NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

nnsn Technical Memorandum 83876

State-Variable Analysis of Non-linear Circuits with a Desk Computer

(HASA-TH-83876) STATE-VARIABLE AMAZYSIS OF N82-17440 MON-LINEAR CIRCUITS UITH A DESK COAPOTER (NASA) 37 pHC $103 / 4 F 401$ CSCL 09C
G3/33 1.1740

Dr. Edwin Cohen

JULY 1981

National Aeronautics and
Space Administration
Eoddand Spece Filaint Center
Greenbelt, Maryland 20771

STATE-VARIABLE ANALYSIS OF NONLINEAR CIRCUITS WITH A DESK COMPUTER

Dr. Edwin Cohen
Professor of Electrical Engineeriny
New Jersey Institute of Technology

TABLE OF CONTENTS

Page
INTRODUCTION 1
CIRCUITS AS GRAPHS 1
THE CONCEPT OF STATE 4
STATE-VARIABLE APPROACH TO ANALYSIS 6
METHOD OF SOLUTION 15
COMPUTER PROGRAM - FLOW CHART 16
COMPUTER PROGRAM - INSTRUCTIONS FOR USE 19
APPENDIX A
APPENDIX B

FIGURES

Page

1. CIRCUTT AND ITS GRAPH 2
2. GRAEH AND SOME OF ITS TREES 3
3. USE OF A TREE 4
4. AN EXAMPLE 5

STATE-VARIABLE ANALYSIS OF NON-LINEAR CIRCUITS WITH A DESK COMPUTER

INTRODUCTION

This work was prompted by the need to analyze the transient performance of the power regulator unit for the multi-mission modular spacecraft, in particular under the condition of short-circuit failure of the switching transistor of a power module. Due to the nonlinearities introduced by the filter inductors and by the solar array characteristics, the statevarisbie programs available for desk computers could not be used. The purpose of this work is to fill up this void and to be general enough to handle most nonlinear circuit or system analyses.

The nonlinearities considered here are not restricted to any particular circuit element. They may arise from any passive or active source. What the program needs is the fundamental relationship governing each nonlinearity in the form of points on a curve; for example, the flux linkage-current relationship of a nonlinear inductance or the voltage-current relationstrip of a source.

The starting point of the program is a set of first-order differential equations and algebraic equations describing the system. That is provided by the user. It was therefore deemed useful to include in this document the methodology of writing equations directly from a simple examination of a circuit. Examples have been includer, where appropriate, in order to illustrate such methodology.

The program is interactive and offers many options to the user, among which is plotting of the results. It was used very successfully for the transient analysis of the power module mentioned above.

Circuits As Graphs

The graph representation of a circuit enables focusing on the manner in which the various elements of the circuit are interconnected. Each node of the circuit has its counterpart in the graph, a node being the point at which two or more circuit eiements join. For the
purpeces of this analysis, all sources (voltage or current) are considered by themselves, dissociated from any other circuit elements; besides, their values are presumed to be variable. Any passive circuit eloment (resistance, inductance or capacitance) found connected in parallel with a voltage source or in series with a current source may be removed as it has no bearing on the analysis at lhand. The graph of the circuit is then obtained by representing each circuit element, except those removed, by a line (edge) joining the nodes at the terminals of that element. This is illustrated in Fig. I.

Figure 1. Circuit and its graph. (a) Original circuit. (b) Modified circuit where elements 7 and 8 are dropped because they were in parallel with a voitage source and series with a current source, respectively. (c) Circuit graph with 5 nodes and 6 edges.

The tree of a graph is obtained, using the following procedure. Starting out with the node configuration only, enough edges are subsequently added to interconnect the nodes without forming any closed paths. The edges forming a tree are called tree branches and the remaining edges are called links. It is, in general, possible to derive a large variety of trees from a graph as illustrated in Fig. 2. In (b) the tree branches are

Figuse 2. Graph and scme of its trees. (a) Original graph. (b) \& (c) Possible, but not all, trees.
$1,2,3$, and 4, while the links are 5 and 6. In (c) $2,3,5$, and 6 are tree branches, 1 and 4 are links.

Due to Kirchhoff's voltage law (KVL), the tree branch voltages may be considered independent varitbles. The addition of any link to a tree produces a unique cloved path. This enables the biriting of a link voltage in terms of a unique combination of tree branch voltages. Thus, in the tree of Fig. 2(b), the voltage of link 5 can be expressed in terms of the voltages of branches $1,2,3$, and 4 , while the voltage of link 6 depends on branch voltages 3 and 4. In Fig. 2(c), link 1 needs branches 2, 5, and 6 for its voltage, and link 4 tranches 3 and 6. Each link can thus be associated with a unique set of tree branches, namely, those branches which lie along the closed path defined by the link, and form a "tie set:" See Fig. 3(a).

Likewise, each tree branch nlay be associated with a unique set of links to form a "cut set" as follows. A closed surface can be found, crossed by that tree branch alone, such that the tree nodes are split into two distinct groups. The links crossing that surface are those associated with the tree branch. For the tree of Fig. 2(b), the following associations hold, as illustrated in Fig. 3(b).

Tree branch	Cut set	Link	Tie set
1	1,5	5	$1,2,3,4,5$
2	2,5	6	$3,4,6$
3	$3,5,6$		

For the tree of Fig. 2(c), the ascocia/ions are:

Tree branch	Cut set	Link	Tie set
2	1,2	1	$1,2,5,6$
3	3,4	4	$3,4,6$
5	1,5		
6	$1,4,6$		

Figure 3. Use of a tree in defining: (a) link voltage,
(b) tree branch current.

The Concept of State

At any instant of time, the amount of energy stored in an energy-storing element is an indication of the "state" of that element. In a capacitance the energy stored is $1 / 2 \mathbf{C} \mathbf{v}^{2}$, in an inductance it is $1 / 2 \mathrm{Li}^{2}$. Thus, the voltage v may be considered the state of a capacitance, describing completely its present, independent of its past. Similarly, the current i may be considered the state of an inductance.

The transition of an element from one state to another requires the flow of energy into or out of the element, i.e. a certain behavior of the electrical quantity which is not descriptive of its state. In the case of a cupacitance, the transition from a voltage $\mathbf{v}_{\mathbf{1}}$ to a voltage v_{2} necessitates a flow of current whose behavior in time is responsible for taking the capacitance from the first state to the second. An inductance undergoes a transition from a state i_{1}, to a state i_{2} on the heels of a voltage performance in time.

From a different standpoint, it can be said that a knowledge of the behavior of the current of a capacitance between two instants of time t_{1} and t_{2} is not enough to determine the voltage (state) of the capacitance at time $\mathbf{t}_{\mathbf{2}}$; it is essential to know also
the state from which it started, i.e. the voltage at t_{1}. The same holds true for an inductance where the voltage variations across it between times t_{1} and t_{2} cannot determine its state i_{2} undess its state i_{1} is known. As for a resistance, no particular bchavior in time is needed of either of its electrical quantities, i and v. It is a memoryless element with no need for a concept of transition. The idea of state is therefore foreign to it. Let us move on now to a more complex configuration, the circuit.

