

(NASA-CE-168438) DEVELOPMENT OF A SIMPLE, N82-17478 SELF-CONTAINED FLIGHT YEST DATA ACQUISITICN SYSTEM Progress Report (Kansas Univ. Center for Research, Inc.) 208 p HC A10/MF A01 Unclas CSCL 14B G3/35 11611 Progress Report on

And in case of

and and

ļ

) Annotasantes PHASE II:

DEVELOPMENT OF A SIMPLE, SELF-CONTAINED FLIGHT TEST DATA ACQUISITION SYSTEM

KU-FRL-407-6

NASA Grant NSG-4019

Prepared by: Ronald R. L. Renz

Principal Investigators: Jan Roskam Dale I. Rummer

Work Performed by: Mark A. Mosser Alex Kotsabasis Robert Clarke Douglas Shane

University of Kansas Flight Research Laboratory Lawrence, Kansas 66045 February 1981

ABSTRACT

DEVELOPMENT OF A SIMPLE, SELF-CONTAINED FLIGHT TEST DATA ACQUISITION SYSTEM

This report describes work done under a continuing program to develop a simple, self-contained flight test data acquisition system. In the past, instrumenting an *Eirplane* for flight testing has taken a great deal of time and money. With recent advances in sensor and microprocessor technology, a simple, low-cost system could be developed which would be applicable to general aviation airplanes.

This system was conceived to obtain performance and stability characteristics of airplanes. The design criteria for the system were that it be easy to install, self-contained, and simple; that it require no special/difficult flight techniques; and that it be applicable to general aviation airplanes and low in cost.

The system developed meets these criteria for doing lontitudinal and lateral stability analysis. The package consists of three modules. These are 1) microprocessor controller and data acquisition module, 2) transducer module, and 3) power supply module. The system is easy to install and occupies space in the cabin or baggage compartment of the airplane. All transducers are contained in these modules except the total pressure tube, static pressure air temperature transducer, and control position transducers.

The data reduction technique used was the NASA-developed M4LE program. This has been placed on a microcomputer, and all data reduction is done on the microcomputer. This greatly reduces the cost of the data reduction. Also, when compared with the analogue recording techniques, still being used, there has been a large improvement in the accuracy of results.

The flight testing program undertaken has proven both the flight testing hardware and the data reduction method to be applicable to the current field of general aviation airplanes.

This report describes the instrumentation system developed, the data reduction method used, and important results of the flight test program.

PRECEDING PAGE BLANK NOT FILMED

ACKNOWLEDGEMENTS

We would like to thank NASA Dryden Flight Research Center via Mr. Ken Szalai, Technical Monitor, and Dr. 3. Kordes for the financial support of this program. Special thanks also go to Cessna Aircraft Company for the assistance they have given in this phase of the program. Sincerest thanks go to our secretary and grammarian, Mrs. Nancy Hanson, for the many hours spent typing and debugging this manuscript.

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

.

100

Sec. in

																					Page
	ABST	RACT	• • •	• • •	••	•	• •	•	•	•	• •	•	•	٠		•	•	•	•	•	iii
	ACKN	OWLEDGE	MENTS.	• • •	• •	•	• •	•	•	•	• •	•	4		•	•	•	•	•	•	v
	TABL	e of co	<u>NTENTS</u>	• •	••	•	••	•	•	•	• •	•	٠	•	•	•	•	•	•	•	vii
	LIST	OF SYM	BOLS .	• •	••	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	xi
	LIST	OF FIG	URES .	• •	• •	•	• •	•	•	•	• •	•	•	•	•	•	•	•	٠	•	xxv
	LIST	OF TAB	LES.	• •	••	٠	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	XXIX
1.	INTR	ODUCTIO	<u>N</u>	••	••	•	••	•	•	•	• •	•	•	•	•	•	•	•	•	•	1
2	PURP	OSE OF	PROJECT		••	•	• •	•	•	•		•	٠	•	•	•	•	٠	•	٠	7
3.	INST	RUMENTA	TION SY	<u>STEM</u>	••	•	••	•	•	•	• •	•	•	•	•	•	•	•	•	•	9
	3.1	Data M	anageme	nt.	• •	•	••	•	•	•	• •	•	•	•	•	•	•	•	•	•	15
	3.2	Transd	ucers.	• • •	••	•	••	•	•	•	• •	•	•	•	•	•	•	•	•	•	20
		3.2.1	Accele	romet	ters	5.	••	•	•	•	• •	•	•	•	•	•	6 1	•	•	•	27
		3.2.2	Filter	ing	• •	•	••	•	•	•	• •	•	•	•	•	•	•	•	•	•	29
		3.2.3	Attitu	de Gy	yro	•	••	•	•	•	• •	•	•	•	•	•	•	•		•	31
		.3.2.4	Rate G	yros	••	•	••	•	•	•	• •	•	•	•	•	•	•	•	•	•	31
		3.2.5	Contro	1 Pos	sit:	ion	Tra	ans	sdu	CE	cs .	•	•	•	• .	•	•	•	•	•	33
		3.2.6	Static	and.	Dyn	ami	.c P	re	ssı	ure	e T	ran	sd	uc	er	•	•	•	•	•	38
		3.2.7	Temper	ature	e Ti	ran	sduo	cer	:.	•	• •	•	•	•	•	•	•	•	•	•	41
	3.3	Power	Supply	• • •	• •	•	••	•	•	•	• •	•	•	•	•	•	•	•	•	•	44
	3.4	Pilot	Control	• • •	••	•	n •	٠	•	•	• •	•	•	٩	•	•	•	•	•	•	48
		3.4.1	System	Cont	tro:	1.	••	•	•	•	• •	٠	•	•	•	•	•	×	•	•	48
		3.4.2	Transd	ucer	Rea	ado	ut (Con	ıtr	01	•••	•	•	•	•	•	•	•	•	•	48
4.	<u>GROU</u>	ND COMP	UTER SY	STEM	••	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	51
	4.1	Intege	r Speed	Rout	tine	e.		•	•	•	• •	•	٠	•	•	•	•	•		•	51

TABLE OF CONTENTS (continued)

- - -

W. 7

1

" Made of Arris

÷

۱

1

1

	<u>P</u>	Page
	4.2 Floating Point Speed Routine	3
	4.3 Description of System	5
5.	DATA REDUCTION METHOD	9
	5.1 Data Acquisition	9
	5.2 Transfer Date to Ground-Based Computer 6	2
	5.3 Engineering Conversion	3
	5.4 Quick-Look Plots	64
	5.5 Detailed Engineering Conversion 6	j 4
	5.6 Modified Maximum Likelihood Estimator 6	5
	5.6.1 Parameter Estimation 6	6
	5.6.2 Mathematical Model 6	57
	5.6.3 Assumptions Used in Data Reduction 7	76
	5.7 Time History Plotting	7
6.	KU-FRL FLIGHT TEST PROGRAM	79
	6.1 Flight Test Maneuver	79
	6.2 Results of Flight Test Program	80
7.	CESSNA FLIGHT TEST PROGRAM	91
	7.1 Instrumentation	91
	7.2 Data Reduction	96
	7.3 Results of Spin Program.	L O O
8.	<u>CONCLUSIONS</u>	L 01
9.	RECOMMENDATIONS FOR PHASE III	L03
	9.1 Equipment	L03
	9.2 Calibration	103
	9.3 Data Reduction	L03

.

TABLE OF CONTENTS (continued)

Ŧ

		-	
	9.4	Effect of Control Surface Float	.04
	9.5	Proof-of-Test Capability	04
10.	REFE	<u>RENCES</u>	05
	10.1	Instrumentation System Reports	.08

APPENDICES:

Name of Street of Street

The second second

1000 States America 200

.

A.	PROG	RAMS.	•••	٠	• •	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	109
	.1)	Data	Acq	uis	iti	lon	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	111
	.2)	Data	Tra	nsf	er.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	115
	.3)	Data	Rec	eiv	e.	•	•	•	•	•	•	•	•	•	٠	•	•	•		٠	٠	٠	÷	•	•	119
	.4)	Engin	neer	ing	; Co	onve	ers	sic	n	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	121
	.5)	Quicl	c Lo	ok	P1 c	ots	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	125
	.6)	Deta	lled	En	gir	1ee1	rir	ıg	Co	n	/e1	:si	lor	1.	•	•	•	•	•	•	•	•	•	•	•	129
	.7)	MMLE	Pro	gra	ms.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	133
	.8)	Time	His	tor	y I	2101	tti	Lng	3.	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	165
	.9)	Cess	na P	rog	ran	ıs.	•	•	:	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	•	•	171
в.	TRAN	SFORM	ATIC	N C	FA	XES	5_5	SYS	STE	IMS	<u>.</u>	•		•	•	•	•	•	•	•	•	•	•	•	•	179

Page

LIST OF SYMBOLS

All parameters in this report are referenced to a system of body axes as shown in Figure 1.1.

Symbol

Definition

Dimension

A	Barra da A. Idaa ahdaa	11
// = -X	Force in A direction	ID
A _x , A _X	Longitudinal acceleration	8
A _y , A _y	Lateral acceleration	g
A _z ,A _Z	Verticle acceleration	g
$A_{N} = -A_{Z}$	Normal acceleration	g
[A]	Stability matrix	
[B]	Control matrix	
Ъ	Wing span	ft
{c}	Vector of unknowns for MMLE	
ē	Mean aerodynamic chord	ft
$C_A = \frac{A}{\overline{q}s} = -C_X$	Coefficient of force in A direction $(A = -X)$	
$C_{A_{\alpha}} = \frac{\partial C_{A}}{\partial \alpha}$	Variation of body A coefficient with angle of attack	rad ⁻¹
$C_{A_{u}} = \frac{\partial C_{A}}{\partial (\frac{u}{U})}$	Variation of body A coefficient with speed	
$C_{A_{\delta_{E,c}}} = \frac{\partial C_{A}}{\partial \delta_{E,c}}$	Variation of body A coefficient with elevator or canard angle	rad ⁻¹
^C A _o	Nondimensional longitudinal force equation bias	
$C_{\rm D} = \frac{\rm D}{\rm Tc}$	Drag force coefficient	
ςp	PRECEDING PAGE BLANK NOT FILMED	

......

1

.

Symbol	Definition	Dimension
$c^{D} = \frac{9\alpha}{9\alpha}$	Variation of drag coefficient with angle of attack	rad ⁻¹
$c_{D_{u}} = \frac{\partial c_{D}}{\partial (\frac{u}{U_{1}})}$	Variation of drag coefficient with speed	
$c_{D_{\delta_{E}}} = \frac{\partial C_{D}}{\partial \delta_{E}}$	Variation of drag coefficient with elevator angle	rad ⁻¹
$C_{L} = \frac{L}{\bar{q}s}$	Lift force coefficient	
$C_{L_{\alpha}} = \frac{\partial C_{L}}{\partial \alpha}$	Variation of lift coefficient with angle of attack	rad ⁻¹
$C_{L_{\alpha}^{\bullet}} = \frac{\partial C_{L}}{\partial (\frac{\partial \bar{C}}{2U_{1}})}$	Variation of lift coefficient with rate of change of angle of attack	
$C_{L_q} = \frac{\partial C_L}{\partial (\frac{q\bar{c}}{2U_1})}$	Variation of lift coefficient with pitch rate	
$C_{L_{u}} = \frac{\partial C_{L}}{\partial (\frac{u}{U_{1}})}$	Variation of lift coefficient with speed	
$C_{L_{\delta_{E}}} = \frac{\partial C_{L}}{\partial \delta_{E}}$	Variation of lift coefficient with elevator angle	rad ⁻¹
$C_{\ell} = \frac{L}{\bar{q} s b}$	Rolling moment coefficient	
$c_{\ell_{\beta}} = \frac{\partial C_{\ell}}{\partial \beta}$	Variation of rolling moment coef- ficient with sideslip angle	rad ⁻¹

ALC: LONG AND A LONG

1994 A

-10-12 a

- Start Contracto

Annalise and the second second

a

Symbol	Definition	Dimension
$C_{\ell_{p}} = \frac{\partial C_{\ell}}{\partial p}$	Variation of rolling moment coef- ficient with roll rate	rad ⁻¹
$C_{\ell_r} \sim \frac{\partial C_{\ell}}{\partial r}$	Variation of rolling moment coef- ficient with yaw rate	rad ⁻¹
C ₂ ⁶ A,R	Variation of rolling moment coef- ficient with aileron or rudder angle	rad ⁻¹
C _m <i>■</i> ' <u>M</u> īsē	Pitching moment coefficient	
$C_{m_{\alpha}} = \frac{\partial C_{m}}{\partial \alpha}$	Variation of pitching moment coefficient with angle of attack	rad ⁻¹
$C_{m_{\dot{a}}} = \frac{\frac{\partial C_{m}}{\partial m}}{\partial (\frac{\dot{a}\bar{c}}{2U_{1}})}$	Variation of pitching moment coef- ficient with rate of change of angle of attack	
$C_{m_q} = \frac{\partial C_m}{\partial (\frac{\bar{q}c}{2U_1})}$	Variation of pitching moment coef- ficient with pitch rate	
$c_{m_{u}} = \frac{\partial c_{m}}{\partial (\frac{u}{U_{1}})}$	Variation of pitching moment coef- ficient with speed	
с _т т	Pitching moment coefficient due to thrust	
$C_{m_{T}} = \frac{\partial C_{m_{T}}}{\partial \alpha}$	Variation of thrust pitching moment coefficient with angle of attack	rad ⁻¹
$C_{m_{T_{u}}} = \frac{\partial C_{m_{T}}}{\partial (\frac{u}{U_{1}})}$	Variation of thrust pitching moment coefficient with speed	
$C_{m_{\delta_{E,c}}} = \frac{\partial C_{m}}{\partial \delta_{E,c}}$	Variation of pitching moment coef- ficient with elevator or canard angle	rad ⁻¹

xiii

No should be and

_

S	Y	b	0	1	
-	-	 -	-	-	

Definition

Dimension

An and the second second second

C _m o	Wondimensional pitching moment equation bias	
$C_{N} = \frac{N}{\bar{q}s} = -C_{Z}$	Normal force coefficient. ($N = -Z$)	
$C_{N_{\alpha}} = \frac{\partial C_{N}}{\partial \alpha}$	Variation of normal force coefficient with angle of attack	rad ⁻¹
$C_{N_{u}} = \frac{\partial C_{N}}{\partial (\frac{u}{U_{1}})}$	Variation of normal force coefficient with speed	
$C_{N_{\delta_{E,c}}} = \frac{\partial C_{N}}{\partial \delta_{E,c}}$	Variation of normal force coefficient with elevator or canard angle	rad ⁻¹
с _N	Nextdimensional normal force equation bias	
$C_n = \frac{N}{\bar{q} \text{Sb}}$	Yawing moment coefficient	
$C_{n_{\beta}} = \frac{\partial C_{n}}{\partial \beta}$	Variation of yawing moment coef- ficient with sideslip angle	rad ⁻¹
C _{n,}	Yawing moment coefficient due to thrust	
$C_{n_{T_{\beta}}} = \frac{\partial C_{n_{T}}}{\partial \beta}$	Variation of thrust yawing moment coefficient with sideslip angle	rad ⁻¹
$C_{n_p} = \frac{\partial C_n}{\partial p}$	Variation of yawing moment coef- ficient with roll rate	rad ⁻¹
$C_{n_{r}} = \frac{\partial C_{n}}{\partial r}$	Variation of yawing moment coef- ficient with yaw rate	rad ⁻¹
$C_{n_{\delta_{A,R}}} = \frac{\partial C_{n}}{\partial \delta_{A,R}}$	Variation of yawing moment coef- ficient with aileron or rudder angle	-1 rad

I

1

1

1

2.9. 2.1

A SALA, ACAR

6. 10 C - 11 C

Symbol	Definition	Dimension
$c_{T_x} = \frac{T_x}{\bar{q}s}$	Thrust force coefficient in X direction	
$C_{T_{x_{u}}} = \frac{\partial C_{T_{x}}}{\partial (\frac{u}{U_{1}})}$	Variation of thrust force coefficient with speed	
$c_{x} = \frac{x}{\bar{q}s}$	Force coefficient in X direction	
$C_{X_{\alpha}} = \frac{\partial C_{\chi}}{\partial \alpha}$	Variation of longitudinal force coefficient with angle of attack	rad ⁻¹
$C_{X_{u}} = \frac{\partial C_{X}}{\partial (\frac{u}{U_{1}})}$	Variation of longitudinal force coefficient with speed	
$C_{X_{\delta_{E,c}}} = \frac{\partial C_{X}}{\partial \delta_{E,c}}$	Variation of longitudinal force coefficient with elevator or canard angle	rad ⁻¹
°x	Nondimensional longitudinal force equation bias	
$C_y = \frac{Y}{\bar{q}S} = C_Y$	Force coefficient in Y direction	
$c_{y_{\beta}} = \frac{\partial c_{y}}{\partial \beta}$	Variation of side force coefficient with sideslip angle	rad ⁻¹
$C_{y_{p}} = \frac{\partial C_{y}}{\partial p}$	Variation of side force coefficient with roll rate	rad ⁻¹
$C_{y_r} = \frac{\partial C_y}{\partial r}$	Variation of side force coefficient with yaw rate	rad ⁻¹
$C_{y_{\delta_{A,R}}} = \frac{\partial C_{y}}{\partial \delta_{A,R}}$	Variation of side force coefficient with aileron or rudder angle	rad ⁻¹

Symbol	Definition	Dimension
$C_{z} = \frac{z}{\overline{\varsigma}s}$	Force coefficient in Z direction	
$C_{Z_{\alpha}} = \frac{\partial C_{Z}}{\partial \alpha}$	Variation of vertical force coef- ficient with angle of attack	rad ⁻¹
$C_{Z_{u}} = \frac{\partial C_{Z}}{\partial (\frac{u}{U_{1}})}$	Variation of vertical force coef- ficient with speed	
$C_{Z_{o_{E,c}}} = \frac{\partial C_{Z}}{\partial \delta_{E,c}}$	Variation of vertical force coef- ficient with elevator or canard angle	rad ⁻¹
°zo	Nondimensional vertical force equation bias	
° _c	Y axis force coefficient in wind tunnel axes	
D	Drag force	1b
[D]	MMLE weighting matrix	
g,G	Force of gravity	ft sec ⁻²
[G]	MMLE observation matrix	
[H]	MMLE observation matrix	
н _р	Pressure altitude	ft
[1]	Identity matrix	
^I xx ^{, I} yy ^{, I} zz	Moment of inertia about the X, Y,and Z axes respectively	slug ft ²
I _{xz}	Product of inertia	slug ft ²
J	MMLE cost function	
KTAS	Trur. airspeed	knots
l,L	Rolling moment (perturbed, total)	ft 1b
L	Lift force	1b

ĺ

and and

Symbol	Definition	Dimension
L	Iteration number	
L _β	Dimensional variation of rolling moment with sideslip angle	sec ⁻²
L _p	Dimensional variation of rolling moment with roll rate	sec ⁻¹
L _r	Dimensional variation of rolling moment with yaw rate	sec ⁻¹
L _ő A,R	Dimensional variation of rolling moment with aileron or rudder angle	sec ⁻²
Lo	Rolling moment equation bias	sec ⁻²
m,M	Pitching moment (perturbed,total)	ft 1b
m	Mass	slug
MP	ingine manifold pressure	
M _a	Dimensional variation of pitching moment with angle of attack	sec ⁻²
M• a	Dimensional variation of pitching moment with rate of change of angle of attack	sec ⁻¹
Mq	Dimensional variation of pitching moment with pitch rate	sec ⁻¹
Mu	Dimensional variation of pitching moment with speed	ft ⁻¹ sec ⁻¹
MTa	Dimensional variation of pitching moment due to thrust with angle of attack	sec ⁻²
M _T u	Dimensional variation of pitching moment due to thrust with speed	ft ⁻¹ sec ⁻¹

Symbol	Definition	Dimension
M _ó E,c	Dimensional variation of pitching moment due to elevator or canard angle	sec ⁻²
Mo	Pitching moment equation bias	sec ⁻²
м _ө	Dimensional variation of pitching moment with pitch angle	sec ⁻²
n, N	Yawing moment (perturbed, total)	ft lb
N = -Z	Normal force	1b
Ν _β	Dimension variation yawing moment with sideslip angle	sec ⁻²
^Ν τ _β	Dimensional variation of yawing moment due to thrust with sideslip angle	sec ⁻²
N _p	Dimensional variation of yawing moment with roll rate	sec ⁻¹
N _r	Dimensional variation of yawing moment with yaw rate	sec ⁻¹
N _ó A,R	Dimensional variation of yawing moment with aileron or rudder angle	sec ⁻²
No	Yawing moment equation bias	sec ⁻²
p ,P	Roll rate	rad sec ⁻¹ , deg sec ⁻¹
P _D	Dynamic pressure	knots (speed)
^P s	Static pressure	id rt ft (altitude) lb ft ⁻²
P _T	Total pressure	1b ft ⁻²
q ,Q	Pitch rate	rad sec ⁻¹

ł

Symbol	Definition	Dimension
q	Dynamic pressure	$1b ft^{-2}$
r,R	Yaw rate	rad sec_1
RPM	Engine rotational speed	deg sec
[R]	Acceleration transformation matrix	
S	Wing area	ft ²
t,T	Time point	sec
т	Temperature	۴F
т _х	Thrust force in X direction	16
u,U	Speed (perturbed, total)	ft sec ⁻¹
{u(t)}	Control vector	mbu
v	Perturbed sideward velocity	ft sec ⁻¹
{ v }	MMLE variable bias vector	
v _x ,v _x	Longitudinal velocity	ft sec ⁻¹
v _y ,v _y	Lateral velocity	ft sec ⁻¹
v _z ,v _z	Normal velocity	ft sec ⁻¹
W	Perturbed downward velocity	ft sec ⁻¹
{ x(t) }	State vector	
x	Force in X direction	1b
x	Distance in the X direction from the center of gravity	ft
x _α	Dimensional variation of X-force with angle of attack	ft sec ⁻²
x _u	Dimensional variation of X-force with speed	sec ⁻¹
x _{Tu}	Dimensional variation of X-force due to thrust with speed	sec ⁻¹

-

ചെട്ടും പോയും നിയും തെന്നായിയും കുംപപോയി

Symbol	Definition	Dimension
X ₆ E,C	Dimensional variation of X-force with elevator or canard angle	ft sec ⁻²
x _o	Longitudinal force equation bias	ft sec ⁻²
{y(t)} '	Computed observation vector	
$y_{i} = \{y(i)\}$	Computed observation vector at time 1	
Y	Force in Y direction	1b
Ŷ	Distance in Y direction from the center of gravity	ft
۲ _β	Dimensional variation of Y-force with sideslip angle	sec ⁻¹ , ft sec ⁻²
`ρ	Dimensional variation of Y-force with roll rate	ft sec ⁻¹
Y _r	Dimensional variation of Y-force with yaw rate	ft sec ⁻¹
Υ _δ Α, R	Dimensional variacion of Y-force with aileron or rudder angle	ft sec ⁻² sec ⁻¹
Y _o	Lateral acceleration equation bias	sec ⁻¹
{z(t)}	Measured observation vector	
$z_{i} = \{z(i)\}$	Measured observation vector at time i	
z = -N	Force in the Z direction	16
ž	Distance in Z direction from the center of gravity	ft
Z _a	Dimensional variation of Z-force with angle of attack	ft sec ⁻²

Symbol	Definition	Dimension	
z.a	Dimensional variation of Z-force with rate of change of angle of attack	ft sec ⁻¹	
z _q	Dimensional variation of Z-force with pitch rate	ft sec ⁻¹	
^Z u	Dimensional variation of Z-force with speed	sec ⁻¹	
^Ζ δ _{Ε,C}	Dimensional variation of Z-force with elevator or canard angle	ft sec ⁻²	
z _o	Vertical force equation bias	fi sec ⁻¹	

Greek Symbol

1

1000

ĺ

-5

Acritecture

本なられていたので

ł

ļ

α	Angle of attack	rad
β	Angle of sideslip	rad
ψ	Euler heading angle	rad
θ	Euler pitch angle	deg, rad
ф	Euler roll angle	deg, rad
•	Bias in Euler pitch rate equation	rad sec ⁻¹
^S E, ^S e	Elevator angle	deg, rad
δ _A ,δ _a	Aileron angle	deg, rad
^S R, ^S r	Rudder angle	deg, rad
^S c	Canard angle	deg, rad
ρ	Air density	slugs ft ⁻³
^Ф о	Bias in Euler roll rate equation	rad sec ⁻¹
^ω n SP	Undamped natural frequency of the short period mode	Hz

1. Ann - 1

17

Symbol	Definition	<u>Dimenston</u>
'np	Undamped natural frequency of the phugoid mode	Hz
ω _n D	Undamped natural frequency of the dutch roll mode	Hz
{ŋ (t)}	Noise vector	
⊽ _c	First gradient with respect to c	
⊽ _c ²	Second gradient with respect to c	
Subscript	Definition	
1	Initial	
В	At body axis at center of gravity	
м	As measured by transducer	
I	As installed wrt body axis at center of gravity	
L	Left hand	
R	Right hand	
,8	Flight stability axes	
,w	Wind axes	
,wt	Wind tunnel stability axes	

Superscript

+	Transp	oose	
t	State	vector	derivatives

A dot over a quantity denotes the time derivative of that quantity.

Figure 1.1 Body axes system used in this report

PRECEDING PAGE BLANK NOT FILMED

AND A MARKAGE

Farm #

LIST OF FIGURES

14 Y2 V

		Page
1.1	Body axes system used in this report	xxiii
1.1	Experimental configuration of the test airplane	4
3.1	Overall system block diagram	10
3.2	Major components of the airborne system	11
3.3	Block diagram of airborne system	1.2
3.4	Data transfer system	13
3.5	Block diagram of data transfer system	13
3.6	Battery and computer module installation	14
3.7	Transducer module installation	14
3.8	Computer rodule block diagram	17
3.9	MDAS-16 data acquisition card	18
3.10	Block diagram of MDAS-16 data acquisition module	19
3.11	TEAC MT2 02 digital cassette tape transport	19
3.12	Transducer pallet	26
3.13	Schaevitz Engineering LSB series accelerometers	28
3.14	Measured airframe vibration	30
3.15	Measured filter frequency response	30
3.16	Filtered and unfiltered in flight measurements	30
3.17	Humphrey VG-24 vertical gyroscope	32
3.18	Northrop 3-axis rate sensor	34
3.19	Space Age Controls linear displacement transducer	35
3.20(a)	Control position transducer mounting detail	36
3.20(b)	Aileron control position transducer	36
3.20(c)	Rudder and elevator control position transducers	37

:

LIST OF FIGURES (continued)

. .

3.21	Mounting technique for external devices
3.22	B&D Instruments 2054 pressure transducer
3.23	Pitot tube
3.24(a)	Pitot tube mounted on airplane
3.24(Ъ)	Pitot tube mounted on airplane
3.25	Pitot tube mounting location
3.26	Temperature transducer specifications 42
3.27	Temperature probe
3.28(a)	Temperature probe mounted on airplane
3,28(b)	Temperature probe mounted on airplane
3.29	Battery discharge curve
3.30	Battery module schematic and specifications 47
3.31	Pilot control console
3.32	Transducer monitor
4.1	Digital Equipment Corp. MINC 11/03 computer 57
4.2	Block diagram of MINC 11/03 computer
5.1	Data processing flow chart 60
5.2	Maximum likelihood estimation concept
6.1	Flight time history; Flight 19/10/80 Run 23A; Longitudinal
6.2	Flight time history; Flight 19/10/80 Run 23B; Longitudinal
6.3	Flight time history; Flight 19/10/80 Run 51A; Longitudinal
6.4	Flight time history; Flight 23/10/80 Run 11; Lateral
6-5	Flight time histor;; Flight 19/10/80 Run 26C; Lateral

ŧ

÷.,

LIST OF FIGURES (continued)

and the second second

12.00

1

1

Se effe

6.6 Flight time history; Flight 19/10/80 Run 33B; Block diagram of Cessna spin test installation . . . 92 7.1 7.2 Cessna wing tip booms (supplied by NASA Langley) . . . 94 7.3(a) Cessna wing tip booms (supplied by NASA Langley) . . . 95 7.3(b) Cessna wing tip booms (supplied by NASA Langley) . . . 95 7.3(c) Cessna spin test instrumentation installation. 97 7.4 7.5 7.6(a) 7.6(b)

Page

PRECEDING PAGE BLANK NOT FILMED

LIST OF TABLES

.

.

Page

3.1	Transducers Used in Various Flight Test Programs 22
3.2	Transducer Accuracies Used in Various Flight Test Programs
3.3	Transducer Accuracy and Range Used
3.4	Power Requirements for Data Acquisition Package 47
4.1	Integer Speed Routine (FORTRAN LISTING)
4.2	Integer Speed Comparison
4.3	Floating Point Speed Routine (FORTRAN LISTING) 54
4.4	Floating Point Speed Comparison
5.1	Qualified Data Cassettes
5.2a	Longitudinal Dimensional Stability Derivatives 68
5.2Ъ	Lateral-Directional Dimensional Stability Derivatives
5.3a	Longitudinal Dimensional State Vector Stability Derivatives
5.3b	Lateral Dimensional State Vector Stability Derivatives
5.4	Matrices Used in Observation Equation
6.1	Cessna 172 Flight Test Conditions
6.2	Comparison of Results, Longitudinal 85
6.3	Comparison of Results, Lateral
7.1	Cessna Spin Test Instrumentation Requirements 93
B.1	Designation of Force and Moment Coefficients for Different Axes Systems
B.2	Comparison of Non-Dimensional Derivatives

1. INTRODUCTION

This report describes work completed during the second phase of a continuing program sponsored by the NASA Dryden Flight Research Center.^{*} This program was accomplished during the period January 21, 1979, through February 15, 1981. The program encompasses the development of a simple, self-contained flight test data acquisition system. To date the program has consisted of two phases:

PHASE I

• A literature survey of flight testing methods (presented in Reference 1).

• The development and testing of a proof-of-concept system capable of longitudinal stability analysis (presented in Reference 2).

PHASE II

• Development and testing of a system capable of longitudinal and lateral stability analysis.

This report describes in detail the system concepts selected, as well as results of the flight test program used to show the validity of these concepts, as of the completion of Phase II.

The purpose of this project, and the design criteria developed are contained in Chapter 2. The literature survey (Reference 1) has been used as a primary data base for establishment of these

^{*}Funding provided under NASA Grant NSG 4019 (FRL/CRINC 4070).

criteria. Other inputs have come from talks with personnel in the general aviation industry and of NASA Dryden Flight Research Center.

Chapter 3 describes the hardware selected and manufactured to meet the design requirements.

The instrumentation package employs transducers to allow both longitudinal and lateral stability analysis of general aviation type airplanes, although it can easily encompass most other types of airplanes. Due to the nature of the data reduction method utilized, a minimum number of high-accuracy transducers are required. Data from the transducers are recorded using an on-board microprocessor and digital cassette recorder. This has proven a simple, reliable method to obtain accurate flight data.

The system has been designed to allow it to be placed in the aircraft with a minimum amount of aircraft modification. A rechargeable battery pack was selected for airborne power to reduce the number of airplane modifications required. This has allowed total isolation from the aircraft electrical systems, which simplifies installation, enhances safety, and eliminates many electrical noise problems in the transducer signals. The transducers are all contained in one module, except for the following:

- total pressure probe,
- temperature probe,
- static pressure probe, and
- control position transducers.

A minimum of installation is also required for these devices, as they are literally "sticky-taped" to the airframe.

Presented in Chapter 4 is an evaluation procedure used to select a ground-based data reduction computer. Due to the extensive mathematical procedure used for data analysis, a powerful, high-level language microcomputer is required. The evaluation method used is described here, as well as the computer selected and used for this program.

The total flight testing process is included as Chapter 5. Discussed are the various computer programs and operating techniques developed. The heart of this system is the Modified Maximum Likelihood Estimation (MMLE) method which has been used for data reduction. The mathemat_cs of this technique are included as Section 5.6.

The flight test program used for system development is included in Chapter 6. Tests have been performed using the KU-FRL^{*} Cessna 172 airplane (shown in Figure 1.1). The type of flight test maneuver required is discussed, and results of the actual flight testing are presented.

A flight test program was conducted at Cessna Aircraft to evaluate the spin properties of their model 172 airplane. The data management portion of the KU-FRL system was used in conjunction with Cessna-supplied transducers for data acquisition and analysis. This program is described in Chapter 7.

Conclusions to be drawn as a result of the work carried out under this program, and recommendations for further work are included in Chapters 8 and 9.

*KU-FRL = University of Kansas Flight Research Laboratory.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 1.1 Experimental configuration of the test airplane.

References, and reports describing this project are presented in Chapter 10.

Appendix A includes descriptions of all programs required for system operation.

There appears to be some confusion over the many reference axes systems used in airplane analysis. Included in the list of symbols is Figure 1.1, which explicitly defines the axes system used in this report. Appendix B is included to allow conversion of results in this report to several other standard axes definitions.

_ _ _ _ _ ******** .. _ _ _ _

The system constructed under this program has proven under flight test the validity of the concept selected for longitudinal and lateral stability analysis. Throughout this flight test program, using the Cessna 172 airplane, the acquisition package performed reliably.

2. PURPOSE OF PROJECT

Flight testing has always required a high degree of complex instrumentation to get accurate results. This, in the past, and still evident today, has taken a great deal of time and money to equip each individual flight test article. Traditional systems are placed on aircraft on an individual basis, utilizing what is available at that time, coupled with the specific requirements of a particular test program. This has never really led to ideal or totally thought-out systems, and normally results in high costs or in too much time being required for instrumenting the airplane.

With the accurate instrumentation available today, and with the recent advances in microcomputer technology, it was seen that an accurate, multipurpose data acquisition system could be developed. The system described here has been developed to do just that,

The basis for design of this system is as laid out here.

EASE OF INSTALLATION - This has been a major design consideration. If possible, <u>NO</u> permanent modification should be done to the airplane. The system must be universally easy to install and should require a minimum of installation time and no special procedures. This factor includes calibration of the system installed on the airplane.

SELF-CONTAINED - The system should be totally self contained. This should include all data sources, data recording methods, power requirements and data reduction techniques.

SIMPLE - The system must be simple in concept and easy to use. The need for complex instrumentation, difficult calibration, and specialized operator knowledge must be kept to a mimimum.

FLIGHT TESTING - The system should not require any specialized plloting techniques to obtain accurate results.

CLASS OF AIRCRAFT - The system to be developed is primarily applicable to the general aviation type airplane. This criterion does not restrict the methods and theories, but it does define the requirements for the transducer ranges and accuracies.

RESULTS - The system is aimed at stability and performance parameter identification, but it must permit adaptation to other test requirements.

COSTS - The system should meet all of the above requirements, yet reduce the expenditure required for the instrumentation system as compared with current methods.

_ _ _ _ _ ******* _ _ _ _ _ _

The system described in this report has been developed to prove that the concepts selected meet the above design requirements.

3. INSTRUMENTATION SYSTEM

The system described and constructed under this phase meets the objectives stated in Chapter 2. The instrumentation system can be broken up into four parts:

- 1) Data Management;
- 2) Transducers;
- 3) Power Supply;
- 4) Pilot Control.

The package is shown in the block diagram of Figure 3.1. The system is used in two forms: airborne for recording of flight data (Figures 3.2 and 3.3), and the ground-based portion for data transfer to the data reduction computer (Figures 3.4 and 3.5).

Installation of this system is straightforward and requires no permanent modifications to the airplane. The major modules are shown installed in the KU-FRL's Cessna 172 in Figures 3.6 and 3.7. The other components are shown installed on the airplane as they are described in Section 3.2. It is seen that the major modules are essentially strapped into the cabin compartment. The transducer module does require a more rigid attachment and is, therefore, held firmly in place by clamping it to the seat tracks.

Following is a detailed description of the instrumentation system, as well as the trade-offs considered in its design.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

	-			1000
1.1	E.	\mathbf{r}_{C}	UT	C
~ ~ ~	E.	LG	n I	0

BATTERY MODULE	60.5 (16.
COMPUTER MODULE	34.5
TRANSDUCER MODULE	32.5
CONTROL POSITION TRANSDUCERS *	1.5
PITOT PROBE *	0.2
TEMPERATURE PROBE *	0.2
PILOT CONTROL CONSOLE	1.0
MISCELLANEOUS (cables,clamps,etc.)*	2.0
TOTAL:	132.4

*not shown

Figure 3.3 Block diagram of airborne system

the condition

18-16-19-1

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 3.4 Data transfer system

Figure 3.5 Block diagram of data transfer system

Figure 3.6 Battery and computer module installation

Figure 3.7 Transducer module installation

3.1 Data Management

It was decided to use a microprocessor controlled data management system. Using a commercially available computer simplified the design task, as well as reducing overall system complexity and cost. Also with this type of controller, versatility is easily achieved, especially if programs are stored on cassette tape rather than in computer hardware. The trade-offs considered prior to selecting this data management system were those of analog vs digital data storage, and airborne recording vs telemetry. Following is discussion of these trade-offs and a detailed description of the system constructed.

In the past, most on-board systems made use of analog recording, due primarily to the high cost and complexity of digital systems. In recent years, however, progress has been made in the digital field, resulting in small, inexpensive, and reliable digital devices, most available as solid-state integrated circuits. The recent advances in digital electronics technology have reduced both the complexity and cost. Coupling this with the lower likelihood of error in digital systems, it was decided to use a totally digital system for this package.

In the past, telemetry has been a much-used means of transmitting data to be recorded on the ground. Telemetry has an important place in aircraft flight testing, specifically in high-risk operations (such as flutter testing, spin testing, etc.). Its major disadvantages are the requirement of a ground station, and the associated high cost and complexity. Telemetry, however, has been primarily used in the

past, due to the large size, complexity, and inaccuracies of the older recording media. Many improvements have been made in this regard with the introduction of small, reliable cartridge and cassette recording systems. This improvement is largely attributed to the recent advances in solid state electronics technology. For this system, on-board recording, making use of a digital cassette recorder, has been chosen.

The heart of the unit constructed is a Rockwell AIM 65 microcomputer. This is coupled through a Rockwell expansion interface to the other components. The other two major components of the airborne package's recording system are the Datel MDAS-16 multiplexer and analog-to-digital converter, the TEAC MT2-02 digital cassette tape transport, and RS232^{*} interfacing port. These are shown in the block diagram of Figure 3.8.

The AIM-65 is an interactive single board computer using an 8-bit 6502 microprocessor. Contained on the computer board is 4K bytes of memory, as well as a monitor and symbolic assembler. (An 8K BASIC programming ROM^{**} is also available for this computer.) A 20 character display, 20 column thermal printer and alphanumeric keyboard allow the user to interact with the computer. Two application connectors increase the computer's versatility. One allows interfacing to audio cassette recorder and other computer terminals. The second allows adding an expansion interface which facilitates

. .

*RS232 = serial interfacing standard.

^{**} ROM = read only memory.

Figure 3.8 Computer module block diagram

additional features to be adapted to the standard computer. These features provide an easy-to-use Data Management Controller.

The user is able to easily program the computer using the symbolic assembler and monitor functions provided. Programs presently are stored on the audio cassette recorder. Using the additional ROM slots on the computer, or the addition of a ROM board on the expansion interface would allow regularly used programs to be permanently placed in the system.

The AIM-65 is co['] d, through the expansion board, by use of the MDAS-16, to the cransducer package. The MDAS-16 is a 16-channel multiplexer coupled with a 12-bit analog-to-digital converter. This unit has the capability of addressing channels as desired

(either randomly or sequentially), using a microprocessor controller. Voltage input ranges can be selected (-5 volt to +5 volt was chosen for this system). The unit has a 50 KHz through-put rate with 20 μ sec access time per channel. The MDAS-16 is shown in Figures 3.9 and 3.10. The MDAS-16 does require calibration. This procedure is described in detail in Reference 3.

The other major component of the data acquisition system is the TEAC tape transport (see Figure 3.11). This unit is a low-cost magnetic tape unit designed specifically for digital applications. It makes use of standard audio type cassette tapes for data storage. All interfacing required is included in the

Figure 3.9 MDAS-16 data acquisition card

A BOAR THREE

Figure 3.11 TEAC MT2-02 digital cassette tape transport

package. Input requirements are TTL^{*}-compatible; and the tape unit requires only control signals, provided by the AIM-65 microcomputer, and parallel data input. All detailed control functions required by the tape unit are handled on board by the unit for both recording and playback. Only simple control signals are required to initiate the various functions.

The data management system is also used for data playback and transfer to the ground-based data reduction computer. It was decided to use the same recorder and computer system for playback of data and in-flight recording. This avoids possible problems due to mismatch of tape drives and also reduces overall system costs. An interface system compatible with standard computer RS232 ports was designed and constructed. A hard wire connection, or use of a modem through the telephone can thus be utilized. This type of interface allows data transfer to virtually any computer. A program on the AIM-65 controls the TEAC tape transport and sends the data over the line to the other computer. Once all the data are on the other computer, the Rockwell system is no longer required in the data reduction process. (See Chapter 5 for a complete description of the data reduction process.)

3.2 Transducers

At the outset of this pagram, it was decided to keep the number of containers in the total system to a minimum. Thus, most transducers, as well as their required signal conditioning, are

^{*}TTL = Transistor-Transistor-Logic: Electrical standard.

contained in the transducer module. This module contains all filtering, all voltage regulation, and the transducer pallet. It was not possible to place all transducers in this module, as measurements such as control positions and outside air conditions were required to be measured. Following is a description of the methods used for selecting transducers required, as well as descriptions of the actual equipment selected.

