NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

A 10-kW SERIES RESONANT CONVERTER DESIGN, TRANSISTOR CHARACTERIZATION, AND BASE-DRIVE OPTIMIZATION

R. Robson and D. Hancock

Hughes Research Laboratories
3011 Malibù Canyon Road
Malibu, CA 90255

November 1981

NAS3-22471
Final Report
For Period 6 May 1980 to 15 September 1981

Prepared for

NASA-LEWIS RESEARCH CENTER
21000 Brookpark Road
Cleveland, Ohio 44135

*For sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

TABLE OF CONTENTS

SECTION PAGE
1 INTRODUCTION 1
2
SUMMARY 3
3 TRANSISTOR CHARACTERIZATION 5
A. Base-Drive to Minimize Total Device Dissipation. 11
B. Total Device Dissipation 11
C. Minimum Required Base-Drive as a Function of $I_{C} \ldots \ldots . .$. 19
D. Base-Drive for Maximum Operating Frequency 19
E. Switching Times Under Minimun Total Device Dissipation Conditions 34
F. Collector-to-Emitter Voltage ($\mathbf{V}_{C E}$) 44
G. Output Capacitance, $\mathrm{C}_{\text {OB }}$ 53
H. Input Capacitance, $\mathrm{C}_{\text {IB }}$ 55
4 BASE-DRIVE DEVELOPMENT 59
A. Strategy 59
B. Requirements 59
C. Circuit Development 60
D. Testing 62
5 CONVERTER DESIGN 69
A. Bridge and Tank Circuitry 70
B. Output Circuit 72
C. Base Drive Circuit 72
D. Control Circuit 72
E. Solid-Stsce DC Input Circuit Breaker 80
F. Main Bus Supply 80
G. Housekeeping Supplies 80
H. Negative Blas Supply 84
I. Mechanical 84
6 TESTING 89
A. Stability 89
B. Steady-State Waveforms 89
C. Output Ripple 94
D. Line and Load Regulation 101
E. Transient Line and Load Tests 102
F. Efficiency Measureme:ts 108
7 CONCLUSIONS AND RECOMMENDATIONS 115
APPENDIX A. ADDITIONAL TRANSISTOR CHARACTERIZATION DATA. 1174
FIGURE PAGE
1 Circuit for testing the D6OT transistors 6
2 Circuit for testing the D7ST transistors 7
3 Typical base drive waveforms generated by the test circuits 10
Variation of relative power dissipation with regenerative feedback ratio for a typical D60Ttransistor12
Variation of leading edge pulse duration with regenerative feedback ratio for minimum device dissipation (typical transistor) 13
Variation of leadi g edge pulse amplitude withregenerative feedback ratio for minimum devicedissipation (typical transistor)14
Variation of total device dissipation with peak collector current and resonant frequency for a typical D60T 17
Variation of total device dissipation with peak collector current and resonant frequency for a typical D7ST 189 Current gain versus peak collector current for a
typical $D 60 \mathrm{~T}$ at a resonant frequency of 10 kHz 20
Current gain versus peak collector current for a typical D6OT at a resonant frequency of 20 kHz 21
Current gain versus peak collector current for atypical D6OT st a resonant frequency of 40 kHz22
12Current gain versus peak collector current for atypical D7ST at a resonant frequency of 20 kHz .24
Current gain versus peak collector current for a typical D7ST at a resonant frequency of 40 kHz 25

LIST OF ILLUSTRATIONS

15 Variation of current gain versus peak collector current
at three case temperatures for a typical D60T................... 26
16 Variation of current gain versus peak collector current
at three case temperatures for a typical D7ST................. 27
17 Typical waveforms for measuring switching tines (D60T operating saturated at a peak collector current of 60 A and a resonant frequency of 20 kHz)28
18 Delay time versus leading edge pulse amplitude for a typical D60T 30

Delay time versus leading edge pulse amplitude for a typical D7ST.31
Rise time versus leading edge pulse amplitude for a typical D60T 32
21 Rise time versus leading edge pulse amplitude for a typical D7ST. 33
22 Variation of storage time with negative base bias for a typical D60T. 35
23 Variation of storage time with negative base bias for a typical D7ST. 36
Variation of storage time with peak collector current and regenerative feedback turns ratio for a typical D60T 37
Variation of storage time with peak collector current and regenerative feedback turns ratio for a typical D7ST 38
Typical waveforms of saturation voltage for the D60Ts and D7STs. 48
Variation of saturation voltage with peak collector current and resonant frequency for the D60Ts (average of five transistors) 49
28 Variation of saturation voltage with peak collector current and resonant frequency for the D7STs (average of three transistors) 50
Test circuit to measure $C_{O B}$ of a transistor 54

Test circuit and waveforms for measuring $C_{\text {IB }}$ of
a transistor... 57
31 10-kW base drive circuitry.. 61
32 Test setup for testing the base-drive circuitry............... 63
33 D60T transistor waveforms during test of the base-drive $\quad 64$
34 D7ST transistor waveforms during test of the base-drive $\quad 66$
35 D7ST transistor saturation voltage variation for \quad different base currents.. 67
36 10-kW bridge and tank circuitry..................................... 71
37 10-kW output circuitry.. 73
38(a) 10-kW control circuitry (output voltage feedback)............. 74
38(b) 10-kW control circuitry (tank current feedback)................. 75
38(c) 10-kW control circuitry (V/F conversion)....................... 76
38(d) 10-kW control circuitry (base-drive timing)..................... 77
39 10-kW SRI output operating envelope................................ 79
40 10-kW solid-state DC input circuit breaker........................ 81
41 10-kW DC power source... 82
42 10-kW housekeeping supplies.. 83
43 10-kW negative bias supply... 85
44 10-kW series resonant inverter.. 86
45 Interior view of the 10-kW series resonant inverter.......... 87
Bode plots of the 10-kN SRI voltage control loop
With a 25Ω load.. 90
47 Bode plots of the 10 -kN SRI voltage control loop with a 50Ω load. 91

48 Bode plots of the 10-kW SRI current control loop.............. 92
49 Steady-state tank current and resonant capacitor voltage for different load conditions93

50 Steady-state tank current and resonant inductor voltage for different load conditions................................. 95

51 Steady-state tank current and output transformer primary voltage for different output conditions................ 96

52 Steady-state tank circuit waveforms for short circuit output conditions97

53 D60T base current and base-emitter voltage waveforms for full load conditions... 98

54 Output voltage ripple with a 25Ω load at different output voltage levels.. 99

55 Output voltage ripple under open circuit conditions......... 100
56 Circuit used to provide a closing switch for transient load testing.103

57 Circuit used to provide an opening switch for transient load testing.104

58 Tank current, input current, input voltage, and output voltage during a typical turn-on transient............. 105

59 Tank current and resonant capacitor voltage response to a load transient of 500 V at 20 A to short circuit without the peak tank current limiting circuitry106

60 Tank current and resonant capacitor voltage response to a load transient of 500 V at 20 A to short circuit with the peak tank current limiting circuitry.................... 106

61 The tank current and output voltage response to a load transient of short circuit to open circuit (350 V setpoint) with original output voltage limiting.107
62 The tank current and output voltage response to a load transient of short circuit to open circuit (350 V setpoint) with improved output voltage limiting. 107

64 Tank current and output voltage response to a load transient of the operating point (450 V at 18 A) to open circuit... 109

66 Tank current and resonant capacitor voltage response to a load transient of open circuit (500 V) to short circuit 110

INTRODUCTION

To meet the goals of multi-hundred-kilowatt space power systems planned for the middle and late 1980 s , advanced power processing technology is required to convert the power available from solar arrays or other space-borne power sources to the various voltage and/or current levels required by the spacecraft loads. This technology can be built on the series resonant conversion technology that has been brought to a high state of development with the use of thyristors as the basic switching element. However, new technology is needed to increase the power level and improve the performance. The use of transistors in place of the thyristors promises to meet both of these goals. Although present thyristors offer higher power capabilities than transistors, their losses are higher, their operating frequency is limited, and additional protection and commatation circuitry is required.

The present contractual program was established to develop transistorized series resonant conversion technology at the $10-\mathrm{kW}$ power level. As a first step In this development, the switching characteristics of the Westinghouse D60T and developmental D7ST transistors required measurement for sinusoidal collector current conditions. Switching characteristics are normally measured with a resistive load where the collector current has a square-pulse type of waveform. In a resonant converter, however, the current is awitched on by the transistor, and thereafter varies as a sinusoid.

It is the unusual condition of half-sinusoid collector current with the transistor in saturation that makes conventionally measured switching parameters unsuitable for dynamic analysis of series resonant circuits. Manufacturers have not, as yet, begun to characterize their power switches for use in this type cf application. Therefore, it was first necessary to obtain the proper transistor parameters before proceeding to the design and deyelopment of the converter.

The $10-\mathrm{kW}$ power level is the next logical step in the development of series resonant converter technology, which is presently at the $2.5-\mathrm{kW}$ level for spaceborne systems. The goals of this program were to develop a single-stage 10-kW converter employing transistors as the switching elements, having an inputvoltage range of 230 to 270 Vdc , and output-voltage range of 200 to 500 Vdc, and an output current-11mit range of 0 to 20 A.

Two types of new bipolar awitching transistors (the Westinghouse D60T and D7ST) were characterized for use as awitches in series resonant inverters and/or converters. They were characterized at $20,30,50$, and 70% of their rated collector currents (200 A for the D60T and 500 A for the D7ST) and at resonant frequencies of 10,20 , and 40 kHz . The collected data show that the D6OT is approximateldy three times faster than the D7ST, having a storage time in the range of 1.5 to $2.0 \mu \mathrm{sec}$, as opposed to 5 to $6 \mu s e c$ for the D7ST. The data also indicate that the D60T gets into hard saturation faster than the D7ST, and that neither is suitable for operation at 70% of its rated collector current at a resonant frequency of 40 kHz . Data were obtained for: base drive parameters to minimize total device dissipation, minimum required base drive as anction of I_{c}, base drive parameters for maximum operating frequency, delay time, rise time, storage time, fall time, saturation voltage, and output capacitance and input capacitance under series resonant conditions.

Using the data obtained in the transistor characterization, a base-drive circuit was designed and tested to provide the optimal bese-drive to these transistors when they are used as switches in series resonant applications. This base-drive circuit provides regenerative feedback, a large amplitude leading-edge current pulse, a large amplitude turn-off current pulse, and reverse base-emitter blas during the transistor off-time.

With this base-drive circuit as one of the building blocks, a series resonant converter was designed, fabricated, and tested to operate from a 230 to 270 Vdc input bus, and provide a uinimam output power of $10-\mathrm{kW}(500 \mathrm{~V}$ at 20 Adc). This circuit has a resonant frequency of $25-\mathrm{kHz}$, an output ripple of 1.5% peak-to-peak, regulation of better than 0.2%, a response time of less than 2 msec, and its output can be either constant voltage or constant current. The electrical efficiency measured was 91% at its full-power level of 500 V and 20 A , and 93.7% at a half-power load of 500 V and 10 A . Full circuit detalls of the converter are presented, along with the test data.

SECTION 3

TRAM8I8TOR CAARACTRERATIOA

Pive Westinghouse D60T and five Weatinghouce D78T tranalatore were tested and characterized for use as awitches in a Series Resonant Converter. The teate ware performed uaing the teat circuit of Pigure 1 for the D6OT transistors, and the test circuit of P1gure 2 for the D78T transistors. These test eircuite imposed sinusoidal collector current on the transietor under teat while allowing the base-drive characteristics to be varied. The base drive conalated of regenerative (or proportional) feedback of the collector current, a leading edge pulse, and a trailing edge pulse. Tables 1 and 2 list the peak collector currents, resonant frequencies, and test-circuit parameters for which the transistore were tested. The D60Te were not tested at 140 A and 40 kHz and the D7STs were not tected at 350 A and 40 k bz because the aturation voltages were prohibitively high under theae conditions (greater than 6).

The base-drive paraweters that were varied during this teating were the amplitude of the leading-edge pulse, the duration of the leading-edge pulse, the regenerative-feedback turns ratio, and the amplitude of the trailing-edge (negative I_{B}) pulse. The transistors were tested in both a eaturated and unsaturated condition. For the unsaturated condition, diode CR4 of Figurea 1 and 2 was connected to the collector of the transistor under teat and was disconnected for the asturated condition. The peak I_{C} value listed in Tablea 1 and 2, for the unsaturated condition, was actually the peak current in the tank circuit, since under this condition the collector current of the tranaistor was the sum of the tank current and diode CR4's current. One of the D78T transistors (number 13) developed a collector-to-enitter short approximately 10 eec after being installed in the test setup; therefore, no data on it is available.