The state of a circuit may be conceived as the set of states of all of its energy-storing elements. The electrical quantities, which are capable of effecting a transition of the circuit from one state to another (the capacitance currents and the inductance voltapes) are interrelated by the circuit topolory and the source values. Those electrical quantities may be obtained at any time if the state of the circuit and the source values are known. As an example, the circuit of Fig, $4(a)$ is in the following state at $t=0.1$ second:

Voltape across $C=3 \mathrm{~V}$
Current through $L=0.2 \mathrm{~A}$

Fig. 4. An example: (a) the circuit at any time;
(b) the circuit at $t=0.1 \mathrm{~s}$.

This state and the source values are shown in Fig. 4 (b). Using simple de circuit analysis techniques, the following results are obtained:

$$
\begin{aligned}
& i_{1}=0.11 \mathrm{~A} \\
& i_{2}=0.39 \mathrm{~A} \\
& \mathrm{v}_{\mathrm{zs}}=5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{bs}}=4.6 \mathrm{~V}
\end{aligned}
$$

The capacitance current and the inductance voltage at $t=0.1$ s are thus known, namely, 0.39 A and 4.6 V , respectively. The transition to the "mext" circuit state can then prosumably be determined.

In the equivalent circuit of Fig. $4(b)$, no distinction is made, or is necessery, between the 6.1 V of the source and the 3 V of the capacitance state, or between the 0.48 A of the source and the 0.2 A of the inductance state. It is therefore convenient to include the source variables, in the set defining the circuit state, as the augmented set permits the determination of the voltage and current of every element in the curcuit.

Stato-Variable Approach to Analysis

In the sequel two assumptions are implicitly made for any circuit:
(a) no tie set contains only capacitances;
(b) no cut set contains only inductances.

As a result, it is possible to find a tree where all the circuit capacitances are included, and none of the circuit inductances. To simplify this first ane'jsis, resistances are asumed to be all tree branches or all links. Voltage sources are to belong to the tree, while current sources have to be links. The state variables are then defined as the capacitance voltages, the inductance currents, and the source variables (voltage or current).

If the circuit is linear, the next step is to write a set of first-order differential equations for the state variables, obtained directly from KVL and Kirhoff's current law (KCL). For n state variables, denoted by $X_{1}, X_{2}, \ldots, X_{n}$, the rth equation is of the form:
$\frac{d X_{r}}{d t}=a_{11} X_{1}+a_{82} X_{2}+\ldots+a_{1 n} X_{n}$
There are n such equations, which in matrix form may be expressed as:

$$
\underline{x}=\underline{A} \underline{x}
$$

The detailed procedure now follows. First, if the resistances are tree branches, express their individual currents in terms of state-variable currents. The voltage is then the current expression multiplied by R. On the other hand, if the resistances are links, their individual
voltaps are expresed in terms of state-variable voltaper. The current is then the voltage expremion divided by R. In either cash both the voltage and current of each resistance may be exprosed in terms of state variables only. And now the state equations.

Each capacitance is a tree branch and its voltage v is a state variable. The derivative $d y / d t$ is equal to the capecitance current divided by C. Uning the graph method described above, the capacitance current may be expressed in terms of link currenss, i.c. statevariable currents only as sought. The same holds true for the inductances.

Each inductance is a link and its current i is a state variable. The derivative $\mathrm{di} / \mathrm{dt}$ is equal to the inductance voltage divided by L. Using the eraph method, the inductance voltage may be expressed in terms of treo-branch voltages, in. state-variable voltages only. Finally, a (set of) first-order differential equation(s) is obtained for each source, obviously in terms of its own state varistis(s) only. For more details concerning sources, see Hewlett-Packard manual for model 30 calculators, entitled "State Variables PAC," pages 36-37.

Example 1.

tree (5 state variables)

The sources are de with values A and B. A tree is formed including all capacitances, excluding all inductances, and including all resistances. The tree also includes the voltage
source, but not the current source. All state variable polarities chowed arbitrarily,

$$
\begin{aligned}
& \text { Rydistance } \mathbf{R}_{\mathbf{1}} \text { : current } \mathbf{i}_{\mathbf{2}} \\
& \text { voltage } \mathbf{R}_{\mathbf{1}} \mathrm{I}_{\mathbf{2}} \\
& \text { Resistance } R_{2} \text { : current } i_{3} \\
& \text { voltage } \quad \mathbf{R}_{2} \mathrm{I}_{3} \\
& \text { Resistance } R_{3} \text { : cement } i_{2}+i_{3} \\
& \text { voltage } R_{3}\left(i_{2}+i_{3}\right) \\
& \text { Resistance } R_{4}: \text { current } i_{3}+i_{5} \\
& \text { voltage } \quad \mathbf{R}_{4}\left(-i_{3}+i_{5}\right) \\
& \frac{d v_{1}}{d t}=\frac{1}{C}\left(i_{2}+i_{3}\right) \\
& \frac{d i_{2}}{d t}=\frac{1}{L_{1}}\left[-R_{1} i_{2}+v_{4}-v_{1}-R_{3}\left(i_{2}+i_{3}\right)\right] \\
& \frac{d i_{3}}{d t}=\frac{1}{L_{2}}\left[R_{4}\left(-i_{3}+i_{5}\right)-v_{1}-R_{3}\left(i_{2}+i_{3}\right)-R_{2} i_{3}\right] \\
& \frac{d v_{4}}{d t}=0 \\
& \frac{d i_{s}}{d t}=0
\end{aligned}
$$

In matrix form,

$$
\frac{-d}{d t}\left[\begin{array}{l}
v_{1} \\
i_{2} \\
i_{3} \\
v_{4} \\
i_{3}
\end{array}\right]=\left[\begin{array}{lllll}
0 & 1 / C & 1 / C & 0 & 0 \\
-1 / L_{1} & -\left(R_{1}+R_{3}\right) / L_{1} & -R_{3} / L_{1} & 1 / L_{1} & 0 \\
-1 / L_{2} & -R_{3} / L_{2} & -\left(R_{4}+R_{3}+R_{2}\right) / L_{2} & 0 & R_{4} / L_{2} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
i_{2} \\
i_{3} \\
v_{4} \\
i_{5}
\end{array}\right]
$$

coefficient matrix

The initial atate vector is
.$V_{1}(0)$
$i_{2}(0) \quad$ where $\quad v_{1}(0)$ is the initial voltage of C_{1}
$i_{3}(0) \quad i_{2}(0)$ is the initial current of L_{1}
A
$i_{3}(0)$ is the initial current of L_{2}
B

Example 2.

