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1) -Effects of Ionizing Radiation on the Mechanical and 
Morphological Graphite Fiber Reinforced Composites,- N. Naranong, 
K. Nolt, J. D. Memory, R. D. Gilbert and R. B. Fornes. 

2) -Electron Spin Resonance Studies of Bpoxy Samples Exposed to 
1/2 Mev Electrons,- R. Schaffer, R. D. Gilbert, J. D. Memory and 
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*Other papers were presented at a seminar at the Polymer Group 
Meeting of the American Chemical Society in Raleigh, NC (January 1981), 
at Georgia Tech University (May 1981), and at the Fiber Science Gordon 
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I. Introduction 

During the report period, work was continued on ~e effects of high 

energy radiation on graphite fiber reinforced compositese Included were 

studies of T300/5208 and C6000/PMR15 composites, T300 fibers and the resin 

system MY720/DDS (tetraglycidyl-4,4'-diaminodiphenyl methane curedwitb 

diaminodipbenyl sulfone). Radiation dose levels up to 8000 ~ads have been 

obtained with no deleterious effects on the breaking stress or modulus. The 

effects on the structure and morphology have been investigated using 

~echanical tests, electron spin resonance, X-ray diffraction, and electron 

spectroscopy for_chemical analysis (ESCA or X-ray photoelectron spectroscopy). 

Details of these experiments and results are given below. In addition, we 

bave continued studies of the fracture surface~ of irradiated samples witb 

scanning electron microscopy and, at this time, our results indicate no 

differences in tbe morphology of irradiated and control samples. 

11. Mechanical Tests of Irradiated S~ples 

The objective of this experiment was to examine the long-term effects of 

radiation on the mechanical properties, specifically Ultimate stress and 

modulus measured by a three point bonding test, of unidirectional graphite 

fiber reinforced composites. 1bree different types of samples were used, 

namely T300/5208, C6000/PMR15 L, and C6000/PMR15 T. In the first two types 

the fioer axis is aligned to the longitudinal direction of the composite, 

whereas in the latter the fiber axis' is aligned to the composite transverse 

direction. 

The samples were placed in petri dishes and pre-vacuumed for one week in 

a heated desiccator at ao·c. They were placed in aluminum foil package~ and 
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pre-vacuumed another week at eo·c. Immediately prior to irradiation, each 

foil package was vacuumed and heat-sealed through ~ glass tube. These 

package. were placed in nitrogen-filled Ziploc 8aggies. during irradiation. 

Another set of samples was pre-vacuumed for one week in a heated desiccatot at 

eo·c. These samples were attached inside Ziploc Baggies. using masking tape 

and were irradiated in air. 

The samples were exposed to various levels of 0.5 MeV electron radiation 

with the maximum dose being 8000 Mrad. After irr.adiation, the samples were 

conditioned in a conditioned testin9 lab (70·F, 65' RB) for a minimum of two 

weeks before mechanical tests were per formed. A thre('-point bimding test was 

used to evaluate the ultimate stress and modulus of the composites. The 

samples were tested in rotating order to avoid machine bias in any g~ven type. 

The results of the mechanical tests are plotted in Figures 1-6 as a 

function of radiation dose for samples irradiated in air and in vacuum. For 

the T300/520e samples, there was an increase in stress with radiation dose 

which was statistically significant. The value for the 8000 Mrad level was 

approximately 5-1/2' higher than the control value. The modulus values 

remained approximately constant with radiation dose for the T300/520& samples. 

The stre.ss and modulus data for the C6000/PMR 15 L samples were somewhat 

variable and no trends were apparent. For the C6000/PMR15 T samples, the 

stress values showed an overall downward trend with increasing radiation dose, 

however, this decrease was not statistically significant. There were no 

significant differences between stress or modulus values of samples irradiated 

in air and those irradiated in vacuum. 

One can conclude from this experiment that degradation due to radiation 

exposure is not apparent in longitudinal unidirectional samples until 
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extremely high doses, e.g. greater than 8000 Mead, are reached. On the other 

hand, transverse samples exhibit slight degradation at low levels of 

radiation. These tests are essentially a measure of matrix and/or interface 

properties. 

III. Mechanical Tests of Soaked Samples 

The objective of these experiments was to study the effect of' moisture on 

the mechanical properties of unidirectional graphit~ fiber reinforced 

composites. In_the first experiment, six samples of each type were soaked in 

distilled water for one week at room temperature. The samples were taken from 

the water, surface dried, and tested with no laboratory conditioning. The 

ultimate stress and modulus values as determined by the three-point bendin~ 

test are given in Table 1. The stress and modulus of the soaked T300/5208 

samples showed a statistically significant increase over the dry samples. The 

C6000/PMR15 L samples exhibited a similar trend but the increase was not 

statistically significant. The stress and modulus values of the 

C6000/PMR15 T samples decreased upon soaking, but again this was not 

statistically significant. 

-.,...----------- -----
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Table t 

Results of Three-Point Bending Test 

Composite Stress (~) Modulus (~) 
cm em 

Type Dry Soaked Dry Soaked 

T300/5208 21,700 22,400* 1,380,000 1,420,000* 

C6000/PMR 15 
longitudinal 19,900 20,200 971,000 993,000 

C6000/PMR t 5 
transverse 98t 807 74,800 73,500 

*denotes significance at the 5' level but not at the 't level 

Note: Each value represents the mean of 6 samples. 
Samples were soaked one week at room temperature. 

Tb examine the effects of prolonged soaking, the above experiment was 

repeated with samples being soaked for fou: weeks at 80·C. The results of the 

three-point bending test are give~ in Table 2. The same trends were observed 

AS in the previous experiment, but in this case the only statistically 

~ignificant change was the decrease in stress for C6000/PMR 15 T. 
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Table 2 

Results of Three-Point Bending Test 

Composite Stress (~) Modulus (~) 
cm cm 

Type Dry SOaked Dry Soaked 

T300/5208 21,700 22,000 1,380,000 1,350,000 

C6000/PMR 1S 
longitudinal 19,800 21,000 971,000 1,060,000 

C6000/PMR 15 
transverse - 981 751* 74,826 73,914 

*denotes significant difference (at 5' and 1, levels) 

Note: Each value represents the mean of 6 samples. 
Samples were soaked 4 weeks at 80·C. 

A third experiment was conducted to see if changes were time-dependent 

within the scope of the experiment. ~ ensure that all samples were 

completely dried out prior to soaking, the samples were pre-vacuumed. Nine 

samples of each type were placed in a vacuum desiccator at 80·C and vacuum 

pumped for three weeks. As before, samples were soaked in distilled water at 

80·C. In this ~xperiment, two exposure times were used--400 hours and 800 

hours. Control samples remained in the heated desiccator during the soaking 

period. 'ftle results of the three-point bending test are given in Table 3. 

For both types of longitudinal samples, the stress and modulus for the control 

and soaked samples were approximately the same. FOr the C6000/PMR15 T 

samples, the stress values of the soaked samples were significantly lower. 

The modulus values we~e also lower. 

• . . - • t' M .\.,'. mt ,= • 
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Table 3 

Results of ~ree-Point Ben~ing Test 

Composite Stress (~) Modulus (~) 
CIA cm 

Type Control 400 hr 800 hr Control 400 hr 800 hr 

T300/5208 20,900 21,100 21,000 1,340,000 1,310,000 1,300,000 

C6000/PMR 1S 
longitudinal 20,500 19,200 20,400 1,100,000 914,000 1,060,000 

C6000/PMR 15 
transverse -'1,020 842* 805* 79,700 73,300 75,100 

*denotes significance at the 5. level but not at. the ,. level. 

Notel Each value represents the mean of 3 samples. 
Samples were soaked at ao·c. 

This experiment indicates that time is apparently not a factor in 

influencing changes in mechanical properties on a short-term scale. The 

increased stress and modulus observed When longitu~inal sarnples were soaked 

probably are a result of internal stresses being relieve~. The decrease in 

stress and modulus values upon BOaking transverse samples is probably ~ue to 

moisture absorption by the resin. It should be noted that similar trends are 

observed when composite samples are subjected to moisture and radiation. 

IV. Preliminary ~SCA Results 

The objective of this experiment was to see if irradiation had an effect 

on the surface elements present in the graphite fiber composites, pa,Lticularly 

since crosslinking of the resin was expected. The surface techniqup. used to 

study composite samples was electron spectroscopy for chemical analysis 
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(BSCA) or x-ray photoelectron spectroscopy (XPS). This technique identifies 

elemen~B with the exception of hydrogen, present on the Bur face of the 

specimen, and associates the binding energiea detected to specific elementa. 

By measuring the shift in binding energy of a particular element, one can 

assess the chemical bonding state of the element. 

Three control samples of T300/5208 and three samples ir~adiated to 

8000 Mtad were studied. The sample surfaces were washed with acetone prior to 

exaoination. For the control samples, the major elements were C and 0 an~ the 

minor elements were S, F, N, Cl, Na, and Sit Fbr the irradiated samples, the 

major elements were C and 0 and the minor elements were S, N, Cl, Na, Si, 

and Al. Table 4 gives the atomic ratios of the elements present. Significant 

changes in concentration upon irradiation were seen for S, Cl, Na, and P. 

Possible changes in chemical state were observed for S, C, and Cl. Fluorine 

was probably eliminated as F2 or BF. This phenomenon has been previously 

reported when fluorinated polymers were bombarded with electrons. Three was 

an extremely large increase in surface oxidation as evident by the growth of 

the carbon 10 feature at 228 eVe This oxidation probably is manifested as a 

large increase in ketone or ester type carbonst RJ-R' or RJ-oR' 

--~--------"--~ ........ m .. dt.h"."~" __ ~~_~ ___ rt-'·M·MMt __ -=::~~~~~~!!I 
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Table 4 

ESCA Analysis 

Quantitative Analysis - Atomic Ratio. Nomalized to Carbon 

Ratio 
Ir rad ia ted/ 

Sample • Control Irradiated 8000 Mud Control 

1 1 
2 1 
3 1 

1 .264 .431 1.63 
_2 .277 .443 1.60 
3 .295 .419 1.42 

1 9.57 x 10-3 1.96 x 10-2 2.05 
2 1.92 x 10-2 2.51 x 10-2 1.31 
3 1.81 x 10-2 2.04 x 10-2 1.13 

1 4.54 x 10-2 4.62 x 10-2 1.02 
2 4.26 x 10-2 6.10 x 10-2 1.43 
3 5.17 x 10-2 4.59 x 10-2 .888 

1 1.89 x 10-2 4.72 x 10-2 2.49 
2 1.14 x 10-2 4.08 x 10-2 3.58 
3 1.55 x 10-2 4.33 x 10-2 2.79 

1 2.51 x 10-2 4.95 x 10-2 1.97 
2 3.68 x 10-2 3.35 x 10-2 .91 
3 3.19 x 10-2 2.61 x 10-2 .818 

1 6.01 x 10-2 6.41 x 10-2 1.0; 
2 3.45 x 10-2 8.49 x 10-2 2.46 
3 6.26 x 10-2 .126 2.01 

1 5.79 x 10-2 not detected <0.1 
2 .130 not detected <0.1 
3 3.86 x 10-2 not detected <0.1 

1 trace 2.07 x 10- 2 

2 trace 1.80 x 10-2 

3 trace 2.05 x 10-2 
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v. Electron Spin Resonance Studies •• 

Previous electron spin resonance (esr) studi.s have indicated that a 

large number of radicals are created in the epoxy resin matrix bf high energy 

radiation, and that radical decay is fairly rapid ~u. primarily to 

recombination. It was decided that esr characterization of epoxy resin 

samples varying in concentration ratio of hardener to eppxy might allow 

further insight into the nature of the radicals formed upon irradiation, as 

well as the mechanism of decay. OUr earlier work** suggests that regions of 

high- and low-cro •• link den_ity are present in cured epoxy resins, and that 

the relative amount of the •• regions may depend on the percentage of hardener 

(crosslinking agent) present. Samples with a higher percentage of hardener 

would probably have a hiqher mole fraction of high-cros.link density regions. 

Rod-like sample. of eiba Geigy Araldite (KY720) TGDDM (tetraglycidyl-

4,4'-4iaminodiphenyl methane) epoxy and !poral DDS (4,4'-4iaminodiphenyl 

sulfone) ~ere prepared in various ratios aa is shown in Table 5. 

Tabl. 5. Concentration Ratioa of Epoxy and Hard.ner 

'DDS by wt. t'l"GDDM b:t wt. Molar Ratio DDS/TGDDM 

10 90 0.19 
20 80 0.43 
27 73 0.63 
30 70 0.73 
40 60 1.13 

The percentage by weight ratio of TGDDM to ODS in composite samples 

currently being prepared by NASA is 73/27. 

··See attached thesis for additional ear studies 
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Sample. were prepared by slowly mixing in a jar the appr~iate amount of 

DDS into the TGDDM while heating «110·C). In the sample containing 40' DDS 

by weight, considerable time was needed for all of the DDS to mix into the 

TGDDM. After mixing was complete, each jar was placed in a vacuum desiccator 

at "0·C allowing the sample to deaerate. Teflon tubes with an inside 

diameter of 3/32- were then pushed into each sample, and deaeration in the 

vacuum desiccator was continued. Each sample was then allowed to cool to room 

temperature while under a vacuum. The purpose of deaeration was to eliminate 

any air bubbles from the samples. 

The Teflon tubes were then broken out of each jar and the ends were 

wrapped with Teflon tape. Thes. samples wer. then cured in a vacuum 

desiccator under normal curing conditions, 137·C for 2 hour., then '60·C for 

5 hours. Each rod-like sample wac then pushed out of its Teflon tube. 

Prior to irradiation, each sample was weighed, wrapped in alu~inum foil, 

labeled, then vacuumed and flushed with nitrogen three times to remove any 

surface oxygen. Samples were placed in a dewar cantailaing liquid nitr0gen and 

then placed in the Cobalt 60 Gamma cell which irradiates with 1.17 and 1.33 

MeV gamma radiation. The liquid nitrogen in the flask was replenished as 

nec~ssary so that the samples would remain at cryogenic temperature, thus 

impeding the decay of radicals being formed. 

After irradiation, radical concentration in each semple was obtained via 

a JEOL X-band ESR spectrometer. A sample holder which blows liquid nitr0gen 

vapor over the sample while the reading is taken keeps the sample near +77·' 

and thus el~inates any radical decay_ After the initial spectrum was 

obtainecS, each sample was allowed to decay at eOOlD temperature in an 

essentially oxygen free atmosphere toe designated peeiods of time. Decay was 
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interrupted by placing the samples back into a dewar of liquid nitrogen, and 

additional spectra versus time at room temperature were obtained. This 

allowed the construction of a decay plot for eacb sample showing radical 

concentration versus time. 

\ 
l, 'l'be i:::..tial experiments involved irradiation of samples in the gamma cell 

to a dosage of 5 Mrad's. Figure 7 shows the effect concentration ratio of 

epoxy to hardener has on radical decay behavior. Radical decay is much more 

significant the lower the percentage of hardener present. A lower percentage 

of hardener implies a low percentage of high-crosslink density regions, and 

this facilitates recombination. Thus, the lower the percentage of hardener, 

the more rapid the decay of radicals. 