The primary input to aid in the selection of the parameters to be measured was the literature describing the data reduction methods to be used (References 4-20). The transducers discussed in the references above are summarized in Table 3.1. Discussion with personnel at NASA, Dryden Flight Research Center, was the secondary input for transducer selection. The transducers selected allow optimal use of the data reduction technique considered (basically a maximum likelihood parameter estimation method; see Chapter 5 'for a detailed description of this method).

The literature (References 4-17 and 20) was also used as the primary reference for selection of transducer accuracies required. The results are summarized in Table 3.2. The transducer ranges were selected after discussion with the general aviation manufacturers (the secondary reference), and consideration of the performance characteristics of this class of airplane.

The ranges and accuracies required for the various transducers selected are summarized in Table 3.3.

	SMETANA ref.18	DELFT ref. 4-11	SORENSON ref. 19	BONES PROGRAM ref 15	KLEIN ref. 17	SELECTED	
A _x	*	•	*	•	*	*	
A _y		*	*	*	*	+	
Å.,		*	*	*	*	*	
V _x V _y							can be derived
V s							
Alt.							
Temp.		*	ļ			•	
9	*		*	*	*	*	
•		*	*	*	*	*	
ψ							not normally
P			*	*	*	*	
q	*	*	*	*	+	*	
r		*	*	*	*	*	
¢	i		*	*			
4			N.R.	*			can be derived
ŧ			*	*)
δ _E		*		*	*	*	
δ _A				*	*	*	
δ _R				*	*	*	
RPM		*					may be req'd or
M.P.		•					desireable for performance data
P _S		*			*	*	
P _T							can be derived
PD	*	*	*	*	*	*	
a	*		*	*	*		ì.
в			N.R.	*	*		can be derived
ρ	*						

-

Table 3.1 Transducers used in various flight test programs

	DELFT ref. 4-11	ECKHOLD & WELLS ref 20	KLEIN ref 17	ILIFF & Maine ref 12-16	SELECTED
A _x	.001 g	.002 g	.005 g		.002 g
Ay		.02 g	or		.002 g
A _z		.02 g	2 %		.002 g
θ		1/2 °	.2° or		•2°
φ		1/2 °	2 %		•2°
р		.15°/sec	.2°/sec		.5°/sec
q	.02°/sec	.15°/sec	or	scale	.5°/sec
r		.15°/sec	2 %	full	.5°/sec
δ _E		.4°	.2°	1 % of	•2°
δ _A		.4°	or	ŏ	•2°
δ _R		.4°	2 %		•2°
т		2° F			2° F
P _S	.1 m 160 ft	10 ft			10 ft
PD		5 knots	2 knots		2 knots

TABLE 3.2 Transducer accuracies used in various flight test programs

Symbol	Sensor		Accuracy	Range
A.,	longitudinal accelerat	ion	.002 g	±1 g
A _v	lateral acceleration		.002 g	±0.5 g
A _N	normal acceleration		.002 g	-1.5 g to 4 g
θ Φ	pitch angle roll angle		0.5° 0.5°	±30° ±30° ±50°/800
p q r	roll rate yaw rate		0.5°/sec 0.5°/sec	±50°/sec ±50°/sec
δ _E δ _A	elevator position aileron position		0.5°	
δ _R	rudder position		0.5°	
T P _S	temperatur e static pressure	* *	2°F 10 feet	-65 to +120°F O to 25K feet
PD	dynamic pressure	*	2 knots	40 to 150 knots
* Indicat	es transducers used to de	fine i	l	l nal conditions.

Table 3.3 Transducer Accuracy and Range Used

During a specific maneuver, T, P_S and P_D need only be measured at the start and finish to define the initial and final conditions. The other 11 channels require measurement throughout the maneuver to determine the dynamic characteristics and analyze stability and performance properties of the airplane.

To select the data acquisition rate required, the following factors must be considered:

- Minimum rate must be higher than the undamped natural frequency of the airplane to be tested.
- Minimum rate must be high enough to avoid time skewing of the data points.
- Minimum rate must be as low as possible to allow economy in the recording media and data reduction process.

In data analysis, to obtain reasonable representations of the frequency response, an acquisition rate of at least five times the undamped natural frequency should be used (Reference 21, Volume 1, Chapter 6). In the class of aircraft considered for this instrumentation system, the natural frequencies are of the following order (from Reference 22):

$$\omega_{n_{SP}}$$
 0.5 - 1.0 Hz
 $\omega_{n_{p}}$ 0.01 - 0.03 Hz
 $\omega_{n_{D}}$ 0.25 - 0.60 Hz

Therefore, the maximum frequency (ω_n) requires an acquisition rate of SP

1.0 x 5 = 5 samples/sec.
$$\tilde{}$$

This is the minimum data requirement.

From References 12 and 14 and discussion with the authors it was determined that an acquisition rate of 100/sec is required to avoid time skewing problems. From the practical applications of the maximum likelihood estimation method, this rate (100/sec) also results in an excess of data that unnecessarily increases the computation time and costs.

Using a computer-controlled acquisition system allows scanning of the transducers as rapidly as possible (20 μ sec/channel, 220 μ sec total **), and then waiting until the next data point is required

¹⁰ samples/sec was chosen for the KU-FRL system, as this then definitely meets the minimum data requirement. This rate also seems to be somewhat of an acceptable industry standard.

^{**} Values for the KU-FRL system.

(0.1 sec later^{*}). These data are temporarily stored in memory and then output to the TEAC tape. This technique allows a high scanning rate to avoid time skewing between channels (equivalent to 4545/sec^{*}) and a low overall acquisition rate (10/sec^{*}) to provide economy and still satisfy the minimum data requirement.

The transducers were primarily mounted on one pallet. This is shown in Figure 3.12. It was possible to include most transducers on one pallet with the exception of the

- pitot tube,
- temperature probe,
- static cone, and
- control position transducers.

Figure 3.12 Transducer pallet

Values for the KU-FRL system.

The pallet, contained within the transducer module, was mounted as close to the center of gravity of the airplane as possible. In this flight test program the transducer module has been clamped to the seat tracks of the Cessna 172, in the copilots's position.

.....

____ _ _ _ ********

Following are descriptions of the individual transducers used in this program.

3.2.1 Accelerometers

The accelerometers used in this package are of the force feedback (or closed loop) type. This type of accelerometer derives its measurement from determining the force required to maintain a mass at a zero location. This technique reduces the errors caused by mass displacement and also does not rely on springs (and their associated inaccuracies) as do the displacement (or open loop) type accelerometers. The disadvantage to the force feedback accelerometer is its relatively high cost.

It is essential to note that linear (as opposed to vibration) accelerometers be used for this type of package.

The accelerometers chosen are manufactured by Schaevitz Engineering. Their specifications are shown in Figure 3.13. These accelerometers are intended for the measurement of linear accelerations such as required for guidance control systems, or vehicle ride analysis. Both a precision sensor and electronics are integrated into the ac-

ORIGINAL PAGE IN OF POOR QUALITY

×----

Specifications	LSB Linear	SB Series
a i 20°C	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Stagur Connector Stagur Connector Waying Connector Waying Connector Maying Some transfor Connector Conne
Input Voltage	±15V DC nominal	
Input Current	10 mA DC maximum (6mA DC avera	
Fuil-Range Open- Circuit Output Vollage	±5.0V DC	
Damping Ratio	0.6 typical (0.3 to 1.0 on request)	1886
Linearity (Notes 1 & 2)	±0.05% of full scale output	
Hysteresis (Note 2)	0.02% of full scale	
Resolution (Note 2)	0.0005% of full scale	
Cross-Axis Sensitivity (Note 3)	±0.002 g per g up to ±10 g range, inclusive ≾0.005 g per g over ±10 g range	SEMSITIVE AXIS AS LINEAR ACCELEROMETER
Bias	Less than 0.1% of full scale	
Sensitive Azis to Case Alignment	±1•	
Noise Output	5mV rms maximum	any miletand at at the line of a marine of the
Operating Temperature	-40°C to +95°C	ALULLIKOMETERE
Storage Temperature	−55°C to +105°C	
Thermal Coefficient of Sensitivity	0.02% per *C	Tradition of the state of the state of the state
Thermal Coefficient of Blas	0.002% per *C	
Shock Survival	100 g — 11 ms	
Weight	3 oz.	

Figure 3.13 Schaevitz Engineering LSB series accelerometers

.

celerometer case. Interfacing is relatively simple, requiring only a DC input voltage, and then a measurement of the DC voltage output, corresponding to the acceleration sensed.

3.2.2 Filtering

The response characteristics of the accelerometers were such that they picked up the aircraft vibration caused by the engine.

The graph of Figure 3.14 shows the airframe vibration characteristics (measured using the accelerometers as transducers, and observing the output on an oscilloscope) as a function of engine speed. It is obvious from these curves that the vibration is cauced by the engine and is a function of the engine speed. Also of note is the fact that all the vibration is at a frequency above 40 Hz.

A low pass filter with a cutoff frequency at 10 Hz would eliminate this vibration from the measurement signal. Using a two-pole, active filter with a response as shown in Figure 3.15 virtually eliminated this unwanted vibrational noise, yet leaves the desired measurement (occurring in the order of 1 Hz) essentially unchanged. (The measurements of the A_N accelerometer are presented as filtered and unfiltered measurements in Figure 3.16 to show this.)

In general, as was the case with this instrumentation package and the Cessna installation (see Chapter 7), only the accelerometers required any filtering.

One drawback of filtering signals is the introduction of a phase shift due to the filter. To counter this problem, all signals should be filtered the same amount, thus eliminating the problems of the phase shift.

3.2.3 Attitude Gyro

Both roll attitude and pitch attitude are obtained from a Humphrey VG-24 vertical gyroscope. Full specifications for this gyro are shown in Figure 3.17. This is a DC gyro, with potentiometers for determining the measurement (28 volt DC used for the motor, ± 5 volt DC used for potentiometer excitation). This gyro has operated reliably during both phases of this program.

3.2.4 Rate Gyros

A three-axis DC/DC rate gyro package was used for roll-, pitch-, and yaw-rate measurement. The advantage of using a three-axis package rather than three separate gyros is that alignment for orthogonality upon installation is eliminated. Of course, failure of a single gyro will require the entire package to be removed for repair.

The gyros selected are of the displacement type (or open circuit). Closed circuit (or integrating gyros) will provide better accuracy; however, cost of these is approximately 10 times higher. The accuracy of a good quality displacement type gyro will meet the requirement (see Tables 3.2 and 3.3), especially considering the type of power input used (free of oscillations or any high frequencies).

ORIGINAL PAGE IS OF POOR QUALITY

SPECIFICATIONS

TANGE - HECHANICAL

here and the state of the second

- ELECTRICAL

OUTPUT STATIC ERROR BAND

RESISTANCE CONTACT RESISTANCE RESOLUTION POWER DISIPATION WIPER CURRENT ELECTRICAL REQUIREMENTS SPIN NOTOR VOLTAGE - RUNNING ERECTION VOLTAGE

CURRENT PERFORMANCE SPIN HOTOR TIME TO SPEED TIME TO ERRECT FROM HOTOR OFF NORMAL OPERATING ERECTION BATE VERTICAL ACCURACY FREE DRIFT RATE PITCN::60° minimum ROLL: 360° continuous PITCN::60°, 12.3° ROLL: 190°, 23.0° Potentiometer output PITCN::1.25% of full scale at 0° expanding linearly to :2.08% of full scale at 60° ROLL::0.83% of full scale at 0° expanding linearly to :1.67% of full scale at 90° 1300 :100 ohms ? ohms maximum at 20 mA 0.2% of full scale meximum 1 watt at +165 °F 20 mA maximum

26 to 32 volts DC 4.5 A maximum at 30 volts DC for 2.5 seconds 1 A maximum at 30 volts DC

26 to 32 volts DC 100 mA maximum intermittant

5 minutes maximum within 0.5° in 9 minutes 2 to 9 "/minute after 3 min. within 0.5° of true vertical 0.5°/mim. nominal; rested on 13 1/2° Storsby 6 min. run alternating

ENVIRONMENTAL CONDITIONS VIBRATION

SNOCK ACCELERATION - NON OPERATING - OPERATING TEMPERATURE - OPERATING - STORAGE ALTITUDE SEA WATER INVERSION MUNIDITY SALT SPRAY SAND AND DUST

FUNCUS EXPLOSION PROOF

RADIO NOISE INTERFERENCE Service Life Shelf Life Insulated resistance

WEICHT SEALING vertical accuracy of ±2.0° shall be maintained during vibration of 0.01 inch D.A., 5 to 65 Hz; 2g, 65 to 500 Hz. 15g; 1 1 maec; all axes 30 g; 1 min; vertical axis 10 g; 1 min; applied in pitch or roll axis shall not produce a drift of greater than 10 */min. -65 to +165 "F -60 to +185 "F ses level to 40000 ft 3 ft for 3 hr. to 95% including condensation for 240 hrs. as encountered on shipboard or at coastal regions as encountered in desert regions external surfaces non-nutritive shall not produce an explosion when operated in a fuel vapor rich area MIL-I-6181; paragraph 4.3.1 6 4.3.2 100 hrs'minimum 3 yrs minimum 20 megohms minimum at 100 volts DC motor circuit exempt 3.0 1b. maximum shall not leak under vacume equivalent to 40000 ft.

Figure 3.17 Humphrey VG-24 vertical gyroscope

The gyros selected are manufactured by Northrop. Voltage input required is 28 volts DC, and output voltage is from -5 to +5 volts DC. The gyros are Northrop G5 subminiature rate sensors. The gyro package specifications are included in Figure 3.18.

.....

3.2.5 Control Position Transducers

Linear displacement transducers manufactured by Space-Age Control, Inc., were used to measure elevator position. This transducer is depicted in Figure 3.19. Due to the small size of this unit, it was decided to place it externally on the airframe. These transducers are installed as shown in Figures 3.20.

A novel technique for attaching the control position transducer (as well as the total pressure tube and temperature probe) has been used. Double-sided foam tape attaches the external devices onto the airframe. The mounting technique is depicted in Figure 3.21. The mounting method was first tested in the KU-FRL subsonic wind tunnel for wind speeds up to 119 mph. The tests in the tunnel were run for periods of up to 4 hours, with no degradation in rigidity of the mount (see Reference 23). The method has proven to give excellent results in the flight test program. The tape used is 3M number 4265 neoprene foam, the properties of which are included in the table on Figure 3.21.

It was anticipated that the mounting locations for the control position transducers would result in non-linear calibration curves. However, the calibration curves appeared to have a linear character

ORIGINAL PAGE IS OF POOR QUALITY

.

2.0 lb. (max) 3.75 x 3.75 x 2.13 in 15 w. (max) (31 vdc) Weight Outline dimensions Power input Input voltage limits 28±3vdc Full-scale output ±5 vdc 5000 ohms (max) 500K ohms (nominal) Output impedance Output load resistance 25 mv.peak-peak(max) ±1/2 % FS Ripple Zero rate setting 50*/sec Input range (roll/pitch/yaw) 600*/sec Maximum input rate Output: voltage ±7 vdc (at overrange limits) Output stability 1/2 % FS. (input voltage variations) Repeatability 1 % FS. 0.01 */sec 0.01 */sec 0.1 */sec Threshold Resolution Hysterisis 0 - 160 °F Operating temperature Temperature sensitivity Zero output 1% FS/100°F Scale Factor 3% FS/100*F

Warm up time Motor acceleration time Gimble deflection angle Acceleration sensitivity Linear Angular Linearity Service life Insulation resistance

Damping ratio Natural frequency Environments Shock Vibration Storage temperature Radio interference 10 min 30 sec (max) ±2° typical

0.05 */sec/g 2 0.08 */sec/rad/sec 1/2 % FS, 0-1/2 scale 2 % FS, 1/2 - FS 100 hr(typical 14000 hr) 10 megohms (min),50 vdc 0.5 to 0.9 35 Hz (min) ,

250g peak sawtooth, 5 mmec 0.1 g /Hz, 20-2000 Hz -65 - 200 °F MIL-I-8161D

Figure 3.18 Northrop 3 - axis rate sensor

TECHNICA	L INFORM	ATION
350 1 05 0 APPR 350 0 ST 31 0 0 TA 22ERC 1 00 TA 30 0 TA 30	NOX CABLE TION AT DEXTENSION PS SERIES 160	-1.875 -1.875 WEEN CENTER ES OF 0.140 D INTING HOLES
MODEL DASH NO. NO.	RANGE 0 TO (INCHES)	RESOLUTION INCHES
160 - 161	2	0.0033
Cable static tensio Op. temp., -85°F Resistance, 1000 Ω Standard pots are of Specials are ava Resistance Linearity (3 turn) Linearity (1 turn)	or 900 hours at on at zero extensi to +255°F Other esis able on special 5, 10, 20, 5 500, 2K, 5K, 45K (3 turn on 100K (used unless otherwilable on special Standard ±3% ±0.25% ±0.5%	rated power on 10-16-oz stances avail- cial order are 50, 100, 200, 10K, & 20K. ly), 50K and 1 turn only) ise specified. order only. Special ±1% ±0.20% ±0.35%
Max. current at 15 Max. voltage across Power rating, 1.0 0.0 Insulation resistant Dielectric strength	5°F (ambient) is 31 coil is 31.6 volts watts at 155°F watts at 255°F ce, 1000 megoh 500 VDC , 1000 volts R 60 CPS	l.6 milliamps derated to nms min. at MS min. at

SAC Linear Displacement Transducers (LDT) consist of an extension cable, spirally wound on a springloaded rewind drum, which is coupled to a precision, wire-wound, rotary potentiometer. The cable end is attached to the object whose movements are to be monitored. As the cable is extended or retracted, the cable drum rotates the potentiometer wiper, varying the voltage at the wiper tap (No. 2) of the potentiometer. The voltage may be measured to reflect the position, direction, or rate of motion of the object attached to the cable.

Figure 3.19 Space Age Controls linear displacement transducer

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 3.20(a) Control position transducer mounting detail

Figure 3.20(b) Aileron control position transducer

Figure 3.20(c) Rudder and elevator control position transducers

NOTE :-

-lightly sand surface of airplane
-clean with isopropyl alcohol
-surface must be room temperature during attatchment
-fair with duct tape

3M #4265 -DOUBLE COATED NEOPRENE FOAM TAPE

AdhesiveA-20 Firm AcrylicThickness3/64 in.Tensile60 psiStatic Shear 66 psiTemp max.225 °FTemp min-20 °F

Figure 3.21 Mounting technique for external devices

(linear regression correlation coefficient of between 0.9976 and 0.9998) for the mounting locations used.

3.2.6 Static and Dynamic Pressure Transducer

A B&D Instruments Company 2504 series transducer (see Figure 3.22) was used for the static and dynamic pressure measurement. This device includes its own signal conditioning and converts the pressures to electrical signals utilizing semiconductor pressure transducers. Semiconductor transducers are largely affected by the ambient temperature; the B&D unit allows for this by heating the case and maintaining a constant temperature.

> 5 84 56

The pitot tube was designed and constructed according to Reference ²⁴. (See Figure 3.23.) The pitot tube is attached to the underside of the wing (see Figures 3.24) using the foam tape method shown in Figure 3.21. The pitot tube allows a high angularity of the flow and still provides true readings. The distance from the wing is such that the tube is out of the boundary layer and thus provides a true total pressure reading as long as the pitot tube axis is close to the direction of airflow ($\pm 15^\circ$). The tube is mounted along the wing, halfway between the propeller arc and the wing tip (see Figure 3.25). This location minimizes flow effects due to the propeller slip stream and the wing tip vortices.

For the accurate measurement of static pressure, a trailing static cone is recommended (see Reference 25). Initial flights showed difficulty in deployment of the static cone after takeoff.

Figure 3.22 B&D Instruments 2054 pressure transducer

TOMORON CA

đ

Figure 3.24(a) Pitot tube mounted on airplane

Figure 3.24(b) Pitot tube mounted on airplane

Figure 3.25 Pitot tube mounting location

The cone has not been used and is not essential if only stability analysis is performed. The airplane static system is sufficient for stability analysis; however, a more accurate method would be required for any performance testing.

3.2.7 Temperature Transducer

An Analog Devices Company Semiconductor temperature transducer was used for measurement of air temperature. Specifications are shown in Figure 3.26. The transducer is mounted in a probe, as shown in Figure 3.27. The temperature probe is mounted the same way as the pitot tube, using the double-sided tape method. The temperature probe is shown mounted on the airplane in Figures 3.28. The location of the probe is identical to that of the pitot tube, but on the opposite wing.

Model	AD590M	Absolute error (rated rang	e)
Absolute Maximum Ratings		No external adjustment	±1.7°C max
Forward voltage	+44 v	+25°C calib error = 0	±1.0°C max
Reverse voltage	-20 v	Nonlinearity	±3.0°C max
Breakdown voltage(to case)	±200 v	Repeatability	±0.1°C max
Rated temperature rawse	-55°C to +150°C	Long term drift	±0.1°C/month max
Storage temperature	-65°C to +155°C	Current noise	40 pA√Hz
Lead temperature (soldering)	+300°C	Power supply rejection	
PowerSupply		+4v <vs <+5v<="" th=""><td>0.5µA/v</td></vs>	0.5µA/v
Operating voltage range	+4v to +30v	+5v <vs <+15<="" b="">v</vs>	0.2µA/v
Output		+15v <vs <+30v<="" b=""></vs>	0.lµA/v
Nominal current (+25°C)	298.2 UA	Case isolation	10 ¹⁸ ohms
Nominal temp. coefficient	luA/°C	Effective shunt capacitance	e100pF
Calibration error (+25°C)	±0.5°C max	Turn on time	20 µ#
		Reverse bias leakage	
		(reverse voltage =10 v)	10 pA

Figure 3.26 Temperature transducer specifications

Figure 3.27 Temperature probe

Figure 3.28(a) Temperature probe mounted on airplane

Figure 3.28(b) Temperature probe mounted on airplane

The trandsucers selected have shown that the basic decisions regarding specific transducers, ranges and accuracies were correct. They have all proved reliable, with no failures encountered; and none required any specialized signal conditioning or difficult calibration procedures.

3.3 Power Supply

There were two options considered for supplying power to this instrumentation system:

- 1) Tap off the aircraft electrical system, or
- 2) Carry a separate battery package on the flight.

Considering option one, using the aircraft power system, offered several advantages. These were reduction in size of the instrumentation system, and no limited usage time due to battery rundown. It was realized, however, that there are several voltage standards on the current general aviation fleet. This would therefore require either a complex voltage control system or several systems to account for the various voltages available in the airplanes to be con__idered. Coupled with this is the high cost of voltage couversion systems. Also, modification would then be required to the airplane's electrical system to install the instrumentation package.

It was decided to explore the second option. A suitable rechargeable battery was found, manufactured by Eagle-Picher. These lead acid batteries are sealed, rechargeable, and maintenance free. A typical discharge curve is shown in Figure 3.29. These batteries when used in a deep cyclic regime (i.e., removing 50-100% of the

battery rated capacity prior to recharge) have a recharge time of 12 to 20 hours. They have an expected lifetime of 100 to 150 complete charge/discharge cycles, with longer life expectancy when less than 100% depth of discharge is used. These batteries can also be used in any position. The crot of these batteries is such that several battery packs could be purchased for less than the price of one regulated voltage divider required if the airplane electrical system were used.

DISCHARGE TIME

*To Determine Discharge Rate of Various Betteries Multiply Rated Capacity (C) by factor shown: for example — The rate at which an eight empere hour bettery must be discharged to yield a useful ten hours equals .096C or .076 x 8 A.H. \pm .77 emperes.

Figure 3.29 Battery discharge curve

Another advantage of a battery system is stability of the voltage supplied to the system. This advantage stems from two conditions. One is the fact that no external loads are on the power supply; thus, the power being used is steady and unchanging. Second is the fact that no ripple or noise will be in the power supplied. With a shipsupplied system, ripple will be present in the voltage system due to the means of supplying power (from the generator or alternator systems). This steady voltage supply, and the lack of ripple when the batteries are used, results in transducers being able to normally exceed their advertised specifications.

The voltages required for the complete on-board data acquisition system are shown in Table 3.4. Batteries were selected to match the power requirements at the various voltages. The firing schematic, as well as the specifications of the batteries selected, are shown in Figure 3.30. The batteries allow a minimum of 3 hours running time between recharge. (The 12-volt battery supplying the TEAC tape drive is discharged first.)

The biggest disadvantage when batteries are used is that of weight. The battery module, complete, weighs 60.5 lbs. This is the heaviest component in the entire system (see the ~able of Figure 3.2). Total weight of the entire instrumentation system including all cables is 132.4 lbs. This system weight is not a problem for the majority of general aviation airplanes.

BATTERY VOLTAGE	REGULATED VOLTAGE	REQUTREMENT
+36	+28	Heater(P_{S}, P_{D}) Gyro motors(θ, ϕ, p, q, r)
+24	+15	Accelerometers(A _X ,A _Y ,A _N) Filters, MDAS-16
	+12	TEAC tape drive
+12	+5,5	P _S and P _D reference voltage
	+5	Potentiometers $(\theta, \phi, \delta_E, \delta_A, \delta_R)$ AIM 65 computer Temperature transducer
-12	-5	Potentiometers $(\theta, \phi, \delta_E, \delta_A, \delta_R)$
-24	-15	Accelerometers(A _X ,A _Y ,A _N) Filters, MDAS-16

	Tab	le	3.4	Power	Requirements	fo	Data	Aco	uisition	Packas	ze
--	-----	----	-----	-------	--------------	----	------	-----	----------	--------	----

a de la comune de la c

* maximum current requirement

		NC	MINAL	CAPACI	17	DIM	ENSIONS	(INCHES	5)	
BATTERY NUMBER	NOMINAL VOLTAGE	20 HR	10 HR	5 HR	1 HR	LENGTH	WIDTH	HEIGHT	TO TERMINAL	WEIGHT (LB)
CF12V20	12	20.0	19.0	17.5	12.5	6.51	4.91	6.53	6.75	16.2
CF12V15	12	15.0	14.5	13.0	9.0	7.22	3.34	6.50	6.75	12.8
CF12V8	12	8.0	7.7	7.0	5.0	6.00	4.00	3.75	3.97	7.0
CF12V1.5	12	1.5	1.4	1.3	0.9	7.02	1.33	2.40	2.69	1.9

Figure 3.30 Battery module schematic and specifications

3.4 Pilot Control

The pilot controls the instrumentation system using a box which can be placed on the seat beside him (see Figure 3.31). The control box performs essentially the same function as the ground keyboard, the switches on the box replacing the keys (which are really just momentary contact switches). The controls are described below.

3.4.1 System Control

This consists of three switches.

First is the "INITIALIZE" tape switch. This is a momentary contact switch which is used only after insertion of a fresh data tape. This function prepares the data cassette to accept data.

Second, the "RUN/STBY" toggle switch is used to control when data is being recorded. In the STBY position the system is nonactive. In the RUN position, data is recorded. There are two of these switches, one of which is located on the pilot control wheel and the other, on the pilot control box.

Third is the "REWIND" switch. This is used at the end of a cassette or flight. Activation of this switch places an "end" mark on the data tape and rewinds the tape.

3.4.2 Transducer Readout Control

A high-impedance analog voltmeter is provided to the pilot so that he can observe a particular transducer as he requires. The meter's installation is shown in Figure 3.32. A rotary switch

Figure 3.31 Pilot control console

Figure 3.32 Transducer monitor
(on the pilot control console) controls the signal which is observed.

Ţ

This feature is also used to verify that all transducers are operating correctly prior to a test flight.

Standard and and a specific strange and a

٠

a an an an an an an<mark>tagana</mark>tang a

. .

4. GROUND COMPUTER SYSTEM

The MMLE^{*} data reduction process described in this report requires a powerful computer capable of being programmed in a high level language. Phase I (Reference 2) pointed out the requirement for a computer system operating under a compiled language. This requirement is due to the lengthy execution times associated with interpretive languages. (A Hewlett Packard 9825 was used in Phase I, programmed in interpretive Basic.) This chapter presents a benchmark process which has been used to evaluate the capability of the computer systems to perform the data reduction tasks. Also, a description of the selected computer is presented.

A two-step evaluation process was used. The first program in this process, the INTEGER SPEED ROUTINE, is short and easy to implement and gives a ball-park speed estimate. Secondly, the FLOATING POINT SPEED ROUTINE is a lengthier program, more closely resembling the operations performed in the MMLE process. These programs are described below.

4.1 Integer Speed Routine

Ì

This is a short, easy-to-implement program giving a rough benchmark of the operating speed of computers. The idea for this routine was originally conceived in Reference 26. A listing is presented in Table 4.1. The program does not realistically reflect the MMLE data reduction process, but it can be easily implemented in virtually

MMLE = Modified Maximum Likelihood Estimation (see Chapter 5).

		(Fortran Listing)
10 20 30 40		DO 100 M=5,10000,2 I=M/2 DO 200 K=3,I,2 J=(M/K)*K
50		IF(J.EQ.M) GO TO 100
60	200	CONTINUE
70		PRINT,M
80	100	CONTINUE
90		STOP
100		END

Table 4.1 Integer Speed Routine

any language on most computers in little time. This increases the ease with which a benchmark can be run and gives a ball park estimate of a computer's speed performance. The results of this speed comparison are presented in Table 4.2.

For evaluation of this data, it was assumed that once through this program was equal to two iterations of the MMLE routine. Therefore, to obtain the desired data reduction time through MMLE of 5-20 minutes, the Integer Speed Routine needs to run at 2-8 minutes on an acceptable computer. From Table 4.2 it is seen that all acceptable computers had both a compiler, which compiled down to machine code, and a floating point hardware package. Also, all acceptable computers were either using 16-bit microprocessors or could be considered main frame machines. It was obvious that current 8-bit microcomputers would not be capable of performing the data reduction task in any reasonable time frame. This is evident by the fact that the AIM-65 (using a 6502, 8-bit microprocessor) could not meet the speed requirements even in assembly language.

This study narrowed the number of acceptable machines considerably.

PROCESSOR	MACHINE	LANGUAGE	INTERPRETER	CONFILLER	FLUATING POINT HARDHARE	HRS:MIN:SEC	ACCEPTABLE
8-BIT MICRO	AIM 65 TRS 80 Apple II	BASIC (PRINTER OUTPUT) ASSEMBLY (LED OUTPUT) ASSEMBLY (PRINTER OUTPUT) LEVEL I BASIC LEVEL II BASIC ASSEMBLY FORTRAN MODEL 7.1 BASIC INTECER BASIC FLOATING POINT BASIC	* * *	*		4: 14: 44 0: 23: 36 0: 33: 40 7: 12: 27 6: 31: 10 0: 21: 55 0: 54: 18 3: 15: 00 2: 24: 31 3: 56: 23	
16-BIT MICRO	TERAC 8510 TEKTRONIX (4052) HP 9825 HP 1000 IBM SERIES I PDP 11/34* MINC 11/23	PASCAL (COMPILE TO P CODE) BASIC BASIC FORTRAN RTE IV B (CRT OUTPUT) " (NO OUTPUT) FORTRAN RTEM (CRT OUTPUT) " (NO OUTPUT) FORTRAN (NO OUTPUT) " (PRINTER OUTPUT) FORTRAN (RSX 11 M) (CRT OUTPUT) " (PRINTER OUTPUT) " (DISC OUTPUT) FORTRAN RT11-IV PLUS (CRT OUTPUT) " (DISC OUTPUT)	* *	* * * * * * * * * *	* * * * * * * * * *	0: 30: 35 1: 23: 00 1: 41: 17 0: 01: 23 0: 00: 48 0: 00: 57 0: 00: 44 0: 01: 30 0: 04: 30 0: 04: 30 0: 07: 10 0: 11: 20 0: 03: 36 0: 03: 29 0: 03: 10 0: 03: 00	~~~~
MAIN FRAME	HONEYWELL 60/66 CDC CYBER 70 IBM 370-148	FOKTRAN PL/1 FORTRAN (NON OPTIHIZED) FORTRAN (OPTIMIZED) PL/1 (OPTIMIZED)		* * * *	* * * *	0: 00: 44 0: 02: 13 0: 00: 39 0: 00: 37 0: 01: 19	~~~~
\star The PDP 11/34 was operating in a multi-user mode. Its performance is estimated to be approximately 2-3 times faster than the 11/23 series computer in single-user mode.							

Table 4.2 Integer Speed Comparison

1.000

4.2 Floating Point Speed Routine

To more closely resemble the MMLE data reduction process, yet still use a simple-to-implement program, the routine shown in Table 4.3 was developed. The program is made up of floating point matrix mathematics, which is what MMLE primarily contains.

Table 4.3 Floating Point Speed Routine (Fortran Listing)

10		REAL A(20,20),B(20,20),C(20,20),E(20,20),T(20,20),D(20,20),F
20		INTEGER I, J, K, M
30		PRINT, "START"
40		F=.098625
50		DO 400 M=1,40
60		DO 200 I=1,20
70		DO 200 J=1,20
80		E(I,J)=0
90		A(I,J)=F*I*J
100		B(I,J)=F*I
110'		C(I,J)≃F*J
120		D(I,J)=F
130		T(I,J)=0
140	200	CONTINUE
150		DO 300 I=1,20
160		DO 300 J=1,20
170		DO 300 K=1,20
180		T(I,J)=T(I,J)+(A(I,K)*B(K,J))
190		E(I,J)=E(I,J)+(E(I,K)*D(K,J))
200	300	CONTINUE
210		DO 400 I=1,20
220		DO 400 J=1,20
230	400	E(I,J)=E(I,J)+T(I,J)
240		PRINT,"E="
250		DO 100 I=1,20
260		DO 100 J=1,20
270		PRINT,E(I,J)
280	100	CONTINUE
290		PRINT,M
300		STOP
310		END.

The program approximates one iteration of the MMLE method. This is indicated by the 48 minute run time on the Hewlett Packard 9825, which requires approximately 50 minutes to perform one iteration of the MMLE program. In order to deem a computer acceptable for the MMLE process, it must be able to complete the floating point speed routine in the order of 1-5 minutes. It was decided that an MMLE execution time of 5-20 minutes would be acceptable (assuming 5 iterations).

The results of this test are presented in Table 4.4. It is seen that the 16-bit machines tested, operating in compiled Fortran, meet the speed requirement.

MACHINE		MIN:SECS
HP9825	(BASIC)	48:15
HONEYWELL 60/66		0:20.6
HP1000	(NO OUTPUT)	1:08.7
	(DISC OUTPUT)	2:07
IBM SERIES 1	(DISC OUTPUT)	0:58
MINC 11/03	(DISC OUTPUT)	5:35
MINC 11/23	(DISC OUTPUT)	4:00
		1

Table 4.4 Floating Point Speed Comparison

4.3 Description of System

The results of the benchmark evaluation left several computers that were deemed acceptable. To select the best machine for the KU-FRL requirements, the following factors were also considered:

- Memory expansion capability
- Floating Point Hardware available
- RS232 ports/IEEE 488 ports installed
- CRT Graphics capability
- Hard/Flexible disc storage
- Programming languages available
- Users group existing
- Delivery
- Cost

^{*} Industry interfacing standards

Evaluating the acceptable computers, the DEC^{**} MINC 11/03 computer was selected as best meeting the requirements. A description follows.

The MINC 11/03 is shown in Figure 4.1. The block diagram of Figure 4.2 shows the basic features and some of the options available.

The computer uses a 16-bit DEC LSI 11/03 processor, capable of addressing 64K bytes of memory, and contains a floating point hardware package, 4 RS232 ports, and an IEEE 488 port.

Data and program storage is handled using the dual RXO2 flexible disc drives. These use 8" flexible discs, capable of holding 500 K bytes of information each.

Computer and program interaction is handled using the DEC-VT 105 graphics terminal. This permits inputting and outputting of data, as well as allowing graphical representation of the flight test results.

The RS232 ports are used for input and ouptut of the data. Four are provided. One is used for the VT 105 terminal, two are configured to allow data transfer from the Rockwell AIM-65, and one is used to control a hard copy printer.

The IEEE 488 port allows ease of interfacing to many industry standard components. Planned future use of this port is for a hard copy plotter for analysis and report quality plots of flight test data.

DEC = Digital Equipment Corporation.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 4.1 Digital Equipment Corp. MINC 11/03 computer

*Installed on KU-FRL system

Figure 4.2 Block diagram of MINC 11/03 computer

The standard MINC comes with BASIC language software. The KU-FRL package has the RTL1-FORTRAN IV software option. This version of FORTRAN allows compiling programs to machine level, which was determined necessary to perform the data reduction task as indicated in Sections 4.1 and 4.2.

The MINC computer has been found capable of performing the function intended. The MMLE process takes approximately 20 minutes for 5 iterations, which is close to the prediction of Section 4.2.

It is recommended that a hard copy printer and plotter be added to the standard MINC to make it a complete data analysis system.

5. DATA REDUCTION METHOD

This chapter describes the data analysis procedures used for longitudinal and lateral stability analysis. The overall method is best depicted via the flow chart shown in Figure 5.1

For this phase the system described in Chapter 3 was used for airborne data acquisition. The KU-FRL's DEC-MINC 11/03 microcomputer was used for all further data processing. This computer is described in detail in Chapter 4. Segmenting the various data reduction programs into the blocks as shown in Figure 5.1 allowed effective data analysis.

This section describes theoretical aspects of the computer programs used. Flow charts and program listings are included as Appendix A.

5.1 Data Acquisition

This program is used as part of the airborne data recording system. It is written on the AIM-65 in machine level language to allow rapid execution. The program controls the MDAS-16 module, as well as the TEAC cassette recorder. (See Appendix A.1 for flowchart and listing.)

The program has three control inputs, which are located on the pilot control console. The first is the "INITIALIZE" tape button. This is used for getting the data cassette ready to record the signals. It is used only once per data cassette. This command

Figure 5.1 Data processing flow chart

rewinds the tape (if required), advances the tape past the beginning of the tape hole, and then writes a beginning-of-tape file mark.

Second, the "RUN/STBY" toggle switch is used to control the recording of data. Placing this switch in the RUN position begins the data recording process. The computer than sends control to the MDAS to sample the P_D , P_S and T channels. These are sampled 10 times each and then output to the TEAC cassette drive in one block. The program then runs through the other channels (A_X , A_Y , A_N , θ , ϕ , p, q, r, δ_E , δ_A , δ_R). These data are temporarily stored in computer memory. After a total of 0.1 seconds has elapsed, the computer then samples these channels again and also temporarily stores them in memory. After 10 such time points are in the computer memory, the AIM-65 outputs this to the TEAC in one block; and the process continues until the "RUN/STBY" switch is placed in STBY. Then the computer samples the P_D , P_S and T channels agair and outputs these to the tape. After this the system idles, waiting for the next command.

To reduce the possibility of error, the hignest order bits on the measurement channels are recorded twice. This is easily done, as the analog-to-digital conversion comes out as a 12-bit word, available as a tri-state output. The AIM-65 operates on the basis of 8-bit words; therefore, the 4 highest order bits of the data are recorded twice, resulting in two 8-bit words. These higher order bits are compared on readback as a means of error checking.

Third, the "REWIND" switch causes an end-of-tape mark to be written on the cassetle and then rewinds the tape back to the start.

This program also keeps track of the run number, which is output at the beginning of each run to the cassette.

5.2 Transfer Data to Ground Based Computer

This operation requires both the AIM-65 and MINC 11/03 and a program for each to allow the two to be coupled. A standard RS232 serial interface is available on both computers. The data can be transferred across telephone lines if desired.

The data, before being transferred from the AIM-65, is checked for errors. This is done by comparing the high order bits, which have been recorded twice. A running total of any errors is kept and printed out by the AIM-65 on its display printer. Errors have not been significant in number, and therefore no correction is made. All errors to date have been caused by poor quality data cassettes. Using the qualified cassettes (see Table 5.1 and Reference 27) no data errors have been found in the flight data.

Manufacturer	Туре	Part No
3M	Scotch	834A/1-300
ТDК	Data Cassette	HR-850 90C
MAXELL	Data Cassette	м-90
BASF	Digital Power Typing Cassetue	52346

Table 5.1 Qualified Data Cassettes

(Qualified as per Reference 27)

The AIM-65 program is shown in Appendix A.2; and the MINC 11/03 program, in Appendix A.3. These programs are used to transfer the flight data from the TEAC cassette tape to the MINC 11/03 disc. In this mode the AIM-65 keyboard is used for controlling the data transfer off of itself. The MINC 11/03 program loads the transferred data into its memory and then transfers this data to the data disc.

5.3 Engineering Conversion

Total State

1

The first step in the actual data analysis procedure is converting the raw data bits into their corresponding engineering units. The process involved first converts the bit pattern of each measurement to the voltage representation. (See Reference 3 for detailed explanation of this process.) Then, utilizing the particular transducer calibration curve, this voltage representation is converted to the units of the actual motion measured. Resulting from this, then, is the transducer measurement in the correct engi. Pering unit. (See Appendix A.4 for program listing.)

This two-step process is presently required due to the calibration process utilized in this phase. Currently, transducers are excited using known inputs; and the transducer response is measured using a voltmeter. A suggested improvement in this process is to bypass the voltmeter, using the digital recording system in the calibration process. This improvement is planned to be implemented upon construction of the calibration rig suggested in Chapter 9.

5.4 Quick-Look Plots

The next step in the data analoys procedure is making the quicklook plots. The program of Appendix A.5 is used to do this. Basically this program plots the transducer outputs (uncorrected for C.G. location, etc.) on the graphics CRT. This is a rapid means of determining the portion of the recorded data that has the proper aircraft modes excited and is thus suitable for further analysis. Operator interaction has been minimized to reduce the overall time required for this step.

5.5 Detailed Engineering Conversion

This program is used to do a rigorous conversion of the data into the form required for the MMLE technique. Accounted for in this procedure are accurate transducer calibrations and instrument position corrections.