Hert all resistances are links.
Resistance $\mathbf{R}_{\mathbf{1}}$: voltage $=\mathbf{v}_{\mathbf{4}}-\mathbf{v}_{\mathbf{1}}$ current $=\left(v_{4}-v_{1}\right) / R_{1}$

Resiatance $\mathbf{R}_{\mathbf{2}}$: voltage $=\mathbf{v}_{\mathbf{1}}$ current $=\mathbf{V}_{\mathbf{1}} / \mathbf{R}_{\mathbf{2}}$

Resistance $\mathbf{R}_{\mathbf{3}}: \quad$ voltage $\quad \mathbf{v}_{\mathbf{2}}$ current $=v_{2} / R_{3}$

$$
\begin{aligned}
& \frac{d v_{1}}{d t}=\frac{1}{C_{1}}\left[\left(v_{4}-v_{1}\right) / R_{1}-v_{1} / R_{2}-i_{3}\right] \\
& \frac{d v_{2}}{d t}=\frac{1}{T_{2}}\left[i_{3}-v_{2} / R_{3}+i_{s}\right] \\
& \frac{d i_{3}}{d t}=\frac{1}{L}\left[v_{1}-v_{2}\right] \\
& \frac{d v_{4}}{d t}=-\mathrm{v}_{4} \quad \text { for voltage source } \\
& \frac{d i_{5}}{d t}=X_{6} \quad \begin{array}{l}
\text { for current source, since } \\
d i t
\end{array} \\
& \frac{d x_{6}}{d t}=-\omega^{2} i_{5} \\
& d i_{s} / d t=-\omega B \sin (\omega t+\phi) \\
& d^{2} i_{g} / d^{2}=-\omega^{2} B \cos (\omega t+\phi)
\end{aligned}
$$

In matrix form,
$\frac{d}{d t}\left[\begin{array}{l}v_{1} \\ v_{2} \\ i_{3} \\ v_{4} \\ i_{5} \\ x_{6}\end{array}\right]=\left[\begin{array}{cccccc}-\left(1 / R_{1}+1 / R_{2}\right) / C_{1} & 0 & -1 / C_{1} & 1 / C_{1} & 0 & 0 \\ 0 & -1 / R_{3} C_{2} & 1 / C_{2} & 0 & 1 / C_{2} & 0 \\ 1 / L & -1 / L & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -a & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -\omega^{2} & 0\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ i_{3} \\ v_{4} \\ i_{5} \\ x_{6}\end{array}\right]$

The initial state vector is
$\left[\begin{array}{l}v_{1}(0) \\ v_{2}(0) \\ i_{3}(0) \\ A \\ B \cos \phi \\ -\omega B \sin \phi\end{array}\right]$
where $\mathrm{v}_{1}\left(0^{\circ}\right)$ is the initial voltage of C_{1}
$\mathbf{v}_{2}(0)$ is the initial voltage of C_{2}
$\mathrm{i}_{3}(0)$ is the initial current of L

Concerning the status of resistances in a graph, it is not always possible to have them all either tree branches or links. A mix is the norm rather than the exception. In this
case consider temporarily that the voltages of tree-branch resistances and the currents of link resistances are state variables. Write an equation for the current of each tree-branch resistance and the voltage of each link resistance, using state variables only. Solve for the resistance state variables in terms of the remaining state variables.

Example 3.

Let the temporary state variables be v_{5} for R_{1}, i_{6} for R_{2}, v_{7} for R_{3}, and v_{8} for R_{4}.

$$
\begin{aligned}
& v_{5} / R_{1}=i_{2} \\
& i_{6} R_{2}=v_{8}+v_{1} \\
& v_{9} / R_{3}=i_{3} \\
& v_{8} / R_{4}=i_{2}-i_{6}-i_{3}
\end{aligned}
$$

$$
v_{s}=R_{1} i_{2}
$$

$$
R_{2} i_{6}-v_{8}=v_{1}
$$

$$
D \quad v_{7}=R_{3} i_{3}
$$

$$
v_{8} / R_{4}+i_{6}=i_{2}-i_{3}
$$

Solve for v_{5}, y_{8}, v_{7}, and v_{8}.
$v_{s}=R_{1} i_{2}$
$i_{6}=\frac{1}{R_{2}+R_{4}} v_{1}+\frac{R_{4}}{R_{2}+R_{4}} i_{2}-\frac{R_{4}}{R_{2}+R_{4}} i_{3}$
$v_{7}=\frac{R_{3} i_{3}}{R}$
$\left.\right|_{v_{3}}-\frac{R_{4}}{R_{2}+R_{4}} v_{1}+\frac{R_{2} R_{4}}{R_{2}+R_{4}} i_{2}-\frac{R_{2} R_{4}^{-}}{R_{2}+R_{4}} i_{3}$

The provious procedure is now followed.
$\begin{aligned} \text { Resistance } \mathbf{R}_{1} \quad: \quad \text { current }= & \mathbf{i}_{\mathbf{2}} \\ & \text { voltage }=\quad \mathbf{R}_{1} \mathbf{i}_{2}\end{aligned}$
Resiatance $R_{2} ; \quad$ current $=\frac{1}{R_{2}+R_{4}} V_{1}+\frac{R_{4}}{R_{2}+R_{4}} i_{2}-\frac{R_{4}}{R_{2}+R_{4}} i_{3}$

$$
\text { voltage }=\frac{R_{2}}{R_{2}+R_{4}} v_{1}+\frac{R_{2} R_{4}}{R_{2}+R_{4}} i_{2}-\frac{R_{2} R_{4}}{R_{2}+R_{4}} i_{3}
$$

Resistance $R_{3} \quad: \quad$ current $=i_{3}$
voltage $=\mathbf{R}_{\mathbf{3}} \mathrm{i}_{\mathbf{3}}$
Resistance $R_{4} \quad: \quad$ current $=-\frac{1}{R_{2}+R_{4}}{ }^{v} 1+\frac{R_{2}}{R_{2}+R_{4}} i_{2}-\frac{R_{2}}{R_{2}+R_{4}} i_{j}$
voltage $=-\frac{R_{4}}{R_{2}+R_{4}} v_{1}+\frac{R_{3} R_{4}}{R_{2}+R_{4}} i_{2}-\frac{R_{2} R_{4}}{R_{2}+R_{4}} i_{3}$
$\frac{d v_{1}}{d t}=\frac{1}{C}\left[i_{2}-\frac{1}{R_{2}+R_{4}} v_{1}-\frac{R_{4}}{R_{2}+R_{4}} i_{2}+\frac{R_{4}}{R_{2}+R_{4}} i_{3}-i_{3}\right]$
$\frac{d i_{2}}{d t}=\frac{1}{L_{1}}\left[-R_{1} i_{2}+v_{4}-v_{1}+\frac{R_{4}}{R_{2}+R_{4}} v_{1}-\frac{R_{2} R_{4}}{R_{2}+R_{4}} i_{2}+\frac{R_{2} R_{4}}{R_{2}+R_{4}} i_{3}\right]$
$\frac{d i_{3}}{d t}=\frac{1}{L_{2}}\left[\frac{R_{4}}{R_{2}+R_{4}} v_{1}+\frac{R_{2} R_{4}}{R_{2}+R_{4}} i_{2}-\frac{R_{2} R_{4}}{R_{2}+R_{4}} i_{3}+v_{1}-R_{3} i_{3}\right]$
$\frac{d v_{4}}{d t}=0$

Notice that in all the state equations written so far the differentiated variables were the state variables. This is always true of linear systems, not necessarily true of nonlinear systems. For the latter a distinction is made between the differentiated variables and the state variables. The state equations take the form $\dot{\underline{x}}^{\prime}=\underline{A} \underline{X}$ instead of $\underline{\underline{x}}=\underline{A} \underline{X}$. The basic equation characterizing an inductance is $v=d \lambda / d t$, where λ is the coil tlux linkage. If λ is produced by a coil current i, then the inductance $L=M / L$. L is not constant unless λ is directly proportional to i, in which case $v=d \lambda / d t=d(L i) d t=L d i / d t$.
For a magnetic core whose B-H curve is available, the λ - i relationship is derived it the following manner.
$\lambda=\mathbf{N} \phi=(\mathbb{N A}) \mathbf{B}$.
$\mathrm{i}=(\mathrm{l} / \mathrm{N}) \mathrm{H}$
where N is the number of turns of the coil,
A is the cross-section of the magnetic core in m^{2}
\& is the mean length of the mapnetic core in m.
In setting up the state equation of an inductance, write $\mathbf{d \lambda} / \mathrm{dt}$ in terms of the state variables using KVL. For a nonlinear inductance, the differentiated variable is thus λ, and the state variable i .