Samples containing 10' DDS by weight were rather britlle prior to 

irradiation. After irradiation, these samples were extremely brittle and 

crumbled upon mounting in the ESR sample hol1er. Data for OI:t/l" - '_'\ples is 

therefore not available. 

Our earlier work has shown that radical decay occurs according to two 

simultaneous second order reactions occurring in different zones. The initial I~ 
t 1 
1 

portion of fhe decay curves in Figure 7 depicts the rapid decay which occurs 
, . \ 

in the zones of the low-crosslink density while the latter portion of the 

\ . curves shows the slow decay occurring in the high-crosslink density zones. 

The characteristics of the decay of these samples ~rradiated at 5 Mrad 

l . was found to be reproducible. 

Radical decay data has also been obtained on samples irradiated with 
) 

gamma radiation to a dose of 30 Mrad and is shown in Figure 8. As with the 

lower dose samples, decay is more significant with samples containing a lower 

percentage of hardenerJ however, the difference is not as significant with 

l. 
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the sample irradiated at higher dose as it i~ with the sample irradiated at 

lower dose. 

It should be noted that the expected positions of the 73/27 and 70/30 

curves in Figure 8 are reversed. This is most likely due to statistical 

variation since there is little difference between the percent hardener in 

each. 

Continued investigation into the role of percent of hardener and 

radiation dose on radical decay ,is proposed. Also scheduled is the obtaining 

of decay data on_ samples of 100\ TGDDM and 100\ DDS irradiated with gamma 

radiation. This would test the hypothesis that the effects showr, in Figures 7 

and 8 are not merely due to an increase in the amount of DDS percent, but are 

due to the extent of crosslinking. (An alternate solution would be to prepare 

samples of 50, 60, 70, etc., percent by weight DDS, in which case the radical 

decay rate should progressively increase. However, mixing much more than 40\ 

by weight DDS with TGDDM does not appear to be physically possible.) 

VI. X-Ray Diffraction 

Our work has demonstrated that graphite fiber reinforced epoxy resin 

composites show little change in stress and modulus when exposed to as much as 

8000 Mrad's of 0.5 MeV electron radiation while under a vacuum. It was 

decided that X-ray diffraction should be used to look for any possible change 

in the crystallite dimensions or crystallinity of the fibers upon 

irradiation. 

The most intense reflection in the X-ray pattern of graphite is an (002) 

reflection due to the staggered nature of the layered carbon rings. The 

reflection appears on the equator since the layers are parallel to the fiber 
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axis (due to the way the c-axis is defined as perpendicular to the fiber 

axis). 

X-ray diffraction patterns were obtained for both irradiated and non-

irradiated composite samples and graphite fiber samples of Thornel T-300/5208. 

cU
K 

radiation was used throughout. Figure 9 shows X-ray photographs of a 

a 

control composite (left) and one irradiated with 8000 Mrad's with electron 

radiation. 

Both diagrams show the (002) reflections on the equator and a halo caused 

by scattering from the amorphouS epoxy-resin matrix (scattering patterns of 

graphite fibers alone show no amorphous halo). The bright spots on either 

side of the lead dot are caused by scattering of unfiltered white radiation 

and should be disregarded. 

The (002) reflections in both samples correspond to a Bragg angle of 

o. 12.46- which indicates an interatomic spacing of 3.57A or a unlt cell c-

axis dimension of 7.14A. As expected, this is slightly larger than the 

interatomic spacing found in natural graphite. 

The arc length of the reflection indicates the level of orientation in 

the fibers, however, it is the arc width that indicates the crystallite size 

and perfection--the wider the arc widths, the smaller the crystal. 

Microdensitometer traces of X-ray negatives showed essentially no 

difference in arc wi~ths between the irradiated and control samples as 

indicated by the width at half '.ntensity of the peaks traced. Figures 10 

and 11 sh~w the microdensitometer equatoria- and meridianal traces 

respectively, for a control composite and one irradiated to 8000 Mrad's. 

... , ..... , ....... -
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Diffractometer plots of irradiated and non-irradiated samples 9ave 

essentiallY the same information--that there was no difference in the arc 

widths. Both the microdensitometer and the diffractometer results show a line 

\:idth of around 5- (in terms of 28) and this corresponds to values found in 

the literature. 

In conclusion, 1/2 MeV electron radiation up to 8000 Mrad's causes no 

disruption of cyrstallites in the 9raphite fibers as indicateU by the 

constancy of the (002) reflection width measured with the microdensitometer 

and diffractometer. 
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Effect of 1.33 Me V l' Radiation and 0.5 Me V Electrons 
on the Mechanical Properties of Graphite Fiber 

Composites * 

R. E. FORNES, J. D. MEMORY, and N. NARANONG, North Carolina 
State University, Raleigh, North Carolina 27650 

Synopsis 

Epoxy/graphite fiber, polyimidp/graphite fiber, and polysulfone/graphite fiber composi~ were 
exposed to 1.33 MeV 'Y irradiation and 0.5 MeV l'Iectron bombardment for varying periods of time. 
The effects of the irradiation treatments on the breaking stress and Young's modulus were studied 
by R three point bending test. Effects were small; indeed, both electron radiation up to 5000 Mrad 
and 'Y radiation up to 350 Mrad resulted in slight increases in both stress and modulus. 

INTRODUCTION 

Graphite fiber reinforced composites are light-weight high-strength materials 
that are particularly suitable for space vehicles. Since some space experiments 
are scheduled over a period of several years, materials used in space may be 
subjected to substantial quantities of high-energy radiation. For this reason, 
it is important that materials considered for use in these experiments be evalu
ated with respect to their response to high-energy radiation. 

Several sets of composite samples, fabricated at NASA Langley Research 
Center and supplied to us, have been irradiated using 0.5 Me V electrons and 1.33 
Me V l' radiation. The effects of the irradiation treatments on breaking stress 
and Young's modulus were determined by a three point bending test. 

Most of the cosmic radiation in regions near the earth is due to protons.1 

However, significant numbers of both protuns and electrons are trapped in the 
radiation belts around the earth2,3 and the predominant energy loss in matter 
of high-energy electrons found in geosynchronous orbit. is by ionization.3,4 

Similarly, 1.33 MeV l' radiation would lose most of its energy by ionization 
through Compton scattering and the photoelectric effect.5 Therefore, the ex
perimental conditions of radilltion exposure of materials to be investigated in 
this study should provide an excellent simulati~n of the actual effects of radiation 
on these materials when used in space applications. Moreover, it has been es
timated" that the radiation dose for geosynchronous orbit in a thirty year lifetime 
should be on the order of 1000 Mrad for the 0.056--0.081 cm thickness of the 
samples we used in the experimental work reported here. This, coupled with 
the observation that radiation effects on snlid polymers are dose rate independent 
to first <'(>r,' should indicate that the results described in this paper for doses 
up to I)Ow l\'lrad should be applicable to the problem of estimating the radiation 
effect.<; on space vehicles in geosynchronous orbit. 

• Supported in part by NASA Grant No. NSG 1562·S2 . 

• Journal of Applied Polymer Science, Vol. 26,2061-2066 (1981) 
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EXPERIMENTAL PROCEDURES 

Studies were made on samples of cured graphii{' fiber/epoxy compositt' 
n:lOO/!l20B Thornel graphitt' fiber/Narmco 5208 epoxy and AS/:~fiOl graphitt' 
fiher/t'poxy by Hercules), graphite fiber/polyimide compo .. 1ite (CHOOOIPMR-15 
('t'lion graphitt' fiht'r/polyimide matrix), and graphite fiber/polysulfone ('om
posite (C6000/PliOO Celion graphite fiber/polysulfone matrix). The samplt's 
WNt' cured and cut at NASA Langley Research Center. Samples of t'ach typt' 
wt're subjt'cted f(lr diffenmt periods of time to elf'Ct.ron irradiation, and samples 
of graphitt' fillt'r/t'poxy were "'r irradiated for different periods of timt'. 

ThE' mE'chanical tt'sts wert' madt' on an Instron using a "thrt't'-point bending 
tt'stt'r" attachmt'ilt.1I Thf' spt'eirr.ens, 1.27 by 2.M cm and O.<l!l6-0.0il cm thick. 
WE're testt'd at a ('onstant rate of elongation, perpendicular to the plant' of the 
l·omposites. at a speed of 0.254 ('mimin (0.1 in.lmin) and with a span length of 
1.40 ('01 «(l.Il!) in.). The specimens were four-ply uniaxially oriented with the 
preferred axis aligned along the span direction during testing. The ultimate 
stress and aVt'ragt' modulus at t'ach exposure condition were dett'rmined by lIsing 
the standard t'quations for sllll\ll ht'nding deformations of t'lastic bodies.1I 

Tht' Sllmplt's wert' trt'ated in a vacuum desiccator at 80°(' for i days. then 
sea it'd in aluminum foil (Rt'ynolds Wrap. heavy duty. thickness of O.021l mm) 
b~' first securing the t'nds of the samples in place with a thin layer of Scotch tapt' 
and st'Hling t he edges of tht' folded aluminum wrap with an epoxy !due (Dewo\l 
£) min gl>ox~o®). An open glass tuilt' was insert~ prior to sealing tht> foil to permit 
a vacuum lint' to he cOllneded for further V8nlllm treatment. These packagt's 
wt're placed in a vacuum desic('ntor nl ~O°C for at least an additimlul4 days: then 
tht' glass tull(> Was attached to a vacuum line and ht'nt se,aled. Tht' l\tH'knges tht'n 
WNt' takt'll imnwdiatel~' to tht' eledroll a('celNator and exposed to 0.1) Mf'V 
elt'd rons at a ('urrent of ~.:~ mAo J!:'lch package was placed in Ii l.ipl()(' haggie by 
Dow Chtimiclli (to h~'l0 in.) that was prefilled with N~ to rE'duce oxidative deg
mdntioll inl~ast' of pin hole leaks. tilt' packages clamped to the ('oll\'eyor on tht' 
accplt'rator. lind pllssed through thp elt.'dron beam. Each revolution of tht' 
('OllVeyor through thE' Il(>am resulted in a 11) Mrad dosage. Following tht' eledron 
irradiation treatment in H fiOO kV Electron ac('elt'ratof made b~' High Vo\tagt' 
Engint,t'fing Corporation. the spt.'l'inlt'lls WNe removed from the plwkagt's and 
plill't'd in open pet ri ('Ollt~lillt'rs inn (~()Iltrolled lall(lratory (rf'lat i\'t' humidit~· f)f)~. 
tt'mllt'rature ~O°l') wht'fe they rt'mailled from :{ to 10 wt'eks prior to nWl'hllnirlll 
u'st ing. Following each 4tlO-:JlXl Mrlld exposure, t hf' Ziplo(' huggies were rt'plll('t'd 
and rt'nllshed with N'!. Aftt.'r 2fltX) Mrad. th£' Al foil in rt'gions of high strt'ss 
conh'nt rat ions (sharp hends) showt'd ('vidence of degradation and t ht, Den-on 
l'POXY st'Hi nil tht' ;lluminulll foil ~h()wed t'\'idf'nce of apprecillblt' di,;coloration. 
so t ht' speei.llcll were ~':.!.(·uunwd I.Il1d repackaged in new AI foil as described 
abm'p. 

Two spts of samplt''''', T:m()/ii~(\~ and AS/:lIlOl. \\'t'rt' t'xpost'd to l.:tl MeV) 
radiation fOf !,t'find), lip to :-)(\(\ and lO70 h, respl'divt'ly. ina Call1lllil Cdl :2~O 
III. Hit· hy Atomk EIWfgy of ('/lnnda. Thpst' slllllpit's WNt' vllcuum dt'sin'/ltt,c1 
at KOO(' for 11 minimum 01';\ dll~'s tht'n plllcpd in til(' \'I\('uum chlllllht'r of till' 
gamma Ct'll (a Ii! Mmdlh I~'( '(l SOUfCt'). prt'\'lIculInwd t rt'lIit'(l for ~ .. hr and t'xpos(,d 
to., radilltiollllndt·r a continuotls VIII'lIlIlll (/lpproxilllatt'IY:l X to-I; Torr). TIlt' 
slllllplt·s. aftt'r) t'XPOSllrt'. Wt'rt' tl'slt'(iusing the same procedures for l'quilibratiun 
alld mechanical testing as described above. 
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RESULTS AND DISCUSSION 

The theoretical prediction of stopping power of high energy "Jectrons is given 
as by Segre.s 

However, due to a secondary scattering, the effective irradiation dosage in a 
material will first increase and then is followed by a rapid monotonic' decrease 
in radiation dosage.9 Since the electron accelerator used in our experiments is 
designed to pass samples across the beam twice during each revolution of the 
conveyor (once on the front side of the sample and once on the back side), the 
approximate dosage experienced by the composite specimens as a function of 
ptlnetration depth is as shown in Figure 1. The density of the composite is about 
1.55 g/cm3• The effective thickness of the baggie and aluminum foil is ap
proximately 0.013 em. Thus, the effective radiation dosage in the center of the 
specimen is approximawly 40% higher than on the edge. 

The load deformation curves of the three point bending tests were approxi
mately linear in all cases and the deflections small so that equations for small 
bending deformations give excellent approximations of ultimate stress and 
Young's modulus.s Effects of electrons and 'Y radiation on these parameters 
for the samples investigated are summarized in Figures 2-5. A minimum of ten 
replication measurements were made for each exposure condition. All samples 
exposed to 5000 Mrad of 0.5 Me V electrons showed a slight increase in both stress 
and modulus compared with the control. In each case, the increasf'S were es
sentially monotonic. The increases at 5000 mrad to the control were 13%, 10%, 
and 11.5% in stress and 11%, 12%, and 12% in modulus for samples T300/5208, 
C6000IPMRI5, and C6000/P1700, respectively. 

EFFECTIVE IMFLE THtClCNESS 

Fill, 1. Estimate (If relative composite sample dosage vs. thickness when exposed to 0.5 MeV 
electrons in the sample holders when both sides of sample are eltposed to the beam. The dose-dis
tance relationship is adjusted to unit density material by multiplying thickness by specific 
gravity. 
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Fig. 2. Ultimate stress w. 0.5 MeV electron irradiation dosage for graphite fiber composite sam- L. pies. 

Results are shO\1lD for the 'Y irradiated samples in Figures 4 and 5. At the dose I ! 
levels applied in these experiments, no large changes were observed in either L.; 

stress or modulus. (The maximum difference from the control for any of the 
treatmen.:s were <:10%.) 

