$$
\begin{aligned}
& \text { (ivASA-CH-765561) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NASA CR } 165551 \\
& \text { 的能 G3/39 } \begin{array}{l}
\text { Unclas } \\
08906
\end{array} \\
& \text { 0in }
\end{aligned}
$$

STRESS EVALUA＂MONG UNDER ROLLING／SLILDEGG CONTACTS

to

Nก5＾

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION leWIS RESEARCH CENT：？
 CLEVELAND，OHIO $\$ 4135$

October 30， 1981
by
J．W．Kainnel
and
J．L．Tevaarwerk（Consultant）

Battelle
Columbus Laboratories

- For sale by the Mational Technical Information Service. Springfield. Virginta 22151

TABLE OF CONTENTS

Page No.

INTRODUCTION 1
MODEL DEVELOPMENT 5
The Stress Tensor 5
Frincipal Stresses 7
Angles to the Principal Stresses 9
Other Planes of Interest 9
Plane of Maximum Shear Stress 10
Plane of Octahedral Stress. 10
Seeking the Maximum and Minimum Shear Stresses 11
Construction of Mcdel. 12
ANALYSIS FOR RC FATIGUE TESTER 14
DISCUSSION OF EFFECTS OF FRICTION ON FATIGUE STRESSES 17
SUMMARY 30
PEFERFNCES 31
APPENDIX A: COMPUTATIONS OF THE STRESS TENSOR A-1
APPENDIX B: SOURCE LISTING FOR BATTELLE STRESS MODEL. B-1
LIST OF FIGURES
FIGURE 1. Illustration of Shear Stress Beneath the Surface of Contact 3
FIGURE 2. Contact Between Rolling/Sliding rodies 6
FIGURE 3. Pressure Ellipae 6
FIGURE 4. Illustration of Axis Rotation. 8
FIGURE 5. Effect of Friciion on Reversing Shear Stress for RC Tester (K = .8, v =. 285, B-Model). 15
FIGURE 6. Effect of Friction on Reversing Orthogonal Shear Streas (K \quad. $n, v=.285, E / b=.5, T$ Model) 18

$\frac{\text { LIST OF FIGURES }}{\text { (Continued) }}$

Page No.
FIGURE 7. Effect of Friction on Reversing Orthogonal Shear Stress ($K=.5, v=.285, z / b=.435, T$-Model) 19
FIGURE 8. Effect of Friction on Reversing Orthogonal Shear Stress $(K \approx 1, \nu=.285, z / b=.35, T$-Model) 20
FIGURE 9. Effect of Aspect Ratio k on Reversing Orthogonal Shear Stress $\left(\mathrm{f}_{\mathrm{T}}=\mathrm{f}_{\mathrm{A}}=0, v=.285, \mathrm{~T}\right.$-Model 21
FIGURE 10. Effect of Aspect Ratio on Reversing Orthogonal Shear Stress ($\left.\mathrm{f}_{\mathrm{T}}=.2, v=.285, \mathrm{~T}-\mathrm{Mudel}\right)$ 22
FIGURE 11. Effect of Friction on Magnitude of Maximum Shear Stress (T-Model) 23
FIGURE 12. Effect of Friction on Depth of Max?mum Shear Stress (T-Mode1) 24
FIGURE 13. Effect of Friction on Maximum Octahedral Shear Stress (T-Model) 26
FIGURE 14. Effect of Friction on Depth of Maximum Octahedral Stress. 27
FIGURF 15. Effect of Friction on Maximum Stress Reversals (K $=0, f_{A}=0, v=.285, B-$ Model) 28
FIGURE 16. Illustration on Veriation of Shear Stress on Plane of Maximum Shearing Stress (z/b=0, $K=0, v=.25, \mathrm{f}_{\mathrm{T}}=.333$, T -Model) 29
LIST OF TABLES
TABLE 1. Comparison of Tevaarwerk Model with Battelle Model 4
TABLE 2. Typical Printout for Battelle Stress Model 13

ABSTKACT

Computer models have been developed for analyzing the state-of-stress beneath traction-drive type of contacts. The analyses involve computing stresses and stress-reversals on various planes for points beneath the surface. The effect of tangential and axial friction under gross slip conditions can be evaluated with the models. Evaluations performed on an (rolling contact) tester configuration indicate that the classical fatigue stresses are not altered by friction-forces typical of lubricated contact. Higher values of friction (f >0.25) can result in surface shear reversal that exceeds the \therefore tresses at the depth of maximum shear reversal under rolling contact.

STRESS EVALUATIONS UNDER ROLLING/SLIDING CONTACTS

by

J. W. Kannel and J. L. Tevaarwerk (Consultant)

INTRODUCTION

Rolling elements such as roller bearings and traction drive transmissions are subject to failure from rolling contact fatigue. Such fatigue failures cause a serious restriction on the operating life and reliability of such devices. In the case of the traction drive transmissions, rolling contact fatigue failures could conceivably restrict the use of such transmissions In motor vehicles, despite the increased efficiency such transmissions could afford. Although a number of factors contribute to fatigue failure, the effect of traction and slip on the state of stress between rolling elements is not understood. A better understanding of the role of traction on fatigue could greatly assist in the evaluation of materials for and operational limits of traction components.

The fundamental theory for rolling contact fatigue is the one pub1ished by Lundberg and Palmgren $(1)^{*}$ in 1947 and summarized by Coy, et al.(2). This theory is based on the assumption that failure is in the form of shallow pitting and is related to subsurface shearing stresses within the rolling elements. In essence, any irregularity in the material beneath the surface can manifest itself as a failure initiation point. The significant stress field has been hypothesized as being bounded by the surface, the depth of the maximum and reversing shear stress, and the width of the rolling track. The magnitude and depth of the reversing shear stress have been found to be very significant with regards to fatigue failure.

The reversing stress field has been well established for pure rolling contacts $(3,4)$. However, when surface tractions are imposed, this stress field becomes very complicated. The classic study for line contact is by Smith and Liu(5). Smith and Liu's research indicated that friction is a key

[^0]factor with regards to reversing stresses. For example, at some level of friction, the reversing stress was found to be at the surface, which would greatly reduce fatigue life. Hamilton and Goodman ${ }^{(6)}$ developed a theory for a circular sliding contact. The results of their theory are in the form of useful graphs for predicting friction effects for this specific type of cortact. Other researchers, such as Kuznetsov (7), have studied the irifluence of friction on contact stress, but not on the subsurface stress field under slip conditions.

One complication to the reversing stress field is that the stress reversals occur over the width of contact and depend on orientation as well as depth. See, for example, Figure 1. The maximum stress occurs at the center of contact and the depth and magnitude are straightforward to compute. Computing the reversing stress becomes more complicated because the reversals occur over a finite region. Consider, then, the complication when the magnitude of τ_{+}or τ_{-}depend on the orientation out of the plane of the paper.