The first step in the instrument position correction process is to account for the misalignment between the transducers and the aircraft body axis. Secondly a correction must be applied to correct for the distance from the transducer center of gravity to the airplane center of gravity. The following equations are used. (See Reference 28 for a more rigorous presentation.)

$$\theta_{B} = \theta_{M} - \theta_{I}$$

$$p_{B} = p_{M} \cos (\theta_{I}) + r_{M} \sin (\theta_{I})$$

$$r_{B} = -p_{M} \sin (\theta_{I}) + r_{M} \cos (\theta_{I})$$

$$(5.1(a))$$

$$A_{X_{B}} = A_{X_{M}} \cos (\theta_{I}) - A_{N_{M}} \sin (\theta_{I}) + (r_{B}^{2} + q_{B}^{2}) \frac{\bar{x}}{g} - (pq - r) \frac{\bar{y}}{g} - (pr + q) \frac{\bar{z}}{g}$$

$$A_{Y_{B}} = A_{Y_{M}} - (pq + r) \frac{\bar{x}}{g} + (p^{2} + r^{2}) \frac{\bar{y}}{g} - (qr - r) \frac{\bar{z}}{g} \qquad [5.1(b)]^{*}$$

 $A_{N_{B}} = A_{X_{M}} \sin (\theta_{I}) + A_{N_{M}} \cos (\theta_{I}) + (pr - \dot{q}) \frac{\bar{x}}{g} + (qr + \dot{p}) \frac{\bar{y}}{g} - (p^{2} + q^{2}) \frac{\bar{z}}{g}$

where

B indicates Body axis at airplane center of gravity

M indicates as Measured by transducer

I indicates as Installed wrt Body axis at airplane center of gravity

This step also involved checking for and correcting any obvious data errors. If any filtering of unwanted noise is required, it would also be done at this stage; however, none has been needed to date. The quick-look plots are used as the major aid in this process.

A program listing is contained in Appendix A.6.

5.6 Modified Maximum Likelihood Estimator

The flight data were processed through the Modified Maximum Likelihood Estimator (MMLE) developed by MASA (see References 12-16). This technique has been used by NASA for over 12 years. A simplified program (NASA Dryden "BONES" version of MMLE) has been placed on the MINC 11/03 computer. The actual program listings are included in Appendix A.7. Described here is the theory used in this technique, and some of the assumptions made for the KU-FRL version.

Where p, q, and r are required, these are determined by digitally differentiating the p, q, and r measurements.

5.6.1 Parameter Estimation

The MMLE estimator is an iterative process that determines the coefficients of a given set of linear equations describing the motion of the aircraft. It does this by comparing the difference between actual in-flight measured responses of various states, and the predicted responses of these states using an estimate of the coefficients. The actual measured control input is used as the input for the estimating procedure. The estimated coefficients are updated each iteration, using the differences as determined above. The flow chart below shows the MMLE concept.

Figure 5.2 Maximum likelihood estimation concept (from Reference 13)

5.6.2 Mathematical Model

The mathematical model used to describe the airplane is derived from the small perturbation equations of motion (see Reference 22).^{*} These are shown here explicitly, in the non-dimensional form.

- for longitudinal (from Reference 22, Equation 6.1):

$$\begin{split} m\dot{u} &= -mg(cosU_{1} + \bar{q}_{1}S(-(C_{D_{u}} + 2C_{D_{1}}))\frac{u}{U_{1}} + (C_{T_{x_{u}}} + 2C_{T_{x_{1}}})\frac{u}{U_{1}} - (C_{D_{a}} - C_{L_{1}})^{a} - C_{D_{\delta_{E}}}\delta_{E} \\ m(\dot{u} - U_{1}q) &= -mg(sinO_{1} + \bar{q}_{1}S(-(C_{L_{u}} + 2C_{L_{1}}))\frac{u}{U_{1}} - (C_{L_{a}} + C_{D_{1}})^{a} - C_{L_{\delta}}\frac{\dot{a}\bar{c}}{2U_{1}} - C_{L_{\delta_{E}}}\delta_{E} \\ i_{yy}\dot{q} &= \bar{q}_{1}S\bar{c}((C_{m_{u}} + 2C_{m_{1}})\frac{u}{U_{1}} + (C_{m_{T_{u}}} + 2C_{m_{T_{1}}})\frac{u}{U_{1}} + C_{m_{\alpha}}^{a} + C_{m_{T_{\alpha}}}^{a} + C_{m_{\alpha}}^{b}\frac{\dot{a}\bar{c}}{2U_{1}} + C_{m_{q}}\frac{q\bar{c}}{2U_{1}} + C_{m_{q}}\frac{q\bar{c}}{2U_{1}} + C_{m_{q}}\delta_{E} \\ \end{split}$$

- for lateral (from Reference 22, Equation 6.2):

$$m(\dot{v} + U_{1}r) = mg\phi cos O_{1} + \bar{q}_{1}S(C_{y_{\beta}}^{\beta} + C_{y_{p}}\frac{pb}{2U_{1}} + C_{y_{r}}\frac{rb}{2U_{1}} + C_{y_{\delta_{A}}^{\delta}}A + C_{y_{\delta_{R}}^{\delta}}R)$$

$$I_{x::}\dot{p} - I_{xz}\dot{r} = \bar{q}_{1}Sb(C_{\ell_{\beta}}^{\beta} + C_{\ell_{p}}\frac{pb}{2U_{1}} + C_{\ell_{r}}\frac{rb}{2U_{1}} + C_{\ell_{\delta_{A}}^{\delta}}A + C_{\ell_{\delta_{R}}^{\delta}}R)$$

$$I_{zz}\dot{r} - I_{xz}\dot{p} = \bar{q}_{1}Sb(C_{n_{\beta}}^{\beta} + C_{n_{T}}^{\beta} + C_{n_{p}}\frac{pb}{2U_{1}} + C_{n_{r}}\frac{rb}{2U_{1}} + C_{n_{\delta_{A}}^{\delta}}A + C_{n_{\delta_{R}}^{\delta}}R)$$

$$[5.2(b)]$$

Using the definitions shown in Table 5.2, Equations [5.2] can be converted to the dimensional form shown below.

- for longitudinal (from Reference 22, Equation 6.72):

$$\dot{u} = -g\theta\cos\theta_1 + X_u u + X_T_u u + X_{\alpha}\alpha + X_{\delta}\delta_E$$

 $\dot{w} - U_1q = -g\theta\sin\theta_1 + Z_u u + Z_{\alpha}\alpha + Z_{\alpha}\dot{\alpha} + Z_q q + Z_{\delta}\delta_E$
(5.3(a))
 $\dot{q} = M_u u + M_T u + M_{\alpha}\alpha + M_T \alpha + M_{\alpha}\dot{\alpha} + M_q q + M_{\delta}\delta_E$

^{*}The derivatives in Reference 22 are for the stability axes system. See Appendix B for conversion to the Body axes used in this report.

-9.5(C + 2C)		
$ X_{u} = \frac{1 - (1 - (D_{u})^{-1} - (D_{u})^{-1})}{mU_{1}} (sec^{-1}) $		
$\mathbf{x}_{T_{U_{2}}} = \frac{\overline{q}_{1}^{S}(C_{T_{x_{u}}} + 2C_{T_{x_{1}}})}{\frac{mU_{1}}{mU_{1}}} (sec^{-1})$	$M_{\alpha} = \frac{\bar{q}_{1} \bar{sc} C_{m}}{I_{yy}} (sec^{-2})$	
$ \begin{array}{c} -\bar{q}_{1}S(C_{D_{\alpha}}-C_{L_{1}}) \\ X_{\alpha} = \frac{m}{m} (ft \ sec^{-2}) \\ \bar{a} \ sc$	$M_{T_{\alpha}} = \frac{\overline{q_1} \overline{scc}_{m_{T_{\alpha}}}}{I_{yy}} (sec^{-2})$	
$ \begin{vmatrix} x_{\delta_{E}} &= \frac{-q_{1}s_{D}}{m} & (ft sec^{-2}) \\ x_{\delta_{E}} &= \frac{-q_{1}s_{D}}{m} & (ft sec^{-2}) \end{vmatrix} $		
$z_{u} = -\frac{\bar{q}_{1}S(C_{L_{u}} + 2C_{L_{1}})}{\frac{mU_{1}}{mU_{1}}} (sec^{-1})$	$M_{\alpha}^{\bullet} = \frac{\overline{q}_{1} s \overline{c}^{2} C_{m_{\alpha}^{\bullet}}}{2 I_{yy} U_{1}} (sec^{-1})$	
$z_{\alpha} = - \frac{\overline{q}_{1}S(C_{L_{\alpha}} + C_{D_{1}})}{m} (ft \ sec^{-2})$	$M_{q} = \frac{\overline{q}_{1} \overline{sc^{2}C}_{m_{q}}}{2I_{yy}U_{1}} (sec^{-1})$	
$Z_{\alpha}^{\bullet} = -\frac{\overline{q_1 SC_{L} \cdot c}}{2mU_1} (ft sec^{-1})$	$\bar{q}_1 \bar{scc}_{m_{\delta_E}}$ (sec ⁻²)	
$Z_q = -\frac{\overline{q}_1 SC_L \overline{c}}{2mU_1} (ft \ sec^{-1})$		
$Z_{\delta_{E}} = -\frac{\overline{q}_{1}SC_{L}}{m} (ft \ sec^{-2})$		
$M_{u} = \frac{\bar{q}_{1}S\bar{c}(C_{m_{u}} + 2C_{m_{1}})}{I_{yy}U_{1}} (ft^{-1} sec^{-1})$		
$M_{T_{u}} = \frac{\bar{q}_{1}\bar{sc}(C_{m_{T_{u}}} + 2C_{m_{T_{1}}})}{\frac{u}{yy} \bar{v}_{1}} (ft^{-1} sec^{-1})$		

Table 5.2(a) Longitudinal Dimensional Stability Derivatives *

* from Reference 22, Table 6.3, page 413

$Y_{\beta} = \frac{\overline{q}_{1}SC_{y_{\beta}}}{m} (ft \ sec^{-2})$	$L_{\delta_{A}} = \frac{\overline{q}_{1}^{SbC}}{I_{xx}} (sec^{-2})$
$Y_{p} = \frac{q_{1}SSC_{y_{p}}}{2mU_{1}} (ft sec^{-1})$	$L_{\delta_{R}} = \frac{\bar{q}_{1}SbC_{\ell}}{I_{xx}} (sec^{-2})$
$Y_r = \frac{\bar{q}_1 SbC_{y_r}}{2mU_1} \text{ (ft sec}^{-1}\text{)}$	$N_{\beta} = \frac{\overline{q}_{1}SbC_{n_{\beta}}}{I_{a_{\alpha}}} (sec^{-2})$
$Y_{\delta_{A}} = \frac{q_{1}^{3} y_{\delta_{A}}}{m} (ft \ sec^{-2})$	$N_{T_{\beta}} = \frac{\overline{q}_{1}^{SbC} n_{T_{\beta}}}{I_{zz}} (sec^{-2})$
$Y_{\delta_{R}} = \frac{q_{1}^{3} y_{\delta_{R}}}{m} (ft \ sec^{-2})$	$N_{p} = \frac{\bar{q}_{1}Sb^{2}C_{n}}{2I_{zz}U_{1}} (sec^{-1})$
$L_{\beta} = \frac{\bar{q}_{1}^{SbC}_{\ell}}{I_{xx}} (sec^{-2})$	$N_{r} = \frac{\bar{q}_{1}Sb^{2}C_{n}}{2I_{r}U_{1}} (sec^{-1})$
$L_{p} = \frac{\bar{q}_{1} Sb^{2}C_{\ell}}{2I_{xx}U_{1}} (sec^{-1})$	$N_{\delta_A} = \frac{\overline{q_1} \text{SbC}_{n_{\delta_A}}}{\overline{I_{22}}} \text{ (sec}^{-2}\text{)}$
$L_{r} = \frac{\bar{q}_{1}Sb^{2}C_{\ell}}{2I_{xx}U_{1}} (sec^{-1})$	$N_{\delta_{R}} = \frac{\overline{q}_{1}^{SbC}}{I_{zz}} (sec^{-2})$

Table 5.2(b) Lateral-Directional Dimensional Stability Derivatives *

-

ŝ

* from Reference 22, Table 6.8, page 445

- for le 3ral (from Reference 22, Equation 6.141):

$$\dot{\mathbf{v}} + \mathbf{U}_{1}\mathbf{r} = \mathbf{g}\phi\cos\theta_{1} + \mathbf{Y}_{\beta}\beta + \mathbf{Y}_{p}\mathbf{p} + \mathbf{Y}_{r}\mathbf{r} + \mathbf{Y}_{\delta_{A}}\delta_{A} + \mathbf{Y}_{\delta_{R}}\delta_{R}$$

$$\dot{\mathbf{p}} - \frac{\mathbf{I}_{\mathbf{x}\mathbf{z}}}{\mathbf{I}_{\mathbf{x}\mathbf{x}}} \quad \dot{\mathbf{r}} = \mathbf{L}_{\beta}\beta + \mathbf{L}_{p}\mathbf{p} + \mathbf{L}_{r}\mathbf{r} + \mathbf{L}_{\delta_{A}}\delta_{A} + \mathbf{L}_{\delta_{R}}\delta_{R}$$

$$(5.3(b))$$

$$\dot{\mathbf{r}} - \frac{\mathbf{I}_{\mathbf{x}\mathbf{z}}}{\mathbf{I}_{\mathbf{z}\mathbf{z}}} \quad \dot{\mathbf{p}} = \mathbf{N}_{\beta}\beta + \mathbf{N}_{T}\beta + \mathbf{N}_{p}\mathbf{p} + \mathbf{N}_{r}\mathbf{r} + \mathbf{N}_{\delta_{A}}\delta_{A} + \mathbf{N}_{\delta_{R}}\delta_{R}$$

Using the concept of state variable theory (see Reference 22), Equation [5.3] can be written in the following form:

 $[R] \{ \mathbf{x}(t) \} = [A] \{ \mathbf{x}(t) \} + [B] \{ \mathbf{u}(t) \}$ [5.4]

where

Equation 5.4 can be written more explicitly in the form which follows:

- for longitudinal (where [R] = identity matrix):

$$\frac{d}{dt} \begin{bmatrix} q \\ U \\ a \\ \theta \end{bmatrix} = \begin{bmatrix} M_{q}^{\dagger} & M_{u}^{\dagger} & M_{a}^{\dagger} & M_{\theta}^{\dagger} \\ 0 & X_{a}^{\dagger} & X_{a}^{\dagger} & -g \cos(\theta_{1}) \\ \frac{z_{q} + U_{1}}{U_{1} - z_{a}^{\dagger}} & z_{u}^{\dagger} & z_{a}^{\dagger} & \frac{-g}{U_{1} - z_{a}^{\dagger}} \sin(\theta_{1}) \cos(\phi_{1}) \\ \cos(\phi_{1}) & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q \\ U \\ a \\ \theta \end{bmatrix} + \begin{bmatrix} M_{\delta_{E}}^{\dagger} & M_{\delta_{C}}^{\dagger} & M_{\theta}^{\dagger} \\ X_{\delta_{E}}^{\dagger} & X_{\delta_{C}}^{\dagger} & X_{\theta}^{\dagger} \\ z_{\delta_{E}}^{\dagger} & z_{\delta_{C}}^{\dagger} & z_{\theta}^{\dagger} \\ 0 & 0 & \delta_{\theta}^{\dagger} \end{bmatrix} \begin{bmatrix} \delta_{E} \\ \delta_{c} \\ 1 \end{bmatrix} \begin{bmatrix} 5.5(a) \end{bmatrix}$$

(See Table 5.3 for explicit definition of these terms.)

- for lateral:

$$\left[\mathbf{R} \right] \frac{d}{dt} \begin{bmatrix} \mathbf{P} \\ \mathbf{r} \\ \mathbf{s} \\ \mathbf{\theta} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{\mathbf{p}}^{*} & \mathbf{L}_{\mathbf{r}}^{*} & \mathbf{L}_{\mathbf{g}}^{*} & \mathbf{0.0} \\ \mathbf{N}_{\mathbf{p}}^{*} & \mathbf{N}_{\mathbf{r}}^{*} & \mathbf{N}_{\mathbf{g}}^{*} & \mathbf{0.0} \\ \mathbf{sin}(\alpha_{1}) & -\cos(\alpha_{1}) & \mathbf{Y}_{\mathbf{g}}^{*} & \frac{\mathbf{g}}{U_{1}}\cos(\theta_{1})\cos(\theta_{1}) \\ \mathbf{1.0} & \cos(\theta_{1})\tan(\theta_{1}) & \mathbf{0.0} & \mathbf{0.0} \end{bmatrix} \begin{bmatrix} \mathbf{P} \\ \mathbf{r} \\ \mathbf{s} \\ \mathbf{\theta} \end{bmatrix} + \begin{bmatrix} \mathbf{L}_{\mathbf{\delta}_{\mathbf{A}}}^{*} & \mathbf{L}_{\mathbf{\delta}_{\mathbf{r}}}^{*} & \mathbf{L}_{\mathbf{0}}^{*} \\ \mathbf{N}_{\mathbf{\delta}_{\mathbf{A}}}^{*} & \mathbf{N}_{\mathbf{\delta}_{\mathbf{r}}}^{*} & \mathbf{N}_{\mathbf{0}}^{*} \\ \mathbf{Y}_{\mathbf{\delta}_{\mathbf{A}}}^{*} & \mathbf{Y}_{\mathbf{0}}^{*} \\ \mathbf{Y}_{\mathbf{\delta}_{\mathbf{A}}}^{*} & \mathbf{Y}_{\mathbf{0}}^{*} \\ \mathbf{0.0} & \mathbf{0.0} & \mathbf{0.0} \end{bmatrix} \begin{bmatrix} \mathbf{\delta}_{\mathbf{A}} \\ \mathbf{\delta}_{\mathbf{r}} \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{\delta}_{\mathbf{A}} \\ \mathbf{\delta}_{\mathbf{r}} \\ \mathbf{0.0} & \mathbf{0.0} & \mathbf{0.0} \end{bmatrix} \begin{bmatrix} \mathbf{\delta}_{\mathbf{A}} \\ \mathbf{\delta}_{\mathbf{r}} \\ \mathbf{\delta}_{\mathbf{r}} \\ \mathbf{\delta}_{\mathbf{r}} \end{bmatrix} \begin{bmatrix} \mathbf{\delta}_{\mathbf{A}} \\ \mathbf{$$

(See Table 5.3 for explicit definition of these terms.)

To allow determination of states other than the ones contained in $\{x(t)\}$, the following expression can be derived:

$$\{y(t)\} = \begin{bmatrix} -I \\ -G \end{bmatrix} \{x(t)\} + \begin{bmatrix} 0 \\ -H \end{bmatrix} \{u(t)\} + \{-\frac{0}{v}\}^*$$
 [5.6]

where

- $\{y(t)\}$ = computed observation vector
- [G] = observation matrix
- [H] = observation matrix
- {v} = variable bias vector.

(See Table 5.4 for explicit definition of these terms.)

The computed observation vector, $\{y(t)\}$, corresponds to the measured observation vector, shown here:

$${z(t)} = {y(t)} + {\eta(t)}^*$$
 [5.7]

where

$$\{z(t)\}$$
 = measured observation vector $\{\theta, \phi, p, q, r, A_{\chi}, A_{\gamma}, A_{\gamma}\}$

$$A_N, \delta_E, \delta_A, \delta_R, P_S, P_D, T$$

 $\{\eta(t)\}$ = measured noise vector.

From the terms of Equations [5.4], [5.6], [5.7], the vector

^{*}From Reference 16

$$\begin{aligned} H_{q}^{i} = H_{q} + H_{a}^{i} \frac{Z_{q} + U_{1}}{U_{1} - Z_{a}^{i}} = M_{q} + H_{a}^{i} (\sec^{-1}) \\ X_{0}^{i} = \text{ longitudinal acceleration equation bias (ff sec^{-2})^{i} \\ H_{u}^{i} = H_{u} + H_{T_{u}}^{i} + \frac{H_{a}^{i} Z_{u}}{U_{1} - Z_{a}^{i}} (ft^{-1} \sec^{-1}) \\ H_{u}^{i} = M_{a} + H_{T_{u}}^{i} + \frac{H_{a}^{i} Z_{u}}{U_{1} - Z_{a}^{i}} (\sec^{-2}) \\ Z_{u}^{i} = \frac{Z_{u}}{U_{1} - Z_{a}^{i}} = \frac{Z_{u}}{U_{1}} (ft^{-1}) \\ H_{0}^{i} = \frac{-H_{a}^{i} g \sin(\theta_{1}) \cos(\theta_{1})}{U_{1} - Z_{a}^{i}} \approx 0 (\sec^{-2})^{i} \\ Z_{u}^{i} = \frac{Z_{u}}{U_{1} - Z_{a}^{i}} = \frac{Z_{u}}{U_{1}} (\sec^{-1}) \\ H_{0}^{i} = \frac{-H_{a}^{i} g \sin(\theta_{1}) \cos(\theta_{1})}{U_{1} - Z_{a}^{i}} \approx 0 (\sec^{-2})^{i} \\ Z_{u}^{i} = \frac{Z_{u}}{U_{1} - Z_{a}^{i}} = \frac{Z_{u}}{U_{1}} (\sec^{-1}) \\ H_{0}^{i} = \frac{-H_{a}^{i} g \sin(\theta_{1}) \cos(\theta_{1})}{U_{1} - Z_{a}^{i}} (\sec^{-2}) \\ Z_{u}^{i} = R_{b}^{i} g_{e,c} + \frac{U_{a}^{i} Z_{b}}{U_{1} - Z_{a}^{i}} (\sec^{-2}) \\ Z_{b}^{i} = pitching moment equation bias^{i} \\ (\sec^{-2}) \\ X_{u}^{i} = X_{u} + X_{T_{u}}^{i} (\sec^{-1}) \\ Z_{b}^{i} = pitching moment equation bias^{i} \\ (\sec^{-2}) \\ Z_{b}^{i} = c^{i} normal acceleration equation bias (\sec^{-1})^{i} \\ X_{0}^{i} = x_{u}^{i} (ft \sec^{-2}) \\ Z_{b}^{i} = pitch rate equation bias (\sec^{-1})^{i} \\ X_{b}^{i} = r_{b}^{i} (ft \sec^{-2}) \\ \hat{\sigma}_{b}^{i} = pitch rate equation bias (\sec^{-1})^{i} \\ X_{b}^{i} = pitch rate equation bias terms are used to allow prediction of the complete state. which is made up of the steady state and the perturbed state. \\ ^{i} Note: With the approximations above, Equation [5.5(a)] is rewritten as; \\ \frac{d}{dt} \begin{bmatrix} q \\ u \\ \theta \end{bmatrix} = \begin{bmatrix} M_{q}^{i} & M_{u}^{i} & M_{u}^{i} & 0 \\ 0 & X_{u}^{i} & X_{u}^{i} - \cos(\theta_{1})g \\ 1 & Z_{u}^{i} & Z_{u}^{i} - \sin(\theta_{1})\cos(\theta_{1})g^{i} \\ 0 & 0 & \hat{\sigma}_{0} \end{bmatrix} \begin{bmatrix} r_{a} \\ r_{b}^{i} & r_{b}^{i} & r_{b}^{i} \\$$

 $L_p^* = L_p (sec^{-1})$ $N_{\delta_{A}}^{\dagger} = N_{\delta_{A}} (sec^{-2})$ $L_r' = L_r (sec^{-1})$ $N_{\delta_{\perp}} = N_{\delta_{\perp}} (sec^{-2})$ $L_{\beta}^{\dagger} = L_{\beta} (sec^{-1})$ $N_{\beta}^{\dagger} = N_{\beta} + N_{T_{\beta}} (sec^{-1})$ $L_{\delta_A}' = L_{\delta_A} (sec^{-2})$ $Y'_{\beta} = \frac{Y_{\beta}}{U_{1}} \quad (sec^{-1})$ $L_{\delta_{\mu}} = L_{\delta_{\mu}} (sec^{-2})$ $Y_{\delta_A}' = \frac{Y_{\delta_A}}{U_1}$ (sec⁻¹) $N_p' = N_p (sec^{-1})$ $N_r^{\dagger} = N_r (sec^{-1})$ $Y_{\delta_{r}} = \frac{Y_{\delta_{r}}}{U_{1}} \quad (sec^{-1})$ Y'_{o} = lateral acceleration equation bias (sec⁻¹) * ϕ_{1} = roll rate equation bias (sec⁻¹) * L_{o}^{\dagger} = rolling moment equation bias (sec⁻²) * N_o^{\prime} = yawing moment equation bias (sec⁻²) * *NOTE: The equation bias terms are used to allow prediction of the complete state which is made up of the steady state and the perturbed state. $[R] = \begin{vmatrix} 1.0 & -\frac{I_{xz}}{I_{xx}} & 0 & 0 \\ -\frac{I_{xz}}{I_{zz}} & 1.0 & 0 & 0 \\ 0 & 0 & 1.0 & 0 \end{vmatrix}$ for $I_{xz} \simeq 0$; [R] = identity matrix0 1 0

Table 5.3(b) Lateral, Dimensional State Vector Stability Derivatives

The second second

Table 5.4 Matrices Used in Observation equation

$$\{c\} = f([A], [B], [G], [H], \{v\})$$
 [5.8]

(where f indicates "a function of") is defined as the vector of unknowns. It is this vector that the MMLE method estimates. MMLE determines the unknowns ({c}) by minimizing the cost function given by:

$$J = \frac{1}{T} \int_{0}^{T} \{z(t) - y(t)\}^{\dagger}[D] \{z(t) - y(t)\} dt$$
 [5.9]

(T, t: indicates time)

or approximately in the discrete case:

$$J = \frac{1}{(N-1)} \sum_{i=1}^{N} \{z_i - y_i\}^{\dagger} [D] \{z_i - y_i\} \Delta t^{\star}$$
 [5.10]

(where i is the time index, and N the number of time points).

The weighting matrix, [D], is used to provide emphasis on the various measured states; in other words, to allow greater emphasis on the more accurate transducers, or the transducers that are more important to describe the maneuver performed.

The value of the cost functional, J, is minimized using the Newton-Raphson^{*} method. This technique is an iterative procedure, utilizing an estimated value of the vector of unknowns, {c}, and the first and second gradients of the cost functional, J, with respect to the vector of unknowns, {c}. The equation

$$\{c\}_{L} = \{c\}_{L-1} - \{\nabla_{c}^{2} J\}_{L}^{-1} \{\nabla_{c} J\}_{L}^{+} *$$
 [5.11]

(where L is the iteration number) is used to revise estimates for the vector of unknowns, {c}. The first and second gradients are given by:

^{*}From Reference 1.6

$$\{\nabla_{c}J\} = \frac{2}{N-1} \sum_{i=1}^{N} \{z_{i} - y_{i}\}^{\dagger}[D] \nabla_{c}\{z_{i} - y_{i}\}^{\dagger}$$
(5.12)

$$\{\nabla_{c}^{2}J\} = \frac{2}{N-1} \sum_{i=1}^{N} \nabla_{c} \{z_{i} - y_{i}\}^{\dagger} [D] \nabla_{c} \{z_{i} - y_{i}\} + \frac{2}{N-1} \sum_{i=1}^{N} \{z_{i} - y_{i}\}^{\dagger} [D] \nabla_{c}^{2} \{z_{i} - y_{i}\}^{\dagger}$$

$$[5.13]$$

The Baiakrishnan^{*} modification makes use of the fact that the term $\nabla_c^2 \{z_i - y_i\}$ approaches zero with convergence and is thus neglected. The expression for the second gradient becomes:

$$\{\nabla_{c}^{2}J\} = \frac{2}{N-1} \sum_{i=1}^{N} \nabla_{c} \{z_{i} - y_{i}\}^{\dagger} [D] \nabla_{c} \{z_{i} - y_{i}\}$$
[5.14]

After several iterations the cost function converges near some small value. At this point the parameters of Equation [5.5] have been modified to obtain their most likely value which results in the best fit of the measured states.

5.6.3 Assumptions Used in Data Reduction

The following inputs and modifications were made to the MMLE method, allowing effective use of the technique on the MINC 11/03 computer.

Initial estimates of the derivatives in Equation [5.5] were obtained using the analytical methods of Reference 22. Although the MMLE technique does not require accurate knowledge of these derivatives, this procedure does speed convergence.

The MMLE program usually uses a modified least squares method for the first iteration to estimate the derivatives, as an aid to *From Reference 16

speed convergence. This, however, requires measurement of most of the states indicated in [5.5]. The instrumentation package uses only a minimum of transducers, and all the states required for this least squares estimate are not measured. Using the least squares procedure would result in divergence of the first iteration. Therefore, the least squares estimate was not used, which did slow convergence of the derivatives.

ne sole o pro interne e colorador

A diagonal multiplying factor allows control over how large a change is made to the derivatives after each iteration. Too large a value of this factor causes sluggishness in the convergence, and too small a value will cause divergence. Further analysis into this factor will indicate its optimum value for best convergence.

The weighting matrix, [D], of Equation [5.9], was chosen after analysis of the instrumentation error magnitudes. The first run through the MMLE program, with measurements from this instrumentation package, provided a weighted error for each measurement state. As suggested in Reference 16, the values for the weighting matrix were chosen to attempt to equalize the weighted errors. After the values for the weighting matrix were chosen for the instrument package, they were then left at this for further maneuver analysis.

5.7 Time History Plotting

The MMLE reduction method not only produces the estimates for the derivatives, but also calculates the estimated time history for the various states. This is stored on the data disc by the MMLE program. The programs presented in Appendix A.8 retrieve both the

predicted time histories and the measured time histories and plot them together on the graphics CRT. These graphs of the flight test maneuver are the visual indication of the goodness of the predicted airplane derivatives.

The second s

. . .

and the second second second second

---- ******** -----

As is evident from the many programs provided, the final results of a flight test maneuver are obtained only after a multistep procedure. This is primarily due to the nature of the methods being used in aircraft flight testing, as well as the limitations of computer technology being used.

6. KU-FRL FLIGHT TEST PROGRAM

Two series of flight tests have been conducted using the KU-FRL Cessna 172. The first series, cond 'ted under Phase I, is presented in Reference 2. Presunted here i, the basic concepts of the type of flight maneuvers required, and results of the Phase II test program.

6.1 Flight Test Maneuver

1976

100000

Traditional flight testing methods have utilized primarily steadystate flight paths for data collection. This was due mostly to the data acquisition systems available. Unfortunately, this required 4 highly trained and competent test pilot to obtain realistic and valuable results.

With the current transducer and acquisition system technology available, flight testing need no longer rely on steady-state maneuvers to allow accurate state measurement. This development has resulted in the newer flight testing methods utilizing dynamic maneuvers.

When techniques such as the MMLE are used, the literature (Reference 29) indicates that the nature of the maneuver is not critical to determine the aircraft characteristics. What is important when using these techniques is to ensure that the proper aircraft modes have been excited. For example, a longitudinal maneuver should excite both the short-period and phugoid modes of the airplane. This realization (i.e., non-critical flight path) leads to the possibility of using lesser qualified pilots and still obtaining accurate results. All testing done on this program has been done by a pilot who had no previous flight test experience.

The control inputs presented in the traces of Chapter 6.2 are typical of the type of maneuver required. Several frequencies are excited, which tends to increase the validity of the results obtained. Also the total energy input is approximately symmetrical. In other words, the motion produced in one direction is offset by the motion produced in the opposite direction a short time later.

6.2 Results of Flight Test Program

Presented here are results of the Phase II flight test program. All flights were done at the conditions of Table 6.1.*

Wing area (S)	174 ft ²	
Wing span (b)	35.8 ft	
Inertias [*]		
I	1029 slug ft^2	
ве І ₇₇	1891 slug ft ²	
I _{yy}	1092 slug ft ²	
Mass (m)	59.46 slug	
Weight	1913 lb	
Center of Gravity (Body Station)	41.3 inch	
Mean chord (c)	4.9 ft	
Speed (U1)	176 ft/sec	
Dynamic Pressure (\bar{q}_1)	33.69 lb/ft ²	
Altitude	3000 ft	

Table 6.1 Cessna 172 Flight Test Conditions

The plots following show the absence of noise in the measurement, as well as the typical maneuver required.

Estimated by Reference 30

The fit of the estimated states compared to the actual states in the longitudinal maneuvers is good (Figures 6.1-6.3). The only state that is off consistently is the A_X term, which appears to be affected by a phase shift. The cause of this phase shift has not been determined.

The estimated parameters have been compared with the analytical methods of Reference 22 and with flight test results obtained by NASA Langley on *e* Cessna 172 (Reference 30). This correlation is shown in Table 6.2 for the longitudinal maneuvers. It is seen that there is good correlation between some derivatives, but not between others. The best correlation appears to be with the one of run 23B, in which the speed derivatives have been held constant for the MMLE analysis.^{*} This would tend to be the predicted result due to the mismatch in the A_X term, which is a major contributor to the speed prediction.

The lateral maneuvers are presented in Figures 6.4-6.6; and the correlation of derivatives, in Table 6.3. The fit of the measured and predicted states is again reasonable. Run 11 has the best fit as well as the overall best fit to the parameters. Again, however, the predicted coefficients are not within acceptable limits. The cause of this is not known.

Observing the rudder trace on Figure 6.6, what appears to be rudder float is evident (especially between 10 sec and 12 sec).

This is the same procedure performed by NASA Langley, which makes no attempt to predict any speed derivatives.

Figure 6.1 Flight time history; Flight 19/10/80 Run 23A; Longitudinal

Figure 6.2 Flight time history; Flight 19/10/80 Run 23B; Longitudinal

Figure 6.3 Flight time history; Flight 19/10/80 Run 51A; Longitudinal

STICK FIRED: ALLEFED 176 / c/eee (120 HPh)						
Estimation Nothed	KU-FR.) HER.R			MABA LANGLEY ¹ , ²	ANALYTICAI,2+3	
Gress Weight (1b)	1913			1848	2160	
Conter of Gravity (Body station, inches)		41.3		42.5	40.3	
Flight No.		19/10/80				
Run. No.	23A (F1g. 6.1)	238 (Fig. 6, 2)	51A (F1g. 6.3)			
°,'	(13%) -21,84	(31) -16.72	(28X) -24,77	-19.34	(9X) -17.60	
c_'' <u>م</u> ر'	0.093	CONSTANT 0	0.097	NOT PREDICTED	o	
c, ' هر	(202) -0.543	(171) -0.563	(282) -0.490	-0.678	(312) -0.890	
^c x _u '	-0.095	CONSTANT -0.100	-0.046	NOT PREDIGTED	-0.100	
^c x _a '	* -1.403	(27%) 0.688	+ -1,450	0.54	(712) 0.196	
^c zu'	-0.003	CONSTANT -0.004	-0,003	NOT PREDICTED	0	
cz '	(1X) -5.198	(13X) -4.534	(9X) -4,775	-5.22	(12X) -4.600	
^ر _ '	(17%) -0.933	(172) -0.927	(17%) -0.932	-1.118	(142) -1.280	
^د ي ق	-0, 364	-0.303	-0.350	NOT PREDICTED	-0.060	
czor	(28%) -0.514	• 0.021	(602) -0.161	-0.402	(7 2) -0.430	

Table 6.2 Comparison of Results, Longitudinal

.

1

() As compared with NASA Langley results.

* Wrong sign.

- Reference 30, Table IV, page 28, Maximum Likelihood Method, average of the two runs at Full Trim.
- 2 See Appendix 8 for conversion to the Body axes system used in this report.
- 3 Reference 22, Airplana A, page 590.
- ⁴ C_{m_q} ^f has a large C_{m_q} component which cannot be predicted.

Figure 6.4 Flight time history; Flight 23/10/80 Run 11; Lateral

1.000

Figure 6.5 Flight time history; Flight 19/10/80 Run 26C; Lateral

STICK FIXED: AIRSPEED 176 ft/set# (120 HPH)					
Estimation Hathed	KU-FRL HHRLE			NASA LANGLEY ¹ + ²	AMALYTICAL ^{2,3}
Gross Weight (1b)		1913		1848	2160
Conter of Gravity (Body station, inches)		41.3		42.5	40.3
Flight No.	23/10/80	19/1	.0/80		
Rua No.	11 (Fig. 6.4)	26C (F1g. 6.5)	338 Fig. 6.6)		
° t _p '	(13X) -0,402	(82) -6.498	(24X) -0.351	-0.461	(2%) -0.470
°°, '	(18%) 0.062	* -0.108	(83X) 0.139	0.076	(26%) 0,096
°₄∎'	(342) -0.049	(9X) -0.067	(54X) -0.034	-0.074	(20%) -0.089
C ' B p	(2X) -0.062	(500X) -0,419	(212) -0.076	-0,063	(52X) -0.030
°°°r	(142) 0.109	(126X) -9.261	(26%) -0.071	-0.096	(3X) -0.099
°°°s	(16X) 0.037	(82%) 0.008	(16%) 0.037	0.044	(48X) 0.065
с _у ґ	(42%) -0.335	(20%) -0,464	(25%) -0.439	-0.582	(47X) -0.310
с, ' ^с , '	(1X) 0.208	(1X) 0.207	(1%) 0.205	0.206	(12) 0.178
°°°Å	(10%) 0.009	(1000X) 0.128	(130%) 0.023	0.010	* -0.053
с _{у в} , '	-0.046	-0.050	-0.063	NOT PREDICTED	0
C _£ [°]	(150X) 0.010	* -0.039	* -0,164	0.004	(275%) 0.015
^C n ^ð R	(232) -0.040	(70%) -0.085	(332) -0.035	-0.052	(272) -0.066
cys '	(97 %) 0.003	(27%) 0.066	+ -G.481	0.091	(105%) 0.187

Table 6.3 Comparison of Results, Lateral

N offered.

and a second second

() As compared with NASA Langley results.

* Wrong sign.

۲

. .

1 Reference 30, Table VII, p. 32; case 34.

2 See Appendix B for conversion to the Body axes system used in this report.

3 Reference 22, Airplane A, page 590.

89

•

This maneuver was performed by holding the rudder pedals fixed, yet a float of 2°-3° is seen in the rudder. This magnitude of input could affect the parameters determined. This effect is due to a second order control surface term introduced by this float but not predicted by the MMLE methematical model.

It is suggested that further work be done to evaluate whether this is the case, and perhaps to include control surface float into the mathematical representation. The effect of control surface float can be determined by varying the tension of the cable which moves the surface.

_ _ _ _ _ ******** _ _ _ _ _ _

Possible problems that could be responsible for the differences in parameter prediction are listed here:

- Calibration of transducers. It is suggested that part of the error in parameters is due to inaccuracies in transducer calibration.

- Uniqueness. It has not yet been determined if the methods such as MMLE have a unique solution. The possibility does exist of more than one solution to any given maneuver.

- Control surface float. No attempt was made in this flight test program to ensure a minimum of float of the control surfaces. It is suggested that cable tensions be tightened to allowable maximums prior to flight testing.

7. CESSNA FLIGHT TEST PROGRAM

The versatility of this flight test package was demonstrated in a spin test program conducted by Cessna Aircraft. In this program the KU-FRL provided the data management portion of the instrumentation system described in this report. Cessna supplied the instrumentation and the airplane. A block diagram of this installation is shown in Figure 7.1

7.1 Instrumentation

The purpose of this program was to investigate the spin characteristics of Cessna's latest model 172 airplane. To do this, Cessna approached the KU-FRL as to the applicability of the instrumentation system for this type of test. After initial evaluation it was decided that the measurements described in Table 7.1 would be required. It was apparent that the KU-FRL transducer package was unable to meet these needs; however, the data management portion of the package would be able to.

The airplane used in this program is shown in Figure 7.2. The external modifications to the airplane include a spin chute as well as right-hand and left-hand wing tip booms.

The spin chute was added for safety reasons. A device for deploying the chute is provided to the pilot, allowing him to retrieve the airplane from an unrecoverable spin. Also a release mechanism is provided to release the chute after deployment and spin recovery. The pilot also wears a parachute in the event the

Figure 7.1 Block diagram of Cessna spin test installation

ORIGINAL FIGE BLACK AND WHITE PHOTOGRAPH

SYMBOL	TKANSDUCER	RANGE
⁶ e	ELEVATOR POSITION	FULL TRAVEL
δ _a	AILERON POSITION	FULL TRAVEL
δr	RUDDER POSITION	FULL TRAVEL
P	ROLL RATE	±360 °/s/2C
q	PITCH RATE	±360 °/sec
r	YAW RATE	±360 °/sec
Az	NORMAL ACCELERATION	-3 to +5 g
A	LATERAL ACCELERATION	±3 g
α _L	ANGLE OF ATTACK LEFT HAND	-20 to +80 °
α _R	ANGLE OF ATTACK RIGHT HAND	-20 to +80 °
β _I .	SIDESLIP ANGLE LEFT HAND	±45 °
β _R	SIDESLIP ANGLE RIGHT HAND	±45 °
KTAS	TRUE AIRSPEED LEFT HAND	20 to 180 knots
KTAS	TRUE AIRSPEED RIGHT HAND	20 to 180 knots
н _р	PRESSURE ALTITUDE	0 to 15000 ft

Table 7.1 Cessna Spin Test Measurement Requirements

Figure 7.2 Cessna spin test airplane

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH spin chute does not deploy or will not release, permitting him to leave the airplane in safety.

The right-hand and left-hand wing tip booms are shown in more detail in Figures 7.3. The booms utilize a flow direction and airspeed sensor (described in detail in Reference 31). This sensor allows determination of the airspeed, angle of attack, and angle of sideslip (as shown in Figures 7.3). A probe is included on each wing tip to allow determining the true properties of the spin. The axis of a spin is generally not at the center of gravity of the airplane. (In the C172 it appears to be ahead of the center of gravity.) Providing both left-hand and right-hand measurements allows determining where this spin axis is by using the differences between the measurements from each side.

