from that of Appendix B except for
the addition of zero elements to increase the dimension from 9 to 1l. This
is because the rotations Y, and Y4 can be made without any strain energy
{{.e. there are no forces or torques proportional to 11 or ?3).

e e g e m e e e e L a

-
.




Hence, the new stiffness matrix is given by

' -k ‘-
ky kij i=1,9

$=1,9

k' - k' -k =k -0
10,3 11,j 1,10 1,11

for 1 =1,11 :

» 11,1 |

: ]

E E
- 3
L k
| |
:

LA_;.,K-_-.-A-.;_A. P, (PR Py N

el o . o
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Fig. D-2,

Free Body Diagram for Experiment Packages
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APPENDIX E. A TECHNIQUE FOR RESHAPING THE RIGID BODY MODES OF A SPACECRAFT

This Appendix preaenta'a technique which can be used to reshape the
eigenvectors associated with a common eigenvalue, This is of particular
_ interest for application to reshaping rigid body mode shapes for flexible
';5 spacecraft. Standard eigenvalue/eigenvector programs do not necessarily
| give rigid body mode shapes which are pleasing, The algorithm presented
here allows considerable fresdom for reshaping the modes,

1, System Equations .

The system to be considered is of the form

Mx + Kx = 0

wvhere M is the system mass matrix (symmetric, positive definite)

K is the stiffness matrix (symmetric, positive semidefinite)

x is the coordinate vector (dimension n)

Suppose we set x = ¢ g

where ¢ satisfies
T
¢ Q- -
M In (E-1)
0T K ¢ = n2 (k-2)

2% o diag. (Ai. Ag. e aﬁ)

In = Jdentity matrix
¢ 1s the matrix of system eigenvectors, or mode shapes. A is the matrix

of system natural frequen-ies,

2. Reshaping Algorithm

Suppose the first m eigenvalues are repested (for example, all zero

for the rigid body modes).

Set .-[01 ‘200 o.n]

Lok




wvhere ¢ 1 is the 1“‘ eigenvector. Then suppose we wish to reshape

‘1. 02. e o o .‘ « In P.t‘u\ll.r suppose .j - [.u ‘21 e s 0 .nj]r
and suppose we wish to eliminate ¢ 1 for some i and for each J

3-2.3.000.‘0

In other words, we wish only ¢, to contain the component 1 3

@u#O, 01.1-0 1-2.3.000.05

We can accomplish this by proceeding as follows:

First eliminate ¢,, from ¢y o This can be accomplished by setting

-~

- | G htay

¢
wherea---alg———

il
now ¢2 and 01 are no longer orthogonal with respect to M and K 8o we
wmust modify U So set ¢, = ¢1 +b 02 . Then to maintain the orthogonality

conditions of BEqe. (E-1) and (E-2) we must have

| T ,
;{ K 02 =0 (E‘l’)

so we must have
T T
(¢1+b 02) H(Oz"'a 01) =0

or aQ{H01+b-¢;Hoz-0
01

so that b--a.r = -8
¢2“02

likevwise we must have

T T -
(¢) + be,) K (¢z+a01) 0. |
or bo':xozd-ao.{xol-o

but if 0; K 02 = 0{ K 01 = Ai then again b = =g does 1it.
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b ._vu.-w,...._-._.‘,,_w&,..v T T T STy T w
= R . RO " R

Now note that . X

2, T
Oy +bap MCo +bep= o Tue +2 9y,

2 2

*=14+b"=1+3a

T 2 T
and (g +a 07 ) Mo, +aome," Mo, +a’ 0 Mo

=1+ .2

So to renormalize ;1 and ¢, ve nust divide each of them by\ll + az.

This results in the following:

2

¢y = (8, + 2 0D/ (L + ad)

¢ |
where a = --;iz :

11 : ;

e E—— o —— -

This procedure can now be repeated using 01 and 03 to eliminate the
component ¢13 from ¢3 » @nd 80 on until we have a new set of m rigid

body eigenvectors, only one of which has the component Oij ¢0.

Now we can work with m-1 eigenvectors, and eliminate a different
coordinate from all but one of these; and so on until for the nth
eigenvector m-1 Coﬁponents have been eliminated. This procedure is '
illustrated in Fig, E-1 for the cese Me 5., Note that at each step any

one coordinate can be eliminated from the remaining eigenvectors., These

coordinates need not be consecutive as shown in Fig., E-1,

3. A Property of the Reshaping Algorithm

Suppose that 01 is to be used to eliminate ¢12 from 02 « Then we can

show that ¢ 1 has the same magnitude as 011 .
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In particular we have

0 = (0 -8 0)/(\1 + 0D

¢ 453 2
- A2 42
0y + 322 /¢ /1 ol

80 that
)
R ¢ ¢
. 2 12
1 % (g #3000/ L+ =2
*n
-~ 2 2
¢ ¢ ¢
Ao ed2yhe 2
" o2 2
17 ¢

- \,1 + o

This property shows us that if 01 beging with a large value for 011
then it will still have this large value after the reshaping process.