The goal of the project has been to develop computer models to determine the magnitude of reversing shear stresses beneath (and very near) the surface of rolling/sliding contacts. Sliding in both the tangential direction and the axial direction are considered. Considerations are given for line contacts as well as crowned rollers. In order to insure accuracy in modeling, two independent models were developed, one by Tevaarwerk (T-model) and one at Battelle (B-model)*. This approach allowed for both researchers to be heavily involved with the problem in modeling and created excellent dialogue, both for the mathematical intricacies, as well as the ramification of the predictions. A comparison between the two models is given in Table l, which demonstrates the consistency of the two approaches. The approach for the development of the models was as follows:

- Define the stress tensor for any point beneath the surface
- Compute principal stresses and their direction cosines for each point
- Determine the direction cosines (relative to the x, y, z axes) to the octahedral plane and the plane of maximum shearing stress

[^1]

FIGURE 1. ILLUSTRATION OF SHEAR STRESS BENEATH THE SURFACE OF CONTACT
table 1. Comparison of tevaarwerk model. with battelle model

$$
\left(\mathrm{K}=.5, v=.285, \mathrm{f}_{\mathrm{A}}=0, \mathrm{z} / \mathrm{b}=.3\right)
$$

${ }^{\mathbf{T}}$	z/b	${ }^{\circ} \mathrm{x}$		σ_{y}		σ_{2}		${ }^{\tau_{x y}}$		${ }^{\mathrm{T}_{\mathrm{yz}}}$		$\tau_{x z}$	
		T	B	T	B	T	B	T	B	T	B	T	B
0	-. 9	-. 236	-. 241	-. 212	-. 218	-.375	-. 383	0	0	0	0	. 228	. 231
	-. 8	-. 251	-. 256	-. 255	-. 259	-. 511	-. 518	0	0	0	0	. 222	. 225
	-. 5	-. 329	-. 333	-. 361	-. 369	-. 798	-. 807	0	0	0	0	. 138	. 140
	-. 3	-. 374	-. 380	-. 404	-. 412	-. 896	-. 907	0	0	0	0	. 080	. 081
	0	-. 401	-. 408	-. 428	-. 436	-. 948	-. 958	0	0	0	0	0	0
	. 3	-. 374	-. 380	-. 404	-. 412	-. 896	-. 907	0	0	0	0	-. 080	-. 081
	. 5	-. 329	-. 333	-. 361	-. 369	-. 798	-. 807	0	0	0	0	-. 138	-. 141
	. 8	-2^{-1}	-. 256	-. 255	-. 259	-. 511	-. 518	0	0	0	0	-. 222	-. 225
	. 9	-. 236	-. 240	-. 212	-. 218	-. 375	-. 383	0	0	0	0	-. 228	-. 230
. 1	-. 9	-. 171	-. 174	-. 196	-. 201	-. 352	-. 360	0	0	0	0	. 195	. 200
	-. 8	-. 188	-. 191	-. 235	-. 243	-. 489	-. 495	0	0	0	0	. 187	. 190
	-. 5	-. 281	-. 284	-. 349	-. 356	-. 784	-. 793	0	0	0	0	. 095	. 097
	-. 3	-. 344	-. 349	-. 396	-. 414	-. 888	-. 898	0	0	0	0	. 032	. 033
	0	-. 401	-. 408	-. 428	-. 436	-. 948	-. 958	0	0	0	0	-. 051	-. 051
	. 3	-. 404	-. 411	-. 412	-. 420	-. 904	-. 915	0	0	0	0	-. 128	-. 130
	. 5	-. 376	-. 382	-. 373	-. 381	-. 812	-. 821	0	0	0	0	-. 182	-. 184
	. 8	-. 315	-. 320	-. 271	-. 276	-. 533	-. 540	0	0	0	0	-. 256	-. 260
	. 9	-. 301	-. 308	-. 228	-. 234	-. 398	-. 406	0	0	0	0	-. 260	-. 264

- Scan the planes of octahedral and maximum shearing stress in the direction of rolling and compute stress reversals.
Stress reversals can be computed by the above procedure for conditions of zero friction, axial friction, and tangential friction for line contacts and contacts corresponding to a rolling contact fatigue tester. The basic assumptions for the analyses are:

1. The contact pressure (normal stress) are predictable by Hertz theory for line or crowned contacts.
2. The contact tractions are a result of a constant traction coefficient times the pressure. This tacitly assumes a gross sliding situation.
3. The materials are all elastic and homogeneous.
4. The bodies are isothermal. That is, no thermal stresses are considered.

MODEL DEVELOPMENT

The Stress Tensor

The objective of the analyses is to evaluate subsurface stresses in rolling/silding contacts of the type seen in traction drives. Consider, for example, the system shown in Figure 2, where two cylinders are loaded together under rolling or possibly rolling/sliding contact. The assumed Hertzian contact pressure diutribution produces a state of stress throughout the cylinders. Likewise, the frictional forces associated with sliding produce an additional state of stress such that a typical point beneath the surface is undergoing a complicated and changine stress state. For crowned cylinders, this stress state varies axially (in the y direction) as a result of axially varying pressures as well as in the x direction, as shown in Figure 3.

FIGURE 2. CONTACT BETWEEN ROLLING/SLIDING BODIES

TTGURE 3. FRESSURE ELLIPSE

In tensor notation, the stress at any point can be aritten as

$$
\begin{equation*}
\sigma_{i j} \quad \text { or } \bar{\sigma}_{i j} \tag{1}
\end{equation*}
$$

where

$$
\bar{\sigma}_{i f}=\sigma_{1 j} / p_{H} \quad(i, j=1,2,3)
$$

where P_{H} is the maximum Hertz contact pressure. In more conventional terminology

$$
\begin{align*}
& \sigma_{x}=\sigma_{11}, \sigma_{y}=\sigma_{22}, \sigma_{z}=\sigma_{33}, \tag{2}\\
& \tau_{x y}=\sigma_{12}, \tau_{x z}=\sigma_{13} \text { and } \tau_{y z}=\sigma_{23},
\end{align*}
$$

It should be noted that the stress tensor is symmetric such that $\sigma_{1 j}=$ $\sigma_{j 1}$ 。

To determine $\sigma_{i j}$ requires that expressions be developed for the effect of point loads on stresses and that the point loads be integrated over the conditions of interest. These equations are discussed in Appendix A and Equation $A-27$ shows the general relationship for $\bar{\sigma}_{1 j}$ of interest here.