Pigure 3 shows some typical base drive waveforma and definee the base drive parameters. The following sections discuss each parameter that was measured and give a aumary of the data collected.

11424-2

Figure 2. Circuit for testing the D7ST transistors.
table 1. test circuit paraneter values for the d60t transistors

Peak lc, A.	Resonant Frequency, fr, KHz	L $\mu \mathrm{H}$	C $\mu \mathrm{F}$	Vs Volts	Rep, Rate kHz
40	10	18.6	12	50	5.0
60	10	18.6	12	75	5.0
100	10	18.6	12	135	2.5
140	10	18.6	12	180	2.5
40	20	17.8	3	95	10.0
60	20	17.8	3	145	10.0
100	20	8.1	6	130	5.0
140	20	8.1	6	185	5.0
40	40	6.7	2	80	10.0
60	40	6.7	2	120	10.0
100	4.3	3	140	10.0	

\bullet
*
table 2. test circuit parameter values for the d7St transistors

Peak Ic, Amps	Resonant Frequency, $\mathrm{fr}, \mathrm{kHz}$	$\begin{aligned} & \mathrm{L}, \\ & \mu \mathrm{H} \end{aligned}$	$\begin{aligned} & C, \\ & \mu F \end{aligned}$	Vs Volts	Rep. Rate kHz
100	10	20.5	12.100	128	2.5
150	10	20.5	12.100	190	2.5
250	10	10.0	24.400	165	1.0
350	10	10.0	24.400	230	1.0
100	20	10.0	6.080	130	5.0
150	20	10.0	6.080	190	5.0
230	20	5.0	12.100	165	2.5
350	20	5.0	12.100	240	2.5
100	40	5.0	3.025	140	10.0
150	40	5.0	3.025	200	10.0
230	40	2.8	6.080	170	5.0

Figure 3. Typical base drive waveforms generated by the test circuits.

A. BASE-DRIVE TO MINIMIZE TOTAL DEVICE DISSIPATION

The base-drive required to mininize total device dissiparion mas deterained by monitoring the total device dissipation with an electronic power-measuring circuit and varying the various base-drive parameters to obt.in the lowest reading. This electronic circuit calculated the average of ($V_{B E} \times I_{B}$) + ($V_{C E} \times I_{c}$) and was calibrated against a balance-type calorimeter.

Figure 4 is a typical set of curves showing that the ninimum power dissipation is nearly independent of the regenerative feedback ratio (forced β) at the lower current levels and shows a much more pronounced minimua at the higher current levels. Figures 5 and 6 are typical curves that show how the leading-edge pulse duration and leading-edge pulse amplitude varied with the regenerative feedback ratio for minimum device dissipation. The maximum leadingedge pulse amplitude available from the test circuits was 15 A for the D60T transistors and 30 A for the D7ST transistors. The characteristics of the trailing edge pulse had no measurable effect on the minimum device dissipation. Additional data on a typical D60T and D7ST is presented as Tables A-1 through A-6 of Appendix A. Tables 3 and 4 list the base-drive parameters for the D60T and D70T, respectively, that resulted in minimum total device dissipation. The data for delay time, rise time, storage time, fall time, $V_{C E}$ (SAT), and total device dissipation were taken under these base-drive conditions, and a negative reverse base blas of 7 V for the D 60 Ts , and 8 V for the D7STs. Thesa negative reverse base blas voltages were chosen since they minimized storage time.
B. TOTAL DEVICE DISSIPATION

Total device dissipation was measured using the electronic power-measuring circuit which has an accuracy of approximately $\pm 10 \%$. The data presented represent the power that would be dissipated in the transistor for a full-waverectified sinusoidal collector current. The maximum power that a transistor would dissipate in a series resonant inverter (SRI) is 50% of the values shown. Figures 7 and 8 show how the power dissipation in a typical D6OT and D7ST, respectively, varies with feak collector current and resonart frequency. These figures indicate that the power dissipation for the unsaturated condition with the D60T is considerably higher than for the saturaced condition, while the power

Figure 4. Variation of reintive power dicsipation with regenerative feedback ratio sis a typical D6OT transistor

Figure 5. Variation of leading edge pulse duration with regenerative feedback ratio for minimum device dissipation (typical transistor).

> Figure 6. Variation of leading edge pulse amplitude with regenerative feedback ratio for uinimum device disaipation (typical transistor).
TABLE 3. BASE DRIVE PARAMETERS FOR MINIMUM TOTAL DEVICE DISSIPATION

Peak Ic, Amps	Resonant Frequency, $\mathrm{fr}, \mathbf{k H z}$	Saturated			Unsaturated		
		Leading Edge Pulse		Turns Ratio	Leading Edge Pulse		$\begin{aligned} & \text { Turns } \\ & \text { Ratio } \end{aligned}$
		Amps	$\mu \mathrm{S}$		Amps	$\mu \mathrm{S}$	
100	10	7	22.0	10:1	15	40.0	10:1
150	10	12	30.0	10:1	14	40.0	$6: 1$
250	10	20	32.0	8:1	28	42.0	8:1
350	10	16	28.0	4:1	26	30.0	5:1
100	20	15	9.0	10:1	18	10.0	10:1
150	20	22	10.5	10:1	18	13.0	10:1
250	20	28	12.0	7:1	28	15.0	7:1
350	20	30	13.0	4:1	30	15.0	4:1
100	40	24	4.0	10:1	28	4.0	10:1
150	40	30	5.0	10:1	30	6.0	10:1
250	40	30	5.5	4:1	30	4.5	3:1

Figure 7. Variation of total device dissipation with paak collector current and resonant frequency for a typical D60T.

Figure 8. Variation of total device dissipation with peak collector current and resonant frequency for a typical D7ST.
dissipation for the D7ST is almost the same for either condition. This indicates that the D7ST does not have time to get into hard naturation during the collector-curreat pulse. In general, the total device diseipation increases with increasing peak-collector current and increasing resonant frequency (Figures 7 and 8). The total power diseipations for all of the transistors teated are presented in Tables A-7 and A-8 of Appendix A.
C. MINIMUM REQUIRED BASE-DRIVE AS A function of ic

Minimua required base-drive current was measured as a function of I_{C} this ratio represents the current gain (β) of the transistor for a given eaturstion voltage over a range of peak collector currents. The saturation voltage was defined as the value of V_{CE} at the time of peak collector current. This teat was performed for saturation voltages of $0.75,1.0$, and 2.0 V . Figures 9,10 . and 11 are the curves of B versus peak collector current for a typical $\mathbf{5 6 0 T}$ at resonant frequencies of $10 \mathrm{kHz}, 20 \mathrm{kHz}$, and 40 kHz , reapectively. Figures 12 , 13, and 14 present the save data for a typical D7ST. All of these curves exhibit a maximum achievable collector current for a given collector-to-emitter voltage. The variation of B versus I_{C} due to changes in the case temperature is shown in Figures 15 and 16 for a typical D60T and D7ST, respectively.

D. BASE-DRIVE FOR MAXIMUM OPERATING FREQUENCY

Maximum operating frequency for a transiscor can be achieved by making the tive consumed by switching as short as possible. A suitching time is only affected by those base-drive parameters that come into affect prior to the end of the switching time. Therefore, the only parameter that affects delay tive and rise time is the amplitude of the leading-edge pulse. The regenerative feedback ratio has no effect since the rise time of the feadback transformer is longer than the delay time and riet: time of the transistor. Transistor delay time was measured from the time that the base-to-emitter voltage vent positive until the collector-to-emitter voltage had fallen by 10\%. Typical waveforme from which delay time was measured are shown in Figure 17 (a). The test circuits measured delay time with zero collector current; this is representative of

Figure 9. Current gain versus peak collector current for a typical D6OT at resomant frequency of 10 kfz .

Figure 11. Current gain versus peak collector current for a typlcal D60r at a reaomanc frequency of 40 kHz .

Figure 12. Current gain versus peak collector current for a typical D7ST at a resonant frequency of 10 kHz .

Figure 13. Current gain versus peak collector current for a typical D7ST at a resonant frequency of 20 kHz .

Figure 14. Current gain versus peak collector current for a typical D7ST at a resonant frequency of 40 kHz .

Figure 15. Variation of current gain versus peak collector current at three case temperatures for a typical D60T.

Figure 16. Variation of current gain versus peak collector current at three case temparatures for a typical D7ST.
a. WAVEFORMS FOR MEASURING DELAY TIME AND RISE TIME
b. WAVEFORMS FOR MEASURING FALL TIME

Tigure 17. Typical waveforms for measuring switching times (D60T operating saturated at a peak collector current of 60 A and a resonant frequency of 20 kHz).
switching conditions when the tank current is discontinuous in an SRI. When the tank current in an SRI is continuous, the transistors will be turning on into some current and the delay times will be longer than those measured here. Figures 18 and 19 show curves of delay time versus leading-edge pulse amplitude for a cypical D60T and D7ST, respectively. These curves are typical for all of the transistors at all three frequencies. Delay times versus leading-edge pulse amplitude, peak collector current, and resonant frequency for all of the transistors tested are listed in Tables A-9 through A-17 of Appendix A.

Rise time was measured as the time required for the collector-to-emitter voltage to fall from its 90\% level to its 10% level. Rise time could not be measured using the conventional definition of the time from 10% to 90% on the current waveform, since the collector current was zero at the time of turn-on. Typical waveforms from which rise time was measured are shown in Figure 17(a). Figures 20 and 21 show curves of rise time versus the leading-edge pulse amplitude for a typical D60T and D7ST, respectively. These curves are typical for all of the transistors at all three frequencies and show a decrease in rise time as the leading-edge pulse amplitude increases. Rise times versus leading edge pulse amplitude, peak collector current, and resonant frequency for all of the transistors tested are presented in Tables A-9 through A-17 of Appendix A.

Storage time and fall time can be effected by all of the base-drive parameters, since all of these parameters come into effect prior to these switching times. Fall time was measured by turning the transiator off before the collector current had fallen to zero and then measuring the rise time of the resulting $V_{C E}$ spike. Conventional fall time does not exist in an SRI. The base-drive parameters had very little effect on the artificially induced fall time, and resonant frequency and peak collector current were the only parameters that did affect it. This would tend to indicate that the measured fall time may be more a function of the test circuit than the transistor. Typical waveforms from which fall time was measured are shown in Figure $17(b)$. Fall times versus feedback turns-ratio, peak collector current, and resonant frequency for all of the transistors tested are listed in Tables A-18 through A-26 of Appendix A.

A very long leading-edge pulse adds to the storage time, and the larger the amplitude of the pulse, the greater the effect. The storage time data were taken with a 5 A, 5-Hsec-wide leading-edge pulse and these parameters were not varied.

Figure 18. Delay time versus leading edge pulse amplitude for a typical D60T.

Figure 19. Delay time versus leading edge pulse amplitude for a typical D7ST.

Figure 20. Rise time versus leading edge pulse amplitude for a typical D60T.

Figure 21. Rise tim versus leading edge pulse amplitude for a typical D7ST.

Por turn off, the base of the transistor was clamped to a gegetive voltage by use of an IRP-100 powar MOSPET. Tharefora, the negative bese-current arplitude was a function of this negative voltage, the bace resistance of the transistor under test, and the IRP-100 drain-to-aource resintance. The only parameter that could be varied was the negative voltage; its effect on storage time is shown in Figure 22 for a D60T transistor and in Figure 23 for a D7ST transistor. A negative 7 v guve the minima storage time for the D60T transistor, while a negative 8 V was required for the D7ST.

Figures 24 and 25 show a typical variation of storage time with peak collector current and feedback turneratio. Storage tites versus feedback turnsratio, peak collector current, and resonant frequency are listed in Tables A-18 through A-26 of Appendix A. In general, the storage tine increased with increasing collector current, increasing frequency and decreasing feedback turnsratio. Typical waveforms from which torage time was meazured are show in Figure 17(c). It was defined as the cime between the 10% points on the negative base-current pulse.

E. SWITCHING TIMES UNDER MINIMUM TOTAL DEVICE DISSIPATION CONDITIONS

Delay time, rise time, storage time, and fall time were measured under the bese-drive concitions that reculted in minimu total device dissipation. These base-drive conditions are listed in Tablea 3 and 4.

The delay times measured for the D60Ts are given in Table 5. They cover the range of 40 to 80 nsec, with most of them falling in the 60 to 70 -nsec range. Delay times covered the range of 100 to 190 nsec for the D7STs, with wot of them falling in the 110 to 145 -nsec range. Table 6 is a cabulation of the delay times for the D7STs.