In other words, we are assured of a certain amount of computational

stability,

4. Examples of Ways in Which the Reshaping Algorithm Can Be Used

As an illustration of how the reshaping algorithm might be applied
consider the following example. Suppose the rigid body modes for a space-
craft include rotation and translation of the Center of Mass (CM). An
attitude control system does not control CM translation. If there are 3 CM
translational coordinates for the spacecraft, then it would be desirable to
eliminate CM translation from all but 3 of the rigid body modes, This can
be accomplished using the reshaping algorithm of this appendix provided that

the eigenvectors contain coprdinates defining the CM location. If the

SRR AR R ey U e el g Wi R ‘ s il e ;i 2 B . ol S
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eigenvectors do not contain the CM coordinates, then they can be a‘ugmented
so that they do by using the mass properties of the spacecraft.

If the CM translations are not eliminated from the eigenvectors used
to design.an attitude control system, then there will be uncontrollable
modes associated with the design problem. These uncontrollable modes can be
eliminated by reshaping followed by truncation,

As a second example consider the following control problem. Suppose
we wish to design an attitude control system for a single spacecraft axis
using classical design techniques. If the spacecraft model has 3 rigid
body rotational degrees of freedom then two of these are uncontrollable
when performing a single-axis design. If the actuator/sensor pair used
to accomplish single-axis control is colocated, then we can eliminate the
rotational coordinate with which they are associated from all but one rigid
body mode using tiue reshaping algorithm. If they are not colocated we could
choose either the coordinate associated with the actuator or the one associated
with the sensor and eliminate it from all but one mode. 1In this way we can
eliminate two rigid body rotational modes from the spacecraft model which
are either uncontrollable, unobservable, or both uncontrollable and unobservable,
Through this process we can achieve a cleaner mathematical system model for

use in the control design problem.
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STEPS 1-4: COORDINATE
‘U IS ELIMINATED FROM

$il r 2345

STEPS 5-7: COORDINATE
¢2j IS ELIMINATED
FROM ¢j;j * 345

BEEESOAJERERRC N,

STEPS 8-9: COORDINATE
¢3!S ELIMINATED
FROM | = 45

(TIXERE (T ERES (T 111

STEP 10: COORDINATE
¢ 45 1S ELIMINATED
FROM ¢,

(TIEekEREe (IR (T == (T 11 8.8

L Ixeleleles (1 TIeklelS (11 ==l [IT11 115

Fig. E-1. Reshaping Process for Mode Shapes Having Identical Eigenvalues
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APPENDIX F, TIME RESPONSE PLOTS FOR RUN F10

T R —

In this Appendix time plots are presented which illustrate the transient
respotise for a representative simulation (Run F10 of Table 4-1). Simulations
were conducted using ACSL (Advanced Continuous Simulation Language) on an
1100/81 Univac computer.

~
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Figure F-1 shows the experiment 1 actuator torque and angular response.
Figure F-2 shows the central bus actuator torque and angular response.

The actuator torque and angular response of experiment 3 is shown in
Fig, F-3, Comments on individual plots follow.

1. Figure F-1

The actuator torque (Tl) and angular response (71) for experiment 1 are
shown in Fig. F-1, The commanded torques (Tcl) for this run were +20 N-m
for the first 14 seconds, -20 N-m for the next 14 seconds, and zero “hereafter.

g e

Py v T S T ™

The commanded angle (Ycl) was consistent with this, The actual torque

applied shows the strong infiuence of the structural elastic response fed

back to the controller by the rate and position sensor., The two dominant

frequencies eeen in the torque curve are at .30 rad/s (.048 Hz) and 2.8 rad/s
(.45 Hz) . Note that the time plot results of Fig. F-1 agree with the closed
loop eigenvalues plotted in Fig, 4-6. Figure 4-6 along with Table 2-2 show
that the .3-rad/s frequency is associated with the solar panel asymmetric
mode (open loop .4-rad/s) and that the 2.8-rad/s frequency is associated with
the arm symmetric mode (open loop 5.7 rad/s).

2. Figure F=2

The actuator torque (Tz) and angular response (92) are shown in Fig, F-2,

I T S P S T TP

The commanded angle (ecz) was zero, The primary response is a rigid body
rotation which occurs because the bus controller frequency is low (0.0l Hz) .
compared to the frequency of the disturbance input. The only structural \
vibration frequency evident in this plot is at .048 Hz and is associated with

the solar panel asymmetric mode,
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3. Figure F-3

The actuator torque (T3) and angular response (ys) are shown in ;
Fig. F=3, The commanded angle (y c3) was zero, The frequency content of
T, is very similar to that of T for this run. In fact, after about 40
seconds, the two torques are almost identical., Both of these torques show

the influence of the structural vibrations associated with the solar

panel asymmetric mode (,048 Hz) and the arm symmetric mode (.45 Hz). Note

that the oscillation caused by the solar panel asymmetric mode is + 1 urad

at the 100-second point of this plot., This oscillation all by itself is wvell in
excess of the .05-urad pointing requirement presented in Table 3-1.
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Actuator Torque and Angular Response for Experiment 1, Run F-10,
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Fig. F-2, Actuator Torque and Angular Response for Central Bus, Run F-10,
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Fig. F-3. Actuator Torque and Angular Response for Experiment 3, Run F-10.
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