Principal Stresses

From the preceding discussions, it can be noted that the state of stress at any point has bix components*. The components diacussed in the preceding section describe the stress when the axis is oriented in the x, y, z system. However, the atrese can look considorably different at different orientations. Since the objective of the study is to evaluate "worse case" shear stresses, it is neceseary to evaluate the effect of axis rotation (see Figure 4) on stress. The first step in this phase of the study is to deteraine the parameters that are not function of rotation; these are known as the invariante of the stress tensor ${ }^{(8)}$. These invariants are:

[^2]\[

$$
\begin{align*}
I_{r} & =\sigma_{11}+\sigma_{22}+\sigma_{33}, \tag{i}\\
I I_{r} & =\sigma_{11} \sigma_{22}+\sigma_{11} \sigma_{33}+\sigma_{22} \sigma_{33}-\sigma_{12} 2-\sigma_{13} 2-\sigma_{23}{ }^{2}, \text { and } \tag{4}\\
I I I_{r} & =\sigma_{11} \sigma_{22} \sigma_{33}+2 \sigma_{12} \sigma_{23} \sigma_{13}-\sigma_{11} \sigma_{23} 2-\sigma_{22} \sigma_{13}{ }^{2}-\sigma_{33} \sigma_{12}{ }^{2} . \tag{5}
\end{align*}
$$
\]

FIGURE 4. ILLUSTRATION OP AXIS ROTATION

With the knowledge of the invarlants, it is possible to determine the plane of the principal stress (i.e., the rotated axis on which no shear forces exist) and the stress mgnitudes. The equations for the principal streses can be written

$$
\begin{equation*}
s^{3}+I_{r} s^{2}+I I_{r} s+I I I_{r}=0 \tag{6}
\end{equation*}
$$

Equation 6 can be readily solved by cubic equation solutione and will produce three real roots for principal stresses. These roots will be known as S_{1}, S_{2}, and S_{3} with S_{1} being the largest and S_{3} the smallest.

Angles To The Principal Stresses

In tensor computations, the angles are given in terms of direction cosines to the various axes. If we define $a_{n x}, a_{n y}$, and $a_{n z}$ as the direction cosines from a given principal stress (oay S_{1}) to the x, y, and 2 axis, then it can be shown that the following equations must be satisfied ${ }^{(8)}$:

$$
\begin{align*}
& a_{n \times 1}{ }^{2}+a_{n y l} 2+a_{n x l}=1, \tag{7}\\
& \left(\sigma_{11}-S_{1}\right) a_{n x l}+\sigma_{12} a_{n y l}+\sigma_{13} a_{n z l}=U, \tag{8}\\
& \sigma_{12} a_{n x l}+\left(\sigma_{22}-S_{1}\right) a_{n y l}+\sigma_{23} a_{n z l}=0, \text { and } \tag{9}\\
& \sigma_{13} a_{n \times 1}+\sigma_{23} a_{n y l} L\left(\sigma_{33}-S_{1}\right) a_{n z l}=0, \tag{10}
\end{align*}
$$

By solving Equation 7 and any two of Equations 8 through 10 simult aneously, $a_{n x l}, a_{n y l}$ and $a_{n z l}$ can be determined. In a sike manner, the direction cosines for locating the $S_{2}\left(a_{n \times 2}, a_{n z 2}, a_{n z 2}\right)$ and the S_{3} ($a_{n \times 3}, a_{n y 3}, a_{n 23}$) stress can be determined.

Other Planes of Interest

The solution of equation 7 through 10 permit the determination of the location of principal stresses. However, the objective of the project is to evaluate shear stresses and by definition there are no shear stresses on these planes. Therefore, other planes must be considered.

The maximum shear stress for an element lies on a plane bisecting the $S_{1}-S_{3}$ plane. The direction cosines for the normal to this plane relative to the plane of the principal stress axes can be written

$$
\begin{align*}
& \mathrm{b}_{\mathrm{n} 1}=1 / \sqrt{2}, \tag{1.1}\\
& \mathrm{~b}_{\mathrm{n} 2}=0 \tag{12}\\
& \mathrm{~b}_{\mathrm{n} 3}=1 / \sqrt{2}, \tag{13}
\end{align*}
$$

To relate these cosines back to the x, y, z axis requires an angle transformation of the form

$$
\begin{align*}
& c_{n x}=b_{n 1} a_{n x 1}+b_{n 2} a_{n x 2}+b_{n 3} a_{n x 3}, \tag{14}\\
& c_{n y}=b_{n 1} a_{n y 1}+b_{n 2} a_{n y}+b_{n 3} a_{n y 3}, \tag{15}\\
& c_{n 2}=b_{n 1} a_{n 21}+b_{n 2} a_{n z 2}+b_{n 3} a_{n z 3}, \tag{16}
\end{align*}
$$

where $c_{n 1}, c_{n 2}$ and $c_{n 3}$ are the direction cosines from the normal (to the shear plane) to the x, y, z axes.

Plane of Octahedral Stress

The location of the normal to the octahedral stress can be written

$$
\begin{align*}
& \mathrm{b}_{\mathrm{n} 1}=1 / \sqrt{3} \tag{17}\\
& \mathrm{~b}_{\mathrm{n} 2}=1 / \sqrt{3} \tag{18}\\
& \mathrm{~b}_{\mathrm{n} 3}=1 / \sqrt{3} \tag{19}
\end{align*}
$$

That is, the normal is situated at equal angles from the principal axis. Likewise, Equations 17 through 19 can be used in conjunction with Equations 14 through 16 to relate the normal to the x, y, z axes.

Seeking The Maximum and Minimum Shear Stresses

Using the angle transformation equations discussed in the previous section, it is possibl? to locate the normals to various critical shear stress planes. The final step in this process is to locate maximum and minimum shear stress on those particular planes for various x positions. Let us define the direction cosines to a given location on a shear plane as $a_{s x}$, $a_{s y}$ and $a_{s z}$. It can be shown that ${ }^{(8)}$

$$
\begin{align*}
& a_{s x} c_{n x}+a_{s y} c_{n y}+a_{s z} c_{n z}=0 \quad \text { and } \tag{20}\\
& a_{s x}{ }^{2}+a_{s y}{ }^{2}+a_{s z}{ }^{2}=1 \tag{21}
\end{align*}
$$

If, then, we choose a particular angle, say $a_{8 x}$, we can compute $a_{8 y}$ and $a_{8 z}$ by Equations 20 and 21 .

With a knowledge of the argles between the shear vector on a plane and the x, y, z axes and a knowledge of the stress tensor as oriented to the x, y, z axes, the shear stress can be computed. The equation for the stress is given by ${ }^{(8)}$

$$
\begin{align*}
t & =c_{n x} a_{s x} \sigma_{11}+c_{n y} a_{8 y} \sigma_{22}+c_{n z} a_{s z} \sigma \\
& +c_{n x} a_{s y} \sigma_{12}+c_{n y} a_{s x} \sigma_{12}+c_{n x} a_{s z} \sigma_{13} \tag{22}\\
& +c_{n z} a_{8 x} \sigma_{13}+c_{n y} a_{s z} \sigma_{23}+c_{n z} a_{s y} \sigma_{23}
\end{align*}
$$

In the computer model, values of $a_{s x}$ were assuned in the range -1 to +1 . For each value of $a_{a x}$, the shear stress was computed at various x positions and both the maximum and minimum values were stored. In the computation, the maximum shear gtress and the maximum reversal τ max $-\tau_{m i n}$ were sought.