Figure 7.3(a) Cessna wing tip booms (supplied by NASA Langley)

Figure 7.3(b) Cessna wing tip booms (supplied by NASA Langley)

Figure 7.3(c) Cessna wing tip booms (supplied by NASA Langley)

Inside the airplane cockpit the Cessna inertial reference transducers (p, q, r, A_z , A_y) were mounted on the sensor pallet as shown in Figure 7.4. As can be seen, the KU-FRL power supply system was used in this installation. This was necessary to provide power for the computer and was also utilized to provide power for some of the transducers. Figure 7.1 shows the power sources used for the specific dovices.

The KU-FRL data management computer is shown installed in the Cessna airplane in Figure 7.5.

A chase airplane was used in this flight test program. This was for safety purposes to provide an outside observer who could warn the pilot of the spin test airplane (over the communications radio) of any unexpected problems. Also, a video camera was carried onboard the chase airplane to record the spin visually.

7.2 Data Reduction

Data analysis for this spin program was done by Cessna on their Hewlett Packard 9825 microcomputer. Data was transferred from the KU-FRL system to the Cessna computer, using the standard RS232 ports on each machine (see Appendix A.9 for Hewlett Packard 9825 programs). After transfer, the data was plotted on Cessna's computer using the program in Appendix A.9. Figures 7.6 present the traces of several of the spins. It can be seen that the data recorded produce results capable of analysis.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 7.4 Cessna spin test instrumentation installation

Figure 7.5 Cessna spin test computer installation

- CLARK

a interestadores a

98.

7.3 Results of Spin Program

The results of the spin program, from the aspect of this report, show the adaptability of the KU-FRL-designed data management system. The versatility specifically designed into this portion of the system allows virtually any 16-channel instrumentation combination to provide the measurements. Also shown is the feasibility of using different data reduction computers by the use of the standard RS232 port for data transfer.

No real problems were encountered by Cessna personnel in using the data management system, even though none of them had any extensive microcomputer experience.

8. CONCLUSIONS

The flight test system designed and evaluated under this program has met the objectives outlined in Chapter 2. The system

- is easy to install,
- is virtually self contained,
- is simple in operation,
- requires no complex flight maneuvers,
- is applicable to general aviation airplanes,
- is capable of longitudinal and lateral stability analysis, and
- is low in cost.

This system has shown that the technology used is capable of the tasks to be performed.

In the data reduction method all the derivatives contained in Equation [5.5] can be determined. The method also allows determining any combination of these derivatives. It must be noted that these are the state vector dimensional derivatives which can be converted to the normally accepted stability derivatives (as per Reference 22) using Tables 5.2 and 5.3.

Areas have been discovered where further work is required. A comprehensive list is included in Chapter 9.

PRECEDING PAGE BLANK NOT FILMED

9. RECOMMENDATIONS FOR PHASE III

Four areas have been suggested throughout this report for improvement of the KU-FRL instrumentation system. These are summarized here.

9.1 Equipment

- Equipment is required for accurate transducer calibration. A pendulum arrangement as per Reference 32 is suggested as an excellent means of calibrating the transducers.

- Size reduction of equipment is suggested. To allow easier placement in aircraft, the size of the system could be reduced significantly, especially if the number of packages is increased to form more efficient space utilization.

9.2 Calibration

- All transducers should be calibrated as a system. Using the actual data acquisition package for transducer calibration is suggested as a means to reduce calibration errors. This should be done in conjunction with the calibration pendulum of 9.1 above.

9.3 Data Reduction

- Refinements are required to the current MMLE "BONES" program to simplify its use and add to the versatility.

- Further study is suggested to allow Performance analysis (i.e., Drag Polar) of the test airplane. Methods similar to those of References 4-11, 13, and 18 seem to provide promising solutions.

- Some of the features of the latest version of MMLE (Reference 33) should be added. Specifically, the Cramer-Rao bounds addition, and the correction for center of gravity offsets can be added directly into the MMLE program.

- The addition of the acceleration transformation matrix ([R] of Equation [5.4]) to the MMLE program should be explored.

- Determine the validity of the prediction of α and β by comparing with measured values.

9.4 Effect of Control Surface Float

- The effect of control surface cable tension should be evaluated to determine the influence this has on the parameters predicted.

9.5 Froof-of-Test Capability

- Tests are recommended in other general aviation airplanes to demonstrate the system's adaptability. Recommended are tests on a high performance, single-engine retractable, and on a lightto-medium, twin-engine airplane.

- The tests suggested above would also aid in providing further insight into the possible "Uniqueness" problem. This should be a definite area of research, to validate the MMLE (or similar) concepts.

10. REFERENCES

- Renz, R. R. L.; Clarke, R.; Roskam, J.; "A Literature Survey of Performance and Stability Flight Testing"; KU-FRL-407-1; University of Kansas Flight Research Laboratory; Lawrence, Konsas; 1979.
- Renz, R. R. L.; Clarke, R.; Hill, J. R.; Mosser, M.; Roskam, J.; Rummer, D. I.; "Progress Report on Phase I: Development of a Simple, Self-Contained Flight Test Data Acquisition System"; KU-FRL-407-3; University of Kansas Flight Research Laboratory; Lawrence, Kansas; 1980.
- Renz, R. R. L.; "Calibration of MDAS-16 Analog-to-Digital Converter"; KU-FRL-407-5; University of Kansas Flight Research Laboratory; Lawrence, Kansas; 1981.
- Gerlach, O. H.; "High Accuracy Instrumentation Techniques for Non-Steady Flight Measurements" (in Perry, M. A., ed.), Flight Test Instrumentation, Vol. 3, Pergamon Press; 1964.
- '5. Gerlach, O. H.; "Determination of Performance, Stability and Control Characteristics from Measurements in Non-Steady Maneuvers"; Stability and Control, AGARD Conf. Proc. No. 17, pgs 497-523; 1966.
- Gerlach, O. H.; "Measurements of Performance, Stability and Control Characteristics in Non-Steady Flight with a High Accuracy Instrumentation System" (in Perry, M. A., ed.); Aerospace Instrumentation, Vol. 4, Pergamon Press; 1966.
- 7. Gerlach, O. H.; "The Application of Regression Analysis to the Evaluation of Instrument Calibration"; Flight Test Instrumentation, AGARD Conf. Proc. No. 32; 1967.
- Gerlach, O. H.; "Determination of Performance and Stability Parameters from Non-Steady Flight Test Maneuvers"; SAE Paper #700236; 1970.
- Gerlach, O. H.; "The Determination of Stability Derivatives and Performance Characteristics from Dynamic Maneuvers"; Report VTH-163; Delft University of Technology; Delft, The Netherlands; 1971.
- Hosman, R. J. A. W.; "A Method to Derive Angle of Pitch, Flight Path Angle and Angle of Attack from Measurements in Non-Steady Flight"; Report VTH-156, Delft University of Technology; Delft, The Netherlands; 1971.
- 11. Hosman, R. J. A. W.; "Advanced Flight Test Instrumentation: Design and Calibration"; Memorandum M-222; Delft University of Technology; Delft, The Netherlands; October 1974.

- 12. Iliff, K. W.; Maine, R. E.; "Practical Aspects of Using a Maximum Likelihood Estimation Method to Extract Stability and Control Derivatives from Flight Data"; NASA TN D-8209; 1976.
- Iliff, K. W.; "Estimation of Aerodynamic Characteristics from Dynamic Flight Test Data"; Dynamic Stability Parameters, AGARD Conf. Proc. #235; 1978.
- Iliff, K. W.; Maine, R. E.; Montgomery, T. D.; "Important Factors in the Maximum Likelihood Analysis of Flight Test Maneuvers"; NASA T. P. 1459; 1979.
- 15. Iliff, K. W.; Maine, R. E.; "NASA BONES"; NASA Dryden; unpublished computer program.
- Maine, R. E.; Iliff, K. W.; "A Fortran Program for Determining Stability and Control Derivatives from Flight Data"; NASA TN D-7831; 1975.
- Klein, V.; Gregory, R.; "A Proposal for Self-Contained Instrumentation System for Flight Research on Stability and Control"; Report CIT-FI-72-013; Cranfield Institute of Technology; March 1972.
- Smetana, F. O.; Fox, S. R.; "Flight Test Evaluation of Predicted Light Aircraft Drag, Performance, and Stability"; NASA CR-158076; 1979.
- 19. Sorensen, J. A.; Tyler, J. S.; Powell, D. J.; "Evaluation of Flight Instrumentation for the Identification of Stability and Control Derivatives"; AIAA Paper 72-963; September 1972.
- Eckholdt, D. C.; Wells, W. R.; "A Survey of AFFDL Parameter Estimation Efforts and Future Plans"; Parameter Estimation Techniques and Applications in Aircraft Flight Testing"; NASA TN D-7647; 1973.
- 21. Mace, W. D.; Pool, A. (editors); "Flight Test Instrumentation Series"; AGARD No. 160, Vols. 1-8; 1973 to 1977.
- 22. Roskam, J.; "Airplane Flight Dynamics and Automatic Flight Controls": Roskam Aviation and Engineering Corporation; Ottawa, Kansas; (Rte 4, Box 274);1979
- Renz, R. R. L.; "Flight Test Instrumentation Certification Report"; KU-FRL-407-2; University of Kansas Flight Research Laboratory; Lawrence, Kansas; 1980.
- 24. Wuest, W.; "Measurements of Flow Speed and Flow Direction by Aerodynamic Probes and Vanes"; AGARD Conf. Proc. 32; 1967.

 Ikhtiari, Paul A.; Marth, V. G.; "Trailing Cone Static Pressure Measurement Device"; Journal of Aircraft, Vol. 1, No. 2, pgs. 93-94; March 1969.

-

- 26. Lewis, J. R.; "TRS-80 Performance, Evaluation by Program Timing"; Byte Magazine; pgs. 84-94; McGraw-Hill; New York; March 1980.
- Renz, R. R. L.; Mosser, M. A.; "Digital Tape Qualifying Procedure for KU-FRL Instrumentation Package"; KU-FRL-407-5; University of Kansas Flight Research Laboratory; Lawrence, Kansas; 1981.
- 28. Gainer, T. G.; Hoffman, S.; "Summary of Transformation Equations and Equations of Motion Used in Free-Flight and Wind-Tunnel Data Reduction and Analysis"; NASA SP-3070; 1972.
- 29. Gupta, N. K.; Hall, W. E.; "Input Design for Identification of Aircraft Stability and Control Derivatives"; NASA CR-2493; 1975.
- 30. Suit, W. T.; Cannaday, R. L.; "Comparison of Stability and Control Parameters for a Light, Single Engine, High-Winged Aircraft Using Different Flight Test and Parameter Estimation Techniques"; Nasa Tech Memorandum 80163; 1979.
- 31. Kershner, D. D.; "Miniature Flow-Direction and Airspeed Sensor for Airplanes and Radio-Controlled Models in Spin Studies"; NASA TP-1467; 1979.
- 32. McLaren, I.; "Calibration Methods for the Accurate Assessment of the Static and Dynamic Performance of Some Flight Test Instrument"; Her Majesty's Stationery Office; London, England; 1964.
- 33. Maine, R. E.; Iliff, K. W.; "User's Manual for MfLE-3, A General Fortran Program for Maximum LikeLihood Parameter Estimation"; NASA TP 1563; 1980.

10.1 Instrumentation System Reports

(N

KU-FRL Number	Title	Date
407-1	A Literature Survey of Performance and Stability Flight Testing	1979
407-2	Flight Test Instrumentation Certification Report	1980
407-3	Progress Report on Phase I: Development of a Simple, Self-Contained Flight Test Data Acquisition System	1980
407-4	Calibration of MDAS-16 Analog-to- Digital Converter	1981
407-5	Digital Tape Qualifying Procedure for KU-FRL Instrumentation Package	1981
407-6	Progress Report on Phase II: Development of a Simple, Self-Contained Flight Test Data Acquisition System	1981
407-P1	Development of a Simple, Self-Contained Flight Test Data Acquisition System. (Paper presented at Society of Flight Test Engineers, Atlanta, Georgia.)	1980
407-P2	A Microcomputer Based Data Acquisition System for Use in Flight Testing of General Aviation Airplanes. (Paper presented at IEEE Mid America Elec- tronics Conference, Kansas City.)	1980
407 - P3	Development of a Simple, Self-Contained Flight Test Data Acquisition System. (Paper presented at SAE Business Air- craft Meeting, Wichita, Kansas.)	1981

n karal sen a pro

APPENDIX A

PROGRAMS

This appendix includes descriptions, flow charts, and listings of the computer programs required by this flight test system.

- A.1 Data Acquisition (AIM-65)
- A.2 Data Transfer (AIM-65)
- A.3 Data Receive (MINC 11/03)
- A.4 Engineering Conversion (MINC 11/03)
- A.5 Quick Look Plots (MINC 11/03)
- A.6 Detailed Engineering Conversion (MINC 11/03)
- A.7 MMLE BONES Routines (MINC 11/03)
 - .1) MMLE Set-Up
 - .2) Main MMLE Programs
 - .3) MMLE Output Format
- A.8 Time History Plotting (MINC 11/03)
- A.9 Cessna Programs
 - .1) Data Acquisition
 - .2) Data Readback
 - .3) Data Receive
 - .4) Data Plotting

A.1) DATA ACQUISITION PROGRAM

PRECEDING PAGE BLANK NOT FILMED

Description: This program, which runs on the AIM 65, collects and saves the measured state time histories. The information is collected and stored on the cassette tape in onc-second real-time blocks. The data for each channel is coded as two binary eight-bit words totalling sixteen bits. The first word holds the eight most significant bits. The second word holds the four most significant bits and the four least significant bits. This gives a redundancy check of the highest order bits.

Flowchart:

20 i sec between successive channels

PROGRAM LISTING

; DATA ACQUISITION

RNCNT=0	LDA #0	f STA UTIL
Blkcnt=2	STA KDDRB2	LDA #>C34E
BUFCNT=4	STA KDRA2	STA UTICH
IBUF=5	LDA #\$CO	CLI
obur=7	STA UACR	LDA #0
CNT=9	START	STA BLKCNT
BUF1=\$200	1 LDA #\$12	STA BLKCNT+1
BUF2=\$300	STA HDRO	RECI
KDDRA2=\$A481	LDA FREW	JSR SWAP
KDDRB2=\$A483	JSR COMD	ISE VETTE
KDRA2=\$A480	LDA FREW	BEC2
KDRB2=\$A462	JSE COND	
DBR-\$9008	MAIN	
WDC=\$9009	JSR GREY	
CDR=\$900A	COMP AT DADK	The RECK
MDR0=\$9008	BNF MATN	COR 4220
CSR=\$900C		
ESR-S900D		I BNE REUZ
158=5900F		INC BLKCNT
MD#1=\$900F		SNZ KECI
		INC BLKCNT+1
FLIM-\$C3		JHP RECI
881-003 MIN-007	JSR GREY	RECX
ERR-903	CAP FREGR	LDA BUFCNT
	BEQ RECORD	CRP #220
REW-SUA	CHP #CLOSEK	BNE RECX
NKDY=\$10	BNE MAIN2	LDA #\$40
FPT=\$04	CLOSE	STA UIER
	LDA /WTM	JSR SWAP
DBRE=\$40	JSR COMD	INC BLKCNT
CCE=\$80	LDA #WTM	BNE RECX1
UDRB=\$4000	JSR COMD	INC BLKCNT+1
UACK-\$A00B	LDX #12	RECX1
UIER-\$AOOE	CLOSE1	JSR WRITE
UT1L=\$A004	LDA #ERA	JSR ENDREC
UT1CH=\$A005	JSR COMD	JSR SWAP
UT2L=\$A008	DEX	LDA #SFF
UT2H=\$A009	BNE CLOSE1	STA BLKCNT
UIFR-\$A00D	JMP START	STA BLKCNT+1
BIT5=\$20	RECORD	ISR URTTE
loadk-şef	LDA #0	INC BNCNT
RECK=\$BF	STA IBUF	ANE RECY?
CLOSEK=\$DF	STA OBUF	INC PNCNTAL
TIME1H=\$27	LDA #>BUF1	THE RUCKITI
TIME1L=\$10	STA TRUP+1	THE MATNO
******		JAP MAINZ
*=\$0400	STA OBUELI	
LDA #592	ISB ENDREC	
STA MDRO	I DA #STNT	
	CTA SALOS	
STA BUCHT	1 DA #<1NT	
LDA #0		
STA DUCNTAI	31A 3A404	
IDA ÁCTE		
474 VDDD43	STA ULER	
SIA NUURAA	LDA #<\$C34E	

*****	-
GRAY	
IDA KORM2	
LDA FTIMEIL	
STA UT2L	
LDA #TIME1H	
STA UT21	
CHEV1	
LUK UIFR	
AND #BITS	
BEQ GKEY1	
PLA	
CHP KDRR2	
BRE GREI	
KTS	
•	_
	-
COMD	
рна	
LDA ESR	
COMD1	
IDA CSP	
AND ANDON	
AND PREDI	
BNE COMDI	
LDA CSR	
AND #FPT	
INE COMD1	
PT A	
STA CDR	
COMD2	
LDA ISR	
AND #CCE	
BEO COMD2	
BTC	
K13	
ENDREC	
T.DV #0	
EVIDI	
LDX #10	
LDA \$8000	
JSR WAIT	
ENDR2	
TDA \$9001	
LUK 37001	
JSR WAIT	
JSR WAIT Dex	
JSR WAIT DEX BNE ENDR2	
JSR WAIT DEX BNE ENDR2 LDX #5	
JSR WAIT DEX BNE ENDR2 LDX #5 FUDR3	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001 JSR WAIT	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001 JSR WAIT LDA \$8002	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001 JSR WAIT LDA \$8002 STA (IBUF),Y	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001 JSR WAIT LDA \$8002 STA (IBUF),Y INY	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001 JSR WAIT LDA \$8002 STA (IBUF),Y INY INA \$8003	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001 JSR WAIT LDA \$8002 STA (IBUF),Y INY LDA \$8003 CEA (IBUE) Y	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001 JSR WAIT LDA \$8002 STA (IBUF),Y INY LDA \$8003 STA (IBUF),Y	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001 JSR WAIT LDA \$8002 STA (IBUF),Y INY LDA \$8003 STA (IBUF),Y INY	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001 JSR WAIT LDA \$8002 STA (IBUF),Y INY LDA \$8003 STA (IBUF),Y INY DEX	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001 JSR WAIT LDA \$8002 STA (IBUF),Y INY LDA \$8003 STA (IBUF),Y INY DEX BNE ENDR3	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001 JSR WAIT LDA \$8002 STA (IBUF),Y INY LDA \$8003 STA (IBUF),Y INY DEX BNE ENDR3 CPY #220	
JSR WAIT DEX BNE ENDR2 LDX #5 ENDR3 LDA \$8001 JSR WAIT LDA \$8002 STA (IBUF),Y INY LDA \$8003 STA (IBUF),Y INY DEX BNE ENDR3 CPY #220 DNE ENDR1	
JSR WAIT DEX BNE ENDR2 LDX #5 EMDR3 LDA \$8001 JSR WAIT LDA \$8002 STA (IBUF),Y INY LDA \$8003 STA (IBUF),Y INY DEX BNE ENDR3 CPY #220 BNE ENDR1	

.

WAIT JSR WAITX WAITX RTS -----WRITE LDA ESR LDA #224 STA WDC LDA #WRT STA CDR LDA RNCNT JSR WWORD LDA RNCNT+1 JSR WWORD LDA BLKCNT JSR WWORD LDA BLKCNT+1 JSR WWORD LDY #0 WRITE1 LDA (OBUF),Y JSR WWORD INY CPY #220 BNE WRITEL WRITE2 JMP COMD2 SWAP LDA OBUF+1 PHA LDA IBUF+1 STA OBUF+1 PLA STA IBUF+1 LDA #0 STA BUFCNT RTS -----------WWORD -PHA WWORD1 LDA ISR AND #DBRE BEQ WWORD1 PLA STA DBR RTS

-----INT PHA LDA UDRE BPL INTEX TZA PHA LDY BUFCNT LDA #11 STA CHT LDA \$8000 JSR WAIT ILOOP LDA \$8002 STA (IBUF),Y LDA \$8001 INY LDA \$8003 STA (IBUF),Y INY DEC CNT BNE ILOOP STY BUFCNT PLA TAY INTEX LDA UT1L PLA RTI END

۲

.

÷

PRECEDING PAGE BLANK NOT FILMED

Description: This program allows the AIM 65 to read the information stored in the DATA ACQUISITION program. The information is passed to the MINC 11/03 computer using the RS 232 port.

Flowchart:

A.2) DATA TRANSFER

; DATA RECOVERY
RNCNT=0
VRUN-4
VBLK-5
CNT=6
DBR=\$9008
WDC=\$9009
CDR=\$900A
C5R=\$900C
ESR=\$900D
ISR=\$900E
SLP=\$C8
RDL=\$C4
REW-SCA
TDRE=\$02
CR=\$0D
SCR=\$9006 SDB=\$9007
LOADC=\$4C
READC=\$52
CLOSEC=343 TNALL=\$E993
NUMA-SEA46
READH-\$E93C
OUTPUT=SE97A
UTIL=\$A004
UTICH=\$A005
*=\$300
CCE .BYTE \$80
DA
.BYTE \$20
BYTE CR. 'TAPE ERROR'. SAO
MRUN
.BYTE CR, WHICH RUN NUMBER', SBF
MBLK
.BYTE CR, 'HOW MANY BLOCKS', SBF
MEND
MINV
.BYTE CR, 'INVALID COMMAN', \$C4
MERRI BYTE CR 'ELLE MARK FOIN' SCA
MR/CNT
.BYTE CR, 'RUN NUMBER', SAO
MERROR
TEMPO
.BYTE \$00
*=\$400
RESETB
LUA #\$92 STA MDRO
LDA #\$CO
STA UACR
;\$34=600
;\$1A=1200
;\$0D=2400

STA	UT1L
LDA	#0
STA	UTICH
LDA	#\$11
EOR	#\$FF
STA	SCR
HAIL JSR JSR JSR JSR JSR LDA LDA LDA LDA LDA JSR LDA JSR HAIL JSR CHP BEQ CHP BEQ JSR JMP	GCON #LOADC MAIN2 INVAL HAIN 12 #12 #12 #12 #12 #12 #12 #000 #REW CONDA #SUP CONDA #REW CONDA #SUP CONDA #READC READC READC #READC READC #READC READC #READC READC #READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC READC #READC
CLOS	F
LDA	#REW
JSR	COMDA
LDA	#REW
JSR	COMDA
JMP	MAIN
READ	#MRUN-HO
LDY	MESS
JSR	GCNT
CMP	#0
BEQ	CLOSE
STA	VRUN
READ	01
JSR	RBLK
BCS	CLOSE
LDA	BLKCNT
ORA	BLKCNT+1
BIAE	READ3
LDY	#MRNCNT-HO
JSR	MESS
LDA JSR READ LDA CAP BCC BEQ LDA JSR LDA JSR JMP READ LDY JSR	RNCNT NUMA 3 RNCNT VRUN READ1 READ2 #REW COMDA #SLP COMDA READ1 2 4 #BLK-MO MESS

JSR GCNT CHP #0	
BEQ CLOSE	
STA VBLK	CHANGE TO HORE
	TO TRANSMIT COUNTS
SENDE	
LDA RNCHT	
JSR SEND	
LDA RNCNT+1	
LDA BLKCHT	
JSR SEND	
LDA BLKCNT+1	
JSK SEND Sendal	
LDX #0	
CNVT	
AND #\$FO	JOHRAKE RICH BIIS
STA TEMPO	
LNX LDA BUF1.X	
AND #STO	
JSR FIX	IF BAD FIX HERE
CNVT1	•
DEX LDA BUF1.X	CONVERT TO PRINTABLE
SEC	; CHARACTERS
ROR BUF1,X	
AND #\$3	
CLC	
ROLA ROLA	
ROL A	
ROL A Sta tempo	
INX	
LDA BUF1,X	
OKA TEMPO	
ORA #\$40	
STA BUF1,X INX	
CPX #220	
BNE CNVT	
SENDB2	
LDA BUF1,Y	
· INY	
CPY #220	
5NE SENDB2 LDA BLKONT	
CMP #\$FF	
BNE SENDB3	
CMP BLKCNT+1	
BEQ END	
DEC VBLK	
BNE SENDBS	•
SENDB4 LDY #MBLK-MO	

. :

у сы • •

÷.

JSR JSR CMP BEQ STA SEN JSR BCS JMP CLO JMP END LDY JSR JMP	MESS GCNT 40 CLOSE1 VBLK DB5 RBLK CLOSE1 SENDB SE1 CLOSE \$HEND-HO MESS MAINS
MES LDA PHA AND JSR INY PLA BPL RTS GCOI JSR JSR RTS	S NO,Y #\$7F OUTPUT MESS READM OUTALL
INV. LDY JSR RTS CCN LDA STA GCN JSR JSR BCC LDA RTS	AL #MINV-MO MESS F #O CNT F1 INALL DPACK GCNT1 CNT
DPA CMP BCC CMP BCS AND PHA LDA ASL ASL CLC	CK #'O' RSPAC #\$3A RSPAC #\$0F CNT A A A
ADC ASL STA PLA CLC ADC STA CLC RTS RSP/ SEC RTS	CNT A CNT CNT CNT AC

SEN	D				
PHA					
SEN	D1				
LDA	SCR				
AND	#TDRE				
BNE	SEND1				
PLA					
EOR	1877	; CHG	FOR	KNOWN	CHAR
STA	SDR				
RTS					
	********	•			
RBL	ĸ				
LDA	CSR				
ARD	PHRDY				
877 E.	KBLK				
1.04	7224				
314	ABDI				
4 TA	COR				
TER	BUORIN				
BCS	RBLK?				
STA	RNCMT				
JSP	RHOPD				
BCS	RBLK2				
STA	RNCNT+1				
JSR	RUORD				
BCS	RBLK2				
STA	BLKCNT				
JSR	RWORD				
BCS	RBLK2				
STA	BLKCNT+1	L			
LDY	#0				
RBL	K1				
JSR	RWORD				
BCS	RBLK2				
STA	BUF1,Y				
INY					
CPY	#220				
BNE	RBLK1				
JMP	COMDA2.	-			
RBL	K2				
JMP	COMDA4				
COM	DA				
PHA	***				
LDA	53K 541				
COM	DAL				
LUA	CSK ANDON				
001£ ≱14	CUMPAL				
STA	CDR				
CUM	DAZ				
LDA	TSR				
AND	CCE				
BEO	COMDA2				
COM	DA4				
LDA	CSR				
PHA					
AND	#2				
BEQ	COMDA5				
LDY	#MERR1->	10			
JSR	MESS				
PLA					
SEC					
RTS					
COM	DA5				
PLA					

AND #\$81 BHE CONDAS CLC RTS CONDA3 LDY #HO-HO PHA JSR HESS PLA JSR MUHA LDA ESR JSR NUMA CLC RTS -----RWORD LDA ISR BIT CCE BNE RWORD2 BIT DA BEQ RWORD LDA DER CLC RTS RWORD2 SEC RTS -----FIX LDY #MERROR-MO JSR MESS RTS ****** ;INITIAL SET UP *=\$700 LDA #\$CO STA UACR LDA #\$68 STA UTIL LDA #\$00 STA UTICH JMP RESETB

END

PRECEDING PAGE BLANK NOT FILMED

A.3) DATA RECEIVE

1

Contrast Service

Property lines

Description: This program accepts raw data from the AIM 65. This raw, formatted data is collected in files to be used in the ENGINEERING CONVERSION routine.

Program listing

0001		PROGRAM	AININ	
	C			
	С	AIN TO MINC	PROGRAM	
	C	WRITTEN BY	HARK A HOSSER	
	C			
	C	This progra	am inputs data from the AIM - 45 through SLU-1	
	C	as charac	ters (22 st a time) to fill a 600 X 22 character	
	C	array . W	hen full this array is outputed to the user	
	C	specified	file.	
	C			
0002	-	DIMENSI	ON IADDR (4)/IDATA(600/22)/ICHAR(22)	
	C			
0003		TYPE ST	TINIS PRUGRAM READS 22 CHARACTER WURDS PRUM SLUI - I	4) A .
0004		TYPE SI	TIME AND PLACES IMEDE WORDS ON A FILE'	
0005		1175 #/		
0000	7	FORMAT	// WHAT TE THE MANE OF YOUR DUTDUT STIE 9//)	
0007	/	CALL AR	RIGN (1	
000		TYPE 1.	'IST I WILL ATTACH SLU I'	
0010		IERRAHT	ATCH(2)	
0011		TYPE 99	A.IERR	
0012	991	FORMAT	('IERR = '+12)	
0013		TYPE #.	'NEXT I WILL SET IT UP FOR READING'	
0014		IADDR(1) = *50010	
0013		IADDR(2		
0016		IADDR(3) = 0	
0017		IADDR(4) = 0	
0018		IERR =	MTSET(2,IADDR(1))	
0019		TYPE 99	S , IERR	
	C			
0020		TYPE #+	'NOW YOU HAVE 2 CHOICES . STOP OR READ IN DATA'	
0021	10	TYPE **	'1 = READ IN DATA '	
0022		TYPE #	'2 = STOP'	
0023		ITPE #1	SANICH 3.	
0024	-	AUCEPT S	5, IFC1	
0025	3	TUKNAI	(11) T OT D) ODTO 10	
0020			1 (01) 27 0010 10 00-200) 15CT	
0020	c	0010 (1	007200771561	
0020	100	TYPE .	PEAD FUNCTION	
0027	100	00 110	TEL.400	
0031		00 120	i=1.22	
0032		IERR =	NTIN(2.ICHAR(J).1)	
0023		IDATA(I	J)=ICHAR(J)	
0034	120	CONTINU	E	
0035		TYPE *.	COUNT = '+I	
0036	110	CONTINU	Ε	
0037		TYPE #+	WAIT FOR DISK OUTPUT'	
0038		DO 135	K=1,600	
0039		WRITE (1,169) (IDATA(K,L),L=1,22)	
0040	169	FORMAT	(22A1)	
0041	135	CONTINU	E	
0042		GOTO 10		
	С			
•	С	STOP		
	č			
0043	200	TYPE *+	'STOPPING'	
0044		TYPE ##	DETATCH INPUT PORT	
0045		IERR =	NTDTCH(2)	
0046		TYPE 99	8+IERR	
9047		STOP		
0048		END		

A.4) ENGINEERING CONVERSION

Description: This process presently uses two programs which run seperately. The first routine, AIMCNV, converts the raw coded AIM 65 data to voltages. The AIMCNV program makes use of a macro assembly language routine (CONVRT) which performs the bit manipulations necessary to turn the AIM 65 coded data into a form useable by the MINC Fortran programs. The second routine, EGRCNV, converts the voltages into engineering units.

Program listing:

C

	C C	AIM TO VOLT CONVERSION PROGRAM It must be linked to convrt to work
	U	
0001		
0002		DIRENSION IN(22) OUL((1)) IOUL((1))
0003		TTPE \$, AIM FORMAT TO VOLT CONVERSION '
0004	_	TTPE \$,' INSERT A DATA DISKETTE'
0005	5	TTPE I, What is the full name of the INPUT file?
0004		TYPE #
0007		GALL ASSIGN(1++=1+RDO)
8000	10	TYPE I' What is the full name of the DUTPUT file?'
0007		
0010	С	CALL ABBIGN (2),-I,NEW)
0011	20	TYPE \$;' How many SECONDS (10 time pts) do you want?'
0012		ACCEPT #,NUM
	С	
	C C	convert this mess
0013		NUM=NUM#10
0014		DO 130 I=1,NUM
0015		READ (1,109,END=300) (IN(J),J=1,22)
0016	109	FORMAT(22A1)
0017		DO 150 K=1+11
0018		KH=(K#2)-1
0019		KL=K#2
0020		CALL CONVRT(IN(KH),IN(KL),IVOLT(K))
0021		VOLT(K)=IVOLT(K)/16
0022	150	VOLT(K)=(VOLT(X)*.002435632861)+.06330029324
0023		WRITE (2,119) (VOLT(J),J=1,11)
0024	119	FORMAT (11F12.9)
0025		TYPE #// COUNT=//I
0026	100 C	CONTINUE
	C C	Here is the series of auestions
0027		TYPE #+' More in this file?'
0028		ACCEPT 209+NORY
0029	209	FORMAT(A1)
0030		IF (NORY .EQ. 'Y') GOTO 20
0032		TYPE #+' Another OUTPUT file from this INPUT file?'
0033		ACCEPT 209,NORY
0034		IF (NORY .EQ. 'Y') GOTO 210
0036		TYPE \$,' Another INPUT file in this OUTPUT file?'
0037		ACCEPT 209,NORY
0038		IF (NORY .EQ. (Y') GOTO 310
0040		TYPE \$;' Are you done?'
0041		ACCEPT 209+NORY
0042		IF (NORY .EQ. 'N') GOTO 5
0044		GUTU 500
0045	210	CALL CLOSE(2)
0046		GUTU 10
0047	- 300	ITTE #1' END OF INPUT FILE ERROR'

0048	310	CALL CLOBE(1)
0047		TYPE 8: " What is the next INPUT file name?"
0050		TYPE &
0051		CALL ABSIGN(1++-1+RDD)
0052		SOTO 20
0053	500	TYPE S. ' GOODBYE'
0054		STOP
0055		END

	.TITLE .SDTTL .GLODL	CONVRT Conversion Routine Convert												
CONVETT	CLC													
	CLR	R1												
	BIC	0177700+02(R5)	IPEEL OFF 1ST 2 BITS											
	DIC	\$177700, \$4(R5)	FOF THE ARGS											
	NOVB	#2(R5),R1	PUT HIGH & BITS INTO R1											
	ASH	44+R1	ISHIFT LEFT &											
	ADD	#4(R5)+R1	ADD IN LOW & BITS											
	NOV	R1+84(R5)	PLACE IN RESULT ARG											
	ROL	#4(R5)												
	ROL	RA(R5)	IROTATE LEFT A											
	ROL	84(R5)												
	ROL	84(R5)												
TETI	CHP	BA(R5) . 8100000	AREF TE PORTTINE OR NEGATIVE											
	BNT	NEGA												
	COM	84(95)	LOGETTTIE NUMBERS ARE LES COMPLEMENTED											
	407	84(85).41	THEN AND I											
	BTC.		IDONE											
NEGAT	NEA	70 #4/DE\	INCOATTUE A/8 ABE 3/8 COMBITMENTED											
	ALC ATE		LUTURITAR A. 9 NER 3.2 CONFILMENTED											
		FU												

0001	-	PROBRAM EGRCHV
	C	Held de Fedienenied Helde evenenies services
		VOIT TO ENGINEERING UNITS CONVERSION PROGRAM
	c	BA NELK WY NORSEL DEC' 1480
0002	-	COMMON VOLTS(10,11),ENG(10,11)
0003	10	TYPE #,' Volts to Engineering Units conversion'
0004		TYPE \$,' INSERT DATA DISK '
0005		TYPE \$' What is the full name of your INPUT file?'
0006		TYPE \$
0007		CALL ASSIGN(1,,-1,RDO)
0008	30	TYPE \$' What is the full name of your OUTPUT file?'
0009		TYPE #
0010		CALL ABSIGN(2,,-1,NEW)
	С	
	C C	input first block (T,Pd,Ps) (convert \$ output
0011	-	READ(1,109) ((VOLTS(J,K),K=1,11),J=1,10)
0012	109	FORMAT(11F12.9)
0013	/	CALL TOTPSD(T,PS,PD)
0014	119	FORMAT(3E12,4)
0015		READ (1+107)((VOLTS(J+K)+K=1+11);J=1+10)
0016		CALL VTOEGR
0017	100	READ(1,109,END=300,ERR=1000)((VOLTS(J,K),K=1,11),J=1,10)
0018		WRITE (2+129)((ENG(J+K)+K=1+11)+J=1+10)
0019	129	F0RHAT(11E12.4)
0020		L, * VTCEGR
0021		6070 109
	С	
	C C	LOOP EXITED BY EOF IN READ
0022	300	WRITE (2,119) T,P3,PD
0023		CALL TOJPSD(T+P8+PD)
0024		WRITE (2,119) T,PS,PD
0025		CALL CLOSE(1)
0026		CALL CLOŠE(2)

```
0027
             TYPE ** ANOTHER FILET '
0028
             ACCEPT 777+HORY
0029
      777
             FORMAT(A1)
0030
             IF( NORY .EQ. 'Y') BOTD 10
             GOTO 500
0032
      C
      C ERROR
      C
      1000
0033
             TYPE **' ERROR IN READ'
0034
      500
             STOP
0035
             END
```

```
C
      C
          Subroutine TOTPSD
      C
               This subroutine converts the data to T (temperature)
      C
             PS (static pressure) & PD (dynamic pressure)
      Ċ
0091
              SUBROUTINE TOTPSD(T,PS,PD)
0002
              COMMON VOL ($(10,11), ENG(10,11)
0003
              11=2
0004
              JJ=1
0005
              T=0
0004
              P$=0
              PD=0
0007
      C
          Loop to fill T.PS.PD
      C
      Ĉ
0008
      11
              T=T+VOLTS(II+JJ)
0009
              JJ=JJ+1
0010
              IF (JJ .LE. 11) 00TO 21
0012
              JJ=JJ-11
0013
              ĪI=II+1
0014
     21
              PD=PD+VOLTS(II,JJ)
0015
              JJ=JJ+1
              IF (JJ .LE. 11) GOTO 31
0016
0018
              JJ=JJ-11
0019
              II=II+1
0020
      31
              PS=PS+VOLTS(II+JJ)
0021
              11=11+3
              IF (JJ .LE. 11) GOTO 11
IF (II .EG. 10) GOTO 101
0022
0024
0026
              JJ=JJ-11
0027
              II=II+1
0028
              GOTO 11
      С
      C
           Average T+PD+PS
      C
0029
      101
              T=T/20
0030
              PD=PD/20
              P8=P8/20
0031
      C
      C
           Convert to ensineering units
      Ċ
              T=((((280#T)-487)-273.16)#(9/5))+32
0032
0033
              IF(PD .LE. 4.526) GOTO 206
              PD=6658.67-(1436.61*PD)
0035
0036
              GOTO 216
0037
      204
              PD=2648.58-(550.6*PD)
0038
      216
              IF (PS .LE. 2.303) GOTO 226
              PS=(12919.896*PS)-19754.521
0040
0041
              GOTO 236
0042
      226
              PS=(9451.796#PS)-11767.49
0043
      236
              CONTINUE
0044
              RETURN
0045
              END
```

. .

	C	Subroutine VTOEGR
	Ē	This subpolition converts the data from white to optimized
	<u> </u>	units, it then reorders them as follows:
	C	theta:a:Az;Ax;deltaE;phi;p;Ay;r;deltaA;deltaR
	C	
0001		SUBROUTINE VTOEGR
0002		
0003	12	
	44	
0004		ENG(IA+1)=(VOLTS(IA+9)*+2111)++00738
0005		ENG(IA+2)=-((VOLTS(IA+6)+.001)/.09988)/57.3
0006		ENG(IA,3)=((VOLT8(IA,5)+.002)/1.001)-1.0
0007		ENG(IA+4)=(VOLT\$(IA+3)002)/2.499
0008		ENG(14.5)=(U0) TR(14.10) \$4.2442.4)/57.3
0000		
0010		ENG(IA+7)=-((VULTS(IA+8)+.0035)/.07933)/57.3
0011		ENG(IA;8)=VOLTS(IA;4)/10.027
0012		ENG(IA+9)=-((VOLT8(IA+7)011)/.10134)/57.3
0013		ENG(IA,10)=(-(VOLTS(IA,11)*4.73091)+.55548)/57.3
0014		ENG(IA,11)=((VOLT8(IA,1)*7.52845)+8.20487)/57.3
0015	102	CONTINUE
0014		RETURN
0017		END
~~*/		67 <i>8</i>

.

.

_

A.5) QUICK LOOK PLOTS

Į

Description: The QUICK LOOK PLOT program is used as an aid in choosing appropriate flight data for further analysis. The routine collects the engineering units data and plots it on a graphics CRT terminal.

