~ 3

(NASA-CH-165561) HOLLING/SLIDING CONTACTS (Battelle Columbus Labs., Chio.) STRESS EVALUATIONS UNDER HC A CH/UE AOT Final Report 54 P CSCI 20K G3/39

NASA CR 165551 N82-17521

副小孩 化碳化化

Unclas 08966

63.

STRESS EVALUATIONS UNDER **ROLLING/SLIDING CONTACTS**

to

NASA

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LEWIS RESEARCH CENTER **CLEVELAND, OHIO 44135**

October 30, 1981

by

J. W. Kannel and L. Tevaarwerk (Consultant)

Columbus Laboratories 505 King Avenue Columbus, Ohio 43201

х,

Ň h

18). Security Chasif (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*
17	. Key Wo. & (Suggested by Author(s)) Traction Drives, Traction Contac Stress Analysis, Friction, Fatig Lubrigation	ts, Reliability, ue Life,	18. Distribution Statement Unclassified - U	nlimited	
	Computer models have a drive type of contacts. The any planes for points beneath the su slip conditions can be evaluated contact) tester configuration in friction-forces typical of lubra in surface shear reversal that of under rolling contact.	been developed for alyses involve courface. The effe d with the models ndicate that the loated contact. exceeds the stres	or analyzing the star maputing stresses and of tangential and classical fatigue s Higher values of fr: ses at the depth of	te-of-stress bend d stress-reversa. d axial friction ormed on an RC (: tresses are not a iction (f > 0.25 maximum shear re	esth traction- ls on various under gross rolling altered by) can result eversal
10	Final Report. Project Manager, NASA-Lewis Research Center, Clev	S. Loewenthal; E veland, Ohio 441	earing, Gearing, And 35.	d Transmission Se	ection,
15	Supplementary Notes				
			F	14. Sponsoring Agency	Code
12	Sponsoring Agency Name and Address			13. Type of Report an	d Period Covered
	505 King Avenue Columnbus, Obio 43201			NAS 3-22808	
9.	Performing Organization Name and Address Battelle-Columbus Laboratories	3	-	11. Contract on Contra	Ala
		· •		10 Work Unit No	
7	Author(s)	- 1-		8 Performing Organizi	stion Report No
				6 Performing Organiz	ation Code
4	Strage Suglustions Under Polling	Contacto		5 Heport Date October 30, 198	31

ł

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-C-158 (Rev. 10-75)

ļ

x

Freedomic constraints and finite constraints

.

TABLE OF CONTENTS

v

٠

.

-

`

Ν.

INTRODUCTION	1
MODEL DEVELOPMENT.	5
The Stress Tensor	5
Angles to the Principal Stresses	. 9
Other Planes of Interest	9
Plane of Maximum Shear Stress	10
Plane of Octahedral Stress	10
Seeking the Maximum and Minimum Shear Stresses	11 12
ANALYSIS FOR RC FATIGUE TESTER	. 14
DISCUSSION OF EFFECTS OF FRICTION ON FATIGUE STRESSES	. 17
SUMMARY	30
PEFERENCES	31
APPENDIX A: COMPUTATIONS OF THE STRESS TENSOR	A-1
APPENDIX B: SOURCE LISTING FOR BATTELLE STRESS MODEL	B-1

LIST OF FIGURES

FIGURE 1	I. Illustration of Shear Stress Beneath the Surface of Contact	•	•	•	3
FIGURE 2	2. Contact Between Rolling/Sliding Fodies	•	٠	•	6
FIGURE 3	3. Pressure Ellipse	•	•	•	6
FIGURE 4	4. Illustration of Axis Rotation	•	٠	•	8
FIGURE 5	5. Effect of Friction on Reversing Shear Stress for RC Tester (K = .8, v = .285, B-Model)	٠	•	•	15
FIGURE 6	6. Effect of Friction on Reversing Orthogonal Shear Stress (K = 0, v = .285, z/b = .5, T-Model).	•	•	•	18

LIST OF FIGURES (Continued)

٢

č.

••

Page No.

٠

4

4

FIGURE 7.	Effect of Friction on Reversing Orthogonal Shear Stress (K = .5, v = .285, z/b = .435, T-Model)	19
FIGURE 8.	Effect of Friction on Reversing Orthogonal Shear Stress (K = 1, v = .285, z/b = .35, T-Model)	20
FIGURE 9.	Effect of Aspect Ratio k on Reversing Orthogonal Shear Stress ($f_T = f_A = 0$, $v = .285$, T-Model	21
FIGURE 10.	Effect of Aspect Ratio on Reversing Orthogonal Shear Stress ($f_T = .2, v = .285, T-Model$)	22
FIGURE 11.	Effect of Friction on Magnitude of Maximum Shear Stress (T-Model)	23
FIGURE 12.	Effect of Friction on Depth of Max'mum Shear Stress (T-Model)	24
FIGURE 13.	Effect of Friction on Maximum Octahedral Shear Stress (T-Model)	26
FIGURE 14.	Effect of Friction on Depth of Maximum Octahedral Stress	27
FIGURE 15.	Effect of Friction on Maximum Stress Reversals $(K = 0, f_A = 0, v = .285, B-Model) \dots \dots \dots \dots \dots \dots$	28
FIGURE 16.	Illustration on Variation of Shear Stress on Plane of Maximum Shearing Stress $(z/b = 0, K = 0, v = .25, f_T = .333, T-Model)$.	29

LIST OF TABLES

TABLE 1.	Comparison of Tevaarwerk Model with Battelle Model	4
TABLE 2.	Typical Printout for Battelle Stress Model	13

ABSTRACT

Computer models have been developed for analyzing the state-of-stress beneath traction-drive type of contacts. The analyses involve computing stresses and stress-reversals on various planes for points beneath the surface. The effect of tangential and axial friction under gross slip conditions can be evaluated with the models. Evaluations performed on an RC (rolling contact) tester configuration indicate that the classical fatigue stresses are not altered by friction-forces typical of lubricated contact. Higher values of friction (f > 0.25) can result in surface shear reversal that exceeds the stresses at the depth of maximum shear reversal under rolling contact.

STRESS EVALUATIONS UNDER ROLLING/SLIDING CONTACTS

by

J. W. Kannel and J. L. Tevaarwerk (Consultant)

INTRODUCTION

Rolling elements such as roller bearings and traction drive transmissions are subject to failure from rolling contact fatigue. Such fatigue failures cause a serious restriction on the operating life and reliability of such devices. In the case of the traction drive transmissions, rolling contact fatigue failures could conceivably restrict the use of such transmissions in motor vehicles, despite the increased efficiency such transmissions could afford. Although a number of factors contribute to fatigue failure, the effect of traction and slip on the state of stress between rolling elements is not understood. A better understanding of the role of traction on fatigue could greatly assist in the evaluation of materials for and operational limits of traction components.

The fundamental theory for rolling contact fatigue is the one published by Lundberg and Palmgren^{(1)*} in 1947 and summarized by Coy, et $al.^{(2)}$. This theory is based on the assumption that failure is in the form of shallow pitting and is related to subsurface shearing stresses within the rolling elements. In essence, any irregularity in the material beneath the surface can manifest itself as a failure initiation point. The significant stress field has been hypothesized as being bounded by the surface, the depth of the maximum and reversing shear stress, and the width of the rolling track. The magnitude and depth of the reversing shear stress have been found to be very significant with regards to fatigue failure.

The reversing stress field has been well established for pure rolling $contacts^{(3,4)}$. However, when surface tractions are imposed, this stress field becomes very complicated. The classic study for line contact is by Smith and Liu⁽⁵⁾. Smith and Liu's research indicated that friction is a key

*References are listed at the end of the text.

factor with regards to reversing stresses. For example, at some level of friction, the reversing stress was found to be at the surface, which would greatly reduce fatigue life. Hamilton and $Goodman^{(6)}$ developed a theory for a circular sliding contact. The results of their theory are in the form of useful graphs for predicting friction effects for this specific type of contact. Other researchers, such as Kuznetsov⁽⁷⁾, have studied the influence of friction on contact stress, but not on the subsurface stress field under slip conditions.

One complication to the reversing stress field is that the stress reversals occur over the width of contact and depend on orientation as well as depth. See, for example, Figure 1. The maximum stress occurs at the center of contact and the depth and magnitude are straightforward to compute. Computing the reversing stress becomes more complicated because the reversals occur over a finite region. Consider, then, the complication when the magnitude of τ_+ or τ_- depend on the orientation out of the plane of the paper.

The goal of the project has been to develop computer models to determine the magnitude of reversing shear stresses beneath (and very near) the surface of rolling/sliding contacts. Sliding in both the tangential direction and the axial direction are considered. Considerations are given for line contacts as well as crowned rollers. In order to insure accuracy in modeling, two independent models were developed, one by Tevaarwerk (T-model) and one at Battelle (B-model)*. This approach allowed for both researchers to be heavily involved with the problem in modeling and created excellent dialogue, both for the mathematical intricacies, as well as the ramification of the predictions. A comparison between the two models is given in Table 1, which demonstrates the consistency of the two approaches. The approach for the development of the models was as follows:

- Define the stress tensor for any point beneath the surface
- Compute principal stresses and their direction cosines for each point
- Determine the direction cosines (relative to the x, y, z axes) to the octahedral plane and the plane of maximum shearing stress

÷.,

^{*}As discussed in Appendix A, the primary difference in the two models is in the integration scheme used to determine the stress tensor.

فالقراب المرارية

à.

1

r.