The rise cines measured for the D60Ts and D7STs are given in Tables 7 and 8, respectively. They cover the range of 60 to 140 nsec for the D60Ts, with most of them falling in the 60 to 90 -nsec range. They cover the range of 60 co 115 nsec for the D7STs, with nost of then falling in the 60 to 85-nsec range.

The atoragre tiaes for the D6OTa are given in Table 9. They cover the range of 1.05 to 3.95 usec for the saturated condition, with nost falling in the

Figure 22. Variation of storage time with negative base bias for a typical D60T.

Figure 23. Variation of storage time with negative base blas for a typical D7ST.

Figure 24. Variation of storage time with neak collector current and regenerative feedback turns ratio for a typical D60T.

Figure 25. Variation of storage time with peak collector current and regenerative feedback turns ratio for a typical D7ST.
TABLE 5．MEASURED DELAY TIMES FOR THE D6OT TRANSISTORS

		n		
		$\stackrel{1}{1}$		
		01		
		N		
		$\stackrel{1}{8}$		
		n		$8 \times 89 \sim 8 \times 8 \times \sim$
		$\stackrel{\square}{\circ}$		
		？		
		N		
		$\stackrel{1}{8}$		
$\begin{aligned} & \text { 号: } \\ & \stackrel{y}{4} \\ & \text { O } \end{aligned}$		苟		
	苞荷			

TABLE 6. MEASURED DELAY TIMES FOR THE D7ST TRANSISTORS

Transistor Parameter		Delay time, td, ns							
Circuit Configuration		Saturated				Unsaturated			
	stor er	12	15	36	37	12	15	36	37
Peak Ic, Amps	Resonant Frequency fr, $\mathbf{k H z}$								
100	10	115	175	180	190	120	155	150	150
100	20	120	140	140	145	130	150	125	140
100	40	120	135	120	125	120	130	120	125
150	10	100	140	170	160	120	150	150	160
150	20	130	135	135	130	130	150	130	140
150	40	125	135	120	120	135	130	110	120
250	10	125	135	140	135	125	135	125	125
250	20	130	130	115	125	135	130	115	125
250	40	135	120	110	115	130	125	115	115
350	10	120	145	145	140	130	135	120	125
350	20	125	135	120	125	120	125	115	120

table 7. MEASURED RISE TIMES FOR THE D60T TRANSISTORS

table 8. measured rise times for the d7Si transistors

Transistor Parameter		Rise time, tr, ns							
Circuit Configuration		Saturated				Unsaturated			
Transistor Number		12	15	36	37	12	15	36	37
Peak Ic, Amps	Resonant Frequency $\mathrm{fr}, \mathrm{kHz}$								
100	10	100	100	100	115	75	75	80	80
100	20	70	70	70	80	70	70	70	80
100	40	60	60	65	65	60	60	60	65
150	10	85	85	95	100	85	90	95	100
150	20	70	70	70	75	80	80	80	85
150	40	60	60	60		65	60	65	70
250	10	75	80	70	80	60	60	80	70
250	20	60	70	65	70	65	65	65	80
250	40	65	65	65	85	65	65	60	80
350	10	90	95	100	90	75	75	85	80
350	20	70	70	75	80	70	75	75	75

table 9. MEASURED STORAGE TIMES FOR THE D60T TRANSISTORS

1.05 to 2.5 - $\mu s e c$ range, and the range of 0.3 to $1.6 \mu s e c$ for the unaaturated condition, with most falling in the range of 0.3 to 1.0 usec. The torage times for the U7STs are given in Table 10. They cover the range of 2.8 to 6.7 usec for the saturated condition, with most falling in the 3.0 to $6.5-\mu s e c$ range, and the range of 1.4 to 6.7 رsec for the unsaturated condition, with most falling in the range of 2.0 to $5.0 \mu \mathrm{sec}$.

The fall times measured for the D60Ts and D7STs are given in Tables 11 and 12, respectively. They cover the range of 120 to 500 nsec for the D60Ts, with most of them falling in the 150 to 400 -nsec range. They cover the range of 180 to 640 nsec for the D 7 STs , with most of them falling in the 220 to 400 -nsec range.

Prom a comparison of these data with the data far the value of base-drive required to maximize operating frequency, it can be determined that the transistors can be operated under the base-drive conditions that produce minimum total device dissipation without compromising the maximum operating frequency.
F. COLLECTOR-TO-EMITTER VOLTAGE (VEE)

The collector-to-emitter voltage ($V_{C E}$) falls quickly from the value of V_{s} to near zero at turn-on, as shown in Figure 17(a) (which is typical of all test points). After this initial drop in voltage, $V_{C E}$ varies, as show in Figure 26 duifing the transistor on-time. The variation of the average $V_{C E}$ (SAT) with peak collector current and resonant frequency is shown in Figures 27 and 28 for the D60Ts and D7STs, respectively. The saturation voltage was defined as the collector-to-emitter voltage at the time of peak collector current. The saturation voltages were measured for the transistors under the base-drive conditions that minimized total device dissipation and are given in Tables 13 and 14.

Saturation voltages measured under these conditions are the optimu tradeoff between base-drive power and collector-emitter dissipation. The saturation voltage increased as either the peak collector current or resonant frequency Increased (Figures 27 and 28).
table 10. measured storage times for the d7St transistors

Transistor Parameter		Storage time, ts, ps							
Circuit Configuration		Saturated				Unsaturated			
Transistor Number		12	15	36	37	12	15	36	37
Peak Ic, Amps	Resonant Frequency fr, kHz								
100	10	3.9	2.8	4.3	3.9	1.6	1.4	1.9	1.4
100	20	4.3	3.0	4.6	4.4	2.8	2.1	3.0	2.6
100	40	4.1	3.5	4.4	3.9	3.4	3.0	3.6	3.1
150	10	4.3	2.9	4.6	4.3	2.0	1.6	2.0	1.6
150	20	4.4	3.3	4.6	4.3	3.0	2.3	3.4	2.9
150	40	4.3	3.7	4.6	4.8	4.2	3.5	4.3	4.1
250	10	4.4	3.4	4.9	4.8	2.3	2.1	2.5	2.4
250	20	4.8	3.9	5.3	5.1	3.5	2.8	4.0	3.4
250	40	6.3	5.0	6.7	6.4	5.2	5.0	6.7	5.2
350	10	6.5	4.7	6.4	6.2	2.7	2.7	2.9	2.8
350	20	6.9	5.0	6.9	6.4	4.5	3.7	4.8	4.1

table 11. measured fall times for the d6ot transistors

Transistor Parameter		Fall time, t_{f}, ns									
Config	uit uration	Saturated					Unsaturated				
Transistor Number		60-1	60-2	60-3	60-4	60-5	60-1	60-2	60-3	60-4	60-5
Peak Ic, Amps	Resonant Frequency $\mathrm{fr}, \mathrm{kHz}$	340	350		460	350	210	240	200	200	
40	10										
40	20		350	370							
40	20	360	330	380	460	340	270				220
40	40	270	289		260	340	270	210	330	300	200
60		380	289	300	260	260	240	190	220	210	160
60	10	380	300	360	480	330	180	210			160
60	20	360	320	380	440		180	210	190	240	200
60	40	240		340	440	350	200	200	250	300	190
	10	240	230	240	170	220	170	160			
100	10	360	350	380	500	370		160	170	160	150
100	20	260			500	370	180	160	220	280	170
100	40	260	250	260	180	150	160	160	180	120	160
		200	160	-	-	200	210	180			
140	10	280	300	300			210	180	200	120	180
140	20					350	200	190	200	205	160
			180	120	-	240	220	180	180	140	200

TABLE 12. MEASURED FALL TIMES FOR THE D7ST TRANSISTORS

Transistor Parameter		Fall time, t_{f}, ns							
Circuit Configuration		Saturated				Unsaturated			
$\begin{gathered} \mathrm{Tra} \\ \mathrm{~N} \end{gathered}$	stor	12	15	36	37	12	15	36	37
Peak Ic, Asups	Resonance Frequency $\mathbf{f r}, \mathbf{k H z}$								
100	10	600	460	640	600	270	220	350	210
100	20	400	310	400	400	320	210	340	300
100	40	230	210	220	210	240	200	240	200
150	10	550	400	530	550	290	180	320	260
150	20	320	250	320	230	290	200	270	230
150	40	300	260	280	220	320	270	300	240
250	10	330	280	340	310	270	250	250	240
250	20	350	330	270	320	440	310	390	360
250	40	-	-	-	-	-	-	-	-
350	10	-	-	-	-	280	280	270	270
350	20	-	-	-	-	-	-	-	-

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

D60T ${ }^{\prime} \mathrm{C}=60 \mathrm{~A}$
$\mathrm{fr}=20 \mathrm{kHz}$ SATURATED

D7ST
${ }^{\prime} \mathrm{C}=150 \mathrm{~A}$
$\mathrm{fr}=20 \mathrm{kHz}$ SATURATED

Figure 26. Typical waveforms of saturation voltage for the D60Ts and D7STs.

Figure 27. Variation of saturation voltage with peak collector current and resonant frequency for the D60Ts (average of five transistore).

Figure 28. Variation of saturation voltage with peak collector current and resonant frequency for the D7STs (average of three transistors).
TABLE 13. MEASURED SATURATION VOLTAGES FOR THE D60T TRANSISTORS

table 14. measured saturation voltages for the dist transistors

Transistor Parameter		$\mathrm{V}_{\text {ce }}(\mathrm{sat}), \mathrm{v}$							
Circuit Configuration		Saturated				Unsaturated			
Tra		12	15	36	37	12	15	36	37
Peak Ic, Amps	Resonant Frequency fr, kHz								
100	10	0.44	0.64	0.40	0.42	0.51	0.56	0.46	0.50
100	20	0.48	0.60	0.49	0.50	0.52	0.56	0.52	0.54
100	40	0.64	0.68	0.64	0.68	0.66	0.70	0.64	0.70
150	10	0.57	0.73	0.55	0.56	0.64	0.72	0.65	0.68
150	20	0.70	0.73	0.64	0.72	0.76	0.84	0.77	0.83
150	40	0.92	0.92	0.76	0.88	1.04	1.00	0.96	0.94
250	10	1.04	2.70	1.02	1.04	1.02	1.67	1.12	1.24
250	20	1.20	1.54	1.16	1.28	1.30	1.60	1.20	1.40
250	40	2.10	2.50	2.00	2.60	2.00	3.20	2.20	2.30
350	10	1.26	2.80	1.54	1.60	2.20	3.90	2.20	2.60
350	20	1.70	2.40	1.70	2.00	1.90	2.50	2.00	2.30

G. OUTPUT GAPACITANCE, C_{OB}

The construction of high-power transistors necessarily requires the use of a large-area function to handle the high currents. Large-area junctions result in a very undesirable characteristic (i.e., large function capacitances). Published data for the D6OT give a small-signal, $1-\mathrm{MHz}$ measurement of C_{OB}, which does not accurately depict the nonlinear character of $C_{O B}$ on a large-signal basis such as will be encountered in high-power inverter applications. As shown in Figure 29, $\mathrm{C}_{O B}$ appears as a capacitor connected between the collector and base of transistor, Q_{2}. Its effect is particularly detrimental when Q_{2} is in its OFF state and Q_{1} is switched $O N$. The turn-on of Q_{1} causes a voltage transient across $C_{O B}$ of Q_{2}, and, according to the relationship

$$
\begin{equation*}
i_{C B}=\frac{d v}{d t} C_{O B} \tag{1}
\end{equation*}
$$

a current is injected into the base that, if not properly suppressed, will turn Q_{2} on and be multiplied by the gain (β) of Q_{2}. This current transient, at the time when collector voltage is high, is sufficient to cause significant power dissipation when operating at high frequencies and is a dV/dt limitation on the transistor.

The teat circuit of Figure 29 was used to measure the output capacitance of the D60Ts and D7STs. The drive sequence for Q_{1} and Q_{2} was asymmetrical with both Q_{1} and Q_{2} off for long periods. Load resistor R_{L} guaranteed that the Q_{2} collector voltage was held at zero during Q_{1} off-times. Q_{1} was then turned on while Q_{2} was held off by the negative blas connected to the bottom of R_{B}. The injected base current ($1_{C B}$) flowed through R_{B} and was measured with a callbrated current probe, while the Q_{2} collector voltage transition (dV/dt) was measured with a voltage probe. Collector-to-base capacitance ($\mathrm{C}_{\text {ob }}$) was then calculated from

F1gure 29. Test circuit to measure $C_{O B}$ of a transistor.

$$
\begin{equation*}
C_{O B}=\frac{1_{C B}}{d V / d t} \tag{2}
\end{equation*}
$$

The output capacitances of the transistors tested are given in Table 15 and averaged 2140 pF for the D60Ts, and 3696 pF for the D7STs.