Construction Of Model

The computer model is constructed as follows:

1. Input values of $h(b / a), v$ (Poissons ratio), z / b (depth) f_{T} (tangential friction coefficient), f_{A} (axial friction coefficient), and case number.
2. Compute the stress tensor for approximately eleven (1l) x locations (STRSSC). For $K=0$ (1ine contact), the Smith-Liu ${ }^{(5)}$ solutions are used.
3. Compute the principal stresses at each x location (PRINC).
4. Compute the angles to the principal stresses at each location (ANGLP).
5. Compute the angle to the normals of the maximum shear plane, the octahedral shear plane, and the orthogonal plane (ANGTRAN).
6. Compute the shear stresses and shear reversals on the shear planes (RVSTRS).

A11 computations are in the form $\sigma_{i j} / P_{H}$ and are applicable for any (elastic) contact pressure level. A source listing for the model is given in Appendix B and a typical printout is given in Table 2.

In this table
$K=b / a$ (aspect ratio)
$\mathrm{NU}=$ (Poissons ratio)
$Z=z / b$ (depth into surface)
$\mathbf{F}_{\mathbf{T}}=\mathbf{f}_{\mathbf{T}}$ (tangential friction coefficient)
$F_{A} * f_{A}$ (axial friction coefficient)
$S_{X X}, S_{Y Y}, S_{Z Z}$ are the normal stresses ($\sigma_{X}, \sigma_{y}, \sigma_{z}$)
$S_{X Y}, S_{Y Z}, S_{X Z}$ are the shear stress ($\tau_{x y}, \tau_{y z}, \tau_{x z}$)
S_{1}, S_{2}, S_{3} are the principal stresses
$X-p o s=x / b$ is the x position being evaluated
TAU-MAX = maximum shearing stress as computed by scanning different planes
AN (1), AN (2), AN (3) are the direction cosines to the normals on the planes containing TAU-MAX and, AS (1), AS (2), AS (3) are the direction cosines to TAU-MAX on the shear plane.
TABLE 2. TYPTCAL PRINTOUT FOR BATTELLE STRESS MODEL
CASE NUMBER= 100

> PLANE OF MAX SHEAR STRESS

TAU-REVERSING is the maximum reversing shear stress on the planes specified.

ANALYSIS FOR RC FATIGUE TESTER

One objective of the project has been to evaluate the effect of magnitude and direction of slip on the stresses in a rolling contact (RC) fatigue tester. The RC tester consists of a rotating cylindrical specimen loaded between two large diameter crowned rollers. In the test, the specimen is driven by an electric motor; the crowned rollers are only driven by the specimen. The rollers are loaded to a level to produce fatigue in the specimen in a reasonable time period. Normally, the RC tester is used to evaluate rolling contact fatigue and has been used in bearing-material evaluations. The tester is also being corsidered as a candidate device for evaluating the effect of friction on fatigue.

Two approaches could be used to induce friction between the cylindrical specimen and the crowned rollers. One technique would be to induce a drag between the two elements by driving or braking the rollers. This approach could be quite complicated for simple fatigue testing and an alternate could be more desirable. This alternate approach could consist simply of skewing the specimen relative to the rollers. However, skewing produces an axial traction, whereas braking the rollers produces a tangential traction. The stress model can be used in determining the stress fields associated with these two types of fatigue test concepts.

> Typical dimensions for an RC rig are
$D_{s}=9.5 \mathrm{~mm}$ (0.375 inch)
$D_{r}=190 \mathrm{~mm}$ (7.5 inches)
$R_{c}=6.4 \mathrm{~mm}(0.25$ inch $)$.
D_{s} is the specimen diameter, D_{r} is the roller diameter, and R_{c} is the crown radius. For these dimensions, a value of $K=0.8$ has been computed. The upper limit traction coefficient should be nominally 0.1 for lubricated tractions.

Figure 5 shows the effect of traction on the reversing shear stresses in the RC tester. As can be observed, the maximum stress is unaffected by the

friction as is the depth to maximum stress ($z / b=0.38$). There are some differences in the stresses near the surface, and it is impossible to be certain how these differences affect life. However, in the Lundberg-Palmgren theory, only the orthogonal shear reversal and its depth are important. If this theory is valid, it says that a traction coefficient of up to 0.1 should not alter life. There is, however, a difference in off-set between axial and tangential-friction, but this effect is not a part of fatigue theory. Fatigue tests are badly needed to clarify the effect of stress on life.

The general observation from this aspect of the analyses is that the direction of the traction is not significant with regards to fatigue type stress for low traction coefficients typical of lubricated contacts assuming lundbergPalmgren's theory. It should be noted that at least three stress related factors that have not been included in these stress analyses could have a profound effect on fatigue. These factors are:
(1) the effect of temperature (due to friction) on stress
(2) the effect of non-Hertzian pressure on stress
(3) the effect of asymmetric surface traction.

All of these can produce an asymmetry in stresses which can amplify the stress reversal. In fact, there will be a different stress state in the driver and driven for effects (1) and (3). The influence of the non-Hertzian pressure should be the same on both bodies provided that we do not invoke hysteresis effects in the material.

If we examine the influence of (1) and (3) on, say, the reversing orthogonal stress and assume that the traction is caused by the shearing of an elastic/plastic-like material, then the surface traction in the latter half of the contact is larger than in the front. Also the traction stresses will be negative in direction on the driver and positive on the driven. This means that the stress reversal in the driven is increased from the non-traction condition while it is decreased in the driver, possibly explaining some of the experimental findings reported elsewhere. The depth at which the maximum orthogonal acts is also reduced by an asymmetric traction stress. Traction produced by an elastic/plastic-like matarial may also explain why gears fail by pitting fatigue in the region directly below the pitch circle because the positive sliding conditions may produce a region of maximum surface traction
asymmetry and, hence, the largest magnitude of the reversing orthogonal shear stress. The thermal stresses produced by the sliding would also alter the stress profile for the orthogonal shear stress in a similar fashion but now because the driver (i.e., the faster moving body) would see a lower flash temperature than the driven. Thermal stresses would tend to increase the orthogonal shear stress in b ih bodies but more in the driven than the driver. Also besides the increases in the amplitude of the stress reversal, the depth at which this occurs is reduced, giving a further reduction in fatigue life on the driver. Further research is needed in this area to establish the influence of the effects just mentioned.

DISCUSSION OF EFFECTS OF FRICTION ON FATIGUE STRESSES

The subsurface stress model represents a useful tool for evaluating the role of friction on fatigue type stresses. The results of the evaluations of the stress analyses from the RC tester showed some interesting (although perhaps not profound) implications of the effect of lubricated traction on stresses. The purpose of this section is to further explore the effect of friction on stress.

Figures 6 through 8 show predictions of the reversing orthogonal shear stress for various conditions of friction and aspect ratio (b/a). This reversing stress is normally considered the significant stress for fatigue. (1) Note, however, in Figure 6, that friction does not alter the magnitude of the difference between maximum and minimum shear stress (i.e., stress reversals). This implies that the magnitude of the orthogonal atress reversals are not dependent on friction. Changing aspect ratio does alter the magnitude of the stress as shown in Figures 9 and 10 , but this dependence of stress on aspect ratio is not affected by friction.