		σ	x	σ	У	σ	z	τ	xy	τ	yz		τ _{xz}
fT	z/b	Т	В	T	В	T	В	T	В	T	В	T	B
0	9	236	241	212	218	375	383	0	0	0	0	.228	. 231
	8	251	256	255	259	511	518	0	0	0	0	.222	.225
	5	329	333	361	369	798	807	0	0	0	0	.138	.140
	3	374	380	404	412	896	907	0	0	0	0	.080	.081
	0	401	408	428	436	948	958	0	0	0	0	0	0
	.3	374	380	404	412	896	907	0	0	0	0	080	081
	.5	329	333	361	369	798	~.8 07	0	0	0	0	138	141
	.8	2 ⁻ ι	256	255	259	511	~.518	0	0	0	0	222	225
	.9	236	240	212	218	375	383	0	0	0	0	228	230
.1	9	171	174	196	201	352	360	0	0	0	0	.195	. 200
	8	188	191	239	243	489	495	0	0	0	0	.187	.190
	5	281	284	349	356	784	793	0	0	0	0	.095	.097
	3	344	349	396	414	888	898	0	0	Ú	0	.032	.033
	0	401	408	428	436	948	958	0	0	0	0	051	051
	.3	404	411	412	420	904	915	0	0	0	0	128	130
	۰5	376	382	373	381	812	821	0	0	0	0	182	184
	.8	315	320	-,271	276	533	540	0	0	0	0	256	260
	.9	301	308	228	234	398	406	0	0	0	0	260	264

TABLE 1. COMPARISON OF TEVAARWERK MODEL WITH BATTELLE MODEL (K = .5, v = .285, $f_A = 0$, z/b = .3)

2

after an and a low and be style . When a the ball and and

• Scan the planes of octahedral and maximum shearing stress in the direction of rolling and compute stress reversals.

Stress reversals can be computed by the above procedure for conditions of zero friction, axial friction, and tangential friction for line contacts and contacts corresponding to a rolling contact fatigue tester. The basic assumptions for the analyses are:

- 1. The contact pressure (normal stress) are predictable by Hertz theory for line or crowned contacts.
- The contact tractions are a result of a constant traction coefficient times the pressure. This tacitly assumes a gross sliding situation.
- 3. The materials are all elastic and homogeneous.
- 4. The bodies are isothermal. That is, no thermal stresses are considered.

MODEL DEVELOPMENT

The Stress Tensor

The objective of the analyses is to evaluate subsurface stresses in rolling/sliding contacts of the type seen in traction drives. Consider, for example, the system shown in Figure 2, where two cylinders are loaded together under rolling or possibly rolling/sliding contact. The assumed Hertzian contact pressure ditribution produces a state of stress throughout the cylinders. Likewise, the frictional forces associated with sliding produce an additional state of stress such that a typical point beneath the surface is undergoing a complicated and changing stress state. For crowned cylinders, this stress state varies axially (in the y direction) as a result of axially varying pressures as well as in the x direction, as shown in Figure 3.

.

-...

In tensor notation, the stress at any point can be written as

$$\sigma_{ij}$$
 or $\overline{\sigma}_{ij}$, (1)

where

the shows up a later

$$\overline{\sigma}_{ij} = \sigma_{ij}/p_{H}$$
 (i, j = 1, 2, 3)

where p_{H} is the maximum Hertz contact pressure. In more conventional terminology

$$\sigma_{\mathbf{x}} = \sigma_{11}$$
, $\sigma_{\mathbf{y}} = \sigma_{22}$, $\sigma_{\mathbf{z}} = \sigma_{33}$, (2)
 $\tau_{\mathbf{xy}} = \sigma_{12}$, $\tau_{\mathbf{xz}} = \sigma_{13}$ and $\tau_{\mathbf{yz}} = \sigma_{23}$.

It should be noted that the stress tensor is symmetric such that $\sigma_{ij} = \sigma_{ji}$.

To determine σ_{ij} requires that expressions be developed for the effect of point loads on stresses and that the point loads be integrated over the conditions of interest. These equations are discussed in Appendix A and Equation A-27 shows the general relationship for $\overline{\sigma}_{ij}$ of interest here.

Principal Stresses

From the preceding discussions, it can be noted that the state of stress at any point has six components^{*}. The components discussed in the preceding section describe the stress when the axis is oriented in the x, y, z system. However, the stress can look considerably different at different orientations. Since the objective of the study is to evaluate "worse case" shear stresses, it is necessary to evaluate the effect of axis rotation (see Figure 4) on stress. The first step in this phase of the study is to determine the parameters that are not a function of rotation; these are known as the invariants of the stress tensor⁽⁸⁾. These invariants are:

^{*}Actually nine components are required, but some are equal because of symmetry.

$$I_{r} = \sigma_{11} + \sigma_{22} + \sigma_{33} , \qquad (3)$$

$$II_{r} = \sigma_{11} \sigma_{22} + \sigma_{11} \sigma_{33} + \sigma_{22} \sigma_{33} - \sigma_{12}^{2} - \sigma_{13}^{2} - \sigma_{23}^{2} , \text{ and}$$
(4)

$$III_{\mathbf{r}} = \sigma_{11} \sigma_{22} \sigma_{33} + 2\sigma_{12} \sigma_{23} \sigma_{13} - \sigma_{11} \sigma_{23}^2 - \sigma_{22}\sigma_{13}^2 - \sigma_{33}\sigma_{12}^2 \quad . \tag{5}$$

FIGURE 4. ILLUSTRATION OF AXIS ROTATION

With the knowledge of the invariants, it is possible to determine the plane of the principal stress (i.e., the rotated axis on which no shear forces exist) and the stress magnitudes. The equations for the principal stresses can be written

$$S^{3} + I_{r}S^{2} + II_{r}S + III_{r} = 0$$
 (6)

Equation 6 can be readily solved by cubic equation solutions and will produce three real roots for principal stresses. These roots will be known as S_1 , S_2 , and S_3 with S_1 being the largest and S_3 the smallest.

Angles To The Principal Stresses

In tensor computations, the angles are given in terms of direction cosines to the various axes. If we define a_{nx} , a_{ny} , and a_{nz} as the direction cosines from a given principal stress (say S₁) to the x, y, and z axis, then it can be shown that the following equations must be satisfied⁽⁸⁾:

$$a_{nxl}^2 + a_{nyl}^2 + a_{nxl}^2 = 1$$
, (7)

$$(\sigma_{11} - S_1) a_{nx1} + \sigma_{12} a_{ny1} + \sigma_{13} a_{nz1} = 0$$
, (8)

$$\sigma_{12}a_{nx1} + (\sigma_{22} - S_1) a_{ny1} + \sigma_{23} a_{nz1} = 0$$
, and (9)

$$\sigma_{13} a_{nx1} + \sigma_{23} a_{ny1} - (\sigma_{33} - S_1) a_{nz1} = 0 \quad . \tag{10}$$

By solving Equation 7 and any two of Equations 8 through 10 simultineously, a_{nx1} , a_{ny1} and a_{nz1} can be determined. In a like manner, the direction cosines for locating the S₂ (a_{nx2} , a_{nz2} , a_{nz2}) and the S₃ (a_{nx3} , a_{ny3} , a_{nz3}) stress can be determined.

Other Planes of Interest

The solution of equation 7 through 10 permit the determination of the location of principal stresses. However, the objective of the project is to evaluate shear stresses and by definition there are no shear stresses on these planes. Therefore, other planes must be considered.

The maximum shear stress for an element lies on a plane bisecting the $S_1 - S_3$ plane. The direction cosines for the normal to this plane relative to the plane of the principal stress axes can be written

$$b_{nl} = 1/\sqrt{2}$$
, (11)

$$b_{n2} = 0.$$
 , (12)

$$b_{n3} = 1/\sqrt{2}$$
 (13)

To relate these cosines back to the x, y, z axis requires an angle transformation of the form

$$c_{nx} = b_{n1} a_{nx1} + b_{n2} a_{nx2} + b_{n3} a_{nx3}$$
, (14)

 $c_{ny} = b_{n1} a_{ny1} + b_{n2} a_{ny2} + b_{n3} a_{ny3}$, (15)

$$c_{nz} = b_{n1} a_{nz1} + b_{n2} a_{nz2} + b_{n3} a_{nz3}$$
, (16)

where c_{n1} , c_{n2} and c_{n3} are the direction cosines from the normal (to the shear plane) to the x, y, z axes.

Plane of Octahedral Stress

The location of the normal to the octahedral stress can be written

$$b_{nl} = 1/\sqrt{3}$$
 , (17)

$$b_{n2} = 1/\sqrt{3}$$
, (18)

$$b_{n3} = 1/\sqrt{3}$$
 (19)

That is, the normal is situated at equal angles from the principal axis. Likewise, Equations 17 through 19 can be used in conjunction with Equations 14 through 16 to relate the normal to the x, y, z axes.

Seeking The Maximum and Minimum Shear Stresses

Using the angle transformation equations discussed in the previous section, it is possible to locate the normals to various critical shear stress planes. The final step in this process is to locate maximum and minimum shear stress on those particular planes for various x positions. Let us define the direction cosines to a given location on a shear plane as a_{gx} , a_{gy} and a_{gz} . It can be shown that⁽⁸⁾

 $\mathbf{a_{sx}} \mathbf{c_{nx}} + \mathbf{a_{sy}} \mathbf{c_{ny}} + \mathbf{a_{sz}} \mathbf{c_{nz}} = 0 \quad \text{and} \tag{20}$

$$a_{sx}^2 + a_{sy}^2 + a_{sz}^2 = 1$$
 (21)

If, then, we choose a particular angle, say a_{gx} , we can compute a_{gy} and a_{gz} by Equations 20 and 21.

With a knowledge of the angles between the shear vector on a plane and the x, y, z axes and a knowledge of the stress tensor as oriented to the x, y, z axes, the shear stress can be computed. The equation for the stress is given by (8)

$$\tau = c_{nx} a_{sx} \sigma_{11} + c_{ny} a_{sy} \sigma_{22} + c_{nz} a_{sz} \sigma ,$$

$$+ c_{nx} a_{sy} \sigma_{12} + c_{ny} a_{sx} \sigma_{12} + c_{nx} a_{sz} \sigma_{13} ,$$

$$+ c_{nz} a_{sx} \sigma_{13} + c_{ny} a_{sz} \sigma_{23} + c_{nz} a_{sy} \sigma_{23} .$$

$$(22)$$

In the computer model, values of a_{gx} were assumed in the range -1 to +1. For each value of a_{gx} , the shear stress was computed at various x positions and both the maximum and minimum values were stored. In the computation, the maximum shear stress and the maximum reversal $\tau_{max} - \tau_{min}$ were sought.