TABLE 15. Output Capacitance (C_{OB}) of the D6OT and D7ST Transistors Tested

Transistor Type	D60T				D7ST				
Transistor Number	$60-1$	$60-2$	$60-3$	$60-4$	$60-5$	12	15	36	37
COB, pF	2320	2140	2050	2126	2079	3710	3834	3465	3774

H. INPUT CAPACITANCE, $C_{I B}$

The maximum operating frequency of a switching transistor is a direct function of the time required to charge (delay time) and discharge (storage time) the base-to-emitter capacitance ($C_{I B}$). To properly design the base-drive circuit to adequately handle the peak-base-drive currents required, a worst-case value for $C_{I B}$ is required. The base-emitter capacitance was measured with the test circuit shown in Figure 30. This test was performed with the collector open, which eliminates parallel effects from $C_{O B}$. The open collector should approximate operation in an SRI since the collector current in an SRI will be zero at the time of turn-off.

In Figure 30, Q_{1} (the DUT) was turned $O N$ by a pulse (V_{g}) from the pulse generator. This pulse also turned Q_{2} OFF. After the base of Q_{1} had been fully charged, V_{g} reverse blased $D 1$ and turned $Q_{2} O N . Q_{2}$ is a constant current source and drew a constant value of 1_{B} from the base emitter function of Q_{1}. After the excess charge had been removed, $V_{B E}$ fell at a relatively constant rate ($\mathrm{dV}_{\mathrm{BE}} / \mathrm{dt}$). From the relationship

$$
\begin{equation*}
\frac{d V_{B E}}{d t}=\frac{i_{B}}{C_{I B}} \tag{3}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
C_{I B}=\frac{1_{B}}{d v_{B E} / d t} \tag{4}
\end{equation*}
$$

The input capacitances of the transistors tested are given in Table 16 and averaged $76,100 \mathrm{pF}$ for the D 60 Ts and $118,500 \mathrm{pF}$ for the $\mathrm{D7STs}$.

Figure 30. Test circuit and waveforms for measuring $C_{\text {lb }}$ of a transistor.
table 16. Input Capacitance ($C_{\text {IB }}$) of the D6OT and D7ST Transistors Tested

Transistor Type	D60T					D7ST			
Iransistor Number	60-1	60-2	60-3	60-4	60-5	12	15	36	37
$\begin{aligned} & \mathrm{C}_{\mathrm{IB}}, \\ & \mathrm{pF} \end{aligned}$	71,560	73,180	81,000	87,400	67,500	96,800	112,500	126,500	138,000

BASE-DRIVE DEVELOPMENT

A base-drive strategy was developed for both the D60T and D7ST transistors for when they are used as awitches on SRIs. The atrategy is the same for both types of transistors and is described in the following section.

A. STRATEGY

The strategy developed to drive both the D60T and D7ST transistors is as follows. Regenerative (or proportional) feedback of the collector chirent is used since it minimizes the required power from the rest of the base-drive circuitry. At the same time, the transistor is maintained at a constant B (except during the leading-edge pulse) which saves on base-drive power. The base current is allowed to go to zero as the collector current goes to zero, which minimizes the storage time. The base-drive parameters from the transistor characterization that resulted in minimum total device dissipation are employed, and the base-emitter function is kept reverse biased during the transistor off-time, which eliminates $\mathrm{dV} / \mathrm{dt}$ turn-on caused by C_{OB}.

B. REQUIREMENTS

A study of the data obtained in the transistor characterization indicates that it is not practical to operate either the D60T or the D7ST transistors at 70\% of their rated currents and a resonant frequency of 40 kHz . It was not possible to get elther transistor into saturation under these conditions. The long storage time (6 to 7 usec) for the D7ST transistor also limits its usefulness at 40 kHz . Therefore, the maximum practical operating frequency (resonant frequency) for these transistors at high currents is in the 20 to 25 $\mathbf{k H z}$ range. The base-drive circuit was developed for $\mathbf{2 5} \mathbf{k H z}$.

Data taken on the D60T transistors at 20 kHz and 100 A show that the minimum device dissipation occurs at a regenerative feedback ratio of $7: 1$, with a leading-edge pulse of 12 A amplitude and 15 usec width. The required
base-drive at 25 kHz should be the same regenerative feedback ratio of $7: 1$, and a leading-edge pulse of 12 A amplitude that is 12 usec wide (reduced from

15 usec by the ratio of 20 kHz to 25 kHz). Data taken on the D7ST transistors at 20 kHz and 250 A show that the minimum device diseipation occurs at a regenerative feedback ratio of $10: 1$, with a leading-edge pulse of 30 A amplitude and 12.5 sec width. The required base-drive at 25 kHz should be the same regenerative feedback ratio of $10: 1$, with a leading-edge pulse of 30 A amplitude and $10 \mu \mathrm{sec}$ width (reduced from 12.5 usec by the ratio of 20 kHz to 25 kHz).

It is important that the leading-edge pulse have a rise time of 1 usec or less in order to minimize the turn-on time and get the transistor into saturation quickly. The turn-off pulse (negative I_{B} pulse) needs to be large in amplitude in order to minimize the storage time, which will then allow for maximum utilization of the series resonant tank.

C. CIRCUIT DEVELOPMENT

Conventional transformer coupled base-drive circuits will not provide a 30 A pulse with a rise tive of 1 usec or less because of the leakage inductance of the transformer, base-emitter inductance of the transistor, and atray inductance of the wiring. Direct switching of the 30 A current pulse into the base was considered, but rejected because of the poor efficiency (less than 50\%) for that type of base-drive. It was decided to use a transformer-coupled base-drive circuit and overcome the inductance problem by "brute forcing" it with voltage.

The circuit of Figure 31 was developed to provide a 30 A pulse with a rise time of $1 \mu \mathrm{sec}$ or less and a $7: 1$ ($10: 1$ for the D7ST) regenerative feedback ratio. Referring to Figure $31, Q_{5}-X$ forms a constant-current source that charges capacitor $C_{6}-X$ to the voltage potential of V_{2}. When $Q_{6}-X$ is turned on to apply a leading-edge pulse to $Q X$, the high voltage charge ($V_{2}=$ 75 V) on $\mathrm{C}_{6}-\mathrm{X}$ is applied to the primary of $\mathrm{T}_{4}-X$. This high voltage overcomes the effect of the leakage inductance of $T_{4}-X$, the stray wiring inductance, and the base-emitter inductance of $Q X$, allowing the base current to zise to 30 A in approximately 1 Hsec. After the charge on $\mathrm{C}_{6}-\mathrm{X}$ has decayed
11329-3

Figure 31. 10-kW base drive circuitry.
to potential $V_{1}(12 \mathrm{~V})$, the remainder of the leading-edge pulee is supplied frum V_{1} through $\mathrm{CR}_{5}-X$. The width of the leading edge pulse is controlled by the on-lime of $Q_{6}-X$.

The regenerative feedback is supplied by eransformer $T_{3}-X$. A separace cransformer is used for the regenerative feedback so that the leakage inductance of $T_{4}-X$ (supplying the leading-edge pulse) can be n nimized. Transistors $Q_{7}-X$ and $Q_{E^{-X}} X$ are used to isolate the transformers so that the base of $Q X$ can be held at a negative blas during the tise that it is tucnedoff. $Q_{9}-X$ supplies the curn-off pulse to the bese of $Q X$, and holds it at the negative bias levei of -7 V . $\mathrm{T}_{6}-\mathrm{X}$ is used to provide an isolated turn-off pulse to $Q_{9}-X$ during the on-time of $Q X$.

D. TESTING

The bese-drive design was teater using the test setup shown in Figure 32, which is a half-bridge SRI with a zero impedance load and resonant frequency of 25-kHz. The amplitude of the tank cirrent was controlled by varying V_{S}, and the duty cycle of Q_{1} and Q_{2} was varied by wisy of the control circuit. The test setup was operated without any tank circuit jeeaback.

1. D60T Transietors

Transistor 60-5 was installed as Q_{1} and $60-4$ was installed as Q_{2}. The turns-ratios of T3-1 and T3-is were get at 7:1, and V1 and $V 2$ of $\mathbf{P 1 g u r e} 31$ were adjusted to give a leading edge pulse amplitude of 12 . . The leading edge pulse duration was set at 12 usec by the control circuit, amd the tank current was adjusted for 100 A peak. The tank current, Q_{2} collectcr curreat, and Q_{2} base curreat are shown in Figure 33(a). The base current and base-emitter voltage are shown in Figure 33 (b) for the same conditions, while Figure 33 (c) shows the base current, tank current, and saturation voltage. These oscilloscope traces show saturation voltage of $1,5 \mathrm{~V}$ and a storage time of $1.5 \mu \mathrm{sec}$, which is in good agreement with the transistor characterization data.

Figure 32. Test setup for testing the base-drive circuitry.
A.

COLLECTOR CURRENT, 28ADIV

B.
BASE CURRENT, 10A/DIV

C.

IANK CURRENT, 50A/DIV
SEEP - $5 \mu \mathrm{~S} / \mathrm{DI}$

Figure 33. D60T transistor waveforms during test of the base-drive circuit.

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAP

2. D7ST Transistors

Transistor number 36 was installed as Q_{1} and number 12 was installed as Q_{2} (Figure 32). The turns-ratios of T3-1 and T3-2 were set at $10: 1$, and V1 and V2 of Figure 31 were adfusted to give a leading edge pulse amplitude of 30 A. The leading edge pulse duration was set at 10 usec by the control circuit and the tank current was adjusted for 250 A peak. The tank current, Q_{2} collector current, and Q_{2} base current are shown in Figure 34(a). The base current and base-emitter voltage are shown in Figure 34(b), which shows a storage time of approximately 3 usec. Figure 34 (c) shows the base current, tank current, and saturation voltage for a peak tank current of 150 A. The saturation voltage under these conditions is approximately l. 2 V. Figure 35(a) shows that the saturation voltage increased to approximately 2.3 V as the peak tank current increased to 200 A. When the peak tank current was increased to 250 A the saturation voltage increased to 9 V , as shown in Figure 35(b), indicating that the transistor did not have enough base-drive even though the transistor chargcterization data indicate that the base-drive should have been adequate. Reducing the T3-1 and T3-2 turns-ratios to 8:1 dropped the saturation voltage to 5 V. By increasing Vl of Figure 31 until the base current at the time of peak collector current was 70 A , the saturation voltage was reduced to approximately 2 V (Figure 35(c)).

B.

BASE CURRENT, 20A/DIV

BASE-EMITTER VOLTAGE, 5V/DIV

Figure 34. D7ST transistor waveforms during test of the base drive circuit.

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAP

11424-32
A.
BASE CURRENT, 20A/DIV
TANK CURRENT, 50A/DIV SA,TURATION VOLTAGE, 2V/DIV
\qquad

B.
BASE CURRENT. 20A/DIV

C.
BASE CURRENT, 20A/DIV
TANK CURRENT, 50A/DIV SATURATION VOLTAGE, 2V/DIV

SWEEP - 5μ S/DIV

Figure 35. D7ST transistor saturation voltage variation for different base currents.

PRECEDING PAGE BLANK NOT FILMED

SECTION 5
CONVERTER DESIGN

The $10-\mathrm{kW}$ series resonant converter was designed to meet the following specifications:

- Resonant frequency -25 kHz
- Main bus voltage -230 to 270 Vdc
- Output voltage - variable from 200 to 500 Vdc.
- Output current limit - adjustable from 0 to 20 A
- Output power - 10-kW minimum at 500 Vdc output
- Input power $-208 \mathrm{Vac} \pm 10 \%, 3 \phi, 60 \mathrm{~Hz}, 4$ wire
- Output voltage regulation $- \pm 2 \%$ for input voltage variations of $\pm 10 \%$ and/or load variations between 10% and full load current
- Output ripple - less than 1% rms
- Remote voltage sensing - terminals provided on the rear of the chassis
- Isolation - all output terminals are isolated from the chassis, and either the positive or negative terminal may be floated ± 100 Vdc from chassis ground.
- Mode indication - a local and remote indication is supplied to indicate when the inverter is in the current-limited mode
- Meters - output voltage and current meters on the front panel
- AC power control - a front panel switch for control power and front panel breaker for the main power
- Cooling - forced air
- Mounting - standard 19-in. EIA rack.