The effects of friction on the magnitude and depth of the maximum shear stress, are shown in Figures 11 and 12 for various values of aspect ratio. Some increase in stress accompanies an increase in friction. However, for $f_{T}=.1$ and $v=.285$ which are reasonable values for lubricated traction

FIGURE 6. EFFECT OF FRICTION ON REVERSING ORTHOGONAL SHEAR STRESS

[^3]

figure 10. effect of aspect ratio on reversing orthogonal shear stress

drives, only very small changes in stress depth and magnitude occur. Higher value of friction ($f=.2$) produces sizable increases in stress. The observations concerning shear stress also occur with regard to the octaheiral shear stress as shown in Figures 13 and 14.

Figure 15 shows the effect of friction coerficient, f, on surface-shear-stresses-reversals for line $(K=0)$ contact. As can be observed, the magnitude of reversing stresses on the surface does not exceed the reversing orthogonal shear stress for values of $f<0.25$. This implies that for this contact situation, fatigue-related stresses are not altered by friction for $f<0.25$. Smith and Liu (5) showed sizable effects at $f=0.33$, which would be consistent with our computations. However, values of f of this magnitude should occur only in very poor lubrication situations and are not relevant to lubricated traction drive theory. As can be observed, friction does materially alter the shear stresses near the surfaces, even for low (< 0.1) friction coefficients. This implies that friction alters the overall stress field and could alter the propensity of the system to incur a surface or near surface initiated fatigue failure. Fatigue tests in conjunction with the stress model are badly needed to further extend our knowledge of the role of low levels of friction on fatigue.

Figure 16 shows a shear stress plot of $\tau_{x y}$ versus $\tau_{z x}$ for the plane of maximum shear stress at the center of contact very near the surface. The magnitude of the stress reversals envelope ($\approx .6$) is very consistent with the Smith-Liu (5) computations and further illustrates the effect of severe friction ($f=.33$) on fatigue inducing stresses. However, the effect of friction on these stresses is not a factor at lower friction.

In conclusion, it can be said that based on the computer models discussed herein, low friction coefficient ($f<.1$) do not alter the fatigue stresses. At higher friction levels, changes will occur, but these cannot explain the observed effect of friction on fatigue. Other factors such as non-Hertzian pressures, thermal stress, and nonsymmetric tractions should then be included to understand the $=0 l l$ of friction on fatigue stress.
285.

$\mathrm{H}_{\mathrm{d} /}{ }^{100}{ }_{2}$ 's5 24 S

SUMMARY

The performance life of traction drives can be a very important factor in evaluating the overall effectiveness of the drive concept. Intuitively, this life shouid be heavily related to the state-of-stress in the elements as a result of high loads and tractions. The purpose of the project has been to develop a mathematical tool for evaluating this stress-state. Two independent, but similar, approaches (one at Battelle and one by Tevaarwerk) to developing the stress model have been pursued. Essentially, the models involve the computations of subsurface shear stresses (and stress reversals) as a rescit of normal and frictional loadings. Where possible the models have been checked against existing theory and against each other.

One use of the stress models has been to evaluate fatigue test methodology for a rolling contact (RC) fatigue tester. The standard RC tester consists of a small driven cylinder loaded between two larger crowned cylinders. The RC tester is a candidate device to evaluate the effect of traction on fatigue, either b, driving the crowned rollers (tangential slip) or by simply skewing the rollers (axial slip); the skewing technique would be easier. The stress model was used to evalute the effect of lubricated type tractions on stresses for a typical RC configuration.

The general conclusion from the $R C$ evaluations was that the fatigue inducing stresses (shear eiress) reversals and depth of shear stress are not seriously altered by tractions (axial or tangential) which are typical of lubricated contacts. There are some changes in the stress field, but these are difficult to relate to fatigue. To further explore the effect of friction on stress, additional computer cases have been evaluated.

The general conclusions from additional computer analyses is that friction coefficients of the order of 0.25 are required to materially alter the state of fatigue inducing stresses; this is much larger than would occur in lubricated contact. This implies then, that other effects not incorporated In the current stress-models should be included. These effects include nonHertzian stresses distributions and thermal stresses. Both of these effects can impose nonsymmetrical (about the center of contact) shear stresses and thus will produce shear stress reversals which will superimpose on the normal and friction stresses.

REFERENCES

(1) Lundberg, G. and Palmgren, A., "Dynamic Capacity of Rolling Bearings", Ing. Vetanskap, Akad.-Hand1., No. 196, 1947.
(2) Coy, J. J., Loewenthal, S.H., and Zaretsky, E.V., "Fatigue Life Anclysis for Traction Drives with Applications to a Torodial-Type Geometry", NASA TND-8362.
(3) Hertz, Heinrich, Miscellaneous Papers. Part V - The Contact of Elastic Solids, the MacMillan Company (London), pp 146-162, 1896.
(4) Harris, Tedric A., Rolling Bearing Analysis, John Wiley \& Sone, Inc., 1966.
(5) Smith, T. 0. and Liu, C. K., "Stresses Due to Tangential and Normal Loads on an Elastic Solid with Application to Some Contact Stress Problems", Trans. ASME, J.O.A.M., pp 157-166, June 1953.
(6) Hamilton, G. M. and Goodman, L. E., "The Stress Field Created by a Circular Sliding Contact", Trans. ASME, J.O.A.M., 33, E, pp 371-376, 1966.
(7) Kuznetsov, Ye. A., "The Superposition Principle in the Solution of Contact Friction Stress Problems", Wear, 50, pp 183-189, 1978.
(8) Shames, I. H., Mechanics of Deformable Solidi, Prentice Hall, Englewood Cliffs, N.J., pp 15-29, 1964.
(9) Mindin, R. D., "Force at a Point in the Interior of a Semi-Infinite Solid", Physics, Vol. 7, pp 195-202, May 1936.

APPENDIX A

Stress Due to Point Loads

The state of stress at any point on or beneath the surface of a system under concentrated contact is quite complex. To define this stress state at each point requires the computations of nine components of the stress tensor as related to contact pressures and tractions. The effect of pressures and tractions on stress were developed by Mindlin ${ }^{(9)}$ for point loadings on the surface of a seminfinite body using the coordinate system of Figure $A-1$, and letting $\mathrm{R}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$. These equations appear as follows.