Construction Of Model

The computer model is constructed as follows:

- 1. Input values of k (b/a), v (Poissons ratio), z/b (depth) f_T (tangential friction coefficient), f_A (axial friction coefficient), and case number.
- 2. Compute the stress tensor for approximately eleven (11) x locations (STRSSC). For K = 0 (line contact), the Smith-Liu⁽⁵⁾ solutions are used.
- 3. Compute the principal stresses at each x location (PRINC).
- Compute the angles to the principal stresses at each location (ANGLP).
- 5. Compute the angle to the normals of the maximum shear plane, the octahedral shear plane, and the orthogonal plane (ANGTRAN).
- Compute the shear stresses and shear reversals on the shear planes (RVSTRS).

All computations are in the form σ_{ij}/p_H and are applicable for any (elastic) contact pressure level. A source listing for the model is given in Appendix B and a typical printout is given in Table 2.

In this table

i L

- K = b/a (aspect ratio)
- NU = (Poissons ratio)
- Z = z/b (depth into surface)
- $F_T = f_T$ (tangential friction coefficient)
- $F_A = f_A$ (axial friction coefficient)
- S_{XX} , S_{YY} , S_{ZZ} are the normal stresses (σ_x , σ_y , σ_z)
- S_{XY} , S_{YZ} , S_{XZ} are the shear stress (τ_{XY} , τ_{YZ} , τ_{XZ})
- S_1 , S_2 , S_3 are the principal stresses
- X pos = x/b is the x position being evaluated
- TAU-MAX = maximum shearing stress as computed by scanning different planes
- AN (1), AN (2), AN (3) are the direction cosines to the normals on the planes containing TAU-MAX and, AS (1), AS (2), AS (3) are the direction cosines to TAU-MAX on the shear plane.

TABLE 2. TYPTCAL PRINTOUT FOR BATTELLE STRESS MODEL

•

ς.

• - 1

ł

100 CASE NUMBER=

K= .80000E+00 NU= .28500E+00 Z= .10000E+00 FT= .10000E+00 FA= 0.

				13
X-POS		50000E+00	0. .30000E+00 .50000E+00 .80000E+00	• 90000E +00 • 10000E +01
£ S	22331E+00 43265E+00 58538E+00	85855E+00 95752E+00	1U208E+01 99321E+00 91995E+00	571296+00 39981E+00
52	•17262E+00 •26274E+00 •34511E+00	51183E+00	633888.400 621366.400 555546.400	• 31191E+00
51	.25361E-01 .72964E-01 - .19519E+00 -	-+5750E+00 -		.18655E+00 -
2 X S	<pre>*11783E+00 *11627E+00 *77424E-01 -</pre>	.10770E-01 -		•187995+00 -
ZYZ	.35355E-08 .35213E-08 .35295E-03	.35244E-08 - .35446E-08 -	.351466-08 - .354466-08 - .352446-08 - .352956-08 -	.35213E-08 - .35355E-08 -
SXY	.35355E-09 .3521 08 .35295∟-08	.35244E-08 .35446E-08	 351906-08 354466-08 352446-08 352956-09 	.35213E-08 .35355E-08
222	13866F+00 39002E+00 56935E+00	85826E+00 95228E+00		41976E+00 16702E+00
SYY	17261E+00 26274E+00 34511E+00	51183E+00 57347E+00		311916+00 216126+00
SXX	59283E-01 11560E+00 21121E+00	457796+00	073/0E+00 65600E+00 60578E+00 42607E+00	338096+00
XI		**	0 ~ 0 0	11

FATIGUE SHEAR STRESS SUMMARY

PLANE OF MAX SHEAP STRESS

 30000E+00 TAU MAX= .20372E+00 AN(1)= -.21583E+00 AN(2)= .70711E+00 AN(3)= -.67337E+00 X-REF= TAU REVERSING= .32192E+00 AS(1)= -.10000E+00 AS(2)= -.70200E+00AS(3)= -.70512E+00

PLANE OF MAX OCT SHEAR STRESS

• 80000E + 00 TAU MAX= ~20014E+00 AN(1)= -.18715E+00 AN(2)= .57735E+00 AN(3)= .79476E+00 X-REF= Tau reversing= .27615E+00 AS(1)= -.50000E+00 AS(2)= .64042E+00AS(3)= -.58297E+00

PLANE DE REVERSING SHEAR STRESS

AN (3)-AN(2)= 0. -.10000E+01 AS(2)= TAU MAX= "107996+00 AN(1)= 0. Tau reversing= "305026+00 as(1)=

•

-REF =

TAU-REVERSING is the maximum reversing shear stress on the planes specified.

ANALYSIS FOR RC FATIGUE TESTER

One objective of the project has been to evaluate the effect of magnitude and direction of slip on the stresses in a rolling contact (RC) fatigue tester. The RC tester consists of a rotating cylindrical specimen loaded between two large diameter crowned rollers. In the test, the specimen is driven by an electric motor; the crowned rollers are only driven by the specimen. The rollers are loaded to a level to produce fatigue in the specimen in a reasonable time period. Normally, the RC tester is used to evaluate rolling contact fatigue and has been used in bearing-material evaluations. The tester is also being corsidered as a candidate device for evaluating the effect of friction on fatigue.

Two approaches could be used to induce friction between the cylindrical specimen and the crowned rollers. One technique would be to induce a drag between the two elements by driving or braking the rollers. This approach could be quite complicated for simple fatigue testing and an alternate could be more desirable. This alternate approach could consist simply of skewing the specimen relative to the rollers. However, skewing produces an axial traction, whereas braking the rollers produces a tangential traction. The stress model can be used in determining the stress fields associated with these two types of fatigue test concepts.

Typical dimensions for an RC rig are

 $D_s = 9.5 \text{ mm} (0.375 \text{ inch})$ $D_r = 190 \text{ mm} (7.5 \text{ inches})$

 $R_c = 6.4 \text{ mm} (0.25 \text{ inch}).$

 D_s is the specimen diameter, D_r is the roller diameter, and R_c is the crown radius. For these dimensions, a value of K = 0.8 has been computed. The upper limit traction coefficient should be nominally 0.1 for lubricated tractions.

Figure 5 shows the effect of traction on the reversing shear stresses in the RC tester. As can be observed, the maximum stress is unaffected by the

•

friction as is the depth to maximum stress (z/b = 0.38). There are some differences in the stresses near the surface, and it is impossible to be certain how these differences affect life. However, in the Lundberg-Palmgren theory, only the orthogonal shear reversal and its depth are important. If this theory is valid, it says that a traction coefficient of up to 0.1 should not alter life. There is, however, a difference in off-set between axial and tangential-friction, but this effect is not a part of fatigue theory. Fatigue tests are badly needed to clarify the effect of stress on life.

The general observation from this aspect of the analyses is that the direction of the traction is not significant with regards to fatigue type stress for low traction coefficients typical of lubricated contacts assuming Lundberg-Palmgren's theory. It should be noted that at least three stress related factors that have not been included in these stress analyses could have a profound effect on fatigue. These factors are:

- (1) the effect of temperature (due to friction) on stress
- (2) the effect of non-Hertzian pressure on stress
- (3) the effect of asymmetric surface traction.

.

All of these can produce an asymmetry in stresses which can amplify the stress reversal. In fact, there will be a different stress state in the driver and driven for effects (1) and (3). The influence of the non-Hertzian pressure should be the same on both bodies provided that we do not invoke hysteresis effects in the material.

If we examine the influence of (1) and (3) on, say, the reversing orthogonal stress and assume that the traction is caused by the shearing of an elastic/plastic-like material, then the surface traction in the latter half of the contact is larger than in the front. Also the traction stresses will be negative in direction on the driver and positive on the driven. This means that the stress reversal in the driven is increased from the non-traction condition while it is decreased in the driver, possibly explaining some of the experimental findings reported elsewhere. The depth at which the maximum orthogonal acts is also reduced by an asymmetric traction stress. Traction produced by an elastic/plastic-like material may also explain why gears fail by pitting fatigue in the region directly below the pitch circle because the positive sliding conditions may produce a region of maximum surface traction asymmetry and, hence, the largest magnitude of the reversing orthogonal shear stress. The thermal stresses produced by the sliding would also alter the stress profile for the orthogonal shear stress in a similar fashion but now because the driver (i.e., the faster moving body) would see a lower flash temperature than the driven. Thermal stresses would tend to increase the orthogonal shear stress in both bodies but more in the driven than the driver. Also besides the increases in the amplitude of the stress reversal, the depth at which this occurs is reduced, giving a further reduction in fatigue life on the driver. Further research is needed in this area to establish the influence of the effects just mentioned.

DISCUSSION OF EFFECTS OF FRICTION ON FATIGUE STRESSES

The subsurface stress model represents a useful tool for evaluating the role of friction on fatigue type stresses. The results of the evaluations of the stress analyses from the RC tester showed some interesting (although perhaps not profound) implications of the effect of lubricated traction on stresses. The purpose of this section is to further explore the effect of friction on stress.

Figures 6 through 8 show predictions of the reversing orthogonal shear stress for various conditions of friction and aspect ratio (b/a). This reversing stress is normally considered the significant stress for fatigue.⁽¹⁾ Note, however, in Figure 6, that friction does not alter the magnitude of the difference between maximum and minimum shear stress (i.e., stress reversals). This implies that the magnitude of the orthogonal stress reversals are not dependent on friction. Changing aspect ratio does alter the magnitude of the stress as shown in Figures 9 and 10, but this dependence of stress on aspect ratio is not affected by friction.

The effects of friction on the magnitude and depth of the maximum shear stress, are shown in Figures 11 and 12 for various values of aspect ratio. Some increase in stress accompanies an increase in friction. However, for $f_T = .1$ and v = .285 which are reasonable values for lubricated traction

• • •

••••

i 8

ς.

1

÷ .

,

:

- -

:

1.11.11.

•

23

ł `

ł

drives, only very small changes in stress depth and magnitude occur. Higher value of friction (f = .2) produces sizable increases in stress. The observations concerning shear stress also occur with regard to the octahedral shear stress as shown in Figures 13 and 14.