The decision was made to use the D60T transistor as the basic switch for this design because of its shorter storage time and because of the very limited availability of the D7ST transistors. The use of the D60T transistors at the 10-kW level requires a full-bridge circuit which uses twice as many switches as a half-bridge (4 versus 2), but results in a peak tank current that is
one-half that for a half-bridge. The lower pak tank current gives rise to a more efficient design because of lower $I^{2} R$ losses and lower transistor asturation voltages.

The major features of the design are discussed in the following sections.

A. BRIDGE AND TANK CIRCUITRY

A schematic of the bridge and tank circuitry is shown in Figure 36. Transistors Q1 through Q4 are the four switches of the full-bridge, and T3-1 through T3-4 provide the regenerative feedback base drive for these transistors. SR1 and SR2 are saturable reactors that limit the di/dt that Q1 through Q4 see, allowing these transistors to saturate quickly, and thereby reduce power losses. $S R 1$ and $S R 2$ saturate in approximately 500 nsec , after which they are effectively out of the circuit. Diodes CRI through CR 4 provide the paths for returning excess energy in the tank circuit to the source. Diodes CR54-1 through CR54-4 were added to suppress voltage spikes caused by SR1, SR2, and stray wiring inductance. They are mounted as close to Q1 through Q4 as possible, as are C3 and C4, which provide a low impedance AC clamp for CR54-1 through CR54-4 to work into.

The series resonant tank is composed of $\mathrm{Cl}, \mathrm{Ll}, \mathrm{Tl}$, and $\mathrm{T} 2 . \mathrm{Cl}$ is made from four polypropylene capacitors in parallel and has a total capacitance of $0.875 \mu \mathrm{~F}$. Capacitor Cl resonates with the inductance of Ll and the primary leakage inductance of Tl at a resonate frequency of $25-\mathrm{kHz}$. Ll was fabricated by winding 18 turns of $165 / 30$ (16,500 circular mils) Litz wire on an Indiana General-type 8200 ferrite core with a $12.9 \mathrm{~cm}^{2}$ cross sectional area. Ferrite was used for both LI and Tl because of its lower losses. The design of these components could be further improved by using Ceramic Magnetics Inc. type MN60L ferrite instead of the Indiana General type 8200. Tl is used to remove energy from the tank circuit and supply it to the load. The primary of Tl was wound with 18 turns of $165 / 30 \mathrm{Litz}$ wire and each of the two secondaries was wound with 24 turns of two $150 / 36$ Litz wires in parallel (a total of 7500 circular mils). The core used was the same as for L1. T2 is a current transformer that provides a tank-current feedback-signal to the control circuit.

Figure 36. 10-kW bridge and tank circuitry.

OUTPUT CIRCUIT
The schematic of the output circuitry is shown in Figure 37. The AC current supplied by Tl is rectified by two full-bridge circuits, CR12 through CR15, and CR16 through CR19. The split secondary on Tl is a convenient method of stacking the rectifiers in series to handle the output voltage. The rectified current is filtered by C8-A through $C 8-D$, measured by $M 1$, and then supplied to the output. The output voltage is measured by M2 and sensed as a feedback-signal for the control circuit by R10 through R14 and R17. R15, R16, and C9 are added to form a lead-lag network for compensating the voltage control loop.
C. BASE DRIVE CIRCUIT

The base drive schematic was presented (Figure 31) and discussed in Section 4.

D CONTROL CIRCUIT
The control circuit schematic is shown in Figures 38(a) through 38(d). The output voltage feedback-signal is isolated from the floating output by isolation amplifier AR1. This feedback signal is then compared against the output voltage reference signal (from $R 28$) and the difference integrated by the feedback around AR2. R25 forms a lead network with C10 for loop compensation. The integrator is confined to the normal operating range by the clamp circuit comprised of R24, R27, CR20, and VR6. Comparator U16 senses when the output voltage is more than 25 V higher than the referenced level and immediately phases the inverter of f until the output voltage drops down to the referenced level. This keeps the output voltage under control during transient conditions.

The average output current is related to the average current in the series resonant tank circuit by the turns ratio of Tl . Therefore, the average tank current can be sensed and used to control the output current while at the same time protecting the bridge and tank circuit components. The tank current is
11329-2

Pigure 37. $10-\mathrm{kW}$ output circuitry.
11329-4

Elgure $38(\mathrm{c})$. $10-\mathrm{kW}$ control circuitry (V/F conversion).

Figure $38(\mathrm{~d})$. $10-\mathrm{kW}$ control circui:ry (base-drive tining).
sensed by currenc transformer $T 2$, rectified by CR24 through CR27, and converted to a vultage by R34. This voltage is then compared against the output current reference-signal (from R30) and the difference integrated by AR3. This integrator is also confined to the normal operating range by a clamp circuit comprised of R35, R36, CR22, and VR8. AR5A and AR5B sense when the output voltage has fallen below a certain level (determined by the output current reference-sigual (150 V for a reference level of 20 A) and then linearly phase the output current tack to 6 A as the output voltage falls to zero. The static outpit operating envelope produced in this manner is shown in Figure 39. Comparator Ul5 senses when the peak tank current exceeds 120 A and immediates, resets the integrator (AR3) to zero, which in turn phases the inverter off. The integrator can immediately start to integrate back up and phase the inverter back on to the referenced set point. This comparator limits the peak tank current and protects the components of the bridge and tank circuitry during transient conditions. Currents are limited to a peak value of 120 A and the voltage on resonate capacitor $C l$ is limited to 1200 V .

The outputs from the voltage and current feedback circuits are diode-OR'd to the input of the voltage-to-frequency (V/F) converter. The diode-OR'd functions control by limiting how far R38 is allowed to phase on the inverter, while VR9 provides a maximum limit to which the inverter can be phased on. The actual V/F converter, $U 2$, uses AR4 to improve linearity, operating range, and response time, while U 3 , a flio-flop, alternately allows the pulse output of U 2 to be applied to the base-drive for opposite sides of the bridge by way of the steering gates (U4). Comparator U14 senses whether the voltage loop or the current loop has control of the system and closes relay contact Kl-A and turns front panel light DS1 on when the current loop has control.

The output pulse from the steering gates is inverted by $U 6$ and applied to the interface circuit composed of Q13, Q14, and Q15. This circuit drives T6-X (Figure 31) which turns $Q 9-X$ off, permitting $Q X$ to be turued-on. The trailing edge of the pulse turns $Q 9-X$ back on, starting the turn-off of $Q X$. The output pulse from the steering gates is also delayec cor approximately 1 usec by R47 and C21. This delay allows time for $Q 9-X$ to be turned-off and also provides a means for balancing both halves of the tank current if necessary by varying this delay time slightly. The delayed pulse is inverted by $U 6$ and shortened

Figure 39. 10-kW SRI output operating envelope.
by R49, R50, and C23 to the width required for the leading-edge base-drive pulse. This shortened pulse is applied to the interface circuit composed of Q10, Q11, and Q12 which turns Q6-X (Figure 31) on and off.

E. SOLID-STATE DC INPUT CIRCUIT BREAKER

The main DC bus for the inverter is protected by a solid-state circuit breaker that trips if the line current exceeds 60 A. The switch used in this (rcuic breaker is a D60T transistor (Q27 of Figure 40) that is driven by a small free running inverter operating at 160 kHz . The inverter consists of U8, Q25, Q26, and T7 of Figure 40. The output of this inverter is rectified by CR42 and CR43, filtered by C40, C61, and C62, and used as the base-drive for Q27. The output level of the inverter is varied by R74, which is used to adfust the base-drive of Q27 so that it will come out of saturation at 60 A . When Q27 comes out of saturation, the optical coupler (U9) turns on, setting the flip-flop (U7). When U7 is set, the inverter turns-off, which removes the base-drive from Q27, causing Q27 to turn off within $10 \mu \mathrm{sec}$ after coming out of saturation. Pushbutton $S 1$ is used to reset the flip-flop. turning the circuit breaker back on.

F. MAIN BUS SUPPLY

The main bus supply is a commercially purchased, unzegulated, 60 Hz supply with an LC output filter. The output of this supply varies over the range of 230 to 270 Vdc as the line and load vary. T2, T3, and associated components (Figure 41) were added to this commercial supply to provide unregulated power for the housekeeping supplies.
G. HOUSEKEEPING SUPPLIES

A schematic of the housekeeping supplies is shown in Figure 42. Regulation is provided by standard, commercially available 3-terminal regulators that produce outputs of $+12 \mathrm{~V},-12 \mathrm{~V}$, and +75 V .

11329-9

Figure 41. 10-kW DC power source.
ORIGINAL PAGE IS OF POOR QUALITY
11329-10

Figure 42. 10-kW housekeeping supplies.

H. NEGATIVE BLAS SUPPLY

Each of the base drive circuits requires an isolated negative 8 V for use as the negative bias during the time that the transistors ($Q 1$ through $Q 4$ of Figure 36) are off. These negative bias voltages are supplied by the freerunning inverter of Figure 43. The inverter operates at 25 kHz and has four isolated outputs. This is a low power inverter and the 10 A current pulses required during turn-off of $Q 1$ through $Q 4$ are provided by C7-X of Figure 31.

I. MECHANICAL

The $10-\mathrm{kW}$ converter was designed to be used in a laboratory type environment with forced air as the cooling medium. It was divided into two separate chassis, so that the power supply to generate the main $D C$ bus power could be separated from the actual series resonant converter for convenience reasons. The chassis containing the DC bus supply is free-standing and is $55.9 \mathrm{~cm} \times 49.5 \mathrm{~cm} \times 38.1 \mathrm{~cm}$ (22 in. $x 19.5$ in. $x 15$ in.).

The actual series resonant converter, shown in Figure 44 , is contained in a rack-mountable chassis that is $48.25 \mathrm{~cm} \times 31.1 \mathrm{~cm} \times 46 \mathrm{~cm}$ ($19 \mathrm{in} . \times 12.25 \mathrm{in}$. $x 18 \mathrm{in}$.). It weighs $52 \mathrm{~kg}(115 \mathrm{lb})$ and can be mounted at a convenient height for operation of its controls and reading of the meters. This chassis is connected to the power supply chassis by two cables, one for the main DC bus power and one for controls and housekeeping power.

Figure 45 is an interior view of the inverter showing the locations of the D60T and commutating diode heat sinks, output rectifiers, control circuitry, base-drive, series resonant capacitor, output transformer, and series resonant inductor. The input capacitor, output capacitor, housekeeping supplies and fans are mounted in the bottom of the chassis and cannot be seen in this photograph.

Figure 43. $10-\mathrm{kW}$ negative bias supply.

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Figure 44. $10-\mathrm{kW}$ series resonant inverter.
ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH
OUTPUT TRANSFORMER
SERIES RESONANT
INDUCTOR MOUNT
INDUCTOR MOUNTED
BELOW IT COMMUTATING
DIODE HEATSINKS -

SECTION 6

TESTING

The $10-\mathrm{kW}$ converter that was designed and fabricated was also tested under a variety of conditions to determine its operational characteristics. The parameters tested for were stability, steady-state waveforms, output ripple, regulation, transient waveforms, and efficiency. The test results for each of these parameters are discussed in the following sections.

A.
 STABILITY

The voltage and the current control loops beth have integrators in their forward loops to provide very high DC gain, necessary for good regulation. In addition to the integrator, the voltage control loop has a lead-lag network on the output voltage divider and a lead network as part of the integrator for loop compensation. The Bode plots for this loop for a variety of output conditions are shown in Figures 46 and 47. These figures show the bandwidth increasing and the stability decreasing as either the output voltage increases or the load resistance decreases. The worst case gain margin is 10 dB , and the worse case phase margin is 65 deg.

The current control loop does not have any compensation in addition to the integrator. The Bode plots for this loop for a variety of conditions are shown in Figure 48. The bandwidth and the stability of this loop are fairly constant for the conditions tested with a worst case gain margin of 15 dB and a worst case phise margin of 90 deg.

B. STEADY-STATE WAVERORMS

Photographs of oscilloscope trace s.f the major current and voltage waveforms in the inverter were taken $\{0$: three output conditions corresponding to when the tank current is discontinuous, the diodes conduct for approximately 0.75 n , and the inverter is phased almost full-on. The first set of these photographs (Figure 49) shows the tank current and resonant capacitor (Cl of

Figure 46. Bode plots of the $10-\mathrm{kW}$ SRI voltage control loop with a 25 I load.

Figure 47. Bode plots of the $10-\mathrm{kW}$ SRI voltage control loop with a 50Ω load.

Figure 48. Bode plots of the $10-\mathrm{kW}$ SRI current control loop.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

 voltage for different load conditions.