The above expressions for λ and i are based on SI units, i.e. B is in tesla (weber/m ${ }^{\mathbf{2}}$) and H in ampere/meter. The B-H curve is often available in ces units. In that case,

```
\lambda = (NA x 10-8) B
i = [l/(0.4\piN)] H
```

where A is in square centimeter,
l is in centimeter,
B is in gauss,
H is in oersted.
As for a capacitance, the basic equation is $i=d q / d t$, where q is the charge in coulomb on the plates of the capacitance. The charge is related to voltage across the capacitance by $\mathbf{q}=\mathbf{C v}$, where \mathbf{C} is the capacitance in farad. If C is constant (linear capacitance), then $\mathrm{i}=\mathrm{Cdv} / \mathrm{dt}$; otherwise, the relationship between q and v must be known. In setting up the state equation, write $\mathrm{dq} / \mathrm{dt}$ in terms of the state variables using KCL. For a nonlinear capacitance, the differentiated variable is thus q and the state variable \mathbf{v}.

For a resistance $\mathbf{v}=\mathbf{R i}$. If \mathbf{R} is not constant (nonlinear resistance), one of its electrical quantities is taken as a state variable. If the resistance is a tree branch, its state variable is the voltage. If the resistance is a link, its state variable is the current. In either case, the other electrical quantity is expressed in terms of the state variables of the whole problem, using KVL in case of a link, KCL in case of a tree branch. This other quantity is obviously not differentiated.

Example 4.

Consider the circuit of example 1 in this section. Let C, L_{i}, and R_{4} be nonlinear. Using the same tree, ascign voltage v_{6} to $R_{4} . v_{6}$ is a state variable since R_{4} is a tree branch. The state equations become:

$$
\begin{aligned}
& \frac{d q_{1}}{d t}=i_{2}+i_{3} \\
& \frac{d \lambda_{2}}{d t}=-R_{1} i_{2}+v_{4}-v_{1}-R_{3}\left(i_{2}+i_{3}\right) \\
& \frac{d i_{3}}{d t}=\frac{1}{L_{2}}\left(v_{6}-v_{1}-R_{3}\left(i_{2}+i_{3}\right)-R_{2} i_{3}\right] \\
& \frac{d v_{4}}{d t}=0 \\
& \frac{d i_{3}}{d t}=0 \\
& i_{6}=-i_{3}+i_{5}
\end{aligned}
$$

In matrix form,

$$
\frac{d}{d t}\left[\begin{array}{l}
q_{1} \\
\lambda_{2} \\
i_{3} \\
v_{4} \\
i_{3}
\end{array}\right]=\left[\begin{array}{lllllc}
0 & 1 & 1 & 0 & 0 & 0 \\
-1 & -\left(R_{1}+R_{3}\right) & -R_{3} & 1 & 0 & 0 \\
-1 / L_{2} & -R_{3} / L_{2} & -\left(R_{2}+R_{3}\right) / L_{2} & 0 & 0 & 1 / L_{2} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
i_{2} \\
i_{3} \\
v_{4} \\
i_{3} \\
v_{6}
\end{array}\right]
$$

or $\underline{X}^{\prime}=\underline{A} \underline{X}$
$[\cdot]=\left[\begin{array}{llllll}0 & 0 & -1 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}v_{1} \\ i_{2} \\ i_{3} \\ v_{4} \\ i_{5} \\ i_{6}\end{array}\right]$

\cdots
or $X^{\prime \prime}=R X$
or $\mathrm{X}^{\prime \prime}=\mathrm{RX}$
NOTE: It is recommended that a tree be chosen such that a nonlinear resistance which is a link be not associated with a loop (tie set) containing another nonlinear resistance. Likewise, a nonlinear resistance which is a tree branch should preferably not be associated with a cut set containing another nonlinear resistance.

Method of Solution

From the initial state vector $\underline{X}(0)$ and the curves of the nonlinear elements, the initial values of the differentiated variables $\underline{X}^{\prime}(0)$ are obtained. The time interval of interest is now divided into equal increments Δt, small enough not to impair the accuracy of the solution, yet large enough not to cause the computer to take too long in reaching that solution. Increments of the differentiated variables are obtained:

$$
\Delta X^{\prime}(\Delta t)=A \underline{X}(0) \Delta t
$$

The values of the differentiated variables at time Δt are:

$$
\underline{X}^{\prime}(\Delta t)=\underline{X}^{\prime}(0)+\Delta \underline{X}^{\prime}(\Delta t)
$$

Using the curves of the nonlinear elements, one can now obtain the state variable values at time Δt, namely, $\quad \underline{\underline{X}}(\Delta t)$. If no nonlinear resistances exist, then $\underline{X}(\Delta t)=\underline{\tilde{x}}(\Delta t)$. Otherwise, obtain

$$
\underline{X}^{\prime \prime}(\Delta t)=\underline{R} \underline{\tilde{X}}(\Delta t)
$$

Using the curves of the nonlinear resistances, a further update of the state variables $\mathbb{Z}(\Delta t)$ is obtained, namely, $\underline{X}(\Delta t)$.
$X(\Delta t)$ is now taken as the initial state vector and the same procedure is repeated to obtain $X(2 \Delta t)$, and so on.

The outputs at any time $\kappa \Delta t$ are given by $\underline{Y}(\kappa \Delta t)=\underline{B} \underline{X}(\kappa \Delta t)$ where \underline{Y} is the output vector and B the transmission matrix. Each output is a linear combination of the state variables. Thus, each row of \mathbf{B}, say row i, contains the coefficients relating output i to the state variables.

The program was implemented on a Hewlett-Packard 9830 computer, provided with a 9866 printer and a 9862 plötter. A listing of the program may be found in Appendix A.

The COMMON statement permits modification of individual pieces of data once the program terminates. The modified data may be stored on tape with STORE DATA file\# command.

Following is a list of the main variables used in the program, together with a description of their role.

C Coefficient matrix for the differential equations, 10×10. Each row of \mathbf{C} multiplied by state-variable vector \mathbf{Z} produces the derivative of a differentiated variable.