To test for significant difference in the stress or modulus as a function of ir-
radiation dosage, analysis of variance was done using a statistical analysis system 
(SAS).lO In a sample set the data for two irradiation treatments were compared 
at the 5% confidence levels using the Duncan Multiple range test. In all cases, 
the 5000 Mrad treatment was significantly different from the control for both 
the stress and the modulus Earlier work has been reported by Parkinson and 
Sisman 1l on the effects of radiation on the mechanical properties of a number 
of plastics. Their work suggests that polymers containing aromatic rings are 
highly resistant to radiation and they attribute this to the absorption and dis-
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_ ...... CIItAD, 
Fig. 4. Ultimate stress VB. 1.33 'Y irradiation dosage for graphite fiber/epoxy comp08ites. 

sipation of energy, without bond disruption, of aromatic rings. Using neutron 
and l' radiation, they showed very little change in the mechanical properties of 
cured diaminod: ~'henyl methane epoxy and polyimidc polymer at radiation 
dosages ~ 1 09 rad. Gamma irradiation experiments by Brown and O'Doone1112 

on aromatic polysulfone show that no deleterious effects occur in vacuum to dose 
levels of 600 Mrads. However, degradation of flexural properties did occur when 
irradiation of samples was done in air. 

Bullock reported that fast-neutron irradiation of graphite fibers in air showed 
an increase in strength followed by a decrease (by as much as 25%) of the con
trol. l :! However, irradiation in a inert environment showed only an increase in 
the strength.14 Jones and PeggslS show a small increase in both the strength 
and modulus of graphite when irradiated with fast neutrons at elevated tem
perature. In addition, they reported an increase in the crystallite dimension 
suggesting that the elevated temperature induced recrystallization. 

Graphite fiber/epoxy composites irradiated in air at 75°C with a combination 
of "y, fast neutrons, and thermal neutrons showed a decrease in flexural strength 
and modulus.16 When samples were irradiated in liquid N2, increases in the 
strength and modulus were observed when tested at liquid N:.! temperature while 

i 
I 
i 

• T3OOIIlOI 
• ASl3SOl-6 

GAMMA RADIATION C.aD) 

Fig. 5. Average modulus \·s. 1.:l:l1 irradiation dosage for graphite fiber/epoxy ,-'Omposit.es. 
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a decrease in those parameters occurred when irradiated at liquid N2 temperature 
but tested at rr.om temperature. 

The results reported here are consistent with earlier work on plastics, fibers 
and composites. AU the composites that we have studied contain matrices which 
have an abundance of ring structures and none of the systems we studied showed 
any degradation in stress or modulus when subjected to ionizing radiation. under 
vacuum, to dose levels of 5 X 1()9 rad. The ring structures in the matrices and 
the fibers appear to protect the composite from radiation damage. 

CONCLUSION 

Graphite fiber/epoxy, graphite fiber/polysulfone. and graphite fiber/polyimide 
composites show no deleterious stre&s or modulus effects by the exposure of 0.5 
Me V electron radiation in vacuum up to 5000 Mrad. At 5000 Mrad the stress 
and modulus increased by approximately 12% compared with the controls. 
Graphite fiber/epoxy composites show little change in stress and modulus when 
exposed to several hlmdred Mrad of"Y radiation. Therefore, the results reported 
here indicate that graphite fiber composites would have a considerable lifetime 
in space (probably >30 years) before strength and stiffness properties would be 
affected significantly by high-energy radiation. 

The authofli gratefully acknowledge NASA for support of the research, Dr. E. R. Long of NASA 
Langley Research Center for supplying samples and helpful suggestions, Dr. W. K. Walsh for help 
with irradiation experiments, W. C. Stuckey for help with the mechanical testing, and to Dr. Vivian 
Stannett for his helpful comments. 
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Characteri.ation of a CUred Bpoxy ... in IpoXed to 

8igh Inergy Radiation ~th l1ectron Spin "8Oftanee.- ~d.r the 

direction of Dr •• Richard D. Gilbert and 1a,.0n4 B. POrn ••• ) 

!bi. investigation d.alt with irradiating a cured .poxy re.in, 

tetraglycidyl-4,4 di .. ino dipbenyl .. thane and 4,4' diaainodipbenyl 

sulfone, with 1/2 MeV electron and 1.17 and 1.33 MeV g .... radiations. 

Radical concentrations were e.ti.ated bf comparison with a radical 

standard, 2-2 diphenyl-1-picryl hydrazyl, suspended in an ambient 

teaperature cured epoxy resin. Radical concentration increase with 

irradiation 40se and radical concentration decay at ambient temperature 

with time curves were plotted. ~e decay data obtained could be fit to 

a model which assumes two simultaneous second order reactions occurring 

in different zones. 
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1. Introduction 

Graphlte reinfocced coaposite aaterlals are hi9hly promising for 

apace structural applications such as solar panel aupports. 80114 fuel 

rocket IlOton, and hot air ductincJ (1, 2J because of their hi9h lIOdulus 

and strength, low therlllll expansion, and 119ht wei9ht. Due to large 

amounts of ionizing radiation in space environment, the effect of g ..... 

electron. proton, and other radiationa upon the mechanical properties of 

graphite reinforced composites ia an important conaideration (3J. !be 

matrices into which graphite fibers were embedded in composites in 

completed studies (3) were highly aromatic polymers, prtmarily epoxy 

reSins, polysulfores, and poly1a~ues. 

The purpose of this thesis is to investigate the immediate chemical 

effects of ionizing radiation on the epoxy resins, specifically the 

formation of free radicals and their character employing electron spin 

resonance spectroscopy (ESR). 

1 
1 
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loni.iag oc high energy radiation ~. a broad tera which define. 

radiation that is composed either of charged particles that directly 

produce ions, excited molecule., oc free radicals 1n the irradiated 

mediua, or photons or fast moving neutral particle. that produce these 

.pecies in the medium indirectly bf charged particles ejected from the 

absorbing molecul~~ (4). 81gh energy radiations whether fast electrons, 

8 particles, fast protons, neutrons, G particles, or electromagnetic 

radiatior, of short wavelengths lose their energy by reacting with 

electrons and nuclei of the medium. This may give rise to displaced or 

excited nuclei, free electrons, ioniaed atoms or molecules, and excited 

atoms or molecules in which an electron has been raised to a higher 

energy level (5). 

X-rays, electrens, and positive ions are produced mainly by 

accelerators. Gamma rays, beta particles, alpha particles, and neutrons 

are obtained from nuclear ractions in radioactive isotopes and nuclear 

reactors (6]. '!'hese different sources of radiations give an energy 

range of nearly ten orders of magnitude (7). 

One can group the different types of radiations used in radiation 

chemistry by their physical nature [4]: 

(1) high energy photons (gamma rays and X-rays) 

(2) accelerated high ener~y electrons 

(3) accelerated ions 

(4) neutrons. 

The first two are emphasized in this study. 

,-
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[ 2.1. 81gh Inergy ~oton. 

Photons tend to loae energy whenever they interact with matter. 

L Only a portion of incident photons will interact with a finite thickness 

\ 
transmitted with no change in direction or energy. the intensity, L 
of matter. 'lbe r .. ainde, of the photons which do not interact are 

defined aa the radiation energy paaaing through a aphere of unit croaa-

sectional area in unit time at the point of interest may be expresaed by 

the equation [8]: 

1 • N x E (1) 

where 1 ia the intensity (ergs/em2sec), E is the average energy of 

photons in erga, and N is the flux of photons (number of photons/-

cm2aec) • 

An infinitesimal reduction in intensity, dl, through an infinitesi-

_1 thickness of matter or absorber. dx, is given by the equation: 

dl • -1 tJdx (2) 

where 1 ia the incident beam intensity. tJ is the total linear absorp-
, . 

tion coefficient which is the fraction of incident photons diverted from 

the incident beam by a unit thickness of absorber [8]. 

Equation 2 can be integrated to apply to large thicknesses to give: 

(3) 

The total absorption coefficient is the sum of the absorption 

coefficient of the three processes in which high energy photons can 

transfer energy to matter, namely, a ·photoelectric process,· .Compton 

scattering,· and ·pair production· [6). 

I . 
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In photoelectric absorption the entire energy of the photon is 

tranaferred to an electron, which ia ejected with. kinetic energy, E, 

equal to the photon energy, hv, le •• the electron binding energy, Be 

[g) • 

B • bv - Be (4) 

The distribution of angles at which electrons are ejected is 

dependent upon the energy of the incident photons. At lower photon 
I 

energies the ejection of the electrons are gO· to the incident photons' 

path while at higher pho~on energies the electrons take a more forward 

direction (8). 

Compton scattering involves an elastic collision of high energy 

photons (hv above 10 key) with electrons gl~ing scattered photons of 

energy hv'. !his energy hv' is represented by the equation 

(1 • cos 8) 
(5) 

FigU%e 1 The Compton Scattering Process (6) 

where m is the electron mass, c is the velocity of light, and 8 is the 

angle between the incident and scattered photon illustrated in Figure 1 

(6). 

Pair production involves the absorption of a photon and the 

production of a pair of particles, a positron and an electron (9). This 

, ................ ,~ . .....:.. .......... -- - ~ ..... *tM, \ • at bS • a:_ .. .... ...... 
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proce.. involve. the annl1hl1ation of the photon in the field of a 

nucleua of high atoaic weight and con.titgte8 a aignificant fraction of 

photon energy los. only in the c .. e of very high energy photon. 80 it i8 

of little i.portanee in radiation che.iatry of pol~rs which are 

oomposed of atoms of relatively low atomic weights (6). 

I-rays are photons produced ~ the decay of electrons to empty low 

energy states of an atom. Blectronic state. may be excited by bombard-
, 

ing the atea with high energy electrons. aa..a rays are identical in 

natgre (i.e. electromagnetic radiation) to X-rays bgt their source is 

emission from the nuclei of natural or ~tificial radio"ctive isotypes. 

They occur at discrete frequencies. CObalt-60, for example, gives two 

sharp lines of approxtmately equal intensity at 1.17 and 1.33 MeV [4]. 

About the region of photon energy of 1 MeV, the mass absorption coeffi-

cient 11 is due primarily ".0 Compton scattering which is the major 

mechanism of ionization [10]. 

2.2 Blectrons 

High energy electrons, 10 MeV or higher generally lose energy by 

radiation electromagnetic energy (Bremsstrahlgng) resulting from deac-

celeration of electrons in the fields of nuclei (8). In the irradiation 

of polymers, electrons mainly lose .energy ~ transfer to the molecular 

electron& of the stopping aaterial by collisions called Coulomb interac-

tion [9]. 'lbe approximate ratio of energy loss by radiation to energy 

loss ~ collision is (9) 

(6) 

, 
I ' . ~ 
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where B i. the eaergy in MeV and 12 i. ~v ato.ic nu.ber of the absorb

er. This ratio illustrates that energy loa. by 8r .... trahlung .. is.ion 

1. .ignificant for electrons of high energy and for high atomic weight 

abaorbera 't]. 

!be energy los. per centimeter by ionization and excitation at 

relativistic velocities of high energy electrons is 

4 
IIOv2• dB 

f 
2_18 11 

[ln - (2)' 
2 , + B2) - (4U)COll • 2 212(1 _ 82) 

-B-
IlY 

lOCJ 2 + 1 2' ~ 2 2] - B + - ( 1 -1-8 ) 8 (7) 

where • is the kinetic energy of the incident electron. 

x is the distance into the scatterer. 

Ni is the member of the ith type atom in scatterer. 

Zi is the atomic number of the ith type atom. 

e is the electron charge. 

Ii is the average ionization potential of the ith atom. 

• is the electron rest mass. 

v is the incident electron velocity. 

B • vIc 

C is the speed of light in vacuum. 

Blectrons follow erratic paths through matter, whereas some elec-

trona escape large energy loss over a long distance, others undergo 

numerous large deflections (9J. 

The range in aluminum of electrons of energies of 0.5 to 3 MeV has 

been empirically foun~ to be (9] 
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thi. for.~la fit. data for aluainQa be.t b~t can reaaonably fit other 

aaterial. containing light atoaa .ince the range (g/ca2) varie. little 

with ata.ic nu.ber (8). 

2.3 aeavy (har,ed 'article. and .eutron. 

Heavy charged particle. .uch a. prot~n. and alpha particle. inter-

act with matter 1n the manner of electrons ~ elastic collisions with 

the Co~lOlllb electrons of the stopping matedal [8]. 

the major mechanism of ionizaUon of ne~trons 1s .iJlUar to beaas 

of cbarged particles beca~se the main ionization species are protons and 

beavier pcsitive ions PEod~ced by tbe interaction of the ne~trons with 

atomic nuclei (8]. 

2.4 Energy Deposition in Matter 

dE the energy lost per ~nit path length (-~) (given for Coulomb 

collisions in equation 6) is termed the -linear energy transfer-(LBT) 

(may be ex~ee8ed keY per micron of patb) (4). LET is the linear rate of 

energy loss ~ an ioniZing particle penetrating a material mediu. and 

can be rougbly calculated ~ dividing the total energy loss ~ tbe 

particle ~ its path lengtb [8). 

2.4.1 8igh Bnergy and OV Radiation. 

Several differences exist between the irradiation process witb higb 

energy radiations and the photo process with OV light. 

One d1fference 1s tbe energy levels to which molec~les or atoma are 

excited by the incoming radiation as mecbanis.. for energy diaaipation 

'. stt • XU .. 'X S "Md_ m '*'- • '#n +* 

1 
i 
1 , 

, 
I 

J 
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(6J. Ultraviolet light oannot exoite .clecule. to ioni.ation or preion-

i.atien levela .. higb energy radlation doe.. Pr.ioni.ation,.tate. can 

either proceed to fora radloal., radical ion., or throUlh a proce •• of 

internal convereion convert the electronic excitation energy to vibra-

tional energy, and with further .alecular colliaiona, to t~e ground 

atate [6,9) as illu.trated in Figure 2 (6). 

!be exiatance of preioni.ation and ionization atatea in radioly.i. 

leadl to a aecond difference compared to photoly.is. Blectromagnetic 

radiationa transfer energy to electron. and politron. and energy i. then 

di.sipated along the track. of these particle. (8). r.or most high 

energy radiation, the energy transmitted through the stopping material 

bf .econdary or fast electrons (12). The motions of these electrons are 

tracks punctuated by ionization and molecular or atomic excitations. 

The .. excitations or preionization states are created through direct 

radiation chemical interaction with aecond~y electrons (6)1 

and are s1milar to corresponding excitation state. produced in pbotoly-

.i. (illuatrated in Figure 3)1 

M + bV' + M* 

Through products obtained from radiolysi. and photolyais are stmi-

lar, d1fferences _y ariae in the types of product. due to the IIlecbani.JI 

available in the latte, of charge separation and energy transfer to a 

molecule D of lower ionization potental (12). Figure 3 s~ize. the 

proce.... which lead to charge •• paration and excitation .tate formation 

", 
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L in liquid. and 80lida a. a re.ult of oolli.ion. with the lower ene'9Y 

.econdary electrona (2J. 
, 

L ... 

t' L r L ~ 

A third differenoe i. the 9aa..triea 1n Whioh the reaction .peeie. 

are foe-.d (IJ. Aa •• en in Fi9ure 4, in the photo prone •• excited 

IIOlecule. are forMd IIOre ~eneou.ly in the .. terial. In other word. 

foe an equivalent a.ount of enerv abaorbec1, the lower eneru PArtiel .. 

