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REVIEW OF NASA PROGRESSIN THERMALBARRIERCOATINGSFOR

STATIONARYGAS TURBINES

by Philip E. hodge, RobertA. Miller,
MichaelA. Gedwill,and Isidor Zaplatynsky

, NationalAeronauticsand Space Administration
Lewis ResearchCenter
Cleveland,Ohio 44135

SUMMARY

Ceramic thermalbarriercoatingsfor industriallutilitygas turbines
have been investigatedat NASA Lewis under the DOE-sponsoredCritical
Researchand Advanced TechnologySupportProject (CRT).

In early burner rig tests of a zirconia-yttria/nickel-chromium-
aluminum-yttrium(ZrO2-12wloY2031NiCrAIY)coatingsystem on air-cooled
superalloyspecimens,ceramiccoatinglife (spallation)was found to be sen-
sitive to Na and V concentrationin the fuel. The locationsof coating
spallationcorrespondedto areas where combustionproductswere predictedto
condense.

Three new thermalbarriercoatingsystemswere identified. These are
based on calciumsilicate,ZrO2-8wloY203,and a MgO-NiCrAIYcermet.
Furthermore,it was found that the spall resistancecan be increasedby
reducingthe ceramic layer thicknessfrom 0.038 to 0.013 cm and by the use
of more oxidationlcorrosionresistantbond coats.

INTRODUCTION

The CriticalResearch and AdvancedTechnologySupportProject (CRT)
startedat NASA Lewis in late 1977 under DOE Divisionof Fossil Fuel
Utilization(FFU) sponsorship. The purposeof this projectwas to provioe
federaltechnicalsupportin criticaltechnologyareas for the FFU Advanced
Power SystemsProgram. The statusof CRT throughSeptember,1978 is given
in the FY 1978 Annual Report (1). Work on ceramiclthermalbarriercoatings
was performedas part of the Long-LifeMaterialsand Technologyevaluation
tasks.

The basis for the currentinterestin the use of insulatingceramic
thermalbarriercoatings(TBCs)on cooled hot sectioncomponentsof gas tur-
bines was broughtabout by the good performanceof such coatingsin clean-
fuel combustiongas exposures(2, 3, 4). These coatingsare presentlybeing
developedfor both clean-fuelaircraftgas turbinesand the potentialdirty-
fuel environmentsof industrial/utilitygas turbines. Through the use of
such coatings,turbine inlet temperaturescould be increased,cooling air
flow rates could be decreased,or coolingschemescould be simplified.
Alternatively,existinggas temperaturesand coolingschemescould be main-
tained and the componentscould be operatedat lower metal temperatures. In
this latter instance,increasedcomponentdurabilityand reliabilitywould
result. These benefitshave been examinedanalyticallyfor utilitygas tur-
bines and importantfuel and capitalcost savingshave been identified
(5, 6, 7).



Initialresultswith the ZrO2-12wloY2031NiCrAIYsystem in the
presenceof the usual heavy fuel impurities(sodium(Na), vanadium (V),
etc.) were less than encouraging(8). As a consequenceof these early test
results,a comprehensiveprogramwithin the CRT projectwas undertakento
improvespall resistanceof thermalbarriercoatingsexposed to the combus-
tion productsof potentialcoal-derivedfuels. This program consistedof
separatestudies involving: (1) evaluationof the behaviorof thermalbar-
rier coatingsexposedto Na andlor V doped combustiongases; (2) reactionof
thermalbarriermaterialswith potentialair, fuel and bond coat impurities;
(3) optimizationof bond coat composition,thicknessand depositionparame-
ters; and (4) evaluationand endurancetestingof advancedthermalbarrier
coatingsystems. The purposeof this paper is to review and discuss the
resultsof this program.

RESULTSAND DISCUSSION

Behaviorof Thermal BarrierCoatings in CorrosiveEnvironments

The response of single ZrO2-12wloY2031Ni-16Cr-6Al-O.6Ycoated air-
cooled hollow erosionbar specimensto Mach 0.3 burnerrig exposurewith
variouslevelsof sodium (Na) and vanadium (V) fuel contaminationis sum-
marized in Fig. 1 (8). This coatingsystemwas developedfor clean fuel,
aircraftgas turbines applications(2).