D Vector of differentiated variables, 10×1.
E Output vector at time considered, 4×1.
F Vector of non-state variables of dissipative elements, 3×1.
G Output matrix, 4×181. Each row gives the consecutive values of an output in time, starting with $t=0$.

H Nonlinear characteristics matrix, 10×10. Each pair of columns represents a curve; hence, up to 5 curves. The first column of a pair contains the x-coordinate values, the second column the y-coordinates: for an inductance i and λ, for a capacitance v and q, for a resistance i, and v.

L Matrix of nonlinear energy-storing element position in \mathbf{Z} and corresponding curve number in $\mathrm{H}, 10 \times 2$.
$\mathbf{N}(1)$ Number of state variables, max. 10.
N(2) Number of basic time intervals.
N(3) Print interval.
N(4) Number of outputs, max. 4.
$N(5)$ Number of output values to be printed out.
$\mathbf{N}(6)$ Number of different curves of nonlinear characteristics, 0-5.
$N(7) \quad$ Number of nonlinear anergy-ttoring elements, $1-10$.
$\mathbf{N (8)}$ Basic time interval.
$\mathrm{N}(9)$
through Initial condition values.
N(18)
$\mathbf{N}(19)$ Number of nonlinear dissipative elements, 0-3.
P Matrix for nonlinear dissipative elements, 1×9. To each element corresponds a triplet: state variable position in \mathbf{Z}, curve number, and kind of state variable (1 for current, 2 for voltage).

Q Vector of change in differentiated variables, 10×1.
Q3 Data file number.
Q4 Number of energy-storing elements, i.e. number of differential equations.
R Coefficient matrix for the linear equations of the nonlinear dissipative elements, 3×10.

T Transmissions matrix. 4×10. Each row of \mathbf{T} multiplied by state-variable vector \mathbf{Z} produces an output value.

Z State-variable vector at any time, 10×1.
Computer Program - Instructions for Use

1. NEW JOB (Y OR N)?

Enter N if you already have a data file for the job; Y if you wish to produce new data, and then proceed to question 3.
2. FILE \# ?

Enter number of existing data file. Proceed to question 20.
3. NO. OF STATE VARIABLES (1 TO 10)?

Enter number of state variabies. This number may be larger than the order of the system, the latter corresponding to the number of first-order differential
equations. Each nonlinear dissipative element (resistance, friction) requise a state variable, but gives rise to an algebraic equation only.
4. NO. OF NONLINEAR DISSIPATIVE ELEMENTS ($0,1,2,3$)?

Enter number of nonlinear dissipative elements (resistancen), up to three.
5. NO. OF NONLINEAR ENERGYSTORING ELEMENTS (0 TO 10)?

Enter number of nonlinear onergy-storing elements (inductances, capacitances), up to 10 .

6. BASIC TIME INTERVAL (SECONDS)?

Enter the elementary time interval of integration. For example, if the period of interest is 1 millisecond and this period is divided into 500 basic time intervals, the length of each basic time interval is 2 microseconds. Too large a basic time interval speeds up the solution, but impairs its accuracy.
7. NO, OF TIME INTERVALS?

Enter number of basic intervals into which the total time of interest is divided.
8. PRINT INTERVAL ($1,2,3, \ldots)$?

If the basic time interval has been chosen judiciously, the variation of the solution from one basic time interval to the next is, in general, too small to be relevant. When the solution is eventually printed out, you may want to get the solution every κ basic time intervals. This κ is called "print interval." For example, let the number of basic time intervals be 500 . If the print interval is sslected as 5 only solution values \# $1,6,11,15, \ldots$ will eventually be printed out, that is 101 values: the initial condition and 100 intervals. Value \# 1 is the initial one, before any integration takes'place. Incidentally, only those 101 values are kept in memory, to be later stored with the data. Up to 181 output values may thus be stored, i.e. NO. OF TIME INTERVALS/PRINT INTERVAL $\leqslant 180$.
9. NO. OF OUTPUTS (1, 2, 3, OR 4)? .

Enter number of output functions, up to 4. An output function is a linear combimation of the state variables.
10. TRANSMISSION VECTOR J

J takes the values of 1 to the number of outputs designated in instruction \# 9 . For output function j, enter the coefficients of its linear combination, one at a time as requested on display.
11. COEFFICIENT MATRIX FOR DIFFERENTIAL EQUATIONS

Enter the coefficients, one at a time, as requested on display. This matrix is not square if nonlinear dissipative elements exist.
12. COEFFYCIENT MATRIX FOR ALGEBRAIC EQS. OF N.L. DISSIPATIVE ELEMENTS Enter the coefficients, one at a time, as requegted on display. This information is not requested if the answer to instruction 4 is 0 .
13. INIT. COND. VECTOR

Enter the initial values of all state variables, one at a time, as requested. The initial values of the state variables corresponding to nonlinear dissipative elements may have to be estimated. Once the computation starts, the program will try to improve the accuracy of these values to within 0.1% in 10 iterations. If it does not succeed, it will request improved initial conditions and terminate.
14. NO. OF NONLINEAR CHARACTERISTICS (O TO 5) ?

Enter the number of curves describing the characteristics of nonlinear elements.
This is less than, or equal to, the number of nonlinear vlements as two or more such elements may possess the same characteristics.
15. ENTER CURVE \# J (BY PAIR OF VALUES)

I takes the value 1 to the number of curves designated in instruction \# 14 .
For curve J, enter two values at a time, as requested. The first value is the
x-coordinate: The current I for a resiatance and an inductance, the voltage V for a capecitance. The second value is the y-coordinate: the voltage \mathbf{V} for a resistance, the flux linkage λ (volt-me) for an inductance, and the charge Q for a capacitance. Ten such pairs must be entered for each curve. This information is not requested if the answer to question " 14 is zero.
16. FOR EACH NONLINEAR ENERGY-STORING ELEMENT, ENTER STATE-

VARIABLE POSITION AND CURVE \#
For each of the nonlinear energytoring elements numbering the answer to question \# S, enter a pair of values at a time: the state-variable position number in the stato-variable vector ay entered, for example, under \# 13 above, and the associated curve number as entered under 15 above. More than one element may be associated with the same curve.
17. FOR EACH NONLINEAR DISSIPATIVE ELEMENT, ENTER STATE-VARIABLE POSITION, CURVE \#, AND KIND OF STATE VARIABLE (1 for I, 2 for V) For each of the ncntinear dissipative elements numbering the answer to question \#4 above, enter a triplet of values at a time: the state variable position number in the state variable vector, the associated earve number, and a designation of 1 If the element is a link or 2 if the element is a tree branch.
18. STORE DATA (Y OR N) ?

Enter \mathbf{Y} if you wish all the above data stored on tape, N if you don't. In the latter case skip to instruction \# 20.
19. FILE \# ?

Enter the number of the file where the data is to be stored. NOTE: The file must have been previously marked (see HP manual tor FIND and MARK commands).
20. COMPUTE (Y OR N) ?

Enter \mathbf{Y} if you wish the computation to be carried out in order to obtain solution,

N if you don't. The purpose of this instruction is to separate the data input from the data processing. Thus, the whole job need not be done in one sitting. The inatruction is alsc found useful in saparating the computation job from the output job.
21. Interval \# J. be patient ! ! !