10 .. ener" .ore ~eneou.ly throughout the .. terial. aow.ver. there 

i . .., be a great d1fference in penetration depth, eo Pi9ure 4 appli .. only 

l' to thin ... ple. 0' to thieker .-.ple. on a atcroacop1c level. 

2.4.2 Track. and Seu'. 
I 

l The excit.tions and ioni.ation. for.ad in ,adioly.i. vill be the 

.... for • pazticular .. te,ial in4epend.nt of the type or enerv of 
~ 
I 

~ 
t 

r.4i.tion (8). However. higb ene'gy ,.di.tiona of 4iffe,ent type •• n4 

int.n.iti.. 100 •• ,.diation .t differ.nt r.tes .nd l •• ve diff.,ent 

distributiona of ion. and excite4 speci •• in th. -.diu. (8). Th ••• 

t - v.,iou. distributions effect the qu.ntitie. and proportion. of chemical 

pr04uct. Obt.ined from ,.4i.tion aource. (8). 

A .. jor ... umption in the r.4i.tlon of .01i4. is tb.t the .tructu,e 

of tr.cks will ,e • .able tho.e ~ •• rved in tb. g ••••• but raduce4 in 

proport~ to the r.l.tiv. d.nsity of the ph •••• (4). Along the tr.ck • 

• ,. iou and excite4 1I01ecul •• .eich are • direct result of the lnci4.nt· 

p.rticle and of .econ4ary electron.. Th. en.rv di.tribut~ of aeoon4-

.ry electrona i. not depen4.nt upon r.41.tion type (13). 

f 
l 



I, 
\ 

L 
L 
I. 
\ . 

\ 

.. - - -_ ... _-------- .---. ---.. - ---.-- .- --- -. - .-

Oc~O ooooe 000 
o 0 0 00 0 0 0 

OCC°Q:) ° ° t:P 0°0 OC 

(6) 

Figure 4. Absorption by .atter of.) ultra violet light photons 
b) alpha-particles (8). 

Table 2.1 Line.r Bner9Y Transfer and Distance B.twe~ Spur. for 
Various Radiations (13). 

bdialion L.E,T. ineV/J. Spur ICJ'8mion J. 

I,.,. 0-1'01<) '''0:0 
0-01 MeV elctront 0-21 :60 
0-1 MeV dtctrona CHM I. 

I MeV electrons 0-02 ~ 

-Co" 0-02 3000 

1 MtVpmtOM H 21 
10 MeV protons 0-41 no 

I MeV,-puticles 16'~ 2·) 
10 MeV,-p.,uelcs H II 

M_....., per spur tMcn as 60 tV.' 

11 
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!he fa.t or .econd.ry electron. can be divided into two groups, 

tho" that f~. delta ray. ( ... 11 .lde tracks) and tho.e that produce 

... 11 clusters of iona and excited .olecul •• called .pura (13). 

The distance between spur ••• rie. with different types of r.di.tion 

as can be seen in Table I. High energy electron. and g.... radi.tion 

h.ve compar.ble spur dist.nces (.bout 3000 A) in liquid water. Bow the 

dist.nce between spurs i. dependent upon the rate in which the energy is 

deposited is illustr.ted in Pigure 5 (9), • schem.tic di.gram of assumed 

spur distribution along the track of a fast electron and of an alpha 

particle. A high rate of energy deposition as in alpha particles will 

produce densely ionized cylindrical columns. A low rate of energy 

deposition will produce isolated spurs analogous to beads on a string. 

The most ~ediate processes of ionization, excitation and electron 

capture in Figure 3 are not influenced by the materials viscosity. 

Bxper~ental evidence suggests that charge separations over 50-100 A can 

exist in a rigid matrix if mechanisms for electron capture and localiza-

tion are inherent [12]. Thus so ions and preionization states can 

surely exist in spurs formed in polymers. 

2.5 Radical Reactions 

Although other active chemical species such as ions or excited 

states are present in tracks of ionization particles, free radical 

reactions are considered to be the predominate events [4]. 

Chapiro (4] gives thlee observations as evidence for this assump-

tion. 
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1) Products derived from radiation of organic compounds are 

aiallar, though not exactly the same as producta arlsing from 

photolysis. 

2) Some classical free radlcal reactiona can be initiated by 

ionization radiatlon and show a great similarity to reactions 

inltiated by ultra-violet light or chemical initiators. 

3) Free radical inhibitors are effective in many casea when a 

reaction is initiated by ionizing radiation. 

Once free radicals are foraed with high energy radiation their 

lifetimes vary with species in the immediate areal for instance whether 

it. is isolated or located in a spur, the viscosity of the medium, and 

stabilization due to the amount of resonance energy available (12). 

After formation, free radicals can undergo numerous reactions (6): 

1) Atom transfer reactions such as hydrogen abstraction by a free 

radical: 

A. + RB + AD + R· 

2) Addition reactions to a ~ouble bond: 

A. + C • C + A - C - c. 

these include addition reactions observed in atomatic compounds 

(4) : 

Rt. + products, 

where. is an aromatic molecule and R+.is an addition complex 

having a quinone radical structure (6): 



I 
l ~ 
I. 

I 
i ~ 

3) Frag.entation reactions involving a dissociation into an 

unsaturated product .olecule and another free radicala 

• 
RaC - C + R·+ C • C 

4) Rearrangement reaction. in which the free radical changes 

position within tte molecule. 

• 
~B2...R + 

I 
R 

S) Combination of two radicals: 

15 

6) Disproportionction which also involves two radicals but results 

in two molecules one of higher unsaturation: 

• 
R + RCH2~ + 1lH + RCIi - c..B 

I 
H B 

2.6 Radical Yields 

In radiolysis of liquid hydrocarbons, the only reactive species 

that can be quantitatively determined are free radicals (9]. Radical 

chemical yields or ftG- values are the absolute chemical yield of a 

chemical species or products denoted as the number of chemical events 

occuring 100 eVof absorbed energy (9]. For example, 

G(R.) - the number of radicals produced per 100 eV absorbed 

Another important term in radiation chemistry concerns the unit of 

absorbed dose, the rad, which is 100 ergs per gram [8]. 

One technique to determine radical yields best in the gas or liquid 

phase is through radical scavengers. These are chemical species or 

stable free radicals that readily react with the free radicals produced. 
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A problem with radical scavenger. is the radical. detected cannot be 

those radicals which r.act within the spur.. but only the radicals which 

diffuse fro. the spurs (tl. 

2.7 Blactron Spin Resonance 

Blectron spin resonance (BSR) or electron paramagnetic resonance 

(BPa) spectroscopy is the most sensitve and informative method of deter-

mining the presence of unpaired electrons in the .olid phase (8). 

2.7.1' General Theory 

ESa spectroscopy utilize. the magnetic properties of the unpaired 

electrons of free radical molecules. Electrons are characterized in 

orbitals of the molecule with a spin quantum number +1/2 or -1/2. Two 

~lectrons in the same orbital have matched spin quantum numbers and give 

no total magnetic moment. 

The unpaired electron in a free radical can be approximated as a 

+ + free electron with spin S • 1/2 and vector magnetic moment, Ma, 

+ 
Ms • ge Is(s + 1) B (9) 

where 9 is the electron 9 factor, a dimensionless number, the value 

depending upon the environment of the electron (14). The 9 value of a 

free electron is 2.00232 and 8 • eh/2MeC ia the Bohr magneton, the unit 

of magnetic moment having the value of 9.274 x 10-21erg ~l. 

According to quantum theory a particle with spin haa two possible 

ori~ntations in an external magnetic field termed parallel and antipar-

allel [14]. Figure 6 illustrates how the magnetic moment vector can be 

oriented in a magnetic field (6). The two states are of slightly 

different energiea, the antiparallel direction being of higher energy 

[ 14). 
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Figure 6. The two orientations of an electron magnetic moment (Me) with 
respect to a magnetic field B (6). 
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given by [14) 

+ + + + + + 
B - .... • Bo - - ., I • I • coa (M • Ib) • 10 (10) 

Pigure , shove the energy d1fference (AB) between the energy parallel 

Bp - -(-P-) 8110) and the energy antiparallel (Sa - +(-P-) 8 110) is g88 

(14]. 

Mhen the electrons are subjected to a radio frequency magnetic 

field such that a resonance condition 

h\l - S - g88 

is established, where v is the frequency, transitions between the paral-

lel and antiparallel orientations occur. In classical terms, the elec-

tron magnetic moment vector axis precesses about the static magnetic 

field vector at a precise frequency called the Lamour frequency. !he 

+ 
The energy of a magnetic dipole Ms in a static magnetic field is 

electron is able to absorb energy at this frequency to cause transitions 

between the parallel-antiparallel states. 

2.7.2 Boltzmann's Distribution 

A net absorption of energy from radio frequency field. \I, can be 

observed if there exists a difference in probabilities of transition or 

in the populations of the two orientation states (14). 

At thermal equilibrium where there is no net transfer of energy 

within the system, the ratio of populations of parallel and antiparallel" 

states is given by the Boltzmann equation (14]: 

Na -~kt ge8BVkt (12) --e -e Np 

where k ia the Boltzmann constant (k - 1.38044 x 10-16erg X- 1). The 
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" 
sign.1 intensity incre.sea with an incre •• ing RaIMP r.tio, ao from thia 

equ.tion on. can conc1ud. th.t aignal int.naity incr ••••• with d.cr •• s-

ing temperature (6) • 

A basic .saumption of BSR ia th.t radi.tion fi.1da do not .ffect 

the thermal distribution of electrons in the two energy st.te. (15). 

2.7.3 Power Satur.tion 
~--"-~~------

The BSR signal intenaity is pcoportional to the microwave en.rgy 

density from the onset, but with increasing microw.ve power levels the 

!SR signal increases until maximum is att.ined after which the intenaity 

decreases until disappear.nce (6). 1he nonline.r dependence of Signal 

intensity or microwave power is c.lled power saturation (16). 

If the resonance condition is to be maintained the electron must 

have mechanism to dissipate the absorbed energy so that saturation of 

the higher energy state does not occur (17). 

The processes in which electrons lose energies are termed relaxa-

tion processes and involve the sh.ring of the energy of the electron 

spin with thermal vibrations of the solid, generally termed spin-lattice 

interactions (17). Tbe strength of spin-lattice inter.ctions are 

characterized by the spin-lattice relaxation t.1me, '1'1' with the stronger 

inter.ctions causing a shorter '1'1 and thereby reducing the ch.nce of 

power s.turation (17). 

Spin-spin interactions are energy tr.nsfer mech.nisms which occur 

between electron and nucle.r spins of neighboring .toms .nd also between 

unpaired electrons of different molecules (17). Spin-spin inter.ctions 

-.. -- . -. ·_-----·-1 
I 
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do not dis.ipate energy but can tranaport ener9Y to poaitiona with 

strong apin-lattice interaction., thereby ahortening Tl (6). 

\ . 2.7.4 '!'he BSR SpectrUil 

Most apectra obtained on an ISR Spectrometer are the firat 

\ derivative of energy abaorption curvea, because of the use of phaae 

sensitive detection. Phase sensitve signal detection uses a signal 

frequency aine-wave modulation to carry information through changes in 

amplitude of that modulation (15). Pigure 8 gives a schematic of the 

variation in amplitude of the magnetic field modulation as the absorp-

tion curve is scanned and recorded (17). 

2.7.4.1 Lineshapes 

The lineshapes of !SR si~nals are determined by interaction of free 

radicals with their local environments while line widths depend upon the 

strength of the interaction and relaxation times (5). 

There are two main types of line shapes generally used to charac-

terize absorption curves, namely Lorenztian and Gaussian (6). 

In a homogeneous system of a single radical, where relaxation 

\ 
t . 

depends on spin lattice inte~actions, and on the condition that thermal 

equilibrium is maintained, theory predicts a Lorenztian lineshape of the 

ISR curve (15). An inhomogeneous system where the electrons are in 

different local environments results in resonanace not occurring simul-' 

taneously for all spins. If spin-spin interactions occur more slowly 

than spin-lattice interactions, the spin system will not attain equili-

briua and the lineshape will be Gaussian (15). 
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Many speotrs are a OOftbination of Gau •• ian and Lorenstian feature., 

whlch pre4aainate. can be 14entifled b.r the .lope .. tbcd a. illu.trated 

1n Pigure 9 (6,15). 

1ngr .. glve four ~rtant par ... ters to 4eflne any ISR apeotrua 

(17) a 

1) !be -g-value- or apeotroacopio splittlng factor 

2) !be value of any .plitting in electronio level. 

3) !be value of any hyperfine .pllttlng. 

4) !he wldth cf absorption lines. 

!he g-value glves an indication of the 4ifference in the two energy 

levels of the parallel and antipar.llel atates of the radlcal electrons 

(17). Anisotropies caused by local magnetic field differences in the 

ftee electron environment in single crystal. car. give information on the 

structure of the radical if an understanding of the nature of the anlso-

tropic interactions is possessed [6]. 

!be determination of the g-values of randomly oriented radicals in 

an amorphous solid or crystalline powder gives a le •• detailed picture 

of radical structure and electron distribution becau.e the anisotropie. 

are averaged spatially in the .ample [6]. 

The splitting of electronic levels occurs with the existence of 

diradicala and triplet .tates. Due to line broadening, the.e electlonic 

leve4 splittings are difficult to observe in a noncry.talline solid 

[17] • 

i 
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Figure 9. Identification of Lorenztian and Gaussian curves by slope 
method (15). 
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2.5.2 Ryperfine Splitting 

Ryperfine aplitting. aze due to lnteraction. of lapalred electrona 

with "gnetic field. due to nuclei pre.ent in the a .. rad~cal (a). 

Ruelear .pina of various ele.ent are given in Table 2. 

Table 2.2 
Nuclear 8p1AS for Different Nuclei 

1 1 1 
18 1/2 13c 1/2 160 0 

2s 1 lite 1 32& 0 

12c 0 1st. 1/2 33s 3/2 

In a spin syst •• immersed in an external magnetic field in which 

the electrons are adjacent with nuclei which have spina, I • 1/2, the 

.. gr.etic field experienced by a particular electron will either be 

shifted to a higher or lower energy by a value -A- called the hyperfine 

splitting constant. Figure 10 diagrams the hyper fine or Zeeman split-

tings of an electron (s • 1/2) and a proton (1 • 1/2) (6). 

Probabilities for energy transitions due to changes in electron 

spin and nuclear .pin with relation to the magnetic field may be deter-

mined. 'l'he only transitions allowed inVOlve either the electron or 

nucleus but not both. (6). 

'l'he magnetic interaction between electron and nuclear .pins of the 

same molecule 11 called hypertine coupling and is most read11y observed 

in dilute solution where interaction. with nuclei of other molecules is 

mini.bed. 
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ri9~e 10. The byperfine or leeaan splitting_ for an electron (6 • 1/2) 
and a ~oton (1 • 1/2) (6). 
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2.7.4.3 Ani80t~opio Interaction 

The hyped ine inter actlon MY be broken into an iaouop1o and an 

aniaotropic teta. !be i80t~oplc te~. t. the "r.l~ntact interaction 

whio!l l'J-:i9inat .. fral electron nucle. eleotr~tat1c interaction. 'fbe 

aniaot~op1c ter.~ 1a due to dipole-dipole interaotiona. 