Normal Load.

$$
\begin{align*}
& \sigma_{x N}^{\prime}=\frac{P}{2 \pi}\left\{\frac{(1-2 v) z}{R^{3}}-\frac{3 x^{2} z}{R^{5}}-\frac{(1-2 v)}{R(R+z)}\left[1-\frac{x^{2}}{R(R+z)}-\frac{x^{2}}{R^{2}}\right]\right\},(A-1) \\
& \sigma_{y N}^{\prime}=\frac{P_{N}}{2 \pi}\left\{\frac{(1-2 v) z}{R^{3}}-\frac{3 y^{2} z}{R^{5}}-\frac{(1-2 v)}{R(R+z)}\left[1-\frac{y^{2}}{R(R+z)}-\frac{y^{2}}{R^{2}}\right]\right\},(A-2) \\
& \sigma_{z_{N}}^{\prime}=-\frac{3 P_{N} z^{3}}{2 \pi R^{5}}, \tag{A-3}\\
& \tau_{z y_{N}}^{\prime}=\tau_{y z_{N}}^{\prime}=-\frac{3 P_{N} y z^{3}}{2 \pi R^{5}}, \tag{A-4}
\end{align*}
$$

$$
\begin{align*}
& \text { A-2 } \\
& { }^{\tau}{ }_{x z_{N}}^{\prime}=:_{z x_{N}}^{\prime}=-\frac{3}{2 \pi} \frac{P_{N} \times z^{2}}{R^{5}} \tag{A-5}\\
& { }^{\top}{ }_{y x_{N}}=\tau_{X_{N}}^{\prime}=\frac{P_{N} x y}{2 \pi}-\frac{3 z}{R^{5}}+\frac{(1-2 v)(2 R+z)}{R^{3}(R+z)^{2}} . \tag{A-6}
\end{align*}
$$

Tangential Load.

$$
\begin{align*}
& \sigma_{x_{T}}^{\prime}=\frac{P_{T} x}{2 \pi}-\frac{1-2 v}{R^{3}}-\frac{3 x^{2}}{R^{5}}-\frac{(1-2 v)}{R(R+z)^{2}} 3-\frac{x^{2}(3 R+z)}{R^{2}(R+z)}, \tag{A-7}\\
& \sigma_{y_{T}}^{\prime}=\frac{P_{T} x}{2 \pi} \frac{1-2 v}{R^{3}}-\frac{3 y^{2}}{R^{5}}-\frac{(1-2 v)}{R(R+z)^{2}} 1-\frac{y^{2}(3 R+z)}{R^{2}(R+z)}, \tag{A-8}\\
& \sigma_{z_{T}}^{\prime}=-\frac{3 P_{T}}{2 \pi} \frac{x z^{2}}{R^{5}}, \tag{A-9}\\
& \tau_{z y_{T}}^{\prime}={ }^{T} y_{y z}=-\frac{3 P_{T} x y z}{2 \pi R^{5}}, \tag{A-10}\\
& \tau_{x z}^{\prime}=\tau_{z x}^{\prime}=-\frac{3 P_{T} x^{2} z}{2 \pi R^{5}}, \tag{A-11}\\
& \tau_{T}^{\prime} \tag{A-12}\\
& \tau_{y x}^{\prime}=\tau_{x y}^{\prime}=\frac{P_{T} y}{2 \pi}-\frac{3 x^{2}}{R^{5}}-\frac{(1-2 v)}{R(R+z)^{2}} 1-\frac{x^{2}(3 R+z)}{R^{2}(R+z)},
\end{align*}
$$

Axial Load.

$$
\begin{equation*}
\sigma_{x_{A}}^{\prime}=\frac{P_{A} y}{2 \pi} \frac{1-2 v}{R^{3}}-\frac{3 x^{2}}{R^{5}}-\frac{(1-2 v)}{R(R+z)^{2}} 1-\frac{x^{2}(3 R+z)}{R^{2}(R+z)}, \tag{A-13}
\end{equation*}
$$

$$
\begin{align*}
& \sigma_{y_{A}}^{\prime}=\frac{P_{A} y}{2 \pi}\left\{\frac{1-2 v}{R^{3}}-\frac{3 y^{2}}{R^{5}}-\frac{(1-2 \nu)}{R(R+z)^{2}}\left[3-\frac{y^{2}(3 R+z)}{R^{2}(R+z)}\right]\right\}, \tag{A-14}\\
& \sigma_{z_{A}}^{\prime}=-\frac{3 P_{A} y z^{2}}{2 \pi R^{5}},
\end{align*}
$$

$$
\begin{equation*}
\tau_{{ }_{z x}}^{\prime}=\tau_{x z_{A}}^{\prime}=-\frac{3 p_{A} x y z}{2 \pi R^{5}} \tag{A-16}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{z y_{A}}^{\prime}=\tau_{y z_{A}}^{\prime}=-\frac{3 P_{A} y^{2} z}{2 \pi R^{5}} \tag{A-17}
\end{equation*}
$$

$$
\begin{equation*}
{ }_{T_{x y}}^{\prime}=\tau_{y x_{A}}^{\prime}=\frac{P_{A} x}{2 \pi}\left\{-\frac{3 y^{2}}{R^{5}}-\frac{(1-2 v)}{R(R+z)^{2}}\left[1-\frac{y^{2}(3 R+z)}{R^{2}(R+z)}\right]\right\} \tag{A-18}
\end{equation*}
$$

figure a-1. coordinate system for stress computations

For a point on the surface, the normal load could be written
$P_{N}=p d x d y \quad$ where p is the local pressure (A-19)
Also, $\quad P_{T}=p f_{T} d x d y \quad$ and (. -20)
$P_{A}=p f_{A} d x d y$
where f_{T} and f_{A} are the effective coefficients of friction acting tingential or axially to the surface.

If the surface were suhjected to a Hertzian pressure distribution, the pressure could be expressed (see Figure A-2):

$$
\begin{equation*}
p=p_{H} \sqrt{1-\frac{\left(x-x_{1}\right)^{2}}{b^{2}}-\frac{\left(y-y_{1}\right)^{2}}{a^{2}}} \tag{A-22}
\end{equation*}
$$

where p_{H} is the maximum Hertz pressure, a and b are the majcr and minor exes of the contact ellipse, x and y are the coordinates with origins at the center. of the ellipse and x_{1} and y_{1} are locations of the point load relative to the center of the Hertz ellifse. The Battelle analyses were restricted to the case where $y_{1}=0$. Tevaarwerk alluwed y_{1} to he a variable and found $y_{1}=0$ to be the interesting region.

The general approach for determining the nine components uf the stress tensor at any point can be written

$$
\sigma_{1 j}=P_{H} \iint\left[\frac{{ }_{i j}}{\sigma_{N}}{ }_{P_{N}}+\frac{f_{T} \sigma_{i j}^{-} T}{P_{T}}+\frac{f_{A}^{\sigma_{i j}^{\prime}}}{P_{A}}\right] \sqrt{1-\frac{\left(x-x_{1}\right)^{2}}{b^{2}}-\frac{y^{2}}{a^{2}}} d x d y \quad,(A-23)
$$

where $\sigma_{1 j}$ cepresents nine components of the stress tensur* for hertaian pressures and various frictional forces and $0_{i f}^{\prime}$ are the results of Mindin's analyses (discussed in the previous section). In further computations, we

[^4]shall use $\bar{\sigma}_{i j}=\sigma_{i j} / p_{H}$ such that all computations will be normalized on the Hertz maximum pressures.