This mescage occurs every 50 integration intervals. Nothing to answer.
22. FINAL STATUS OF STATE-VARIABLE VECTOR IS:

The solution has ended. The last values of the state variables are printed out.
Thay may later be used as initial values to a aubsequent time interval. The solution and data are stored in the file specified under instruction \# 19 if the answer to * 18 is yes. This information may later be retrieved for recomputation, and/or printout, and/or plot. Nothing to answer.
23. TOTAL TIME INTERVAL $=\mathbf{-}$ SECONDS

Nothing to answer
24. PRINTOUT NEEDED (Y OR N) ?

Enter \mathbf{Y} if you wish to have the outputs printed out, N if you don't.
25. PLOT NEEDED (Y OR N) ?

Enter \mathbf{Y} if you wish to have thl iutputs plotted, and get plotter ready. Enter \mathbf{N} if you do not need plot, and skip to \# 28.
26. SET PLOTTER, PRESS CONT

Raise pen, place paper on plotter board, and set all marsins. Then press CONT and EXECUTE
27. MIN AND MAX VALUES?

Enter puir. It establidies the range of the y-axis. Choose it by referring to the values printed out under \# 24 above. (MAX-MIN)/5 should be a convenient
value for a marked interval on the y-axis. If the output just plotted is not the last one, the program goes back to.\$26.
28. END OF JOB

Nothing to answer. The cassette tape is rewound.
Posable messages which are followed by program termination:

1) OUT OF CHARACTERISTICS BOUNDS, PROGRAM ABORTED.

Variable of nonlinear element is outside range of curve.
2) PROGRAM ABORTED. IMPROVE INITIAL CONDITIONS.

Initial values entered for state variables of dissipative elements are not correct.
3) NO, OF N.L. ELEMENTS $=\ldots$, NO CURVE.

Answers to instructions 4 and 5 are inconsistent with answer to \# 14.
It is recommended that the data entered be checked for accuracy before computation.
After entering all ciats for a new job, answer \mathbf{N} to question \#20 and all succeeding questions. This ends the program. Next, execute the following commands to obtain a printeut of the data entered:

MAT PRINT N
[EXECUTE]
MAT PRINT T
[EXECUTE]
MAT PRINT C
[EXECUTE]
MAT PRINT R [EXECUTE]
MAT PRINT H [EXECUTE]
MAT PRINT L [EXECUTE]
MAT PRINT P [EXECUTE]
If coirections are to be made, the program does not have to be rerun. Simply enter the corrections, one at a time, as follows. If element $\mathbf{C}(3,5)$, say, is to be corrected then: $C(3,5)=$ new value [EXECUTE]
and so on. After all corrections are made, store the data. Thus, if the data had been stored by the program in file \# 4, then:

STORE DATA 4

Now, in order to compute, run the program again considering that you are dealing with an old job.

1. NEW JOB (Y OR N) ?

N
2 FILE \#?
4
3. COMPUTE (Y OR N)
Y
This feature is particularly convenient when the circuit model changes due to the presence of diodes, SCRs, ... The program would first be run for, say, 50 time intervals with a diode current as one of the outputs. Check the output values printed out. Suppose that at interval \# 38 the diode current reverses direction. The solution is therefore valid only to interval \# 37. Then,
$\mathrm{N}(2)=37$
[EXECUTE]
$\mathrm{N}(5)=38$ [EXECUTE]
STORE DATA same file no. [EXECUTE]
Rerun the program. At the end, the final values of the state variabies are to be used as initial values for the next run with different equations for a new model and, say, for 80 time intervals. Then,
$N(2)=80$
$N(5)=81$
$\mathrm{N}(9)=\mathbf{Z}(1,1)$ and likewise for the rest of the initial conditions.
Changes in the model
STORE DATA new file no.

The solution over the whole time interval of interest may thus be formed of a number of solutions over consecutive subintervals. In order to obtair a single plot for the overall solution, the next task is to splice all subsolutions topether, with the proper print interval, and store the result in a single file. This can be achieved with the program listed in Appendix B and whose details follow.

1. NO. OF OUTPUTS?

Enter the number of output functions stored in the files to be spliced. This number must be the same for both files.
2. TOTAL NO. OF INTERVALS (BOTH FILES)?

Enter $a+b$, where a and b are the number of stored data intervals in tiles 1 and 2 , respectively.

3. SUPPLEMENTARY PRINT INTERVAL?

Both files 1 and 2 to be spliced must also be based on the same print interval, say c. If a value d is entered here, it will be considered as a print interval on the output data of the pre-spliced files. The resulting file will have a print interval of c times d .
4. FIRST FILE \#?

Enter number of front file.
5. SECOND FILE \#?

Enter number of rear file.
6. NO. OF TIME INTERVAL; LEFT OUT $=\ldots$

Nothing to answer. It indicates the number of data pieces lost from the end of the second file due to the supplementary print interval. For example, let the number of intervals of the first and second file be 37 and 80 , respectively. If the suppiementary print interval chosen is 2 , the 80 th output value of the second file is lost from the spliced combination.
7. FILE \# FOR NEW DATA ?

Enier number of file where resulting spliced data'are to be stored.