Aniaotropio hyperfine aplitting can be at~ied in detail in c~y.-

talllne .. terial by rotation of tbe cryatal in the .. ,netic field (17]. 

tropic hyperfine aplitting cauaea broadenin, of the a19nal thereby 

.... ring out byperfina atructure of any type (14]. 

2.7.4.4 taotropic Interaction 

Iaotropic iateraction 11 proportional to the electron denaity at 

the nucleuB (17). It can only be ~?a.rved if the orbital in which the 

electron 11 pre.ent give. a finite electron denaity at the nucleus [17]. 

In aromatic free raidc.la the unpaired electron occupies molecu-

lar orbitals which theoretically have zero electron denaity at the 

nuclei. If excited atates are admixed with the gro~1d .tatea of the 

orbitals thia conuition ia not obaerved and a byperfine constant of 28 

Clauss can be calculated, which i. cloae to experiJDental valu •• (17). 

2.7.4.5 ~chanq. Interaction 

Exchange interaction occur. in ... plea of high radical concentra-

tion and 11 caused by ,&4ica18 being in such cloa, viCinity with each 

other that there i. orbital overlap (14). ~,re.ult of thi. overlap i. 

that the ESR absorption line i. auch .harper than would be obtained in 

the p,e.ence of juat anisotropic interaction. Since the electron doea 

- -._----------------
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not exist in the local magnetic field of any particular nuclei long 

enough. hyperfine interaction i8 not observed (14]. 

2.7.5 Radical Concentration 

!be absolute radical concentration can be obtained from spectro-

meter parameters and the relation between spin concentration and the 

magnetic susceptibility of the flee electron (15]. Due to the number of 

independent measurements required a comparison method is more often. if 

not always. employed. 

In the absence of power saturation, the area under an ESR absorp-

tion curve is proportional to the number of spins in the sample 15]. 

Assuming a relatively small linewidth and that reflections in the wave-

guide do not effect measurements, a sample with an unknown spin concen-

tration can be compared with a sample with a known number spin using the 

derived equation [19]: 

It V 9S s(s + 1) s 
Nx = Ns - -~-~~ gx s~s + 1) 

V (T - 8) 

(n)x (~)s ~T- ~)x s, s X -r-v-
f s 

f 
x 

x 

BID' F 2 A 
s s x x 

-=Bm:-""":"'- -,-- -r-~ 
x x s x 

where x relates the unknown sample and s to the standard. 

( 13) 

• 
B 

dB . 
=-lS dt 

the magnetic field sweep rate, 9 is the Lande factor, s is the spin 

quantum number. v is the &~ple volume, n is the filling factor, V the 

crystal voltage, Q the loaded quality factor of the cavity, Hm' the 

modulation amplitude, f • 1/2 am'JSmdv a correction for modultion field 

inhomogeneity, Fu the amplitude factor, 2 is the microwave frequency, T 

the absolute temperature in Kelvin degrees, e is the Weiss constant, and 

A is the area under the absoprtion curve (19). 

, 
. I 
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If the same crystal voltage, microwave frequency. and temperature 

are used for samples and the values S • 1/2 and e • O·K inserted with 

f 
the substitution of C~) (i) -r. K equation B becolles (19) I 

x s X 

( 14) 

Samples of approximate equal 9 value, filling factor, and recording 

• parameters, B, 11m, and F this equation is fl\rther simplified: 
A v x x 

Nx • Ns -- (15) A v s s 

Methods to determine absorption curve areas include an analogous 

method developed by Burgess (20), direct electronic integration (15), 

and numerical integration method such as reported by Wyard (21). 

2.8 Radiation Damage in Polymers 

Experimental evidence inaicates that equal amounts of absorbed 

energy by polymers cause equivalent changes in the polymer properties 

independent of radiation type (4). Practically. the most importan~ 

effect of high energy radiation has upon polymers is induced changes in 

mechanical properties. 

Polymers can be divided into two groups, thermoplastic which 

consist of long chain molecules and thermosetting which exist as three 

dillensional networks. Radiation effects of chain scission and cross-

linking show up more dramatically in thermoplastic materials than in 

intrinsically crosslinked materials such as thermosetting resins (4,22). 

The radical chemical reactions discussed in Section 2.3 are the 

same for radicals as in polymers. Many radiation induced reactions have 

low molecular weight analogies (22). Unlike low molecular weight 
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compounda r mechanical and physical properties can be greatly altered by 

a very small amount of reaction (22). 

!he addition r fragmentation r rearrangement. combination. and 

disproportionation reactions may take place with ionic species as well 

as with free radicals (23). 

2.8.1 Croaslinking and Scisaion 

!hese reactions ultimately ~ange the chemical structures of the 

polymer molecules which either results in crosslinking or scissions and 

in turn. alters the physical properties of the material [23). The 

reactions which take place are very much a function of chemical struc-

ture of the structure units. 

FOr example. polymers constructed of vinyl units of the form 

B R , , 
(-c.c) will undergo chain scission. If each segment contains on a, I n 

BR 

8 
I 

hydrogen or is of the structure (-CBz-C8Z-) or (-C8~) 

will predominate (24.) 

n I n 
R 

crosslinking 

Dole (25) states that due to steric hindrance of the more substi-

tuted monomer the heat of recombination is higher. making recombination 

less probable. Radiation damage is minimized when the damage in the 

form of biradicals is repaired by recombination (25). 

Charlesby states polymers that degrade by main chain fracture show 

no crosslinking and there ap~ars to be no competition between the 

possesses of crosslinking and scission. 

~ '. ~. t '. , I , .. • , ....... 

I 
" I 

j 
( 
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L crosslinking with radiation increases the molecular weight of the 

L 
polymer to the limiting value being that sample is comprised of one 

molecule. Inar.ased crosslinking will bind the polymer into material 

whose properties are a function of crosslink density (23). 

Scission results in the reduction of molecular weight which means 

an increase in solubility, a lowering of the glass transition tempera-

ture, and a decrease in tensible and impact strength [23,4). 

Side reactions to scission and crosslinking are the production of 

low molecular weight fragments and gases and also the formation of 

unsaturation (23). The gases formed either escape readily or if higher 

molecular wei9ht plasticize the polymer eventually causing swelling, 

,cracking, or even foaming at high temperature (4). 

2.8.2 Aromatics 

Another example of the importance of the chemistry of the structur-

al unit is that aromatic polymers exhibit a resistance to radiation 

[3,23). These compounds can absorb energy by raising to excited states 

and then dissipating the energy that does not disrupt the chemical 

structure (23). 

Tbe G (crosslinking), G (main chain scission), and G (gas produc-

tion) are all considerably less for polymers that contain aromatic 
I I 

i structures than those that do not (26). 

More specific examples of the effect of radiation upon solid phase 

polymers will now be reviewed. The relationship between free radicals 

I generated and mechanical property effect will be accented. 
I 
I ' 
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2.8.3 Polyethylene 

Polyethylene is a polycrystalline polymer, whose physical and 

mechanical proper tie. have been extensively studied. It. radiation 

cheaistry has al.o been widely investigated using ISR • 

At low dose. properti.s sensitive to inter lamella, amorphous area 

activity in the polymer are the IIOIt effected (27). Changes in tiae-

dependent properties a. cr •• p, str.s. relaxation, and stress cracking 

are a result of crosslinks which decrease viscous flow in the amorphous 

regions (27). 

Bigher dosages cause loss of crystallinity which decrease the 

strength and modulus of polyethylene (27). 

2.8.3.1 Free Radical Reactions 

The free radicals generated in the radiolysis of polyethylene at 

• liquid nitrogen temperatures are the alkyl radical (-CBt~B2-)' G 

• (alkyl) • 1.4 - 6.0, the allyl radical, (-CB-CR • CH-), G (allyl) •• 023 

• - 0.4, and the polyenyl free radical, (-CR-(CR. CR)_ ), the latter is 
n 

only produced in significant yields at higher doses (28). 

tn linear, unbranched polyethylene main chain scission reactions do 

not occur, recombination is the major mechanis. leading to the formation 

of crosslinks (28). 

The production of allyl radicals is thought to be the product of 

the initial reaction (9) 

-CB z-CR z-CB r + -CB z-CB 2 • CB- +R 2 

and then th~ reaction 



l Tbe probability for such reactions occuring is enhanced by the 

t. 
mechanisll of abstraction type radical transfer c.uaing a net migration 

of the free electrona (28)1 

R + R'B + RB + R'. 

Oxygen reacts readily with polymer radicals to form peroxide 

radicals in chain reactions. Approxu-ately five oxygen molecules per 

radical react to cause chain acission, carboxyl formation, and hydroxyl 

formation (9). 

Figure 10 gives a schematic of possible routes of reaction of 

oxygen with allyl radicals, the predominate radical at room temperature 

(28). !he laut reaction of each sequence continues as a chain reaction. 

2.8.3.2 Decay of Alkyl Radicals 

By separation of the BSR spectrum of irradiated polyethylene into 

components Charlesby, et al (18) found that alkyl radicals decay accord-

ing to the second order rate law: 

(16) 

This equation results from the integration of the second-order rate 

equation: 

dl!:L • k (R.)2 
dt 1 

(17) 

and one assumes that the reaction occurs in a uniform medium (47). 

Smith and Jacob (47) found that the initial rate of disappearance 

of alkyl radicals doe~ follow a second-order rate law and after a 

transition period a different second-order law. Assuming that tha alkyl 

radicals exist in isolated spurs with an initial specific volume, Smith 

and Jacob found their data could be fit with the equation 
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Figure 11. Schematic of the reaction of oxygen with allyl radicals in 
polyethylene (28). 

i . j 
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4 6 • 10 12 
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14 16 18 

Figure 12. Fraction of pure second order kinetics in one reaction zone 
plotted a8 a function of the number of pairs of free 
radicals per zone (29). 
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(18) 

where NVNo 1a the ratio of the overall radlcal concentration at time t 

to the initial concentratic,n. nIno is a sia11ar ratio except pertaina 

to a Single spur. TD ia the tille required for the square of the 

radius of a apur to increaae by an amount equal to the initial value, 

and T is the average lifetime of the radical. 

Johnson, Wen, and Dole (48) found no second order decay, but 

quantitatively interpreted the kinetics in terms of fast and slow first 

order processes following the equationl 

C _ CO e-Kat+c0 e-kft 
a f 

(19) 

where Cs and cf are the concentration of slow decaying and rapidly 

decaying radicals, respectively, ks and kr are the decay constants, 

o 0 and Cs and c f the initial concentrations of these two radicals. 

It is possible that the different conclusions on the order of alkyl 

radical decay in polyethylene results from differences in the nature of 

the solids, the time range of the experiments, or the initial radical 

concentration (30). 

Dole and Inokiti (30) developed a mathematical model in which the 

radicals are isolated among a number of physically separated zones and 

the reaction rates are considered from the standpoint of the transition 

from second to first order kinetics as the concentration of reacting 

species become a small (on the order of ten or less) and also from the 

standpoint of an initial nonuniform distribution of reactants in the 

zones. The radicals are assumed to be inhomogeneously dispersed in a 

number of zones or spurs, a, all of equal volume vi, each containing a 

nuaber of radicals Ni (i • 1,2,3 •••• i ). The regions exterior to the 

1 
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zone. are excluded fra. free radical 41ffusion and react10n. C ia the 

overall average concentration of free radical •• 

If the reactions in each zone were strictly first or4er then 

-I si(dci/dt) • k1 I .iCi • s(dc/4t) • kiBc 
i i 

(20) 

and the overall reaction observed will be first order • 

If the overall reaction were ideally second order in each zone the 

rate equation in the above terms would be 
, 

where 

The actual, observed reaction rate is expresed 

-[d I SiNi/dt1obs • (S!Vi)k2 (Ni
2

)AV 

where 

2 t 2 
(Hi )AV • L siNi /s • 

i 

The ratio, Ib, of the rate observed to the ideal is given by 

-d[L si (Rldt)]obs (Ni 2)AV 

lb • -dnSiH/dt) ideal • (trU 2 

(21) 

(22) 

(23) 

(24) 

(25) 

The observed second order reaction rate will appear faster or equal to 

the ideal because the term (N:)AV will always be greater or equal to the 
2 tem (N1) • 

The number of ways two radicals can be chosen to react out of the 

number Hi is given by the following binomial coefficient: 

Hi 
C2 • Nil/(H1-2) 121 • Hi (H1-l)/Z (26) 

When Hi »1. their equation reduce. to • strictly second order propor-

tionality. 

i ' 
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Iwa •• ki, .t .1 (31) 4.t.cted the pr ••• nc. of ra4ic.l pair. in 

polyethyl.n. that 40 not incr.... in concentr.tion with 4o.e r.t.. They 

concluded the.. r.4ic.l paira 40 not for. by occa.ional ov.rlapping of 

.pura but are for.ad in intrin.ic ratio. indic.ting a •• tur.tion l~it. 

They also concluded the.e ra4ical pair. vere t~ alkyl radicals 

If a ra4ical is situate4 80 that it can only react with on. other 

ra4ical, as can be assumed with these alkyl radical pairs, the number of 

ways in which these ra4ical. can react is c~i/2 and is equal to Hi/2. 

The ratio of second order to first oxder reactions would be 

CRi 
2 

2 The true second-order rate is proportional to Hi and the first 

(27) 

order would be proportional to Ri , so the above ratio is proportional 

Restoring the assumption of no overlap of reaction zones and 

introducing the assumption that radicals exist in the zones only as even 

numbers, (i.e., only radical pairs are produced) the results of the 

preceding analysis can be illustrated in Pigure 11(30). Recombination 

rates will be predominately first order if only one free radical pair 

occur. in each zone, and the fraction of second order kinetics observed 

will increa .. as more radical pairs are assigned to each spur. 

If the radical distribution is multinomial (random), then the 

overall observed reaction rate constant would be strictly second order 

(28). If the radical concentration in the zones is random (nonuniform) 

and the restriction to even numbers of radicals in each zone ia 

• fftm 
tOft $1,,_ • $ 'd-r • 

• 'S 5' • s d', .. $$» D 

j 

------------, 
I 

M 
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neglected, the reaction rate .hould be exactly .econd order (30). If 

the concentration in the .pur. ~e equal, a deviation to fir.t order 

kinetic. would result. 

2.8.3.3 Decay of Allylic Radical. 

The decay of allylic radical. in the cryatalline and -.orphou. 

areas of polyethylene can be .. thematically described a. a .econd ord~'c 

decay process occurring simultaneously in different zone. (32). One 
i 
1 . must assume two .patially .eparated s.cond-order reactions occurring 

\ 

I . 

! 

L 

L 

with and without diffusion control in each zone for the best interpreta-

tion of the experimental data. The application of this technique will 

be reviewed in section dealing with poly (ethylene terephthalate). 