Figure 15 shows the effect of friction coefficient, f, on surfaceshear-stresses-reversals for line (K = 0) contact. As can be observed, the magnitude of reversing stresses on the surface does not exceed the reversing orthogonal shear stress for values of f < 0.25. This implies that for this contact situation, fatigue-related stresses are not altered by friction for f < 0.25. Smith and Liu⁽⁵⁾ showed sizable effects at f = 0.33, which would be consistent with our computations. However, values of f of this magnitude should occur only in very poor lubrication situations and are not relevant to lubricated traction drive theory. As can be observed, friction does materially alter the shear stresses near the surfaces, even for low (< 0.1) friction coefficients. This implies that friction alters the overall stress field and could alter the propensity of the system to incur a surface or near surface initiated fatigue failure. Fatigue tests in conjunction with the stress model are badly needed to further extend our knowledge of the role of low levels of friction on fatigue.

Figure 16 shows a shear stress plot of τ_{XY} versus τ_{ZX} for the plane of maximum shear stress at the center of contact very near the surface. The magnitude of the stress reversals envelope (\approx .6) is very consistent with the Smith-Liu⁽⁵⁾ computations and further illustrates the effect of severe friction (f = .33) on fatigue inducing stresses. However, the effect of friction on these stresses is not a factor at lower friction.

In conclusion, it can be said that based on the computer models discussed herein, low friction coefficient (f < .1) do not alter the fatigue stresses. At higher friction levels, changes will occur, but these cannot explain the observed effect of friction on fatigue. Other factors such as non-Hertzian pressures, thermal stress, and nonsymmetric tractions should then be included to understand the coll of friction on fatigue stress.

i. ٢.

•••

•:

•

. . . .

; ;;

• • • • •

•

• • •

· • • •

. .

•

.

.'o

;

•

Į

ILLUSTRATION OF VARIATION OF SHEAR STRESS ON PLANE OF MAXIMUM SHEARING STRESS $(z/b = 0, K = 0, v = .25, f_T = .333$ T-Model) FIGURE 16.

SUMMARY

The performance life of traction drives can be a very important factor in evaluating the overall effectiveness of the drive concept. Intuitively, this life should be heavily related to the state-of-stress in the elements as a result of high loads and tractions. The purpose of the project has been to develop a mathematical tool for evaluating this stress-state. Two independent, but similar, approaches (one at Battelle and one by Tevaarwerk) to developing the stress model have been pursued. Essentially, the models involve the computations of subsurface shear stresses (and stress reversals) as a result of normal and frictional loadings. Where possible the models have been checked against existing theory and against each other.

One use of the stress models has been to evaluate fatigue test methodology for a rolling contact (RC) fatigue tester. The standard RC tester consists of a small driven cylinder loaded between two larger crowned cylinders. The RC tester is a candidate device to evaluate the effect of traction on fatigue, either b, driving the crowned rollers (tangential slip) or by simply skewing the rollers (axial slip); the skewing technique would be easier. The stress model was used to evalute the effect of lubricated type tractions on stresses for a typical RC configuration.

The general conclusion from the RC evaluations was that the fatigue inducing stresses (shear firess) reversals and depth of shear stress are not seriously altered by tractions (axial or tangential) which are typical of lubricated contacts. There are some changes in the stress field, but these are difficult to relate to fatigue. To further explore the effect of friction on stress, additional computer cases have been evaluated.

The general conclusions from additional computer analyses is that friction coefficients of the order of 0.25 are required to materially alter the state of fatigue inducing stresses; this is much larger than would occur in lubricated contact. This implies then, that other effects not incorporated in the current stress-models should be included. These effects include non-Hertzian stresses distributions and thermal stresses. Both of these effects can impose nonsymmetrical (about the center of contact) shear stresses and thus will produce shear stress reversals which will superimpose on the normal and friction stresses.

REFERENCES

- Lundberg, G. and Palmgren, A., "Dynamic Capacity of Rolling Bearings", Ing. Vetanskap, Akad.-Handl., No. 196, 1947.
- (2) Coy, J. J., Loewenthal, S.H., and Zaretsky, E.V., "Fatigue Life Analysis for Traction Drives with Applications to a Torodial-Type Geometry", NASA TND-8362.
- (3) Hertz, Heinrich, Miscellaneous Papers. Part V The Contact of Elastic Solids, the MacMillan Company (London), pp 146-162, 1896.
- (4) Harris, Tedric A., <u>Rolling Bearing Analysis</u>, John Wiley & Sone, Inc., 1966.
- (5) Smith, T. O. and Liu, C. K., "Stresses Due to Tangential and Normal Loads on an Elastic Solid with Application to Some Contact Stress Problems", Trans. ASME, J.O.A.M., pp 157-166, June 1953.
- (6) Hamilton, G. M. and Goodman, L. E., "The Stress Field Created by a Circular Sliding Contact", Trans. ASME, <u>J.O.A.M.</u>, 33, E, pp 371-376, 1966.
- (7) Kuznetsov, Ye. A., "The Superposition Principle in the Solution of Contact Friction Stress Problems", Wear, 50, pp 183-189, 1978.
- (8) Shames, I. H., <u>Mechanics of Deformable Solids</u>, Prentice Hall, Englewood Cliffs, N.J., pp 15-29, 1964.
- (9) Mindlin, R. D., "Force at a Point in the Interior of a Semi-Infinite Solid", Physics, Vol. 7, pp 195-202, May 1936.

APPENDIX A

1 -

.

-

COMPUTATIONS OF THE STRESS TENSOR

APPENDIX A

COMPUTATIONS OF THE STRESS TENSOR

Stress Due to Point Loads

The state of stress at any point on or beneath the surface of a system under concentrated contact is quite complex. To define this stress state at each point requires the computations of nine components of the stress tensor as related to contact pressures and tractions. The effect of pressures and tractions on stress were developed by Mindlin⁽⁹⁾ for point loadings on the surface of a semiinfinite body using the coordinate system of Figure A-1, and letting $R^2 = x^2 + y^2 + z^2$. These equations appear as follows.

Normal Load.

$$\sigma'_{xN} = \frac{P_N}{2\pi} \left\{ \frac{(1-2\nu)z}{R^3} - \frac{3 x^2 z}{R^5} - \frac{(1-2\nu)}{R(R+z)} \left[1 - \frac{x^2}{R(R+z)} - \frac{x^2}{R^2} \right] \right\} , (A-1)$$

$$\sigma'_{yN} = \frac{P_N}{2\pi} \left\{ \frac{(1-2\nu)z}{R^3} - \frac{3 y^2 z}{R^5} - \frac{(1-2\nu)}{R(R+z)} \left[1 - \frac{y^2}{R(R+z)} - \frac{y^2}{R^2} \right] \right\} , (A-2)$$

$$\sigma'_{z_{N}} = -\frac{3}{2\pi} \frac{P_{N} z^{3}}{R^{5}} , \qquad (A-3)$$

$$\tau'_{zy_{N}} = \tau'_{yz_{N}} = -\frac{3}{2\pi} \frac{P_{N} y z^{3}}{R^{5}} , \qquad (A-4)$$

$$T'_{xz_N} = T'_{zx_N} = -\frac{3}{2\pi} \frac{P_N \times z^2}{R^5}$$
, (A-5)

A-2

$$\tau'_{yx} = \tau'_{xy} = \frac{P_N xy}{2\pi} - \frac{3z}{R^5} + \frac{(1 - 2v)(2R + z)}{R^3(R + z)^2} .$$
 (A-6)

Tangential Load.

$$\sigma'_{\mathbf{x}_{\mathrm{T}}} = \frac{P_{\mathrm{T}} \mathbf{x}}{2\pi} \frac{1 - 2\nu}{R^{3}} - \frac{3x^{2}}{R^{5}} - \frac{(1 - 2\nu)}{R(R + z)^{2}} - 3 - \frac{x^{2}(3R + z)}{R^{2}(R + z)}, \quad (A-7)$$

$$\sigma'_{y_{T}} = \frac{P_{T} x}{2\pi} \frac{1 - 2\nu}{R^{3}} - \frac{3y^{2}}{R^{5}} - \frac{(1 - 2\nu)}{R(R + z)^{2}} - \frac{1 - \frac{y^{2}(3R + z)}{R^{2}(R + z)}, \quad (A-8)$$

$$\sigma'_{z_{T}} = -\frac{3P_{T}}{2\pi} \frac{x z^{2}}{R^{5}} , \qquad (A-9)$$

•

•

•

$$\tau'_{zy} = \tau_{yz} = -\frac{3P_T \times yz}{2\pi R^5}$$
, (A-10)

$$\tau'_{xz_{T}} = \tau'_{zx_{T}} = -\frac{3P_{T} x^{2}z}{2\pi R^{5}},$$
 (A-11)

$$\tau'_{yx} = \tau'_{xy} = \frac{P_T y}{2\pi} - \frac{3x^2}{R^5} - \frac{(1 - 2\nu)}{R(R + z)^2} - \frac{1 - \frac{x^2(3R + z)}{R^2(R + z)}}{R^2(R + z)} .$$
 (A-12)

Axial Load.

$$\sigma'_{\mathbf{X}_{A}} = \frac{P_{A} y}{2\pi} \frac{1 - 2\nu}{R^{3}} - \frac{3x^{2}}{R^{5}} - \frac{(1 - 2\nu)}{R(R + z)^{2}} - \frac{1 - \frac{x^{2}(3R + z)}{R^{2}(R + z)}, \quad (A-13)$$

<u>.</u>]

$$\sigma'_{y_{A}} = \frac{P_{A} y}{2\pi} \left\{ \frac{1 - 2\nu}{R^{3}} - \frac{3y^{2}}{R^{5}} - \frac{(1 - 2\nu)}{R(R + z)^{2}} \left[3 - \frac{y^{2}(3R + z)}{R^{2}(R + z)} \right] \right\}, \quad (A-14)$$

$$\sigma'_{z_{A}} = -\frac{3 P_{A} y z^{2}}{2\pi R^{5}}, \qquad (A-15)$$

$$\tau'_{zx_{A}} = \tau'_{xz_{A}} = -\frac{3P_{A} xyz}{2\pi R^{5}},$$
 (A-16)

$$\tau'_{zy_{A}} = \tau'_{yz_{A}} = -\frac{3P_{A}y^{2}z}{2\pi R^{5}},$$
 (A-17)

$$\tau'_{xy} = \tau'_{yx} = \frac{P_A x}{2\pi} \left\{ -\frac{3y^2}{R^5} - \frac{(1-2\nu)}{R(R+z)^2} \left[1 - \frac{y^2(3R+z)}{R^2(R+z)} \right] \right\} . \quad (A-18)$$

.