ORLGINAL PAGE IS OF POOR QUALITY
 APPENDIX A


```
20 DIM D[10,1],E[4;1],NC10,1],F[3,1]
30 PRINT "NEW JOB (Y OR N\"
40 INPUT X:
50 IF O&⿻肀二"Y" THEN 100
60 FRINT "FILE #"
INPUT Q3
OAd dATA Q3
90 GOTO 1120
100 PRINT "NO. OF STATE VARIABLES (1 TO 10)"
110 INPUT N[1]
120 PRINT "NO. OF NONLINEAR DISSIPATIVE ELEMENTS (0,1,2,3)"
$30 THPIJT N[1%J
140 PRINT "NO. OF NONLINEAR ENERIN-STORINE ELEMENTS (0 TO 10)"
150 INPUT NC7J
160 PRINT "GASIL TINE INTERYHL (SELONDS)"
170 INPUT N[8]
180 PRINT "NO. OF TIME INTERVALS"
190 INPUT NC2J
200 PRINT "PRINT INTERURL (1,2,3,...)"
210 INFIJT NC:3]
220 PRINT "NO. OF OUTPIJTS (1,2,3,IGR 4)"
230 INPUT NC 41
240 MAT T=2ER[N[4],N[1]]
250 R4=N[1]-N[ L'3]
260 MAT EmZER[G4,M[1]]
270 MAT Z=2ER[N[1];1]
280 IF NE 19]=0 THEN 310
290 MAT R=2ER[N[19],N[1]]
300 MAT P=2ER[ 1, 3*N[19]]
310 N[5]=INT(N[2]/N[S])+1
320 MAT G=2ER[NC4 I,N[5]]
330 FOR J=1 TD N[4]
340 PRINT "TRPNSNISSIUN VECTID".J
350 FOR I=1 TO N[1]
360 0ISP "(";I;")";
370 INPUT TEJ,II
380 NEKT I
390 NEXT J
400 PRINT "COEFFICIENT MRTRIK FOR DIFFERENTIHL EQUATIONS"
410 FOR I=1 TO 124
420 FOR J.01 TO N[1]
430 DISP "(";I;",";.j;")";
440 INPUT C[[,J]
450 NEXT
4 6 0 ~ N E X T ~ T
4 7 0 \text { IF N[1\%]=0 THEN 550}
480 PRINT "COEFFICIENT MATRIK FOR RLGEERAIC EQS. DF N.L. DISSIPATIUE ELEMENTE"
490 FOR I=1 TO N[19]
30日 FOR J=1 TO NEII
51日 DISP "く";I;",";J;")";
520 IMPUT R[T;F]
530
S30 NEXT \
50 PRINT "INIT. COND. .NECTOR"
360 FOR 1=1 TO N[1]
S70 DISP "(";I;")";
580 INPUT Z[I:1]
590 N[3+1]az[:1]
600 NEXT I
```

```
610 FOR IENC 1 1+1 T0 10
620 N[B+1]=0
```



```
640 PRINT "ND. OF NOHLIMEHR CHMRHLTERISTICS (O TO. G)"
650 INPUT N[5]
660. IF NCG]m日 THEN 5%G
670 REDIM H[10,2*N[5]]
630 FOKR Jal TO N[E]
690 PRINT "ENTER CIJRVE #",J" "EN FAIR OF YRLUES)"
700 FOR I=1 TO 10
710 DISP "PAIR *";I;
720 INPUT H[I;2*J-1],H[I, S*J]
730 NEKT I
740 NEKT J
750 IF NC7 I=0 THEN BEG
760 REDIM L[N[7]:こ]
770 PRINT
790 PRINT "FGR EHEH HOHLINEHR ENERGY-ETORINE ELEMENT:"
790 PRINT "ENTER STATE-VHRIABLE FOEITION RND FURVE "
800 FOR I=! TO N[7]
810 DISP "(";!;")";
830 IHPIJT L[I;1J,LEI:EJ
8:30 NEKT I
840 10T0 300
8.5G MAT L=2ER[1,1]
360 IF N[19]=0 THEN 940
870 FRINT
880 PRINT "FIDR EALH NOHLINEHR MISEIPHTIVE ELEMENT: EHTER STATE-YARIFELE"
89G PRINT "PGSITIDN, GURVE #, FHD KIND DF STMTE VARIRBLE GL FOR I, 2 FOR V" 
900 FOR [=1 TO N[19]
910 INP|T P[1;3%I-2],F[1:3%I-1],P[1,**%]
900 NENT L
930 150T13 1050
949 MFT P=2ER[1,1]
950 MAT R=2ER[1:1]
950 50T0 1050
970 IF N[7 I+N[1% ]=0 THEN 1010
98G PRINT "ND. DF N.L. ELEMEHTG=";N[T]+N[19];", NIN CURWE."
9GG DIGP "ERROR! PRIGRIFM RGDRTED."
1000 ST0F
1015 MHT P=\EF[1,1]
1020 MHT R=ZER[1:1]
1030 MAT H=ZER[1:1]
1045 MHT L=2EP[1:1]
10SG FRINT "ETIORE DATA EY DR NJ":
10日0 [NFIJT RF
1070 IF RS="H" THEN 1270
10:5 PRINT "FILE #";
1090 INPUT 1:3
1100 STORE DATA E:3
1110 LOTO 1270
1120 104mN[1 J-N[19]
1130 R:5="Y"
114E REDIMT[M[4],N[1]],C[B4;N[1]],Z[N[1],1],G[M[4],N[5]]
1150 IF NESJ=0 THEN 12EB
1160 REDIM H[10,2%N[5]]
1170 IF N[T J=0 THEN 1000
1130 REDIM L[N[7]:2]
1190 GOT0 1210
1200 REDIM L[1;1]
```


ORIGINAL PAGE IS OF POOR QUALITY

```
1210 [F N[1%]=0 THEN 1240
1320 REDIM R[N[19],N[1]],P[1,S*N[1:1]
1330 GOTO 1370
1240 REDIM R[1:1]:PC1:1]:F[1:1]
1250 GOTO 1270
1260 REDIM H[1,1],L[1,1],R[1,1],P[1,1]
12P0 REDIM D[Q4;1];E[N[4]:1],GCQ4;1]
1280 IF N[19]mg THEN 1S00
12%0 REDIM FCNC1YI111
1300 PRINT "CONPUTE IY OR NN".
1310 INPUT Q%
1320 IF Q*E"N" THEN SQ44
1330 FOR I=1 TO N[1]
1340 2[1,1]=N[S+[]
1350 IF IDG4 THEN 1STG
1300 D[I:1]=N[8+[]
1370 NENTI
13S0 IF N[ % Ja0 THEN 1040
1390 IF NC7 ]=0 THEN 1460
1400 FOR JI=1 TO N[7]
1410 Fl=D[L[J1,1],1]
1420 FSmL[J1,2]
1430 G084B 3734
1440 DCL[J!,1],1]=PS
1450 NENT J!
1400 IF NC 1P I=O THEN 1840
14FO FQR Q1=1 TO 10
1480 MAT F=RRE
1490 N2=0
1500 FOR JI=1 TO N[19']
1510 P!=F[dy:1]
1520 FSaP[1,3*J1-1]
1500 LUSUB P[1,3*JL] OF 2900.EP30
1540 [F 2[04+J1,1]=0 THEN 1560
```



```
1500 2[04+J1,1] ]=P2
1570 NEXT J1
1580 IF QE<U.001*NE 19] THEN 1020
1590 IF R1/10 THEN IBSN
16OO FRINT "PROGRAM AGORTED. IMPROYE INITIAL GONDITIONS."
1610 STOP
1090 01=10
18SG NEKT NL
1540 NHT E=T*E
1850 FOR I=1 TO N[4]
1600 E[I,1]=E[I,1]
1670 NEXT I
16SO FOR K1=1 TO N[2]
1690 NAT G=CWZ
1POO MAT Q=\N(S ])*N
1710 MAT DmD+Q
1720 REDIM 2[04.1]
IFSO MAT z-D -
1740 REDIM Z[N[1],1]
1750 IF N[6]=0. THEN 1950
1760 IF NC7 JaB THEN 1S30
1770 FOR JI=: TO N[F]
1730 P1=2[L[J1,1J,1]
1790 P;3L[J]:2]
1800 GOSU8 2900
```