It would serve no purpose to show all substitutions of Mindin's equations into the general stress tensor equation. It can be noted that any of Mindlin's equations containing the term y^{n} (n odd) will produce a zero integral since the integration involves tinat function timer the even Hertz Eressure over the whole pressure region for $y_{1}=0$. As an example of how the substitution occurs, consider the normal stress $\bar{\sigma}_{z}$ for f_{T} and $f_{A}=0$.

$$
\begin{equation*}
\bar{\sigma}_{z} \equiv \bar{\sigma}_{33}=\int_{-a}^{a} \int_{\mathrm{L}}^{\mathrm{U}} \frac{3}{2 \pi} \frac{z^{3}}{R^{5}} \sqrt{1-\left(\frac{x-x_{1}}{b}\right)^{2}-\frac{y^{2}}{a^{2}}} \mathrm{dxdy} \tag{A-24}
\end{equation*}
$$

where the lower limit $L=x_{1}-b \sqrt{1-\frac{y^{2}}{a^{2}}}$, and
the upper limit $U=x_{1}+b \sqrt{1-\frac{y^{2}}{a^{2}}}$.

FIGURE A-2. LOADING CHARACTERIZED BY HERTZIAN ELLIPSE

The foliowing substitutions were used to facilitate computations:

$$
\bar{z}=z / b \quad \xi=x / z \quad \eta=y / z \quad K=b / a \quad \text { and } \quad \bar{x}_{1}=x_{1} / b
$$

With these substitutions Equation $\mathrm{A}-24$ appears

$$
\bar{\sigma}_{z}=\frac{3}{2 \pi} \int_{-1 / K \bar{z}}^{1 / K \bar{z}} \int_{\bar{L}}^{\bar{U}} \frac{1}{\bar{R}^{5}} \sqrt{1-\left(\bar{Z} ;-\bar{X}_{1}\right)^{2}-(K \bar{z} \xi)^{2}} d \xi d n, \quad(A-25)
$$

where

$$
\begin{aligned}
& \bar{L}=\bar{x}_{1} / \bar{z}-1 / \bar{z} \sqrt{1-(\overline{z K n})^{2}}, \\
& \bar{U}=\bar{x}_{1} / \bar{z}+1 / \bar{z} \sqrt{1-(\bar{z} K n)^{2}}, \text { and } \\
& \overline{\mathrm{R}}=\sqrt{\xi^{2}+n^{2}+1},
\end{aligned}
$$

This type of substitution permitted reasonable computations near $\overline{\mathbf{z}} \mathbf{=} 0$.
In the computer solution

$$
\begin{equation*}
\bar{\sigma}_{z}=\frac{3}{2 \pi} \quad(2) \int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{\sqrt{A}}{R^{5}} \mathrm{~d} \xi \mathrm{~d} \eta \tag{A-26}
\end{equation*}
$$

where

$$
A= \begin{cases}1-\left(2 \overline{2} \xi-\bar{x}_{1}\right)^{2}-(K \overline{2} \eta)^{2} & \text { (A positive) } \\ 0 & \text { (otherwise) }\end{cases}
$$

All other stress compon were treated in the same manner using the general expression

$$
\begin{equation*}
\bar{\sigma}_{i j}=2 \int_{0}^{\infty} \int_{-\infty}^{\infty}\left[\frac{\bar{\sigma}_{i j N}}{P_{N}}+\frac{f_{T} \bar{\sigma}_{i j T}}{P_{T}}+\frac{f_{A} \bar{\sigma}_{i j A}}{P_{A}}\right] \sqrt{A} d \xi d \eta, \tag{A-27}
\end{equation*}
$$

where by substituting $\xi=x, \eta=y$ and $z=1$, all equations for $\sigma_{i j}$ become the equations for $\bar{\sigma}_{i j}$.

Review

This is the most involved section in the report and may be difficult for the reader to readily grasp. Basically, all it involves is to take Mindlin's equations (A-1 - A-18), replace x with ξ, y with η, and z with 1 and integrate equation $A-27$. For example, suppose we want to calculate $\bar{\sigma}_{13}={ }^{\tau} \times z$ from the normal load equation

$$
\begin{equation*}
\left.\frac{\bar{\sigma}_{13 N}}{P_{N}}=-\frac{3}{2 \pi} \frac{\xi}{R^{5}} \quad \text { (Equation } A-5\right) \tag{A-28}
\end{equation*}
$$

From the tangential load equation

$$
\begin{equation*}
\left.\frac{\bar{\sigma}_{13}^{\prime} T}{P_{T}}=-\frac{3}{2 \pi} \frac{\xi^{2}}{R^{5}} \quad \text { (Equation } A-11\right) \tag{A-29}
\end{equation*}
$$

From the axial load equation

$$
\begin{equation*}
\frac{\bar{\sigma}_{13 A}}{P_{A}}=-\frac{3}{2 \pi} \frac{\xi \eta}{R^{5}} \quad \text { (Equation } A-16 \text {) } \tag{A-30}
\end{equation*}
$$

where $\quad \bar{R}=\sqrt{1+\xi^{2}+\eta^{2}}$.

Equation A-27 then becomes

$$
\begin{equation*}
\bar{\sigma}_{13}=-2 \int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{3 \bar{R}^{-5}}{2 \pi}\left[\xi+\xi^{2}+\xi \eta\right] \sqrt{\mathrm{A}} \mathrm{~d} \xi \mathrm{~d} n \tag{A-31}
\end{equation*}
$$

This equation can be solved by numerical computation. In the Battelle computations, the integral on ξ was performed by a Gaussian quadrature approach and the y integration was performed by a Trapezoidal rule.

Check of Numerical Solution

Hamilton and Goodman (6) developed an exact solution for circular contacts $(K=1)$. The numerical solution is compared with the exact solution in Table A-1; the exact solution was generated as a part of the work of Tevaarwerk. The agreement tends to verify the numerical accuracy.

Smith \& Liu ${ }^{(5)}$ developed an exact solution for line contact ($K=$ 0). The numerical solution is compared with the exact solution in Table A-2.
TABLE A-1. COMPARISON OF NUMERICAL SOLUTION WITH EXACT SOLUTION FOR K $=1$ (6)

x/b	2/b	$\sigma_{\mathbf{x}}$		σ_{y}		$\sigma_{\mathbf{z}}$		$\tau_{x y}$		${ }^{1} \mathrm{yz}$		${ }^{\text {x }}$ \%	
		Num	Exact										
. 1	-. 8	-. 305	-. 300	-. 361	-. 356	-. 579	-. 573	0	0	0	0	. 121	. 119
	-. 5	-. 507	-. 501	-. 532	-. 524	-. 862	-. 853	0	0	0	0	. 057	. 056
	-. 3	-. 581	-. 575	-. 591	-. 583	-. 953	-. 943	0	0	0	0	. 031	. 031
	0	-. 620	-. 614	-. 623	-. 614	-1.00	-. 99	0	0	0	0	0	0
	. 3	-. 581	-. 575	-. 591	-. 583	-. 953	-. 943	0	0	0	0	-. 031	-. 031
	. 5	-. 507	-. 501	-. 532	-. 524	-. 861	-. 853	0	0	0	0	-. 057	-. 056
	. 8	-. 305	-. 300	-. 360	-. 356	-. 579	-. 573	0	0	0	0	-. 121	-. 119
. 4	-. 8	-. 184	-. 184	-. 128	-. 129	-. 450	-. 445	0	0	0	0	. 213	. 212
	-. 5	-. 212	-. 212	-. 198	-. 199	-. 717	-. 709	0	0	0	0	. 150	. 149
	-. 3	-. 235	-. 235	-. 230	-. 231	-. 818	-. 809	0	0	0	0	. 090	. 090
	0	-. 252	-. 250	-. 249	-. 250	-. 871	-. 862	0	0	0	0	0	0
	. 3	-. 235	-. 235	-. 230	-. 231	-. 817	-. 809	0	0	0	0	-. 090	-. 090
	. 5	-. 212	-. 212	-. 198	-. 199	-. 717	-. 709	0	0	0	0	-. 150	-. 149
	. 8	-. 185	-. 184	-. 128	-. 129	-. 450	-. 445	0	0	0	0	-. 213	-. 212