FIGURE A-1. COORDINATE SYSTEM FOR STRESS COMPUTATIONS

A - 3

For a point on the surface, the normal load could be written

 $P_{N} = pdxdy \qquad \text{where p is the local pressure} \qquad (A-19)$ Also, $P_{T} = pf_{T}dxdy \qquad \text{and} \qquad (..-20)$ $P_{A} = pf_{A}dxdy \qquad (A-21)$

where f_T and f_A are the effective coefficients of friction acting tengential or axially to the surface.

If the surface were subjected to a Hertzian pressure distribution, the pressure could be expressed (see Figure A-2):

$$p = p_{H} \sqrt{1 - \frac{(x - x_{1})^{2}}{b^{2}} - \frac{(y - y_{1})^{2}}{a^{2}}}, \qquad (A-22)$$

where $p_{\rm H}$ is the maximum Hertz pressure, a and b are the major and minor exes of the contact ellipse, x and y are the coordinates with origins at the center of the ellipse and x_1 and y_1 are locations of the point load relative to the center of the Hertz ellipse. The Battelle analyses were restricted to the case where $y_1 = 0$. Tevearwerk allowed y_1 to be a variable and found $y_1 = 0$ to be the interesting region.

The general approach for determining the nine components of the stress tensor at any point can be written

$$\sigma_{ij} = P_{H} \int_{A} \int \left[\frac{\sigma_{ij}}{P_{N}} + \frac{f_{T}\sigma_{ij}}{P_{T}} + \frac{f_{A}\sigma_{ij}}{P_{A}} \right] \sqrt{1 - \frac{(x - x_{1})^{2}}{b^{2}} - \frac{y^{2}}{a^{2}}} dxdy , (A-23)$$

where σ_{ij} represents nine components of the stress tensor^{*} for Hertzian pressures and various frictional forces and σ_{ij} are the results of Mindlin's analyses (discussed in the previous section). In further computations, we

^{*} In tensor notation σ_{ij} implies σ_{11} , σ_{12} , σ_{13} , σ_{21} · · · σ_{33} , where σ_{11} is σ_x , σ_{12} is τ_{xy} , σ_{22} is σ_y , σ_{23} is τ_{yz} , etc.

shall use $\overline{\sigma}_{ij} = \sigma_{ij}/p_{H}$ such that all computations will be normalized on the Hertz maximum pressures.

It would serve no purpose to show all substitutions of Mindlin's equations into the general stress tensor equation. It can be noted that any of Mindlin's equations containing the term y^n (n odd) will produce a zero integral since the integration involves that function times the even Hertz pressure over the whole pressure region for $y_1 = 0$. As an example of how the substitution occurs, consider the normal stress $\overline{\sigma}_z$ for f_T and $f_A = 0$.

$$\overline{\sigma}_{z} \equiv \overline{\sigma}_{33} = \int_{-a}^{a} \int_{L}^{U} \frac{3}{2\pi} \frac{z^{3}}{R^{5}} \sqrt{1 - \left(\frac{x - x_{1}}{b}\right)^{2} - \frac{y^{2}}{a^{2}}} dxdy , \qquad (A-24)$$

where the lower limit $L = x_1 - b \sqrt{1 - \frac{y^2}{a^2}}$, and

the upper limit $U = x_1 + b \sqrt{1 - \frac{y^2}{a^2}}$.

FIGURE A-2. LOADING CHARACTERIZED BY HERTZIAN ELLIPSE

Scaling the Stress Tensor Equations

The following substitutions were used to facilitate computations:

.

$$\overline{z} = z/b$$
 $\xi = x/z$ $\eta = y/z$ $K = b/a$ and $\overline{x}_1 = x_1/b$.

With these substitutions Equation A-24 appears

$$\bar{\sigma}_{z} = \frac{3}{2\pi} \int_{-1/K\overline{z}}^{1/K\overline{z}} \int_{\overline{L}}^{\overline{U}} \frac{1}{\overline{R}^{5}} \sqrt{1 - (\overline{z}\zeta - \overline{x}_{1})^{2} - (K\overline{z}\xi)^{2}} d\xi dn , \quad (A-25)$$

where

$$\overline{L} = \overline{x}_1 / \overline{z} - 1 / \overline{z} \sqrt{1 - (\overline{z}K_n)^2} ,$$

$$\overline{U} = \overline{x}_1 / \overline{z} + 1 / \overline{z} \sqrt{1 - (\overline{z}K_n)^2} , \text{ and}$$

$$\overline{R} = \sqrt{\xi^2 + \eta^2 + 1} .$$

This type of substitution permitted reasonable computations near $\overline{z} = 0$.

In the computer solution

$$\overline{\sigma}_{z} = \frac{3}{2\pi} \quad (2) \int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{\sqrt{A}}{R^{5}} d\xi d\eta \quad , \qquad (A-26)$$

.

where

.

· . 1

$$\mathbf{A} = \begin{cases} 1 - (\overline{\mathbf{z}} - \overline{\mathbf{x}}_1)^2 - (K\overline{\mathbf{z}}_h)^2 & (A \text{ positive}) \\ 0 & (otherwise) \end{cases}$$

All other stress compone were treated in the same manner using the general expression

$$\overline{\sigma}_{ij} = 2 \int_{0}^{\infty} \int_{-\infty}^{\infty} \left[\frac{\overline{\sigma}_{ijN}}{P_N} + \frac{f_T \overline{\sigma}_{ijT}}{P_T} + \frac{f_A \overline{\sigma}_{ijA}}{P_A} \right] \sqrt{A} d\xi dn , \quad (A-27)$$

where by substituting $\xi = x$, $\eta = y$ and z = 1, all equations for σ'_{ij} become the equations for $\overline{\sigma'}_{ij}$.

Review

This is the most involved section in the report and may be difficult for the reader to readily grasp. Basically, all it involves is to take Mindlin's equations (A-1 - A-18), replace x with ξ , y with η , and z with 1 and integrate equation A-27. For example, suppose we want to calculate $\overline{\sigma}_{13} = \tau_{xz}$ from the normal load equation

$$\frac{\overline{\sigma}_{13}}{\frac{P_{N}}{P_{N}}} = -\frac{3}{2\pi} \frac{\xi}{R^{5}} \quad (\text{Equation A-5}) \quad . \tag{A-28}$$

From the tangential load equation

$$\frac{\overline{\sigma}_{13}}{P_{T}} = -\frac{3}{2\pi} \frac{\xi^{2}}{R^{5}} \quad (\text{Equation A-11}) \quad . \tag{A-29}$$

From the axial load equation

$$\frac{\overline{\sigma}_{13}}{P_{A}} = -\frac{3}{2\pi} \frac{\xi_{n}}{R^{5}}$$
 (Equation A-16), (A-30)

where $\overline{R} = \sqrt{1 + \xi^2 + \eta^2}$.

14.13

j.

Equation A-27 then becomes

$$\overline{\sigma}_{13} = -2 \int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{3 \overline{R}^{5}}{2\pi} \left[\xi + \xi^{2} + \xi \eta \right] \sqrt{A} d\xi d\eta \quad . \tag{A-31}$$

This equation can be solved by numerical computation. In the Battelle computations, the integral on ξ was performed by a Gaussian quadrature approach and the y integration was performed by a Trapezoidal rule.

Check of Numerical Solution

Hamilton and Goodman⁽⁶⁾ developed an exact solution for circular contacts (K = 1). The numerical solution is compared with the exact solution in Table A-1; the exact solution was generated as a part of the work of Tevaarwerk. The agreement tends to verify the numerical accuracy.

Smith & Liu⁽⁵⁾ developed an exact solution for line contact (K = 0). The numerical solution is compared with the exact solution in Table A-2.

(9)	
х	
FOR	
SOLUTION	
EXACT	
НТІМ	
SOLUTION	
NUMERICAL	$f_A = 0$
OF	" H
COMPARISON	$(v = 0.3, f_{v})$
A-1.	
ГE	
TAB	

2

•

Ŀ,

. .

x/b z, .1 1.		σ x	C	y	v	2	μ	xy	ч I	yz	т×	N
	/p Nrth	Exact	Nu	Exact	E N	Exact	Num	Exact	Num	Exact	Num	Exact
i i	8305	300	361	356	579	573	0	0	0	0	.121	.119
ī	5507	501	532	524	862	853	0	0	0	0	.057	.056
	3581	575	591	583	953	943	0	0	0	0	.031	.031
	0620	614	623	614	-1.00	99	0	0	0	0	0	0
•	3581	575	591	583	953	943	0	0	0	0	031	031
•	5507	501	532	524	861	853	0	0	0	0	057	056
•	8305	300	360	356	579	573	0	0	0	0	121	119
. 4	8184	184	128	129	450	445	0	0	0	0	.213	.212
i	5212	212	198	199	717	709	0	0	0	0	.150	.149
ľ	3235	235	230	231	818	809	0	0	0	0	060.	060.
	0252	250	249	250	871	862	0	0	0	0	0	0
•	3235	235	230	231	817	809	0	0	0	0	090	090
•	5212	212	198	199	717	709	0	0	0	0	150	149
•	8185	184	128	129	450	445	0	0	0	0	213	212