2.8.4 PolY"~ 

Polyami~~~ are semicrystalline polymers that, when containing 

aromatic groups, exhibit qood radiation resistance (33,34). Nylon 6,6, 

a nonaromatic polymer, exhibits significant loss in tensile strength and 

breaking elongation due to chain scis.ion yields being greater than 

crosslinking yields (3.). 

The predominate free radical in nylon 6,6 is at the a-carbon to 
• amide nitrogen (C-N<) (34). Disproportionation results in an .. ide 

I I I 
o B B 

group and one (CON-CB) group which decomposes to produce a chain acis-

sion (34). 

000 
I I I • • 

-fCN<B). + ...f(:-N<B" + .fC-N<B
2

'-'
2 I I I 

B B N 

o 
I 

+ .(C-N-CB*, 

Meta-xylylenediamine and adipic acid form an ~omatic polymer, 

-lj 

I 
I 
i 

·1 , , 
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I I 
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Krcananaky observed changea in optical density at 300 .~ of a ov-

viaibl. apectrua .a. tb. result of colored specie. (33): 

o 
I • 

-C-N-C- • 
Krasnansky (35) derived the following empirical eq~ation to describe 

experiaental decay curves in Fi9ure 13: 

dA 2 kt -kt - Cit - A (c3e 1 + cce 2) (28) 

This is derived from the equation for the straight line in Figure 12: 

Ao 
In(-)-k t + a A, F (29) 

and figure 14: 

A A 
o 0 

In(- - -) - -kit + b. A, Ai (30) 

These two equations combine to give 

Ao a kpt b -kit 
--ee -ee 
Ai (31) 

where P means final, i the initial time of the reactions, and A is the 

absorption. Equation l' can be written 

Ao ki t -k
2

t 
X- - (cie - c2e ) (32) 

and differentiated to give equation 28 whicb describes a second order 

process dependent upon tWD catalytic species. one increasing an4 the 

other decrea.ing .ith time (35). 
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3' 
li ... r.an (3', obtained a negati •• d •• iatlon frea lin.arity in 

radical conc.ntration •• raua doa. r.t. cur •• for various poly .. id •••• 

• hown in Pigur. 14 (3" < 

ft.polYMr •• nylon IS. nylon no. .nd th. J:IOly .. 1de frOil 2 .. thyl 

b ..... tbyl.n. d1 .. in. and ox.1ic aCid. were irr.di.ted with 2 MeV .1.c-

trona .t 'S·C wher. th. dec.y t.r.tn.tion rat. i. a •• u.ed negligible 

(34.3',. Zt..eraan (36) .1ao found that th. radical t.rainatioR rat. 

con.tant. decr ••• e aa do.. incr...... Be a.aociated th ••• ph.noa.na 

with the ov.rlap of fr •• radical .pur. at high.r do •••• 

fte do.. .t whicb linear d.pendenc. c..... indicat.. the plac ... nt 

of ne. cluat.r. of radic.1a at aita. of previoua .pura. Aaau.ing .pura 

di.tribut. randomly in an irradi.ted solid during the radiation proce •• 

and that the poly.er i. divided .paci.lly into R box.. .acb having tbe 

averag. volume of a apur. a mod.l can be con.tructed. 

Let fo b. the fraction of box •• centaining no .pura. f 1 and one 

apur. f2 two .pura, etc •• vbil. r i. tbe ratio of .pura to box... ~. 

change in f per unit cbange in r ias 

df - ar· fo 
aianarly, 

dft 
-.;--f -f 
Ql' n-l n 

(33) 

(34) 

(35) 

The .. equation. are solved a. tho •• developed bf Flory (37) for 
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Figue. 13. Decay of optical density '300 m~ of iecadiated nylon (MXD-6) 
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calculating molecular weight distributions formed by addition polymeri-

zation of monomers to a fixed number of chains. 1be solution involves 

rearranging and integrating equation 33 

f dfo Jr d 
~. - r fo 0 

(36) 

ln fo • -I' (37) 

fo - e -r (38) 

inserting into equation 34 

df ' 
1 -r 

- + fi - e (39) dr 

and solving the resulting first order lineal' differential equation 

giving 

f, · re 
-I' 

FOr equation 3S placing the value of n = 2, the solution is 

2 -I' 
f -= r e /2 z 

The general solution can be deduced to be 

(40) 

(41 ) 

. n-r 
f • I' e /nl (42) 

n 

which is a form of Poisson's distribution formula. Figure 16 ill us-

trates the changes of ractions of boxes ccntaining different numbers of 

spurs, f o ' f

" 

f 2, f3 , and fg which is the fraction of polymeK occupied 

by more than one spur, with increasing I' which is proportional to radia-

tion dosage (36). 

Prom Pigure 15 marked deviation from linearity for nylon 66 and 

nylon 610 occur at 5 Ntads and at 10 mrads for polyoxamide. Prom this 

fact, these doses correspond to I' - .2 in equation 29 and the number of 

spurs is equal to the number of boxes (1'-1) at 25 and 50 megarads, 

respectively. The diameter of a spur can be calculated as lsA fo~ 66 

and 610 nylons and loA for polyoxamide, assuming for each spur 100ev are 
dissipated (36). 
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Figure 15. Transient optical density versus radiation dose for irradi
ated polyamide films (0.1 mm thick). 1) Nylon 6,6, 
2) Nylon 610, and 3) Polyoxamide (34). 
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"110 Of SPURlt/NO OF eoau 

Figure 16. Variation in distribution of Spura with radiation dose, the 
change of the boxes containing different numbers of spurs, 
'0' '1' '2' F3 and 'g which ia the fraction of polymer 
occupied by more than one spur, with increasing r which is 
proportional to radiation dose (34). 
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r 2.8.5. Poly(ethylene terephthalate) 

I [ 
~ [ , 
\ 

J 
( 

[ -, 
i 
~ 
! . 
I 

Poly(ethylene terephthalate), PET, i8 a condensation polymer.of the 

EegUlar atEucture 

o 0 

-(reJl2CB2-<> ~ < 0 ) ~ -to 
that leads to • high degree of crystallinity. 

When exposed to high energy radiation the elongation at break 
~ 

[ decreases lor PET •• t decreases/at the same rate as polyethylene, but 

r the tensile strength which is initially much'higher decreases faster 

. (23). Tbe radiation stability of PET is viewed as lower than polyethy-

\ 
lene (23). 

i . 

Cbapiro (4) states that an increase in modulus is always observed 

1. at low radiation doses, but d~creases to below the original value at 

[ 
higher doses. 

The ESk spectra of PET irradiated and recorded at -196·C gives a 

r strong singlet with g equal to that of a free electron (38). The signal 

[ 
can be photo bleached and saturates with power easily so Hemetea and 

Stannett (38) concluded the peak was due to trapped electrons (38). 

I ~ Araki et al (39) irradiated biaxially oriented film in vacuo and 

then exposed the sample in air to oxidatively degrade the free radicals , -
in the amorphol~= regions. 

, 

Tbe resulting spectra of six or eight ~inesr depending upon sample 

orientation was assigned the structuce: 

o 0 

-@~-O;8-cH2~©-
An extra center line was tentatively assigned by Araki et al (39) 

to this structure: 

r 
t 

i 
~ 
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Fi~ure 17. The initial accumulation of radicals with dose (40). 
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Figure 18. Schematic of mechanism for dose rate dependence based on 
available evidence (19). 
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Completely amorphorus P.!r yields poorly resolved spectra that have 

not been analyzed ("0). Figure 17 shows that the initial accumulation 

of free radicals with dose exhibits little difference whether irradiated 

at 196·C and allowed to warm to room temperature for examination or 

examined after irradiation at room temperature by BSR spectroscopy ("0). 

The effects of radiation on PIT are dependent upon dose rate. 

Specifically, under high dose rates the polymer gels because of cross-

linking, but under low dose rates at the same dose levels solubility is 

maintained (40). PET appears to be more susceptible to chain scission 

at low dose rates. 

Figure 18 (40) gives TUrnerls (40) mechanism for the dose rate 

dependence based on the available evidence. The probability of termina-

tion of the propagation reaction at the botton of Figure 11 ("0) would 

be greater at· higher dose rates because more radicals would' be available 

for termination (40). 

2.8.5.1 Radical Decay 

Stannett, et a1 (41) demonstrated that the 0 function developed by 

Dole et al (32) for the kinetics of two simultaneous se~ond-order reac-

tions occurring in different zones can be applied to semicrystalline 

PET. 

This model considers two reaction zones whose second order reaction 

constants are Ip for fast decay in one zone and Ks for slow decay in 

"'~"""--__ ~""""",,,,," 0" .... _ .... _ ................ ~-. ... :_.:..... ~ __ d _ ........ ' ",;",.e ......... )H ..... ___ ·._·iIIii~·_lIIn_ .... __ ..... ". .... ·_ ... # __ ....... *.A. e_ 
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~; the second. The assumption that there is no interdiffusion between 

: \-
t.. '. 

,i L 
\ 

zones is made, for if rapid diffusion between zones occurred the overall 

reaction would be observed aa si.pla second order with a reaction rate 

constant equal to Ip + ... 

With the condition that no exchange occurs between zones, the 

follQWing equations can be written: 

(43) 

Co -C + C (44) 
0,1" o,.s 

Co F 
Cf - ,. (45) 

1 + Co,1"ltFt 

C :1& 

Co,s (46) 
s 1 +C Itst o,s 

where equations 45 and 46 are the usual integrated second-order equa-

tions,. t is time,. and Co the total observed concentration at zero 

time. Prom these equations a Q-function is derived,. 

t 1 + CoX,Xs (k l" + ks)t 
Q - ~l'-";~l~- - ~2-";;'~":2~'-;;--=-----

C - C Xf kp - Xs Its + coX,Xst<,Kst 
o 

where Xp and Is are mole fractions of the fast and slowly decaying 

species at zero time, eg Xl" - C IC. 0,.P' 0 

When Its«lt1", Xs # 0, and Its - 0,. 

o _ 1 + C 

X; X, 0 

(47) 

(48) 

and when a plot of 0 vs. t i8 linear with a non zero slope the conclu-

sion can be made that only one of two types of radicals present is 

reacting at a measurable rate. 

where 

POr the more general case the following equation is used: 

1 + Itt 
O-A+Bt 

A - X; ~ + X! Its 

B - Cox,~, ~K8 

(49) 

(SO) 

(51 ) 
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L (52) 

L 
Stannett et al (41) state that their present calculations with the 

o function indicate that the radical decay rate constant is greater for 

a saMple irradiated with a 15.0 Mrad dose than a sample irradiated with 

a 7.5 Mead dose. In polyethylene the opposite is true. This discrepen-

cy was tentatively explained b¥ the fact that crosslinking is the 

l 
predominant reaction in polyethylene and acission is predominate in PET 

at low dose rates. Crosslinking constricts the chain probability while 

! scission should have the converse effect. 
L 

r . 

l 

2.8.6 Polysulphones 

Aromatic polysulfones fora commercial plastics possessing a high 

glass transition temperature and a high thermal stability in both inert 

and oxidizing atmosphere (26). 

Two polysulfones ~tudied by ~own and O'Donnell (43) are poly(oxy 

1,4 phenylene sulfonyl l,4-phenylene-oxy 1,4 phenyleneisopropylidene-l,4 

phenylene) (1) and poly (oxy-l,4-phenylenesulfonyl-l,4-phenylene) (II) of 

the structures 

I 

II 

When 

-iO-@S02@O@~@~n 

~@S02@~ 
irradiated with cobalt-60, y rays at dose rates of 2-4 Mrad/hr 

in a vacuum, flexural strength of polysulfone I dose not decrease, 

howevee after irradiatior. in air flexural strength diminishes by fifty 

percent. POlysulfone II shows good retention of flexural strength with 

, 
~ 
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radiation in the same manner under vacuum but in air an initial decrease 

in flexural strength is evident followed ~ a deereaae with increaaing 

dos •• 

Irradiation of both Bulfones produces 802 g, indicating the carbon 

sulfur bond chain acission 1. an important first step followed ~ 802 

liberation (43). 

, . 
AtS02 + At + S02 

This reaction i8. supported by the BSR experiment of L¥ons et al (44) in 

which be identified the presence of phenylenesulfonyl radicals in 1-

irradiated polysulfone II. Also from his work L¥ons concluded both oxy-

and sulphoxy- linkages are susceptable to breakage. 

At liquid nitrogen temperatures, the major radicals present are 

cyclohexadienyl radicals formed b¥ the process (44): 

RCB3 + ReB2 + a~. a.YQ\-.. . { .. 
T~ a,' 

Crosslinking and scission reactlons are po:s ble for both the 

polysulpbones could 

At + -0- + (. 
'._ 0 

involve an aromat©ic~~adical: 

sequence that leads to chain scission in polysulpone A possible reaction 

I at the isopropylidene linkage is given below (44) 

-_._-_._------

ca
3 

+ -At C - At - + 8-

fB2 
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The decrease in flexural strength was shown by Brown and O'Oonnell 

to be dependent upon the diffusion of oxygen. Increases in chain 

scission at the surface manifested by the lower viscosity of polymer 

removed from the surface relative to regions in the center of the 

sample, illustrated that the decrease in flexural strength would be 

obaerved in air only if oxygen is allowed to diffuse far into the sample 

(26) • 

2.8.7 Epoxy Resins 

Epoxy resins are thermosetting polymers. A widely used epoxy is 

based on polyethers formed in condensation reactions between bisphenol A 

and epichlorohydrine (23). 

(O-cR2-cBC-O( 0) ~B3 (0) a;B-cB2 -0-) 
OR CR

3 
08 

Epoxies required large portions of amines for curing, and the use 
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, l. of aromatic 

(45) • 

I. Oxygen 
~ ~ 

-. -------- .-~----.. -~ - . 

amine. enhance radiation re.istance to relatively high do.es 

plays an intricate role in the degradation of epoxies and at 
I 
L 

high dose rates it may be depleted fa.ter than diffusion can OCcur 

: J 
11 
. ~ 

making sample thickness pertinent (23). 
r .,j 

, . 
There are few ~R studies of ilradiated epoxy resins. OV~rall (4') 

I _oj 

; j 
j J 
I~ 

I. 

reportea the generaUol. of radicale in epoxy rods which darkened upon 
, 

Beating in vacuum of the sample caused a decay 

of radials and a decrease in the initial line width from 8-10 gauss to 7 

gauss after 17 days. 

Beating new samples in vacuum at l80·C produced no radicals. 

The disappearance of radicals on heating the epoxide rods in vacuum 

shows this process OCcurs through molecular diffusion rather than 

through interacton with oxygen. The necessity of air to produce radi-

cals is probably due to diffusion controlled oxidation. 