Program listing:

	Ç		1		1		8		8	1	l	*	*	1		ŧ.	*	1		*		1			*	*	1	
	C					м						•	••	-			-	7 1			a 14 1			•	•			
	ř	-					-	Ű	חט	-		r (ж				•	¥ 6	10		1641	- 6						, R
	č	÷		U s	E	F	01	.L	06	IN	G	\$	u	L A	101	UT	1	NE	2	٦	10	L	12	٩K		t	1	
	č	Ť		IN	ī.	T,	PL	0	15	5,	F	οi	JR	• 0	R	ĒD		GR		Pł	1.						1	-
	Ĉ	*		1	i i	ĸ	*			÷ 1	È	*		1		t	*	1	8	*	*	*	1	R	*	*	1	¥
	C																											
0001				CC	MI	MO	N/	8	T A	TU	8	11	18	TA	T	(1	6)										
0002				DI	M	EN	81	0	N	IA	R	R/	Y	(5	51	2)	•	Hŀ	1	21	ļ	1)	•1	DA	T	• (24	40,11)
0003				CC			N		F .	VE	1			7 K	2	• K	3	9 K	4	• •								
0004				CU		7U -	N/		1 1	E A		1		18	1 	- ,												
0002	c			B 1	11		TE	.8	9 N	υ,	A	NS		NA	1	- (1	3)										
0004				D.	T	•	YS	19	• N	0	1	~		. /	N	• /	,											
0007				DA	T	A	19	11	AT	1		*		•	,,	•												
0008	1			CC	IN'	ŤI	NL	JE																				
	Ç			•	•	•	•	•	•	•	•	•	•	•	٠			•		,		•			,	•		•
0009				C/	L	L	IN	11	T																			
	С																											
0010	_			T١	P	E	5				_							_	_			_					_	
0011	5			FC	R	MA	Ŭ,	()	Ţ	YF	PE		[N	h		ME		OF		F	IL.	E	W	IT	'H	M	E	ASURED DATA'/)
0012	25			FU		ri A		1	48 2.	11,							_	• -										
0013				AL	i Li I Ne s		' ¥ ' 1 1 1	2	31 T-		- M - M		16.	۲ ۲ - ۲		9 1 1 1		11	1	4.		••					-	
0014			1	ur	6		Rf	- A	'na	NI	Y		10		ta:	11	IN	Fr	R	с. М/		TF	'n		-	ما يا	5.	35- SEGUERITAL
0015			-	סמ		26		[=	1,	14	1				•						••			,				
0016				NA	N	E (1)		- 1																		
0017	26			CC	М	TI	NL	JE																				
0018				T١	P	E	6																					
0019	6			FC	R	MA	T ((*	ा	YP	E		[N	h	101	MB	B	R	0	F	T	IM	E	P	0	[h	TS	3′/)
0020	-			RE	A	D(5	7)	N																		
0021	7			FC	R	ΠA	T (3)																			
	5																											
	č					n'	-		n. •	5	20	Å.	÷	ri'	F	•	٠	'	•	•	•	•		•	•	•
0022	•			DC		21	1	l a	1.	N	•			••	•	•••												
0023				RE	A	D(2)		CH	IH (к	• 1	D	• h	(=	1,	1	1))									
0024	99			CC	N	TI	NL	JE									-											
0025				DC		21		j=	1,	11																		
0026				Dŕ	T	A (I (۶J) =	HH	1	J	1)														
0027	21			CC	ÌN	TI	NI	JE																				
	C																											
	C			٠	٠	٠	•	•	٠	٠	٠		•															
~~ 70	201			~ ~		* *																						
0020	440	2			HAN ME H	••	Th	JC. 4 T	T																			
0030	22			FC	R	MA	Ť	1	1 E	12		4)															
0031	24			FC	R	MA	T	(A	1)			·	•															
	Ċ																											
	C			٠	٠	•		•	•	٠	٠	,	•	•	٠	•		٠	٠		•	•	٠	٠		•	٠	•
	С								_																			
0032	_			CA	L	Ļ.	GF	81	D (50	0		15)														
	C																											
				~		. .																						
0033	10	L		- Ul	71 344	11	- 191 - 121	95 111	R)																	
0035				č	AL.	Ē	F	011	R	2	, ,																	
AE00				c/	N.	Ē	F	<u>o</u> u	R	3)																	
	С					-																						
	C			٠	•		,	•	•	٠	•																	
	C																											

```
TYPE 51
0037
            FORMAT(' DO YOU WANT TO TAKE ANOTHER LOOK AT THE DATAT(Y/N)')
0038 51
0039
            READ(5,24) ANS
            IF (ANS.EQ.YES) GO TO 223
0040
0042
            TYPE 52
0043
            FORMAT(' DO YOU WANT TO LOOK AT ANOTHER DATA FILET(Y/N)')
     52
            READ(5,24) ANS
0044
            CALL CLOSE(2)
0045
0046
            IF(ANS.EG.YES) GO TO 1
      C
C
            . . . . . . . . . . . . . . .
      C
0048
            CALL PLOT55(2,512,1+2+4+32+64,18TAT)
0049
            CALL PLOT55(0+-1+0+ISTAT)
0050
            RETURN
0051
            END
```

a,

 0001
 SUBROUTINE INIT

 0002
 COMMON/STATUS/ISTAT(16)

 0003
 DATA ISTAT/14*0/

 0004
 CALL PLOT55(13,72,,ISTAT)

 0005
 CALL PLOT55(13,74,,ISTAT)

 0006
 CALL PLOT55(2,1+512,,ISTAT)

 0007
 RETURN

 0008
 END

0001		SUBROUTINE FOUR(NZ)
	С	
	C	* * * * * * * * C * * * * * * * * * * *
	C	* THIS SUBROUTINE WILL DISPLAY FOUR VARIABLES ON *
	C	# THE CRT EVERY TIME IT IS CALLED FROM THE MAIN #
	C	# PROGRAM. #
	C	* * * * * * * * * * * * * * * * * * * *
	C	
0002		CUMMUN/STATUS/ISTAT(16)
0003		INIEGER IAKRAT(312) DIMENSION DATA(340.11)
0004		DIMENSION DATA(240711) Common (Eine(K1.K0.K1.KA.N
0003		CUMPUN /FIVE/ RIFRZFRSFR4FN
0000		INILUER UMIN(11) Common/Ethea/ Data
0007		DUNNUM/FIVEM/ DMIM NATA RAIN/150.00.30.157.205.75.00.157.00.205.205/
	r	
	č	
0009	v	IF(N7.ER.2.) GO TO 52
0011		IF(NZ.EQ.3.) GO TO 53
	С	
0013		K1 = 3
0014		K2 = 2
0015		K3 = 1
0016		K4 = 5
0017		GD TO 54
0018	52	CONTINUE
0019		K1 = 9
0020		$K_2 = 11$
0021		K3 = 4
0022		K4 = 5
0023	* -	GO TO 54
0024	22	
0025		
0028		
0027		$R_{\rm A} = 0$
2020		
0029	54 C	CONTINUE
0030		DO 41 K=1/N
0031		IARRAY(2#K) = DATA(K+K1)#+57295#GAIN(K1)+45
0032		IARRAY(2#K-1) =DATA(K+K2)#.57295#GAIN(K2)+90
0033	41	CONTINUE
0034		CALL GRAPH(2*N,IARRAY)
	C	
--------------	-----	---
0035		DO 42 K=1,N
0034		IARRAY(2*K) = DATA(K;K3)*:57295#GAIN(K3)+135
0037		IARRAY(2#K-1) = DATA(K+K4)#+57295#GAIN(K4)+180
0038	42	CONTINUE
0039	-	CALL GRAPH(2#N,IARRAY)
	C	
	C	
	C	
0040		$ \begin{array}{c} CALL PLUT35(7, 25, 1, 15, 14) \\ CALL PLUT35(7, 25, 1, 15, 14) \\ CALL PLUT35(7, 25, 15, 15, 15, 15) \\ CALL PLUT35(7, 15, 15, 15) \\ CALL PLUT35(7, 15, 15) \\ CALL CALL PLU35(15, 15, 15) \\ CALL $
0041	~	CALL PLUISS(12), GAA GUICK LOOK DATA PLUIS ANA (ISTAT)
0040	C	15/N7 50 1 \ 00 TO 31
0042		
0044		$\frac{1}{1} \left(\frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) = \frac{1}{1$
0048	31	
0049		CALL PLOT55(9-50-4-ISTAT)
0050		CALL PLOT55(12,,'ELEVATOR POSN, 20 DEG.', ISTAT)
0051		CALL PLOT55(9,50,8,ISTAT)
0052		CALL PLOT55(12,, 'PITCH ATTITUDE, 30 DEG.', ISTAT)
0053		CALL PLOT55(9,50,13,18TAT)
0054		CALL PLOT55(12,,'PITCH RATE, 50 DEG/SEC.',ISTAT)
0055		CALL PL0155(9,50,17,18TAT)
0056		CALL PLOT55(12++'NORMAL ACCEL++ 2 G+'+ISTAT)
	C	
0057		60 TO 34
0058	32	CONTINUE
0059		CALL PLUT55(9,50,4,1STAT)
0040		CALL PLOT55(12,, ELEVATOR POSN., 20 DEG., ISTAT)
0061		$\begin{array}{c} CALL PLUID3(\mathbf{y}, \mathbf{y}, \mathbf{y}, \mathbf{y}, \mathbf{z}, z$
0002		CALL FLUIDS(12) LUNUIDIANE ACCELT, 15 G FLORAT,
0003		
0004		
0044		CALL PLOTSS(12++'YAN RATE, 50 DEG/SEC.'+ISTAT)
0067		GO TO 34
8000	33	CONTINUE
0069		CALL PLOT55(9,50,4,ISTAT)
0070		CALL PLOT55(12,,'AILERON POSN., 20 DEG.',ISTAT)
0071		CALL PLOT55(9,50,8,ISTAT)
0072		CALL PLOT55(12,,'BANK ANGLE, 60 DEG. ',ISTAT)
0073		CALL PLOT55(9,50,13,ISTAT)
0074		CALL PLOT55(12,, ROLL RATE, 50 DEG/SEC. , ISTAT)
0075		[ALL PLUIS5(9,50,1/) IS(A)] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0076	7.4	CALL PLUIDD(12)//LAIERAL AUCEL. , .5 0. (15)A()
00//	34	
0070 0070		
0079		
0081	1	CONTINUE-
0082	-	RETURN
0083		END
0001		SUBROUTINE GRID(IDX,IDY)
0002		CONMON/STATUS/ISTAT(16)
0003		CALL PLOT55(2,1+512,,ISTAT)
0004		CALL PL0155(9,0,0,1STAT)
0005		CALL PLUT55(10+++ISTAT)
0006		CALL PLOT55(2,1+32+64,,ISTAT)
0007	-	UU 3 1=1/312/1UX CAN DIGTER/E.T.1.1.TCTAT\
0008	3	GREE FEWIDD(D)(T)(T)(T)(T) DD A T=1.974.TDY
0007		ΟΟ Τ 1-1/100/101 ΓΔΙΙ ΟΙΠΤ55(Α.1.Τ-1.ΤΕΤΑΤ)
0010	-	DETION
0012		
0001		SUBROUTINE GRAPH(N, IARRAY)
0002		CDHNON/STATUS/ISTAT(16)
0003		DIMENSION IARRAY(512)
0004		NUMBER=ISTAT(8)/8
0005		CALL PLOT55(7,0,0,ISTAT)
0006		CALL PLOT55(8,512,0,ISTAT)
0007		CALL PLOT55(2,1+(NUMBER+1)#2,(NUMBER+1)#10,ISTAT)
0008		CALL PLUT55(3,-N,IARRAY,ISTAT)
0009		CALL PLUT55(1+I-NUMBER++ISTAT)
0010		CALL PLUT55(9,10,1,ISTAT)
0011		CUN

PRECEDING PAGE BLANK NOT FILMED

A.6) DETAILED ENGINEERING CONVERSION

Description: The CRINST program performs the detailed corrections for instrument offsets from the body axes. Biases on the accelerometers are also removed in the corrections.

Program listing:

0001		PROGRAM CRINST
	r	PROBAN TO MODIFY THE PAN ENGINEERING
	<u> </u>	TATA FOR INSTRUMENT CORPORTIONS
	<u>.</u>	DATA FUR INSTRUMENT CURRECTIONS
	C	THAI MEASURED FROM BODY TO INST AXES
	C	XBAR, YBAR, AND ZBAR FROM BODY TO INST AZES
0002		BYTE NAME(15)
0003		BINENSION FI(11).FIM1(11).FIP1(11).DATA(400.11)
0004		TATA DOR 0 /57,29578.32.174/
0005		
0000	-	UATA XBAR; TBAR; ZBAR /+0.052;+1.179;+1.630/
	C	TRANSDUCER POSTIONS RECALCULATED ON 6-FEB-81
0007	- 4	FORMAT(14A)
0008	5	FORMAT(110,8F12,4)
	C	SET LAST BYTE OF CHARACTER STRING TO NULL
0009		NAME(15)=0
	C	ENTER THE FILE NAME FOR THE DATA TO BE CORRECTED
AA1A		CARMATIN ENTER THE FUR THE DATA THE DATA CONCEPTING RATA(
0010	10	TURNALL' ENTER THE FILE NAME FUR THE RAW ENGINEERING DATA 1//
0011		ITPE 10
0012		ACCEPT 4, (NAME(I), I=1, 14)
0013		OPEN(UNIT=1,NAME=NAME,TYPE='OLD',ACCE88='SEQUENTIAL',
		<pre>READONLY,FORM='FORMATTED',RECORDSIZE=132)</pre>
	C	ENTER THE FILE NAME FOR THE DATA TO BE SAVED ON
	C	CLEAR OUT OLD FILENAME
001A	•••••	
0015		
0018	22	CONTINUE
0017	20	FORMAT(' ENTER THE FILE NAME TO HOLD THE CONVERTED DATA';/)
0018		TYPE 20
0019		ACCEPT 4, (NAME(I), I=1, 14)
0020		OPEN(UNIT=2.NAME=NAME.TYPE='NEW'.ACCESS='SEQUENTIAL'.
		FORM= (INFORMATTED) .
	~ `)
		READ DAIN FROM OF DAIN FILE
0021	28	FURMATE 'ENTER THE NUMBER OF TIME POINTS TO BE CORRECTED';/)
0022		TYPE 28
0023	29	FORMAT(I10)
0024		ACCEPT 29, IEND
0025	30	FORMAT(11E12.4)
0026		BO 31 TELLIEND
0027		
A030		
0020	31	
0029	_	CLOSE(UNIT=1)
	C	TRANSFER FIRST TWO DATA POINTS
0030		DO 35 I=1+11
0031		FIH1(I)=DATA(1,I)
0032	35	CONTINUE
	C	CORRECT FOR STAN FRADES IN CALIBRATIONS
7700		
~~~~~		
0034		
0035		FINIC B)=-FINIC B)
0036		FIM1( 9)=-FIM1( 9)
0037		FIM1(11)=-FIM1(11)
	C	CORRECT FOR GYRO MISALINEMENT
0038		COSTHI=COS(THAI/DGR)
0070		
0039		51MIN1-51MI/INAL/DOD/
0040		FIRI(I)=FIRI(I)-IRRI/DUK
0041		PI= FIN1(7)%COSTHI+FIN1(9)#SINTHI
0042		RI=-FIM1(7)*SINTHI+FIM1(9)*COSTHI
0043		FIM1(7)=PI
0044		FIM1(9)=RI
	C	WRITE THESE VALUES TO THE OUTPUT FILE
0045		WRITE(2)(FIM1(I),I=1,11)

C.... TRANSFER NEXT DATA POINT DO 36 I=1,11 FI(I) =DATA(2,I) 0044 0047 0048 34 CONTINUE C.... CORRECT FOR SIGN ERRORS IN CALIBRATIONS FI( 4) FI( 4) 0047 =-FI( 4) 0050 =-FI( 6) FI( 8) FI( 7) 0051 -FI( 8) 0052 =-FI( 9) =-FI(11) 0053 FI(11) C.... ADD CORRECTION FOR GYRO HIBALINEMENT 0054 FI(1)=FI(1)-THAI/DGR PI= FI(7)#COSTHI+FI(9)#SINTHI 0055 0054 RI=-FI(7)#SINTHI+FI(9)#COSTHI 0057 FI(7)=PI 0058 FI(#)=RI PRINT OUT AVERAGE VALUES FOR THIS AND PHIS C.... 0059 THA1=((FIM1(1)+FI(1))/2.)*DGR PHI1=((FIH1(4)+FI(4))/2.)#DGR 0040 0041 40 FORMAT(' THA1 (IN DEG) = '+F12.6+' PHI1 (IN DEG) = '+F12.6> TYPE 40, THA1, PHI1 0042 KOUNT=2 0043 0044 COSTHA=COS(THA1/DGR) SINTHA=SIN(THA1/DGR) 0045 0044 COSPHI=COS(PHI1/DOR) SINPHI=SIN(PHI1/DGR) 0047 C.... START CORRECTION LOOP 0048 50 CUNTINUE 0049 KOUNT=KOUNT+1 C.... IF KOUNT IS GREATER THAN IEND GO TO 1000 IF(KOUNT.GT.IEND)GO TO 1000 0070 G.... TRANFER NEXT TIME POINT 0072 DO 37 I=1+11 FIP1(I)=DATA(KOUNT,I) 0073 0074 **37 CONTINUE** C.... CORRECT FOR SIGN ERRORS IN CALIBRATION FIP1( 4)=-FIP1( 4) 0075 FIP1( 4)=-FIP1( 6) FIP1( 8)=-FIP1( 8) 0076 0077 0078 FIP1( 9)=-FIP1( 9) 0079 FIP1(11)=-FIP1(11) C.... CORRECT FOR MISALINEMENT ANGLE 0080 FIP1(1)=FIP1(1)-THAI/DGR 0081 PI= FIP1(7)*COSTHI+FIP1(9)*SINTHI 0082 RI=-FIP1(7)*SINTHI+FIP1(9)*COSTHI 0083 FIP1(7)=PI 0084 FIP1(9)=RI C.... GET AN BACK TO ORIGINAL SIGNAL FI(3) =FI(3)+1.00 0085 C.... COMPUTE PDOT, GDOT, AND RDOT 4800 =(FIP1(7)-FIN1(7))/0.2 PDCT 0087 ODOT =(FIP1(2)-FIM1(2))/0.2 0088 RDOT =(FIP1(9)-FIM1(9))/0.2 C.... CORRECT ACCELERATIONS FOR OFFSET 0089 =FI(7) P 0090 Q =FI(2) =FI(9) 0091 R AXP1 =FI(4)*COSTHI 0092 0093 AXP2 =FI(3)#8INTHI ={R#R+Q#Q}#XBAR/G AXP3 0094 0095 AXP4 =(P#Q-RDOT)#YBAR/G 0096 =(P#R+QDOT)#ZBAR/G AXP5 0097 AXFIX =AXP1-AXP2+AXP3-AXP4-AXP5 0098 AX =AXFIX 0099 AY =FI(8) -(P#Q+RDOT)#XBAR/G+(P#P+R#R)#YBAR/G -(Q#R-PDOT)#ZBAR/G =-FI(4)#SINTHI-FI(3)#COSTHI-(P#R-QDOT)#XBAR/G 0100 AZ -(G#R+PDOT)#YBAR/G+(P#P+G#Q)#ZBAR/G FI(3) =-AZ 0101 0102 FI(4) = AX0103 FI(8) * AY

	C	CORRECT FOR ACCELEROHETER BIAS
0104		FI(3) =FI(3)-COSTHA#COSPH1
0105		FI(4) =FI(4)-BINTHA
0104		FI(8) =FI(8)+COSTHAISINPHI
	C	WRITE VALUES ON OUTPUT
	C	TYPE OUT KOUNTER
0107		TYPE S.KOUNT
0108		WRITE(2)(FI(I),I=1,11)
	C	BUCKET BRIGADE VALUES THRU TIME
0109		DO 100 I=1,11
0110		FIM1(I)=FI(I)
0111		FI(I) =FIP1(I)
0112	100	CONTAGUE
0113		60 TO 50
0114	1000	CONTINUE
	C	TRANSFER LAST DATA POINT
0115		WRITE(2)(FI(I),I=1,11)
	C	CLOSE DATA FILE
0114		STOP
0117		END

0.840

Television and the

dime.

## A.7) MMLE BONES ROUTINES

This appendix describes the MMLE programs. The first program required is the one that sets up the input matrices, as well as defining for the MMLE program which parameters it is to estimate. The MMLE programs, as well as their output format is also presented.

A.7.1) MMLE SETUP

Description: The setup program is an interactive program which sets up the input data for the MMLE BONES routine. Non-dimensional derivatives, geometric, and inertia data are input and used to form the initial estimate to the MMLE program.

Program listing:

0001		PROGRAM SETUP
	C	THIS PROGRAM SETS UP THE DATA USED IN DONES MALE.
	C	DIMENSIONAL DERIVATIVES ARE BUILT UP FROM NON-DIMENSIONAL
	C	INPUT DATA AND AIRPLANE GEOMETRIC DATA.
	Č	DEFAULT VALUES (IF THEY EXIST) ARE SHOWN AFTER EACH QUESTION.
0002		DIMENSION A(5+4), B(5+4), AA(5+4), BB(5+4), AP(8+4), BP(8+3)
0003		DIMENSION ZERG(4),BIAS(4),D1(7,7)
0004		BOUBLE PRECISION CASE, TEMP
0005		BYTE BANNER(4,80)
0006		BATA VALUE, IVALUE, AA, BB, AP, BP/0., 0, 20*0., 30*0., 32*0., 24*0./
0007		DATA D1+BIAS+ZER0/49#0.+4#0.+4#0./
0008		DATA CASE, TEMP/' ',' '/
0009		DATA BANNER/320*' '/
• • •	C	SET DEFAULT VALUES
0010		NN =200
0011		ITR =10
0012		HZ =7
0013		HAPR =0
0014		HH =0.10
0015		EPB =0.0
0016		TIME =0.0
0017		ALPHA =0.0
0018		XLA =1.0
	C	UNIT 1 WILL BE THE FILE NUMBER OF THE FILE FOR
	C	THE DATA DISK WHICH IS ASSUMED ON DY1:
	C	OPEN UNIT 1
0019	2	FORMAT(80A1)
0020	9	FORMAT(' ENTER A BANNER OF UP TO FOUR LINES.')
0021		TYPE 9
0022	1	FORMAT(' ENTER LINE: '+I1)
0023		DO 3 I=1;4
0024		TYPE 1,I
0025		ACCEPT 2, (BANNER(I,J), J=1,80)
0026	3	CONTINUE
0027	10	CONTINUE
0028	30	FORMAT(' ENTER 'LONG' OR 'LATR' FOR THE TYPE OF CASE',/,
		• ' TO BE SET UP.')
0029		TYPE 30
0030	40	FORMAT(1A8)
0031		ACCEPT 40,CASE
0032		IF(CABE.EQ.'LONG')OPEN (UNIT=1,NAME='DY1:HHLELO.DAT',TYPE='NEW',
		<pre>RECORDSIZE=96,INITIALSIZE=50,DISPOSE='SAVE')</pre>
0034		IF (CABE.EQ. 'LATR')OPEN (UNIT=1, NAME>'DY1:MHLELD.DAT', TYPE='NEW',
		<pre>RECORDSIZE=96,INITIALSIZE=50,DISPUCE='SAVE')</pre>
0036		IF((CASE.NE.'LONG').AND.(CASE.NE.'LATR'))GO TO 10

	c	ERROR TRAP IF RESPONCE IS NOT 'LONG' OR 'LATR'
0038	50	DASIC DATA FOR EITHER LONGITUDINAL OR LATERAL-DIRECTIONAL CASE Format(' Enter the number of data points to de processed.',/, ' (Default the 200)')
0039	•	TYPE SO
0040	40	FORMAT(2F10.0)
0041	61	FORMAT(115)
0042		ACCEPT 61, IVALUE
0043		IF(IVALUE.GT.0)NN=IVALUE
0045	•	IVALUE=0
0046	70	FORMAT(' ENTER THE NUMBER OF ITERATIONS TO BE PERFORMED.'+/+ ' (Default IS 10)')
0047		TYPE 70
0048		ACCEPT \$1, IVALUE
0047		IF(IVALUE.0T.0)ITRUIVALUE
0052	80	FORMAT(' ENTER THE NUMBER OF ORGERVATIONS.'./.
	•••	(DEFAULT IS 7)')
0053		TYPE SO
0054		ACCEPT 61, IVALUE
0055		IF(IVALUE.GT.O)HZ=IVALUE
0057		IVALUE=0
0058	<b>90</b>	FORMAT(' ENTER THE CONTROL NUMBER FOR THE APRORI OPTION.';/; ' (Default is o; which is no aprori values)')
0039		
0041		NAPR IN
0042		TF(IVALUE.NE.O)MAPR=IVALUE
0044		IVALUE=0
0045	100	FORMAT(' ENTER THE DELTA TIME INCREMENT.',/, ' (Default is 0.10)')
0046		TYPE 100
0067		ACCEPT 60,VALUE
8000		IF(VALUE.GT.O,)HH=VALUE
0070		
00/1	110	TVAE (AA
0073		ACCEPT AG-VALUE
0074		IF (VALUE.GT.O.) EPS=VALUE
0076		VALUE =0.
0077	120	FORNAT(' ENTER THE VALUE FOR TIME, '/// (DEFAULT IS 0.0)')
0078		TYPE 120
0079		ACCEPT 60, VALUE
0080		IF (VALUE, 01.0.) I INE=VALUE
0082	130	CORMATI' ENTER THE VALUE FOR ALONA (././ (DEFAULT TO A.A.))
0084	130	TYPE 130
0085		ACCEPT 60, VALUE
0086		IF (VALUE.GT.O.) ALPHA-VALUE
0088		VALUE =0.
0089	140	FORMAT(' ENTER THE VALUE FOR XLA.',/,' (DEFAULT IS 1.0)')
0090		TYPE 140
0091		ACCEPT 60 VALUE
0092		AF VYRLUE HUI HVHJALR-VRLUE Dû 141 î=1.4
0095		WRITE(1+2)(BANNER(I+J)+J=1+80)
0096	141	CONTINUE
0097		WRITE(1,150)NH, ITR, HZ, HAPR
0078		WRITE(1,160)HH, EPB, TIME, ALPHA, XLA
0099	150	FURMAT(7110)
0100	160	FURMAT(UF10.4)
A1 A1	6	ENIER INE NASS AND GEUNEIKIG DATA Commati' ented the atomiane hetony (th (bo)/)
1101	1/0	TURNELL ENTER ING MARTANG WEIDHIA (IN 1807))
0102		TYPE 170
0103		ALLEFI OVINEIUNI Amgr -uftrut/32.174
0105	180	FORMAT(' ENTER THE AIRPLANE WING AREA. (IN FT##2)')
0106	104	TYPE 180
0107		ACCEPT 60.8
0108	190	FORMAT(' ENTER THE AIRPLANE CBAR. (IN FT)')
0109		TYPE 190
0110		GEEPFT AUTENAM

-

```
0111
        195 FORMAT(' ENTER THE WING SPAN. (IN FT)')
0112
            TYPE 195
             ACCEPT 60, SPAN
0113
0114
        200 FORMAT(' ENTER THE ALTITUDE OF THE FLIGHT/RUN. (IN FT)')
0115
            TYPE 200
            ACCEPT 40.H
0114
      C.... COMPUTE ATHOSPHERIC CONDITIONS FROM APPROXIMATE RELATIONS
                   =518.7-H=0.00358
0117
            TA
0118
            IF(TA.LT. 390.) TA=390.
                  =2114.22*(1.-0.00004#7#4#H)*#5.2532
0120
            24
                   =PA/(1714.54*TA)
0121
            BHO
0122
            AVEL
                   =47.02#80RT(TA)
      C.... ENTER THE STEADY-STATE FLIGHT CONDITIONS
0123
        210 FORMAT(' ENTER THE STEADY STATE VELOCITY, (IN FT/SEC)')
0124
            TYPE 210
0125
             ACCEPT 60,U1
                   =2.#WEIGHT/(RHO#U1#U1#8)
0126
            CL 1
      C.... ASSUNE L/D OF 10.
0127
            CD1
                   =CL1/10.
      C.... ASSUNE CXT1=CD1
0128
            CXT1 =CD1
        220 FORMAT(' ENTER THE STEADY STATE THETA. (IN DEG)',/,
(DEFAULT IS 0.0)')
0127
0130
            DGR
                   =57.29578
             TYPE 220
0131
0132
            ACCEPT 60. THA
            THA
                  THA/DGR
0133
        230 FORMAT(' ENTER THE STEADY STATE _ NK ANGLE. (IN DEG)',/,
0134
                    ' (DEFAULT IS 0.0)')
            TYPE 230
0135
             ACCEPT 60, PHI
0136
0137
             PHI
                   =PHI/DGR
0138
        240 FORHAT(' ENTER THE STEADY STATE ANGLE OF ATTACK. (IN DEG)'+/+
                    ' (DEFAULT IS THETA)')
0137
            TYPE 240
0140
            VALUE =0.
0141
            ALP
                  =THA#DGR
             ACCEPT 60.VALUE
0142
0143
             IF (VALUE.NE.O.) ALP=VALUE
0145
             ALP
                   WALP/DGR
0144
             SINALP=SIN(ALP)
0147
            COSALP=COS(ALP)
0140
             SINTHA=SIN(THA)
0149
             COSTHA=COS(THA)
0150
             SINPHI=BIN(PHI)
0151
             COSPHI=COS(PHI)
0152
             TANTHA-SINTHA/COSTHA
      C.... ENTER THE INERTIAL DATA
         260 FORMAT(' ENTER IYYB. (IN SLUG#FT##2)')
0153
             TYPE 260
0154
0155
             ACCEPT 60, AIY
         270 FORMAT(' ENTER IXXB. (IN SLUG*FT**2)')
0156
0157
             TYPE 270
0158
             ACCEPT 60.AIX
         280 FORMAT(' ENTER IZZB. (IN SLUG#FT##2)')
0159
0160
             TYPE 280
             ACCEPT 60.AIZ
0161
      C.... SPLIT FOR CASES
             IF (CASE.EQ. /LONG')GD TO 300
0162
             IF(CASE.EQ. (LATR')GO TO 500
0164
0166
             STOP
      C.... LONGITUDINAL CABE
0167
         300 CONTINUE
         310 FORMAT(' ENTER CDU, O OR 1. ')
0168
             TYPE 310
0169
         311 FORMAT(' ( 1 IF THIS IS A VARIABLE) O OTHERWISE )')
0170
0171
             TYPE 311
             ACCEPT 60+CDU+AA(2+2)
0172
         320 FORMAT(' ENTER CXTU.')
0173
0174
             TYPE 320
0175
             ACCEPT 60.CXTU
         330 FORMAT(' ENTER CDA, 0 OR 1.')
0176
0177
             TYPE 330
             ACCEPT 60, CDA, AA(2,3)
0178
```

10

0177	340	FORMAT(' ENTER CDBE, 0 OR 1,')
0180		TYPE 340
0181		ACCEPT 60, CDDE, BB(2,1)
0182	350	FORMAT(' ENTER CLU, O OR 1.')
0183		TYPE 350
0184		ACCEPT 40, CLU, AA(3,2)
0185	340	FORMAT(' ENTER CLA; O OR 1.')
0186		TYPE 340
0187		ACCEPT 60+CLA+AA(3+3)
0188	370	FORMAT(' ENTER CLDE, O OR 1.')
0187		TYPE 370
0190		ACCEPT 40,CLDE,DB(3,1)
0191	380	FORMAT(' ENTER CHAD.')
0172		TYPE 300
0193		ACCEPT 60, CHAD
0174	370	FORMAT(' ENTER CHO, O OR 1.')
0175		TYPE 390
0176		ACCEPT 60,CHQ,AA(1,1)
0197	400	FORMAT(' ENTER CHU, O OR 1.')
0178		TYPE 400
0199		ACCEPT 60, CHU, AA(1,2)
0200	410	FORMAT(' ENTER CNTU.')
0201		TYPE 410
0202		ACCEPT 60+CHTU
0203	420	FORMAT(' ENTER CNA, O OR 1.')
0204		TYPE 420
0205		ACCEPT 40, CHA, AA(1,3)
0204	430	FORMAT(' ENTER CHTA.')
0207		TYPE 430
0208		ACCEPT 60, CHTA
0209	440	FORMAT(' ENTER CHDE; O OR 1.')
0210		TYPE 440
0211		ACCEPT 60+CHDE+DB(1+1)
	C	DEFINE DIMENSIONAL DERIVATIVES
0212		Q1 = RHO#U1#U1/2.0
0213		XU = Q1#S#(CXTU+2,#CXT1-CDU-2,#CD1)/(AMSS#U1)
0214		XA =-Q1#S#(CDA-CL1)/AMSS
0215		XDE =-Q1#S#CDDE/AMSS
0216		ZU =-Q1#8#(CLU+2,#CL1)/(AM85#U1#U1)
0217		ZA =-01#8*(CLA+CD1)/(AM\$8*U1)
0218		ZDE =-G1*8*CLDE/(AM85*U1)
0219		ANQ = Q1#S#CBAR#CBAR#(CHAD+CHQ)/(2,#AIY#U1)
0220		AHU = Q1#S#CBAR#(CHU+CHTU)/(AIY#U1)
0221		ANA = G1#S#CBAR#(CMA+CNTA)/AIY
0222	_	AMDE = 01#8#CBAR#CMDE/AIY
	C • • • •	DEFINE A MATRIX ELEMENTS
0223		A(1+1)=AMD
0224		
0225		A(1,2)=ANU
		A(1,2)=AHU A(1,3)=AHA
0226		A(1,2)=AMU A(1,3)=AMA A(1,4)=0.0
0226		A(1,2)=AMU A(1,3)=AMA A(1,4)=0.0 A(2,1)=0.0
0224 0227 0228		A(1,2)=AMU A(1,3)=AMA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU
0226 0227 0228 0229		A(1,2)=AMU A(1,3)=AMA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA
0226 0227 0228 0229 0230		A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA#32.174
0226 0227 0228 0229 0230 0231		A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA#32.174 A(3,1)=1.0 A(7,0)=7"
0226 0227 0228 0229 0230 0231 0232		A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA#32.174 A(3,1)=1.0 A(3,2)=ZU
0226 0227 0228 0229 0230 0231 0232 0233		A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA#32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(1,4)==CINTHATCOSPHILT2.174/11
0226 0227 0228 0229 0230 0231 0232 0233 0233 0234		A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA#32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(3,4)=-SINTHA#COSPHI#32.174/U1 A(4,1)=COSPHI
0226 0227 0228 0229 0230 0231 0232 0233 0233 0235		A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA*32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(3,4)=-SINTHA*COSPHI*32.174/U1 A(4,1)=COSPHI A(4,2)=0.0
0226 0227 0228 0229 0230 0231 0232 0233 0233 0235 0236 0237		A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA*32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(3,4)=-SINTHA*COSPHI*32.174/U1 A(4,1)=COSPHI A(4,2)=0.0
0224 0227 0228 0229 0230 0231 0232 0233 0233 0235 0235 0235		A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA#32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(3,4)=-SINTHA#COSPHI#32.174/U1 A(4,1)=COSPHI A(4,2)=0.0 A(4,3)=0.0
0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238	<b>6</b> .	A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA#32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(3,4)=-SINTHA#COSPHI#32.174/U1 A(4,1)=COSPHI A(4,2)=0.0 A(4,3)=0.0 DEFINE D MATRIX CIEMENTS
0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238	с	A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA#32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(3,4)=-SINTHA#COSPHI#32.174/U1 A(4,1)=COSPHI A(4,2)=0.0 A(4,3)=0.0 A(4,4)=0.0 DEFINE B MATRIX ELEMENTS B(1,1)=AMDE
0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238	c	A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA#32.174 A(3,1)=1.0 A(3,2)=ZU A(3,2)=ZU A(3,3)=ZA A(3,4)=-SINTHA#COSPHI#32.174/U1 A(4,1)=COSPHI A(4,2)=0.0 A(4,3)=0.0 A(4,3)=0.0 DEFINE B MATRIX ELEMENTS B(1,1)=AMDE B(1,2)=0.0
0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240	c	A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA#32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(3,3)=ZA A(3,4)=-SINTHA#COSPHI#32.174/U1 A(4,1)=COSPHI A(4,2)=0.0 A(4,3)=0.0 A(4,3)=0.0 DEFINE B MATRIX ELEMENTS B(1,1)=AHDE B(1,2)=0.0
0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241	c	A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA#32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(3,4)=-SINTHA#COSPHI#32.174/U1 A(4,1)=COSPHI A(4,2)=0.0 A(4,3)=0.0 A(4,3)=0.0 A(4,4)=0.0 DEFINE B MATRIX ELEMENTS B(1,1)=ANDE B(1,2)=0.0 B(1,3)=0.0 B(2,1)=YDE
0226 0227 0228 0229 0230 0231 0232 0233 0235 0235 0235 0235 0237 0238 0237 0240 0241 0241	c	A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA*32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(3,4)=-SINTHA*COSPHI*32.174/U1 A(4,1)=COSPHI A(4,2)=0.0 A(4,3)=0.0 A(4,4)=0.0 DEFINE B MATRIX ELEMENTS B(1,1)=AHDE B(1,2)=0.0 B(1,3)=0.0 B(1,3)=0.0 B(2,1); XDE B(2,2)=0.0
0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0237 0240 0241 0242 0244	c	A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA*32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(3,4)=-SINTHA*COSPHI*32.174/U1 A(4,1)=COSPHI A(4,1)=COSPHI A(4,2)=0.0 A(4,3)=0.0 DEFINE B MATRIX ELEMENTS B(1,1)=AMDE B(1,2)=0.0 B(1,3)=0.0 B(2,1)=XDE B(2,2)=0.0
0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0237 0240 0241 0242 0244 0244	c	A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA*32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(3,4)=-SINTHA*COSPHI*32.174/U1 A(4,1)=COSPHI A(4,1)=COSPHI A(4,2)=0.0 A(4,3)=0.0 DEFINE B HATRIX ELEMENTS B(1,1)=AHDE B(1,2)=0.0 B(1,3)=0.0 B(1,3)=0.0 B(2,1)=XDE B(2,2)=0.0 B(2,3)=0.0 B(3,1)=ZDE
0226 0227 0228 0229 0230 0231 0232 0233 0235 0236 0237 0238 0237 0238 0237 0240 0241 0242 0243	C	A(1,2)=AHU A(1,3)=AHA A(1,4)=0.0 A(2,1)=0.0 A(2,2)=XU A(2,3)=XA A(2,4)=-COSTHA*32.174 A(3,1)=1.0 A(3,2)=ZU A(3,3)=ZA A(3,4)=-SINTHA*COSPHI*32.174/U1 A(4,1)=COSPHI A(4,2)=0.0 A(4,3)=0.0 A(4,3)=0.0 DEFINE B MATRIX ELEMENTS B(1,1)=AHDE B(1,2)=0.0 B(1,3)=0.0 B(1,3)=0.0 B(2,3)=0.0 B(2,3)=0.0 B(2,3)=0.0 B(3,1)=ZDE B(1,2)=0.0

.

.

-

0248		B(4,1)=0.0
0247		D(4,2)=0.0
0230	•	$\mathbf{F}(4,3)=0$
	6	ALL ELEMENTS UP INE AN AMIKIA AKE DEPIAED
0251	6	DEFINE ADDITIONAL ELEMENTS OF THE SU MAINIA DB(1.3)=1.0
0252		
0253		
0254		BR(4,3)=1.0
V207	C	DEFINE AP MATRIX (ARGUMED ORDER OF THE ORGERVATION VECTOR 18:
	<b>C</b>	0. 1. ALPHA. THETA. ODOLE AY-AYBIAS. AND AN-ANBIAS)
0255	•••••	BD 450 I=1+5
0254		D0 440 J=1,4
0257		AP(I,J)=1.0
0258	. 460	CONTINUE
0257	450	CONTINUE
0240		AP(4+2)=1+0/32+174
0261		AP(7,3)=-U1/32,174
	C	DEFINE BP MATRIX (ASSUMED ORDER OF THE CONTROL VECTOR IS:
	<b>C</b>	DE, BIAS)
0262		BC 470 I=1,5
0243		BC 480 J=1,3
0264		\$P(I,J)=1.0
0243	480	
0200	470	
026/		JU 470 I=I;3 BP(4,1)-1 //77 174
V200 0740		₽F\071/=1+0/32+1/4 BP(7,1)==11/33,174
0270	490	
V2/V	c	SKIP LATERAL DIRECTIONAL INPUT CASE
0271		GD TO 700
	C	LATERAL DIRECTIONAL CASE
0272	500	CONTINUE
0273	510	FORMAT(' ENTER CLP, 0 OR 1.')
0274		TYPE 510
0275	511	FORMAT(' ( 1 IF THIB VARIES, O OTHERWISE )')
0276		TYPE 511
0277		ACCEPT 60,CLP,AA(1,1)
0278	520	FURNAL(" ENTER CLR; O UR 1.")
02/9		
0280	570	ACCEFT OVICLATAA(1/2) Format/( Enter Cide A Or S ()
0282	330	TYPE 530
0293		
0284	540	FORMAT(' ENTER CLDA. 0 (R 1.')
0285	•••	TYPE 540
0286		ACCEPT 60,CLDA,BB(1,1)
0287	550	FORMAT(' ENTER CLDR, O OR 1.')
0288		TYPE 550
0289		ACCEPT 60,CLDR,BB(1,2)
0290	560	FORMAT(' ENTER CNP, 0 OR 1.')
0291		TYPE 360
0292		ACCEPT 60, CNP, AA(2,1)
0293	570	FURNAT(" ENTER CNR, O OR 1.")
V274		ACCEPT 40-CN0-AA()-21
0201 0201	500	FORMAT(' ENTED CND. A AR 1.')
0270	10V	TYPE SRO
0298		ACCEPT 60+CNR+AA(2+3)
0299	590	FORMAT(' ENTER CNDA, O DR 1.')
0300		TYPE 590
0301		ACCEPT 60, CNDA, BB(2,1)
0302	600	FORMAT(' ENTER CNDR, 0 OR 1.')
0303		TYPE 600
0304		ACCEPT 60, CNDR, BB(2,2)
0305	310	FORMAT(' ENTER CYB, 9 OR 1.')
0306		TYPE 610
0307		ACCEPT 60, CYB, AA(3,3)
0308	620	FURMALLY ENTER CTUAF O UR 1.7)
0309		1175 020 ACCEDT (A.CVDA-DD(T.1)
0211	470	FORNAT( FATER CYDR. O OP 1.()
0312	030	TYPE 630
0313		ACCEPT 60,CYDR,BB(3,2)

A. . . .

C.... DEFINE DIMENSIONAL DERIVATIVES - RH0#U1#U1/2.0 0314 Q1 0315 BLP - G1#S#SPAN#SPAN#CLP/(2.#AIX#U1) = Q1+S+SPAN+SPAN+CLR/(2.+AIX+U1) 0314 BLR 0317 BLB - Q1#S#SPAN#CLB/AIX 0318 DNP = Q1#S#SPAN#SPAN#CNP/(2.#AIZ#U1) BMC = 01+5+5PAN+5PAN+CNR/(2.+AIZ+U1) 0317 0320 BND - Q1#S#SPAN#CNB/AIZ 0321 YB -= Q1#\$#CY3/(AM"5#U1) - GISSSPANSCLUA/AIX 0322 SLDA 0323 TLDR - Q111515PANECLDR/AIX 0324 BNDA - Q1#S#SPAN#CNDA/AIZ 0325 BNDR = Q1#S#SPAN#CNDR/AIZ YDA . - Q1#S#SPAN#CYDA/(AMSS#U1) 0326 0327 YDR = G1#S#SPAN#CYDR/(AMSS#U1) C.... DEFINE A MATRIX ELEMENTS A(1,1)=BLP 0328 0329 A(1,2)=BLR 0330 A(1,3)=BLB A(1,4)=0.0 0331 0332 A(2,1)=BNP 0333 A(2,2)=BNR 0334 A(2,3)=BNB 0335 A(2,4)=0.6 A(3,1)=SINALP 0336 0337 A(3+2) =- COSALP 0338 A(3,3)=YB 0339 A(3,4)=32.174#COSTHA#COSPHI/U1 0340 A(4+1)=1.0 0341 A(4,2)=COSPHITTANTHA 0342 A(4,3)=0.0 0343 A(4+4)=0.0 C.... DEFINE B MATRIX ELEMENTS 0344 B(1+1)=BLDA 0345 B(1+2)=BLDR 0346 B(1,3)=0.0 0347 9(2,1)=BNDA 0348 B(2,2)=BNDR 0349 B(2,3)=0.0 0350 \$(3+1)=YDA 0351 B(3,2)=YDR 0352 B(3,3)=0.0 0353 3(4,1)=0.0 0354 \$(4,2)=0.0 0355 B(4+3)=0.0 C.... ALL ELEMENTS OF THE AA NATRIX ARE DEFINED C.... DEFINE ADDITIONAL ELEMENTS OF THE BB MATRIX 0356 BB(1+3)=1.0 0357 BB(2,3)=1.0 0358 BB(3+3)=1.0 0359 BB(4,3)=1.0 C.... DEFINE AP MATRIX (ABSUMED ORDER OF THE OBSERVATION VECTOR IS: C.... P. R. BETA, PHI, PDOT, RDOT, AND AY-AYBIAS) DO 650 I=1+6 0360 0361 DO 640 J=1+4 0362 AP(I,J)=1.0 0363 **660 CONTINUE** 0364 **650 CONTINUE** 0365 AP(7,3)=U1/32.174 C. . DEFINE AP HATRIX (ASSUMED ORDER OF THE CONTROL VECTOR IS: C.... DA, DR, AND BIAS) 0366 DO 670 I=1+6 DO 680 J=1+3 BP(I+J)=1.0 0367 0368 0367 680 CONTINUE 670 CONTINUE 0370 0371 DO 690 I=1,3 BP(7,I)=U1/32.174 0372 0373 690 CUNTINUE 0374 700 CONTINUE 0375 HU = 3 0376 ΧZ =4 #7 0377 MY C.... ECHO DATA BACK

71

-----

1

0378	710	FORMAT(' AIRPLANE	INPUT DATA' . / .	
		.' WING AREA	(IN FT##2)	= ',F12.4,/,
		.' WEIGHT	(IN LDS)	= '+F12+4+/+
		.' WING SPAN	(IN FT)	= '+F12.4+/+
		.' CBAR	(IN FT)	= '+F12.4,/,
		· AIRSPEED	(IN FT/BEC)	= '+F12.4+/+
		· DENVITY	(IN SLUG/FT##3)	= '+F12+4+/+
		•' ALF7A1	(IN RAD)	
		· · · · · · · · · · · · · · · · · · ·	(10 660)	
		· · · · · · · · · · · · · · · · · · ·	(IN 6110#ET##9)	- ',F12,4,/,
		· · · · · · · · · · · · · · · · · · ·	(IN BLUGEFTEE2)	- '.F12.4./.
		. 177	(IN SLUGEFTEE2)	= '+F12.4./.
		. CL1		• '+F12.4+/+
		CD1		= '+F12.4./.
		.' CXT1		= ';F12,4;//)
0379		TYPE 710,8,WEIGHT	SPAN, CBAR, U1, RHO, ALP,	THAPPHIPAIYPAIXP
		. AIZ+CL1+C	D1+CXT1	
	C	SPLIT FOR CASES		
0380		IF(CASE.EQ. LONG')	GO TO 750	
0382		IF CLASE . EU. 'LATK'	00 10 850	
0384	<b>c</b>	LONGITUDINAL CARE		
	C	WRITE OUTPUT TO DI	RPLAY. RET SETRUTING 6	ACTORS, AND EINTRH ETLE
0385	750	CONTINUE	Statt OLI WLIGHTING	
0384	760	FORMAT(	LONGITUDINAL	DERIVATIVES',/,
		• ' CDU '+F8.4+'		XU '+F8+4+/+
		•' CXTU '+F8•4•/1		
		•' CDA '+F8+4+'		XA '+F8+4+/+
		• CDDE '+F8•4+'		XDE '+F8.4./.
		• CLU • F8.4.		ZU ',F8,4,/,
		· CLA 'FB.4.		2A 'JF8+47/7 7D5 /s58 As/s
		CONTRACTOR		
		· CHO //CO.4/		
		. CHQ		MQ '+F8.4./.
		. CHA		NA "+FR.4+/+
		. CHDE '+F8.4.		NDE (+F8.4+////)
0387		TYPE 760+CDU+XU+C>	TU, CDA, XA, CDDE, XDE, CLU	J+ZU+CLA+ZA+
	_	CLDE, ZDE	CHU, ANU, CHAD, CHQ, AMQ, C	Cha, Ana, Chde, Ande
	C	GET THE WEIGHTING	MATRIX DIAGONAL VALUES	3
0388	//0	FURNAL(' ENIER THE	WEIGHTING FACTOR FOR	u·)
0387		ACCEPT AD-D1/1-1)	•	
0391	780	FORMAT(' ENTER THE	WEIGHTING FACTOR FOR	VELOCITY.()
0792		TYPE 780		
0393		ACCEPT 60, D1(2,2)		
0394	790	FORMAT(' ENTER THE	WEIGHTING FACTOR FOR	ALPHA. ()
0395		TYPE 790		
0396		ACCEPT 60+D1(3+3)		
0397	800	FORMAT(' ENTER THE	WEIGHTING FACTOR FOR	THETA.()
0399		TYPE 800		
0399		ACCEPT 60, D1(4,4)		0007 ()
0400	810	FURNAI(' ENIER INE	WEIGHTING FACTOR FOR	ano1)
0401		ACCTOT A0+01(5-5)		
0403	820	FORMAT(' ENTER THE	NETGHTING FACTOR FOR	AX.()
0404	~~~	TYPE 820		
0405		ACCEPT 60, D1(6,6)		
0406	830	FORMAT(' ENTER THE	WEIGHTING FACTOR FOR	AN. ()
0407		TYPE 830		
0408		ACCEPT 60+D1(7+7)		
	c	SKIP PAST LATERAL	DIRECTIONAL CASE	
0409	_	GO TO 950		
	<b>C</b>	LATERAL DIRECTION		
	<b>U</b>	WRITE UUIPUT TO DI	SPLATE VET WEIGHTING P	ACTURS: AND FINISH FILE
0410	920	LUNIINUL	LATEDAL AIDEATION	
~~!!	004		CHIERME DIRECTION	YR (*FR.4-/-
		. CYDA '+F8.4.'		YDA '1F8.4./.
		.' CYDR ',F8.4,'		YDR '+F8.4./.
		•' CLB '+F8+4+'		LB '+F8.4+/+
		. CLP '+F8.4.		LP '+F8.4+/+
		•' CLR '+F8.4+'		LR '+F8.4+/+
		.' CLDA ',F8.4,'		LDA '7F8.4+/+

-

	•	5' CLDR (570.4)'	LDR	*****
	•	, CNU ; FU.4.		********
	•	)' UNF ' )FU(4)' / CND / .50 A./		·
	•	- CNR	NDA	··F8.4./.
		CNDR '+F8.4+'	NDR	".F8.4.////>
0412	•	TYPE 840, CYB, YB, CYDA, YDA, CYDR, YDR, CLB, BL	BICLPIS	LP+CLR+BLR+
		CLDA, BLDA, CLDR, BLDR, CNB, BNB, CNP	. UNP . CN	R. BNR. CNDA.
		BNDA+CNDR+BNDR		
	C	GET THE WEIGHTING MATRIX DIAGONAL VALUER		
0413	870	FORMAT(' ENTER THE WEIGHTING FACTOR FOR	P.()	
0414		ACCEPT (A-DI/I-I)		
0415		FORMAT// ENTER THE NETRATING FACTOR FOR	R. ()	
0417		TYPE ARO		
0418		ACCEPT 40,01(2,2)		
0419	890	FORMAT(' ENTER THE WEIGHTING FACTOR FOR	BETA. ()	
0420		TYPE 890		
0421		ACCEPT 60+D1(3+3)		
0422	900	FORMAT(' ENTER THE WEIGHTING FACTOR FOR	<b>PHI</b> +')	
0423		ACCEPT (A.A.)		
0425	910	FORMAT(' ENTER THE WEIGHTING FACTOR FOR	PD01. ()	
0426		TYPE 910		
0427		ACCEPT 60+01(5+5)		
0428	920	FORMAT(" ENTER THE WEIGHTING FACTOR FOR	RDOT ()	
0429		TYPE 920		
0430		ACCEPT 60,01(6,6)	AW / \	
0431	¥30	FORMAT(' ENTER THE WEIGHTING FACTOR FUR	#T•')	
0432		ACCEPT 40.01(7.7)		
0434	950	CONTINUE		
••••	C	WRITE MATRICES TO FILE		
0435	960	FORMAT(2110)		
0436	1160	FORMAT(7512.6)		
0437		WRITE(1,960)4,4		
0438		$DO \ 97C \ I=1+4$		
0439		WKITE(1:1160)(A(1:J):J=1:4)		
0441	770	UNIINUE URITE(1.940)A.NH		
0442		DO 980 I=1.4		
0443		WRITE(1+1160)(B(I+J)+J=1+HU)		
0444	980	CONTINUE		
0445		WRITE(1,960)4,4		
0446		DO 1000 I=1,4		
0447	1000	WRITE(1;1160)(AA(1;J);J=1;4) CONTINUE		
0449	1000	WRITE(1,960)4,MU		
0450		DO 1010 I=1,4		
0451		WRITE(1,1160)(BB(I,J),J=1,MU)		
0452	1010	CONTINUE		
0453		WRITE(1,960)7,4		
0454		DO 1020 I=1,7		
0422		WR11E(1)1100/(AF(1)J))J=1/4/		
0457	1030	LURIINUL Notte/1.94017.mm		
045R		BO 1030 I=1.7		
0459		WRITE(1+1160)(BP(I+J)+J=1+MU)		
0460	1030	CONTINUE		
0461		WRITE(1,960)7,7		
0462		DO 1040 I=1,7		
0463	1	WK11E(1)1160)(U1(1)J)/J=1/7) Continue		
0464	1040	LUNIINUL Neite(1.1140)/7500(7).1=1.4)		
0444		WRITE(1,1160)(BIAS(I),I=1,4)		
0467		STOP		
0448		END		

### A.7.2) MAIN MMLE PROGRAMS

Description: The main program of the MMLE BONES routines acts as a controller in calling the subroutines as needed. Initially, it reads the input data for the starting conditions of the test case. If all states are measured a least squares process is used to compute the initial estimate of the derivatives. If the states are not completely measured this feature must be skipped over or errors in the solution of updates to the coefficients will result.

Flowchart:



# Program listing:

0001		PROGRAM MAIN '
	C	****************
	C	
	C	* * * * * * * * * * * * * * * * * * * *
	C	
	C	S BUNES - FRL S
	C	
	C	• • • • • • • • • • • • • • •
		THE MATH PROBRAM OF THE MAYTMIN I THEI THOOD FETTMATOR
	č	* TECHNIQUES (MWIE), THIS PEOGRAM IS DEFLUED FROM S
	č	THE TRAFT PROBAN THAT HAS ORIGINALLY DEVELOPED \$
	č	A BY NASA. THE FOLLOWING SUBROUTINES ARE REQUIRED A
	č	* FOR THE OPERATION OF THIS PROGRAM : *
	Č	# GIRL, EAT, CRAMER, SPITI, REDUCE, MULT, OUTPUT #
	Č	* ADD, MAKE, ZOT, LOAD, LOAD1, SPIT, SOLVE, AND #
	Ċ	* DIAGIN. [*]
	C	* THE OUTPUT OF THE PROGRAM IS TWO FILES THAT *
	C	* CONTAINS THE MATRICES [A] AND [B] FOR EACH *
	C	ITERATION AND THE ESTIMATED TIME RESPONSES
	C	* RESPECTIVELY, SEE THE SPECIFIC INSTRUCTIONS *
	C	* OF THIS PROGRAM FOR FURTHER INFORMATION *
	C	T CUNCERNING THE INPUT AND OPERATION OF THIS MALE T
	C	THE MODIFIED ADDRESS DOCCOM HAS UNTITED BY:
	C o	* THIS NUBIFIED "BUNES" PROGRAM WAS WRITTEN DTT
	C C	- HLEX NUIDHSAGIO
	L C	
		• • • • • • • • • • • • • • • • • • •
	с С	•••••••••••••••••••••••••••••••••••••••
	Ċ	••••••••••••••
	č	
	č	NEWTON-RAPHSON METHOD FOR OBTAINING STABILITY DERIVATIVES
	č	LONG: ALPHA, Q, V, THETA, AN, GDOT, AX
	C	L-D : P, R, BETA, PHI, PDOT, RDOT, AY
	C	
0002		COMMON MAX,MA,MAM,MAT,Z,U,D2,E1,APHI,DUM,PHI1,D1,A,B,AA,BB,
		2 BJI,XJI,BUH,FB,XT1,ZERO,D54,DD4,E,XTX,CCC,BIAS,
		3 IZE, IBIAS, IC, XLA, APR, HAPR, XT4, JKHM, XT5, AP, BP
0003		COMMON HH, ENN, MX, MUMX, RB, IA, JK, NB, EPS, PDB, I, MUMX1,
		2 TRACE, K, IJ, TIME, RDB, MXP1, JKM, LM, TT, JKMM1,
		3 ALPHAINNAIIAZIJIKJIBDILLILINNIAUIAUXIENIPPIAAAIKAIFACI
0004		
0005		
0000		
0007		
0000		DIMENSION $AP(A_A)$ , $PP(A_A)$ , $TA(A)$
0010		DIMENSION Z(7,3),U(3,3),D2(7),BD4(5,4),BIAS(5),APHI(5,4),
••••		2 XT1(7)+PH11(5+4)+D1(8+7)+A(5+4)+B(5+4)+AA(5+4)+
		3 BB(5,4),BJI(25,4),XJI(25,7),SUN(25,25),PB(25),
		4 DUN(25+4)+XT2(7)+ZERD(5)+D54(5+4)+XT3(7)
0011		BYTE INAME(15),CONNT(80,4)
0012		COMMON/ANSWER/ KBUGG
	C	
0013		BYTE LOG, DIR, ANS
0014		DATA LOG;DIR/'L';'D'/
	C	
	C	
	Ç	TVDC 7811
0012	7844	IIFE JJ11 Fodmat////////////////////////////////////
0010	2211	TVDE 3519
0019	3512	FORMAT(10X. THINGS YOU HAVE TO KNOW TO RUN THIS PROGRAM! ' /
~~10	~~**	1 .101.11.IS IT A LORITHININAL OR A LATERAL DIRACTIONAL PHARY.
		2 //10X/2.NAME OF FILE WITH INITIAL CONDITIONS.'/
		3 ,10X, '3.NAME OF FILE WITH MEASURED DATA. '/
		4 ,10X,'4,HOW TO DESIGNATE OUTPUT FILES,'////)
	С	
0019		TYPE 3513

.