At the 0.5 ppm Na fuel equivalentlevel,the coatingsystem survived
1300 one-hourcycles without spallationas shown in Fig. 2. Appreciable
erosion,presumablydue to carbon particles,was noted. At the 5 ppm Na
fuel equivalentlevel, the coatingsystem failed after 92 one-hourcycles
at a locationoutsidethe hot zone. At the 0.2 and 2.0 ppm V levels,the
coatingsystem failed in about 200 and 25 one-hourcycles,respectively.
With vanadium in the combustiongases,failuresoccurred in the hot zone
as shown in Fig. 3. When a fuel equivalentdopant level of 5 ppm Na + 2
ppm V was used, the coatingfailed in 43 one-hourcycles. The micro-
structureof the coating systemon this specimenafter exposure is shown
in Fig. 4 along with the microstructureof the as-depositedcoating.
Here, as well as in the other tests, no bond coat corrosionwas detected.
In addition,coating failurein these tests occurredwithin the ceramic
near the bond coatloxideinterface. This mode of failure is similarto
tensilefailuresreportedby Levine (9) and to the furnaceand burner rig
oxidationfailuresobservedby Stecura (2, 3).

The locationsof coating spallationcorrespondedto areas where combus-
tion productswere predictedto condensebased on the calculateddew points
of the condensatesand the temperatureprofileof the specimens. A summary
of the calculateddew points and meltingpoints for the variousfuel impurity
conditionsis given in Table 1 (10).

The most severe conditionsfor a porous plasma spray depositedceramic
coatingsuch as ZrO2-12wloY203occur when a corrosiveliquidsuch as
vanadiumoxide (V205)or sodiumvanadate (Na2V206)can condense at
the surfaceand completelypermeatethe coating. That is, the dew point,
Td., is above the surfacetemperature,Ts, of the ceramicand the melting
point,Tmp, is below the bond coat temperature,Tbc. This was the



case with V205 formed in the 0.2 ppm and 2 ppm V tests and with
Na2V206.formedin the 5 ppm Na + 2 ppm V test. The problemwith fuel
or alr impuritiesshouldnot be as severe if the condensedcombustionpro-
duct does not react with the ceramiccoating. If the meltingpoint of the
condensateis above the dew point (i.e.,the condensateis a solid),or if
the dew point is below the bond coat temperature,the fuel contaminantmay
be harmless. The fuel contaminantmay also be harmlessif the dew point is
less than the surfacetemperature. With 5 ppm Na in the fuel the dew point
of the non-reactivesodium sulfate(Na2S04)condensatewas below the
surfacetemperaturein the hot zone. Failureoccurredout of the hot zone
where the dew point was above the surfacetemperature-- as illustratedin
Fig. 5. With 0.5 ppm Na in the fuel the dew point was below the bond coat
temperaturein the hot zoneand below the surfacetemperature,but above the
bond coat temperatureelsewhere. Thus, this test was no more severe than an
oxidationtest.

In a second series of Mach 0.3 burner rig tests, three yttria-
stabilizedzirconiaswere tested at three fuel-to-airmass ratios and at a
fuel equivalentimpuritylevel of 5 ppm Na plus 2 ppm V. The conditions
were similarto the conditionsof previoustests excepteight specimenswere
tested simultaneouslyand the substrateswere 1.27 cm O.D. Waspaloy cylin-
ders. The resultsof this test are summarizedgraphicallyin Fig. 6. The
data indicatedthat the spall behaviorof yttria-stabilizedzirconiathermal
barriercoatingswas sensitiveto changesin the fuel-to-airmass ratio and
that ZrO2-8wloY203coatingsare more spall resistantin this type of
combustionenviroment.

As the fuel-to-airmass ratio was increasedfrom 0.039 to 0.049, the
followingoccurred: the amountof impuritiesalso increased25 percent;the
surfacetemperatureof the ceramicincreased;and the temperaturegradient
throughthe coatingincreased. Based on the responsesof single coated
ZrO -12wloY203specimensto changesin the fuel impurityconcentra-
tion, the differencein spall behavioras a consequenceof increasngthe
fuel-to-airmass ratio was attributedprimarilyto an increasein fuel
impurityflux.

ReactionStudies

Insupport of the burner rig tests, basic studieswere conductedto
determinehow powderedzirconia-yttria,calcium silicate(actualcomposition
was 1.8CaO.SiO2) and the candidatecoatingmaterial,barium ziroconate
(BaZr03),react with powdersof the potentialcombustionproductcompounds
of major fuel and air impuritiesand with bond coatingelements (11, 12).
Equivalentamountsof each compound and of each thermalbarrier powderwere
mixed and reactedin crimpedplatinumtubes, and the reactionswere moni-
tored as a functionof time by X-ray diffraction.