The ESR spectra is unresolved, but the most probable radical is the 

result of oxidative scission of the polymer chains: 

• 
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3. Experimental Procedure 

Ciba Geigy MY720 Alradite Bpoxy Reain wa. cured with !poral aarden-

er (Ciba Geigy) and lrradiated with 0.5 Mev _lactron radiation at roo. 

temperature and with 60CO (1.33 and 1.17 Mev) gamma radiation at liquid 

nitrogen temperature. Free radical concentration in tbe samples vere 

estimated by comparison with a free radical standard by double integra-

tian of tbe ESR spectra. Radical build up with dose and radical decay 

curves wlth time were analyzed and the results compared with those of 

other polymers. 

3. 1 Mater iala 

3.1.1 Epo!y Resin Samples 

eiba Geigy MY720 Alradite Epoxy Resin is named tetraglycidal-4,.' 

diaminodipbenyl methane (TGDDM) and eiba Geigy Eporal Bardener is 4,.' 

diamino diphenyl sulfone (DDS). !he structures of the epoxy resin and 

curing agent are given below (50): 

Tetraglycidyl - 4,4' diamino dipbeqyl methane 

(TGDI»l) 

o 

-~-<O>-"2 
o 

4,4' - dieino diphenyl sulphone 

(DDS) 

----------------------
-_ .. ~, - -"'-

a:;qOQ .$4'1] 

-l 
!' 

~ 
I 
I 
! 
I 
I 
I 
I ~ 

I 
I 
I-, 
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3.1.2 Ra~ical Standard 

The r~ical stan4ar4 u.e~ was 2,2 - ~ipbenyl - 1 - picryl by~&yl 

(DPPR) 3M epoxy _i4. 

resin. 

2-2 4ipbenyl - 1- picryl hydrazyl 

(DPPB) 

3.2 Equipment 

3.2.1 Radlatlon"!quipment 

Ra~iation from an electron accelerator an~ Cobalt - 60 gamma source 

were used in this study. The electron accelerator, manufactured ~ Higb 

Vbltage Engineering Corporation, was operate~ at 8.3 milliamperes beam 

current and 500.000 volts frOID an insul.ated core transformer. Thia 

equipment utilizes a borizontal be .. acanne~ 48- by 6-. '!'be samples 

were bung vertically on a conveyor. whicb carried tbem in front of the 

beam twice each revolution througb equipment 80 that samplea received 

balf of the~ total 40s. on each si~e. All radiations were carried out 

in nitrogen filled ziploc polyethylene bags from Dow Chemical Oorpora-
, 

I 

r l. 
tion. Dosimetry .easurementa perforae4 by Naranong (3) were used for 

dosage 4etermination in thia investigation. The gamma radiation was 

obtained froa a Gamma Cell 220 cobalt - 60 source with a known dose rate 

L of approximately 0.24 Mred per hour_ 

[ 

[ 
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3.2.2 IS. Spectra.eter 

!be cadicala genecated bf irradiation w,a obaarved on a Japan 

Blectron Optic. Laboratory (JBOL) as - MI - 1X BSJt apectra.eter. 

Meaaur ... nta .. ra .ade at liquid nitrogen te~ratuce in an t..8raion 

devcr. 

3.) Procedure 

3.3.1 !fOxy S..,le Pre.,.ration 

-rbe a.plea wre in the fora of cylindrical roda which were 3/32-

(0.238 cal in diameter and were ca.poaed of 73. (v/w) TGDDM and 27. 

(w/w) DDS. 

!be rea in waa mixeJ ~ firat weighing the TGDDN 1n a tared conta1n-

er and he.ting to 100 - 110 ·C on a hot plate agitated w1th an overhead 

mechanical atirrer. !be calculated a.ount ~f DDS waa alowly added to 

the TGDDM at 11~·C continuing atirring until the DDS waa completely 

d18aolved. 

~e mixture waa placed in a heated vacuum deaiccator at 110·C and 

d~areated. !O avoid exceaaive overflow of the mixture from the contain-

I . er the vacuum waa ahut off at three five minute intervals (and the 

syat .. fluahed with nitrogen). -rbe deaiceatorts heater waa then ahut 

off and the desiccator and contenta were maintained under vacuum for 48 

boura at roal temperature. 'lbe lIixture wa stored in a deaiccator until 

uae. 

The epoxy rea in waa reheated under vacuWl to 1 h'~C and then placed 
I 1 

under a nitrogen atmuspbere. ~flon tubing with a 3/32- inner diameter ~ 
i 

cut into lengths of 3 CII were inserted lengthwise into the 'l'GDIII/DDS l 
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a1xture and allowed to .1nk. !be eolutlon va. allowed to cwol. the 

container va. then broken ~ the ..c... re.ln va. ea.l1y taken off the 

.urface of ~e teflon. ~e end. of the tube. were .. aled wltb teflon 

tape. !'be re.in wa. tben cuced at 1l,·C for 3 hour. and then 160·C for 

5 houra. 

fte cured epoxy rod. wre raoved by eith.r autUn9 the top of the 

tublng lenvthwl .. and peeling it off or by pu.hlng the rod. out with a 

... 11 _tal rocl. 'ltle .ample. wre wiCJb.d, wrapped in alwl1nUII foU,. 

labeled, placed ln a de.iccator, and .tored under vacuum. 

3.3.2 Standard·S..,l •• 

DPPB wa. wlCJhed out lnto a tared contalner and then Scotch brand 

~ epoxy r.ain and amide hardener were added to the container, wiCJhed, 

and .ixed in the .ame manne, aa the TGDDM/DDS .yate. except at ambient 

taperature. The mixture va. deare.ted for 15 ainute!l and teflon tubea 

inaerted into the realn ~xture. !be ,e. in va. allowed to partlally 

cure at ambient taperature before the tef10n tubea were r..eved and the 

realn allowed to fully cure for 24 hours. 

3.3.3 Electron Irradiation !xpoaure 

The aUlplea which wre wrapped vlth alUllinum foU and placed in 

nltrOCJ8ft filled aiploc ba;s were plactld on the conveyor belt of the 

electron accelerator and paa.ed throUCJb the ,eaulting in a no.inal 10 

Mrad exposure per paa.. Bach pasa took approxt.&tely 3.5 ainutes. 

The -..ple. were removed fro. the conveyor after the desired doaaCJe 

and ~edlately ~,aed into a Dewa, containing liquid nitrogen 

(-,,,·e) •• tored until as. Muureaent .a ucle. 

---'~ ~, ....... ~ ------------.. ~-------
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3.3.4 ~ Irradiation !!pOaur. 

!be labeled. aluminum ~il WEappe4 a.-plea were placed at varioua 

intervals of time tH • DeWM containing liquid nitrogen which was 

located in the irradiation chamber of the gamma cell so a range of 10-50 

Mra4 40aages could be obtained. 
!he aamples were atored until BSR 

aeaauremeflt was made. 

3.3.5 ISR-Measurementa 

!be samples were .easured on the ISR spectrometer at liquid nitro-

gen teaperature with an ISR quartz nitrogen laerston dewar. !he 

typical settings on the spectrometer were as follows: 

Magnetic field 

Gain 

Response 

MOdulation width 

Power 

Crystal CUrrent 

Ptequency 

Scan time 

: _ 3700 - 3740 ~ 100 GaUSS 

. . 
: 

: 

: 

- 1 x 1 - 1 x 1000 

0.1 - 0.3 sec 

.63 - 1.6 GaUSS 

0.2 - 0.6 mw 

: 0.5 - 0.7 IDA 

: - 9.35 GBz 

: 5-10 minutes 

The first derivative spectra were doubly integrated by the numeri-

cal method of W yard (21). the equation used was: 

A • 1/2 h2~n(2n - 2r + 1) yr 

where h i8 the width of the interval into which the spectra were 

divided. n is the number of intervals, and y i8 the height of the rth 

. t ~ interval at the middle of the interval. A i8 the area of the absorption 

\-
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curve of the aper ~ Aftd la ~oport1on.l to the radical concentration in 

~ aaaple. 

!he area. of the DffB -..ple witb known .pin concentration were 

CCllpared witb area. of the unknown tfGDDM/DDS .aple. to e.tiute the 

radical concentration of the unknown aa.ple.. O8ing the foraula: 

Au CD PD 
iiU x t; x "D x 'fU • CD 

where A 18 the area of the absorption spectra. C is the concentration 

(spins/g). P is the amplitude setting. and w the weigbt in gr ... while U 

and D are subscripts denoting the unknown and DPPR samples. respective-

lYe 

3.3.6 Decay Bxper~nts 

Radical decay was .. asured by exposing the sample to room tempera-

tUfe for a period of time and then recording the ISR spectra at liquid 

nitrogen temperature. It was determined that the sample took about 1/2 

minute to reach 17·C and 2-3 minutes to reacb roon! temperature. !his 

tille was counted with the time of decay. It is negligible at long 

tilles. 

1 

I 
I 
I 
! 

I 
I 
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4. Re.ult. and Dlaou •• lon 

U.ing an .-piric.l e.timate developed bf .. lab and lUther ford (50) 

and .pplied to a thin fila bf .aranong (3). the curve that apprOK~t •• 

the do.age exp6cienced b.r a taDDMlDDB • .-ple which ha. an effective 

thlckne •• of 122 alls (93.8 x 1.3 specific gravlty) along the s.-ple 

thickness pacallel to the electcon be.. is shown ln Piguce lA. !his 

cucve illustcating the dosage expecienced as a function of distance 

along the diuetec pecpenc!iculac to the be .. as ahown in Piguce 18. !he 

effective radiation dosage at the center of the s .. ple can be seen to be 

a fractional peccentage of the dosage toward the edges. !he actual 

average 40sage acraas the cross section is calculated to be 0.57 of the 

dosage deliver~ b.r the beam. All the cesults hereafter are based on 

the normal dosage and are not corrected for variation over the cross 

section. 

In the g .... experiments. the high penetration of the gamma 

radiation into samples allows one to assume a homogeneous deposition of 

energy into the material. 

4.1 BSR Spectra 

Pigures 2 and 3 show the DR spectr a of TGDIII/DDS samples J gamma 

irradiated at 19'·C and an electron irradiated at ambient temperature. 

respectively. !be .. jar difference in these spectra is the ~eSb~e of 

long wings 1n the spectrum of the gamma irradiated sample (Figure 2) 

which are not ~.sent in the spectrum of the electron irradiated sample 

(Pigure 3). The ra4ical concentration of the sample irradiated with 
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RELATIVE ABSORPTION VS THICKNESS fOR 112 MEV 
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Figure 1. Relative absorption versua thickness in sample 94 mils in diameter taken along (a, dl ... ter~ 
parallel to irradiating electron beam and (b) along diameter perpendicular to irradiating 
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Figure 2. ESR spectrum of gamma irradiated TGDDM/DDS sample. 
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Figure 3. ESR spectrum of electron irradiated TGDDM/DOS sample. 
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g .... radiation i. 2.4 x 1019 .plns/g an4 the electron irradiated s .. ple 

spin concentration i. 1.7 x 10 19 spin/g. 

Figure 4 8bowa the spectr_ of the g_ irradiated epoxy saap1e 

after' a1nut .. of decay. Along with a significant decrea .. 1n overall 

intensity of the spectr_ coeresponding to a radical concentration of 

1.2 x 1019 spins/g. !he decay of tbe wings is essentially complete 80 

that the spectr_ reseables that of the electron irradiated Baaple 1n 

Figure 3. !his seems to indicate a very quickly decaying species whicb 

.. y be trapped electrons .. radlcal ions, or radical pairs (thougb there 

is no peak at g-4). 

Figure 5 illustrates bow the 9 value of 2.004' of an electron 

irradia~ed can be obtained by a comparison witb tbe g- value of a DPPB 

s.-ple. !be spectra exhibit no fine structure, thougb tbere is an 

assymetry present in whicb become more predominate as decay at room 

temperature was continued. 

4.2 Radical Build-up 

Figure , sbows that tbe radical concentration versus gamma 

radiation dose (at 19'·C) is a linear relationsbip. G (radical) bas tbe 

value 0.59 radical/100eV for this irradiation. Because this curve is 

linear .. it .y be concluded there is a minimal amount of radical 

reaction at this teaperature and thus all paramagnetic species are 

trapped. 

Figure 7 sbows the radical build-up curve for samples exposed to 

1/2 MeV electrons and a curve sbowing the radical concentration at 

various doses after 200 minutes decay at room temperature (- 25·C). 
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Figure 4. !SR spectrum of gamma irradiated 
sample after 6 minutes at ambient temperature. 

Figure 5. ESR spectrum of electron irradiated 
sample with superimposed spectrum of DPPB 
suspended in epoxy resin. 
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Pigure 6. Build-up of radical concentration with dose of Cobalt 60 
(1.33 and 1.17 MeV) in 'l'GDDM/DDS samples. 
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4.3 Spur stae 

Inerty 1. depoalted b.r tbe electron. 18 .ucb a -.nner that .puc. or 

grou,. of rad1oal. ue for-.cJ. One can a •• _ that .pur apan._ do 

to dlffu.lon of radlcal. 1. .low beeau.. of th. ~lllty of the 

pol,..r cbaine. !bl. a •• u.ptlon can be aade confldently lf one note. 

the gla.. tran.ltion teaperature of a 73/27 (w/W) ~DD8 epoxy ayat .. 

baa been reported to be 1,0·C (52) and 260·C (50). thi. value varying 

due to dlfference. in aaaple pceperation or rate and type of 
• 

• a.ureaent. 

If one al80 assllaes the inbo.ageneity of energy depo8ition 

illustrated in Figures lA and 11 does not disrupt tbe presu.ption tbat 

sputs deposited lin a rando. llaftner. then equation 42 (34) in Section 

2.6.4 can be applied, 

Following Z_erlllan's method (3At). the first IIlarked deviation froa 

linearity in the radical build-up curve is at 20 Mrads. 80 this dose 

correspond8 to a value of r • 0.2 in equation 42. The number of spurs 

would equal the n .. ber of boxe. at 100 Mrads. 'lbe majority of spurs 

have 1 to 4 ion pairs (8). 80 assWling 25 electrons per spur and that 

the G (radical) is approxi.ately 0.6 radical/l00eV. the formation of a 

spur would be an event dis8ipating about 400 eV. '!'berafore. 

100 Uu'" 100 .r,l, x 1.la 1 eV 1 spur 1 011 3 
~au. X 10-6 Mrad ~x 1.602(10-12) erg x 400\iV x AS 

• 2.0 x 10-5 SIVr 

I 
I ., 
i 
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of which the rec1procal .ould be a aptar vol .. , 4.9 x 10" A'. A .ptar 

en .. ter can be oalculated to be 015.5 A, wh10h 1. of tM order, 

ealculate4 by 11_r .. n (34) for nylon 6, nylon 1,10, and pol,._lde. 

!he .alue for the d1 ... ter of a .pur Obta1fte4 by this calculation 

i. hlgher than the actual .alue due to oaabinatlon of radical. within 

the .pur.. !he .. radical reactlona eau .. de.lationa frea linearity 1n 

tb. build up cur •• at a lower do •• than the dose at which ftOnl1nerity 

would be caused simply by .~ overlap. 