ORIGINAL PAGE IS
 OF POOR QUALITY

```
1810 2[L[J1,1]:1]]P2
1820 NEXT J
1830 [F NE 17]=0 THEN 1930
1840 FOR M1=1 T0 3
1850 MAT FaR*2
1860 FOR JI=1 TO HIC19]
1870 P1=F[J1,1]
1880 PS=P[1,3*J1-1]
1890 50SUB P[1,3%J1] OF 2900,2730
1900 2[04+J1:1]=PS
1910 NEXT JI
1920 NEXT Q1
1930 IF K゙1萛(INT(K1 S5))*50 THEN 1950
1940 PRIHT "INTERYHL "KI"EE FATIENT!!!!"
1950 [F KI#\INT\K1~N[ 3 ])\#N[K] THEN SG1D
1980 MRT E=THE
1970 KE=K1~N[3J+1
1980 FDR I=1 TD NE4]
1990 G[I,K2]=E[I;1]
SODO NEXT I
2010 NENT K1
3020 IF R:="N" THEN 2040
SOBO STORE DATA RS
2040 PRINT
2050 PRINT "FINRL STATLIS OF STATE-NARIAELE VEGTOR IS:"
30S0 REDIM 2[1,N[1]]
2070 NRT PRINT Z
gOSO PRINT "TOTHL TINE INTERVAL="N[3 ]*N[S J"SECONDS"
0Q90 PRINT
S100 DISP "PRINTDUT NEEDED (Y OR N)":
2110 INPUT ES
El20 IF R$="N" THEN 2el0
SI30 PRINT
2140 FOR [=1 FO N[4]
2150 PRINT "DUTPUT"I
2160 FOR J=1 TO N[gJ
2170 FRINT G[I:JJ:
2180 NEXT J
2190 PRINT
3200 NEXT I
2S10 DISF "FLOT NEEDED &Y OR N"":
2320 INP\T Q5
SE30 IF D:E"N" THEN 2ETO
2240 FOR I=1 TO N[4]
SSSB DISE "GET PLOTTER, PRESS CUNT"
2500 5T%P
2270 %EN
SZEO DISP "MIN AND MAN VALUES":
2390 INPUT EI,ES
2300 SCRLE D,1.1*N[ [J*N[SJ,E1,ES
$310 ES=INT(N[2]>100)*10*NCSI
C350 E4=RBOसE2EE1)
2330 ES=LGT(E4)
2340. E4mE4N10PES
2350 EG=INT(E4)*10+(ES-1)
2360 IF E2*E!>0 THEN 239B
3370 E4=0
2380 COTO 2430
2390 IF E1<0 THEN 2420
2400 E4=E1
```


ORIGINAL PAGE IS OF POOR QUALITY

```
2410.15070 2430
2420 E4-E2
2430 ES=1.1*NC 2 ]*N[B1
2440 XAXIS E4,ES,O,ES
2450 YAKIS 0,EG,EL,E2
2460 LABEL (%,1,5,1.7,0,3.5,11)
2470 FOR Y=O TO 10 STEP 2
3480 [F ABS(E1+Y*EG-E4)\EG THEN 2520
2490 PLOT O,Y*EE+EL,1
    CPLOT 2;-0.3
    LABEL (2G00)(Y#EO+E1)
    NEXT Y
    LABEL (*;1.5,1.7,FI,2,B.5,11)
    FOR X=0 TO 10 STEP a
    IF XIO THEN ESSO
    PLOT X*ES,0,!
    BPLGT 2,-0.3
    LABEL (2ESO)(X)*EO)
    NEXT X
    FORMAT ES.I
    PLOT 0,G[I;1],-2
    FOR Ja2 TO H[5]
    PLOT (J-1) *N[ 3 ]*N[E],G[T,.\),3
    NENT J
    PEN
    NENT I
    REWIND
    PRINT
    PRINT "END DF JOE"
    END
    REM: FROM STATE VAR. TO FROELEN YAR.
    STOP
    KS=2*PS-1
    K4m:2*PS
    FOR I=1 TO 10
2760 IF PI=H[I;KSJ THEN ESEO
2770 IF PISH[IMK3] THE
2790,J=1-1
```



```
2S10 GuT0 2370
S320 PMmH[I,K4]
2830 10T0 2870
2840 NEKT I
ZBSG FRINT "DIT OF DHARALTERISTILS BOUNDS. FRIGRAM RBORTED."
2860 STOP
2370 RETIRN
SSBU REM: FROM PROBLEM VHR. TO STATE UHR.
2B90 STOP
2900 K3*2*FS-1
2910 K4mC*PB
2920 FOR [=1 TD 10
2930 IF PI =HEI;K4] THEN 2990
8940 IF PI>HEI;K4J THEN 3010
8950 IF IFI THEN 30S0
2060 J=1-1
```



```
2980 60T0 3040
2990 PZ=HCI:K3]
3000 G0T0 3040
3510 NEXT I
3020 PRINT "OUT DF GHARALTERISTICS BOUNDS. PROGRAN REORTED."
3030 STOP
SO4G RETURH
```


APPENDIX B


```
20 DIM H[4, \B!]
30 DISP "NO. DF DUTPUTS":
IMPUT E4
50 PRIHT "TOTHL HO. OF IHTERYALS (BUTH FILES)"
60 [NPIJT EG
70 PRINT "SUPPLEMENTARY FRIHT INTERYHL"
80 INPIJT EG
90 ES=1NT(E%/EE)+1.
100 REDIM H[E4,EE]
110 DISP "FIRST FILE W";
130 IMFUT ST
130 LOAD DATH QS
140 1F EGENIC & J THEN 120
L5G PR!HT "ERRIDRI DIFFERENT HIJ, DF DUTFUTS."
IEO DISP "FRDIFRMM TERMIHATED"
170 ST0F
130 E{#HLS3
190 E2=|!2
200 ES=NK5
E10 REDIM G[E4,ESI
220 ESal
230 FOR J=1 TO ES STEF EG
245 FOR I=1 TO E4
25G A[ [,EB ]=[a[ ! , J]
250 NE:KT I
370 ESEEB+1
230 NEXT,J
890 ET=ES-(4EB-2)#EET1)
300 ET=ES-ET+1
350 FEDIM ET +01E1]
820 DISP "SECINND FILE #";
3:36 IHPIJT 0.3
34D LOAD DATA DS
354 IF E4xHC41 THEH 3T0
300-50T0 150
370 IF ESIHICS] THEN 400
3%G FRINT "ERROR! FILES IIFFER IH PRINT IHTERVHL."
300 b0TO 150
400 IF E5+N[5]-2=EF THEH। 4$0
41G FRINT "ERROR! TOTAL H0. DF INTERVRLS ="(ES+HCSJ-Z)
420 10070 160
430 REDIM ITE4,H[5]1
44M FDR J=ET TO NCSj STEF ES
4.50 FOR [*! TO E4
460 H[I,EE ]=15[I,., %
470 NE:T
40 EK=ES+1
400 NE:TT.J
500 EF=EE-1
510 ET=(ES+N[5 1-2)-(EB-1) EEE
S30 PRINT "NO. UF TIME INTERYMLS LEFT IJTE";ET
S30 REDIM G[E4,ESJ
540 mtat Gaa
550 NT5 J=ES
509 NL % j=N[ 2 1+EZ
570 HC % ]=N[3 ]*E6
5Bg DISP "FILE FOR HEN DATA";
500 IHPIJT QS
600 IISP "IF TAPE READY, FRESS COHT"
610 STOF
620 STDRE DHTA Q3
630 DISP "PRINTOUT NEEDED &Y UR H":
5404 IHPIJT D:
650 IF D&="H" THEH 5TG
650 MAT PRINT G
670 DISF "END OF JIE"
680 END
```