$(\varsigma)^{0}=X$ ZOA NOILATOS LOVXG HLIM NOIIATOS TVOIGGWNN dO NOSI\&VdWOD ・て-V GTGVL $\left(v=.285, f_{A}=0\right)$

$\mathbf{f}_{\mathbf{T}}$	z/b	x/b	σ_{x}		σ_{y}		σ_{z}		$\tau_{x y}$		$\tau_{y z}$		${ }^{\text {r }} \mathrm{yz}$	
			Num	Exact										
0	. 5	-. 8	-. 298	-. 299	-. 240	-. 227	-. 506	-. 500	0	0	0	0	. 249	. 247
		-. 5	-. 311	-. 313	-. 314	-. 301	-. 751	-. 745	0	0	0	0	. 180	. 176
		-. 3	-. 328	-. 329	-. 346	-. 334	-. 850	-. 842	0	0	0	0	. 109	. 107
		0	-. 342	-. 342	-. 367	-. 352	-. 905	-. 894	0	0	0	0	0	0
		. 3	-. 328	-. 329	-. 346	-. 334	-. 850	-. 842	0	0	0	0	-. 109	-. 107
		. 5	-. 311	-. 313	-. 314	-. 301	-. 751	-. 745	0	0	0	0	-. 180	-. 176
		. 8	-. 298	-. 299	-. 240	-. 227	-. 506	-. 500	0	0	0	0	-. 249	-. 247
. 15	. 5	-. 8	-. 228	-. 229	-. 209	-. 200	-. 468	-. 462	0	0	0	0	. 203	. 202
		-. 5	-. 259	-. 263	-. 290	-. 280	-. 724	-. 718	0	0	0	0	. 133	. 129
		-. 3	-. 295	-. 297	-. 331	-. 320	-. 834	-. 826	0	0	0	0	. 059	. 057
		0	-. 342	-. 342	-. 367	-. 353	-. 905	-. 894	0	0	0	0	-. 052	-. 051
		. 3	-. 361	-. 362	-. 360	-. 348	-. 867	-. 858	0	0	0	0	-. 159	-. 157
		. 5	-. 363	-. 364	-. 337	-. 324	-. 779	-. 771	0	0	0	0	-. 227	-. 222
		. 8	-. 369	-. 369	-. 272	-. 260	-. 543	-. 536	0	0	0	0	-. 295	-. 292

APPENDIX B

SOURCE LISTING FOR
BATTELLE STRESS MODEL

SMosi
IFiS2.GT.SMI SMost
002630


	```A=-(513*S23-512*(533-5):/(513**2-(511-5)*(533-5)) (11-((-523-513*A)/(533-5))**2*1.*4**2 AN(I.2)=SIGNA*SORTII.ICII) AN(1,1)=A&AN(I, 2)```	$\begin{aligned} & 003270 \\ & 003280 \\ & 003290 \\ & 003300 \end{aligned}$
	AN(I, 3)-(-513+AN(I, 1)-523*AN(1, 2)	033310
14	CONTINUF	003320
2	CONTINUE	003331
	RETURN	003340
	E 40	003350
	SUSROUTINE RVSTRSISTRSSEANEASEIRYMEIMXXEISSIGM)	003360
		003370
	DIMENSIDN STRSS $3,3,221$, MN(3,221,4S(3,22)	003380
	TQVA=0.	003390
	TMXX=0.	003400
	$E Q=1 . E-3$	003410
	OO, 1A5-1,21	003420
	AS1*-1.*.1*FLOAT(1AS-1)	003430
	$\text { IFIABS(ANI2, III,IT,ER.AND.ABS(AN(1, I)),LT.ER) } 8,9$	003440
8	as3-0.	003450
	-S2-SIGNOSORT(1.-4S!**2)	003460
	GT PO 13	003470
9		001480
10	4S200.	003490
	-S3-SIGN*SOQ (12..4SI**2)	003500
	GO TO 13	003510
11	IFIABS(AN(2.I)).LT.ER.AND.ABS(ANIJ, I) .LT.ER) GO TC 12	003520
	IF(ABSIAN(2,1)I.1T.EQ) 16.17	003530
16	A53-EANIICILOSLLAN 13,11	003549
	$C C=1-151-6-153+62$	003550
	IFICC.LT.O.1 GJ 1022	001500
	AS2-SIGN-SOPTICEI	00? 570
	G0 10 13	001580
17	ICIABS(AM(3,I)).tT.ER) 10.19	00.590
18	AS2--ASL-ANLLCW/AN(2,1)	003190
	CC-1.-151002-AS20.2	003610
	IFICC.LP.O.1 60 10 22	003620
	ASIESICNOSORT(CC)	003630
	60 10 13	003540
19	IF(ASS(AN(1.1)) -6T.ER) 20.21	003650
20		003600
	AS30-AN(2, IT/AN(3,1):AS2	003670
	601013	003680
21	$\triangle \in A N(2,1)+0+\Delta N(3,1)+02$	003690
		003700
		003710
		003710
	IFICE.LP.0.) 601022	003730
	AS3-f-50S16NOS 2RfiCCI)/2.14	003740
		003750
13	COMTIMUE	003700
		003770
	Immele 020	001110
	002 IXes, MI	
		$003800$
		$003110$
		$003020$
		003830
		$0 \cdot 3149$
	IPGTAU.GT.TMEI 304	003050
3	TMyeray	$008000$
	AS71-A1	003970
	4572-452	003820
	4513-433	003640



$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$



[^0]:    *References are listed at the end of the text.

[^1]:    *As discussed in Appendix A, the primary difference in the two models is in the integration schene used to deternine the stress tensor.

[^2]:    *Actually nine components are required, but some are equal because of symetry.

[^3]:    ( $K=$ )
    ( $K=1, \nu=.285, z / b=.35 \quad T$-Model)

[^4]:    * In tensor notation $\sigma_{11}$ implies $\sigma_{11}, \sigma_{12}, \sigma_{13}, \sigma_{31}$. . . $\sigma_{33}$, where $\sigma_{11}$ is $\sigma_{x}$, $\sigma_{12}$ is $\tau_{x y}, \sigma_{22}$ is $\sigma_{y}, \sigma_{23}$ is $\mathrm{t}_{y y}$, etc.