Based on the reactionsat 1200° and 1400° C, the chemicalcompounds
which were used to react with zirconia-yttria(ZrO2-8wloY203)could be
divided into four distinctgroups:

1. Chemicalcompoundsthat did not react with zirconia-yttria:
Na2S04,K2S04,Cr203, A1203, and NiO

2. Chemical compoundsthat reactedcompletelywith zirconia-yttria:
CaCO3 (CaO), BaCO3 (BaO),and BaSO4



3. Chemical compoundsthat reactedpreferentiallywith the monoclinic
phase: Na2CO3 (Na20),K2C03),CoCO3 (COO),
Fe203,MgO, Si02, and ZnO

4. Chemicalcompoundsthat reactedpreferentiallywith the cubic phase:
V205, (NH4)2HP04 (P205)

The results for Na2S04, V205 and P205 are in agreement with
prior investigations (6, 8).

The results of reactions of calcium orthosilicate and barium zirconate
with essentially the same set of compounds are summarized as follows:

i. The impurities that reacted with 2CaO.SiO2 are Na20, BaO, MgO,
CoO, AI20_, Cr203, P205 and V205.

2. The impurities that did not react with 2CaO.SiO2 are Na2S04,
K20, K2SO4, BaSO4, NiO, ZnO and Fe203.

3. The impurities that reacted with BaZrO3 are A1203, Fe203,
Cr203, Si02, P205 and V205.

4. The impurities that did not react with BaZrO3 are Na20, Na2S04,
K20, K2SO4, MgO, CaO, CoO and ZnO.

It is noteworthy that no monovalent or divalent oxides and sulfates
reacted with barium zirconate. Similarly, calcium orthosilicate was not
affected by sulfates; however, it was attacked by sodium, barium and cobalt
oxides. Vanadium and phosphorous are impurities generally contained in
industrial fuels, and their pentoxides reacted readily with zirconia-yttria
barium zirconate and calcium silicate.

Bond Coat Optimization

The work in this study was aimed at improving the oxidation and corro-
sion resistance of the bond coatings and the adherence of the thermal bar-
rier coatings (15). Three testing methods were used to evaluate bond coat-
ings. Cyclic furnace tests were used to determine the durability of bond
coatings alone (oxidation) and to determine their performance as bond coat-
ings in a thermal barrier coating system (endurance). The third method of
evaluation was to test thermal barrier coating systems on solid superalloy
pin specimens in a Mach 0.3 burner rig.

In cyclic oxidation tests at 1100° C fourteen bond coats were eval-
uated. Based on specific weight change data and post-test metallography
results, the most oxidation resistant bond coatings identified for
B-1900 + Hf were Ni-14.1Cr-13.4AI-O.IOZr, Ni-14.3Cr-14.4AI-O.16Y, and
Ni-15.8Cr-12.8AI-O.36Y.A typical set of oxidationcurves iSogiVenin o
Fig. 7 for cyclic oxidationof bond coats on B1900+Hfat 1010 and 1100 C.
For MAR-M509 the most oxidationresistantbond coatingfound was
Ni-30.9Cr-11.1Al-O.48Y.

In endurancetestingat 1010° C, twenty-twobond coats were evaluatea
on B 1900+Hf and eight bond coats were evaluatedon Mar-M509. The main
criterionused for evaluatingthermalbarriercoatingsystemperformance
(life)in endurancetestingwas the time to crack initiationin the thermal
barriercoating.



On B-1900+Hfthe O.010-cm-thickNi-15.8Cr-12.8AI-O.36Yand

Ni-14.1Cr-13.4Al-O.10Zrbond coatings(plasmadepositedat 11 kW with argon)
appearedto significantlyimprovethe life of the TBC relative to the refer-
ence Ni-16.2Cr-5.6Al-O.61Ybond coating. AlthoughNi-30.9Cr-11.1AI-O.48Y
was characterizedas a good oxidationresistantbond coatingon MAR-M509,
thermalbarriercoating lifewas shorterwith this bond coatingthan life of
a coatingsystemwith the referencebond coating.