4.4 Radlcal Dacay 

Pigure. 8 and 9 show radic.l oonc.ntratlon v.rsus t~e at roea 

temperature plota for electron and g.... irradiated sampl.a, 

respecti •• ly. Both exhibit an initial faat decay followed by an 

a~ently much alower decay region, indicating a r.latively faat 

reacting apecies and slow reacting apecies are pres.nt. 

4.4.1 Th. 9 Function 

Pigur. 10 shows a plot of the 9 function derived by Dole (32) 

.ersua time. !he linearity of the plot indicatea the decay consiata of 

two compon.nta, both second ord.r reaction. occurring in diff.r.nt 

zonea. The equation that defin •• thia line is a simplification of the 

general ca.e (Equation 2.49 1ft Section 2.6.5.2) in which th. slow decay 

ceaponent is aaau.e4 too slow for .... ur .. ent. 

Pigur. 11 gi.e. a .iailar plot for the el.ctron radiated s .. ple. of 

do ••• varying frOll 10 to 130 Meada. 'l'h. initial radical concentration, 

Co, i. adjust.d 1ft this ca .. by extrapolating a .traight lin. tbrough 

the «ig1ft and the 10 Mead dOH data point. 

, , 
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pigaue 10. Q.,-.1.r veraua tille for radical decay data of Pigure 9. 
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TABLa t 
Calculated V.l .... of the 0 Function 

Slope 

apin ap1n 
DoN llead Co -a 10-19 _ a 10- 19 , 9 

12.1· 9.35 C.7l 

52. u 29.00 0.73 

10.0" 3.70 0.34 

20.0·· 7.80 0.34 

30.0·· 11.SO 0.34 

50.0" 19.00 0.34 

10.0·· 23.00 0.41 

100.0·· 38.00 0.52 

130.0·· 50.00 0.53 

., ..... ra4!.t1on (1.ll and 1.17 MeV, 
••• 1ectcon radiation (0.5 MeY) 

0. 1 X+Co~t 2 X f Itf X f 

tnteccept 

ap1n/a1n 
a 10-20 X 

9 a 

14.1 0.44 

".1 0.20 

2.1 0.48 

2.1 0.38 

2.1 0.23 

2.1 0.15 

0.99 0.15 

-0.11 0.12 

-0.87 0.10 

-'---"-.-.-----------

X 
f 

0.56 

0.80 

0.52 

0.70 

0.77 

0.85 

0.85 

0.88 

0.90 

It 
f , 

• 1021 

ain sp1n 

• 2.1' 

1.07 

14.2 

7.8 

1.5 

5.3 

14.0 

-117.0 

-14.2 

1 
. _._-----_.. ~ 

- .---, _ i j 
~ ; .-_. ~,' + I 1 

.f 11 

a 
• , 

a 1021 

Ilia apla 

0.00' 

0.034 

0.0.' 

0.172 

0.123 

0."3 
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0.00' 

0.037 

I 
I 
I 

i 
, 

:: 

"1 ~ 

\ ~ 
A 

1 

I 
! 
i 

i 
I J 

.~ 

, 

~ 
1 

1 

j 

...... .......... ' W' • .••• r._...Il_ ........... -,;;;.i-t' ... ,' ... · eift. $' ~n = ..................... 1It.I:Jiilit' 1st'*'Wrs'" • 



IE 
t [, 
t I 

I , 
) 

jf 
L 
L 
[ 

1 

\ 

L 

L 

67 

At the lower doses the electron irradiated samples radical 

concentration decay data follow the s ... Q plot. Table I gives the 

equation and the values of the constants ~r various dose. of the gamma 

and flectron radiation. Discrepancie. between the data of the two types 

c~ radiation could be due to the inhoaogeneous placement of spurs and 

the error in estimation dosages and initial concentrations of radicals 

in the electron irradiated samples. 
, 

Furthermore, the Q function would not bold for higher doses as the 

data foe electron irradiation suggest. At higher dosages, extensive 

spur overlap would result in the system no longer existing as separate 

zones. The decay data would exhibit simple second order behavior with 

one decay constant due to the homogeneous distribution of radicals. 

This effect would be expected to be more pronounced in the electrion 

irradiated sample because the energy is deposited nonuniformly so spurs 

are more likely to overlap at relatively lower doses than with gamma 

radiatien. 
I ' , ~ 
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4.4.2 Radica~ Decay Constants 

The free radical decay constants for the fast decaying species.kf • 

are somewhat greater for the lower dose. The slow decaying species 

decay constants. k • ware calculated from the longer tiaes of decay and s 

tend to increase with dose. 

In the case of allyl radicals in polyethylene. the rate constants 

were found to decrease with dose and in the case of PET the rate 

constants increased with dose. Stennett et al (38) concluded this was 

due to crosslinking being the predominate reaction in polyethylene 

limiting polymer chain movement and chain scission predomiklating at low 

dose rates in PET. which should have a converse effect of increasing 

chain mobility. In Naranong's (3) thesis work an increase in stress and 

modulus of 12' compared with controls of an epoxy composite system with 

TGDDM/DDS as the matrix. 1be increase in these properties can be due to 

crosslinking reactions. The dosages used in Naranong's study were up to 

5000 Ntads which are orders of magnitude greater than the doses used in 

this study. Decreases in the rate constant. kf • might be due to added 

crosslinking in less crosslinked regions. causing a slowing of the 

reaction rate as crosslinking increases with dose • 

The second order slow decay constants.k , indicate a trend of s 

increasing with dose which would be characteristic of regions in which 

already have a high crosslink density. Due to the low chain mobility in 

high crosslinked regions. a higher rate of combination would be expected 

as radicals are placed closer to each other due to spur overlap. 



IE 
I , 

'L 

L 
L 

L 

L 

1. 

6' 

th. decr •••• of kf with doee i •• lao ch.r.cteri.tic of .econd ord.r 

kin.tic. during .uttipl • .on. re.ction. of ~ich • .adel was d.v.loped 

by Dol. and lnokuti (30) .nd ,eviewed in Section 2.6.3.2. Wb.n .ver.g-

ing ov.r many ... 11 •• par.ted reaction., the obs.rved reaction r.t. will 

.lways be gr •• t.r than or equ.l to th. id •• l r.t. (th. rate in which the 

radic.l •• r. homog.neou.ly di.tributed in the .ediua). 

As do.. incre .... , the ch.nce of .pur overl.p incr..... ..king some 

zon.. larg.r and the Ob •• rved r.te decr..... .~o.ching the v.lue of 

the ide.l r.t. in which there .r. no separ.t. .on.s .nd the sy.t.. is 

hoaogeneou •• 

1be over.ll kinetics of the TGDDM/DDS system can be fit with • 

model describing two simultaneous second order reactions occurring in 

different zonea. With increasing dose, the local concentrations in the 

slow decaying .ones increase .s • separation of the zones is maintained 

r.sulting with an increase of the observed decay rate constants. 1be 

decay constant of the fast decaying region decreases with increasing 

dose because the zones do not remain separate, ~r they are dispersed in 

regions in the epoxy th.t are interconnected. The.. conclusions are 

consist.nt with evidence th.t the polymeric network of· cured epoxy 

resins contains region. of nonuniform crosslink density (53.54,55,56). 

Pra. electron microscopic work (54,55) and NMR studies (56) the 

sizea of the regions of high crosslink density (or nodules) r.ng. in 

size from 6 na to 10 • and are tmaeL.ed in a lower crosslink density 

•• tdx. TGDIII (MY720) cured with N,N' dimethyl - 1,6 diaminohexane 

(DDS) rathat th.n DDS h.s been found by Brown and Sandrecyk! (53) and 
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Lind (56) in .. spin p~obe and lIIR stu.U.s, ~espect1vely r to contain 

inbOllOgeneiU.s. ft. sise of a spur (45 A or 4.5 .) is ... 11 enougb to 

fit exclusively into regions of the Si88 est~ted for tba .o4ul.s • 

!be decay of radicals located in a highly crosslinked nodule would 

be expected to be extremely slow due to restricted moveaent of chains. 

Spurs located in more .obile regions would be expected to contain 

~adicals or ion pairs that would combine at a faster rate. 

!be effect of oxygen has been neglected in the above argUllents. 

Whether the degassing of the TGDDM and DDS before cure was extensive 

enough, if any oxygen present was reacted during cure, and if diffussion 

of oxygen into (or oxygen present in) the sample effects the radical 

decay is still in question. 

5. SUJIIIUrX 

Cured TGDDM/DOS~; samples were subjected to Cobalt 60 gamma rays 

(1.13 and 1.17 MeV) and 1/2 MeV electrons at doses of 5 to 10 ~ads and 

a 10 to 150 Mrad ranges, respectively. Radical concentrations were 

determined by BSR spectrometer and a DPPB standard sample. Prom the 

radical concentration versus dose curve for the gamma irradiated samples 

a G (radical) of 0.59 radical/100eV was obtained. Prom the radical 

build-up curve an estimated spur diameter of 45.4 A was determined for 

the 1/2 MeV electron irradiated samples. 
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~ decay of ~adical concentr.tlon ••• Ob.erved at raa. teaperature 

ln auple. b~adl.ted with 12.1 _ 52 *ad. doee. of Q)balt 60 ,--

~aya and .1th do ... ~anglng frc. 10 to 150 tlrad. of 1/2 MeV electron •• 

!he decay data f~oa both .-.ple. fit a aDdel whlch a •• u.e. two 

siaultaneou. second order reaction. occurring ln dlfferent sones. !he 

decay constanta ranged fro. 14.2 x 10-21 9/11in splns to 1.07 x 

10-21g/llin apin for the faat decay .pecie. and 0.009 x 10-21 g/llln spin 

to 0.172 x 10-21 9/11in spin for 'the slow decaylng specie.. !he results 

are consistent .ith electron alcroscoplc. NKR. and BSR spln probe 

evldence of inhomogeneous distribution of reglons of high and low 

crosslink density in epoxy resins. 

POr further research. decay studies of epoxy systems with different 

TGDDM/DDS ratios should be undertaken. !he size of the croaslink 

nodules in epoxies is believed to vary with the epoxy/amine ratio. 

Also. an investigation if oxygen is enhancing the difference in decay of 

the different regions and if there are other effects due to oxygen. 

Also. a study of decay at longer times would obtain a more accurate 

esti.ate of the slow second order decay constant. 
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TABLB A 
Experl.ental Data for Radical Concentration Bulld-up and 

Decay for 1/2 MeV Electron and 1.31. 1.17 MeV ~ Irradiated saaple. 

FiCJure A-l PiCJures 7 , 8 FiCJures 7 , 8 Pigures 6 , 9 Pigure. 6 , 9 

dose· ti .. •• spina/CJ dose ti_ splns/9 doae ti.e apina/9 dose tt.e spina/g dotIe tme 8I»ina/g 
(ain) • 10- (ain) x 10- (ain) • 10- (ain) • 10- (1IiD, Jl 10---

B(1n) I a 6 B( 10) a 2.7 B(60) 0 11.1 0 0 . 0.1 G(53.4, 0 2' B(20) 0 8 B( 10) 5 2.4 B(60) 5 5.3 G (4.7) .. 5.6 G(53.4, 6.2 12 
B(lO) 0 12 B( 10) 100 2.0 B(60) 100 4.3 G(12.4) 0 9.4 G(53.4, 8.28 11 
B (60) 0 11 B(10) 200 2.0 B(60) 200 4.4 G(12.4) 1.0 8.4 G(53.4) 10.8' 11 
B(70) 0 17 B(10) 1220 1.8 B(60) 1220 3.57 G(12.4) 3.8 7.7 G(53.4, 13.23 10 
B(90) 0 17 8(20) a 5.9 B( 100) 0 10.2 G(12.4) 6.3 6.9 G(53.4, 1'.23 '.5 
£ (100) a 19.5 B(20) 5 3.7 B(100) 5 6.4 G(12.4) 11.6 7.0 G(53.4' 29.23 '.5 
B (11 0) a 20 B(20) 100 2.7 B(100) 100 4.3 G(12.4) 16.6 6.6 G(53.4, 3'.58 '.2 
B( 150) 0 20.5 B(20) 200 2.7 B( 100) 200 5.2 G(12.4) 22.6 6.8 G(53.4, 4'.' '.4 

B(20) 1220 1.8 B(100) 1220 4.5 G(12.4) 36.7 6.9 G(53.4, 67.3 '.3 
B(30) 0 5.7 B(130) a 16.4 G(12.4) 64.7 6.4 G(53.4, '3.6 '.4 
B(30) 5 5.2 B (130) 5 7.4 G(12.4) 106.7 6.7 G(53.4) 77.5 ,., 
B(lO) 100 4.8 B(130) 100 7 . G(12.4) 172.7 6.4 G(53.4, 126.7 '.5 
B(30) 200 4.0 B(130) 200 5.9 G(12.4) 296.7 6.5 G(53.4, 176.7 8.7 
E(30) 1220 2.8 B (130) 1220 5.4 G!12.4) 417.' 4.5 G(53.4, 234.4 8.0 
B(50) a 6.6 G(12.4) 735.' 5.7 G(53.4, 474.7 7.05 
£(50) 5 5.1 G(12.4) 1635.3 4.4 G(53.4) 747.7 6.6 
B(50) 100 4.3 G(12.4) 2740.3 4.2 C(53.4, 16'7.0 6.5 
B(50) 200 4.2 G(16.6, 0 8.' C(53.4, 2210.0 4.7 
B(50) 1220 3.0 G(23.4) 0 12 

G(29.2) 0 13 
G(3(.5) 0 15 

41.75 0 17 

*G. 9-- radiation (1.33 and 1.17 MaV). III 1/2 MaV electrons. dosage 1n lIracJa in paxenthe.is. 
uc1 .. at aablent teapeuture (not includit -? . rradiation t1ae for 1/2 MaV electron inacJiat.,,·.i u.ple., = 
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Electron SpiD Re.onanee Studle. of Epoxy Sample. 
Expo.ed to liZ Mev Electron •• * K. SCHAFFER, R. D. 
GILBERT. J. D. MEMORY. and R. E. FORNES, N. C. 
State U. --Sample. of cured epoxy re.iD (MY 7Z0/DDS 
ClbaCel,y) have been irradiated at room temperature 
with liZ Mev electron. to do.e levell up to 5 x 107 rad •• 
The.e lample. were dored at eryo,enlc temperature. 
followin, expo.ure until mealurement. were "made Oft an 
x-baDd ESR 'pectrometer. Under tbe coftdltiOD' of mea.
urement., radical concentration. leveled off arOWld 1019 

radicala/cm3• Before irradiation, cured .ample •• bowed 
the presence of radicala with concentration. ranpn, frona 
1017 _ lOllradicala/ezn3• The .peetra of both cured and 
irradiated re.in. are •• ynunetric. Detail. of the reault. 
will be ,iven. E.timate. of radical decay rate. will allo 
be pre.ented a. well a. ESR mea.urementl at 77ex. 
*Supported by NASA Grant NSC; 1562. 

Prefer })Qater Sea a ion R. E. Forne. 
N. C. State Univer.ity 
School of TextUe. 
P. O. Box 5006 
Ralelah. N. C. 27650 
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