```
0020
            FORMAT(//////10X/'INDICATE TYPE OF RUN:'//
      3513
                    >10X, 'IF LONGITUDINAL TYPE 'L'.....',/
>10X, 'IF LATERAL-DIRECTIONAL TYPE 'D'.....',/
            1
            2
                     +10X+'SELECT RUN: ')
            3
      C
0021
             READ(5,3514) ANS
      3514
0022
             FORMAT(A1)
      Ĉ
0023
      5
             CONTINUE
0024
      83
             CONTINUE
0025
             NI = 25
0024
             XXXX = 1.0
             MAX = 5
0027
0028
             MA = 4
0029
             HZ = 7
      C
      C
         ATTACH DATA FILE CONTAINING MATRICES AND INT. CONSTANTS.
      C
             TYPE 119
0030
0031
             FORMAT(//,10X,'ENTER DATA FILE NAME WITH INITIAL CONDITIONS,',
      119
                /,10X, 'AND MATRICES A, B, AA, AP, ETC.')
            1
             FORMAT(14A1)
0032
      128
0033
             ACCEPT 128+(INAME(IABC)+IABC=1+14)
0034
             INAME(15)=0
0035
             OPEN(UNIT=2, NAME=INAME, TYPE='OLD', ACCESS='SEQUENTIAL',
                  READONLY, FORM= 'FORMATTED', RECORDSIZE=132)
            1
      C
         CLEAR OUT OLD FILE NAME
             DO 127, IABC=1,14
0036
0037
             INAME(IABC)='
0038
      127
             CONTINUE
0039
      1700
             FORMAT(10X, 10E12.4)
0040
      3777
             FORMAT(12X,7110)
             FORMAT(12X,8F10.4)
0041
      3700
0043
      700
             FORMAT(8F10.4)
0044
      777
             FORMAT(7110)
0045
      1010
             FORMAT(10E12.4)
0046
      1011
             FORMAT(13,9E12.4)
      1012
             FORMAT(12E12.4)
0047
             FACT = 1.0
0048
0049
             BLANC = 0.0
         READ COMMENTS FROM INPUT FILE (4 LINES OF 80 CHARACTERS)
      C
0050
             READ(2,1301) ((COMNT(I,J),I=1,80),J=1,4)
0051
      1301
            FORMAT(80A1)
         READ STATMENTS
      C
0052
             READ(2,777) NN, ITR, MZ, MAPR
             READ(2,700) HH, EPS, TINE, ALPHA, XLA
0053
      С
         LOAD MATRICES
0054
             ENN = NN
             KCDF = NN
0055
0056
             KABC = ITR
0057
             CALL LOAD(4,A,B,AA,BB)
0058
             MAX = 8
0059
             MA = 7
0060
             CALL LOAD(3,AP,BP,D1,D1)
      C
      C
              . . . . . . . . . . . . . . . . .
      C
      C
0061
             HAX = 5
0062
             HA = 4
0063
             NNM1 = NN-1
             MU = B(MAX_{2}) + .01
0064
             MX = A(MAX_2) + .01
0065
          READ IN ZEROS' AND BIASES.
       C
       C
0066
             READ (2,700) (ZERO(I), I=1, MX), (BIAS(IA), IA=1, MX)
      С
      C
       С
0067
             CLOSE(UNIT=2)
```

C MXP1 = MX + 10048 NZN1 = NZ - 1 0047 0070 NUX = MU + MX NUMX - MURNX 0071 0072 NUMX1 - MUMX + 1 0073 YY = 0.0 0074 XX = 1.0ADD DIASES AND ZEROS' C DO 49 I=1.MX XT4(I) = 0.0 0075 0074 XT3(I) = 0.00077 C XX = XX + ZERO(I) + BIAS(I)0078 XX = XX0079 0080 0081 48  $(L_1)$  = XX + AA(I,J) + BB(I,J) C C . . . . . . . . _ č 0082 YY = YY + AA(I)AX)47 XX = XX + AA(I,HX)0083 C JKMM = YY + .01 0084 JKM = XX + .01 0085 0084 JKMM1 = JKM - 10087 SUM(NI+1) = JKM 0088 SUM(NI+2) = JKM 0087 MAX = NI 0090 HA = NI Ē . . . . . C C INITIALIZE MATRICES TO ZERO С 0091 CALL ZOT(SUN) SELECT APRIORI OPTION THRU MAPR. C C 0092 IF(MAPR) 176+178+177 C C READ IN APRIORI MATRIX C 0093 177 DG 261 IB=1+JKM DO 663 IA=1, JKM 0094 0095 SUM(IB,IA)=0.0 0096 663 CONTINUE 0097 DO 261 IA=1, JKM 0098 261 SUN(IB,IA)=SUN(IB,IA) APR(IB) = SUN(IB,IB) 0099 0100 GO TO 178 176 0101 CONTINUE С DO 664 IA=1, JKMM1 APR(IA)=0.0 0102 0103 0104 CONTINUE 664 DO 263 IA=1, JKH 0105 0106 263 APR(IA) = APR(IA) #FACT CONTINUE 178 0107 C ENTER NAME OF DATA FILE WITH MEASURED FLIGHT TEST DATA Ĉ С 0108 **TYPE 139** 139 FORHAT(//+10X+'ENTER FILE NAME CONTAINING THE MEASURED DATA') 0109 C ATTACH STATHENT FOR FILE CONTAINING MEASURED DATA С C ACCEPT 128, (INAME(IABC), IABC=1,14) 0110 OPEN(UNIT=4, NAME=INAME, TYPE='OLD', ACCESS='SEQUENTIAL', 0111 FORM= 'UNFORMATTED', READONLY) 1 С REWIND TAPE 0112 REWIND 4 С

÷ 1

* *

- w

14 Å

	C	
	C	PEAD IN DATA AND POINT OUT INITIAL CONDITIONS
	č	BIASES AND ZERO'S
	C	
0113	1302	1 · · · · · · · · · · · · · · · · · · ·
0114	1303	FORMAT(24X)' INITIAL CONDITIONS
0115	1304	FORMAT(10X, 'NUMBER OF DATA POINTS : ', I3;
		I BX/YAAXIMUM NUMBER OF ITERATIONS I //I3/ 2 //10%/DATA CAMPLING INTERNAL I //E10.4.
		3 SX, 'FIRST DATA POINT AT TIME : ',F10.4,
		4 /+10X+'DIAGONAL MULTIPLYING FACTOR 1 '+F10.4+
0114	1775	5 5X;'NUMBER OF STATES : '; 13;/)
VII.	1323	
0117	1326	FORMAT(/+10X+'ESTIMATES OF THE CAJ AND CBJ MATRICES'+/)
	C	
0118	1305	FORMAT(10X;'INITIAL INFUT MATRICES [A] AND [B];';/; 1 10X;'A STAR (X) FOLLOWING THE VALUE OF A MATRIX'./.
		2 10X, 'ELEMENT INDICATES THAT THE RESPECTIVE DERIVATIVE',/,
		3 10X, 'IS NOT ESTIMATED BY THE HMLE METHOD. '/)
0119	1306	FORMAT(//10x/'STABILITY NATRIX [A]')
0121	1309	FORMAT(10X+'ITERATION'+IX+' WAS COMPLETED'/)
••••	C	PRINT OUT INPUT DATA
	C	
0122		PRINT 1302
0123		PRINT 1421, (COMNT(I,J),I=1,80)
0125	1421	FORMAT(10X,80A1)
0126	1407	CONTINUE
0127		PRINT 1302
0128		PRINT 1304. NN.ITR.HH.TINF.XLA.MZ
0130		PRINT 1302
0131		PRINT 703
0132	703	FORMAT(/+10X+'ZEROB AND BIABES')
0134		PRINT 1700, (HIAR(IA),IA=1.MX)
0135		PRINT 1325+(D1(IBCD+IBCD)+IBCD=1+7)
0136		PRINT 1302
A1 77	C SE	T MAX AND MA TO LAJ AND LBJ DIMENSIONS Nav-5
)139		HA =4
0139		PRINT 1305
0140		PRINT 1306
0141		DRINT 1307
0143		CALL SPIT1(B,BB,1)
	C	
	C	
	č	
	C	
	C ST	ARTING ITERATION LOOP
01.44	C	TT = TIME - NN
0145		DO 1 LM=1+NN
0146		TT = TT + HH
A1 4 7	C	
0148	:	CONTINUE
	C	· · · · · · · · · · · · · · · · · · ·
	C	· · · · · · · · · · · · · · · · · · ·
0149		UU 272 19 =1;N1 XTS(TA) = 0.0
0151	272	PB(IA) = 0.0
0152		IZE =1
0153		DO 276 IA=1+HX
0154	177	IF(ZERO(IA))277;276;277 176 = 176 4 1
0154	271	ILE T IL Continue

C C - --- --C C MAIN LOOP FOR "INT" NUMBER OF ITERATIONS Ĉ 0157 DO 12 LL = 1,ITR C REWIND TAPE FOR EVERY ITERATION STEP C C 0158 REWIND 4 C TYPE 345; LL Format(//' Number of Iteration Presently Computed :',13;//) 0159 345 0140 C 0161 MAX = 5 0162 NA = 4 0143 DO 31 JK =1,5 DO 31 IK=1,4 KT = IK+4*(JK-1) 0144 0165 0166 ALX(KT+LL) = A(JK+IK)0147 BLX(KT+LL) = B(JK+IK) 0160 31 CONTINUE C C Ĉ CALL SPECIAL MATRIX OUTPUT ROUTINE С 0169 IF(LL.EQ.1) GO TO 1308 PRINT 1326 PRINT 1306 0171 0172 0173 CALL SPITI(A, AA, LL) 0174 **PRINT 1307** 0175 CALL SPIT1(B,BB,LL) 0176 1308 CONTINUE С С NAX = 5 MAT = 5 0177 0178 0179 HAH = 4 CALL EAT (A+HH+PHI1,APHI,D54,DD4) 0180 0181 U(3+1) = 1.0C С 0182 U(3,2) = 1.0U(3,3) = 1.00193 0184 XJI(NI+1) = JKM0185  $XJI(NI_{2}) = MX$ 0186 BJI(NI+1) = JKM 0187  $BJI(NI_{2}) = MX$ 0188 SUM(NI+1) = JKM 0189 SUM(NI+2) = JKM 0190 HA = NI С С INITIALIZE AND READ DATA FROM TAPE С 0191 DO 778 IJK=1+JKM 0192 DO 778 JKL=1,IJK 0193 778  $SUM(IJK_FJKL) = 0.0$ 0194 MAX = NI CALL ZOT(XJI) 0195 C READ IN THE FIRST TWO SERIES OF MEASURED DATA C FRON THE DATA TAPE. С C С 0196 XT1(3) = 0.00197 XT2(3) = 0.00173 XT1(5) = 0.0XT2(5) = 0.00199 0200 XT1(6) = 0.0XT2(6) = 0.0 0201

1.67

	C
0202	KDUGG = 1
0203	IF(ANS.EG.LOG) GG TO 2012
0205	G BEAN JAL NUU NUU NUU NUU NUU VIIJAL VIIJIL UTIJAL UTIJAL
V2V3	$\mathbf{A} = \mathbf{A} + $
0204	
VAVU	$\begin{array}{c} \mathbf{R} = \mathbf{R} + $
0207	80 TO 2013
0208	2012 CONTINUE
0209	
0210	$x_{12}(2) = 0.0$
0211	XT1(3) = 0.0
0212	XT2(3) = 0.0
0213	XT1(5) = 0.0
0214	XT2(5) = 0.0
0215	U(2,1) = 0.0
0216	U(2,2) = 0.0
	C
0217	
0210	DEAD /A) VIS/AL VIS/AL VIS/IL VIS/IL AL AUG AUG AUG
A519	$\mathbf{RERD}  (4)  \mathbf{X} = \{1, 4\}  \mathbf{X} = \{1, 1\}  \mathbf{X} = \{1, \mathbf{X} = \{1, 1\}  \mathbf{X} = \{1, \mathbf{X}\}  \mathbf{X} = \{\mathbf$
0210	
~~~ /	
	C C
0220	2013 CONTINUE
	C
	C
0221	IC = 0.0
0222	DO 51 I=1,MX
0223	51 XJI(JKH,I) = XT2(I)
0224	IF(LL-1) 64,65,64
0225	$\begin{array}{c} \bullet \bullet \\ \bullet \\ T \in \mathcal{F} \subseteq \mathcal{F} \cup \mathcal{F} = \mathcal{F} \cup \mathcal{F} = \mathcal{F} \cup $
0227	
0228	x_{13} (14) + x_{13} (14) + PR(JKH-17E + 1C)
0229	XT1(IA) = XT1(IA) + XT3(IA)
C 30	XJI(JKH,IA) = XJI(JKH,IA) + XT3(IA)
0231	XT2(IA) = XJI(JKH,IA)
0232	66 CONTINUE
0233	IC = 0.0
	C
	C ADD BIASES
0234	90 100 10=110X TE(DTAC/TA))147-144-147
V233 0771	457 TC = TC 1 1 147 TC = TC 1 1
0230	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
0238	XT1(IA) = XT1(IA) - XT4(IA)
0239	XT2(IA) = XT2(IA) - XTA(IA)
0240	XJI(JKM IA) = XT2(IA)
0241	166 CONTINUE
0242	65 CONTINUE
	C
	C MAIN MMLE LOOP
	C
0243	DO 260 IA=1,JKMM
0244	XIJ(IA) = XIJ(IA)+PB(IA)
0245	ZOV CUNIINUE
V240 0747	DU 13 IM-IFRE D2(TA) = 0.0
0249	7(TA+1) = ¥T1(TA)
0249	$Z(IA \cdot 2) = XT2(IA)$
0250	13 CONTINUE
0251	IC =0.0
	C ZERO SPLIT
0252	DO 62 I=1,MX

Ì

0253		IF(ZERO(I))63,62,63
0254	43	IC = IC+1
0255		XJI(JKM-IZE + IC,I) = 1.0
0254	62	CONTINUE
0257		CALL BIRL
0258		MAX = NI
0259		HA = NI
	C	•
	C 0U1	IPUT OF ITERATION LOOP
	C	
	C	
0260		DO 325 IA=1,JKN
0261	325	SUH(IA,IA) = SUH(IA,IA)#XLA
	C	CALL SPIT(SUN)
0242		SUH(NI(1)) = JKH-1
0263		$SUM(NI_{2}) = JKM-1$
0244		PRINT 1309+LL
0245		PRINT 1302
0744		TE(11-TTR) 249-248-248
0247	245	CALL CRAMER(MU.MX.MZ.NI)
	c l	CALL SPIT(SUM)
0248	•	
0249		PRINT 1302
0270		STOP
~~~~	~	
	č	
	ř	
0271	240	CONTINUE
0272		
0273		NE = RUN(NT.1) + 0.01
0274		
0275		DO 18 T-1-MY
0274		
NA77		JC 21 9-1700 15/00/1. (\\20-01-00
0278	27	T ( = T ( A)
0270	"	10 - 10 - 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
V2/7	21	$\mathcal{O}(1) \mathcal{O}(1) = \mathcal{O}(1) \mathcal{O}(1) + \mathcal{O}(1) \mathcal{O}(1)$
0280	<b>4</b> Is	
V201		90 18 J-17MA
0202		
0283	14	$\mathbf{J} = \mathbf{J} + \mathbf{I}$
0284		A(L)J) = A(L)J) + 79(LJ) Construir
0285	18	
0286	12	CUNTINUE
0287		UU TO 83
V2UU		RETURN
0287		END

•

----

....

and the second

,

```
Subroutine GIRL
     Description: Subroutine GIRL performs the parameter
identification.
Important variables;
SUM Contains the second gradient in lower triangular and
     diagonal locations and off-diagonal a priori weighting
     in upper triangular. Diagonal a priori weightings are
     stored in APR. The first gradient appears as an extra
     column in SUM (the JKM column)
XJI \nabla_{c}(z_{1} - y_{1})
PHI1 e^{A \Delta t}
APHI \int_0^{\Delta t} e^{At} dt
Z,U measured values of observations and controls
XT1, XT2 computed values for observations
XT3 variable initial conditions on states
XT4 variable bias on the observations other than states
XT5 difference between estimated coefficients and the a priori
     values
ΡB
     solution vector for the change in the estimates of the
     coefficients
```

- MX number of states
- MZ number of observations

0001		SUBROUTINE GIRL
0002	e .	COMMON MAX, MA, MAM, MAT, Z, U, D2, E1, APHI, DUM, PHI1, D1, A, B, AA, BB,
		1 BJI,XJI,SUN,PB,XT1,ZERO,D54,DD4,E,XTX,CCC,BIAS,
		2 IZE, IBIAS, IC, XLA, APR, HAPR, XT4, JKMM, XT5, AP, BP
0003		COMMON HH + ENN + MX + NUMX + RB + IA + JK + NB + EPS + PDB + I + MUHX 1 +
		1 TRACE - K - T.I - TIME - RDB - NXP1 - JKM - LM - TT - JKMN1 -
		2 ALPHA - NNN1 - MZ - J - KJ - DD - LL - L - NN - MU - MUX - EN - PP - AAA -
		3 KN.FAC.ITR.NI.XT2.XT3.MZM1
0004		DIMENSION AP(8.4). BP(8.3). XT4(4)
0005		DINENSION XTS(25) APR(25)
0006		DIMENSION Z(7,3),U(3,3),D2(7),DD4(5,4),DIA8(5),APHI(5,4),
		1 X(1(7), PHI1(5+4), D1(8+7), A(5+4), B(5+4), AA(5+4),
		2 BB(5,4), BJI(25,4), XJI(25,7), 8UH(25,25), PB(25),
		3 DUN(25+4)+XT2(7)+ZERO(5)+D54(5+4)+XT3(7)
	C	
0007	-	COMMON/ANSWER/ KBUGG
8000		CONMON/EQDATA/ ANPT
	С	
0009	-	DIMENSION XL(300+7)
0010		COMMON/TRNSFR/XL
0011		COMMON/HATAB/ ALX, BLX, ERX
0012		DIMENSION ALX(20,10), BLX(20,10), ERX(10,10)
	с.	
	C	
0013	777	FORHAT(7110)
0014	606	FORMAT(10X,10E12.4)
0015	1011	FORMAT(13,9E12.4)
0016	1012	FORMAT(12E12.4)
0017		ANPT=FLOAT(NNM1)+1.0

	C TI	INE LOOP
0018		TT = TINE + HH
0019		DO 41 I=2,NNM1
0020		7T = TT + HH
0021		DO 28 JK=1/JKH
0022		DO 28 J=HXP1,HZ
0023	28	XJI(JK,J) = 0.0
0024		DO 170 IA = 3.MX
0025	170	XJI(JKH+IA) = XT2(IA)
1	C	
	C KI	LAD MEASURED DATA FROM DATA FILE
	r r	
0024	•	15(KBUGG.50.0.0) 00 10 1071
	С	
0028	-	READ(4) DXY.DXY.DXY.DXY.DXY.Z(4.3).Z(1.3).Z(7.3).Z(2.3).
		1 U(1,3),U(2,3)
0029		Z(3,3) = 0.0
0030		Z(5+3) = 0.0
0031		Z(4,3) = 0.0
	C	
0032		GO TO 3011
0033	3071	CONTINUE
	C	
	C	LONGITUDINAL
	C	
0034		READ(4) Z(4+3)+Z(1+3)+Z(7+3)+Z(6+3)+U(1+3)+DXY+DXY+DXY+DXY+
	-	1 DXY+DXY
	C	
****	C	7/3-7/ - ^ ^
0035		2(2(3) = 0.0
0030		7(3,3) = 0.0
0032		U(2.3) = 0.0
	С	
	C	
0039	3011	CONTINUE
	С	
	C	
0040	_	DO 171 IA=1,MX
0041	171	Z(IA,3) = Z(IA,3) - XT4(IA)
0042		MAX = NI
0043		TR = 4 CALL 70T/DIT)
0045		IK = 0
0046		DO AA Jalahx
0047		DO 43 K=1, MU
0048		BJI(JKH,J) = BJI(JKH,J)+B(J,K)#(U(K,3)+U(K,2))#0.5
0049		IF(BB(J+K))45+43+45
0050	45	JK = JK +1
0051		$XJI(JK_1J+MX) = U(K_12) + BP(J+MX_1K)$
0052		BJI(JK,J) =0.5#(U(K,2)+U(K,1))
0053	43	CUNTINUE
0054		DD 44 K = 1;MX
0033		LT 1001JJ 10199199190
0050	70	JR - JR Y 4 TE/11_1\A.A.A
0058	2	CONTINUE
0059	-	$BJI(JK_{1}J) = 0.5 = (Z(K_{1}2) + Z(K_{1}2))$
0060		$XJI(JK_{2}J+MX) = Z(K_{2})+AP(J+MX_{2}K)$
0061		GO TO 44
0062	4	CONTINUE
0063		BJI(JK+J) = (XT2(K) + XT1(K))#0+5
0064		XJI(JK,J+HX) = XT2(K) *AP(J+HX+K)
0065	44	CONTINUE
0066		HAX = NI
0067		
0048		NAN
0029		17月1 年 3 11111-111-111-111-111-111-111-111-111-
0070		AUTURIS - UV CVF MHLISTISTEMIISTISTISMI
0072		
0073		CALL ADD(1.0+DUN+1.0+XJI+XJI)

0074		XJI(NI+2) = 附Z
0075		IBIAS = 0.0
0076		DO 162 IA = 1,HX
0077		IF(BIA8(IA))163,162,163
0078	143	IBIAS = IBIAS + 1
0079		DO 175 IB=1,MZ
0080	175	XJI(JKMM+IBIAS,IB) = 0.0
0081		XJI(JKHM+IBIAS,IA) = 1.0
0082	162	CONTINUE
0083		JKHN1 = JKN -1
0084		DO 7 JK B 1.JKMM
0085		DO 7 L . NYPI-NZ
0084		DO 7 K = 1 MX
0087		2 IT ( K - 1) - VIT ( K - 1) - A( 1 - MY - K) + Y IT ( K - K) * AP( - K)
0088	7	CONTINUE
0000	•	DO 9 L MYPL.M7
0007		
0070		NG 0 K-1.MU
0071		DU & RELINU Vit/ Malin - Vit/ Malinati - Ma Knohle, Therefore - Ma
0072	•	XJI(JKNJL) = XJI(JKNJL)TB(L=NXJK)4U(KJS)4BF(LJK/
0073	8	CONFINUE
0094		90 9 X=17AX
1095	_	$XJI(JKM_{P}L) = XJI(JKM_{P}L) + A(L-MX_{P}K) + XJI(JKM_{P}K) + AP(L_{P}K)$
C 396	9	CONTINUE
0097		00 3 J=1/MZ
0098		XT1(J) = XT2(J)
0099		XT2(J) = XJI(JKM;J)
01.00		XJI(JKH+J) = Z(J+3)-XT2(J)
0101	3	CONTINUE
0102		DO 27 K=1,MZ
0103		D2(K) = D2(K) + XJI(JKM,K) * 2
0104	27	CONTINUE
0105		MAX = NI
0106		HA = 7
0107	81	CONTINUE
	C	PRINTS OUT TIME WISTORIES
	č	TYPE 606. (XT2(IA).IA=1.7).TT
0108	•	TE(11.1T.TTR) BD TO 80
0110		
0111		DU 1013 IN-17/IK)
0117	1017	CONTINUE
VII2	101.9	
0113	80	
0114		DU YI J=I/JKM
0115		DO 91 14=J;JKM
0116		DO 92 K=1+MZ
0117	92	SUM(I4+J) = SUM(I4+J)+XJI(I4+K)*D1(K+K)*XJI(J+K)
0118	91	CONTINUE
0119		DO 69 IA=1,MZ
0120		$Z(IA_{i}1) = Z(IA_{i}2)$
0121	69	$Z(IA_{2}) = Z(IA_{3})$
0122		U(1,1) = U(1,2)
0123		U(2,1) = U(2,2)
0124		U(1,2) = U(1,3)
0125		U(2,2) = U(2,3)
0126	41	CONTINUE
	Ċ.	
0127	-	PRINT ANT. SUNCIEN. INM
0120	407	
V120	00/ C	TYPE (A4. CHM/ HM- HM)
_	L	TTPE OVOF SUN(JKH/JKH/
0129		NAX = 8
0130		HA = 7
	C	CALL SPIT(D1)
0131		PRINT 608
0132	608	FORMAT(/,10X,'WEIGHTED_ERRORS:',/)
0133		PRINT 606+(D2(IA)#D1(IA+IA)+IA=1+MZ)
0134		TYPE 606, (D2(IA), IA=1, MZ)
0135		DO 2101 IA=1, MZ
0136		ERX(IA+LL) = D2(IA)
0137	2101	CONTINUE
0138		DO 888 IJK = 1 JKM
0139	888	SUM(TJK+JKM) = SUM(JKM+TJK)
A1 #A	0.00	TE/MADD) 100.101.100
0140	100	TENHALIY TOATION TO 100 TEAT INN
V141	190	nn tot thethiu

0142		SUM(IB;JKM) =-XT5(IB)@APR(IB)+SUM(IB;JKM)
0143		SUN(IB+IB) = SUN(IB+IB)+APR(IB)
0144		IBH1 = IB-1
0145		DO 192 IA =1+IBM1
0146	182	SUM(JB+IA) = SUM(IB+IA) + SUM(IA+IB)
0147	181	CONTINUE
0148	531	FORMAT(///' END OF ITERATION '//)
6149		TYPE 531
0150		RETURN
0151		END

Subroutine EAT

Description: Subroutine EAT computes  $e^{A\Delta t}$  and  $\int_0^{\Delta t} e^{At} dt$ using the Taylor series expansion to ten terms. These are returned as PHI1 and APHIL respectively.

0001		SUBROUTINE EAT (A,T,PHI,APHI,A2,A3)
	C	
	C	• • • • • • • • • • • • • • • • • • • •
	C	THIS SUBROUTINE COMPUTES THE TRANSITION MATRIX
	C	AND IT'S INTEGRAL USING A TATLOR SERIES EXPANSION
	0	TO TO TERMS.
	5	A - BTADTI ITY MATOTY
	č	N = DINDILII UNIKIK T = DELTA TIME INCOEMENT
		I - DELIM IINE INGREMENI
	С С	PRI - INTERDAL DE THE TRANSITION MATRIX
	č	APRIL - INTEGRAE OF THE TRANSITION DATAIN A2 - DIINNY MATRIX
	ř	AZ - DIINNY NATRIY
	č	
	č	
0002	-	COMMON MAX.MAX1.MIX1.MIX
0003		DIMENSION A(1), PHI(1), A2(1), APHI((), A3(1)
	С	
	Ē	CALLS MULTIPLICATION AND ADDITION SUBROUTINES
	Ē	
	C	
0004		MAX2 = MAX*2
0005		II = A(NAX)
0006		JJ = A(MAX2)
0007		PHI(NAX) = A(NAX)
0008	_	PHI(HAX2) = A(HAX)
	С	
	C	INITIALIZE TO ZERO AND CREATE NEW MATRICES
	С	
0009		CALL ZUI(PHI)
0010		CALL MAKE(APHI)
0011		UALL MARE(ASTFMI) MT = -MAY
0013		$\frac{1}{10} = -\frac{1}{10}$
0014		NT - MTINAY
0015		NTT = MT+T
0014		PHT(MT+T) = 1.0
0017	1	CONTINUE
0018	•	CALL NAKF (A2, PHT)
0019		R = 1.0
0020		DO 2 I=1+10
0021		BB = I
0022		G = G T / BB
0023		CALL ADD(1.,APHI,G,A2,APHI)
0024		CALL MULT(A, A2, A2, A3)
0025		CALL ADD(1.,PHI,G,A2,PHI)
0026	2	CONTINUE
0027		hQ 10 I=1+II
0028		DO 10 J=1+I

0029		L+XAH#(1-I) = IL
0030		I = (J-1) = LI
0031		TEMP = PHI(IJ)
0032		(IL)IH9 = (LI)IH9
0033		PHI(JI) = TENP
0034		TEMP = APHI(IJ)
0035		APHI(IJ) = APHI(JI)
0036	10	APHI(JI) = TEMP
	C	CALL SPIT(PHI)
	C	CALL SPIT(APHI)
0037		RETURN
0038		END

Subroutine ZOT

Description: Subroutine ZOT intializes the elements of a matrix to zero. Subroutine listing:

0001		SUBROUTINE ZOT(X)
	C	
	С	
	ĉ	THIS SUBROUTINE SETS ALL ELEMENTS OF A MATRIX
	ř	TO ZERO.
	č	
	с 2	
	C	X & MAIRIX IU BE ZERUED
	C	* * * * * * * * * * * * * * * * * * * *
	С	
0002		COMMON MAX,MAX1,MIX1,MIX
0003		DIMENSION X(1)
	C	
0004		MAX2 = MAX ¥ 2
0005		IIM1 = X(MAX) - 1.0
0006		JJH1 = X(HAX2) - 1.0
0007		LEND = JJM1#MAX+1
0008		DO 1 L=1,LEND,MAX
0009		KEND = L + IIN1
0010		DO 1 K=L,KEND
0011	1	X(K) = 0.0
0012		RETURN
0013		FND

Subroutine LOAD

Description: Subroutine LOAD loads matrices from the

input file.

Subroutine listing:

SUBROUTINE LOAD (N,A,B,C,D)

0001

President Change

Serent Transfer

The local distribution of

	C	
	C	
	C	THIS SUBROUTINE LOADS MATRICES A, B, C AND D FROM
	C	AN INPUT FILE. THE VARIABLE N SPECIFIES THE NUMBER
	C	OF MATRICES TO BE LOADED.
	С	
	C	
0002		REAL A(1),B(1),C(1),D(1)
	C	
0003		CALL LOAD1(A)
0004		IF(N.LT.2) RETURN
0006		CALL LOAD1(B)
0007		IF(N.LT.3) RETURN
0009		CALL LOAD1(C)
0010		IF(N.LT.4) RETURN
0012		CALL LOAD1(D)
0013		RETURN
0014		END