Figure 36) voltage. From these it can be seen that for a 500 V output into a $25-\Omega$ load ($10-\mathrm{kW}$) the peak tank current is approaching 100 A and the peak capacitor voltage if nproximately 700 V . Figure 50 shows the resonant inductor (Ll of $\mathrm{Fi} \quad 36$) voltage and Figure 51 shows the output transformer (Tl of Figure 36) pritary voltage, along with the tank current for the same three output conditions. The tank current, capacitor voltage, inductor voltage, and transformer primary voltage are shown in Figure 52 for short circuit output conditions. The output current is approximately 6 A under this condition (with the control pot set at 20 A) because of the current cutback feature of the control circuitry that starts to function as the output voltage goes to zero (see Figure 39). The steady-state base current and base-emitter voltage waveaforms for the $10-\mathrm{kW}$ output condition are shown in Figure 53.

C. OUTPUT RIPPLE

The output ripple for three different output voltages and a 25Ω load is shown in Figure 54, while Figure 55 shows the condition for two different open circuit output voltages. The open circuit, 327 V condition, produced the largest peak-to-peak ripple observed. This ripple data is summarized in Table 17. The peak-to-peak ripple could be reduced by adding more output capacitance, but this would also decrease the bandwidth of the frequency response.

TABLE 17. Output Ripple of the $10-\mathrm{kW}$ Converter

Output Voltage, $\mathrm{V}_{\mathrm{O}}, \mathrm{V}$	Output Load $\mathrm{R}_{\mathrm{L}}, \Omega$	Output Ripple, Peak-to-Peak	
	25	Volts	$\%$ of V_{o}
180	25	4.0	2.2
250	25	4.5	1.8
500	∞	4.5	0.9
327	∞	34	10.4
500	25	5.0	

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Figure 50. Steady-state tank current and resonant inductor voltage for different load conditions.

Figure 51. Steady-state tank current and output transformer

> ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH TANK CURRENT, 20ADIV
CAPACITOR VOLTAGE, 500V/DIV
TANK CURRENT, 20ANDIV
TRANSFORMER
VOLTAGE, 50V/DIV
TANK CURRENT, 20ANDIV

Figure 52. Steady-state tank circuit waveforms for short circuit output conditions.

Figure 53. D60T base current and base-emitter voltage waveforms for full load conditions.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

$$
\begin{aligned}
& V_{O}=250 \mathrm{~V} \\
& R_{L}=25 \Omega
\end{aligned}
$$

TANK CURRENT, 50ADIV \qquad

SWEEP - $10 \mu \mathrm{~S} / \mathrm{DIV}$

Figure 54. Output voltage ripple with a 25Ω load at different output voltage levels.

Figure 55. Output voltage ripple under open circuit conditions.

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

D. LINE AND LOAD REGULATION

The line and load regulation measurements are presented in Table 18. They show that the regulation is better than or equal to 1 V .
table 18. Line and load Regulation Measurement Data

Line Regulation			Load Regulation		
Input Voltage V	Output Voltage, v_{0}, v	Output Current, I_{0}, A	Load Resistance, $\mathrm{R}_{\mathrm{L}}, \Omega$	Output Voltage, $\mathrm{V}_{\mathrm{o}}, \mathrm{V}$	Output Current, I_{0}, A
			1000	200	0.2
243	350	10	10	200	20
			1000	350	0.35
258	350	10	17.5	350	20
			1000	400	0.4
271	349	10	25	400	16

E. TRANSIENT LINE AND LOAD TESTS

The inverter was tested for its response during turn-on of the main bus supply and for load transients of the operating point to short circuit, short circuit to the operating point, operating point to open circuit, open circuit to the operating point, open circuit to short circuit, and short circuit to open circuit.

The circuit shown in Figure 56 was used when we wanted a closing switch to generate load transients, while the circuit shown in Figure 57 was used when we wanted an opening switch. The SCR of Pigure 56 was turned back off by programming the output of the inverter to zero current. We used R2 only when short circuiting the output of the inverter and it provided a limit on the maximum surge current. The GTO SCR of Figure 57 could not be used both as a closing switch and an opening switch because of its low surge-current rating (220 A). It was turned-on while the inverter was off, and then the inverter was brought on to the operating test point.

Figure 58 shows the tank current, input bus current, output voltage, and input voltage as the main bus supply is turned-on and the inverter comes up to an operating point of 500 V and 10 A . These traces are typical of all the turn-on transients tested and show that these parameters are well behaved during the turn-on.

The tank current and resonant capacitor voltage response to a load transient of 500 V at 20 A to short circuit is shown in Figure 59. This was the response before the peak tank current limiting cirruitry (U15 and associated components of Figure $38(b)$) was added to the control circuit, and shows the tank current peaking at 190 A and the capacitor voltage peaking at 1700 V. These peak levels were unacceptably high and therefore the circuit was modified. Pigure 60 shows the response of the tank current and capacitor voltage to the same transient condition after the peak tank current limiting circuitry was added. The tank current is now linited to 120 A and the capacitor voltage to 1000 V , which are acceptable levels.

The tank current and output voltage response to a load transient of short circuit to open circuit (350 V setpoint) is shown in Figure 61. The tank current response is acceptable, but the output voltage overshoots the
\square
*R2 = OR NORMALLY
R2 $=0.5 \Omega$ WHEN SHORT CIRCUITING THE INVERTER

R2*
10 W

Figure 56. Circuit used to provide a closing switch for transient load testing.

Figure 57. Circuit used to provide an opening switch for transient load testing.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 58. Tank current, input current, input voltage, and output voltage during a typical turn-on transient.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 59. Tank current and resonant capacitor voltage response to a load transient of 500 V at 20 A to short circuit without the peak tank current limiting circuitry.

11424-48

SWEEP - 200μ S'DIV
Figurc 60. Tank current and resonant capacitor voltage response to a load transient of 500 V at 20 A to short circuit with the peak tank current limiting circuitry.

ORIGINAL PAGE WHITE PHOTOGRAPH

SWEEP - 200μ S/DIV

Figure 61. The tank current and output voltage response to a load transient of short circuit to open circuit (350 V setpoint) with original output voltage limiting.

Figure 62. The tank current and output voltage response to a load transient of short circuit to open circuit (350 V setpoint) with improved output voltage limiting.

350 V setpoint by 200 V , which is unacceptable. The output voltage limiting circuitry at this time was a fixed level (w 550 V), optically coupled circuit that phased the V / F converter back when the output voltage exceeded 550 V . This circuitry was eliminated and a circuit (Ul6 and associated components of Figure 38(a)) whose trip level is a function of the programmed setpoint was added. The response of the output voltage to the same transient condition after this change in the control circuitry was incorporated is shown in Figure 62. The output voltage overshoots the 350 V setpoint by only 50 V with this circuitry.

Figures 63, 64, 65, and 66 show typical responses to load transients of short circuit to the operating point (500 V at 10 A), operating point (450 V at 18 A) to open circuit, open circuit to the operating point ($500 \mathrm{~V}, 20 \mathrm{~A}$), and open circuit (500 V) to short circuit, respectively.

F. EFFICIENCY MEASUREMENTS

The efficiency of the inverter was measured under static conditions while operating into a resistive load. The efficiency versus output power for loads of 25Ω and 50Ω is shown in Figure 67. This figure shows that the efficiency is almost constant for output powers above the $2-\mathrm{kW}$ level. These curves represent the efficiency of the main $D C$ input-power bus to the output of the Inverter and the deta from which they were drawn is given in Table 19.

Tables 20 and 21 list the power draw of the various drive and control circuitry functions associated with the inverter for loads of 25Ω and 50Ω, respectively. These tables show that the power draw by these various functions increases as the output power increases, except for the solid-state circuit breaker and the -12 V control, which remain constant.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 63. Tank current and output voltage response to a load transient of short circuit to the operating point (500 V at 10 A).

Figure 64. Tank current and witput voltage response to a load transient of the operating point (450 V at 18 A) to open circuit.

ORIGINAL PAgE BLACK AND WHITE PHOTOGRAPH

19424-53

Figure 65. Tank current, output current, and output voltage response to a lord transient of open circuit to the operating point (500 V at 20 A).

Figure 66. Tank current and resonant capacitor voltage response to a load transient of open circuit (500 V) to short circuit.

TABLE 19. EFFICIENCY DATA FOR THE $10-\mathrm{kW}$ INVERTER

TABLE 20. POWER DRAWN BY THE VARIOUS DRIVE AND CONTROL CIRCUITRY

Output Conditions			Drive and Control Circuitry Power Draw, W						
$\mathrm{v}_{\mathrm{o}}, \mathrm{v}$	$\mathrm{I}_{0}, \mathrm{~A}$	P_{o}, W	Base Drive (12 V)	$\begin{gathered} \text { Base } \\ \text { Drive } \\ \text { (75 V) } \end{gathered}$	Negative Bias Supply	Solid-State Circuit Breaker	$\begin{aligned} & \text { Control } \\ & (+12 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { Control } \\ & (-12 \mathrm{~V}) \end{aligned}$	Total
100	4.05	405	11.48	23.22	4.45	26.33	0.19	0.11	66.58
200	8.10	1,620	22.23	43.44	8.53	25.97	1.47	0.12	101.77
250	10.50	2,513	25.37	48.69	9.86	25.73	1.69	0.12	111.45
300	12.00	3,600	27.18	53.93	11.30	25.13	1.81	0.12	119.47
350	13.98	4,893	28.99	56.92	13.10	24.88	1.93	0.12	125.95
400	15.87	6,348	29.60	59.92	14.90	24.40	2.05	0.12	130.99
425	16.83	7,153	30.20	61.42	15.87	24.28	2.11	0.12	134.00
450	17.79	8,006	30.20	63.67	16.95	24.16	2.17	9.12	137.27
475	18.72	8,892	30.80	64.41	17.73	24.14	2.23	0.12	139.44
500	19.65	9,825	31.17	66.66	18.84	23.92	2.29	0.12	143.00
511	20.07	10,256	31.41	67.41	19.23	23.92	2.84	0.12	144.93

TABLE 21. POWER DRAWN BY THE VARIOUS DRIVE AND CONTROL CIRCUITRY

	r H O H		- \cdots n	+	-1 - j			
	ㅇos ¢ N 0 0							
	$\begin{aligned} & 3 \\ & 0 \\ & 0 \end{aligned}$		$\underset{\sim}{\infty}$	O N -	$\begin{array}{ll}N & \infty \\ N & \infty \\ \text { N } & \infty \\ \text { min }\end{array}$			n
	*				$\begin{array}{lll} \infty & \infty & ⿹ \\ \stackrel{0}{\bullet} \\ \dot{\infty} & \dot{\sim} & \dot{\alpha} \end{array}$			
	20		88	8 O	n	8	$\underset{\substack{0 \\ \sim}}{\substack{0 \\ n}}$	

S:CTION 7

CONCLUSIONS AND RECOMMENDATIONS

Two types of new bipolar switching transistors (the Westinghouse D6OT and D7ST) have been characterized for use as switches in Series Resonant Inverters and/or Converters. The D6OT is approximately three times faster than the D7ST, having a storage time in the range of 1.5 to $2.0 \mu s e c$, as opposed to 5 to 6 usec for the D7ST.

The base-drive requirements to optimize total device dissipation and maximize operating frequency were determined by a parametric study of the basedrive parameters. A base-drive circuit esploying regenerative feedback, a large amplitude leading-edge current-pulse, a large amplitude turn-off currentpulse, and reverse base bias during the transistor off-time was developed to provide these optimum base-drive requirements.

The suitability of the D60T to function as a swit.ch in a series resonant converter was demonstrated by the successful development and testing of a 10-kW, full-bridge series resonant converter. The unit achieved an electrical efficiency of 91% at its full power level of 500 V and 20 A , and an efficlency of 93.7% at a half power load of 500 V and 10 A .

There are no inherent problems that would prevent this 10-kW design from being upgraded to a space-qualified status. The major effort to do this would be in the areas of qualifying the D6OT transistors, qualifying the series resonant capacitors, and thermal-vacuum packaging of the entire unit.

Based on the performance of this 10-kW unit employing D6OT transistors it appears feasible to produce a $25-\mathrm{kW}$ series resonant converter by use of the D/ST transistor with its 2.5 times higher current rating. The longer storage time of the D7ST may, however, cause some performance penalty in the area of efficiency. Euture work in the area of transistor development should be to reduce the storage time and to provide better device packages. The inductance of the base, collector, and emitter leads is a major problem with the present packages because of the high current levels (hundreds if amps) involved.