fr x/b Num Exact N				-	°×	р.,	~	0	N	ч	xy	·	r yz	т А	N
0 :5 8 29 240 271 506 500 0	Ŀ	z/b	q/x		Exact	Num	Exact	Num	Exact	Mum	Exact	Num	Exact	Num	Exact
5 311 313 314 301 751 745 0 0 0 0 100	0	ŝ	۰. 8	298	299	240	227	506	500	0	0	0	0	.249	.247
3 328 329 346 850 842 0 0 0 0 0 1.09 1.09 1.09 1.01 0 342 367 352 905 894 0			5	311	313	314	301	751	745	0	0	0	0	.180	.176
			3	328	329	346	334	850	842	0	0	0	0	.109	.107
.3 328 329 346 850 842 0			0	342	342	367	352	905	894	0	0	0	0	0	0
.5 311 313 314 301 751 745 0 0 0 180 180 180 180 180 180 180 180 180 249 240 240 240 227 506 500 0 0 0 249 249 249 249 249 249 249 240 200 200 0 0 0 0 249 249 240 200 462 0 0 0 0 249 249 55 259 229 290 280 280 280 280 280 203 291 231 232 291 313 320 381 880 0 0 0 0 203 292 291 231 232 202 231 232 202 <th< td=""><td></td><td></td><td>с.</td><th>328</th><td>329</td><td>346</td><td>334</td><td>850</td><td>842</td><td>0</td><td>0</td><td>0</td><td>0</td><td>109</td><td>107</td></th<>			с.	328	329	346	334	850	842	0	0	0	0	109	107
.8 298 240 227 506 500 0 0 0 249 246 203 .203<			s.	311	313	314	301	751	745	0	0	0	0	180	176
.1558 228 229 209 200 468 462 0 0 0 .203 .203 5 5 259 209 200 724 718 0 0 0 0 .133 .129 3 559 297 331 320 834 826 0 0 0 0 .059 .059 3 295 297 331 320 834 826 0 0 0 0 .059 .059 .059 0 342 367 331 320 834 826 0 0 0 0 .059 .059 .051 13 342 360 333 905 894 0 0 0 0 .052 051 .3 361 362 363 324 779 771 0 0 0 0 .159 157 225 295 295 292 292 292 <t< td=""><td></td><td></td><td>8.</td><th>298</th><td>299</td><td>240</td><td>227</td><td>506</td><td>500</td><td>0</td><td>0</td><td>0</td><td>0</td><td>249</td><td>247</td></t<>			8.	298	299	240	227	506	500	0	0	0	0	249	247
.15 .5 8 228 209 200 468 462 0 0 0 .203 .203 5 259 263 290 280 724 718 0 0 0 0 .133 .129 3 295 297 331 320 834 826 0 0 0 0 .133 .129 3 295 297 331 320 834 826 0 0 0 0 .059 .059 .059 .051 0 342 347 353 905 894 0 0 0 0 0 .059 .051 .															
.15 .5 8 228 229 209 200 468 462 0 0 0 0 .203 .203 .203 5 559 259 290 280 724 718 0 0 0 0 133 .129 5 295 297 331 320 834 826 0 0 0 0 0.133 .129 .129 3 295 297 331 320 834 826 0 0 0 0 0 .129															
5 259 263 290 280 724 718 0	.15	.	80 I	228	229	209	200	468	462	0	0	0	0	.203	.202
3 295 297 331 320 834 826 0 157 157 157 .3 363 364 337 324 379 771 0 0 0 0 0 0 0 0 157 157 2.227 2.227 2.227 2.227 2.227 2.225 2.295 2.292 2.292 2.292 2.292 2.292 2.292			5	259	263	290	280	724	718	0	0	0	0	.133	.129
0 342 367 353 905 894 0 0 0 052 051 .3 361 362 360 348 867 858 0 0 0 0 159 157 .3 361 362 360 348 867 858 0 0 0 0 159 157 .5 363 364 324 779 771 0 0 0 0 0 227 227 227 222 <t< td=""><td></td><td></td><td>.</td><th>295</th><td>297</td><td>331</td><td>320</td><td>834</td><td>826</td><td>0</td><td>0</td><td>0</td><td>0</td><td>.059</td><td>.057</td></t<>			.	295	297	331	320	834	826	0	0	0	0	.059	.057
.3 361 362 348 867 858 0 0 0 0 159 157 .5 363 364 337 324 779 771 0 0 0 0 227 227 222 .8 369 369 272 260 543 536 0 0 0 0 295 292			0	342	342	367	353	905	894	0	0	0	0	052	051
.5363364337324779771 0 0 0 0 0 227222 .8369369272260543536 0 0 0 0 0295 292			e.	361	362	360	348	867	858	0	0	0	0	159	157
.8369369272260543536 0 0 0 0 0295 - .292			s.	363	364	337	324	779	771	0	0	0	0	227	222
			8.	-,369	369	272	260	543	536	0	0	0	0	295	292

COMPARISON OF NUMERICAL SOLUTION WITH EXACT SOLUTION FOR $K = 0^{(5)}$ (v = .285, f_A = 0) TABLE A-2.

2

`

÷

4

-

.

,

•

.

.

•

APPENDIX B

í ,

2

`

- - 24 5 -

Å

X-

٠

.

SOURCE LISTING FOR BATTELLE STRESS MODEL

.

PROGRAM_SUBSTS(INPUT,OUTPUT,TAPE_1)	000100
COMMON/F/ ISTRSS,X1(22,1),GNU,Z,Y,XK,FT,FA,MX	000110
COMMON/C/ STRSS(3,3,22)	000120
DIMENSION AN (3,31,ASM (3,22),AS (3,22),BN1 (3), 6m2 (3)	000130
1.CN1(3.22).CN2(3.22).CN3(3.22)	000140
REWIND 1	000150
	000160
	000130
ONI(Z) = O	000170
BN1(3)=-,70711	000180
BN2(1)•. 7735	000190
BN2(2)=.57735	000200
BN2(3)=•57735	000210
CN3(1,1)=0.	000220
CN3(2,1)=0.	000230
CN3(3,1)=1.	000240
SIGN=+1.	000250
	000260
A DRINT A	000270
6 EDDMAT (+ TNDUT, ACDECT DATTO, NU, 7, ET. CA. Y-DOCC, CACE-NOA)	000280
DEADA VY CHI 7 ET EA WY NCACE	000280
REAUTSALSONUS 20 TO TO T	000240
	000300
WRITE(1,13) NCASE	000310
13 FORMAT(///,50X,+ CASE NUMBER=+,I8,///)	000320
WRITE(1,9) XK/GNU/Z/FT/FA	000330
PRINT 9,XK,GNU,Z,FT,FA	000340
9 FORMAT(* K=*,E12.5, * NU=*,E12.5,* Z=*,E12.5,+ FT=*,E12.5	3, # FA=#,000350
1E12.5.//)	000360
TMXXM=TMXXD=TAURVM=TAURVD=0.	C00370
$TE(XK_{+} T_{+} F=6)$ CALL STRSSC(1)	000380
TE(YK-GT-1-E-6) CALL STRSSC(A)	000390
	000400
	(000410
	- ADE 000410
1312 3XC 31 3C 33 X-	-FUS 000420
	000430
	000440
CALL PRINC(STRSS, IX, S1, S2, S3)	000450
CALL ANGLP(STRSS,S1,S2,S3,AN,IX,SIGNA)	000460
CALL ANGTRAN(AN/BN1/CN1/IX)	. 000470
CALL ANGTRAN(AN,BN2,CN2,IX)	000480
WPITE(1,11) IX, STRSS(1,1,1,1X), STRSS(2,2,1X), STRSS(3,3,1X),	000490
1STRSS(1, 2, IX), STRSS(2, 3, IX), STRSS(1, 3, IX), S1, S2, S3, X1(IX, I) 000500
11 FORMAT(I5,10E12.5)	000510
1 CONTINUE	000520
WRITE(1.2A)	000530
28 EDRNAT(//.45Y.+ EATIGUE SHEAR STRESS SUMMARY + //)	000560
	000550
	000540
ART-AAIARRTAA Aaii Bustbelstoss, ani, asm. taum. twar, tybe, stani	000500
LALE KY31K3131K339LN19R3F91KKN791NRA9LAKF9319N7	
PRINT VYTAA	000380
99 FORNAT(* THAX=*, E12.5)	000590
IF (ABS (TRVM).GT.ABS (TAURV4)) TAURVH-TRVM	000600
1F(ABS(TMAX).GT.ABS(TMXXM)) 22,23	000610
22 THXXM=THAX	000620
	000630
SIGN=-1.	000640
23 CALL RVSTRS(STRSS,CN2,AS,TRVMD,TMAXO,IXRF,SIGN)	000650
IF(ABS(TRVMQ).GT.ABS(TAURVQ)) TAURVQ-TRVMQ	000660
IF (ABS(TMAXD).GT.ABS(TMXXD))24.25	000670
	000680
	00000
	000700
EJ LUMIINUC Aaint 90. tvar. tann. thiv. tann. thuvn	000710
TRINI CYPIARTPIRYDPITARPIRYDUPIDAU	000720
24 PUKMAI(13)9614031	VVV72V