```
Subroutine LOAD1
           Description: Subroutine LOAD1 actually loads the matrix
     from the input file.
     Subroutine listing:
0001
            SUBROUTINE LOADI(A)
      C
        ROUTINE CALLED BY LOAD LOADS MATRIX A FROM FILE
      C
0002
            COMMON MAX
0003
            REAL A(1)
0004
            READ(2,100) II,JJ
0005
     100
            FORMAT(8x+12+110)
0004
            KE = (JJ-1) #HAX
            DO 10 I=1+II
0007
8000
            KEND = I+KE
            READ(2,1001) (A(K),K=I,KEND,MAX)
0009
     10
0010
            A(MAX) = II
0011
            A(MAX*2) = JJ
           FORMAT(8F12.6)
     1001
0012
0013
            RETURN
0014
           END
```

```
Subroutine ADD
           Description: Subroutine ADD adds scalar multiples of
     two matrices, Z=g X + h Y.
     Subroutine listing:
0001
           SUBROUTINE ADD (G,X,H,Y,Z)
      С
               _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
      C
           THIS SUBROUTINE ADDS SCALAR MULTIPLES OF TWO
      C
      C
           MATRICES AS FOLLOWS:
      С
     С
                CZ3 = G*CX3 + H*CY3
                                    WITH : G = 1.0
           ( NO CHECKING IS MADE FOR MATRIX COMPATIBILITY )
      C
      C
            C
0002
           COMMON MAX, MAX1, MIX1, MIX
0003
           DIMENSION X(1),Y(1),Z(1)
     С
0004
           MAX2 = MAX + 2
           II = X(MAX)
0005
0006
           JJ = X(MAX2)
           JEND = (JJ-1)*MAX+1
IIM1 = II-1
0007
8000
0009
           DO 53 J=1+JEND+MAX
0010
           KEND = J+IIM1
0011
           DO 53 K=J,KEND
0012 53
           Z(K) = \chi(K) + H * Y(K)
           Z(MAX) = X(MAX)
0013
0014
           Z(MAX2) = X(MAX2)
           RETURN
0015
0016
           END
```

Subroutine MAKE

Description: Subroutine MAKE moves a copy of the matrix Y into X. Subroutine listing: 0001 SUBROUTINE MAKE(X,Y) C C THIS SUBROUTINE GENERATES A MATRIX X THAT IS C Ċ A COPY OF MATRIX Y. ¢ X : NEW MATRIX, COPY OF Y č Y : MATRIX TO BE COPIED Ç . . . . . . . . . . . . . . . . C 0002 COMMON MAX, MAX1, MIX1, MIX 0003 DIMENSION X(1),Y(1) C 0004 MAX2 = MAX =IIM1 = Y(MAX) -1. 0005 JJH1 = Y(MAX2) -1.LEND = JJH1*MAX +10006 0007 8000 DO 1 L=1,LEND,MAX 0009 KEND = L+IIM1 0010 DO 1 K=L+KEND 0011 1 X(K) = Y(K) 0012 X(MAX) = Y(MAX)X(MAX2) = Y(MAX2)0013 0014 RETURN 0015 END

Subroutine MULT

Description: Subroutine MULT computes the matrix product ,C = A B. The matrix C can not be the same as matrix A or B.

0001		9	SUB	RO	UT	IN	Ε	M	UL	T	(	A		Β,	С	,	63						
	С	HUL	TIP	LI	ES	A	A	N	D	₿	P	N	D	P	U	T :	5	TH	łE	P	RO	DUC	Т
	C	IN (	CA	ND	D	(	US	31	NG	5	sι	B	• 1	MA	ĸ	Ē	)						
	Ĉ		-		-											_							
0002			208	NO	N	MA	х.	H.	۵X	1	• M	T)	X	۱.	м	<b>T</b> :	¥						
0003			N T N	FN	<u>s</u> 1	<b>NN</b>	۵.	1	1)			1	3	ſ	ï	1	Ϊ.	n		\$			
	c				•		. 1	•••	۰í			•	'			•	<i>.</i> .		•	۰.			
0004	C.	• ,	4 Å Y	2	<u>.</u>		÷.	17	•			*			•			•		•		•	
0004 0005				-	_		01	2															
0005			11 2	4	34	14.7	XĄ	2															
0006			II.		A (	MA	X)	)															
0007			JJ	<b>3</b>	A(	MA	X2	2)															
8000			KK		B (	MI	X 2	2)															
0009			JE	=	(J	J-	1)	*	MA	X													
0010		1	(E		(K	Ř-	1)		MA	X													
0011			00	20	1	=1	. 1	Í															
0012		i	EN	D		ΚĒ	+ T																
0013			JEN	D	-	JE	÷ī																
0014				1																			
0015			0	20	к	= 1	• K	E	Νħ		ма	x											
0016			ĥκ	57	=``	٥.	0				• • • •												
0017			IR	÷.	ī.,	•••	•																
••••	c	TNT			7.	<b>T</b> T	<b>0 M</b>			•	•												
0010	Ļ	- 101	144	11	4 H				50	U	Г MA												
0018			10	IO	J	=1	2.1	IE I	N U		m A	X.	_										
0019		1	D ( K	)	=	A(	J)	*	B (	J	B)	+	D	( K	)								

```
      C:020
      10
      JB = JB + 1

      O021
      20
      L = L + MIX

      O022
      D(MAX) = A(MAX)

      JC23
      D(MAX2) = B(MIX2)

      C
      COPY D INTO C

      O024
      CALL MAKE(C,D)

      O025
      RETURN

      O026
      END
```

Subroutine SPIT

Description: Subroutine SPIT prints out a marix.

۰,

Subroutine listing:

0001	~	SUBROUTINE SPIT(X)
	Č	SUBROUTINE USED FOR THE PRINTOUT OF MATRICES
	C	
0002	Ľ	COMMON MAX,MAX1,MIX1,MIX
0003		DIMENSION X(1)
0004	100	FORMAT(13X, ' DIMENSION ',8X,13,' BY ',13)
0005	101 C	FORMAT(12X,10E12.4)
2000	-	MAX2 = MAX#2
0007		II = X(MAX)
0008		JJ = X(MAX2)
0009		PRINT 100, II,JJ
0010		$KE = (JJ-1) \pm MAX$
0011		
0012		KEND = I+KE
0013	1	PRINT 101. (X(K).KEI.KËND.MAX)
0014	-	RETURN
0015		END

Subroutine SPIT1

Description: Subroutine SPIT1 prints out the A and B matrices with "*" 's to show which of the parameters have been allowed to vary.

0001	*	SUBROUTINE SPIT1(X,XX,KI)
	C	
	C	SUBROUTINE USED FOR THE PRINTOUT OF MATRICES
	C	
	С	
	С	
0002		COMMON MAX,MAX1,MIX1,MIX
0003		DIMENSION X(1),XX(1)
0004		BYTE CHAR(4)
0005	100	FORMAT(10X, DIMENSION ', I3, ' BY', I3)
0006	101	FDRMAT(10X,5(PE12.4,A1))
	С	
	С	
0007	-	MAX2 = MAX =
0008		II = X(MAX)
0009		JJ = X(MAX2)
0010		PRINT 100, II,JJ
0011		KE = (JJ-1) * HAX
0012		DO 1 1=1+II

0013		KEND = I+KE
0014		DO 2 K=I;KEND;MAX
0015		CHAR((K-I)/MAX+1)=' '
0016		IF(XX(K).EG.O.)CHAR((K-I)/MAX+1)='#'
0018	2	CONTINUE
0019	1	PRINT 101,((X(K),CHAR((K-I)/HAX+1)),K=I,KEND,HAX)
0020		RETURN
0021		END

Subroutine SOLVE

Description: Subroutine SOLVE solves the system of linear equations, A = b where A is symmetrical. Only the lower triangular and diagonal elements of A are used. The b vector is assumed to be stored in the N+1 column of A, where N is the dimension of the system.

0001		SUBROUTINE SOLVE(A,X)
	C	
	C	SOLVES SYSTEM AX = B WHERE A SYMMETRIC MATRIX
	C C	AND B A MATRIX IN N+1 COLUMN OF A
0002		REAL A(25,25),X(25)
0003		CALL REDUCE(A)
0004		N = A(25,1)
0005		NM1 = N-1
0006		NP1 = N+1
	C	HULTIPLY HATRICES, (L) # (B)
0007		DO 70 I=2,N
8000		X(I) = A(I, NP1)
0009		IH1 = I-1
0010		BO 70 J=1,IM1
0011	70	X(I) = X(I) + A(I + J) + A(J + NP1)
	Ċ	MULTIPLY BY (DI)
0012		A(1,NP1) = A(1,NP1)/A(1,1)
0013		DO 80 I=2,N
0014	80	A(I,NP1) = X(I)/A(I,I)
	C C	HULTIPLY BY (L#) TO FORN (L#)#(DI)#(L)#(B)
0015		DO 90 I=1,NM1
0016		X(I) = A(I, NP1)
0017		IP1 = I+1
0018		DO 90 J=IP1;N
0019	90	X(I) = X(I) + A(J + I) * A(J + NP1)
0020		X(N) = A(N+NP1)
	C	
0021		RETURN
0022		ENO

### Subroutine DIAGIN

----

Description: Subroutine DIAGIN obtains the diagonal elements of the inverse of a symmetric matrix.

Subroutine listing:

0001		SUBROUTINE DIAGIN(A)
	C	
	C	FIND DIAGONAL ELEMENTS OF A INVERSE FOR SYMMETRIC A
	C	
0002		REAL A(25+25)
0003		CALL REDUCE(A)
0004		N = A(25,1)
0005		NH1 = N-1
0006		DO 90 I=1,NM1
0007		$A(I + I) = 1 \cdot Q / A(I + I)$
000B		IP1 = I+1
0009		DO 90 J=IP1,N
0010	90	$A(I,I) = A(I,I) + A(J,I) + \frac{2}{A(J,J)}$
0011		A(N,N) = 1.0/A(N,N)
0012		RETURN
0013		END

Subroutine REDUCE

Description: Subroutine REDUCE factors a symmetric matrix A by Cholesky's matrix decomposition.

0001		SUBROUTINE REDUCE(A)
	C	REDUCES SYMMETRIC MATRIX A STORED IN LOWER TRIANGULAR LOCATIONS
	С	TO THE FORM (LI)*(D)*(LI*) WHERE L IS A LOWER TRINGULAR HATRIX
	C	WITH UNITY DIAGONAL TERMS, D IS A DIGONAL MATRIX, I DENOTES
	С	INVERSE AND * TRANSPOSE.
	С	
	С	
	C	
0002		REAL A(25,25)
0003		N = A(25,1)
0004		NM1 = N-1
	C	MAIN DO LOOP
0005		DD 20 K=1+NH1
0006		KP1 = K+1
0007		KM1 = K-1
0008		AKKI = 1.0/A(K,K)
	С	
0009		DO 20 I=KP1+N
0010		$AKKIK = A(I \cdot K) \star AKKI$
0011		DO 10 J=I+N
0012	10	$A(J_{J}I) = A(J_{J}I) - AKKIK*A(J_{J}K)$
0013		$A(I_{J}K) = -AKKIK$
0014		IF(KN1.EQ.0.0) GO TO 20
0016		DO 15 J=1,KH1
0017	15	$A(I_{J}) = A(I_{J}) - A(IXIX) + A(I_{J})$
0018	20	CONTINUE
	C	
	C	(L) IS NOW STORED IN LOWER TRIANGULAR PART OF (A)
	C	EXCEPT OF MATRIX DIAGONAL, WHICH CONTAINS D
0019		RETURN
0020		END

Subroutine CRAMER

Description: Subroutine CRAMER computes the confidence levels of the estimated derivatives. Subroutine listing: 0001 SUBROUTINE CRAMER(MU,MX,MZ,NI) C C C C THIS SUBROUTINE COMPUTES THE CRAMER-RAD BOUNDS C ALSO KNOWN AS THE CONFIDENCE LEVELS OF THE C ESTIMATED DERIVATIVES. MU = NUMBER OF CONTROL INPUTS MX = NUMBER OF STATES C Ĉ C MZ = NUMBER OF OBSERVATIONS Ĉ NI = MAX. NUMBER OF UNKNOWNS (25) C C C 0002 COMMON MAX, MA, MAM, MAT, Z, U, D2, E1, APHI, DUM, PHI1, D1, A, B, AA, BB, BJI,XJI,SUM,PB,XT1,ZERO,D54,DD4,E,XXX,CCC,EIAS, 1 IZE, IBIAS, IC, XLA, APR, MAPR, XT4, JKMM, XT5, AP, BP 2 0003 COMMON /EQDATA/ ANPT 0004 DIMENSION AC(5,4), BC(5,4) DIMENSION XT5(25) APR(25) 0005 0006 DIMENSION AP(8,4), BP(8,3), XT4(4) 0007 DIMENSION Z(7,3),U(3,3),D2(7),DD4(5,4),BIAS(5),APHI(5,4), 1 XT1(7),PHI1(5,4),D1(8,7),A(5,4),B(5,4),AA(5,4), 2 BB(5,4),BJI(25,4),XJI(25,7),SUN(25,25),PB(25), DUH(25+4)+XT2(7)+ZERO(5)+D54(5+4)+XT3(7) 3 С С NORMALLY THE APRIORI CONTRIBUTION TO HESSIAN IS SUBTRACTED С FOR THIS COMPUTATION BUT THIS ROUTINE ASSUMES NO APRIORI С OPTIONS ARE BEING USED AND HENSE THERE ARE NO CONTRIBUTIONS С 0008 AC(5+1) = MX0009 AC(5+2) = MX 0010 BC(5+1) = MX0011 BC(5+2) = MU 0012 JKMM1 = SUM(NI+1) + 1.01 С C STORE WEIGHTED ERROR SUM IN ERRSUM 0013 ERRSUH = SUN(JKMM1, JKMM1)/ANPT С OBTAIN DIAGONAL ELEMENTS OF INVERSE C С 0014 CALL DIAGIN(SUM) C COMPUTE CRAMER-RAO BOUNDS C С 0015 WTS = 0.0 0016 00 1 I=1,MZ 0017 IF(D1(I+I).NE.0.0) WTS = WTS + 1.0 0019 1 CONTINUE 0020 COE F = ERRSUM/WTS PRINT 10, ERRSUM, COEFF, WTS ~ 0021 0022 10 FORMAT(' ERRSUN = '+F12.4+' COEFF = '+F12.4+' WTS = '+F12.4) 0023 L = 0 DO 2 I=1,MX DO 3 J=1,MU 0024 0025 0026  $BC(I_{J}) = 0.0$ 0027 IF(BB(I+J).NE.1.) GO TO 3 0029 L = L+1 0030 BC(I,J) = SQRT(ABS(SUM(L,L))*COEFF) 0031 3 CONTINUE

0032		DO 4 J=1+MX
0033		AC(I,J) = 0
0034		IF(AA(I,J).NE.1.) GO TO 4
0036		L = L+1
0037		AC(I,J) = SQRT(ABS(SUH(L,L))+COEFF)
0038	4	CONTINUE
0039	2	CONTINUE
0040		MAX = 5
0041		PRINT 6
0042	6	FORMAT(' AC MATRIX')
0043		CALL SPIT(AC)
0044		PRINT 7
0045	7	FORMAT(' BC MATRIX')
0046		CALL SPIT(BC)
0047		RFTURN
0048		END

**...** 

Subroutine OUTPUT

Description: Subroutine OUTPUT provides the output of time histories and matrices to user defined files for later plotting.

0001		SUBROUTINE DUTPUT
	C	
	C	THIS SUBROUTINE WILL PROVIDE MMLE RESULTS
	C	IN A FILE TO BE SPECIFIED BY THE USER.
	C	THE FILE WILL CONTAIN INFORMATION ABOUT
	C	THE MATRICEB A AND B AT EACH ITERATION.
	C	
	C	
0002		COMMON/MATAB/ ALX;BLX
0003		COMMON/TRNSFR/ XL
0004		COMMON/CONST/ ITR+NN
0005		BYTE INAME(15)
0006		DIMENSION ALX(20,10),BLX(20,10)
0007		DIMENSION XL(300+7)
	C	
	C	
0008		TYPE 10
0009	10	FORMAT(/' ENTER FILE NAME FOR OUTPUT OF MMLE MATRICES'/+'#')
0010		ACCEPT 11,(INAME(IAB),IAB=1,14)
0011	11	FORMAT(14A1)
0012		INAME(15)=0
0013		OPEN(UNIT=2,NAME=INAME,TYPE='NEW',ACCESS='SEQUENTIAL',
	_	1 FORH='FORHATTED',BUFFERCOUNT=2)
	C	
0014	35	FORMAT(10E12.4)
0015	40	FURMAT(' ### MATRIX A ###'/)
0018	50	FURNAL(' ### NAIRIX B ### '/)
0017	60	FORMAT(' ITERATION '+12;/)
0018	70	FORMAT(//; ESTIMATED TIME RESPONSES'//)
0019		DO 130 I=1,ITR
0020		WRITE(2,60) I
0021		WRITE(2,40)
0022		DO 30 J=1,14,4
0023		WRITE(2,35) (ALX(J-1+K,I),K=1,4)
0024	30	CONTINUE
0025		WRI(E(2,50)
0026		DO 131 J=1,14,4
0027		WRITE(2:35) (BLX(J-1+K:I):K=1:3)
0028	131	CONTINUE
0029	130	CONTINUE
	с.	
0030		CALL CLOSE(2)

	C	
0031		TYPE SO
0032	80	FORMAT(/' TYPE IN FILE THAT WILL CONTAIN',
		1 'LAST INERATION TIME RESPONSES.'/*'*')
0033		ACCEPT 11, (INAME(IAB), IAB=1,14)
0034		OPEN(UNIT=3,NAME=INAME,TYPE='NEW',ACCESS='SEQUENTIAL',
		1 FORH='UNFORMATTED'; BUFFERCOUNT=2)
	C	
	C	
0035		DO 330 N=2,NN
0036		WRITE(3) (XL(N+I)+I=1+7)
0037	330	CONTINUE
0038		WRITE(3)
0039		RETURN
0040		END

#### A.7.3) MMLE OUTPUT FORMAT

Following is an example and description of the MMLE output. Longitudinal: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KU FRL BONES HALE RESULTS CESSNA 172 LONGITUDINAL CAFE 3000. FT ALT. AT 174. FPS AIRAPEED FLIGHT 19/10/60 RUN 23 . . . . . . INITIAL CONDITIONS . . . . . . . NUMBER OF DATA POINTS : 240 MAXINUM NUMBER OF ITERATIONS : 0.0000 DATA SAMPLING INTERVAL : 0.1000 FIRST DATA POINT AT TIME I DIAGONAL HULTIPLYING FACTOR I 1.0000 NUMBER OF STATES I ZEROS AND DIASES 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 DIAGONAL ELEMENTS OF THE WEIGHTING MATRIX D1: 100.000 0.000 0.000 700.000 0.009 40.000 5.000 INITIAL INPUT MATRICES CA3 AND CB3. A STAR (1) FOLLOWING THE VALUE OF A MATRIX ELEMENT INDICATES THAT THE RESPECTIVE DERIVATIVE Is not estimated by the male method. STABILITY HATRIX (A) DIMENSION 4 BY 1 -0.5843E+01 0.0000E+008 -0.2130E+02 0.0000E+008 0.0000E+008 0.0000E+008 0.1934E+02 -0.3214E+028 0.1000E+018 0.0000E+008 -0.2595E+01 -0.4540E-028 0.9995E+008 0.0000E+008 0.0000E+008 0.0000E+008 -0.5843E+01 CONTROL MATRIX [] DIMENSION 4 BY 2 -0.3043E+02 0.0000E+008 0.0000E+00 -0.5915E+01 0.0000E+00\$ 0.0000E+00 -0.2409E+00 0.0000E+00\$ 0.0000E+00 0.0000E+00\$ 0.0000E+00\$ 0.0000E+00 -0.5915E+01 -0.2409E+00 WEIGHTED ERROR SUN = 2197421.2500 WEIGHTED ERRORS! 3 0.14812+04 0.00002+00 0.00002+00 0.21932+07 0.00002+00 0.11472+02 0.25082+04 ITERATION 1 WAS COMPLETED 1 2 M' ^н_б' M' M' M Mo'E M' X₆ -g cos  $(\theta_1)$ ×°, X'a X'o n X' + 11 zse z_őċ  $\frac{-\mathbf{g}}{\mathbf{U}_1 - \mathbf{Z}_n^*} \sin (\theta_1) \cos (\phi_1)$ Z'a z' z' Ū, ŧ¦ cos (+1) 0 0 0 0 0  $^{3}(q, U, \alpha, \theta, A_{\chi}, A_{N})$ 

Lateral: KU FRE BONES MHLE RESULTS CESSNA 172 LATERAL-DIRECTIONAL CASE 3000. FT. ALT. AT 176. FPS AIRSPEED FLIGHT 19/10/80 RUN 45 . . . . . . . . . . . . . INITIAL CONDITIONS . . . . . . . NUMBER OF DATA POINTS : 140 MAXIMUM NUMBER OF ITERATIONS : DATA SAMPLING INTERVAL : Diagonal multiplying factor : FIRST DATA POINT AT TIME : NUMBER OF STATES : 0.1000 0.0000 1.0000 ZEROS AND DIASES 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 DIAGONAL ELEMENTS OF THE WEISHTING MATRIX D1: 40.500 40.000 0.000 150.000 0.000 0.000 100.000 . . . . . . INITIAL INPUT WATRICES CAD AND CDD. A STAR (8) FOLLOWING THE VALUE OF A MATRIX Element indicates that the respective derivative is not estimated by the MMLE method. STABILITY MATRIX (A) DIMENSION 4 BY 4 4 BY 4 -0,9749E+01 0.1971E+01 -0.1815E+02 0.0000E+008 -0.3384E+00 -0.1117E+01 0.7214E¢01 0.0000E+008 0.3943E-018 -0.99992E+008 -0.1737E+00 0.1827E+008 0.1000E+018 0.3946E-018 0.0000E+008 0.0000E+008 1 CONTROL MATRIX (B) DINENSION 4 BY 3 0.3630E+02 0.29985/01 0.0000E+00 -0.5882E+01 -0.7291E+01 0.0000E+00 0.0000E+00 0.3750E+01 0.0000E+00 0.0000E+00\$ 0.0000E+00# 0.0000E+00 2 WEIGHTED ERROR SUN = 52015.3281 METONTED ERBORS:

0.2387E+03 0.8692E+03 0.0000E+00 0.1239E+05 0.0000E+00 0.0000E+00 0.3852E+05 ³ Iteration 1 was completed

$$\begin{bmatrix} L_{p}^{*} & L_{r}^{*} & L_{\beta}^{*} & 9.0 \\ N_{p}^{*} & N_{r}^{*} & N_{\beta}^{*} & 0.0 \\ \sin(\alpha_{1}) & -\cos(\alpha_{2}) & Y_{\beta}^{*} & \frac{g}{U_{1}}\cos(\theta_{1})\cos(\phi_{1}) \\ 1.0 & \cos(\phi_{1})\tan(\theta_{1}) & 0.0 & 0.0 \end{bmatrix} \begin{bmatrix} 2 \\ L_{\delta}^{*} & L_{\delta}^{*} & L_{0}^{*} \\ N_{\delta}^{*} & N_{\delta}^{*} & N_{0}^{*} \\ N_{\delta}^{*} & N_{\delta}^{*} & N_{0}^{*} \\ Y_{\delta}^{*} & Y_{\delta}^{*} & Y_{0}^{*} \\ 0.0 & 0.0 & \phi_{0}^{*} \end{bmatrix}$$

$$^{3}(\mathbf{p},\mathbf{r},\boldsymbol{\beta},\boldsymbol{\phi},\boldsymbol{\dot{\mathbf{p}}},\boldsymbol{\dot{\mathbf{r}}},\mathbf{A}_{\mathbf{Y}})$$

## PRECEDING PAGE BLANK NOT FILMED

#### A.8) TIME HISTORY PLOTTING

Description: The PLOTO3 program collects the time histories of both the actual inflight measurements, and the predicted states of the MMLE BONES program. These are then plotted on the graphics CRT terminal. This process allows the user to observe the fit to the measured states. For hard copy plots the time histories are transferred to the KU-FRL's Hewlett Packard computer.

Program listing:

.

10.00

Ĩ

日日の

```
C
       C
        *
     C
        2
           THIS PROGRAM CAN BE USED TO PLOT
           MEASURED AND ESTIMATED DATA.
     С
        ×.
           DATE 18-NOV-80
     C
        ±
     C
        1
           THE REQUIRED SUBROUTINES ARE:
     C
           PLOT55, INIT AND GRAPH. LINK AS
        2
           FOLLOWS : PLOT=MAIN, PLOT55, II TT,
     C
        Ż
                                               - 10
     C
        ź.
          GRAPH (CR).
        C
     C
6001
           COMMON/STATUS/ISTAT(14)
0002
           DIMENSION IARRAY(512), HH(9,1), RDATA(240,9), EDATA(240,9)
           DINENBION GAIN(9)+GAIN1(9)+GAIN2(9)
0003
           COMMON/FIVEA/ DATA, GAIN
0004
0005
           BYTE YES, NO, ANS1, LOG, DIR, ANS2, NAME(15)
           DATA LOG.DIR /'L'.'D'/
0006
           DATA YES, NO / Y', 'N'/
0007
0008
           DATA ISTAT/16#0/
0009
           DATA GAIN1/114.6,114.6,143.2,47.7,57.3,57.3,100.,143.2,143.2/
           DATA GAIN2/114,6,2.5,143.2,95.5,57.3,100.,25.,143.2,0./
0010
     C
     C
           C
0011
           TYPE 1
           FORMAT(/////
                              0012 1
                 THIS IS A PLOTTING PROGRAM USED TO PLOT'/,
          11
          21
                 MEASURED VERSUS ESTIMATED TIME HISTORIES'//.
          31
                 INSTRUCTIONS: //,
                 1. TYPE IN TYPE OF HANDEUVRE.'/,
2. Type in number of time points N (0-250).'/,
          41
          51
                 3. INDICATE NAME OF FILE CONTAINING MEASURED DATA. 1/.
          61
          71
                 4. INDICATE NAME OF FILE CONTAINING ESTIMATED DATA. 1/,
          81
                 5. WHEN DATA IS PLOTTED HIT "CR" TO CONTINUE. //.
          91
                                     GOOD LUCK.....
                                                        ALEX ///)
                 6.
     С
     Ĉ
     C
00 3
           TYPE 301
     301
           FORMAT(' INDICATE TYPE OF MANDEUVRE, "/
0014
                 ,' "L" FOR LONGITUDINAL'/
          1
                 . ' D' FOR LATERAL DIRECTIONAL //>
0015
           READ(5,302) AN81
           FORMAT(A1)
0016
     302
      С
      Ċ
      C
           READ IN NUMBER OF TIME POINTS
      С
      C
```
0017 0018 0019 0020	10 20	FORMAT(I3) Format(' type in number of time point'/) type 20 Read(5,10) n
	С С С	READ DATA FILE WITH MEASURED DATA
0021 0022	30 C	TYPE 30 Format(' type in name of data file with measured data'/)
00/3		NAME(15) = 0
0014	31	FORMAT(14A1)
0025		OPEN(UNIT=2;NAHE=NAHE;TYPE='QLD';ACCESS='SEQUENTIAL'; 1 READONLY;FORM='UNFORMATTED')
0027		DO 32 I=1,14
0028	32 C	CONTINUE
0030	40	FORMAT(12E12.4)
0031		DO 50 I=1,N
0032	C C C	IF(ANS1.EQ.LOG) GO TO 310
0034	J	READ(2) DMY+DMY+DMY+DMY+DMY+HH(4+1)+HH(1+1)+HH(7+1)+ 1 HH(2+1)+HH(8+1)+HH(9+1)
0035		HH(3,1) = 0.0
0036		HH(5;1) = 0,0
0038		GO TO 311
0039	310	CONTINUE
0040	С	READ(2) HH(4,1),HH(1,1),HH(7,1),HH(6,1),HH(8,1),DMY, 1 DNY,DMY,DMY,DNY,DNY
0041	C	HH(2+1) = 0.0
0042		HH(3,1) = 0.0
0043		HH(5+1) = 0.0
0044	C C	HH(9,1) = 0.0
0045	311	COMTINUE
0046		DO 50 J=1/9 DDATA(T, 1)
0048	50 C C	CONTINUE
	č	
0049 0650	ó0 C	TYPE 60 Format(' type in name of data file with estimated data'/)
0051 0052		ACCEPT 31, (NAME(I),I=1,14) OPEN(UNIT=3,NAME=NAME,TYPE='OLD',ACCESS='SEQUENTIAL', 1 REABONLY,FORM='UNFORMATTED')
0053		DC 81 K=1,14
0054	۰.	NAME(I) =' '
0033 10032	81 70	LUN   INUL Errmat (128.9612.4)
0057	/ V	DO BO $K=1$ ,N-2
0058		READ(3) (HH(L,1),L=1,7)
0059		DO 80 J=1,7
0060	90	EDATA(K+2)J) = HH(J)1) Continue
0001	60 C C	СЛИТТИИС
0062	-	DO 399 J=1+7
0063		EDATA(1,J) = 0.0

0044	399	EDATA(2,J) = 0.0 Continue
	C	
0044	•	DO 500 I=1.N
0047		EDATA(1,8)=0.0
0048		EDATA(I,9)=0.0
0049	500	CONTINUE
0070		IARRAY()) = 0
0071		IARRAY(3) = 0
0072	113	CONTINUE
	C	
	Ċ	
0073	-	TYPE 100
0074	100	FORMAT(' * * * SELECT VARIABLES * * *'///)
	С	LONGITUDIANAL CABE
0075		IF(AN81.EQ.DIR) GO TO 102
0077		TYPE 90
0078	90	FORMAT(/+' VARIABLE RANGE +/-'//+
		1' 1. PITCH RATE - 50 DEB/SEC'/+
		2' 2. AIRSPEED - 20 FT/SEC'/,
		3' 3. ANGLE OF ATTACK - 20 DEG '/,
		4' 4. PITCH ATTITUDE - 30 DEB'/,
		5' 5. PITCH RATE ACCEL 50 DEG/BEC##2'/,
		6' 6. LONGITUDINAL ACCEL5 G 1/1
		7' 7. NORMAL ACCEL 2 G '/,
		B' B. ELEVATOR PSN 20 DEG '/,
	~	9'9, # # # (BLANK)'//)
	C	
	Ģ	LATERAL DIRECTIONAL
	C	
0079	102	CONTINUE
0080		IF(ANS1.EQ.LOG) GO TO 103
0082		TYPE 91
0083	91	FORMAT(/' VARIABLE RANGE +/~'//
		1' 1, ROLL RATE - 25 DEG/SEC'/,
		2' 2. YAW RATE - 25 DEG/SEC'/,
		3' 3. SIDESLIP ANGLE - 20 DEG'/;
		4' 4. BANN ANGLE - 60 DEG'/)
		J' J, KULL RAIE ACUEL, - JO DEU/SEC##2//
		7/7. LONGITHDING ACCEL - 5 8//.
		$\frac{1}{2} = \frac{1}{2} = \frac{1}$
		O DI MILENUN DEFLECIIUN - 20 DEG //
	C	7 71 RODDER DEFLECTION - 10 DED ///
	č	
	č	
0084	103	CONTINUE
	C	
0085	-	TYPE 11
0086	11	FORMAT(' INDICATE VARIABLE NO. FOR TOP PLOT'/)
0087		ACCEPT #+KT
0088		TYPE 12
0989	12	FORMAT(' INDICATE VARIABLE NO. FOR BOTTOM PLOT'/)
0090		ACCEPT *,KB
0091	105	CONTINUE
0092		IF(ANS1,20,LOG) 60 TO 411
0094		DO 421 I=1+9
0095		GAIN(I) = GAIN1(I)
0096	421	CONTINUE
0097	411	CONTINUE
0098		IF(AN51.EQ.DIR) 30 TO 402
0100		UU 422 I#1/9
0101		UAIN(I) = GAINZ(I)
0102	422	
0103	402	COUITURE
	C	

	C C C	CLEAR CRT AND FORM GRID FOR PLOTTING
0104	•	CALL INIT
0105		CALL PLOT55(2+1+2+32+44+128++1\$TAT)
0104		DO 110 K=1,235,50
0107		CALL PLOTS5(4,1,K-1,ISTAT)
0108	110	CONTINUE
0109		CALL PLOT53(4,1,229,187AT)
0110	-	CALL PLOT55(5+0+1+ISTAT)
	C	
		FORM THE MEARINER AND COTTNATED DECONCES
	Ċ	FURN THE HEMBURED AND EDITIMIED RESPROES
0111	•	BO 130 I=1,N
01.2		IARRAY(2±1) > RDATA(1+KT)±GAIN(KT)+150
0113		IARRAY(2#1-1) = RDATA(1+KB)#GAIN(KB)+50
0114	130	CONTINUE
0115		CALL PLO(55(9,20,2,18TAT)
0116		CALL PLOT55(12++'* * TIME HISTORIES * * * '+ISTAT)
0117		CALL PLOT55(9,50,4,ISTAT)
0118		CALL PLOT55(12+, ' NEASURED DATA '+ISTAT)
0119		CALL GRAPH(2#N/IARRAY)
0120		DU 140 I=17N
0121		TAPPAY(3+1) = EDATA(1+K)+GATN(K)+50
0123	1.40	
0124		CALL PLOT55(9+50+4+ISTAT)
0125		CALL PLOTS5(12,, ' ESTIMATED DATA', ISTAT)
0126		CALL GRAPH(2*N+IARRAY)
	C	
	С	
0127		CALL PLOT55(9,50,4,13TAT)
0128		CALL PLOTSS(12)) ()ISTAT)
0129	~	KFLAG = 1
	c c	
	č	
0130	-	IF(ANS1.EQ.DIR) 00 TO 699
	C	
0132		KFLAG1 = 0
	C	
	C	LONGITUDINAL LABELS
	C	
0133		CALL PLU(25(9)50(8)15(A))
0134		IF(N), E(, 1) (U) (U) (V) IF(N) E(, 1) (U) (V)
0138		IF(KT.EQ.3) R9 T0 403
0140		IF(KT.EQ.4) GO TO 604
0142		IF(KT.EQ.5) GO TO 605
0144		IF(KT.EQ.6) GO TO 606
0146		IF(KT.EQ.7) GQ TQ 607
0148		IF(KT.EQ.8) GO TO 608
	C	
0150	610	CONTINUE
0151	-	KFLAG1 = 1
	U	CALL DI DTEE/D.EA.14.TOTATY
0152		LALL FLUIDD(7/DV/10/15(A))
0155		1F(KB,ED.2) GO TO 402
0157		IF(KR.F0.3) GO TO 603
0159		IF(KB.EQ.4) GO TO 604
0161		IF(KB.EQ.5) GO TO 605
0163		IF(KB.EQ.6) GO TE 606
0165		IF(KB.EQ.7) GO TO 607
0167		IF(KB.EQ.8) GO TO 608
	C	
0169	601	CALL PLOT55(12,,' Q +/- 25 DEG/SEC ',ISTAT)
0170		

w

0171	602	CALL PLOT55(12), V +/- 20 FEET/SEC '	FISTAT)
0172		GO TO 640	
0173	603	CALL PLOT55(12,,' ALPHA +/- 20 DEG '	'zISTAT)
0174		GO TO 640	
0175	604	CALL PLOT55(12,, THETA +/- 30 DEG '	FISTAT)
0176		GO TO 640	
0177	605	CALL PLOT55(12,,' Q DOT +/- 50 DEG/SEC**2',	ISTAT)
0178		GO TO 640	
0179	606	CALL PLOT55(12,,' AX +/5 G ',	ISTAT)
0180		GO TO 640	
0181	<b>≜</b> 07	CALL PLOT55(12++' AN +/- 2 G '+	ISTAT)
0182		60 TO <b>54</b> 0	
0193	608	CALL PLOT55(12,,' DE +/- 20 DEG ',	ISTAT)
	C		
0184	640	CONTINUE	
0185	_	IF(KFLAG1.EQ.0) GO TO 610	
	C		
0187		GO TO 751 .	
	C		
	C		
0188	699	CONTINUE	
	C		
	C		
	C	LATERAL DIRECTIONAL LABELS	
	C		
0189		KFLAG2 = 0	
	C		
0190		CALL PLOT55(9,50,6,ISTAT)	
0191		IF(KT.EQ.1) 00 TO 701	
0193		IF(KT.EQ.2) GO TO 702	
0195		IF(KT.EQ.3) GO TO 703	
0197		IF(KT,EQ.4) GO TO 704	
0199		IF(KT.EQ.5) GO TO 705	
0201		IF(KT.ER.6) GO TO 706	
0203		IF(KT.EQ.7) GU TO 707	
0205		IF(K1.EQ.8) GU TU 708	
0207	-	IF(KT.EQ.9) GO TO 709	
	C		
0209	710	CONTINUE	
	C		
0210	_	KFLAG2 = 1	
	r		
	<b>U</b>		
0211	L	CALL PLOT55(9,30,16,ISTAT)	
0211		CALL PLOT55(9,30,16,ISTAT) IF(KB,E0,1) GO TO 701	
0211 0212 0214	U	CALL PLOT55(9,30,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702	
0211 0212 0214 0216	L	CALL PLOT55(9,30,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703	
0211 0212 0214 0216 0218	L	CALL PLOT55(9,30,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704	
0211 0212 0214 0216 0218 0220	L	CALL PLOT55(9,30,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705	
0211 0212 0214 0216 0218 0220 0222	L	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705 IF(KB.EQ.6) GO TO 706	
0211 0212 0214 0216 0213 0220 0222 0224	L	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705 IF(KB.EQ.6) GO TO 706 IF(KB.EQ.7) GO TO 707 IF(KB.EQ.7) GO TO 707	
0211 0212 0214 0216 0213 0220 0222 0224 0226 0226	L	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705 IF(KB.EQ.6) GO TO 706 IF(KB.EQ.7) GO TO 707 IF(KB.EQ.8) GO TO 708 IF(KB.EQ.8) GO TO 708	
0211 0212 0214 0216 0213 0220 0222 0224 0224 0226 0223	c	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 704 IF(KB.EQ.6) GO TO 706 IF(KB.EQ.7) GO TO 707 IF(KB.EQ.8) GO TO 708 IF(KB.EQ.9) GO TO 709	
0211 0212 0214 0216 0218 0220 0222 0224 0226 0223	C C C	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705 IF(KB.EQ.6) GO TO 706 IF(KB.EQ.7) GO TO 707 IF(KB.EQ.8) GO TO 708 IF(KB.EQ.9) GO TO 709	
0211 0212 0214 0216 0218 0220 0222 0224 0226 0223	6 6 6	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705 IF(KB.EQ.6) GO TO 706 IF(KB.EQ.7) GO TO 707 IF(KB.EQ.8) GO TO 708 IF(KB.EQ.9) GO TO 709	
0211 0212 0214 0216 0218 0220 0222 0224 0226 0229		CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.6) GO TO 704 IF(KB.EQ.6) GO TO 706 IF(KB.EQ.7) GO TO 707 IF(KB.EQ.8) GO TO 708 IF(KB.EQ.9) GO TO 709 	<i>(</i> <b>101</b> 41)
0211 0212 0214 0216 0218 0220 0222 0224 0226 0229 0229	C C C 701	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705 IF(KB.EQ.6) GO TO 706 IF(KB.EQ.7) GO TO 707 IF(KB.EQ.8) GO TO 708 IF(KB.EQ.9) GO TO 709  CALL PLOT55(12,,' P +/- 25 DEG/SEC	',ISTAT)
0211 0212 0214 0216 0218 0220 0222 0224 0226 0229 0229 0231 0231	C C C 701	CALL PLOT55(9,50,16,ISTAT) IF(KB.E0.1) GO TO 701 IF(KB.E0.2) GO TO 702 IF(KB.E0.3) GO TO 703 IF(KB.E0.4) GO TO 704 IF(KB.E0.5) GO TO 705 IF(KB.E0.6) GO TO 706 IF(KB.E0.8) GO TO 707 IF(KB.E0.8) GO TO 708 IF(KB.E0.9) GO TO 709 CALL PLOT55(12,,' P +/- 25 DEG/SEC GO TO 740	',ISTAT)
0211 0212 0214 0216 0218 0220 0222 0224 0226 0229 0230 0231 0231 0237	C C 701 702	CALL PLOT55(9,50,16,ISTAT) IF(KB.E0.1) GO TO 701 IF(KB.E0.2) GO TO 702 IF(KB.E0.3) GO TO 703 IF(KB.E0.4) GO TO 704 IF(KB.E0.5) GO TO 705 IF(KB.E0.6) GO TO 706 IF(KB.E0.8) GO TO 707 IF(KB.E0.8) GO TO 708 IF(KB.E0.9) GO TO 709 CALL PLOT55(12,,' P +/- 25 DEG/SEC GO TO 740 CALL PLOT55(12,,' R +/- 25 DEG/SEC	<pre>',ISTAT) ',ISTAT)</pre>
0211 0212 0214 0216 0220 0222 0224 0226 0223 0231 0232 0231 0232 0234	C C C 701 702	CALL PLOT55(9,50,16,ISTAT) IF(KB.E0.1) GO TO 701 IF(KB.E0.2) GO TO 702 IF(KB.E0.3) GO TO 703 IF(KB.E0.4) GO TO 704 IF(KB.E0.5) GO TO 705 IF(KB.E0.6) GO TO 706 IF(KB.E0.8) GO TO 707 IF(KB.E0.8) GO TO 708 IF(KB.E0.9) GO TO 709 	<pre>',ISTAT) ',ISTAT) ',ISTAT)</pre>
0211 0212 0214 0216 0220 0222 0224 0226 0223 0231 0232 0231 0232 0233 0234 0235	C C C 701 702 703	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705 IF(KB.EQ.6) GO TO 706 IF(KB.EQ.8) GO TO 707 IF(KB.EQ.8) GO TO 709 	<pre>',ISTAT) ',ISTAT) ',ISTAT)</pre>
0211 0212 0214 0216 0220 0222 0224 0226 0223 0223 0231 0232 0233 0234 0235 0235	C C C 701 702 703 704	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705 IF(KB.EQ.6) GO TO 706 IF(KB.EQ.8) GO TO 707 IF(KB.EQ.8) GO TO 709 	<pre>',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT)</pre>
0211 0212 0214 0216 0213 0220 0222 0224 0226 0223 0231 0231 0233 0234 0235 0235 0235 0237	C C C 701 702 703 704	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705 IF(KB.EQ.6) GO TO 706 IF(KB.EQ.7) GO TO 707 IF(KB.EQ.8) GO TO 709 	<pre>',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT)</pre>
0211 0212 0214 0216 0213 0220 0222 0224 0226 0223 0223 0231 0232 0231 0233 0234 0235 0237 0237 0237	C C C 701 702 703 704	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705 IF(KB.EQ.6) GO TO 706 IF(KB.EQ.7) GO TO 707 IF(KB.EQ.8) GO TO 708 IF(KB.EQ.9) GO TO 709 	<pre>',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT)</pre>
0211 0212 0214 0216 0218 0220 0222 0222 0222 0222 0222 0222	C C 701 702 703 704 705	CALL PLOT55(9,50,16,ISTAT) IF(KB.E0.1) GO TO 701 IF(KB.E0.2) GO TO 702 IF(KB.E0.3) GO TO 703 IF(KB.E0.4) GO TO 704 IF(KB.E0.5) GO TO 705 IF(KB.E0.6) GO TO 706 IF(KB.E0.8) GO TO 707 IF(KB.E0.8) GO TO 709  CALL PLOT55(12,,' P +/- 25 DEG/SEC GO TO 740 CALL PLOT55(12,,' R +/- 25 DEG/SEC GO TO 740 CALL PLOT55(12,,' PHI +/- 20 DEG GO TO 740 CALL PLOT55(12,,' PHI +/- 60 DEG GO TO 740 CALL PLOT55(12,,' P DOT +/- 50 DEG/SEC**2 GO TO 740	<pre>',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT)</pre>
0211         0212         0214         0213         0222         0222         02224         02224         02224         02224         02224         02230         02231         02331         02334         0235         0237         02389         02340	C C C 701 702 703 704 705 706	CALL PLOT55(9,50,16,ISTAT) IF(KB.E0.1) GO TO 701 IF(KB.E0.2) GO TO 702 IF(KB.E0.3) GO TO 703 IF(KB.E0.4) GO TO 704 IF(KB.E0.5) GO TO 705 IF(KB.E0.6) GO TO 707 IF(KB.E0.8) GO TO 707 IF(KB.E0.8) GO TO 709 	<pre>',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT)</pre>
0211 0212 0214 0216 0218 0220 0222 02224 02226 02224 02226 0223 0231 0231 0233 0235 0235 0235 0235 0237 0238 0237 0238 02234 0224	C C 701 702 703 704 705 706	CALL PLOT55(9,50,16,ISTAT) IF(KB.E0.1) GO TO 701 IF(KB.E0.2) GO TO 702 IF(KB.E0.3) GO TO 703 IF(KB.E0.4) GO TO 704 IF(KB.E0.5) GO TO 705 IF(KB.E0.6) GO TO 707 IF(KB.E0.8) GO TO 708 IF(KB.E0.8) GO TO 709 	<pre>',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT)</pre>
0211         0212         0214         02130         02224         02224         02224         02224         02224         02231         02331         02332         02335         02340         0235         0237         0238         02340         02340         02340         02340         023440         02440	C C C 701 702 703 704 705 706 707	CALL PLOT55(9,50,16,ISTAT) IF(KB.E0.1) GO TO 701 IF(KB.E0.2) GO TO 702 IF(KB.E0.3) GO TO 703 IF(KB.E0.4) GO TO 704 IF(KB.E0.5) GO TO 705 IF(KB.E0.6) GO TO 707 IF(KB.E0.8) GO TO 708 IF(KB.E0.8) GO TO 709 	<pre>',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT)</pre>
0211 0212 0214 0216 0222 02224 02224 02224 02224 02224 02224 02233 0231 02332 02334 02235 02235 02237 02237 02238 02237 02238 02237 02244 02243	C C 701 702 703 704 705 706 707	CALL PLOT55(9,50,16,ISTAT) IF(KB.E0.1) GO TO 701 IF(KB.E0.2) GO TO 702 IF(KB.E0.3) GO TO 703 IF(KB.E0.4) GO TO 704 IF(KB.E0.5) GO TO 705 IF(KB.E0.6) GO TO 706 IF(KB.E0.7) GO TO 707 IF(KB.E0.8) GO TO 709 	<pre>',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT)</pre>
0211         0212         0214         02130         02224         02224         02224         02224         02231         02312         02312         023130         02314         02224         02224         02331         02334         02334         02334         02334         02334         02334         02334         02344         02441         02441         02441         02441	C C C 701 702 703 704 705 706 707 708	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705 IF(KB.EQ.6) GO TO 706 IF(KB.EQ.8) GO TO 707 IF(KB.EQ.8) GO TO 709 	<pre>',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT)</pre>
0211 0212 0214 0216 0213 0222 02224 02224 02224 02224 02224 02233 0231 0233 0233 0233 0233 0233 023	C C C 701 702 703 704 705 706 707 708	CALL PLOT55(9,50,16,ISTAT) IF(KB.EQ.1) GO TO 701 IF(KB.EQ.2) GO TO 702 IF(KB.EQ.3) GO TO 703 IF(KB.EQ.4) GO TO 704 IF(KB.EQ.5) GO TO 705 IF(KB.EQ.4) GO TO 706 IF(KB.EQ.7) GO TO 707 IF(KB.EQ.8) GO TO 709 	<pre>',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT) ',ISTAT)</pre>

-

	с С	
	č	
0247	740	CONTINUE
0248		IF(KFLAG2.EQ.0) 80 TO 710
	С	
	C	LOGIC FOR GENERATING NEW PLOTS END TERMINATING
0250	751	CONTINUE
0251		READ(5,180) KR
0252	180	FORMAT(I2)
0253	r	CALL INIT
	Č	
0254	U	TYPE 210
0255	210	FORMAT( DO YOU WANT TO REPLACE TOP PLOT? (Y/N)//)
0256		READ(5,220) ANS2
0257	220	FORMAT(A1)
0258		IF(AN82.ED.NO) KFLAG = 0
0260	_	IF(ANS2.EQ.NO) GO TO 230
	C	
0262		TYPE 100
0283		IF (ANSI.EU.LDG) TYPE 90
0203		TYDE 24A
0249	240	FIRMAT// INDICATE NEW GADIADIE NUMBED //\
0249	* 7 V	ACCEPT X.KT
0270	230	CONTINUE
0271		TYPE 309
0272	309	FORMAT(' DO YOU WANT TO REPLACE BOTTOM PLOT? (Y/N)'/)
0273		READ(5,220) ANS2
0274		IF(ANS2.EG.NO) GO TO 400
0276	700	
V2// 0270	320	ACCEPT + FD INDICALE NEW VARIABLE NUMBER'/)
0270		MULET   #188 An Th 185
0280	400	
0281		TEKELAG.ED.O.) BD TO A10
0283		
0284	410	CONTINUE
	C	
	C	
	C	
0285		CALL PLOT55(2,512,1+2+4+32+64,ISTAT)
0286		CALL PLOTSS(0,-1,0,ISTAT)
V20/	•	
V200		ENU
0001		SUBROUTINE INIT
0002		COMMON/BTATUS/ISTAT(16)
0003		DATA ISTAT/16#0/
0004		CALL PLOT55(13,72,,ISTAT)
0005		CALL PLOTUS(13,74,,ISTAT)
0006		CALL PLOT55(2,1+512,,1STAT)
0007		
~~~~		
0001		CURRITINE (COADH / N. TARRAY)
0001		CONMON/STATUS/ISTAT(1A)
0003		DIMENSION IARRAY(512)
0004		NUNBER=ISTAT(8)/8
0005		CALL PL0755(7,0,0,ISTAT)
0006		CALL PL0155(8,512,0,ISTAT)
0007		CALL PLOT55(2,1+(NUMBER+1)#2,(NUMBER+1)#10,ISTAT)
8000		CALL PLOT55(3,-N, IARRAY, ISTAT)
0009		CALL PLOT35(1,1-NUMBER,,ISTAT)
0010		CALL PLOT55(9,10,1,1STAT)
0011		LIND