APPENDIX A

ADDITIONAL TRANSISTOR CHARACTERIZATION DATA

PRECEDIMG PAGE BLANK NOT FILMED

concmal pace is
 OF POOR QUALITY

TABLE A-1. RELATIVE POWER DISSIPATION VERSUS REGENERATIVE FEEDBACK TURNS RATIO

Parameter		Relative Pover Dissipation													
Circuit Configuration		Saturated							Unsaturated						
Turns Ratio		3:1	4:1	5:1	6:1	7:1	8:1	10:1	3:1	4:1	5:1	6:1	7:1	8:1	10:1
Peak Ic. Aaps	Resonant Frequency. fr . kHz														
40	10	-	0.70	0.68	0.68	0.69	0.67	0.71	1.92	1.86	1.87	1.85	1.89	1.89	1.93
40	20	-	-	-	0.76	0.73	0.73	0.73	-	1.66	-	1.64	-	1.64	1.63
40	40	-	-	1.12	1.08	1.04	1.02	1.06	-	1.34	-	1.28	-	1.28	1.26
60	10	-	1.70	1.58	1.53	1.51	1.54	-	3.33	3.26	3.24	3.27	-	3.28	-
60	20	-	-	-	1.61	1.58	1.57	1.57	-	2.86	-	2.86	-	2.86	2.88
60	40	-	-	2.30	2.20	2.18	2.18	2.14	-	2.44	2.50	2.48	-	2.46	2.48
100	10	4.70	4.12	4.02	4.00	4.04	3.94	-	7.58	7.44	7.36	7.34	7.34	2.36	7.36
100	20	-	4.56	4.42	4.42	4.42	4.40	-	6.40	6.44	-	6.48	-	6.50	6.56
100	40	6.88	6.54	6.54	6.96	-	-	-	6.70	6.42	6.48	6.56	-	6.60	-
140	10	-	7.68	7.52	7.52	7.98	-	-	10.36	10.34	10.38	10.54	-	-	
140	20	-	8.76	8.46	8.26	8.92	-	-	10.16	10.26	10.38	$i 0.52$	-	-	-

table a-2. leading edge pulse duration versus regenerative feedback tumis ratio FOR A TYPICAL D60T (No. 60-1)

table a-3. leading edge pulse amplitude versus regenerative feedback turpa ratio FOR A TYPICAL D6OT (No. 60-1)

TABLE A-4. RELATIVE POWER DISSIPATION VERSUS REGENERATIVE FEEDBACK TURNS RATIO FOR A TYPICAL D7ST (No. 12)

TABLE A-5. LEADING EDGE PULSE DURATION VERSUS RRGENERATIVE FEEDBACK TURNS RATIO FOR A TYPICAL D7ST (No. 12)

table a-6. leading edge pulse amplitude versus regenerative feedback turns ratio FOR A TYPICAL D7ST (No. 12)

TABLE A-7. TOTAL DEVICE DISSIPATION VERSUS PEAK COLLECTOR CURRENT AND RESONANT FREQUENCY FOR THE D60Ts

Parameter		Total Device Dissipation, W									
Circuit Configuration		Saturated					Unsaturated				
Transistor Number		60-1	60-2	60-3	60-4	60-5	60-1	60-2	60-3	60-4	60-5
$\begin{gathered} \text { Peak Ic, } \\ \text { Amps } \end{gathered}$	Resonant Frequency, $\mathrm{fr}, \mathrm{kHz}$										
40	10	13.2	12.8	12.6	12.8	13.2	27.6	27.2	27.6	26.4	28.0
40	20	13.6	13.6	13.6	13.6	14.2	26.4	26.4	25.6	25.6	28.0
40	40	21.4	20.6	20.6	21.4	21.4	24.4	23.3	23.7	23.7	24.8
60	10	22.4	22.4	20.4	22.0	23.6	52.0	52.0	49.2	51.2	52.0
60	20	25.6	25.2	24.2	25.6	26.8	48.0	46.8	43.2	47.6	48.0
60	40	31.8	30.7	30.3	32.6	31.8	37.9	37.1	36.4	40.2	38.6
100	10	62.4	58.:	57.6	60.0	62.4	121.0	116.0	112.0	116.0	112.0
100	70	67.2	65.6	60.8	67.2	68.0	108.0	107.0	99.0	111.0	109.0
100	40	88.8	84.3	79.9	97.8	88.1	105.0	100.0	94.0	116.0	105.0
140	10	126.0	126.0	128.0	136.0	142.0	210.0	216.0	195.0	227.0	216.0
140	20	143.0	145.0	131.0	168.0	158.0	197.0	204.0	178.0	226.0	211.0

TABLE A-8. tOTAL DEVICE DISSIPATION VERSUS PEAK COLLECTOR CURRENT AND RESONANT FREQUENCY FOR THE D7STs

Parameter		Total Device Dissipation, w							
$\begin{gathered} \text { Circuit } \\ \text { Configuration } \end{gathered}$		Saturated				Unsaturated			
Transistor Number		12	15	36	37	12	15	36	37
$\begin{gathered} \text { Peak Ic, } \\ \text { Amps } \end{gathered}$	Resonant Frequency, $\mathbf{f r}$, $\mathbf{k H z}$								
100	10	40.2	47.2	38.8	41.6	43.2	48.4	43.2	50.0
100	20	57.6	56.8	56.4	59.2	58.4	61.6	56.8	59.2
100	40	65.6	72.8	69.6	80.0	64.8	80.4	74.4	87.2
150	10	56.6	61.6	53.2	60.8	64.0	79.2	64.8	79.2
150	20	83.2	83.2	80.0	99.2	83.2	90.4	82.4	92.0
150	40	142.0	171.0	160.0	187.0	130.0	173.0	171.0	194.0
250	10	147.0	206.0	136.0	158.0	160.0	180.0	164.0	204.0
250	20	214.0	258.0	211.0	240.0	232.0	234.0	222.0	259.0
250	40	443.0	426.0	419.0	477.0	426.0	410.0	410.0	458.0
350	10	322.0	366.0	328.0	414.0	388.0	486.0	420.0	526.0
350	20	435.0	480.0	464.0	531.0	461.0	501.0	490.0	560.0

table a-9. delay time and rise tinie versus leading-edge PULSE AMPLITUDE FOR D6Oí NUMBER 60-1

table a－10．delay time and rise time versus leading－edge

		\cdots	\pm	
			コロ	
		00	48	
			Ј ${ }_{\text {¢ }}$	幺888\％ 88888
			ப	요 \％¢ \％8 8 8 을
			己 ${ }_{\text {¢ }}$	
		N	$\pm{ }_{\text {¢ }}^{\text {¢ }}$	
			¢ ¢	
		\cdots	士 ํ	
			O \％	
		응	ち	へ
			Ј ¢	8 ¢n 83808988
		n	\pm ¢	윽 8×0888880
			¢	
		N	士 ${ }_{\text {¢ }}^{\text {¢ }}$	\＆억 3 욱 억윾 억
			J \％	
皆				으앙ㅇㅅㅇㅇㅇㅇㅇㅇㅇㅇㅇN
			앙 앙 8888889	

table a－11．delay time and rise time versus leading－edge PULSE AMPLITUDE FOR D60T NUMBER 60－3

		\simeq	亡	웅onix
			－${ }_{\square}^{\text {¢ }}$	
		응	$\pm \stackrel{8}{8}$	$80 \sim 8 \% 8 \times 8 \sim \infty$
			『 ${ }_{\text {¢ }}^{\text {¢ }}$	
		\cdots	む	
			『 ${ }_{\text {¢ }}^{5}$	
		N	士 ¢	
			Ј ${ }_{\text {¢ }}$	
		\simeq	\pm ¢	
			－\square_{5}^{5}	
		응	$\pm{ }_{\square}^{\text {¢ }}$	
			『 ${ }_{\text {¢ }}^{\text {¢ }}$	요 8 ¢ 8 \％ 8 \％ 0
		\cdots	$\pm \stackrel{\oplus}{¢}$	
			Э ：	
		N	$\pm \stackrel{\oplus}{\square}$	
			$\pm{ }_{\square}^{\text {\％}}$	
		芴		

table a－12．delay time and rise time versus lrading－edge PULSE AMPLITUDE FOR D6OT NUMBER 60－4

		\cong	を思	
			ت	$\because 8$ ¢ $980 \sim 808$
		00	$\pm \pm$	in 요 8 ¢ ¢ ¢ ¢ ¢ ¢
			『 ¢	$\cdots 8888$ \％ 8 \％ 888
			\pm ゅ	
			$\square \square_{+}^{\text {¢ }}$	
		\sim	$\pm \stackrel{\text { ¢ }}{\text { ¢ }}$	
			『 ${ }_{\text {¢ }}^{\sim}$	
		\cong	山㐌	
			『 ¢	
		9	$\pm \stackrel{め}{¢}$	
			『	
		n	」	
			『 ${ }_{\text {¢ }}^{5}$	
		\sim	$\pm \stackrel{\text { ¢ }}{\text { ¢ }}$	
			¢ ${ }_{\text {¢ }}^{\text {c }}$	
先				읏ㅇㅇㄱㅅ웅ㅇㅅㅇㅇㅇㅇ웅

table a－13．delay time and rise time versus leading－edge

		n	出	
			P	
		응	$\stackrel{ \pm}{\square}$	
			フ	$\varkappa 888 \sim 8 \sim 8080 \sim$
			$\pm \stackrel{\text { ¢ }}{ \pm}$	
			\＃	
		N	$\pm \stackrel{セ}{C}$	
			$\pm{ }_{\text {® }}^{\text {® }}$	
	$\begin{aligned} & \text { ロ゙ } \\ & \stackrel{y}{4} \\ & \text { 3 } \\ & \text { ® } \end{aligned}$	\cdots	$\pm \stackrel{\oplus}{E}$	
			Ј	
		O	$\pm \stackrel{\text { ¢ }}{\text { ¢ }}$	
			\bigcirc	
		n	$\pm{ }_{ \pm}^{\text {¢ }}$	
			『	
		N	$\pm \stackrel{め}{¢}$	
			ご	
				웅웅숭ㅇㅅㅇㄱ욱
		苞	웅ㅇㅇㅇㅇㅇㅇㅇㅇㅇ억	

TABLE A-15. DELAY TIMR AND RISE TIME VERSUS EEADING-EDGE

		Transistor 15											
Circuit Configuration		Saturated						Unsaturated					
Leading Edge Pulse Amplitude, Amps		5		15		30		5		15		30	
Peak Ic, Amps	Resonant Frequency, fr, $\mathbf{k H z}$	td	$\begin{aligned} & \text { tr } \\ & \text { ns } \end{aligned}$	td	$\begin{aligned} & \text { tr } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \text { td } \\ & \text { ns } \end{aligned}$	$\begin{array}{cr} \mathrm{tr} \end{array}$	$\begin{aligned} & \text { td } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \text { tr } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \text { td } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \text { tr } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \text { td } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \text { tr } \\ & \text { ns } \end{aligned}$
100	10	170	120	135	65	120	55	170	125	140	70	125	55
100	20	150	110	140	70	130	55	160	115	150	65	120	55
100	40	160	110	140	70	125	50	170	120	155	70	125	50
150	10	170	130	140	75	125	60	180	140	145	80	125	60
150	20	170	140	145	80	130	60	170	140	150	85	130	65
150	40	170	135	130	80	130	60	170	140	140	80	125	60
250	10	180	130	145	80	125	60	165	135	140	80	130	65
250	20	150	130	140	80	130	55	160	130	140	80	130	60
250	40	150	135	145	80	120	60	165	150	140	85	125	65
350	10	165	145	140	90	125	70	170	160	145	95	130	75
350	20	160	140	140	90	135	65	160	150	160	100	130	75

TABLE A－16．DELAY TIME AND RISE TIME VERSUS LEADIHG－EDGE PULSE AMPLITUDE FOR D7ST NUABER 36

	$\begin{aligned} & \text { Zu } \\ & \text { H } \\ & \text { H } \\ & 0 \\ & \text { 5 } \end{aligned}$	8	二：	
			$8:$	
		\cong	山：	
			$3{ }^{\circ}$	
		n	$\pm:$	
			5：	
		8	む	¢ ¢ \％\％¢ ¢ ¢ ¢ ¢ ¢＾
			$\because:$	
		\cong	$\pm:$	2 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ \％
			\％	
		\cdots	\pm ¢	
			$\pm \stackrel{\square}{\square}$	
唇				

table a-17. delay time and rise time versus leading-edge

table a－18．fall time and storage time versus turns－ratio

		$\stackrel{*}{6}$	${ }^{\text {® }}$ ¢	
			\pm ¢ ${ }_{\text {¢ }}^{\text {c }}$	
		＊	${ }_{\sim}^{\infty}$ ¢	
			＂${ }^{\infty}$	
			¢ ${ }^{\text {¢ }}$	\cdots
			出 ${ }_{\text {¢ }}^{\text {¢ }}$	
		＊	$\pm{ }^{\infty}$ ¢	
			แ ${ }_{\text {¢ }}^{\text {¢ }}$	
		＊	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\underset{\sim}{\sim}$
			出 $\square_{\square}^{\square}$	
		＊	$\stackrel{\text { ¢ }}{ \pm}$	
			世	O O O O ：