In additionto the effectobservedfor compositionchangesof the bond
coatings,it became apparentduring the course of this work that coating
depositionparametersaffect the oxidationbehaviorof bond coats. It was
found that the oxidationresistanceof the bond coats was significantly
improvedby increasingthe coatingthickness (0.010to 0.015 cm), arc power
(11 to 20 kW) and hydrogenconcentrationin the arc gas (0 to 3.5 v/o). The
effects of plasma arc power and hydrogenadditionsto the arc gas on the
1100° C oxidationbehaviorof a O.015-cm-thickNi-15.8Cr-12.8Al-O.36Ybond
coatingon B-1900+Hfare shown in Fig. 8. Burnerrig testingresultsparal-
leledresultsof furanceoxidationand endurancetesting. Good bond coat-
ings identifiedin oxidationand endurancetestinggave superiorresultsfor
thermalbarriercoatingsystemsevaluatedon solid superalloypin specimens
in burner rig tests.

AdvancedThermal BarrierCoating Systems

The resultsof early tests of thermalbarriercoatings developedfor
clean fuel aircraftgas turbineserviceindicateda need to identifyceramic
coatingshaving improvedresistanceto fuel and air impurities(8, 14). An
initialstep toward this goal was taken when a series of coating systemswas
tested in a Mach 0.3 burner rig with the flame doped to the fuel equivalent
impuritylevel of 5 ppm Na + 2 ppm V (8). Ceramiccoatingthicknesswas
maintainedat 0.04 cm and bond coat thicknesswas maintainedat 0.013 cm.
The resultsof these tests are summarizedin Fig. 9. Variousthermaland
chemicaltreatmentsof the ZrO2-12w/oY2031Ni-16Cr-6Al-O.6Ysystem
resultedin littleor no improvement. A more oxidationlhotcorrosion
resistantbond coat (Ni-21Co-19Cr-13Al-O.6Y)and a dense Y203 top-
coat with the baselinecoatingofferedsome improvement. The ZrO2-8wloY203/
Ni-16Cr-5Al-O.15Ycoatingoffered an even greaterimprovement. The most
promisingof these coating identifiedwas 1.8CaO.SiO2/Ni-16Cr-6AI-O.6Y
which survivedover 600 one-hourcycles before spallingcompared to about 60
for ZrO2-12w/oY2031Ni-16Cr-6Al-O.6Ysystem. A higherthermalcon-
ductivitycermetcoatingconsistingof 50 volumepercentMgO - - 50 volume
percentNi-20-Cr-7AI-I.0Yover the standardbond coatingsurvived1000
one-hour cycleswithoutspalling. However,coatingthicknesswas reduced
about 50 percentby erosionor microspalling.

In a second seriesof Mach 0.3 burnerrig tests the lives of 1.8
CaO.SiO2 and ZrO2-8w/oY203thermalbarriercoatingsexposed to Mach
0.3, Na plus V doped combustiongases were about four times longerwhen the
ceramicthicknesswas reducedfrom 0.038 to 0.013 cm (15). High Cr + Al,
Ni-31Cr-11AI-O.5Yand Ni-16Cr-13AI-O.4Ybond coatingsimprovedthe aurabil-
ity of calciumsilicateand ZrO2-8w/oY203TBCs by approximately2 to 3
times. Similarly,Co-22Cr-13AI-O.3Yand Co-20Cr-9AI-O.4Ybond coatings
improvedthe durabilityof calcium silicateTBCs by factorsof approximately
3 and 2 times, respectively. The resultsof these tests are summarizedin
Fig. 10.



Chemical and electronmicroprobeanalysessupportedthe predictionsof

condensatecompositionsand their role in inducingspallin_of ZrO2-
8wloY203 (Fig. 11). The calciumsilicatecoatingfailure Involved
condensationand penetrationof Na, V, and Co (cobalt)containingcon-
densates,calciumsulfate(CaS04)formationas a result of reactionwith
sulfur dioxide (S02), and the phase change from B-Ca2SiO4 (larnite)to
CaSiO3 (wollastonite).

CONCLUDINGREMARKS

As a part of this DOE-sponsoredCriticalResearchand Advanced
TechnologyProject substantialprogresshas been made in understandingthe
behaviorof thermalbarriercoatings in environmentsresultingfrom firing
potentialcoal-derivedfuels and in improvingthe durabilityof TBCs for
this application. Specifically,the responsesof ZrO2-12wloY2031NiCrAIY
coatingsto Na- and V-dopedfuel have been determined. Thermochemical
calculationsof condensatedew points and melting points combinedwith the
temperatureprofileof the specimenswere found to give a gooa explanation
of observedcoatingfailurelocations. Additionalunderstandingof how and
why coatingsfail (spall)was gained from reactionstudiesbetweenceramic
coatingmaterialsand potentialair, fuel, and bond coat impurities.