-

······

A.9) CESSNA PROGRAMS

1

-

This appendix contains listings of the programs used in the Cessna spin test program.

A.9.1) DATA ACQUISITION

Description: This is an assembly language program for the AIM 65. The program is essentially the same as the one of Appendix A.1, the differences being

- no start and end data is taken;
- Channels 0-14 are sampled continuously every 0.1 secs when the "RUN/STBY" switch is on RUN;
- data is output to the TEAC tape drive every 0.5 secs.

Program listing:

DATA ACQUISITION		
RNCNT=0	*=\$0400	DEX
BLKCNT=2	LDA #\$92	BNE CLOSEI
BUFCNT=4	STA MDRO	IMP START
IBUF=5	LDA #1	RECORD
OBUF=7	STA RNCNT	LDA #0
CNT=9	LDA #0	STA IBUF
BUF1=\$200	STA RNCNT+1	STA OBUE
BUF2=\$300	LDA #SFF	LUA #>BUF1
KDDRA2=\$A481	STA KODRA2	STA IBUF+1
KDDRB2=\$A483	LDA #O	LDA #>BUF2
KDRA2=\$A480	STA KDDRB2	STA OBUF+1
KDRB2=\$A482	STA KDRA2	LDA #>INT
DBR=\$9008	LDA #\$CO	STA \$A405
WDC=\$9009	STA UACR	LDA # <int< td=""></int<>
CDR=\$900A	START	STA \$A404
MDR0=\$900B	LDA #\$12	LDA #\$CO
CSR=\$900C	STA MDRO	STA UIER
ESR=\$900D	LDA #P.EW	LDA #<\$C34E
ISR=\$900E	JSR COMD	STA UTIL
MDR1=\$900F	LDA #REW	LDA #>C34E
WRT=\$CL	JSR COMD	STA UT1CH
WIM=\$02	MAIN	CLE
EKA=\$C3	JSR CKEY	LDA #U
	CMP LOANK	STA BLKCNT
NEW-JLA Nedy-210	BNE MARK	STA BLKCNT+1
NRDI = \$10 FBT-\$04	LDA PAN	KEUL ICD CUAD
FF1-904 DA=\$20	JSK COMP	JOR SWAP
DBRF=\$40		DEC2
CCE=\$80	MATN2	ISP CKEV
	ISP CVEY	CMP ARECK
UACR=SAOCB	CMP #RECK	BNE RECX
UTER=SA00E	BEO RECORD	LDA BUFCNT
UT1L=SA004	CMP #CLOSEK	CMP #150
UT1CH=SA005	BNE MAIN2	BNE REC2
UT2L=\$A008	CLOSE	INC BLKCNT
UT"H=\$A009	LDA #WTM	BNE REC1
UIFR=\$A00D	JSR COMD	INC BLKCNT+1
BIT5=\$20	LDA #WTM	JMP REC1
LOADK=\$EF	JSR COMD	RECX
RECK=\$BF	LDX #12	LDA BUFCNT
CLOSEK=\$DF	CLOSEI	CMP #150
TIME1H=\$27	LDA #ERA	BNE RECX
TIME1L=\$10	JSR COMD	LDA #\$40

STA UIER JSR SWAP LDA #SFF STA BLKCNT STA BLKCNT+1 JSR WRITE INC RNCNT BNE RECX2 INC RNCNT+1 RECX2 JMP MAIN2 GKEY LDA KDRB2 PHA LDA #TIME1L STA UT2L LDA #TIME1H STA UT2H **GKEY1** LDA UIFR AND #BIT5 BEQ CKEY1 PLA CMP KDRB2 BNE GKEY RTS COMD PHA LDA ESR COMD1 LDA CSR AND #NRDY BNE COMDI LDA CSR AND #FPT BNE COMD1 PLA STA CDR COMD2 LDA ISR AND #CCE BEQ COMD2 RTS

State of the second

WAIT JSR WAITX WAITX RTS ----WRITE LDA ESR LDA #154 STA LDC LDA #WRT STA CDR LDA RNCNT JSR WWORD LDA RNCNT+1 JSR WWORD LDA BLKCNT JSR WWORD LDA BLKCNT+1 JSR WWORD LDY #0 WRITE1 LDA (OBUF),Y JSR WWORD INY CPY #150 BNE WRITE1 WRITE2 JMP COMD2 SWAP LDA OBUF+1 PHA LDA IBUF+1 STA OBUF+1 PLA STA IBUF+1 LDA #0 STA BUFCNT RTS

արդանը է, մենսալինդանագրել մ

,

WWORD . **YHA** WWORD1 LDA ISR AND #DBRE BEQ WWORD1 PLA STA DBR RTS INT PHA LDA UDRB BPL INTEX TYA PHA LDY BUFCNT LDA #15 STA CNT LDA \$8000 JOR WAIT I' 00P LDA \$8002 STA (IBUF),Y LDA \$8001 INY LDA \$8003 STA (IBUF),Y INY DEC CNT BNE ILOOP STY BUFCNT PLA TAY INTEX LDA UT1L PLA RTI END

A.9.2) DATA READBACK

Description: This program is used to read the data off the AIM 65 system's tape drive to be sent to the ground-based system. The program is similar to the one of Appendix A.2, the differences being

- no error checking is done by the AIM 65;
- all 12 BITS of recorded data are transferred just as they have been recorded.

Program listing:

10 AND 1

The second second

17

1

;DATA RECOVERY		
RNCNT=0	STA UTIL	IMP READI
BLKCNT=2	LDA #O	READ2
VRUN=4		LDY #MBLK-MO
VBLK=) CNT=4	STA UTICH	JSR MESS
RUF1=\$200	FOR #GEF	JSR GCNT
DBR=\$9008	STA SCR	CMP #0
WDC=\$9009	th Sta	FEQ CLOSE
CDR=\$900A	MAIN	STA VELK
MDR0=\$900B	JSR GCOM	TO TRANSMIT COUNTS
CSR=\$900C	CMP #LOADC	SENDR
ESR=\$900D	BEQ MAIN2	JMP SENDB1
ISR=\$900E	JSR INVAL	LDA RNCNT
MDR1=\$900F	JMP MAIN	JSR SEND
51.2=308 BDI =\$C/	MAIN2 1 DA #612	LDA RNCNT+1
RFV=SCA	STA MDRO	JSR SEND
NRDY=\$10	LDA #REW	LDA BLKCNT
TDRE=S02	JSR COMDA	JSR SEND
R=\$0D	LDA #SLP	
SCR=\$9006	JSR COMDA	LDA BLKCNT+1
SDR=\$9007	MAIN3	JSK SEND
LOADC=\$4C	JSR GCOM	
READC=\$52	CMP #READC	SENDR2
CLOSEC=\$43	BEQ READ	LDA BUF1.Y
INALL=\$E993	CMP CLOSEC	JSR SEND
NUMA-JEA40 DEADM-SEGIC	BEQ CLOSE	INY
OUTALL=SE9BC	JSK INVAL	Сру #160
OUTPUT=SE97A	JHP MAINS	BNE SENDB2
UTIL=\$A004		LDA BLACNT
UTICH=\$A005	CLOSE	CMP #SFF
UACR=\$A00B	LDA #REW	BNE SENDE
	JSR COMDA	CMP BIKCNT4'
+-6200	LDA #REW	BEO END
~=\$300	JSR COMDA	SENDB3
BYTE S80	JMP MAIN	DEC VBLK
DA	. ; PEAD	BNE SENDB5
.BYTE \$20		SENDB4
мо	JSR MESS	LDY #MBLK-MO
.BYTE CR, 'TAPE ERROR', \$AO	JSR GCNT	JSR MESS
MRUN	CMP #0	JSK GUNT
.BYTE CR, WHICH RUN NUMBER', SBF	BEQ CLUSE	BEO CLOSEI
MBLK	STA VRUN	STA VBLK
MEND	READ1	SENDB5
BYTE CR. LAST BLOCK THIS BUT SCE	JSR RBLK	JSR RBLK
MINV I	BCS CLOSE	BCC SENDB
BYTE CR. 'INVALID COMMAN', SC4	DRA BIKCNTAI	CLOSE1
MERR1	BNE READ3	JMP CLOSE
.BYTE CR, 'FILE MARK FOUN', \$C4	LDY #MRNCNT-MO	END
MRNCNT	JSR MESS	TCD MESS
.BYTE CR, 'RUN NUMBER', SAO		IMP MAIN3
*=\$400	LDA RNCNT	
RESETB	JSR NUMA	
LDA #\$92	KEAD3	
STA MDRO	CMP VIPIN	
LDA #\$CO	BCC READI	
STA UACR	BEO READ2	
LDA #\$68 ;\$68=300BAUD	LDA #REW	
;\$34=600	JSR COMDA	
; \$1A#1200 • \$0D-2400	LDA #SLP	
;300=2400	JSR COMDA	

٠

MESS	1
IDA	NO V
LUA	MO . I
PHA	
AND	#\$7E
JSR	OUTPUT
INY	
PLA	
	MERC
DFL	riego
RIS	
GCON	1
JSR	READM
ISR	OUTALL
DTC	
KI2	
TNU	
11444	
LDY	#MINV-MU
JSR	MESS
RTS	
GCH	r
TDA	#0
LUA	#U
STA	CNT
GCN	[1
JSR	INALL
JSR	DPACK
BCC	GCNT1
I DA	CNT
200	UN1
617	

DPAC	K.
CMP	#'0'
BCC	RSPAC
CMP	#\$3A
BCS	RSPAC
AND	#enr
AND	# 3 01
PHA	
LDA	CNT
ASL	A
ASL	A •
CLC	
ADC	CNT
ADC	4
ASL	Δ
STA	CNT
PLA	
CLC	
ADC	CNT
CTA	CNT
010	G14 1
RTS	
RSP/	۱C
SEC	
RTS	

. بى يۈچىنىغۇرىلىلىرىنىيە مەيمەرد بىت بىلىدە ب يەلەرلەر مەيچىلىرىنى قەربىيە مەيچىرى ئەتتىكە ئىتتىك تورىغۇ بەير

> -----SEND PHA SEND1 LDA SCR AND #TDRE BNE SENDI PLA EOR #SFF STA SDR RTS ******** RBLK LDA CSR AND #NRDY BME RBLK LDA #164 STA WDC LDA #RDL STA CDR JSR RWORD BCS RBLK2 STA RNCNT JSR RWORD BCS RBLK2 STA RNCNT+1 JSR RWORD BCS RBLK2 STA BLKCNT JSR RWORD BCS RBLK2 STA BLKCNT+1 LDY #0 **RBLK1** JSR RWORD BCS RBLK2 STA BUF1,Y INT CPY #160 BNE RBLK1 JMP COMDA2 RBLK2 JMP COMDA4

COMDA PHA LDA ESR COMDAL LDA CSR AND #NRDY BNE COMDAL PLA STA CDR COMDA2 LDA ISR AND CCE BEQ COMDA2 COMDA4 LDA CSR PHA AND #2 BEQ COMDA5 LDY #MERR1-MO JSR MESS PLA SEC RTS COMDA5 PLA AND #\$81 BNE COMDA3 CLC RTS COMDA3 LDY #MO-MO PHA JSR MESS PLA JSR NUMA LDA ESR JSR NUMA CLC RTS RWORD LDA ISR BIT CCE BNE RWORD2 BIT DA BEQ RWORD LDA DBR CLC RTS RWORD2 SEC RTS END

A.9.3) DATA RECEIVE

Description: This program is written on the Hewlett Packard 9825 of Cessna Aircraft Company. The program receives data from its RS232 port. The program is the same as the one of Appendix A.3 of Reference 2.

Program listing:

```
0: "COMP. TERMINAL WITH CONTROL KEYS AND AUTO FUNCTIONS trk0; files":
1: fmt 1,c1,z;1+I
21 sfg 2
3: 11+Q
4: utc Q,1
51 wtb Q,37
6: 0→J;1→K
7: wtc Q,0
8: dim L$(106),C(0:255),D$(300,30),A$(80),Q$(100)
9: 17 H=1;**+L$
10: gsb "string"
11: oni 9,"in"
12: eir Q,4
13: buf "in",L$,1
14: tfr Q, "in",1
15: on key "KEY"
16: "15":if flg7;trk 0;cfg 7;sfg 6
17: if flg6;for L=1 to 203;for N=1 to 70;num(D$[L,N,N])+P;wtb Q,P
18: if flg6;char(P)+A$[Z+1+Z,Z]
19: if flq6;dsp A&[max(1,len(A$)-31),max(32,len(A$))];next N;0+Z;wtb Q,13
20: if flg6;next Ljcfg 6;sfg 7
21: gto 16
22: "KEY":key=C;if C=0;kret
23: if C=66 or C=194;sfg 9;0+C;kret
24: if flg9 and C(C))64 and C(C)(90;wtb Q,C(C)-64;cfg 9;kret
25: if flg9;dsp "NOT A VALID CONTROL KEY",C(C);cfg 9;0+C;kret
26: if Z=79;13+C
27: if C[C]=1008;sfg 7;0+C;kret
28: if CICJ=1001;sfg 2;0→C;0→J;1→K;kret
29: if C[C]=1000jcfg 2:0+G; krut
30: wtb Q,C[C]+P;char(P)+A$[Z+1+Z,Z]
31: dsp A$[max(1,len(A$)-31),Max(32,len(A$))]
32: if C[C]=13;" "+A$;0+Z;dsp A$
33: kret
34: "in":
35: if fig2;L$[1,1]+Q$[K,K];K+1+K]dsp (J+1)/5
36: if fig2 and K=31;9$[1,30]+D$[J+1];J+1+J;1+K;" "+Q$
37: buf "in"
38: if C=7 or C=135;ggb "break"
39: eir Q,4
40: tfr 0, "in",1
41: iret
42: "string":
43: for I=1 to 58
44: I+C[1]
45: next I
46: for I=78 to 87
47: I-30+C[I]
48: next I
49: for I=88 to 96
50: 32+C[1]
51: next I
52: for 1#97 to 122
53: I+C(I)
54: next I
55: for I=123 to 175
```

```
"UNT SETULI
57: next I
58: for I=176 to 185
59: I-144+C[1]
48: next I
41: for I=184 to 224
62: 32+G[1]
63: next I
64: for 1=225 to 250
45: num(char(I-140))+C[I]
66: next I
67: 13+C[141];10+C[138]
68: for I=206 to 216
69: I-158+C[I]
70: next I
71: 60+C[172];123+C[123];94+C[94];32+C[7]
72: 47+C(47)+C(175);40+C(4A)+C(140);41+C(41)+C(149);92+C(222);62+C(174)
73: 101+C[96]+C[224];125+C[125]+C[253];43+C[43]+C[171];45+C[45]+C[173]
74: 27+C[65]+C[193];63+C[63]
75: 64-C[183];91-C[184];93-C[185]
76: 39->C[176];8->C[20]+C[148];61+C[61]+C[189]
77: 59-C(59)-C(187);58-C(191);46-C(88)-C(216);7-C(7)-C(135)
78: {001-C(76)-C(220);1000-C(75)-C(219);1010-C(74)-C(218)
79: 1009+C(73)+C(218);1008+C(72)+C(217)
80: 44+C[217]+C[89]
81: ret
82: "break":buf "in";eir 9,4
93: utc 9,1;utb 9,8;uait 200;utb 8,37;utc 9,0
84: wtc Q,1;wtb Q,37;wtc Q,0
85: ret
B61 end
87: for I=1 to 5
88: wrt 706,D$[1,1,30],I
89: next I
90: for I=1 to 200
91: dep D$[]];wait 50;next I;stp
#3167
```

A.9.4) DATA PLOTTING

Description: This program is used by the Hewlett Packard 9825 computer of Cessna Aircraft Company to convert and plot out the flight test results. (Sample plots are presented as Figures 7.6.)

Program listing:

```
0: "FNG UNITS CON (quick look data plt) trk1;file 6":gto "START";0→Y→Z
1: "CON": Z+1+Z
2: for K=1 to 29 by 2;num(D$[I,K])+U;num(D$[I,K+1])+V 3; (K-1)/2+1+H
4: shf(U,-4)→U;band(V,15)→V;iur(U,V)→U
5: if bit(11,U);ior(U,-4096)→U
6: .06528-.002427983U+M[H]
7: next Kiret
8: "START":706→R
9: dim F(2),04(300,30),M(15)
10: dim A[15,50],A4[20]
11: ent "FIRST POSTION OF DYNAMIC DATA?", r5, "LAST POSITION OF DYNAMIC", r6
12: 10r5/2+1+F[1];10r6/2+F[2];fxd 1
13: ent "TRK # TEMP DATA ",Tjif flg13;gto +4
14: ent "FILE #?",F
15; dsp "tape CONTINUE";stp
16: trk T;1df F,D$
17: "C":0+D+r8+B;cfg 1,2
```

** *

```
18: ent "START TIME X AXIS", rejent "CONTINUE AT TIME", re
19: if ((FL2)-FL1))/10+r0+r11))30;dsp "TOO BIG DYNAHLC",r11;wait 7000;gte 11
20: dsp "Hount B size paper and CONTINUE";stp
21: fmt ;wrt 705,"OP";red 705,r2,r3,r4,r5;r4-r2+r2;r5-r3+r3
22: if r2)15650 er r2(15550 er r3)9650 er r3(9550;beep;dsp "check #1-P2";stp
23: psc 705
24: 17 F(2)-F(1)>50;F(2)+D;F(1)+49+F(2)
25: gto +2
26: if F(2))D:D+F(2)
27: for I=1 to 15; for J=1 to 50; 0+A[I, J]; next J; next I
28: fmt 1,z,f6.1;fmt 2,2f4.1,f6.0,f6.1
29: fat 3," AL-R BTA-L AL-L
30: fat 4," TAB-L TAB-R Az Ay
                                                                      de",z
                                                   da
                                                               dr
                                      a
                                    HD BTA-R"
311 "WET R+.31WET R+.4"1
32: for I=F(1) to F(2); I-F(1)+1)+1
33: geb "CON"
34: "cal Alpha - RH":-.9656+22.5313H[1]+A[1,r1]
35: "cal Deta - LH":.4759-12.03H[2]+A[2,r1]
36: "cal Alpha - LH":-1.377-25.7185M(3)+A(3,r1)
37: "tal q":10.045+72.0282M(4) A(4,r1)
38: "(a1 r":1.8175-39.9688M(5)+A(5,r1)
39: "cal P"1-3.0776-57,2165H[6]+A[6,r1]
40: "cal da":1.5759+4.13373H[7]-.1511H[7]+A[7.r1]
41: "cal dr":-.45125+10.8905H(8)+A(8,r1)
42: "cal de"(-7.12932+7.35987M(9)+A(9,r1)
43: "cal TAS - LH":-2.31826+115.913H(10)+A(10,r1)
44: "cal TAB - RH":-.95755+119.69424abs(M[111)+A[11,r1]
45: if M[11](0 and not flg1;,1r1+r0+r0→B;sfg 2
46: "cal Az":10H[12]+A[12,-1]
47: "cal Ay":10M(13)+A(13,r1)
48: "cal Hp":-1000+5000M[14]:A[14,r1]
49: "cal Beta - RH":-1.0342+12:4306HE153+AE15,r13
50: "for J=1 to 11;wrt R+.1,A[J,r1];next J";
51: "wrt R+,2,A[12,r1],A[13,r1],A[14,r1],A[15,r1]";
52: if flg2;sfg 1
53: dap I/10;next I
54: pen
55; for I=1 to 15; jmp I
Do: SCI -7,72,-DOU, DUU; gt0 +13
57: sc1 -48,30,-250,230;gte +14
58: sc1 -4,72,-480,480;gto +13
59: sc1 -48,30,-2200,200;gto +12
60: sc1 -4,72,-3300,1000;gto +11
61: sc1 -4,72,-4400,400;gto +10
62: sc1 -4,72,-20,460;gto +9
63: scl -4,72,-140,340;gto +8
64: scl -4,72,-80,400;gto +7
65: $21 -48,30,-660,300;gto +6
66: sc1 -48,30,-520,440;gt0 +5
67: sc1 -4,72,-30,18;gto +4
68: sc1 -48,30,-7.5,16.5;gto +3
69: sc1 -48,30,-2000;46000;gto +2
70: scl -48,30,-200,200;gto +1
71: 50→7;fer J=50 to 1 by -1;dsp A(I,J],J
72: if A(I,J]=0;J-1→Z;next J
73: pen# 2
74: For J=1 to Z;plt .1J+r0+r8+r6,A[I,J]
75: if r6=B;pen# 3;wrt 705,"UC99,0,8,0,-16,0,8,-99";pen;cplt -1,0;pen# 2
76: next Jipenidsp J
77: next I
78: pen#
79: if D)0;F[2]+1+F[1];if D)F[2];F[1]+49+F[2];5+r8+r8;gto 26
80: 0→Y→Z;gto 11
#22683
```

```
******
```

1.00

書けたる

APPENDIX B

TRANSFORMATION OF AXES SYSTEMS

This appendix shows the correlation between several axes systems.

Total Party

clock-

and the second second

Much information contained in this section is taken directly from Reference 28, which deals in depth with the problem of the different axes systems used in airplane analysis.

PRECEDING PAGE BLANK NOT FILMED

There are primarily five axes systems used in airplane analysis. These are described here.

1) Body Axes

"The orthogonal body-axes system is fixed within the vehicle with the X-axis along the longitudinal center line of the body, the Y-axis normal to the plane of symmetry, and the Z-axis in the plane of symmetry. This is the axes system about which aircraft instruments are usually mounted. Its main advantage in motion calculations is that vehicle moments of inertia about the axes are constant, so that the i terms can be omitted from the equations of motion. It is the logical system to which to refer velocities, accelerations, and stability and control parameters in the study of aircraft handling qualities because the pilot's orientation with respect to this frame is fixed."^{*} (This is the axes system used in this report.)

2) Principal Axes

"The principal axes are an orthogonal body-fixed system for which the products of inertia are $z \rightarrow z$, the X and Z principal axes lie in the plane of symmetry; is angle between the X body axis and the X principal axes is usual with the principal axes."^{*}

From Reference 28.

3) Flight Stability Axes

"The flight stability axes (sometimes referred to as vehicle stability axes) are an orthogonal body-axes system fixed to the vehicle, the X-axes of which is aligned with the relative wind vector when the vehicle is in a steady-state trim condition but them rotates with the vehicle after a disturbance as the vehicle changes angle of attack. This system is preferred in many stability studies because, as with other body-fixed axes, the moments of inertia about the axes remain constant and also because the motions defined are prime-ily those about the flight path rather than about body reference lines."^{*}

4) Wind-Tunnel Stability Axes

"The wind-tunnel stability axes are the system about which most wind-tunnel data are obtained. For this system the X-axis is in the same horizontal plane as the relative wind at all times . . . The angle α between the X-axis of this system and the X-body axes is variable. (It is a constant α_0 for the flight stability axes.) This means that vehicle moments of inertia about the X-axis change. It also means that additional terms are required in the transformation equations for static-stability derivatives and for u,v,w derivatives when data are transferred to or from the wind axes or the wind-tunnel stability axes."^{*}

* From Reference 28. 5) Wind Axes

"The wind axes are the system generally used in calculating motions of the vehicle as a point mass. The X-axis for this system is aligned with the relative wind at all times so that vehicle moments of inertia about this axis change. As with the wind-tunnel stability axes, additional terms . . . are required in the transformation to or from the wind axes and either the body, principal, or flight stability axes, since the angle . . . between the X wind axis and the X-axis of either of these systems is variable. Also, since the lateral angle . . . between the X-exes is variable, there are additional terms . . . : equired in the transformations for some of the lateral derivatives between the wind axes and either of the other axes systems."

The correlation between these axes systems is perhaps best summarized by Table B.1.

	Coefficients for axes system -			
Component	Body or principal	Flight stability	Wind-tunnel stability	Wind
X-axis force	C _X or -C _A	C _{X,S}	-c _D	CD
Y-axis force	с _ү	C _{Y,s}	с _ү	с _с
Z-axis force	C _Z or -C _N	C _{Z,s}	-c _L	-c _L
X-1xis moment (roll)	С _¢	C _{l,s}	C _{l,wt}	C _{l,w}
Y-axis moment (pitch)	с _т	C _m ,s	C _{m,wt}	C _{m,w}
Z-axis moment (yaw)	с _п	^C n,s	^C n,wt	C _{n,w}

Table B.1 Designation of Force and Moment Coefficients for Different Axes Systems*

* From Reference 28.

Transformation from the flight stability axes (as used in Reference 22) to the body axes used in this report involves accounting for the steady-state angle of attack (α_1) . The following equation takes care of this by correcting the inertias. This is the only change required.

$$\begin{bmatrix} \mathbf{I}_{\mathbf{xx},\mathbf{s}} \\ \mathbf{I}_{\mathbf{zz},\mathbf{s}} \\ \mathbf{I}_{\mathbf{xz},\mathbf{s}} \\ \mathbf{I}_{\mathbf{xz},\mathbf{s}} \\ \mathbf{I}_{\mathbf{yy},\mathbf{s}} \end{bmatrix} = \begin{bmatrix} \cos^2 \alpha_1 & \sin^2 \alpha_1 & (-) \sin^2 \alpha_1 & 0 \\ \sin^2 \alpha_1 & \cos^2 \alpha_1 & \sin^2 \alpha_1 & 0 \\ \frac{1}{2} \sin^2 \alpha_1 & (-) \frac{1}{2} \sin^2 \alpha_1 & \cos^2 \alpha_1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{\mathbf{xx}} \\ \mathbf{I}_{\mathbf{zz}} \\ \mathbf{I}_{\mathbf{xz}} \\ \mathbf{I}_{\mathbf{yy}} \end{bmatrix} [B.1]$$

NOTE: "s" denotes stability axes; no subscript denotes body axes.

NASA Langley (Reference 30) and NASA Dryden (References 12-16) both use the body axes system. They both, however, use different designations. NASA Langley uses the X, Y, Z, ℓ , m, n designation; NASA Dryden, the A, Y, N, ℓ , m, n designation. The parameters will be presented in the X, Y, Z, ℓ , m, n system in this report. Table B.2 shows the correlation between both these systems.

The symbols (i.e., Z_{α} ', etc.) in the definition column of Table B.2 are those as prodicted by the MMLE "BONES" program. For conversion from normal stability parameters (as per Reference 22) to these state vector derivatives, the reader is referred back to Tables 5.2 and 5.3.

For rigorous conversion between the various axes systems, the reader is referred to Reference 28.

183

Table B.2 Comparison of Non-Dimensional Derivatives

LONGITUDINAL

' LATERAL

**

í

. the second

▲
 Antonic (A)

A Really a low
 A

∎ national de la constante la constante de la constante de

و بالمانية مع لا بالمانية

KU-FRL		
NASA Langley designation	NASA Dryden designation	DEFINITION
^c z _u '	-c _{Na} '	2 <u>a' =U</u> q ₁ s
°zu'	C _N '	$\frac{z_u' m u_1}{\bar{q}_1 s}$
^C z, ' E, c	-C _N čE.c	$\frac{\frac{z_{\delta_{E,c}} \cdot m U_1}{\overline{q}_1 s}}{\overline{q}_1 s}$
°z _o '	-c _{No} '	<u>z_o' mu₁ ā₁ s</u>
c _m '	c _m '	Ma' Iyy āj sē
°,	С _т '	$\frac{M_q' 2U_1 I_{yy}}{\bar{q}_1 s\bar{c}^2}$
с _т '	C.a.'	$\frac{M_{u}' U_{1} I_{vv}}{\bar{q}_{1} s\bar{c}}$
С <mark>т</mark> ^С тб _{Е,с}	^C m [°] E,c	$\frac{M_{\delta_{\underline{F},\underline{C}}} \cdot I_{yy}}{\bar{q}_1 s \bar{c}}$
с _м ,'	c _ლ ,'	Mo'Iyy ā1 sē
^c x _a '	۰c _۸ '	$\frac{x_{\alpha} \cdot m}{\tilde{q}_{1} s}$
^c xu'	-c _A ,'	$\frac{x_u' m u_1}{\bar{q}_1 s}$
^c x ,' ⁵ E,c	-C _A ' 5 _{E,c}	$\frac{x_{\delta_{E,c}}^{''''}}{\bar{q}_{1}^{''s}}$
°x _o '	-c _{Ao} '	x <u>o'</u> m قريع

KU-FRL	
NASA-Langley/ -Dryden	
designation	Definition
с, ' р	$\frac{L_{p}' 2I_{xx} U_{1}}{\bar{q}_{1} sb^{2}}$
C _L '	Lr' 21 HK U1 q1 Sb ²
°°°,	^ل ه' ۲ _{×ж} ۹ ₁ sb
с, . ,	L _{ŠA} 'Ixx ą ₁ sb
c, ` ^s r	$\frac{L_{\delta_{\mathbf{R}}} \cdot \mathbf{I}_{\mathbf{X}\mathbf{X}}}{\overline{q}_{1} \cdot \mathbf{Sb}}$
ς _y β'	$\frac{Y_{\beta}' mU_{1}}{\overline{q}_{1} s}$
^C y _ő	Y _d mU1 q s
с _{уб} к'	York mU1 q1 s
c _n '	$\frac{N_p'^2 U_1 I_{zz}}{\bar{q}_1 S b^2}$
C _n ,	$\frac{N_{r}' 2U_{1} I_{zz}}{\overline{q}_{1} sb^{2}}$
C _n j'	N ₃ ' I _{zz} q ₁ Sb
cn ^s '	N _{SA} 'Izz q ₁ Sb
°n ₅ R'	N _{NR} 'Izz q ₁ Sb