0	$\vec{\sim} \vec{\sim} \underset{\sim}{\ddot{\sim}}$
∞	$\vec{\sim} \vec{\infty} \vec{\infty} \vec{\sim} \quad \vec{\sim}$
＜	$\vec{\square} \vec{\square} \vec{\sim} \vec{m}$
免品	앙 0

TABLE A-19. FALL TIME AND STORAGE TIME VERSUS TURNS-RATIO

0	$\begin{array}{cccc}\ddot{\sim} & \ddot{\sim} & \ddot{\sim} & \ddot{\sim}\end{array}$
∞	$\begin{array}{llll}\vec{\infty} & \vec{\infty} & \overrightarrow{0} & \vec{n}\end{array}$
$<$	$\begin{array}{llll}\overrightarrow{\ddot{v}} & \ddot{\ddot{s}} & \ddot{m} & \ddot{\ddot{m}}\end{array}$
感	앙 8 8 9

table a-20. fall time and storage time versus turns-Ratio

CircuitConfiguration		Transistor 60-3											
		Saturated						Unsaturated					
Turns	Ratio	A*		B*		C*		A*		B*		C*	
Peak Ic, Amps	Resonant Frequency $\mathrm{fr}, \mathrm{kHz}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & t 8 \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & t s \\ & \mu s \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \text { ts } \\ & \mu 8 \end{aligned}$	tf	$\begin{aligned} & t 8 \\ & \mu s \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{ts} \\ & \mu \mathrm{~s} \end{aligned}$	$t 8$ n8	$\begin{aligned} & \mathrm{ts} \\ & \mu \mathrm{~s} \end{aligned}$
40	10	380	1.9	370	1.5	360	1.2	200	0.48	200	0.42	200	0.38
40	20	350	2.35	340	1.7	330	1.35	160	0.62	160	0.58	170	0.62
40	40	280	2.5	280	1.8	250	1.45	180	1.0	150	0.86	160	0.84
60	10	360	2.2	370	1.6	360	1.35	160	0.52	170	0.52	200	0.68
60	20	330	2.4	320	1.7	300	1.3	200	0.78	200	0.82	240	0.92
60	40	200	2.6	220	1.6	200	1.25	170	1.12	160	1.02	150	0.93
100	10	-	2.65	360	2.2	360	1.9	-	0.8	190	0.74	200	0.82
100	20	-	2.9	250	2.4	250	1.9	-	1.06	160	1.01	190	1.12
100	40	-	3.0	80	2.2	80	2.1	-	1.8	120	1.6	120	1.65
140	10	-	2.8	320	2.5	-	-	-	0.92	180	1.0	-	-
140	20	-	3.0	-	2.5	-	-	-	1.35	80	1.5	-	-

0	$\overrightarrow{\ddot{\sim}} \overrightarrow{\ddot{\sim}}$
$\boldsymbol{\omega}$	$\begin{array}{llll}\vec{\infty} & \overrightarrow{0} & \overrightarrow{0} & \vec{n} \\ \ddot{n}\end{array}$
$<$	$\begin{array}{llll}\overrightarrow{\dot{\sigma}} & \vec{\square} & \vec{j} & \vec{m} \\ \ddot{m}\end{array}$
免	

table a-21. fall time and storage time versus turns-ratio

		Transistor 60-4											
Circuit Configuration		Saturated						Unsaturated					
Turns	Ratio	A^{*}		B*		c*		A*		B*		C*	
$\begin{gathered} \text { Peak Ic, } \\ \text { Amps } \end{gathered}$	Resonant Frequency fr, $\mathbf{k H z}$	$\begin{array}{ll} \text { tf } \end{array}$	$\begin{aligned} & \text { ts } \\ & \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & \mathrm{tf} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { ts } \\ & \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & t s \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{ts} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{tf} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { ts } \\ & \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & \text { ts } \\ & \text { ns } \end{aligned}$	$\begin{array}{r} \text { tB } \\ \mu \mathrm{s} \\ \hline \end{array}$
40	10	520	2.3	450	1.5	400	1.2	190	0.48	180	0.5	200	0.46
40	20	500	2.6	430	2.1	380	1.3	230	0.82	220	0.75	220	0.74
40	40	250	2.9	260	2.1	240	1.4	160	1.12	160	0.96	160	0.92
60	10	520	2.5	460	2.0	400	1.3	230	0.68	210	0.68	240	0.75
60	20	410	2.9	420	2.1	360	1.3	260	0.96	260	0.98	240	0.97
60	40	160	3.0	160	2.1	160	1.25	150	i $: .24$	140	1.14	130	1.0
100	10	-	3.0	480	2.7	460	2.3	-	0.92	240	0.92	260	0.98
100	20	-	3.6	170	2.9	2 3 0	2.4	-	1.2	120	1.2	140	1.3
100	40	-	3.8	-	2.9	120	2.7	-	1.95	120	1.7	100	1.75
140	10	-	3.4	320	3.1	-	-	-	1.06	210	1.25	-	-
140	20	-	3.8	-	3.5	-	-	-	1.6	-	1.7	-	-

0	$\vec{\sim} \underset{\sim}{\underset{\sim}{\sim}} \vec{\sim}$
\oplus	$\begin{array}{llll}\vec{\infty} & \overrightarrow{0} & \overrightarrow{0} & \vec{\sim} \\ \ddot{\sim}\end{array}$
<	$\overrightarrow{\#} \overrightarrow{\#} \overrightarrow{\#} \vec{m}$
U	앙 8 ㅇ

table a-22. FALL time and storage time versus turns-ratio FOR D60T NUMBER 60-5

		Transistor 60-5											
CircuitConfiguration		Saturated						Unsaturated					
Turns	Ratio	A*		B*		C*		A*		B*		C*	
Peak Ic, Amps	Resonant Frequency $\mathbf{f r}, \mathbf{k H z}$	tf	$\begin{aligned} & \text { ts } \\ & \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{ts} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{ts}_{8} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{ts} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathbf{t s} \\ & \mu \mathrm{B} \end{aligned}$	t8 ns	18 48
40	10	380	1.4	360	1.1	330	0.8	230	0.4	230	0.4	240	0.36
40	20	400	1.75	360	1.25	300	0.95	160	0.5	170	0.46	170	0.47
40	40	280	1.9	260	1.4	230	1.1	150	0.77	140	0.7	130	0.66
60	10	360	1.6	370	1.15	340	0.9	200	0.42	200	0.44	200	0.54
60	20	360	1.85	330	1.3	280	1.0	160	0.62	180	0.63	200	0.73
60	40	210	1.95	220	1.3	1.0	1.0	160	0.88	150	0.8	140	0.77
100	10	-	1.9	380.	1.6	380	1.4	-	0.58	160	0.58	180	0.62
100	20	-	2.2	250	1.7	240	1.4	-	0.82	160	0.8	190	0.95
100	40	-	2.35	150	1.75	170	1.45	-	1.38	180	1.3	150	1.25
140	10	-	2.05	360	1.75	-	-	-	0.7	200	0.77	-	-
140	20	-	2.2	120	1.8	-	-	-	1.12	130	1.3		

0	$\overrightarrow{\ddot{y}} \underset{\sim}{\ddot{\sim}} \underset{\sim}{\ddot{\sim}}$
∞	$\begin{array}{llll}\vec{\sim} & \overrightarrow{0} & \vec{\sim} & \vec{\sim}\end{array}$
$<$	$\overrightarrow{\#} \vec{\square} \vec{\sim} \vec{\sim}$
U	앙응군

table a-23. fall time and storage time versus turns-ratio

Circuit Configuration		Transistor 12											
		Saturated						Unsaturated					
Turn	Ratio	A*		B*		$C *$		A^{*}		B*		C^{*}	
Peak Ic. Amps	Resonant Frequency fr, $\mathbf{k H z}$	$\begin{aligned} & \text { te } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{Es} \\ & \mu \mathrm{~s} \end{aligned}$	tf	$\begin{aligned} & \text { ts } \\ & \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & \text { cf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 18 \\ & \mu 8 \end{aligned}$	$\begin{aligned} & t f \\ & n B \end{aligned}$	$\begin{aligned} & 188 \\ & \mu s \end{aligned}$	tf ns	$\begin{aligned} & t 8 \\ & \mu s \end{aligned}$	$t 8$ ns	$\begin{aligned} & \mathrm{LB} \\ & \mu 8 \end{aligned}$
100	10	500	7.8	650	4.6	500	2.9	230	1.6	240	1.5	280	1.8
100	20	300	7.0	380	4.3	300	3.1	370	4.0	240	2.1	230	2. 1
100	40	-	6.1	210	4.2	200	3.3	230	4.8	220	3.4	200	2.9
150	10	400	7.5	550	4.3	450	2.7	220	1.6	250	1.7	320	2.0
150	20	260	7.4	300	4.1	230	3.0	330	4.2	250	2.8	230	2.4
150	40	-	6.0	280	3.9	240	3.3	-	4.9	280	3.5	230	3.1
250	10	-	8.5	320	5.9	340	4.5	260	2.6	230	2.2	250	2.5
250	20	-	8.7	270	5.5	330	4.5	-	5.6	360	4.0	350	3.7
250	40	-	8.0	-	5.4	150	4.4	-	6.7	-	4.8	150	4.1
350	10	-	8.6	370	6.1	370	5.3	340	2.8	350	3.1	370	3.6
350	20	-	7.8	\rightarrow	6.7	240	6.5	-	5.3	-	4.9	180	4.9

Peak IC	A	B	C
100	$4: 1$	$8: 1$	$12: 1$
150	$4: 1$	$8: 1$	$12: 1$
250	$3: 1$	$5: 1$	$7: 1$
350	$3: 1$	$5: 1$	$7: 1$

table a-25. fall time and storage time versus turns-ratio

		Transistor 36											
Circuit Configuration		Saturated						Unsaturated					
Turns	Ratio	A*		B*		C*		A*		B*		C*	
$\begin{aligned} & \text { Peak Ic, } \\ & \text { Amps } \end{aligned}$	Resonant Frequency fr, $\mathbf{k H z}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & t 8 \\ & \mu s \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \text { ts } \\ & \mu s \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{ts} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \text { ts } \\ & \text { us } \end{aligned}$	$\begin{aligned} & \text { tf } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{ts} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { ts } \\ & \text { ns } \end{aligned}$	$\begin{gathered} \mathrm{ts} \\ \mu \mathrm{~s} \end{gathered}$
100	10	500	7.3	600	5.4	650	4.4	300	1.9	260	1.7	270	1.7
100	20	280	7.4	360	5.6	400	4.8	400	4.4	380	3.6	360	3.3
100	40	-	6.0	220	4.4	220	3.7	240	4.9	230	3.6	230	3.1
150	10	440	6.8	500	5.0	500	3.7	260	1.9	290	1.9	280	1.8
150	20	-	7.2	310	5.2	280	4.2	320	4.7	270	3.5	250	2.7
150	40	-	6.1	300	4.1	270	3.5	-	5.1	280	3.7	260	3.2
250	10	-	7.1	250	5.9	360	4.8	250	2.3	230	2.4	230	2.4
250	20	-	6.9	-	6.2	300	5.0	-	5.4	500	4.0	400	3.5
250	40	-	7.8	-	5.6	-	4.6	-	6.5	-	4.7	-	4.3
350	10	-	7.0	400	6.0	330	5.2	300	2.9	300	2.9	340	3.2
350	20	-	8.2	-	6.6	-	5.8	-	5.3	-	4.6	180	4.6

table a-26. fall time and storage time versus turns-ratio

0	$\begin{array}{cccc}\ddot{\sim} & \ddot{\sim} & \ddot{\sim} \\ \underset{\sim}{r} & \ddot{\sim}\end{array}$
円	$\begin{array}{llll}\ddot{\infty} & \ddot{\infty} & \ddot{\sim} & \ddot{n} \\ \ddot{n}\end{array}$
$<$	$\begin{array}{llll}\ddot{\sim} & \vec{\sim} & \ddot{\sim} & \ddot{m}\end{array}$
芯	응