In the area of advancedceramiccoatingdevelopment,two coatings
(calciumsilicateand ZrO2-8wloY203)were identifiedwhich signifi-
cantly extendedcoatinglife in Na andlor V doped fuel combustionproducts.
Recent testing involvingthese two coatings show that coatinglife can be
extendedabout 4 times when the ceramiccoatingthicknessis reducedfrom
0.038 to 0.013 cm. Also ceramiccoating life was increasedabout 3 times
when some of the high Cr and Al bond coats identifiedin the bond-coat
optimizationstudy were used. SimilarlyCo-basedbond coats improvedthe
durabilityof calcium silicate-basedthermalbarriercoatingsystemsby
approximatey2 to 3 times.
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TABLEL - RELATIONBETWEENCONDENSATEDEWANDMELTINGPOINTSANDZrO2• 12Y203/NiCrAIY
PERFORMANCE

DOPANTLEVEL PREDICTEDDEWPOINTMELTINGPOINT CONDENSATE CYCLESTOCOATING,

(REFERREDCONDENSATETdp, Trap LOCATION FAILUREAND
TOFUEL) oC oC FAILURELOCATION

5 ppmNa Na2504(_) 920 884 Ts >Tdp>Tmp>Tbc 92, OUTOFHOTZONE

0.5 ppmNa Na2SO4(s) 84.5 884 Ts>Tmp>Tbc>Tdp1300

2 ppmV V2Os(J9 1210 670 rdp>Ts>Tbc>Tmp 25,HOTZONE

0.2ppmV V205(_) 1125 670 Tdp>Ts>Tbc>Tmp200,HOT ZONE

5 ppmNa V2Os(t.) 1210 670
+

2 ppm V Na2V206(J_)-1155 627 Tdp>Ts>Tbc>Tmp
'43,HOT & COLDZONE

Na2SO4(J_) -910 884 Ts>Tdp>Tmp>Tbc

V2Os(s) .575 670

MACH0.3BURNER RIG,FUEUAIRRATIO0.0424SPECIMENTEMPS:g80OC SURFACE,(TSURF),850oC

BOND COAT/CERAMICINTERFACE(Tbc)INTHEHOT ZONE;8900C SURFACE,760o C BOND COATICERAMIC
INTERFACEATTIP& ROOTOFTESTSPECIMEN cs-79-28o9

2 V SIMULATEDFUELIMPURIIYLEVELppm

0.2 ppm
V

--1 Na+ 2 Vppm ppm

Z5 ppmNa

_0. 5 Na
ppm

I I I
100 200 1300

NUMBEROF1-hr CYCLESTOSPALL cs-79-2499

Figure1. - ResultsofZrO2"12wloY203TBCfuelimpuritysen-
sitivitytests. Mach0.3 burnerrig, 0.(5 w/oSin fuel; surface
temperature,9800C; bondcoattemperature,8500C.
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0.5ppm Na 5 ppm Na c8-79-2817

Figure2.-EffectsofsodiumonZrO2•12wloY.)O31Ni-16Cr-OAI-0.6Y.
Mach0.3burnerrig,0.05wloSinfuel;surfacetemperature,9800C;
bondcoattemperature,850oC.

200ONE-hrCYCLES 25ONE-hrCYCLES 43ONE-hrCYCLES

cs-79-28180.2ppmV 2ppmV 5ppm Na+2ppmV

Figure3.-EffectofvanadiumandsodiumplusvanadiumonZrO2•12wloY2031
Ni- 16Cr-6AI-0.6Y.Mach0.3burnerrig,0.05wloS infuel;surfacetemper-
ature,9800C;bondcoattemperature,850oC.
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Figure5. - Penetrationof ZrO2• 12w/oY203 byNa2SO4when
5 ppmof Nais presentin the fuel.



Bondcoatings
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Figure6. - Fuel-to-airmassratioburner rig study. 2
Fuelimpurity level: 5ppmNa+ 2ppmV;substrat_ .._ Ni-lB.0Cr-ll. 9AI--O.55Y
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Figurel. - Effectofoxidationtemperatureonweight.changebehaviorof0.010.-cm-thick
plasma-depositedbondcoatingson B-1900+ Hf in cyclicfurnaceoxidationat 10000and
11000C in staticair. Cycles:1 hr at testtemperatureand20rnin or morecooling.
Coatingsappliedat 11kWwithargonarc gas.
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