21	CONTINUE	000730
	WRITE(1+15)	000740
15	FORMAT(//,20x,+ PLANE OF MAX SHEAR STRESS+//)	000750
	WRITE(1,18) TMXXN.CN1(1.IXRFM).CN1(2.IXRFM).CN1(3.IXRFM).X1(IXRFM)	000760
	1.F13.5.# X-RFF=#.F13.5)	000790
	WRITE(1.19) TAURYMAASN(1.TYREM)AASN(2.TYREM)AASN(3.TYREM)	000800
19	ENDATE & TAN DEVERSING ALETS S. A ACTINALETS S. A ACTINAL STRATE	000810
1 *	144673144.513 EN	000010
		000820
14	WALLELIJOJ Foomatiji jog a biane of may oft furing footoo alla	000830
	- CURTAI (// / / / / / / / / / / / / / / / / /	000000
	WHITE(1.1.5) (MXXU)CN2(1)(XHFU))CN2(2)(XHFU))CN2(3)(XHFU))X1(1XHFU)	000850
	11)	000860
	WRITE(1,19) TAURVO,AS(1,IXRFO),AS(2,IXRFO),AS(3,IXRFO)	000870
	CALL RVSTRS(STRSS;CN3;AS;TRVM;TMAX;1;SIGN)	000880
	WRITE(1,17)	000890
17	FORMAT(//,20X,+ PLANE OF REVERSING SHEAR STRESS +//)	000900
	WRITE(1,18) TMAX+CN3(1,1)+CN3(2,1)+CN3(3,1)	000910
	WRITE(1,19) TRVM,AS(1,1),AS(2,1),AS(3,1)	000920
	WRITE(1,20)	000930
20	FIRMAT(1H1)	000960
20		000950
7		000000
		000970
		000970
	SUBRIUTINE SIRSSCIFLAGI	000480
	COMMON/F/ IS,X1(22,1),GNU,Z,Y,XK,FT,FA,MX1	000990
	COMMON/C/ STRSS(3,3,22)	001000
	DIMENSION FI(22,17).GINT(22),ICALC(22),TEMP1(22),FX(22),FIY(17)	001010
· · · · · · · · · · · · · · · · · · ·	1, Y1(17)	001020
	PI=3,14159	001030
	MY=17	001040
	MX=MX1	001650
	CALL XPOS	001060
	IF(IFLAG.E0.1) GD TO 10	001070
	DO 9 ISTRSS=1,6	001080
	IS+ISTRS5	001090
	00 4 JY=1,MY	001100
	IF(JY.EQ.1) Y=0.	001110
	IF(JY.EQ.2) Y=.2	001120
	IF(JY.E0.3) Y	001130
	IF(JY.FQ.6) Y=.6	001140
		001150
	IF(JY,FQ.6) Y=1.2	001160
		001170
		001180
		001190
		001200
		001210
	15/1/1/2011/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	001220
	1714T4EV6167 T-00 TEJIV 60 131 V-0	001220
	151410500131 1-70	001630
		001240
	[F(JY.EG.13) Y=20.	001250
	<u>IF(JY+EU+10) Y*30.</u>	
	1F(JT+E9+17) T=30+	001270
		001200
	BL=-2./Z	001290
	IF(BL.LT20.) BL-20.	001300
	8U=-8L	001310
		001320
	CALL GAUSS (MX, 1, 20, 1, 1. E-3, 1. E-3, BL, BU, GINT, ICALC, TEMP1, FX)	001330
	DO 5 IX=1. MX	001340
	FI(IX,JY)=GINT(IX)	001350
5	CONTINUE	001360
4	CONTINUE	001370

2 7,

14 F 1

	DO 6 IX=1,MX	001380
	DD 8 IY+1, MY	001390
8	FIY(IY)=FI(IX,[Y)	001400
	CALL YINT(FIY,Y1,SIG1,MY)	001410
	IF(IS.E0.1) STRSS(1,1,IX)=SIG1	0 21 4 20
	IF(IS.EQ.2) STRSS(2,2,IX)=SIG1	001430
	IF(IS.EQ.3) STRSS(3,3,1X)=SIG1	001440
	IF(IS.E3.4) STRSS(1,2,IX)=STP\$\$(2,1,IX)=\$IG1	001450
	IF(IS.E0.5) STRSS(2,3,IX)=STRSS(3,2,IX)=SIG1	001460
	<u>IF(IS,E0,6)</u> STRSS(1,3,IX)=STRSS(3,1,IX)=SIG1	001470
6	CONTINUE	001480
9	CONTINUE	001490
	RETURN	001500
10	CONTINUE	001510
	D9 12 ISTRSS=1,5	001520
	IS=ISTPSS	001530
	DO 11 IV=1,MX	001540
	x=x1(IX,1)	C01550
	XK1=(1.+X)++2+Z++2	001560
	XK2=(1X)++2+Z++2	001570
	C1=SQRT(XK2/XK1)	C01580
	C2 = SQRT(2, +C1 + (xK1 + xK2 - 4,) / xK1)	001590
	SI=PI/XK1+(1C1)/C1/C2	001600
	SI8=PI/XK1+(1.+C1)/C1/C2	001610
	SXN=-1./PI*Z*((1.+2.*X**2+2.*Z**2)*SIB-2.*PI-3.*X*SI)	001620
	SZN=-Z/PI+(SI8-x+SI)	001630
	T¥ZN=-1./PI+Z++2+SI	001640
	<u></u>	001650
	TXZT=FT+CTZ	001660
	TYZT=FA+CTZ	001670
	CXT=-1./PI+((2.+X++2-23.+Z++2)+SI+2.+PI+X+2.+(1X++2-Z++2)+X	001680
	1#SIB)	001690
	SXT=FT=CXT	001700
	<u>SYT=FA+CXT</u>	C01710
	SZT=-(FT+FA)/PI+Z++2+SI	001720
	IF(IS.EQ.1) STRSS(1,1,1,IX)=SXN+SXT	001730
	IF(IS.EQ.2) STRSS(2,2,IX)=GNU+(SXN+SXT+SZN+SZT)+SYT	001740
	IF(IS.E0.3) STRSS(3,3,IX)=SZN+SZT	001750
	IF(IS.EQ.4) STRSS(1,2,IX)=STRSS(2,1,IX)=0.	001760
	IF(IS.E9.5) STRSS(2,3,IX)=STRSS(3,2,IX)=TYZT	001770
	IF(IS.EQ.6) STRSS(1,3,IX)=STRSS(3,1,IX)=TXZN+TXZT	001780
11	CONTINUE	001790
12	CONTINUE	001800
	RETURN	001810
	END	001820
	SUBPOUTINE VINT(FI, Y1, SIG1, NY)	001830
	DIRENSION FI(17), V1(17)	001840
	$C1 \rightarrow F1(1) \rightarrow (Y1(2) - Y1(1))$	001850
	$C_2 = F_1(A_1) = (A_1(A_1) - Y_1(A_1 - 1))$	001860
	SUN=0.	001870
		C01880
		001890
1	201-201-60-600 201-2004-1[1]+[1]+1]-1][1-1]]	001900
		001920
		001930
	300×001175 F574L189F39JF91L4L13 Framma 223 127455, 11,50,11,74,00,00 F5 F5 F5	001440
	<u> LUMMUM/F/ 131833641166911964406686763867638676888768876887688768876887</u>	001950
	UITENJIUN PRICEIDILALLICEI Diaj 14180	001960
	r 1-3014134	001470
	N 5 - N - V 6 9	001960
	16-11-72 (MII) 012 (ACNII)	001990
	AUNT-T • - C • - AMA	002000

. .

,** *

, , ,**,**

.

	R=SQRT(X++2+Y++2+1.)	002010
	₽2≠₽₽₽2	002020
	R3=R++3	002030
	P5=P4+5	002040
	97-041	002040
		002050
_	1+(151855+E3+1) 1+2	002060
1	C1+(GNU1/R3-3.+X2/R5-GNU1/R/RZ+(1X2/R/RZ-X2/R2))/2./PI	002070
	C2=(GNU1/R3-3.*X2/R5-GNU1/R/RZ**2*(3X2*(3.*R+1.)/R2/RZ))/2./PI*	002080
	C3+0.	02090
		002100
2	IF(ISIRSS+E0+2) 394	002110
3	C1+(GNU1/R3-3.+Y2/R5-GNU1/R/RZ+(1Y2/R/RZ-Y2/R2})/2./PI	002120
	C2+(GNU1/R3-3.+YZ/R5-GNU1/R/RZ++2+(1Y2+(3.+R+1.)/RZ/RZ))+X/2./P1	002130
	C 3 = 0.	002140
	60 TO 10	002150
		002170
	JF1131#33+E4+31 710	002100
5	C1+-3./R5/2./PI	002170
	C2=-3./2./PI+X/R5	002180
	C3=0.	002190
	GR TO 10	002200
•	TETTSTRS. EQ. 4) 7.8	002210
		002210
		002220
	C Z = O •	002230
	C3=(-3.*X2/R5-GNU1/R/RZ**2*{1X2*{3.*R+1.}/R2/RZ})/2./PI*X	002240
	GO TO 10	002250
	1F(15TR\$5,F0.5) 9-11	002260
ő		002220
•		002270
	<u> </u>	002240
	C3=-3•/2•/PI*Y2/R5	002290
	GO TO 10	002300
11	Cl=~3./2./PI+X/R5	002310
	C2=-3./2./P1+X2/85	002320
		002330
10		002340
	AR GULAT FILZ TRATES	002390
	00 14 I=1,JF	002350
	IF(ICALC(I))14,13,13	002360
13	CCNTINUE	002370
	ARGU=1(78+X-X1(I.1))++2-(78+Y+XK)++2	002380
		002390
18		003400
h2		002400
- .		005410
15		002420
	FX(I)=SQRT(ARGU)+APG	002430
17	CCNTINUE	002440
14	CONTINUE	002450
•	RETURN	002460
		002470
	ENU FIREALISTAS ARTIGSTORDE TO EN ETH FAILE	0067 IV
	2008/0011/02 5810/231812012121212121212121212121212121212121	002700
	DIMENSION STRSS(3,3,22)	002490
	C1=STR\$5(1,1,1x)+STR\$\$(2,2,1x)+\$TR\$\$(3,3,1x)	002500
	C1=-C1	002510
	C2+STR\$\${1.1.1X}+\$TR\$\${2.2.1X}+\$TR\$\${1.1.1X}+\$TR\$\${3.3.1X}+	002520
		002530
	δαιναστογτογιαγτηδηγγαιναστογγαιηγγαινασιβαρβαηγγγ6¨ δενδερίδια, τοιδασαμένος ενάδασειας δαιγγάασα	007840
~		VV677V
	C3+31R35(1,1,1,1,1)+31R35(2,2,1,1,1+31R35(3,3,1,1,1+	002330
,	12++5TR55(1,2,1X)+5TR55(2,3,1X)+5TR55(1,3,1X)-	002360
	25TR55(1,1,1 x)+5TR55(2, 3, 1 x)++2-	002570
	35TR55(2,2,1X)+5TR55(1,3,IX)++2-	002580
	657855(3,3, TX)+57855(1,2, TX)++2	002590
		002600
	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	AA341A
	LALL LUBIC (L1)(C)(3)31/36/33/	~~~~
	3R•21	029200
	IF(52.6T.5M) SM=52	002630

1

¢,

	IF(53.GT.SM) SN#53	002640
	SNNeS1	002040
	1F(\$2.LT.SMN) SMN#\$2	002650
	TE(S3.17.SMN) SMN=S3	002600
	SIN•SI	002680
	IF(S2.GT.SMN.AND.S2.LT.SM) SIM+S2	002690
	IF(S3.GT.SMN.AND.S3.LT.SM) SIMESA	002700
	RETURN	002710
	END	002720
	SUBROUTIN: CUBIC(C1,C2,C3,51,52,53)	002730
	PI+3,14159	002760
	A+1./3.+(3.+C2-C1++2)	002750
	B=1./27.+(2.+C1++3-9.+C1+C2+27.+C3)	002760
	IF(A.LT.O.) GO TO 3	002770
	\$1=\$2=\$3=0.	002780
	RETURN	002790
3	CONTINUE	002800
-	PHI+ACOS(-8/2./SORT(-A++3/27.))	002910
	\$1+2.+\$QRT(-A/3.)+CQ\$(PHI/3.)-C1/3.	002820
	S2+2,+SQRT(-A/3,)+CQS(PH1/3,+2.+P1/3.)-C1/3.	002830
	\$3+2.+\$QRT(-A/3.)+CCS(PHI/3.+4.+PI/3.)-C1/3.	002840
	RETURN	002850
	END	002860
	SUBROUTINE ANGLP(STRSS,51,52,53,AN,IX,SIGNA)	002870
	DIMENSION STRSS(3,3,22), AN(3,3)	002880
	S11=STRSS(1,1,1X)	002890
	512+STR55(1,2,1X)	002900
	<u></u>	002910
	\$22+\$TP\$\$(2,2,1x)	002920
	523+5TR55(2,3,1x)	002930
	\$33+\$T#\$\$(3,3,1%)	002940
	ER+1.E-3	002950
	DO 2 1=1+3	002960
	IF(1.EQ.1) S=S1	002970
	IF(1.EQ.2) S=S2	C02980
	IF(I.E0.3) 5+53	002990
	[F(ABS(S11-5).LT.ER) 3,4	003000
3	AN(1,1)=1.	003010
	AN(I,2)=AN(I,3)=0.	003020
	<u>60 TO 14</u>	003030
4	IF(ABS(S22-S).LT.ER) 5,6	003040
5	AN(I,2)=1.	003050
	AN(I,1)=AN(I,3)=0.	003060
	GO TO 14	003070
6	LF(ABS(533-5).LT.ER) 7,8	003080
7	AN(1,3)+1.	003090
	AN(1,1)=AN(1,2)=0.	003100
-	GD TO 14	003110
•	IF (AB3(312).LT.ER.AND.AB3(313).LT.ER) 9,10	003120
10	A+-(512+513-(518-5)+523)/(512++2-(511-5)+(522-5))	003130
	C11=((-5120A-513)/(511-5))0#2+1.+A##2	003140
	AN(1)310516NA05QRT(1./C11)	003130
	AN(1,2)*A*AN(1,3)	003160
	ANILI 11+(-312+ANILI 21-313+ANILI 33)/(S11-3)	
-		003100
	IP (AW3(3)2), LT, ER, AND, AW3(323), LT, ER) 11, 12	003140
11	V==(37C42C3=(25C=21=273)\(2C3=45C+22C=21=(233=2))	003200
	<u></u>	003210
	AR(1)114316RA430FT(1)/C111	052600
	ANTI \$17474N([)]]	062600
	AN(1)6)*(*3637AN(1)3)*3167A4(1)1)/(362*5)	003240
		003290
12	CONTINUE	063600

1

1

į

	A=-{\$13*\$23-\$12*{\$33-\$}}}/{\$13**2-{\$11-\$}*{\$33-\$}}	003270
	(11) ((-\$23-\$130A)/(\$33-\$1)00201, 00002	003280
		003290
		003300
		001110
• ·	AN(1,3)=(-513+A+(1,1)=523+AN(1,27)7(533+5)	003310
14	CONTINUE	003320
2	CONTINUE	003331
	RETURN	003340
	END	003350
	SUBROUTINE RVSTRS (STRSS, AN, AS, TRVM, TMXX, I, SIGN)	003360
	CUMMON/F/ ISTRSS+X1(22+1)+GNU+ZR+Y+XK+FT+FA+MX	003370
	D(MENSION STRSS(3,3,22), AN(3,22), AS(3,22)	003380
		001190
	T W Y = A	003400
		003410
		003410
		003920
	AS1=-1.+.1=+LUAT(IAS-1)	003430
	IF(ABS(AN(2,I)).LT.ER.AND.A35(AN(1,I)).LT.ER) 8,9	003440
8	A\$3=0.	003450
	AS2+SIGN+SORT(1AS1++2)	003460
	GO TO 13	003470
9	F(ABS(AN(1))), LT, ER, AND, ABS(AN(3)1)), LT, ER) 10,11	003480
10	A52=0.	003490
	A\$3+\$IGN+\$G9T(1,-~A\$1++2)	003500
	GO TO 13	003510
11	TE (ARS(AN(2, T))_1 T_EP, AND, ARS(AN(3, T))_1 T_EP) GO TO 12	003520
••	1 F (A A S (A N (2 , 1)) , 1 7 , 5 8) 1 A . 1 7	003530
16		003540
		003550
		001560
		001570
		001580
		001500
17	1- 1403 (AN(3) 1). (1. CK) 10, 14	00.990
kQ	A 2 - A 3 4 A N (1 / L / A N (2 / L)	
	CC=1A31*Z-A32**Z	003010
	IF(CC.LT.0.) GU TU 22	003620
	AS3+SIGN+SORF(CC)	003830
	GO TO 13	003540
19	IF(A55(AN(1+1))+LT+ER) 20+21	003650
	<u>AS2-AN(3,I)+SIG++SQPT(1,-AS1++2)</u>	003660
	AS3AN{2,1}/AN{3,1}*AS2	003670
	60 TO 13	003680
21	A-AN(2,1)++2+AN(3,1)++2	003690
	8-2.+AN(1,1)+AN(3,1)+AS1	003700
	C=A51++2+AN(1, I)++2+AX(2, I)++2+AS1++2-AN(2, I)++2	003710
	CC+B++2-4,+A+C	003720
	IF(CC.LT.O.) 60 TO 22	003730
	AS3-(-5+516N+53RT(CC))/2./A	003740
	AS2(AS30AN(3.1)+AS10AN(1.1))/AN(2.1)	003750
13	CONTINUE	003760
••		003770
		001780
		003790
	TAUMAN/1, TIMACIACTOCC(1,1,1Y)AAM/3,TIMACSOCTOCC/3,3,TY1	003800
		001810
	**====================================	001820
	6 * 87 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	001010
	* * # # # # # # # # # # # # # # # # # #	
	IPLIAUOÚTOTRIJ JAN Mini-Ball	
3		003000
	A\$T1+A\$1	003070
	4215+425	003840
	4573+453	003840

4	IF(TAU.LT.TMN) 5,6	003900
5	TMN - TAU	003910
6	CONTINUE	003920
2	CONTINUE	003930
 	TRV+TMI-TMN	003940
	IF(ABS(TRV), GT.ABS(T7VM)) TRVM+TRV	003950
	IF (ARS(TMN), GT. ARS(TMY)) THY HARS(TMN)	003960
		0039700
		003000
23	1776 5 7 1 77 1 7 7 1 7 1 - 1 - 1 - 7 7 1	
 		003440
		004000
	A\$(3+[]+A\$13	004010
22	CONTINUE	334020
1	CONTINUE	004030
	RETURN	004040
 	<u>MRITE(1,15)</u>	004050
15	FORMATE + SOLUTION NOT APPROPRIATE +}	004060
	PETURN	004070
	END	004080
	SUBROUTINE ANGTRAN(AN. BN.CN.LX)	C04090
	DIMENSION AN(3,31,AN(3),CN(3,22)	606100
	CN1. TV = RN(1) 6AN(1.1) ARN(2) 6AN(2.1) ARN(3) 6AN(3.1)	006110
 		004130
	CH({/)[X]=OH([]=AH([]/)=H([]/AH([/)]/AH([/)]/AH([)/)=	004120
	CH(3+[I]=BH(])+AH([,3]+BH'2]+AH(2,3)+5H(3)+AH(3,3)	04130
	RETURN	004140
	END	004110
	SUBROUTINE XPOS	004160
 	<u>COMMON/F/ IS+X1(22+1)+GNU+Z+Y+XK+FT+FA+MX</u>	004170
	IF(MX.EQ.7) 1,2	004180
1	x1(1,1)e	004190
	11(2,1)=5	004200
	x1(3,1)=3	004210
		004220
	Y1(5,1)=.3	004230
 		006240
	^ & ` ` UF & J ` = = / `` ` 1 / 7 - ` ` ` . ` A	004250
	A & \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	004230
•		
~		004270
3		004240
 	11(2,1)=-,9	004240
	x1(3,1)8	C0 4 3 0 0
	X1(4,1)=5	004310
	¥1(5,1)=3	004320
	X1{6,1}=0.	004330
	¥1(7,1)•.3	004340
 	¥1(8,1)+,5	004350
	¥1(9,1)=.6	004360
	x1(10,1).,9	004370
	¥1(11,1)+1.	004380
	PETURN	004390
	164WV.66.151 5.4	004400
i i		004410
 		004420
		004410
	FL \7 + L	004470
	X1 (0,1)****	004460
 	11(7,1)****	004470
	¥1(8,1)+0.	004480
	¥1(4,1)=,3	004470
	11(10+1)+.9	004500
	¥1(11,1)+.7	004510
	¥1(12,1)+.0	004520
	•	

B-7

X1(13,1)=.9 X1(14,1)=1. 004530 004540 ×1(15,1)=1.1 004550 RETURN 004560 6 PRINT 10 004570 10 FORMATE + MATRIX NOT AVAILABLE +) 004580 RETURN 004590 END 004600 _ ------ ----. · ·· ·· · · - - ---. - ------------. . . - - -... -----. - - - ----_ ____ 11.11.12. LS12 IOLCOLC 0000518 LINES PRINTED //// END OF LIST ////

;

ſ

B-8